Science.gov

Sample records for homology-dependent interactions determine

  1. Genomic assay reveals tolerance of DNA damage by both translesion DNA synthesis and homology-dependent repair in mammalian cells.

    PubMed

    Izhar, Lior; Ziv, Omer; Cohen, Isadora S; Geacintov, Nicholas E; Livneh, Zvi

    2013-04-16

    DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage tolerance mechanisms, which prevent deleterious outcomes such as cell death, genomic instability, and carcinogenesis. The two main tolerance strategies are translesion DNA synthesis (TLS), in which low-fidelity DNA polymerases bypass the blocking lesion, and homology-dependent repair (HDR; postreplication repair), which is based on the homologous sister chromatid. Here we describe a unique high-resolution method for the simultaneous analysis of TLS and HDR across defined DNA lesions in mammalian genomes. The method is based on insertion of plasmids carrying defined site-specific DNA lesions into mammalian chromosomes, using phage integrase-mediated integration. Using this method we show that mammalian cells use HDR to tolerate DNA damage in their genome. Moreover, analysis of the tolerance of the UV light-induced 6-4 photoproduct, the tobacco smoke-induced benzo[a]pyrene-guanine adduct, and an artificial trimethylene insert shows that each of these three lesions is tolerated by both TLS and HDR. We also determined the specificity of nucleotide insertion opposite these lesions during TLS in human genomes. This unique method will be useful in elucidating the mechanism of DNA damage tolerance in mammalian chromosomes and their connection to pathological processes such as carcinogenesis. PMID:23530190

  2. Germinal Excisions of the Maize Transposon Activator Do Not Stimulate Meiotic Recombination or Homology-Dependent Repair at the Bz Locus

    PubMed Central

    Dooner, H. K.; Martinez-Ferez, I. M.

    1997-01-01

    Double-strand breaks have been implicated both in the initiation of meiotic recombination in yeast and as intermediates in the transposition process of nonreplicative transposons. Some transposons of this class, notably P of Drosophila and Tc1 of Caenorhabditis elegans, promote a form of homology-dependent premeiotic gene conversion upon excision. In this work, we have looked for evidence of an interaction between Ac transposition and meiotic recombination at the bz locus in maize. We find that the frequency of meiotic recombination between homologues is not enhanced by the presence of Ac in one of the bz heteroalleles and, conversely, that the presence of a homologous sequence in either trans (homologous chromosome) or cis (tandem duplication) does not promote conversion of the Ac insertion site. However, a tandem duplication of the bz locus may be destabilized by the insertion of Ac. We discuss possible reasons for the lack of interaction between Ac excision and homologous meiotic recombination in maize. PMID:9409847

  3. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms.

    PubMed

    Wu, Qingfa; Ding, Shou-Wei; Zhang, Yongjiang; Zhu, Shuifang

    2015-01-01

    A fast, accurate, and full indexing of viruses and viroids in a sample for the inspection and quarantine services and disease management is desirable but was unrealistic until recently. This article reviews the rapid and exciting recent progress in the use of next-generation sequencing (NGS) technologies for the identification of viruses and viroids in plants. A total of four viroids/viroid-like RNAs and 49 new plant RNA and DNA viruses from 18 known or unassigned virus families have been identified from plants since 2009. A comparison of enrichment strategies reveals that full indexing of RNA and DNA viruses as well as viroids in a plant sample at single-nucleotide resolution is made possible by one NGS run of total small RNAs, followed by data mining with homology-dependent and homology-independent computational algorithms. Major challenges in the application of NGS technologies to pathogen discovery are discussed. PMID:26047558

  4. Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants

    PubMed Central

    Muchová, Veronika; Amiard, Simon; Mozgová, Iva; Dvořáčková, Martina; Gallego, Maria E; White, Charles; Fajkus, Jiří

    2015-01-01

    Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of chromatin assembly factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock-out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-stranded breaks (measured as γ-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in the number of the intranucleolar foci. These results suggest that the repair of double-stranded breaks present in the transcribed rDNA region is RAD51B dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single-stranded annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability. PMID:25359579

  5. A determinant based full configuration interaction program

    NASA Astrophysics Data System (ADS)

    Knowles, Peter J.; Handy, Nicholas C.

    1989-04-01

    The program FCI solves the Full Configuration Interaction (Full CI) problem of quantum chemistry, in which the electronic Schrödinger equation is solved exactly within a given one particle basis set. The Slater determinant based algorithm leads to highly efficient implementation on a vector computer, and has enabled Full CI calculations of dimension more than 10 7 to be performed.

  6. Interspecies interactions are an integral determinant of microbial community dynamics

    PubMed Central

    Aziz, Fatma A. A.; Suzuki, Kenshi; Ohtaki, Akihiro; Sagegami, Keita; Hirai, Hidetaka; Seno, Jun; Mizuno, Naoko; Inuzuka, Yuma; Saito, Yasuhisa; Tashiro, Yosuke; Hiraishi, Akira; Futamata, Hiroyuki

    2015-01-01

    This study investigated the factors that determine the dynamics of bacterial communities in a complex system using multidisciplinary methods. Since natural and engineered microbial ecosystems are too complex to study, six types of synthetic microbial ecosystems (SMEs) were constructed under chemostat conditions with phenol as the sole carbon and energy source. Two to four phenol-degrading, phylogenetically and physiologically different bacterial strains were used in each SME. Phylogeny was based on the nucleotide sequence of 16S rRNA genes, while physiologic traits were based on kinetic and growth parameters on phenol. Two indices, J parameter and “interspecies interaction,” were compared to predict which strain would become dominant in an SME. The J parameter was calculated from kinetic and growth parameters. On the other hand, “interspecies interaction,” a new index proposed in this study, was evaluated by measuring the specific growth activity, which was determined on the basis of relative growth of a strain with or without the supernatant prepared from other bacterial cultures. Population densities of strains used in SMEs were enumerated by real-time quantitative PCR (qPCR) targeting the gene encoding the large subunit of phenol hydroxylase and were compared to predictions made from J parameter and interspecies interaction calculations. In 4 of 6 SEMs tested the final dominant strain shown by real-time qPCR analyses coincided with the strain predicted by both the J parameter and the interspecies interaction. However, in SMEII-2 and SMEII-3 the final dominant Variovorax strains coincided with prediction of the interspecies interaction but not the J parameter. These results demonstrate that the effects of interspecies interactions within microbial communities contribute to determining the dynamics of the microbial ecosystem. PMID:26539177

  7. Interspecies interactions are an integral determinant of microbial community dynamics.

    PubMed

    Aziz, Fatma A A; Suzuki, Kenshi; Ohtaki, Akihiro; Sagegami, Keita; Hirai, Hidetaka; Seno, Jun; Mizuno, Naoko; Inuzuka, Yuma; Saito, Yasuhisa; Tashiro, Yosuke; Hiraishi, Akira; Futamata, Hiroyuki

    2015-01-01

    This study investigated the factors that determine the dynamics of bacterial communities in a complex system using multidisciplinary methods. Since natural and engineered microbial ecosystems are too complex to study, six types of synthetic microbial ecosystems (SMEs) were constructed under chemostat conditions with phenol as the sole carbon and energy source. Two to four phenol-degrading, phylogenetically and physiologically different bacterial strains were used in each SME. Phylogeny was based on the nucleotide sequence of 16S rRNA genes, while physiologic traits were based on kinetic and growth parameters on phenol. Two indices, J parameter and "interspecies interaction," were compared to predict which strain would become dominant in an SME. The J parameter was calculated from kinetic and growth parameters. On the other hand, "interspecies interaction," a new index proposed in this study, was evaluated by measuring the specific growth activity, which was determined on the basis of relative growth of a strain with or without the supernatant prepared from other bacterial cultures. Population densities of strains used in SMEs were enumerated by real-time quantitative PCR (qPCR) targeting the gene encoding the large subunit of phenol hydroxylase and were compared to predictions made from J parameter and interspecies interaction calculations. In 4 of 6 SEMs tested the final dominant strain shown by real-time qPCR analyses coincided with the strain predicted by both the J parameter and the interspecies interaction. However, in SMEII-2 and SMEII-3 the final dominant Variovorax strains coincided with prediction of the interspecies interaction but not the J parameter. These results demonstrate that the effects of interspecies interactions within microbial communities contribute to determining the dynamics of the microbial ecosystem. PMID:26539177

  8. Computational learning on specificity-determining residue-nucleotide interactions

    PubMed Central

    Wong, Ka-Chun; Li, Yue; Peng, Chengbin; Moses, Alan M.; Zhang, Zhaolei

    2015-01-01

    The protein–DNA interactions between transcription factors and transcription factor binding sites are essential activities in gene regulation. To decipher the binding codes, it is a long-standing challenge to understand the binding mechanism across different transcription factor DNA binding families. Past computational learning studies usually focus on learning and predicting the DNA binding residues on protein side. Taking into account both sides (protein and DNA), we propose and describe a computational study for learning the specificity-determining residue-nucleotide interactions of different known DNA-binding domain families. The proposed learning models are compared to state-of-the-art models comprehensively, demonstrating its competitive learning performance. In addition, we describe and propose two applications which demonstrate how the learnt models can provide meaningful insights into protein–DNA interactions across different DNA binding families. PMID:26527718

  9. Particle-Surface Interaction Model and Method of Determining Particle-Surface Interactions

    NASA Technical Reports Server (NTRS)

    Hughes, David W. (Inventor)

    2012-01-01

    A method and model of predicting particle-surface interactions with a surface, such as the surface of a spacecraft. The method includes the steps of: determining a trajectory path of a plurality of moving particles; predicting whether any of the moving particles will intersect a surface; predicting whether any of the particles will be captured by the surface and/or; predicting a reflected trajectory and velocity of particles reflected from the surface.

  10. Interactions among thermal parameters determine offspring sex under temperature-dependent sex determination

    PubMed Central

    Warner, Daniel A.; Shine, Richard

    2011-01-01

    In many animals, temperatures experienced by developing embryos determine offspring sex (e.g. temperature-dependent sex determination, TSD), but most studies focus strictly on the effects of mean temperature, with little emphasis on the importance of thermal fluctuations. In the jacky dragon (Amphibolurus muricatus), an Australian lizard with TSD, data from nests in the field demonstrate that offspring sex ratios are predictable from thermal fluctuations but not from mean nest temperatures. To clarify this paradox, we incubated eggs in a factorial experiment with two levels of mean temperature and three levels of diel fluctuation. We show that offspring sex is determined by an interaction between these critical thermal parameters. Intriguingly, because these two thermal descriptors shift in opposing directions throughout the incubation season, this interactive effect inhibits seasonal shifts in sex ratio. Hence, our results suggest that TSD can yield offspring sex ratios that resemble those produced under genotypic sex-determining systems. These findings raise important considerations for understanding the diversity of TSD reaction norms, for designing experiments that evaluate the evolutionary significance of TSD, and for predicting sex ratios under past and future climate change scenarios. PMID:20685704

  11. Determination and characterization of metronidazole–kaolin interaction

    PubMed Central

    Aleanizy, Fadilah Sfouq; Alqahtani, Fulwah; Al Gohary, Omaimah; El Tahir, Eram; Al Shalabi, Rania

    2014-01-01

    The needs for safe, therapeutically effective antidiarrheal combination continuously lead to effective treatment. When administered simultaneously, metronidazole–kaolin interactions have been reported by FDA but not studied. This paper is the first to study metronidazole–kaolin interactions. Adsorption isotherms of a metronidazole–kaolin antidiarrheal combination from aqueous solutions at an in vivo simulated pH conditions were obtained at 37 ± 0.5 °C. Langmuir constants for the adsorption are 10.8225, 41.3223 mg g−1 and 11.60, 2.56 l g−1 aimed at the monolayer capacity, and the equilibrium constant at pH 1.2 and 6.8, respectively. pH effect on adsorption of known concentration of metronidazole by kaolin was also studied over the range 1.2–8. A gradual increase in the adsorbed amount was noted with increasing the pH. Elution studies by different eluents showed that drug recovery from adsorbent surface was pH-dependent via competitive mechanism. The elution followed the sequence: 0.1 M HCl > 0.1 M NaCl > H2O. Adsorption–desorption studies revealed physical adsorption. The equilibrium concentration of metronidazole decreased as the adsorbent concentration was increased in the systems. The dissolution profiles (USP) of commercially available tablets (Riazole® 500 mg) were obtained alone and in the presence of either (ORS®) rehydration salts and 9 or 18 g of kaolin powder. The percentage drug released versus time: 95.01% in 25 min, 101.02% in 30 min, 67.63% in 60 min, 60.59% in 60 min, respectively. The percentage drug released versus time was increased with ORS® due to common ion effect [Cl−], while, it was decreased with kaolin due to adsorption. The mechanism of reaction of Riazole® (500 mg) tablets in the different dissolution media, confirms with Korsmeyer–Peppas model. The interaction between metronidazole and kaolin was characterized by melting point determinations, differential scanning calorimetry analysis and

  12. Thunderstorm-environment interactions determined with three-dimensional trajectories

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.

    1980-01-01

    Diagnostically determined three dimensional trajectories were used to reveal some of the scale interaction processes that occur between convective storms and their environment. Data from NASA's fourth Atmospheric Variability Experiment are analyzed. Two intense squall lines and numerous reports of severe weather occurred during the period. Convective storm systems with good temporal and spatial continuity are shown to be related to the development and movement of short wave circulation systems aloft that propagate eastward within a zonal mid tropospheric wind pattern. These short wave systems are found to produce the potential instability and dynamic triggering needed for thunderstorm formation. The environmental flow patterns, relative to convective storm systems, are shown to produce large upward air parcel movements in excess of 50 mb/3h in the immediate vicinity of the storms. The air undergoing strong lifting originates as potentially unstable low level air traveling into the storm environment from southern and southwestern directions. The thermo and hydrodynamical processes that lead to changes in atmospheric structure before, during, and after convective storm formation are described using total time derivatives of pressure or net vertical displacement, potential temperature, and vector wind calculated by following air parcels.

  13. Interaction Determined Electron Energy Levels in One-Dimension

    NASA Astrophysics Data System (ADS)

    Pepper, Michael; Kumar, Sanjeev; Thomas, Kalarikad; Smith, Luke; Creeth, Graham; Farrer, Ian; Ritchie, David; Jones, Geraint; Jonathan, Griffiths; UCL Collaboration; Cavendish Laboratory Collaboration

    2015-03-01

    We have investigated electron transport in a quasi-one dimensional electron gas in the GaAs-AlGaAs heterostructure designed so that the confinement potential can be progressively weakened. This causes the energy levels to decrease in energy relative to each other, however this decrease occurs at different rates, a feature attributed to the energy being determined by both confinement and the electron-electron repulsion which varies with the shape of the wavefunction. It is found that the initial ground state crosses the higher levels so resulting in missing plateaux of quantised conductance. A change in the nature of the ground state to a more extended form causes an increase in the capacitance between the confining gates and the electrons. Both crossings and anti-crossings of the levels are found and these will be discussed along with other consequences of the form of the level interactions. The effects of level crossing on the spin dependent 0.7 structure will be presented. Supported by EPSRC (UK).

  14. Apparatus and method for determining microscale interactions based on compressive sensors such as crystal structures

    SciTech Connect

    McAdams, Harley; AlQuraishi, Mohammed

    2015-04-21

    Techniques for determining values for a metric of microscale interactions include determining a mesoscale metric for a plurality of mesoscale interaction types, wherein a value of the mesoscale metric for each mesoscale interaction type is based on a corresponding function of values of the microscale metric for the plurality of the microscale interaction types. A plurality of observations that indicate the values of the mesoscale metric are determined for the plurality of mesoscale interaction types. Values of the microscale metric are determined for the plurality of microscale interaction types based on the plurality of observations and the corresponding functions and compressed sensing.

  15. Determinants of Spousal Interaction: Marital Structure or Marital Happiness.

    ERIC Educational Resources Information Center

    White, Lynn K.

    1983-01-01

    Examined factors associated with marital interaction, particularly women's employment and marital happiness, in a nationwide sample of 2,034 men and women. Results suggested interaction is reduced by both men's and women's job involvement, children, and a traditional division of household labor. Marital quality was the most important predictor.…

  16. Ideology and Interaction: Debating Determinisms in Literacy Studies

    ERIC Educational Resources Information Center

    Collin, Ross; Street, Brian V.

    2014-01-01

    In this exchange, Street and Collin debate the merits of the interaction model of literacy that Collin outlined in a recent issue of Reading Research Quarterly. Built as a complement and a counter to Street's ideological model of literacy, Collin's interaction model defines literacies as technologies that coevolve with sociocultural…

  17. Sequence of arrival determines plant-mediated interactions between herbivores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Summary 1. Induced changes in plant quality are important factors mediating indirect interactions between herbivores. Although the sequence of attack has been shown to influence plant responses, little is known about how it may affect the outcome of insect-plant-insect interactions. 2. We therefore...

  18. Homology-dependent Gene Silencing in Paramecium

    PubMed Central

    Ruiz, Françoise; Vayssié, Laurence; Klotz, Catherine; Sperling, Linda; Madeddu, Luisa

    1998-01-01

    Microinjection at high copy number of plasmids containing only the coding region of a gene into the Paramecium somatic macronucleus led to a marked reduction in the expression of the corresponding endogenous gene(s). The silencing effect, which is stably maintained throughout vegetative growth, has been observed for all Paramecium genes examined so far: a single-copy gene (ND7), as well as members of multigene families (centrin genes and trichocyst matrix protein genes) in which all closely related paralogous genes appeared to be affected. This phenomenon may be related to posttranscriptional gene silencing in transgenic plants and quelling in Neurospora and allows the efficient creation of specific mutant phenotypes thus providing a potentially powerful tool to study gene function in Paramecium. For the two multigene families that encode proteins that coassemble to build up complex subcellular structures the analysis presented herein provides the first experimental evidence that the members of these gene families are not functionally redundant. PMID:9529389

  19. Experimental determination of sound and high-speed flow interaction

    NASA Technical Reports Server (NTRS)

    Lumsdaine, E.; Silcox, R.

    1976-01-01

    A facility that was used to measure the interaction of flow with sound at high Mach numbers is described. Four inlets with different area variations (or axial gradients) were tested. Sound of selected frequencies and modes (0,0), (1,0), (2,0) was generated with eight circumferential acoustic drivers.

  20. An ancient protein-DNA interaction underlying metazoan sex determination

    PubMed Central

    Murphy, Mark W.; Lee, John K.; Rojo, Sandra; Gearhart, Micah D.; Kurahashi, Kayo; Banerjee, Surajit; Loeuille, Guy-André; Bashamboo, Anu; McElreavey, Kenneth; Zarkower, David; Aihara, Hideki; Bardwell, Vivian J.

    2015-01-01

    DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds to a pseudopalindromic target DNA. Here we show that DMRT proteins employ a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to employ multiple DNA binding modes (tetramer, trimer, dimer). ChIP-Exo indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and in male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction that underlies much of metazoan sexual development. PMID:26005864

  1. Identifying Interactions that Determine Fragment Binding at Protein Hotspots.

    PubMed

    Radoux, Chris J; Olsson, Tjelvar S G; Pitt, Will R; Groom, Colin R; Blundell, Tom L

    2016-05-12

    Locating a ligand-binding site is an important first step in structure-guided drug discovery, but current methods do little to suggest which interactions within a pocket are the most important for binding. Here we illustrate a method that samples atomic hotspots with simple molecular probes to produce fragment hotspot maps. These maps specifically highlight fragment-binding sites and their corresponding pharmacophores. For ligand-bound structures, they provide an intuitive visual guide within the binding site, directing medicinal chemists where to grow the molecule and alerting them to suboptimal interactions within the original hit. The fragment hotspot map calculation is validated using experimental binding positions of 21 fragments and subsequent lead molecules. The ligands are found in high scoring areas of the fragment hotspot maps, with fragment atoms having a median percentage rank of 97%. Protein kinase B and pantothenate synthetase are examined in detail. In each case, the fragment hotspot maps are able to rationalize a Free-Wilson analysis of SAR data from a fragment-based drug design project. PMID:27043011

  2. Determining Interactions in PSA models: Application to a Space PSA

    SciTech Connect

    C. Smith; E. Borgonovo

    2010-06-01

    This paper addresses use of an importance measure interaction study of a probabilistic risk analysis (PSA) performed for a hypothetical aerospace lunar mission. The PSA methods used in this study follow the general guidance provided in the NASA Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners. For the PSA portion, we used phased-based event tree and fault tree logic structures are used to model a lunar mission, including multiple phases (from launch to return to the Earth surface) and multiple critical systems. Details of the analysis results are not provided in this paper – instead specific basic events are denoted by number (e.g., the first event is 1, the second is 2, and so on). However, in the model, we used approximately 150 fault trees and over 800 basic events. Following analysis and truncation of cut sets, we were left with about 400 basic events to evaluate. We used this model to explore interactions between different basic events and systems. These sensitivity studies provide high-level insights into features of the PSA for the hypothetical lunar mission.

  3. Determination of the CD148-Interacting Region in Thrombospondin-1

    PubMed Central

    Jiang, Rosie; Brantley-Sieders, Dana M.; Chen, Jin; Mernaugh, Raymond L.; Takahashi, Takamune

    2016-01-01

    CD148 is a transmembrane protein tyrosine phosphatase that is expressed in multiple cell types, including vascular endothelial cells and duct epithelial cells. Previous studies have shown a prominent role of CD148 to reduce growth factor signals and suppress cell proliferation and transformation. Further, we have recently shown that thrombospondin-1 (TSP1) serves as a functionally important ligand for CD148. TSP1 has multiple structural elements and interacts with various cell surface receptors that exhibit differing effects. In order to create the CD148-specific TSP1 fragment, here we investigated the CD148-interacting region in TSP1 using a series of TSP1 fragments and biochemical and biological assays. Our results demonstrate that: 1) CD148 binds to the 1st type 1 repeat in TSP1; 2) Trimeric TSP1 fragments that contain the 1st type repeat inhibit cell proliferation in A431D cells that stably express wild-type CD148 (A431D/CD148wt cells), while they show no effects in A431D cells that lack CD148 or express a catalytically inactive form of CD148. The anti-proliferative effect of the TSP1 fragment in A431D/CD148wt cells was largely abolished by CD148 knockdown and antagonized by the 1st, but not the 2nd and 3rd, type 1 repeat fragment. Furthermore, the trimeric TSP1 fragments containing the 1st type repeat increased the catalytic activity of CD148 and reduced phospho-tyrosine contents of EGFR and ERK1/2, defined CD148 substrates. These effects were not observed in the TSP1 fragments that lack the 1st type 1 repeat. Last, we demonstrate that the trimeric TSP1 fragment containing the 1st type 1 repeat inhibits endothelial cell proliferation in culture and angiogenesis in vivo. These effects were largely abolished by CD148 knockdown or deficiency. Collectively, these findings indicate that the 1st type 1 repeat interacts with CD148, reducing growth factor signals and inhibiting epithelial or endothelial cell proliferation and angiogenesis. PMID:27149518

  4. Charged group surface accessibility determines micelleplexes formation and cellular interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Liu, Yang; Sen, Soumyo; Král, Petr; Gemeinhart, Richard A.

    2015-04-01

    Micelleplexes are a class of nucleic acid carriers that have gained acceptance due to their size, stability, and ability to synergistically carry small molecules. MicroRNAs (miRNAs) are small non-coding RNA gene regulator that is consists of 19-22 nucleotides. Altered expression of miRNAs plays an important role in many human diseases. Using a model 22-nucleotide miRNA sequence, we investigated the interaction between charged groups on the micelle surface and miRNA. The model micelle system was formed from methoxy-poly(ethylene glycol)-b-poly(lactide) (mPEG-PLA) mixed with methoxy-poly(ethylene glycol)-b-poly(lactide)-b-oligoarginine (mPEG-PLA-Rx, x = 8 or 15). Surface properties of the micelles were varied by controlling the oligoarginine block length and conjugation density. Micelles were observed to have a core-shell conformation in the aqueous environment where the PLA block constituted the hydrophobic core, mPEG and oligoarginine formed a hydrophilic corona. Significantly different thermodynamic behaviors were observed during the interaction of single stranded miRNA with micelles of different surface properties, and the resulting micelleplexes mediated substantial cellular association. Depending upon the oligoarginine length and density, micelles exhibited miRNA loading capacity directly related to the presentation of charged groups on the surface. The effect of charged group accessibility of cationic micelle on micelleplex properties provides guidance on future miRNA delivery system design.Micelleplexes are a class of nucleic acid carriers that have gained acceptance due to their size, stability, and ability to synergistically carry small molecules. MicroRNAs (miRNAs) are small non-coding RNA gene regulator that is consists of 19-22 nucleotides. Altered expression of miRNAs plays an important role in many human diseases. Using a model 22-nucleotide miRNA sequence, we investigated the interaction between charged groups on the micelle surface and miRNA. The

  5. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  6. Determining robot actions for tasks requiring sensor interaction

    NASA Technical Reports Server (NTRS)

    Budenske, John; Gini, Maria

    1989-01-01

    The performance of non-trivial tasks by a mobile robot has been a long term objective of robotic research. One of the major stumbling blocks to this goal is the conversion of the high-level planning goals and commands into the actuator and sensor processing controls. In order for a mobile robot to accomplish a non-trivial task, the task must be described in terms of primitive actions of the robot's actuators. Most non-trivial tasks require the robot to interact with its environment; thus necessitating coordination of sensor processing and actuator control to accomplish the task. The main contention is that the transformation from the high level description of the task to the primitive actions should be performed primarily at execution time, when knowledge about the environment can be obtained through sensors. It is proposed to produce the detailed plan of primitive actions by using a collection of low-level planning components that contain domain specific knowledge and knowledge about the available sensors, actuators, and sensor/actuator processing. This collection will perform signal and control processing as well as serve as a control interface between an actual mobile robot and a high-level planning system. Previous research has shown the usefulness of high-level planning systems to plan the coordination of activities such to achieve a goal, but none have been fully applied to actual mobile robots due to the complexity of interacting with sensors and actuators. This control interface is currently being implemented on a LABMATE mobile robot connected to a SUN workstation and will be developed such to enable the LABMATE to perform non-trivial, sensor-intensive tasks as specified by a planning system.

  7. Processing of PDGF gene products determines interactions with glycosaminoglycans.

    PubMed

    Lustig, F; Hoebeke, J; Simonson, C; Ostergren-Lundén, G; Bondjers, G; Rüetchi, U; Fager, G

    1999-01-01

    The platelet derived growth factor (PDGF), a mitogen for mesenchymal cells, may be bound to and inhibited by heparin and other glycosaminoglycans. PDGF is a homo- or heterodimer of A- and B-chains. They occur as short (A109 and B110) and long (A125 and B160) isoforms. The latter contain basic carboxyl-terminal extensions. Dimeric A125 binds to heparin through its basic extension in a two-step reaction. The mechanism involves a conformational change and is consistent with a Monod-Wyman-Changeux allosteric model. Previous indirect experiments suggested that three critical amino acids (basic R111, K116 and polar T125) might be involved. Here, direct binding experiments using dimeric full-length mutants in surface plasmon resonanse analysis showed that all three critical amino acids in an R(X)4K(X)8T-motif contributed in a concerted manner to the high affinity binding. Mutations of these amino acids to alanine resulted in large thermodynamic changes, loss of the allosteric mechanism and order(s) of magnitude lower binding affinity. The binding mechanism and affinity of long dimeric rB were similar to the mutants. Short dimeric rA109 and rB110 showed 100 times lower binding affinity than rA125. Consequently, interactions with glycosaminoglycans in tissues varies between PDGF isoforms and may influence their local accumulation and activity. PMID:10398402

  8. Structural determinants of cooperativity in acto-myosin interactions.

    PubMed

    Moraczewska, Joanna

    2002-01-01

    Regulation of muscle contraction is a very cooperative process. The presence of tropomyosin on the thin filament is both necessary and sufficient for cooperativity to occur. Data recently obtained with various tropomyosin isoforms and mutants help us to understand better the structural requirements in the thin filament for cooperative protein interactions. Forming an end-to-end overlap between neighboring tropomyosin molecules is not necessary for the cooperativity of the thin filament activation. When direct contacts between tropomyosin molecules are disrupted, the conformational changes in the filament are most probably transmitted cooperatively through actin subunits, although the exact nature of these changes is not known. The function of tropomyosin ends, alternatively expressed in various isoforms, is to confer specific actin affinity. Tropomyosin's affinity or actin is directly related to the size of the apparent cooperative unit defined as the number of actin subunits turned into the active state by binding of one myosin head. Inner sequences of tropomyosin, particularly actin-binding periods 3 to 5, play crucial role in myosin-induced activation of the thin filament. A plausible mechanism of tropomyosin function in this process is that inner tropomyosin regions are either specifically recognized by myosin or they define the right actin conformation required for tropomyosin movement from its blocking position. PMID:12545187

  9. Interaction of growth-determining systems with gravity.

    PubMed

    Merkys, A; Laurinavicius, R; Bendoraityte, D; Svegzdiene, D; Rupainiene, O

    1986-01-01

    The experiments have been carried out with lettuce shoots on board the Salyut-7 orbital station the Kosmos-1667 biological satellite and under ground conditions at 180 degrees plant inversion. By means of the centrifuge Biogravistat-1M the threshold value of gravitational sensitivity of lettuce shoots has been determined on board the Salyut-7 station. It was found to be equal to 2.9 x 10(-3)g for hypocotyls and 1.5 x 10(-4)g for roots. The following results have been received in the experiment performed on board the Kosmos-1667 satellite: a) under microgravity the proliferation of the meristem cells and the growth of roots did not differ from the control; b) the growth of hypocotyls in length was significantly enhanced in microgravity; c) under microgravity transverse growth of hypocotyls (increase in cross sectional area) was significantly increased due to enhancement of cortical parenchyma cell growth. At 180 degrees inversion in Earth's gravity root extension growth and rate of cell division in the root apical meristem were decreased. The determination of DNA-fuchsin value in the nuclei of the cell root apexes showed that inversion affected processes of the cell cycle preceding cytokinesis. PMID:11537846

  10. Interaction of growth-determining systems with gravity

    NASA Astrophysics Data System (ADS)

    Merkys, A.; Laurinavičius, R.; Bendoraityté, D.; Švegždiené, D.; Rupainiené, O.

    The experiments have been carried out with lettuce shoots on board the Salyut-7 orbital station, the Kosmos-1667 biological satellite and under ground conditions at 180° plant inversion. By means of the centrifuge Biogravistat-1M the threshold value of gravitational sensitivity of lettuce shoots has been determined on board the Salyut-7 station. It was found to be equal to 2.9 × 10-3g for hypocotyls and 1.5 × 10-4g for roots. The following results have been received in the experiment performed on board the Kosmos-1667 satellite: a) under microgravity the proliferation of the meristem cells and the growth of roots did not differ from the control; b) the growth of hypocotyls in length was significantly enhanced in microgravity; c) under microgravity transverse growth of hypocotyls (increase in cross sectional area) was significantly increased due to enhancement of cortical parenchyma cell growth. At 180° inversion in Earth's gravity root extension growth and rate of cell division in the root apical meristem were decreased. The determination of DNA-fuchsin value in the nuclei of the cell root apexes showed that inversion affected processess of the cell cycle preceeding cytokinesis.

  11. Political dynamics determined by interactions between political leaders and voters.

    SciTech Connect

    Bernard, Michael Lewis; Bier, Asmeret; Backus, George A.; Hills, Richard Guy

    2010-03-01

    The political dynamics associated with an election are typically a function of the interplay between political leaders and voters, as well as endogenous and exogenous factors that impact the perceptions and goals of the electorate. This paper describes an effort by Sandia National Laboratories to model the attitudes and behaviors of various political groups along with that population's primary influencers, such as government leaders. To accomplish this, Sandia National Laboratories is creating a hybrid system dynamics-cognitive model to simulate systems- and individual-level political dynamics in a hypothetical society. The model is based on well-established psychological theory, applied to both individuals and groups within the modeled society. Confidence management processes are being incorporated into the model design process to increase the utility of the tool and assess its performance. This project will enhance understanding of how political dynamics are determined in democratic society.

  12. Attractive interactions among intermediate filaments determine network mechanics in vitro.

    PubMed

    Pawelzyk, Paul; Mücke, Norbert; Herrmann, Harald; Willenbacher, Norbert

    2014-01-01

    Mechanical and structural properties of K8/K18 and vimentin intermediate filament (IF) networks have been investigated using bulk mechanical rheometry and optical microrheology including diffusing wave spectroscopy and multiple particle tracking. A high elastic modulus G0 at low protein concentration c, a weak concentration dependency of G0 (G0 ∼ c(0.5 ± 0.1)) and pronounced strain stiffening are found for these systems even without external crossbridgers. Strong attractive interactions among filaments are required to maintain these characteristic mechanical features, which have also been reported for various other IF networks. Filament assembly, the persistence length of the filaments and the network mesh size remain essentially unaffected when a nonionic surfactant is added, but strain stiffening is completely suppressed, G0 drops by orders of magnitude and exhibits a scaling G0 ∼ c(1.9 ± 0.2) in agreement with microrheological measurements and as expected for entangled networks of semi-flexible polymers. Tailless K8Δ/K18ΔT and various other tailless filament networks do not exhibit strain stiffening, but still show high G0 values. Therefore, two binding sites are proposed to exist in IF networks. A weaker one mediated by hydrophobic amino acid clusters in the central rod prevents stretched filaments between adjacent cross-links from thermal equilibration and thus provides the high G0 values. Another strong one facilitating strain stiffening is located in the tail domain with its high fraction of hydrophobic amino acid sequences. Strain stiffening is less pronounced for vimentin than for K8/K18 due to electrostatic repulsion forces partly compensating the strong attraction at filament contact points. PMID:24690778

  13. Combined Electrostatics and Hydrogen Bonding Determine PIP2 Intermolecular Interactions

    PubMed Central

    Levental, Ilya; Cebers, Andrejs; Janmey, Paul A.

    2010-01-01

    Membrane lipids are active contributors to cell function as key mediators in signaling pathways of inflammation, apoptosis, migration, and proliferation. Recent work on multimolecular lipid structures suggests a critical role for lipid organization in regulating the function of both lipids and proteins. Of particular interest in this context are the polyphosphoinositides (PPI’s), specifically phosphatidylinositol (4,5) bisphosphate (PIP2). The cellular functions of PIP2 are numerous but the factors controlling targeting of PIP2 to specific proteins and organization of PIP2 in the inner leaflet of the plasma membrane remain poorly understood. To analyze the organization of PIP2 in a simplified planar system, we used Langmuir monolayers to study the effects of subphase conditions on monolayers of purified naturally derived PIP2 and other anionic or zwitterionic phospholipids. We report a significant molecular area expanding effect of subphase monovalent salts on PIP2 at biologically relevant surface densities. This effect is shown to be specific to PIP2 and independent of subphase pH. Chaotropic agents (e.g. salts, trehalose, urea, temperature) that disrupt water structure and the ability of water to mediate intermolecular hydrogen bonding also specifically expanded PIP2 monolayers. These results suggest a combination of water-mediated hydrogen bonding and headgroup charge in determining the organization of PIP2, and may provide an explanation for the unique functionality of PIP2 compared to other anionic phospholipids. PMID:18572937

  14. Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces

    NASA Astrophysics Data System (ADS)

    Olsen, Jeppe; Roos, Björn O.; Jørgensen, Poul; Jensen, Hans Jørgen Aa.

    1988-08-01

    A restricted active space (RAS) wave function is introduced, which encompasses many commonly used restricted CI expansions. A highly vectorized algorithm is developed for full CI and other RAS calculations. The algorithm is based on Slater determinants expressed as products of alphastrings and betastrings and lends itself to a matrix indexing C(Iα, Iβ ) of the CI vector. The major features are: (1) The intermediate summation over determinants is replaced by two intermediate summations over strings, the number of which is only the square root of the number of determinants. (2) Intermediate summations over strings outside the RAS CI space is avoided and RAS calculations are therefore almost as efficient as full CI calculations with the same number of determinants. (3) An additional simplification is devised for MS =0 states, halving the number of operations. For a case with all single and double replacements out from 415 206 Slater determinants yielding 1 136 838 Slater determinants each CI iteration takes 161 s on an IBM 3090/150(VF).

  15. Perceptual Incongruity and Social Interaction as Determinants of Infants' Reaction to Novel Persons

    ERIC Educational Resources Information Center

    Greenberg, David J.; And Others

    1975-01-01

    A study on the effects of birth order on infants' reactions to novel persons was conducted to test the differing predictions of incongruity theory and social interaction theory. Findings indicated that infants' reactions to novel persons are determined by infants' social interaction within the family during the first year rather than by the number…

  16. Determinants of potential drug–drug interaction associated dispensing in community pharmacies in the Netherlands

    PubMed Central

    Becker, Matthijs L.; Caspers, Peter W. J.; Kallewaard, Marjon; Bruinink, Riekert J.; Kylstra, Nico B.; Heisterkamp, Siem; de Valk, Vincent; van der Veen, André A.

    2006-01-01

    Objective: There are many drug–drug interactions (D–DI) of which some may cause severe adverse patient outcomes. Dispensing interacting drug combinations should be avoided when the risks are higher than the benefits. The objective of this study was to identify determinants of dispensing undesirable interacting drug combinations by community pharmacies in the Netherlands. Methods: A total of 256 Dutch community pharmacies were selected, based on the dispensing of 11 undesirable interacting drug combinations between January 1st, 2001 and October 31st, 2002. These pharmacies were sent a questionnaire by the Inspectorate for Health Care (IHC) concerning their process and structure characteristics. Main outcome measure: The number of times the 11 undesirable interacting drug combinations were dispensed. Results: Two hundred and forty-six questionnaires (response rate 96.1%) were completed. Dispensing determinants were only found for the D–DI between macrolide antibiotics and digoxin but not for the other 10 D–DIs. Pharmacies using different medication surveillance systems differed in the dispensing of this interacting drug combination, and pharmacies, which were part of a health care centre dispensed this interacting drug combination more often. Conclusion: Medication surveillance in Dutch community pharmacies seems to be effective. Although for most D–DIs no determinants were found, process and structure characteristics may have consequences for the dispensing of undesirable interacting drug combinations. PMID:17187223

  17. Human male sex determination and sexual differentiation: pathways, molecular interactions and genetic disorders.

    PubMed

    Kucinskas, Laimutis; Just, Walter

    2005-01-01

    The complex mechanisms are responsible for male sex determination and differentiation. The steps of formation of the testes are dependent on a series of Y-linked, X-linked and autosomal genes actions and interactions. After formation of testes the gonads secrete hormones, which are essential for the formation of the male genitalia. Hormones are transcription regulators, which function by specific receptors. Ambiguous genitalia are result of disruption of genetic interaction. This review describes the mechanisms, which lead to differentiation of male sex and ways by which the determination and differentiation may be interrupted by naturally occurring mutations, causing different syndromes and diseases. PMID:16160410

  18. Truncated-determinant diagrammatic Monte Carlo for fermions with contact interaction

    NASA Astrophysics Data System (ADS)

    Bourovski, Evgueni; Prokof'Ev, Nikolay; Svistunov, Boris

    2004-11-01

    For some models of interacting fermions the known solution to the notorious sign problem in Monte Carlo (MC) simulations is to work with macroscopic fermionic determinants; the price, however, is a macroscopic scaling of the numerical effort spent on elementary local updates. We find that the ratio of two macroscopic determinants can be found with any desired accuracy by considering truncated (local in space and time) matices. In this respect, MC for interacting fermionic systems becomes similar to that for the sign-problem-free bosonic systems with system-size independent update cost. We demonstrate the utility of the truncated-determinant method by simulating the attractive Hubbard model within the MC scheme based on partially summed Feynman diagrams. We conjecture that similar approach may be useful in other implementations of the sign-free determinant schemes.

  19. Determination of the neutral to charged current cross-section ratio for antineutrino interactions on protons

    NASA Astrophysics Data System (ADS)

    Moreels, J.; Van Doninck, W.; Alamatsaz, H.; Armenise, N.; Azemoon, T.; Bartley, J. H.; Baton, J. P.; Belusevic, R.; Bertrand, D.; Brisson, V.; Calicchio, M.; Colley, D. C.; Cooper, A. M.; Erriquez, O.; Fogli-muciaccia, M. T.; Gerbier, G.; Guy, J. G.; Jones, G. T.; Kochowski, C.; Michette, A. G.; Natali, S.; Neveu, M.; Nuzzo, S.; O'Neale, S.; Parker, M. A.; Petiau, P.; Ruggieri, F.; Sacton, J.; Sewell, S.; Tyndel, M.; Vander Velde, G.; Venus, W.; Vortuba, M. F.; BEBC TST Neutrino Collaboration

    1984-04-01

    An exposure of BEBC equipped with the hydrogen-filled TST to the overlinevμ wide band beam at the CERN SPS has been used to study overlinevμ interactions on free protons. About neutral induced interactions have been observed inside the hydrogen and separated into charged current, neutral current and neutral hadron interactions using a multivariate discriminant analysis based on the kinematics of the events. The neutral to charged current cross-section ratio has been determined to be R poverlinev = 0.33 ± 0.04 . When combined with the value of Rpv previously determined in the same experiment, the result is compatible with the prediction of the standard SU (2) × U (1) model for sin 2θW = 0.24 -0.08+0.06 and ρ = 1.07 -0.08+0.06. Fixing the parameter ρ = 1 yields sin 2θW = 0.18 ± 0.04.

  20. The influence of bonding agents in improving interactions in composite propellants determined using image analysis.

    PubMed

    Dostanić, J; Husović, T V; Usćumlić, G; Heinemann, R J; Mijin, D

    2008-12-01

    Binder-oxidizer interactions in rocket composite propellants can be improved using adequate bonding agents. In the present work, the effectiveness of different 1,3,5-trisubstituted isocyanurates was determined by stereo and metallographic microscopy and using the software package Image-Pro Plus. The chemical analysis of samples was performed by a scanning electron microscope equipped for energy dispersive spectrometry. PMID:19094035

  1. Cell-cell interactions determine the dorsoventral axis in embryos of an equally cleaving opisthobranch mollusc.

    PubMed

    Boring, L

    1989-11-01

    Dorsoventral polarity in molluscan embryos can arise by two distinct mechanisms, where the mechanism employed is strongly correlated with the cleavage pattern of the early embryo. In species with unequal cleavage, the dorsal lineage, or "D quadrant", is determined in a cell-autonomous manner by the inheritance of cytoplasmic determinants. However, in gastropod molluscs with equal cleavage, cell-cell interactions are required to specify the fate of the dorsal blastomere. During the fifth cleavage interval in equally cleaving embryos, one of the vegetal macromeres makes exclusive contacts with the animal micromeres, and this macromere will give rise to the mesodermal precursor cell at the next division, thereby identifying the dorsal quadrant. This study examines D-quadrant determination in an equally cleaving species from a group of previously uninvestigated gastropods, the subclass Opisthobranchia. Blastomere ablation experiments were performed on embryos of Haminoea callidegenita to (i) determine the developmental potential of macromeres before and after fifth cleavage, and (ii) examine the role of micromere-macromere interactions in the establishment of bilateral symmetry. The results suggest that the macromeres are developmentally equivalent prior to fifth cleavage, but become nonequivalent soon afterward. The dorsoventral axis corresponds to the displacement of the micromeres over one macromere early in the fifth cleavage interval. This unusual cellular topology is hypothesized to result from constraints imposed on micromere-macromere interactions in an embryo that develops from a large egg and forms a stereoblastula (no cleavage cavity). Ablation of the entire first quarter of micromeres results in embryos which remain radially symmetrical in the vegetal hemisphere, indicating that micromere-macromere interactions are required for the elaboration of bilateral symmetry properties. Therefore, inductive interactions between cells may represent a general strategy

  2. HIV-1 and HIV-2 Vif Interact with Human APOBEC3 Proteins Using Completely Different Determinants

    PubMed Central

    Smith, Jessica L.; Izumi, Taisuke; Borbet, Timothy C.; Hagedorn, Ariel N.

    2014-01-01

    ABSTRACT Human APOBEC3 (A3) restriction factors provide intrinsic immunity against zoonotic transmission of pathogenic viruses. A3D, A3F, A3G, and A3H haplotype II (A3H-hapII) can be packaged into virion infectivity factor (Vif)-deficient HIVs to inhibit viral replication. To overcome these restriction factors, Vif binds to the A3 proteins in viral producer cells to target them for ubiquitination and proteasomal degradation, thus preventing their packaging into assembling virions. Therefore, the Vif-A3 interactions are attractive targets for novel drug development. HIV-1 and HIV-2 arose via distinct zoonotic transmission events of simian immunodeficiency viruses from chimpanzees and sooty mangabeys, respectively, and Vifs from these viruses have limited homology. To gain insights into the evolution of virus-host interactions that led to successful cross-species transmission of lentiviruses, we characterized the determinants of the interaction between HIV-2 Vif (Vif2) with human A3 proteins and compared them to the previously identified HIV-1 Vif (Vif1) interactions with the A3 proteins. We found that A3G, A3F, and A3H-hapII, but not A3D, were susceptible to Vif2-induced degradation. Alanine-scanning mutational analysis of the first 62 amino acids of Vif2 indicated that Vif2 determinants important for degradation of A3G and A3F are completely distinct from these regions in Vif1, as are the determinants in A3G and A3F that are critical for Vif2-induced degradation. These observations suggest that distinct Vif-A3 interactions evolved independently in different SIVs and their nonhuman primate hosts and conservation of the A3 determinants targeted by the SIV Vif proteins resulted in successful zoonotic transmission into humans. IMPORTANCE Primate APOBEC3 proteins provide innate immunity against invading pathogens, and Vif proteins of primate lentiviruses have evolved to overcome these host defenses by interacting with them and inducing their proteasomal degradation. HIV

  3. Quantifying Functional Group Interactions that Determine Urea Effects on Nucleic Acid Helix Formation

    PubMed Central

    Guinn, Emily J.; Schwinefus, Jeffrey J.; Cha, Hyo Keun; McDevitt, Joseph L.; Merker, Wolf E.; Ritzer, Ryan; Muth, Gregory W.; Engelsgjerd, Samuel W.; Mangold, Kathryn E.; Thompson, Perry J.; Kerins, Michael J.; Record, Thomas

    2013-01-01

    Urea destabilizes helical and folded conformations of nucleic acids and proteins, as well as protein-nucleic acid complexes. To understand these effects, extend previous characterizations of interactions of urea with protein functional groups, and thereby develop urea as a probe of conformational changes in protein and nucleic acid processes, we obtain chemical potential derivatives (μ23 = dμ2/dm3) quantifying interactions of urea (component 3) with nucleic acid bases, base analogs, nucleosides and nucleotide monophosphates (component 2) using osmometry and hexanol-water distribution assays. Dissection of these μ23 yields interaction potentials quantifying interactions of urea with unit surface areas of nucleic acid functional groups (heterocyclic aromatic ring, ring methyl, carbonyl and phosphate O, amino N, sugar (C,O)); urea interacts favorably with all these groups, relative to interactions with water. Interactions of urea with heterocyclic aromatic rings and attached methyl groups (as on thymine) are particularly favorable, as previously observed for urea-homocyclic aromatic ring interactions. Urea m-values determined for double helix formation by DNA dodecamers near 25°C are in the range 0.72 to 0.85 kcal mol−1 m−1 and exhibit little systematic dependence on nucleobase composition (17–42% GC). Interpretation of these results using the urea interaction potentials indicates that extensive (60–90%) stacking of nucleobases in the separated strands in the transition region is required to explain the m-value. Results for RNA and DNA dodecamers obtained at higher temperatures, and literature data, are consistent with this conclusion. This demonstrates the utility of urea as a quantitative probe of changes in surface area (ΔASA) in nucleic acid processes. PMID:23510511

  4. Interactions between ether phospholipids and cholesterol as determined by scattering and molecular dynamics simulations.

    PubMed

    Pan, Jianjun; Cheng, Xiaolin; Heberle, Frederick A; Mostofian, Barmak; Kučerka, Norbert; Drazba, Paul; Katsaras, John

    2012-12-27

    Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol's molecular interactions with ether lipids as determined using a combination of small-angle neutron and X-ray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup's phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules. PMID:23199292

  5. Interactions between Ether Phospholipids and Cholesterol as Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect

    Pan, Jianjun; Cheng, Xiaolin; Heberle, Frederick A; Mostofian, Barmak; Kucerka, Norbert; Drazba, Paul; Katsaras, John

    2012-01-01

    Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol s molecular interactions with ether lipids as determined using a combination of small-angle neutron and Xray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup s phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules.

  6. Determination of solute-polymer interaction properties and their application to parenteral product container compatibility evaluations.

    PubMed

    Kenley, R A; Jenke, D R

    1990-09-01

    Kinetic and thermodynamic interaction properties between dialkyl phthalate test compounds and a polyolefin polymer were examined via a permeation-cell experimental design. Disappearance and appearance rates of solute in the receptor and donor solutions, as well as the equilibrium composition of the test system, are used to determine sorption and diffusion coefficients and the solute/polymer equilibrium binding constant. Sorption rate constants and diffusion coefficients exhibit Arrenhius-type behavior. The binding constants obtained correlate well with the solute's octanol-water partition coefficient. The kinetic and thermodynamic data generated combine with proposed interaction models to identify solute/polymer interactions (binding and leaching) pertinent to evaluating container/solution compatibility for parenteral products. PMID:2235889

  7. fourSig: a method for determining chromosomal interactions in 4C-Seq data

    PubMed Central

    Williams, Rex L.; Starmer, Joshua; Mugford, Joshua W.; Calabrese, J. Mauro; Mieczkowski, Piotr; Yee, Della; Magnuson, Terry

    2014-01-01

    The ability to correlate chromosome conformation and gene expression gives a great deal of information regarding the strategies used by a cell to properly regulate gene activity. 4C-Seq is a relatively new and increasingly popular technology where the set of genomic interactions generated by a single point in the genome can be determined. 4C-Seq experiments generate large, complicated data sets and it is imperative that signal is properly distinguished from noise. Currently, there are a limited number of methods for analyzing 4C-Seq data. Here, we present a new method, fourSig, which in addition to being precise and simple to use also includes a new feature that prioritizes detected interactions. Our results demonstrate the efficacy of fourSig with previously published and novel 4C-Seq data sets and show that our significance prioritization correlates with the ability to reproducibly detect interactions among replicates. PMID:24561615

  8. fourSig: a method for determining chromosomal interactions in 4C-Seq data.

    PubMed

    Williams, Rex L; Starmer, Joshua; Mugford, Joshua W; Calabrese, J Mauro; Mieczkowski, Piotr; Yee, Della; Magnuson, Terry

    2014-04-01

    The ability to correlate chromosome conformation and gene expression gives a great deal of information regarding the strategies used by a cell to properly regulate gene activity. 4C-Seq is a relatively new and increasingly popular technology where the set of genomic interactions generated by a single point in the genome can be determined. 4C-Seq experiments generate large, complicated data sets and it is imperative that signal is properly distinguished from noise. Currently, there are a limited number of methods for analyzing 4C-Seq data. Here, we present a new method, fourSig, which in addition to being precise and simple to use also includes a new feature that prioritizes detected interactions. Our results demonstrate the efficacy of fourSig with previously published and novel 4C-Seq data sets and show that our significance prioritization correlates with the ability to reproducibly detect interactions among replicates. PMID:24561615

  9. Determination of the neutral to charged current cross section ratio for neutrino interactions on protons

    NASA Astrophysics Data System (ADS)

    Armenise, N.; Calicchio, M.; Erriquez, O.; Fogli-Muciaccia, M. T.; Natali, S.; Nuzzo, S.; Ruggieri, F.; Belusevic, R.; Colley, D. C.; Jones, G. T.; O'Neale, S.; Sewell, S.; Votruba, M. F.; Bertrand, D.; Moreels, J.; Sacton, J.; Vander Velde-Wilquet, C.; Van Doninck, W.; Brisson, V.; Francois, T.; Petiau, P.; Cooper, A. M.; Guy, J. G.; Michette, A. G.; Tyndel, M.; Venus, W.; Baton, J. P.; Gerbier, G.; Kochowski, C.; Neveu, M.; Alamatsaz, H.; Azemoon, T.; Bartley, J. H.; Parker, M. A.; BEBC TST Neutrino Collaboration

    1983-03-01

    About 2000 neutral induced interactions observed inside the hydrogen filled TST in BEBC have been analysed. The data were obtained from an exposure to the vμ wide band beam at the CERN SPS. A separation of these events into charged current, neutral current and neutral hadron induced interactions have been achieved using a multidimensional kinematic analysis. The neutral to charged current cross section ratio for vμ interactions on free protons has been determined avoiding the drastic cuts on the data inherent in previous experiments. The result RPv = 0.47 ± 0.04 is compatible with those measurements and the prediction of the standard SU (2) × U (1) model for sin 2θW = 0.18 ± 0.04.

  10. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis.

    PubMed

    Aykul, Senem; Martinez-Hackert, Erik

    2016-09-01

    Half-maximal inhibitory concentration (IC50) is the most widely used and informative measure of a drug's efficacy. It indicates how much drug is needed to inhibit a biological process by half, thus providing a measure of potency of an antagonist drug in pharmacological research. Most approaches to determine IC50 of a pharmacological compound are based on assays that utilize whole cell systems. While they generally provide outstanding potency information, results can depend on the experimental cell line used and may not differentiate a compound's ability to inhibit specific interactions. Here we show using the secreted Transforming Growth Factor-β (TGF-β) family ligand BMP-4 and its receptors as example that surface plasmon resonance can be used to accurately determine IC50 values of individual ligand-receptor pairings. The molecular resolution achievable wih this approach can help distinguish inhibitors that specifically target individual complexes, or that can inhibit multiple functional interactions at the same time. PMID:27365221

  11. Life history determines genetic structure and evolutionary potential of host–parasite interactions

    PubMed Central

    Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.

    2009-01-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899

  12. Unusual role of epilayer–substrate interactions in determining orientational relations in van der Waals epitaxy

    PubMed Central

    Liu, Lei; Siegel, David A.; Chen, Wei; Liu, Peizhi; Guo, Junjie; Duscher, Gerd; Zhao, Chong; Wang, Hao; Wang, Wenlong; Bai, Xuedong; McCarty, Kevin F.; Zhang, Zhenyu; Gu, Gong

    2014-01-01

    Using selected-area low-energy electron diffraction analysis, we showed strict orientational alignment of monolayer hexagonal boron nitride (h-BN) crystallites with Cu(100) surface lattices of Cu foil substrates during atmospheric pressure chemical vapor deposition. In sharp contrast, the graphene–Cu(100) system is well-known to assume a wide range of rotations despite graphene’s crystallographic similarity to h-BN. Our density functional theory calculations uncovered the origin of this surprising difference: The crystallite orientation is determined during nucleation by interactions between the cluster’s edges and the substrate. Unlike the weaker B– and N–Cu interactions, strong C–Cu interactions rearrange surface Cu atoms, resulting in the aligned geometry not being a distinct minimum in total energy. The discovery made in this specific case runs counter to the conventional wisdom that strong epilayer–substrate interactions enhance orientational alignment in epitaxy and sheds light on the factors that determine orientational relation in van der Waals epitaxy of 2D materials. PMID:25385622

  13. Determination of the interaction enthalpy between microemulsion droplets by isothermal titration microcalorimetry.

    PubMed

    Zheng, Peizhu; Ma, Yuanming; Peng, Xuhong; Yin, Tianxiang; An, Xueqin; Shen, Weiguo

    2011-10-18

    A new experimental design for the measurement of the real heat of dilution of the microemulsion droplets by isothermal titration microcalorimetry (ITC) has been reported and used to study the interaction enthalpies of the droplets for the system of water/sodium bis(2-ethylhexyl)-sulfosuccinate (AOT)/toluene. The results are in good agreement with those determined from light-scattering experiments. PMID:21913718

  14. A pipeline for determining protein-protein interactions and proximities in the cellular milieu.

    PubMed

    Subbotin, Roman I; Chait, Brian T

    2014-11-01

    It remains extraordinarily challenging to elucidate endogenous protein-protein interactions and proximities within the cellular milieu. The dynamic nature and the large range of affinities of these interactions augment the difficulty of this undertaking. Among the most useful tools for extracting such information are those based on affinity capture of target bait proteins in combination with mass spectrometric readout of the co-isolated species. Although highly enabling, the utility of affinity-based methods is generally limited by difficulties in distinguishing specific from nonspecific interactors, preserving and isolating all unique interactions including those that are weak, transient, or rapidly exchanging, and differentiating proximal interactions from those that are more distal. Here, we have devised and optimized a set of methods to address these challenges. The resulting pipeline involves flash-freezing cells in liquid nitrogen to preserve the cellular environment at the moment of freezing; cryomilling to fracture the frozen cells into intact micron chunks to allow for rapid access of a chemical reagent and to stabilize the intact endogenous subcellular assemblies and interactors upon thawing; and utilizing the high reactivity of glutaraldehyde to achieve sufficiently rapid stabilization at low temperatures to preserve native cellular interactions. In the course of this work, we determined that relatively low molar ratios of glutaraldehyde to reactive amines within the cellular milieu were sufficient to preserve even labile and transient interactions. This mild treatment enables efficient and rapid affinity capture of the protein assemblies of interest under nondenaturing conditions, followed by bottom-up MS to identify and quantify the protein constituents. For convenience, we have termed this approach Stabilized Affinity Capture Mass Spectrometry. Here, we demonstrate that Stabilized Affinity Capture Mass Spectrometry allows us to stabilize and elucidate

  15. Abundance and phenology patterns of two pond-breeding salamanders determine species interactions in natural populations.

    PubMed

    Anderson, Thomas L; Hocking, Daniel J; Conner, Christopher A; Earl, Julia E; Harper, Elizabeth B; Osbourn, Michael S; Peterman, William E; Rittenhouse, Tracy A G; Semlitsch, Raymond D

    2015-03-01

    Phenology often determines the outcome of interspecific interactions, where early-arriving species often dominate interactions over those arriving later. The effects of phenology on species interactions are especially pronounced in aquatic systems, but the evidence is largely derived from experimental studies. We examined whether differences in breeding phenology between two pond-breeding salamanders (Ambystoma annulatum and A. maculatum) affected metamorph recruitment and demographic traits within natural populations, with the expectation that the fall-breeding A. annulatum would negatively affect the spring-breeding A. maculatum. We monitored populations of each species at five ponds over 4 years using drift fences. Metamorph abundance and survival of A. annulatum were affected by intra- and interspecific processes, whereas metamorph size and date of emigration were primarily influenced by intraspecific effects. Metamorph abundance, snout-vent length, date of emigration and survival for A. maculatum were all predicted by combinations of intra- and interspecific effects, but often showed negative relationships with A. annulatum metamorph traits and abundance. Size and date of metamorphosis were strongly correlated within each species, but in opposite patterns (negative for A. annulatum and positive for A. maculatum), suggesting that the two species use alternative strategies to enhance terrestrial survival and that these factors may influence their interactions. Our results match predictions from experimental studies that suggest recruitment is influenced by intra- and interspecific processes which are determined by phenological differences between species. Incorporating spatiotemporal variability when modeling population dynamics is necessary to understand the importance of phenology in species interactions, especially as shifts in phenology occur under climate change. PMID:25413866

  16. Interactions and diffusion in fine-stranded β-lactoglobulin gels determined via FRAP and binding.

    PubMed

    Schuster, Erich; Hermansson, Anne-Marie; Ohgren, Camilla; Rudemo, Mats; Lorén, Niklas

    2014-01-01

    The effects of electrostatic interactions and obstruction by the microstructure on probe diffusion were determined in positively charged hydrogels. Probe diffusion in fine-stranded gels and solutions of β-lactoglobulin at pH 3.5 was determined using fluorescence recovery after photobleaching (FRAP) and binding, which is widely used in biophysics. The microstructures of the β-lactoglobulin gels were characterized using transmission electron microscopy. The effects of probe size and charge (negatively charged Na2-fluorescein (376Da) and weakly anionic 70kDa FITC-dextran), probe concentration (50 to 200 ppm), and β-lactoglobulin concentration (9% to 12% w/w) on the diffusion properties and the electrostatic interaction between the negatively charged probes and the positively charged gels or solutions were evaluated. The results show that the diffusion of negatively charged Na2-fluorescein is strongly influenced by electrostatic interactions in the positively charged β-lactoglobulin systems. A linear relationship between the pseudo-on binding rate constant and the β-lactoglobulin concentration for three different probe concentrations was found. This validates an important assumption of existing biophysical FRAP and binding models, namely that the pseudo-on binding rate constant equals the product of the molecular binding rate constant and the concentration of the free binding sites. Indicators were established to clarify whether FRAP data should be analyzed using a binding-diffusion model or an obstruction-diffusion model. PMID:24411257

  17. Interactions and Diffusion in Fine-Stranded β-lactoglobulin Gels Determined via FRAP and Binding

    PubMed Central

    Schuster, Erich; Hermansson, Anne-Marie; Öhgren, Camilla; Rudemo, Mats; Lorén, Niklas

    2014-01-01

    The effects of electrostatic interactions and obstruction by the microstructure on probe diffusion were determined in positively charged hydrogels. Probe diffusion in fine-stranded gels and solutions of β-lactoglobulin at pH 3.5 was determined using fluorescence recovery after photobleaching (FRAP) and binding, which is widely used in biophysics. The microstructures of the β-lactoglobulin gels were characterized using transmission electron microscopy. The effects of probe size and charge (negatively charged Na2-fluorescein (376Da) and weakly anionic 70kDa FITC-dextran), probe concentration (50 to 200 ppm), and β-lactoglobulin concentration (9% to 12% w/w) on the diffusion properties and the electrostatic interaction between the negatively charged probes and the positively charged gels or solutions were evaluated. The results show that the diffusion of negatively charged Na2-fluorescein is strongly influenced by electrostatic interactions in the positively charged β-lactoglobulin systems. A linear relationship between the pseudo-on binding rate constant and the β-lactoglobulin concentration for three different probe concentrations was found. This validates an important assumption of existing biophysical FRAP and binding models, namely that the pseudo-on binding rate constant equals the product of the molecular binding rate constant and the concentration of the free binding sites. Indicators were established to clarify whether FRAP data should be analyzed using a binding-diffusion model or an obstruction-diffusion model. PMID:24411257

  18. Determination of the interaction using FTIR within the composite gel polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Huang, Yun; Ma, Xiaoyan; Wang, Xu; Liang, Xiao

    2013-01-01

    In the previous research, the gel polymer electrolyte (GPE) which consisted of poly(methyl methacrylate) (PMMA) matrix, propylene carbonate (PC), LiClO4 and OREC (Rectorite modified with dodecyl benzyl dimethyl ammonium chloride), achieved satisfactory properties. In the paper, the interaction between components was quantitatively determined. Characterization of interaction of Cdbnd O in PC and PMMA with Li+ and OH group on OREC surface has been thoroughly examined using FTIR, respectively. The quantitative analysis of FTIR shows that the absorptivity coefficient a of PMMA/LiClO4, PC/LiClO4, PC/OREC and PMMA/OREC is 0.902, 0.113, 0.430 and 0.753, respectively, which means that the Li+ or OH bonded Cdbnd O is more sensitive than the free Cdbnd O in FTIR spectra. The limit value of bonded Cdbnd O equivalent fraction of PMMA/LiClO4, PC/LiClO4, PC/OREC and PMMA/OREC is 17%, 94%, 57% and 20%, respectively, which implies that all the interaction within the components is reversible and the intensity of interaction is ordered as PC/LiClO4, PC/OREC, PMMA/OREC and PMMA/LiClO4.

  19. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    PubMed Central

    Wingler, Astrid

    2015-01-01

    Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g., via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants. PMID:25628637

  20. Amino acid-dependent NPRL2 interaction with Raptor determines mTOR Complex 1 activation.

    PubMed

    Kwak, Sang Su; Kang, Kyung Hwa; Kim, Seyun; Lee, Seoeun; Lee, Jeung-Hoon; Kim, Jin Woo; Byun, Boohyeong; Meadows, Gary G; Joe, Cheol O

    2016-02-01

    We assign a new function to a tumor suppressor NPRL2 that activates the mTOR complex 1 (mTORC1) activity. The positive regulation of mTORC1 activity by NPRL2 is mediated through NPRL2 interaction with Raptor. While NPRL2 interacts with Rag GTPases, RagD in particular, to interfere with mTORC1 activity in amino acid scarcity, NPRL2 interacts with Raptor in amino acid sufficiency to activate mTORC1. A reciprocal relationship exists between NPRL2 binding to Rag GTPases and Raptor. NPRL2 majorly locates in the lysosomal membranes and has a higher binding affinity to the dominant negative mutant heterodimer of RagA(GDP)/RagD(GTP) that inactivates mTORC1. However, the binding affinity of NPRL2 with Raptor is much less pronounced in cells expressing the dominant negative mutant heterodimer of RagA(GDP)/RagD(GTP) than in cells expressing the dominant positive mutant heterodimer, RagA(GTP)/RagD(GDP). The positive effect of NPRL2 on TORC1 pathway was also evidenced in Drosophila animal model. Here, we propose a 'seesaw' model in which the interactive behavior of NPRL2 with Raptor determines mTORC1 activation by amino acid signaling in animal cells. PMID:26582740

  1. Determination of heat transfer coefficient for an interaction of sub-cooled gas and metal

    NASA Astrophysics Data System (ADS)

    Zaidi Sidek, Mohd; Syahidan Kamarudin, Muhammad

    2016-02-01

    Heat transfer coefficient (HTC) for a hot metal surface and their surrounding is one of the need be defined parameter in hot forming process. This study has been conducted to determine the HTC for an interaction between sub-cooled gas sprayed on a hot metal surface. Both experiments and finite element have been adopted in this work. Initially, the designated experiment was conducted to obtain temperature history of spray cooling process. Then, an inverse method was adopted to calculate the HTC value before we validate in a finite element simulation model. The result shows that the heat transfer coefficient for interaction of subcooled gas and hot metal surface is 1000 W/m2K.

  2. The possibility of determining the spin-orbit interaction constants using scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Khotkevych, N. V.; Vovk, N. R.; Kolesnichenko, Yu. A.

    2016-04-01

    A study of electron tunneling from quasi-two-dimensional (surface) states with spin-orbit interaction into bulk-mode states, within the framework of a model of an infinitely thin inhomogeneous tunnel magnetic barrier between two conductors. We analyze how the scattering of quasi-two-dimensional electrons on a single magnetic defect affects the tunneling current in this system. We also obtain an analytical expression for the conductance of the tunnel point-contact, as a function of its distance from the defect. It is shown that analyzing local magnetization oscillations around the defect using spin-polarized scanning tunneling microscopy allows us to determine the spin-orbit interaction constant.

  3. Transporters and drug-drug interactions: important determinants of drug disposition and effects.

    PubMed

    König, Jörg; Müller, Fabian; Fromm, Martin F

    2013-07-01

    Uptake and efflux transporters determine plasma and tissue concentrations of a broad variety of drugs. They are localized in organs such as small intestine, liver, and kidney, which are critical for drug absorption and elimination. Moreover, they can be found in important blood-tissue barriers such as the blood-brain barrier. Inhibition or induction of drug transporters by coadministered drugs can alter pharmacokinetics and pharmacodynamics of the victim drugs. This review will summarize in particular clinically observed drug-drug interactions attributable to inhibition or induction of intestinal export transporters [P-glycoprotein (P-gp), breast cancer resistance protein (BCRP)], to inhibition of hepatic uptake transporters [organic anion transporting polypeptides (OATPs)], or to inhibition of transporter-mediated [organic anion transporters (OATs), organic cation transporter 2 (OCT2), multidrug and toxin extrusion proteins (MATEs), P-gp] renal secretion of xenobiotics. Available data on the impact of nutrition on transport processes as well as genotype-dependent, transporter-mediated drug-drug interactions will be discussed. We will also present and discuss data on the variable extent to which information on the impact of transporters on drug disposition is included in summaries of product characteristics of selected countries (SPCs). Further work is required regarding a better understanding of the role of the drug metabolism-drug transport interplay for drug-drug interactions and on the extrapolation of in vitro findings to the in vivo (human) situation. PMID:23686349

  4. Age, growth and size interact with stress to determine life span and mortality.

    PubMed

    Roach, Deborah Ann

    2012-10-01

    Individuals in a large experimental field population, of the short-lived perennial species Plantago lanceolata, were followed to determine the sources of variation that influence mortality and life span. The design included multiple age groups with initially similar genetic structure, which made it possible to separate age effects from period effects and to identify the genetic component to variation in life span. During a period of stress, individuals of all ages showed parallel increases in mortality but different cohorts experienced this period of high mortality at different ages. This then influenced the distribution of life spans across cohorts. Age and size-age interactions influenced mortality during the period of stress. Smaller individuals died but only if they were old. Additionally, growth and age interacted with stress such that older individuals had negative growth and high mortality whereas younger individuals had positive growth and relatively lower mortality during stress. The results of this study show that it is not simply the environment that can have a major impact on demography in natural populations; rather, age, size and growth can interact with the environment to influence mortality and life span when the environment is stressful. PMID:22664575

  5. Iron/Brønsted Acid Catalyzed Asymmetric Hydrogenation: Mechanism and Selectivity-Determining Interactions.

    PubMed

    Hopmann, Kathrin H

    2015-07-01

    Hydrogenation catalysts involving abundant base metals such as cobalt or iron are promising alternatives to precious metal systems. Despite rapid progress in this field, base metal catalysts do not yet achieve the activity and selectivity levels of their precious metal counterparts. Rational improvement of base metal complexes is facilitated by detailed knowledge about their mechanisms and selectivity-determining factors. The mechanism for asymmetric imine hydrogenation with Knölker's iron complex in the presence of chiral phosphoric acids is here investigated computationally at the DFT-D level of theory, with models of up to 160 atoms. The resting state of the system is found to be an adduct between the iron complex and the deprotonated acid. Rate-limiting H2 splitting is followed by a stepwise hydrogenation mechanism, in which the phosphoric acid acts as the proton donor. C-H⋅⋅⋅O interactions between the phosphoric acid and the substrate are involved in the stereocontrol at the final hydride transfer step. Computed enantiomeric ratios show excellent agreement with experimental values, indicating that DFT-D is able to correctly capture the selectivity-determining interactions of this system. PMID:26039958

  6. Abiotic and biotic interactions determine whether increased colonization is beneficial or detrimental to metapopulation management.

    PubMed

    Southwell, Darren M; Rhodes, Jonathan R; McDonald-Madden, Eve; Nicol, Sam; Helmstedt, Kate J; McCarthy, Michael A

    2016-06-01

    Increasing the colonization rate of metapopulations can improve persistence, but can also increase exposure to threats. To make good decisions, managers must understand whether increased colonization is beneficial or detrimental to metapopulation persistence. While a number of studies have examined interactions between metapopulations, colonization, and threats, they have assumed that threat dynamics respond linearly to changes in colonization. Here, we determined when to increase colonization while explicitly accounting for non-linear dependencies between a metapopulation and its threats. We developed patch occupancy metapopulation models for species susceptible to abiotic, generalist, and specialist threats and modeled the total derivative of the equilibrium proportion of patches occupied by each metapopulation with respect to the colonization rate. By using the total derivative, we developed a rule for determining when to increase metapopulation colonization. This rule was applied to a simulated metapopulation where the dynamics of each threat responded to increased colonization following a power function. Before modifying colonization, we show that managers must understand: (1) whether a metapopulation is susceptible to a threat; (2) the type of threat acting on a metapopulation; (3) which component of threat dynamics might depend on colonization, and; (4) the likely response of a threat-dependent variable to changes in colonization. The sensitivity of management decisions to these interactions increases uncertainty in conservation planning decisions. PMID:26948289

  7. Protein-nanoparticle interactions evaluation by immunomethods: Surfactants can disturb quantitative determinations.

    PubMed

    Fornaguera, Cristina; Calderó, Gabriela; Solans, Conxita; Vauthier, Christine

    2015-08-01

    The adsorption of proteins on nanoparticle surface is one of the first events that occur when nanoparticles enter in the blood stream, which influences nanoparticles lifetime and further biodistribution. Albumin, which is the most abundant protein in serum and which has been deeply characterized, is an interesting model protein to investigate nanoparticle-protein interactions. Therefore, the interaction of nanoparticles with serum albumin has been widely studied. Immunomethods were suggested for the investigation of adsorption isotherms because of their ease to quantify the non-adsorbed bovine serum albumin without the need of applying separation methods that could modify the balance between the adsorbed and non-adsorbed proteins. The present work revealed that this method should be applied with caution. Artifacts in the determination of free protein can be generated by the presence of surfactants such as polysorbate 80, widely used in the pharmaceutical and biomedical field, that are needed to preserve the stability of nanoparticle dispersions. It was shown that the presence of traces of polysorbate 80 in the dispersion leads to an overestimation of the amount of bovine serum albumin remaining free in the dispersion medium when determined by both radial immunodiffusion and rocket immunoelectrophoresis. However, traces of poloxamer 188 did not result in clear perturbed migrations. These methods are not appropriate to perform adsorption isotherms of proteins on nanoparticle dispersions containing traces of remaining free surfactant. They should only be applied on dispersions that are free of surfactant that is not associated with nanoparticles. PMID:26070388

  8. Cell-Binding Assays for Determining the Affinity of Protein-Protein Interactions: Technologies and Considerations.

    PubMed

    Hunter, S A; Cochran, J R

    2016-01-01

    Determining the equilibrium-binding affinity (Kd) of two interacting proteins is essential not only for the biochemical study of protein signaling and function but also for the engineering of improved protein and enzyme variants. One common technique for measuring protein-binding affinities uses flow cytometry to analyze ligand binding to proteins presented on the surface of a cell. However, cell-binding assays require specific considerations to accurately quantify the binding affinity of a protein-protein interaction. Here we will cover the basic assumptions in designing a cell-based binding assay, including the relevant equations and theory behind determining binding affinities. Further, two major considerations in measuring binding affinities-time to equilibrium and ligand depletion-will be discussed. As these conditions have the potential to greatly alter the Kd, methods through which to avoid or minimize them will be provided. We then outline detailed protocols for performing direct- and competitive-binding assays against proteins displayed on the surface of yeast or mammalian cells that can be used to derive accurate Kd values. Finally, a comparison of cell-based binding assays to other types of binding assays will be presented. PMID:27586327

  9. Micelle-enhanced and terbium-sensitized spectrofluorimetric determination of gatifloxacin and its interaction mechanism

    NASA Astrophysics Data System (ADS)

    Guo, Changchuan; Wang, Lei; Hou, Zhun; Jiang, Wei; Sang, Lihong

    2009-05-01

    A terbium-sensitized spectrofluorimetric method using an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS), was developed for the determination of gatifloxacin (GFLX). A coordination complex system of GFLX-Tb 3+-SDBS was studied. It was found that SDBS significantly enhanced the fluorescence intensity of the complex (about 11-fold). Optimal experimental conditions were determined as follows: excitation and emission wavelengths of 331 and 547 nm, pH 7.0, 2.0 × 10 -4 mol l -1 terbium (III), and 2.0 × 10 -4 mol l -1 SDBS. The enhanced fluorescence intensity of the system (Δ If) showed a good linear relationship with the concentration of GFLX over the range of 5.0 × 10 -10 to 5.0 × 10 -8 mol l -1 with a correlation coefficient of 0.9996. The detection limit (3 σ) was determined as 6.0 × 10 -11 mol l -1. This method has been successfully applied to the determination of GFLX in pharmaceuticals and human urine/serum samples. Compared with most of other methods reported, the rapid and simple procedure proposed in the text offers higher sensitivity, wider linear range, and better stability. The interaction mechanism of the system is also studied by the research of ultraviolet absorption spectra, surface tension, solution polarity and fluorescence polarization.

  10. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, jennifer; Blizzard, Mike; Nicholson, Ann; Robertson, Mika

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC). The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  11. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, Jennifer; Blizzard, Mike; Robertson, Mike

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC)2. The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  12. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates.

    PubMed

    Bok, Jin Mo; Bae, Jong Ju; Choi, Han-Yong; Varma, Chandra M; Zhang, Wentao; He, Junfeng; Zhang, Yuxiao; Yu, Li; Zhou, X J

    2016-03-01

    A profound problem in modern condensed matter physics is discovering and understanding the nature of fluctuations and their coupling to fermions in cuprates, which lead to high-temperature superconductivity and the invariably associated strange metal state. We report the quantitative determination of normal and pairing self-energies, made possible by laser-based angle-resolved photoemission measurements of unprecedented accuracy and stability. Through a precise inversion procedure, both the effective interactions in the attractive d-wave symmetry and the repulsive part in the full symmetry are determined. The latter is nearly angle-independent. Near T c, both interactions are nearly independent of frequency and have almost the same magnitude over the complete energy range of up to about 0.4 eV, except for a low-energy feature at around 50 meV that is present only in the repulsive part, which has less than 10% of the total spectral weight. Well below T c, they both change similarly, with superconductivity-induced features at low energies. Besides finding the pairing self-energy and the attractive interactions for the first time, these results expose the central paradox of the problem of high T c: how the same frequency-independent fluctuations can dominantly scatter at angles ±π/2 in the attractive channel to give d-wave pairing and lead to angle-independent repulsive scattering. The experimental results are compared with available theoretical calculations based on antiferromagnetic fluctuations, the Hubbard model, and quantum-critical fluctuations of the loop-current order. PMID:26973872

  13. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates

    PubMed Central

    Bok, Jin Mo; Bae, Jong Ju; Choi, Han-Yong; Varma, Chandra M.; Zhang, Wentao; He, Junfeng; Zhang, Yuxiao; Yu, Li; Zhou, X. J.

    2016-01-01

    A profound problem in modern condensed matter physics is discovering and understanding the nature of fluctuations and their coupling to fermions in cuprates, which lead to high-temperature superconductivity and the invariably associated strange metal state. We report the quantitative determination of normal and pairing self-energies, made possible by laser-based angle-resolved photoemission measurements of unprecedented accuracy and stability. Through a precise inversion procedure, both the effective interactions in the attractive d-wave symmetry and the repulsive part in the full symmetry are determined. The latter is nearly angle-independent. Near Tc, both interactions are nearly independent of frequency and have almost the same magnitude over the complete energy range of up to about 0.4 eV, except for a low-energy feature at around 50 meV that is present only in the repulsive part, which has less than 10% of the total spectral weight. Well below Tc, they both change similarly, with superconductivity-induced features at low energies. Besides finding the pairing self-energy and the attractive interactions for the first time, these results expose the central paradox of the problem of high Tc: how the same frequency-independent fluctuations can dominantly scatter at angles ±π/2 in the attractive channel to give d-wave pairing and lead to angle-independent repulsive scattering. The experimental results are compared with available theoretical calculations based on antiferromagnetic fluctuations, the Hubbard model, and quantum-critical fluctuations of the loop-current order. PMID:26973872

  14. Climate warming and agricultural stressors interact to determine stream periphyton community composition.

    PubMed

    Piggott, Jeremy J; Salis, Romana K; Lear, Gavin; Townsend, Colin R; Matthaei, Christoph D

    2015-01-01

    Lack of knowledge about how the various drivers of global climate change will interact with multiple stressors already affecting ecosystems is the basis for great uncertainty in projections of future biological change. Despite concerns about the impacts of changes in land use, eutrophication and climate warming in running waters, the interactive effects of these stressors on stream periphyton are largely unknown. We manipulated nutrients (simulating agricultural runoff), deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0-6 °C above ambient) simultaneously in 128 streamside mesocosms. Our aim was to determine the individual and combined effects of the three stressors on the algal and bacterial constituents of the periphyton. All three stressors had pervasive individual effects, but in combination frequently produced synergisms at the population level and antagonisms at the community level. Depending on sediment and nutrient conditions, the effect of raised temperature frequently produced contrasting response patterns, with stronger or opposing effects when one or both stressors were augmented. Thus, warming tended to interact negatively with nutrients or sediment by weakening or reversing positive temperature effects or strengthening negative ones. Five classes of algal growth morphology were all affected in complex ways by raised temperature, suggesting that these measures may prove unreliable in biomonitoring programs in a warming climate. The evenness and diversity of the most abundant bacterial taxa increased with temperature at ambient but not with enriched nutrient levels, indicating that warming coupled with nutrient limitation may lead to a more evenly distributed bacterial community as temperatures rise. Freshwater management decisions that seek to avoid or mitigate the negative effects of agricultural land use on stream periphyton should be informed by knowledge of the interactive effects of

  15. Temperature, precipitation and biotic interactions as determinants of tree seedling recruitment across the tree line ecotone.

    PubMed

    Tingstad, Lise; Olsen, Siri Lie; Klanderud, Kari; Vandvik, Vigdis; Ohlson, Mikael

    2015-10-01

    Seedling recruitment is a critical life history stage for trees, and successful recruitment is tightly linked to both abiotic factors and biotic interactions. In order to better understand how tree species' distributions may change in response to anticipated climate change, more knowledge of the effects of complex climate and biotic interactions is needed. We conducted a seed-sowing experiment to investigate how temperature, precipitation and biotic interactions impact recruitment of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings in southern Norway. Seeds were sown into intact vegetation and experimentally created gaps. To study the combined effects of temperature and precipitation, the experiment was replicated across 12 sites, spanning a natural climate gradient from boreal to alpine and from sub-continental to oceanic. Seedling emergence and survival were assessed 12 and 16 months after sowing, respectively, and above-ground biomass and height were determined at the end of the experiment. Interestingly, very few seedlings were detected in the boreal sites, and the highest number of seedlings emerged and established in the alpine sites, indicating that low temperature did not limit seedling recruitment. Site precipitation had an overall positive effect on seedling recruitment, especially at intermediate precipitation levels. Seedling emergence, establishment and biomass were higher in gap plots compared to intact vegetation at all temperature levels. These results suggest that biotic interactions in the form of competition may be more important than temperature as a limiting factor for tree seedling recruitment in the sub- and low-alpine zone of southern Norway. PMID:26065402

  16. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network.

    PubMed

    Lázár, Viktória; Nagy, István; Spohn, Réka; Csörgő, Bálint; Györkei, Ádám; Nyerges, Ákos; Horváth, Balázs; Vörös, Andrea; Busa-Fekete, Róbert; Hrtyan, Mónika; Bogos, Balázs; Méhi, Orsolya; Fekete, Gergely; Szappanos, Balázs; Kégl, Balázs; Papp, Balázs; Pál, Csaba

    2014-01-01

    Understanding how evolution of antimicrobial resistance increases resistance to other drugs is a challenge of profound importance. By combining experimental evolution and genome sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here, we show that (1) convergent molecular evolution is prevalent across antibiotic treatments, (2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs and (3) 27% of the accumulated mutations generate proteins with compromised activities, suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By using knowledge on antibiotic properties, we examined the determinants of cross-resistance and identified chemogenomic profile similarity between antibiotics as the strongest predictor. In contrast, cross-resistance between two antibiotics is independent of whether they show synergistic effects in combination. These results have important implications on the development of novel antimicrobial strategies. PMID:25000950

  17. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation

    NASA Astrophysics Data System (ADS)

    Ceeh, Hubert; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-02-01

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV.

  18. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation

    PubMed Central

    Ceeh, Hubert; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-01-01

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV. PMID:26879249

  19. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation.

    PubMed

    Ceeh, Hubert; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-01-01

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV. PMID:26879249

  20. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network

    PubMed Central

    Lázár, Viktória; Nagy, István; Spohn, Réka; Csörgő, Bálint; Györkei, Ádám; Nyerges, Ákos; Horváth, Balázs; Vörös, Andrea; Busa-Fekete, Róbert; Hrtyan, Mónika; Bogos, Balázs; Méhi, Orsolya; Fekete, Gergely; Szappanos, Balázs; Kégl, Balázs; Papp, Balázs; Pál, Csaba

    2014-01-01

    Understanding how evolution of antimicrobial resistance increases resistance to other drugs is a challenge of profound importance. By combining experimental evolution and genome sequencing of 63 laboratory-evolved lines, we charted a map of cross-resistance interactions between antibiotics in Escherichia coli, and explored the driving evolutionary principles. Here, we show that (1) convergent molecular evolution is prevalent across antibiotic treatments, (2) resistance conferring mutations simultaneously enhance sensitivity to many other drugs and (3) 27% of the accumulated mutations generate proteins with compromised activities, suggesting that antibiotic adaptation can partly be achieved without gain of novel function. By using knowledge on antibiotic properties, we examined the determinants of cross-resistance and identified chemogenomic profile similarity between antibiotics as the strongest predictor. In contrast, cross-resistance between two antibiotics is independent of whether they show synergistic effects in combination. These results have important implications on the development of novel antimicrobial strategies. PMID:25000950

  1. Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors

    PubMed Central

    Shaak, Thomas L.; Wijesinghe, Dayanjan S.; Chalfant, Charles E.; Diegelmann, Robert F.; Ward, Kevin R.; Loria, Roger M.

    2013-01-01

    DHEA, 17α-AED, 17β-AED, and 17β-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17β-AED, and 17β-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERβ may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects. PMID:24729874

  2. General purpose computer program for interacting supersonic configurations. User's manual. [determining unsteady aerodynamic foreces

    NASA Technical Reports Server (NTRS)

    Crill, W.; Dale, B.

    1977-01-01

    The input data required to execute the computer program ISCON are described. The program generates a numerical procedure for the determination of unsteady aerodynamic forces on arbitrarily interacting wings and tails in supersonic flow. A velocity potential gradient method is used. Constant Mach number is assumed throughout the flow field. Lifting surfaces are represented by trapezoidal elements which can be generated automatically by the program. The wake field is represented by rectangular strip elements. The formulation is reviewed as well as input overview and input format. Instruction on how to use ISCON, a sample problem, and the restart feature are discussed. Program size limitations, computer program flow, and error messages are also included along with a description of the SS31 program used to compute the coefficients of surface spline.

  3. Intershell Interaction in a Double Wall Carbon Nanotube with Determined Chiral Indices under a Torsional Strain

    NASA Astrophysics Data System (ADS)

    Lin, Letian; Cui, Taoran; Washburn, Sean; Qin, Lu-Chang

    2011-03-01

    We have used a double wall carbon nanotube to build a torsional pendulum. The nanotube worked as a torsional bearing for a metal block. An external electric field was used to rotate the metal block to cause a fully elastic torsional deformation on the nanotube. Nano-beam electron diffraction patterns were taken before and while the nanotube was twisted. By analysis of the shift of the diffraction patterns, we were able to determine the nanotube chiral indices and measure the inner-shell torisonal responses to the torsional stress applied on the outer-shell. The inter-shell interactions and nanotube shear modulus were also calculated and discussed in connection to the theoretical estimations.

  4. Determination of major phlorotannins in Eisenia bicyclis using hydrophilic interaction chromatography: seasonal variation and extraction characteristics.

    PubMed

    Kim, Sang Min; Kang, Suk Woo; Jeon, Je-Seung; Jung, Yu-Jin; Kim, Woo-Ri; Kim, Chul Young; Um, Byung-Hun

    2013-06-15

    In this study, a hydrophilic interaction chromatography (HILIC) condition was developed for the simultaneous determination of five major phlorotannins from an extract of Eisenia bicyclis (Kjellman) Setchell with good linearity (r(2)>0.999). Based on this method, the seasonal variations and extraction characteristics, in terms of total extraction yield and the content of the phlorotannins, were investigated under various extraction conditions. In results, the yields and phlorotannins were increased two-to-four times in summer (June-October) and then, were decreased to normal levels in winter (November-March). In the extraction of E. bicyclis, ethanol percentage in water, extraction time and washing time significantly affected the yield of the extract and the phlorotannins, whereas the temperature and the sample/solvent ratio impacted the extraction to a lesser degree. These results will be useful information in the application of this macroalga in the commercial areas related to nutraceuticals, pharmaceuticals, and cosmeceuticals. PMID:23497901

  5. Rigorous surface charge method for determining electrostatic interaction energies in biomolecular systems

    NASA Astrophysics Data System (ADS)

    Doerr, T. P.; Obolensky, O. I.; Ogurtsov, A. Y.; Yu, Yi-Kuo

    2014-03-01

    Classical electrostatics plays a crucial role in bimolecular systems, dominating the interactions that determine the formation and dissolution of complexes responsible for the operation of cells. For systems that can be modeled as a set of piecewise-constant dielectric bodies, surface charge methods are usually preferable in both analytical and numerical contexts. We present a numerical implementation of a surface charge method previously used in analytical contexts. The method is applied to a realistic model of trypsin, an important protein involved in digesting other proteins, and one of its inhibitors, benzamidine. The classical calculations are complemented by density function theory calculations at short separations for which the classical model is inappropriate. We find that the surface charge method correctly distinguishes between correct and incorrect docking sites. This research was supported by the Intramural Research Program of the NIH, National Library of Medicine.

  6. Stoichiometry determined exchange interactions in amorphous ternary transition metal oxides: Theory and experiment

    SciTech Connect

    Hu, Shu-jun; Yan, Shi-shen Zhang, Yun-peng; Zhao, Ming-wen; Kang, Shi-shou; Mei, Liang-mo

    2014-07-28

    Amorphous transition metal oxides exhibit exotic transport and magnetic properties, while the absence of periodic structure has long been a major obstacle for the understanding of their electronic structure and exchange interaction. In this paper, we have formulated a theoretical approach, which combines the melt-quench approach and the spin dynamic Monte-Carlo simulations, and based on it, we explored amorphous Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} ternary transition metal oxides. Our theoretical results reveal that the microstructure, the magnetic properties, and the exchange interactions of Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} are strongly determined by the oxygen stoichiometry. In the oxygen-deficient sample (y > 0), we have observed the long-range ferromagnetic spin ordering which is associated with the non-stoichiometric cobalt-rich region rather than metallic clusters. On the other hand, the microstructure of stoichiometric sample takes the form of continuous random networks, and no long-range ferromagnetism has been observed in it. Magnetization characterization of experimental synthesized Co{sub 0.61}Zn{sub 0.39}O{sub 1−y} films verifies the relation between the spin ordering and the oxygen stoichiometry. Furthermore, the temperature dependence of electrical transport shows a typical feature of semiconductors, in agreement with our theoretical results.

  7. Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon

    SciTech Connect

    Whitman, Thea L.; Zhu, Zihua; Lehmann, Johannes C.

    2014-10-31

    Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month pre-incubations, and in PyOM made from maple wood at 350°C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil pre-incubated for 6 months. Over the longer term, both the 6-month and 1-day pre-incubated soils experienced net ~10% decreases in SOC mineralization with PyOM additions. This was possibly due to stabilization of SOC on PyOM surfaces, suggested by nanoscale secondary ion mass spectrometry. Additionally, the duration of pre-incubation affected priming interactions, indicating that there may be no optimal pre-incubation time for SOC mineralization studies. We show conclusively that relative mineralizability of SOC in relation to PyOM-24 C is an important determinant of the effect of PyOM additions on SOC mineralization.

  8. Pollutant threshold concentration determination in marine ecosystems using an ecological interaction endpoint.

    PubMed

    Wang, Changyou; Liang, Shengkang; Guo, Wenting; Yu, Hua; Xing, Wenhui

    2015-09-01

    The threshold concentrations of pollutants are determined by extrapolating single-species effect data to community-level effects. This assumes the most sensitive endpoint of the life cycle of individuals and the species sensitivity distribution from single-species toxic effect tests, thus, ignoring the ecological interactions. The uncertainties due to this extrapolation can be partially overcome using the equilibrium point of a customized ecosystem. This method incorporates ecological interactions and integrates the effects on growth, survival, and ingestion into a single effect measure, the equilibrium point excursion in the customized ecosystem, in order to describe the toxic effects on plankton. A case study showed that the threshold concentration of copper calculated with the endpoint of the equilibrium point was 10 μg L(-1), which is significantly different from the threshold calculated with a single-species endpoint. The endpoint calculated using this method provides a more relevant measure of the ecological impact than any single individual-level endpoint. PMID:25982547

  9. Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria

    DOE PAGESBeta

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-11-20

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogeneticmore » distribution patterns and sequence signatures based on known precepts of symbioticand host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. Lastly, these analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability.« less

  10. Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria

    SciTech Connect

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-11-20

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogenetic distribution patterns and sequence signatures based on known precepts of symbioticand host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. Lastly, these analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability.

  11. A practical method for depth of interaction determination in monolithic scintillator PET detectors.

    PubMed

    van Dam, Herman T; Seifert, Stefan; Vinke, Ruud; Dendooven, Peter; Löhner, Herbert; Beekman, Freek J; Schaart, Dennis R

    2011-07-01

    Several new methods for determining the depth of interaction (DOI) of annihilation photons in monolithic scintillator detectors with single-sided, multi-pixel readout are investigated. The aim is to develop a DOI decoding method that allows for practical implementation in a positron emission tomography system. Specifically, calibration data, obtained with perpendicularly incident gamma photons only, are being used. Furthermore, neither detector modifications nor a priori knowledge of the light transport and/or signal variances is required. For this purpose, a clustering approach is utilized in combination with different parameters correlated with the DOI, such as the degree of similarity to a set of reference light distributions, the measured intensity on the sensor pixel(s) closest to the interaction position and the peak intensity of the measured light distribution. The proposed methods were tested experimentally on a detector comprised of a 20 mm × 20 mm × 12 mm polished LYSO:Ce crystal coupled to a 4 × 4 multi-anode photomultiplier. The method based on the linearly interpolated measured intensities on the sensor pixels closest to the estimated (x, y)-coordinate outperformed the other methods, yielding DOI resolutions between ∼1 and ∼4.5 mm FWHM depending on the DOI, the (x, y) resolution and the amount of reference data used. PMID:21693789

  12. A test of the role of electrostatic interactions in determining the CO stretch frequency in carbonmonoxymyoglobin.

    PubMed

    Decatur, S M; Boxer, S G

    1995-07-01

    The vibrational frequency of CO bound to myoglobin can be varied by up to 60 cm-1 by making site-specific mutations in the distal pocket. These changes may result from specific chemical interactions between distal amino acids and the CO or from changes in the electrostatic field of the distal pocket. In this paper, we separate the relative contributions of these two effects by comparing the IR spectra of the carbonmonoxy complexes of human myoglobin mutants V68N, V68D, and V68E. The effect of replacing valine with these polar amino acids on the electrostatic environment of the distal heme pocket has been independently determined earlier by measurements of the heme reduction potential and electronic absorption spectral band shifts. While all three mutations result in a negative dipole pointing towards the CO ligand, the CO stretch frequency shifts differently in each case. These differences are attributed to specific chemical interactions between the amino acids and the CO ligand. PMID:7612000

  13. Vortices determine the dynamics of biodiversity in cyclical interactions with protection spillovers

    NASA Astrophysics Data System (ADS)

    Szolnoki, Attila; Perc, Matjaž

    2015-11-01

    If rock beats scissors and scissors beat paper, one might assume that rock beats paper too. But this is not the case for intransitive relationships that make up the famous rock-paper-scissors game. However, the sole presence of paper might prevent rock from beating scissors, simply because paper beats rock. This is the blueprint for the rock-paper-scissors game with protection spillovers, which has recently been introduced as a new paradigm for biodiversity in well-mixed microbial populations. Here we study the game in structured populations, demonstrating that protection spillovers give rise to spatial patterns that are impossible to observe in the classical rock-paper-scissors game. We show that the spatiotemporal dynamics of the system is determined by the density of stable vortices, which may ultimately transform to frozen states, to propagating waves, or to target waves with reversed propagation direction, depending further on the degree and type of randomness in the interactions among the species. If vortices are rare, the fixation to waves and complex oscillatory solutions is likelier. Moreover, annealed randomness in interactions favors the emergence of target waves, while quenched randomness favors collective synchronization. Our results demonstrate that protection spillovers may fundamentally change the dynamics of cyclic dominance in structured populations, and they outline the possibility of programming pattern formation in microbial populations.

  14. Discovery of Novel Plant Interaction Determinants from the Genomes of 163 Root Nodule Bacteria

    PubMed Central

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-01-01

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogenetic distribution patterns and sequence signatures based on known precepts of symbiotic- and host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. These analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability. PMID:26584898

  15. Non-invasive determination of external forces in vortex-pair-cylinder interactions

    NASA Astrophysics Data System (ADS)

    Hartmann, D.; Schröder, W.; Shashikanth, B. N.

    2012-06-01

    Expressions for the conserved linear and angular momenta of a dynamically coupled fluid + solid system are derived. Based on the knowledge of the flow velocity field, these expressions allow the determination of the external forces exerted on a body moving in the fluid such as, e.g., swimming fish. The verification of the derived conserved quantities is done numerically. The interaction of a vortex pair with a circular cylinder in various configurations of motions representing a generic test case for a dynamically coupled fluid + solid system is investigated in a weakly compressible Navier-Stokes setting using a Cartesian cut-cell method, i.e., the moving circular cylinder is represented by cut cells on a moving mesh. The objectives of this study are twofold. The first objective is to show the robustness of the derived expressions for the conserved linear and angular momenta with respect to bounded and discrete data sets. The second objective is to study the coupled dynamics of the vortex pair and a neutrally buoyant cylinder free to move in response to the fluid stresses exerted on its surface. A comparison of the vortex-body interaction with the case of a fixed circular cylinder evidences significant differences in the vortex dynamics. When the cylinder is fixed strong secondary vorticity is generated resulting in a repeating process between the primary vortex pair and the cylinder. In the neutrally buoyant cylinder case, a stable structure consisting of the primary vortex pair and secondary vorticity shear layers stays attached to the moving cylinder. In addition to these fundamental cases, the vortex-pair-cylinder interaction is studied for locomotion at constant speed and locomotion at constant thrust. It is shown that a similar vortex structure like in the neutrally buoyant cylinder case is obtained when the cylinder moves away from the approaching vortex pair at a constant speed smaller than the vortex pair translational velocity. Finally, the idealized

  16. Enhanced spectrophotometric determination of Losartan potassium based on its physicochemical interaction with cationic surfactant

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Laila; Abdel-Aziz, Lobna; Gaied, Mariam

    2015-02-01

    In this study, a simple and sensitive spectrophotometric method was developed for determination of Losartan potassium (LST K), an angiotensin-II receptor (type AT1) antagonist, in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB). The physicochemical interaction of LST K with CTAB was investigated. The effect of cationic micelles on the spectroscopic and acid-base properties of LST K was studied at pH 7.4. The binding constant (Kb) and the partition coefficient (Kx) of LST K-CTAB were 1.62 × 105 M-1 and 1.38 × 105; respectively. The binding of LST K to CTAB micelles implied a shift in drug acidity constant (ΔpKa = 0.422). The developed method is linear over the range 0.5-28 μg mL-1. The accuracy was evaluated and was found to be 99.79 ± 0.509% and the relative standard deviation for intraday and interday precision was 0.821 and 0.963; respectively. The method was successfully applied to determine LST K in pharmaceutical formulations.

  17. Density-based Energy Decomposition Analysis for Intermolecular Interactions with Variationally Determined Intermediate State Energies

    SciTech Connect

    Wu, Q.; Ayers, P.W.; Zhang, Y.

    2009-10-28

    The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these two terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.

  18. Relative electron density determination using a physics based parameterization of photon interactions in medical DECT.

    PubMed

    van Abbema, Joanne K; van Goethem, Marc-Jan; Greuter, Marcel J W; van der Schaaf, Arjen; Brandenburg, Sytze; van der Graaf, Emiel R

    2015-05-01

    Radiotherapy and particle therapy treatment planning require accurate knowledge of the electron density and elemental composition of the tissues in the beam path to predict the local dose deposition. We describe a method for the analysis of dual energy computed tomography (DECT) images that provides the electron densities and effective atomic numbers of tissues. The CT measurement process is modelled by system weighting functions, which apply an energy dependent weighting to the parameterization of the total cross section for photon interactions with matter. This detailed parameterization is based on the theoretical analysis of Jackson and Hawkes and deviates, at most, 0.3% from the tabulated NIST values for the elements H to Zn. To account for beam hardening in the object as present in the CT image we implemented an iterative process employing a local weighting function, derived from the method proposed by Heismann and Balda. With this method effective atomic numbers between 1 and 30 can be determined. The method has been experimentally validated on a commercially available tissue characterization phantom with 16 inserts made of tissue substitutes and aluminium that has been scanned on a dual source CT system with tube potentials of 100 kV and 140 kV using a clinical scan protocol. Relative electron densities of all tissue substitutes have been determined with accuracy better than 1%. The presented DECT analysis method thus provides high accuracy electron densities and effective atomic numbers for radiotherapy and especially particle therapy treatment planning. PMID:25905890

  19. Relative electron density determination using a physics based parameterization of photon interactions in medical DECT

    NASA Astrophysics Data System (ADS)

    van Abbema, Joanne K.; van Goethem, Marc-Jan; Greuter, Marcel J. W.; van der Schaaf, Arjen; Brandenburg, Sytze; van der Graaf, Emiel R.

    2015-05-01

    Radiotherapy and particle therapy treatment planning require accurate knowledge of the electron density and elemental composition of the tissues in the beam path to predict the local dose deposition. We describe a method for the analysis of dual energy computed tomography (DECT) images that provides the electron densities and effective atomic numbers of tissues. The CT measurement process is modelled by system weighting functions, which apply an energy dependent weighting to the parameterization of the total cross section for photon interactions with matter. This detailed parameterization is based on the theoretical analysis of Jackson and Hawkes and deviates, at most, 0.3% from the tabulated NIST values for the elements H to Zn. To account for beam hardening in the object as present in the CT image we implemented an iterative process employing a local weighting function, derived from the method proposed by Heismann and Balda. With this method effective atomic numbers between 1 and 30 can be determined. The method has been experimentally validated on a commercially available tissue characterization phantom with 16 inserts made of tissue substitutes and aluminium that has been scanned on a dual source CT system with tube potentials of 100 kV and 140 kV using a clinical scan protocol. Relative electron densities of all tissue substitutes have been determined with accuracy better than 1%. The presented DECT analysis method thus provides high accuracy electron densities and effective atomic numbers for radiotherapy and especially particle therapy treatment planning.

  20. Direct determination of amino acids by hydrophilic interaction liquid chromatography with charged aerosol detection.

    PubMed

    Socia, Adam; Foley, Joe P

    2016-05-13

    A chromatographic analytical method for the direct determination of amino acids by hydrophilic interaction liquid chromatography (HILIC) was developed. A dual gradient simultaneously varying the pH 3.2 ammonium formate buffer concentration and level of acetonitrile (ACN) in the mobile phase was employed. Using a charged aerosol detector (CAD) and a 2(nd) order regression analysis, the fit of the calibration curve showed R(2) values between 0.9997 and 0.9985 from 1.5mg/mL to 50μg/mL (600ng to 20ng on column). Analyte chromatographic parameters such as the sensitivity of retention to the water fraction in the mobile phase values (mHILIC) were determined as part of method development. A degradation product of glutamine (5-pyrrolidone-2-carboxylic acid; pGlu) was observed and resolved chromatographically with no method modifications. The separation was used to quantitate amino acid content in acid hydrolysates of various protein samples. PMID:27059400

  1. Enhanced spectrophotometric determination of Losartan potassium based on its physicochemical interaction with cationic surfactant.

    PubMed

    Abdel-Fattah, Laila; Abdel-Aziz, Lobna; Gaied, Mariam

    2015-02-01

    In this study, a simple and sensitive spectrophotometric method was developed for determination of Losartan potassium (LST K), an angiotensin-II receptor (type AT1) antagonist, in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB). The physicochemical interaction of LST K with CTAB was investigated. The effect of cationic micelles on the spectroscopic and acid-base properties of LST K was studied at pH 7.4. The binding constant (Kb) and the partition coefficient (Kx) of LST K-CTAB were 1.62×10(5) M(-1) and 1.38×10(5); respectively. The binding of LST K to CTAB micelles implied a shift in drug acidity constant (ΔpKa=0.422). The developed method is linear over the range 0.5-28 μg mL(-1). The accuracy was evaluated and was found to be 99.79±0.509% and the relative standard deviation for intraday and interday precision was 0.821 and 0.963; respectively. The method was successfully applied to determine LST K in pharmaceutical formulations. PMID:25315864

  2. Using SEM Analysis on Ion-Milled Shale Surface to Determine Shale-Fracturing Fluid Interaction

    NASA Astrophysics Data System (ADS)

    Lu, J.; Mickler, P. J.; Nicot, J. P.

    2014-12-01

    It is important to document and assess shale-fluid interaction during hydraulic fracturing (HF) in order to understand its impact on flowback water chemistry and rock property. A series of autoclave experiments were conducted to react shale samples from major oil and gas shales with synthetic HF containing various additives. To better determine mineral dissolution and precipitation at the rock-fluid interface, ion-milling technique was applied to create extremely flat rock surfaces that were examined before and after the autoclave experiments using a scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS) detectors. This method is able to reveal a level of detail not observable on broken surface or mechanically polished surface. It allows direct comparison of the same mineral and organic matter particles before and after the reaction experiments. Minerals undergone dissolution and newly precipitated materials are readily determined by comparing to the exact locations before reaction. The dissolution porosity and the thickness of precipitates can be quantified by tracing and measuring the geometry of the pores and precipitates. Changes in porosity and permeability were confirmed by mercury intrusion capillary tests.

  3. Learning with Interactive Whiteboards: Determining the Factors on Promoting Interactive Whiteboards to Students by Technology Acceptance Model

    ERIC Educational Resources Information Center

    Kilic, Eylem; Güler, Çetin; Çelik, H. Eray; Tatli, Cemal

    2015-01-01

    Purpose: The purpose of this study is to investigate the factors which might affect the intention to use interactive whiteboards (IWBs) by university students, using Technology Acceptance Model by the structural equation modeling approach. The following hypothesis guided the current study: H1. There is a positive relationship between IWB…

  4. An Interactive network of long non-coding RNAs facilitates the Drosophila sex determination decision

    PubMed Central

    Mulvey, Brett B.; Olcese, Ursula; Cabrera, Janel R.; Horabin, Jamila I.

    2014-01-01

    Genome analysis in several eukaryotes shows a surprising number of transcripts which do not encode conventional messenger RNAs. Once considered noise, these non-coding RNAs (ncRNAs) appear capable of controlling gene expression by various means. We find Drosophila sex determination, specifically the master-switch gene Sex-lethal (Sxl), is regulated by long ncRNAs (>200 nt). The lncRNAs influence the dose sensitive establishment promoter of Sxl, SxlPe, which must be activated to specify female sex. They are primarily from two regions, R1 and R2, upstream of SxlPeand show a dynamic developmental profile. Of the four lncRNA strands only one, R2 antisense, has its peak coincident with SxlPe transcription, suggesting it may promote activation. Indeed, its expression is regulated by the X chromosome counting genes, whose dose determines whether SxlPe is transcribed. Transgenic lines which ectopically express each of the lncRNAs show they can act in trans, impacting the process of sex determination but also altering the levels of the other lncRNAs. Generally, expression of R1 is negative whereas R2 is positive to females. This ectopic expression also results in a change in the local chromatin marks, affecting the timing and strength of SxlPe transcription. The chromatin marks are those deposited by the Polycomb and Trithorax groups of chromatin modifying proteins, which we find bind to the lncRNAs. We suggest the increasing numbers of non-coding transcripts being identified are a harbinger of interacting networks similar to the one we describe. PMID:24954180

  5. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics.

    PubMed

    Piggott, Jeremy J; Townsend, Colin R; Matthaei, Christoph D

    2015-05-01

    Global climate change is likely to modify the ecological consequences of currently acting stressors, but potentially important interactions between climate warming and land-use related stressors remain largely unknown. Agriculture affects streams and rivers worldwide, including via nutrient enrichment and increased fine sediment input. We manipulated nutrients (simulating agricultural run-off) and deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0-6°C above ambient) simultaneously in 128 streamside mesocosms to determine the individual and combined effects of the three stressors on macroinvertebrate community dynamics (community composition and body size structure of benthic, drift and insect emergence assemblages). All three stressors had pervasive individual effects, but in combination often produced additive or antagonistic outcomes. Changes in benthic community composition showed a complex interplay among habitat quality (with or without sediment), resource availability (with or without nutrient enrichment) and the behavioural/physiological tendency to drift or emerge as temperature rose. The presence of sediment and raised temperature both resulted in a community of smaller organisms. Deposited fine sediment strongly increased the propensity to drift. Stressor effects were most prominent in the benthic assemblage, frequently reflected by opposite patterns in individuals quitting the benthos (in terms of their propensity to drift or emerge). Of particular importance is that community measures of stream health routinely used around the world (taxon richness, EPT richness and diversity) all showed complex three-way interactions, with either a consistently stronger temperature response or a reversal of its direction when one or both agricultural stressors were also in operation. The negative effects of added fine sediment, which were often stronger at raised temperatures, suggest that streams already

  6. An Evolving Genetic Architecture Interacts with Hill-Robertson Interference to Determine the Benefit of Sex.

    PubMed

    Whitlock, Alexander O B; Peck, Kayla M; Azevedo, Ricardo B R; Burch, Christina L

    2016-06-01

    Sex is ubiquitous in the natural world, but the nature of its benefits remains controversial. Previous studies have suggested that a major advantage of sex is its ability to eliminate interference between selection on linked mutations, a phenomenon known as Hill-Robertson interference. However, those studies may have missed both important advantages and important disadvantages of sexual reproduction because they did not allow the distributions of mutational effects and interactions (i.e., the genetic architecture) to evolve. Here we investigate how Hill-Robertson interference interacts with an evolving genetic architecture to affect the evolutionary origin and maintenance of sex by simulating evolution in populations of artificial gene networks. We observed a long-term advantage of sex-equilibrium mean fitness of sexual populations exceeded that of asexual populations-that did not depend on population size. We also observed a short-term advantage of sex-sexual modifier mutations readily invaded asexual populations-that increased with population size, as was observed in previous studies. We show that the long- and short-term advantages of sex were both determined by differences between sexual and asexual populations in the evolutionary dynamics of two properties of the genetic architecture: the deleterious mutation rate ([Formula: see text]) and recombination load ([Formula: see text]). These differences resulted from a combination of selection to minimize [Formula: see text] which is experienced only by sexuals, and Hill-Robertson interference experienced primarily by asexuals. In contrast to the previous studies, in which Hill-Robertson interference had only a direct impact on the fitness advantages of sex, the impact of Hill-Robertson interference in our simulations was mediated additionally by an indirect impact on the efficiency with which selection acted to reduce [Formula: see text]. PMID:27098911

  7. Oxygen and energy availability interact to determine flight performance in the Glanville fritillary butterfly.

    PubMed

    Fountain, Toby; Melvin, Richard G; Ikonen, Suvi; Ruokolainen, Annukka; Woestmann, Luisa; Hietakangas, Ville; Hanski, Ilkka

    2016-05-15

    Flying insects have the highest known mass-specific demand for oxygen, which makes it likely that reduced availability of oxygen might limit sustained flight, either instead of or in addition to the limitation due to metabolite resources. The Glanville fritillary butterfly (Melitaea cinxia) occurs as a large metapopulation in which adult butterflies frequently disperse between small local populations. Here, we examine how the interaction between oxygen availability and fuel use affects flight performance in the Glanville fritillary. Individuals were flown under either normoxic (21 kPa O2) or hypoxic (10 kPa O2) conditions and their flight metabolism was measured. To determine resource use, levels of circulating glucose, trehalose and whole-body triglyceride were recorded after flight. Flight performance was significantly reduced in hypoxic conditions. When flown under normoxic conditions, we observed a positive correlation among individuals between post-flight circulating trehalose levels and flight metabolic rate, suggesting that low levels of circulating trehalose constrains flight metabolism. To test this hypothesis experimentally, we measured the flight metabolic rate of individuals injected with a trehalase inhibitor. In support of the hypothesis, experimental butterflies showed significantly reduced flight metabolic rate, but not resting metabolic rate, in comparison to control individuals. By contrast, under hypoxia there was no relationship between trehalose and flight metabolic rate. Additionally, in this case, flight metabolic rate was reduced in spite of circulating trehalose levels that were high enough to support high flight metabolic rate under normoxic conditions. These results demonstrate a significant interaction between oxygen and energy availability for the control of flight performance. PMID:26944488

  8. Determining an Effective Shear Modulus in Tubular Organs for Fluid-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Chisena, Robert; Brasseur, James; Costanzo, Francesco; Gregersen, Hans; Zhao, Jingbo

    2014-11-01

    Fluid-structure interaction (FSI) is central to the mechanics of fluid-filled tubular organs such as the intestine and esophagus. The motions of fluid chyme are driven by a muscularis wall layer of circular and longitudinal muscle fibers. The coupled motions of the fluid and elastic solid phases result from a local balance between active and passive muscle stress components, fluid pressure, and fluid viscous stresses. Model predictions depend on the passive elastic response of the muscularis layer, which is typically parameterized with an average isotropic elastic modulus (EM), currently measured in vivo and in vitro with estimates for total hoop stress within a distension experiment. We have shown that this approach contains serious error due to the overwhelming influence of incompressibility on the hydrostatic component. We present a new approach in which an effective shear modulus, containing only deviatoric contributions, is measured to overcome this serious error. Using in vitro measurements from pig intestines, we compare our new approach to the current method, showing vastly different predictions. We will also report on our current analysis which aims to determine the influence of residual stress on the EM measurements and comment on it use in FSI simulations.

  9. Aerosol-cloud interaction determined by satellite data over the Baltic Sea countries

    NASA Astrophysics Data System (ADS)

    Saponaro, Giulia; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit

    2015-04-01

    The present study investigates the use of long-term satellite data to assess the influence of aerosols upon cloud parameters over the Baltic Sea region. This particular area offers the contrast of a very clean environment (Fennoscandia) against a more polluted one (Germany, Poland). The datasets consists of Collection 6 Level 3 daily observations from 2002 to 2014 collected by the NASA's Moderate-Resolution Imaging Spectrometer (MODIS) instrument on-board the Aqua platform. The MODIS aerosol optical depth (AOD) product is used as a proxy for the number concentration of aerosol particles while the cloud effective radius (CER) and cloud optical thickness (COT) describe cloud microphysical and optical properties respectively. Satellite data have certain limitations, such as the restriction to summer season due to solar zenith angle restrictions and the known problem of the ambiguity of the aerosol-cloud interface, for instance. Through the analysis of a 12-years dataset, distribution maps provide information on a regional scale about the first aerosol indirect effect (AIE) by determining the aerosol-cloud interaction (ACI). The ACI is defined as the change in cloud optical depth or effective radius as a function of aerosol load for a fixed liquid water path (LWP). The focusing point of the current study is the evaluation of regional trends of ACI over the observed area of the Baltic Sea.

  10. Virus versus Host Plant MicroRNAs: Who Determines the Outcome of the Interaction?

    PubMed Central

    Maghuly, Fatemeh; Ramkat, Rose C.; Laimer, Margit

    2014-01-01

    Considering the importance of microRNAs (miRNAs) in the regulation of essential processes in plant pathogen interactions, it is not surprising that, while plant miRNA sequences counteract viral attack via antiviral RNA silencing, viruses in turn have developed antihost defense mechanisms blocking these RNA silencing pathways and establish a counter-defense. In the current study, computational and stem-loop Reverse Transcription – Polymerase Chain Reaction (RT-PCR) approaches were employed to a) predict and validate virus encoded mature miRNAs (miRs) in 39 DNA-A sequences of the bipartite genomes of African cassava mosaic virus (ACMV) and East African cassava mosaic virus-Uganda (EACMV-UG) isolates, b) determine whether virus encoded miRs/miRs* generated from the 5′/3′ harpin arms have the capacity to bind to genomic sequences of the host plants Jatropha or cassava and c) investigate whether plant encoded miR/miR* sequences have the potential to bind to the viral genomes. Different viral pre-miRNA hairpin sequences and viral miR/miR* length variants occurring as isomiRs were predicted in both viruses. These miRNAs were located in three Open Reading Frames (ORFs) and in the Intergenic Region (IR). Moreover, various target genes for miRNAs from both viruses were predicted and annotated in the host plant genomes indicating that they are involved in biotic response, metabolic pathways and transcription factors. Plant miRs/miRs* from conserved and highly expressed families were identified, which were shown to have potential targets in the genome of both begomoviruses, representing potential plant miRNAs mediating antiviral defense. This is the first assessment of predicted viral miRs/miRs* of ACMV and EACMV-UG and host plant miRNAs, providing a reference point for miRNA identification in pathogens and their hosts. These findings will improve the understanding of host- pathogen interaction pathways and the function of viral miRNAs in Euphorbiaceous crop plants. PMID

  11. Assessment of Magnetostatic Interaction Effects on Thellier Paleointensity Determination by Experimental Simulations

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Zhao, X.

    2009-05-01

    The ability to control magnetic interactions between grains is of fundamental importance in paleointensity studies. We continued to perform experimental simulations to help understand the effect of magnetostatic interaction on Thellier type paleointensity experiments, using artificial synthesized magnetite grains mixed with both pseudo-single domain (PSD) and multidomain (MD) particles. Magnetite powders were mixed either with an Aron ceramic or were dispersed in matrix of Seto porcelain clay. The effects of interaction between grains can be observed from the magnetic behavior of specimens with different inter-grain distances. The maximum effect of domain's interaction can be estimated by comparing the behavior of specimens with large inter-grain distance (i.e., mostly dispersed-grains) with that of ideal non-interacting SD grains. Our results clearly show that (1) the interaction between grains (rather than domain's interaction) has particular disastrous effects on the Thellier-Coe paleointensity experiment; (2) interaction of large inter- grain distance samples adds an almost negative constant value to the applied external field (i.e., acting as an internal demagnetizing field); (3) interaction in shorter inter-grain distance samples mainly generates the difference in blocking and unblocking temperatures of the sample. Detailed results will be presented and discussed at the meeting.

  12. [Determination of melamine and ammeline in eggs and meat using hydrophilic interaction liquid chromatography].

    PubMed

    Li, Yanzhao; Hao, Weiqiang; Wang, Yubo; Chen, Qiang; Li, Jinchun; Sun, Xiaoli

    2012-07-01

    A hydrophilic interaction liquid chromatographic (HILIC) method for the determination of melamine and its degradation product ammeline in eggs and meat has been developed. The separation was carried out on a ZIC-HILIC column with 3 mmol/L NH4H2PO4 (pH 6.9)-acetonitrile (20: 80, v/v) as mobile phase at the flow rate of 0.8 mL/min, and detected at 220 nm. Compared with the reversed-phase liquid chromatography, this method can avoid the use of ion pair reagents and thus simplify the composition of mobile phase. Under the above chromatographic conditions, melamine and ammeline had good peak shapes and moderate retention times. Good separation between these compounds and the substances that were naturally contained in the samples can be achieved. For the sample preparation, the analytes were first extracted with 0.1% phosphoric acid due to the basicity of melamine and ammeline. Then, metaphosphoric acid and acetonitrile were used to remove proteins and saccharides by precipitation. After the filtration and removal of acetonitrile by rotary evaporation under vacuum, the filtrate was cleaned-up by solid-phase extraction (SPE) technique in which a cation exchange column was used. The SPE column was activated by using methanol and 0.1% phosphoric acid. A solution of 5% ammonia methanol was chosen as eluent. The residues obtained from the eluant by evaporating the solvent were resolved in the mobile phase. It was found that there was a good linear relationship between concentration and detector response within the range of 0.4-40 mg/L. The limits of detection were 2 mg/kg for both melamine and ammeline. The average recoveries were between 80% and 105% in the spiked range of 2-10 mg/kg. The relative standard deviations were not more than 10%. The solutions of melamine and ammeline were stable in a month. The established method can be used in practice to determine melamine and ammeline simultaneously in egg and meat samples. PMID:23189668

  13. Critical Evaluation and Compilation of Physicochemical Determinants and Membrane Interactions of MMGP1 Antifungal Peptide.

    PubMed

    Pushpanathan, Muthuirulan; Pooja, Sharma; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash

    2016-05-01

    A growing issue of pathogen resistance to antibiotics has fostered the development of innovative approaches for novel drug development. Here, we report the physicochemical and biological properties of an antifungal peptide, MMGP1, based on computational analysis. Computation of physicochemical properties has revealed that the natural biological activities of MMGP1 are coordinated by its intrinsic properties such as net positive charge (+5.04), amphipathicity, high hydrophobicity, low hydrophobic moment, and higher isoelectric point (11.915). Prediction of aggregation hot spots in MMGP1 had revealed the presence of potentially aggregation-prone segments that can nucleate in vivo aggregation (on the membrane), whereas no aggregating regions were predicted for in vitro aggregation (in solutions) of MMGP1. This ability of MMGP1 to form oligomeric aggregates on membrane further substantiates its direct-cell penetrating potency. Monte Carlo simulation of the interactions of MMGP1 in the aqueous phase and different membrane environments revealed that increasing the proportion of acidic lipids on membrane had led to increase in the peptide helicity. Furthermore, the peptide adopts energetically favorable transmembrane configuration, by inserting peptide loop and helix termini into the membrane containing >60% of anionic lipids. The charged lipid-based insertion of MMGP1 into membrane might be responsible for the selectivity of peptide toward fungal cells. Additionally, MMGP1 possessed DNA-binding property. Computational docking has identified DNA-binding residues (TRP3, SER4, MET7, ARG8, PHE10, ALA11, GLY20, THR21, ARG22, MET23, TRP34, and LYS36) in MMGP1 crucial for its DNA-binding property. Furthermore, computational mutation analysis revealed that aromatic amino acids are crucial for in vivo aggregation, membrane insertion, and DNA-binding property of MMGP1. These data provide new insight into the molecular determinants of MMGP1 antifungal activity and also serves as

  14. Characteristics of the interaction of calcium with casein submicelles as determined by analytical affinity chromatography

    SciTech Connect

    Jang, H.D.; Swaisgood, H.E. )

    1990-12-01

    Interaction of calcium with casein submicelles was investigated in CaCl2 and calcium phosphate buffers and with synthetic milk salt solutions using the technique of analytical affinity chromatography. Micelles that had been prepared by size exclusion chromatography with glycerolpropyl controlled-pore glass from fresh raw skim milk that had never been cooled, were dialyzed at room temperature against calcium-free imidazole buffer, pH 6.7. Resulting submicelles were covalently immobilized on succinamidopropyl controlled-pore glass (300-nm pore size). Using 45Ca to monitor the elution retardation, the affinity of free Ca2+ and calcium salt species was determined at temperatures of 20 to 40 degrees C and pH 6.0 to 7.5. Increasing the pH in this range or increasing the temperature strengthened the binding of calcium to submicelles, similar to previous observations with individual caseins. However, the enthalpy change obtained from the temperature dependence was considerably greater than that reported for alpha s1- and beta-caseins. Furthermore, the elution profiles for 45Ca in milk salt solutions were decidedly different from those in CaCl2 or calcium phosphate buffers and the affinities were also greater. For example, at pH 6.7 and 30 degrees C the average dissociation constant for the submicelle-calcium complex is 0.074 mM for CaCl2 and calcium phosphate buffers, vs 0.016 mM for the milk salt solution. The asymmetric frontal boundaries and higher average affinities observed with milk salts may be due to binding of calcium salts with greater affinity in addition to the binding of free Ca2+ in these solutions.

  15. N terminus determinants of MinC from Neisseria gonorrhoeae mediate interaction with FtsZ but do not affect interaction with MinD or homodimerization.

    PubMed

    Greco-Stewart, V; Ramirez-Arcos, S; Liao, M; Dillon, J R

    2007-06-01

    While bacterial cell division has been widely studied in rod-shaped bacteria, the mechanism of cell division in round (coccal) bacteria remains largely enigmatic. In the present study, interaction between the cell division inhibitor MinC from Neisseria gonorrhoeae (MinC(Ng)) and the gonococcal cell division proteins MinD(Ng) and FtsZ(Ng) are demonstrated. Protein truncation and site-directed mutagenic approaches determined which N-terminal residues were essential for cell division inhibition by MinC(Ng) using cell morphology as an indicator of protein functionality. Truncation from or mutation at the 13th amino acid of the N terminus of MinC(Ng) resulted in loss of protein function. Bioinformatic analyses predicted that point mutations of L35P and L68P would affect the alpha-helical conformation of the protein and we experimentally showed that these mutations alter the functionality of MinC(Ng). The bacterial two-hybrid system showed that interaction of MinC(Ng) with FtsZ(Ng) is abrogated upon truncation of 13 N-terminal residues while MinC(Ng)-MinD(Ng) interaction or MinC(Ng) homodimerization is unaffected. These data confirm interactions among gonococcal cell division proteins and determine the necessity of the 13th amino acid for MinC(Ng) function. PMID:17287984

  16. Learning Sequence Determinants of Protein:Protein Interaction Specificity with Sparse Graphical Models

    PubMed Central

    Kamisetty, Hetunandan; Ghosh, Bornika; Langmead, Christopher James; Bailey-Kellogg, Chris

    2015-01-01

    Abstract In studying the strength and specificity of interaction between members of two protein families, key questions center on which pairs of possible partners actually interact, how well they interact, and why they interact while others do not. The advent of large-scale experimental studies of interactions between members of a target family and a diverse set of possible interaction partners offers the opportunity to address these questions. We develop here a method, DgSpi (data-driven graphical models of specificity in protein:protein interactions), for learning and using graphical models that explicitly represent the amino acid basis for interaction specificity (why) and extend earlier classification-oriented approaches (which) to predict the ΔG of binding (how well). We demonstrate the effectiveness of our approach in analyzing and predicting interactions between a set of 82 PDZ recognition modules against a panel of 217 possible peptide partners, based on data from MacBeath and colleagues. Our predicted ΔG values are highly predictive of the experimentally measured ones, reaching correlation coefficients of 0.69 in 10-fold cross-validation and 0.63 in leave-one-PDZ-out cross-validation. Furthermore, the model serves as a compact representation of amino acid constraints underlying the interactions, enabling protein-level ΔG predictions to be naturally understood in terms of residue-level constraints. Finally, the model DgSpi readily enables the design of new interacting partners, and we demonstrate that designed ligands are novel and diverse. PMID:25973864

  17. Interactions between RNA polymerase and the core recognition element are a determinant of transcription start site selection.

    PubMed

    Vvedenskaya, Irina O; Vahedian-Movahed, Hanif; Zhang, Yuanchao; Taylor, Deanne M; Ebright, Richard H; Nickels, Bryce E

    2016-05-24

    During transcription initiation, RNA polymerase (RNAP) holoenzyme unwinds ∼13 bp of promoter DNA, forming an RNAP-promoter open complex (RPo) containing a single-stranded transcription bubble, and selects a template-strand nucleotide to serve as the transcription start site (TSS). In RPo, RNAP core enzyme makes sequence-specific protein-DNA interactions with the downstream part of the nontemplate strand of the transcription bubble ("core recognition element," CRE). Here, we investigated whether sequence-specific RNAP-CRE interactions affect TSS selection. To do this, we used two next-generation sequencing-based approaches to compare the TSS profile of WT RNAP to that of an RNAP derivative defective in sequence-specific RNAP-CRE interactions. First, using massively systematic transcript end readout, MASTER, we assessed effects of RNAP-CRE interactions on TSS selection in vitro and in vivo for a library of 4(7) (∼16,000) consensus promoters containing different TSS region sequences, and we observed that the TSS profile of the RNAP derivative defective in RNAP-CRE interactions differed from that of WT RNAP, in a manner that correlated with the presence of consensus CRE sequences in the TSS region. Second, using 5' merodiploid native-elongating-transcript sequencing, 5' mNET-seq, we assessed effects of RNAP-CRE interactions at natural promoters in Escherichia coli, and we identified 39 promoters at which RNAP-CRE interactions determine TSS selection. Our findings establish RNAP-CRE interactions are a functional determinant of TSS selection. We propose that RNAP-CRE interactions modulate the position of the downstream end of the transcription bubble in RPo, and thereby modulate TSS selection, which involves transcription bubble expansion or transcription bubble contraction (scrunching or antiscrunching). PMID:27162333

  18. Using Lamm-Equation Modeling of Sedimentation Velocity Data to Determine the Kinetic and Thermodynamic Properties of Macromolecular Interactions

    PubMed Central

    Brautigam, Chad A.

    2011-01-01

    The interaction of macromolecules with themselves and with other macromolecules is fundamental to the functioning of living systems. Recent advances in the analysis of sedimentation velocity (SV) data obtained by analytical ultracentrifugation allow the experimenter to determine important features of such interactions, including the equilibrium association constant and information about the kinetic off-rate of the interaction. The determination of these parameters is made possible by the ability of modern software to fit numerical solutions of the Lamm Equation with kinetic considerations directly to SV data. Herein, the SV analytical advances implemented in the software package SEDPHAT are summarized. Detailed analyses of SV data using these strategies are presented. Finally, a few highlights of recent literature reports that feature this type of SV data analysis are surveyed. PMID:21187153

  19. Development and validation of a hydrophilic interaction liquid chromatographic method for determination of aromatic amines in environmental water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, precise, and accurate hydrophilic interaction liquid chromatographic (HILIC) method has been developed for the determination of 5 aromatic amines in environmental water samples. Chromatography was carried out on a bare silica column, using a mixture of acetonitrile: phosphate buffer (10 mM...

  20. Contextual interactions determine whether the Drosophila homeodomain protein, Vnd, acts as a repressor or activator

    PubMed Central

    Yu, Zhongxin; Syu, Li-Jyun; Mellerick, Dervla M.

    2005-01-01

    At the molecular level, members of the NKx2.2 family of transcription factors establish neural compartment boundaries by repressing the expression of homeobox genes specific for adjacent domains [Muhr et al. (2001) Cell, 104, 861–873; Weiss et al. (1998) Genes Dev., 12, 3591–3602]. The Drosophila homologue, vnd, interacts genetically with the high-mobility group protein, Dichaete, in a manner suggesting co-operative activation [Zhao and Skeath (2002) Development, 129, 1165–1174]. However, evidence for direct interactions and transcriptional activation is lacking. Here, we present molecular evidence for the interaction of Vnd and Dichaete that leads to the activation of target gene expression. Two-hybrid interaction assays indicate that Dichaete binds the Vnd homeodomain, and additional Vnd sequences stabilize this interaction. In addition, Vnd has two activation domains that are typically masked in the intact protein. Whether vnd can activate or repress transcription is context-dependent. Full-length Vnd, when expressed as a Gal4 fusion protein, acts as a repressor containing multiple repression domains. A divergent domain in the N-terminus, not found in vertebrate Vnd-like proteins, causes the strongest repression. The co-repressor, Groucho, enhances Vnd repression, and these two proteins physically interact. The data presented indicate that the activation and repression domains of Vnd are complex, and whether Vnd functions as a transcriptional repressor or activator depends on both intra- and inter-molecular interactions. PMID:15640442

  1. Species distribution models contribute to determine the effect of climate and interspecific interactions in moving hybrid zones.

    PubMed

    Engler, J O; Rödder, D; Elle, O; Hochkirch, A; Secondi, J

    2013-11-01

    Climate is a major factor delimiting species' distributions. However, biotic interactions may also be prominent in shaping geographical ranges, especially for parapatric species forming hybrid zones. Determining the relative effect of each factor and their interaction of the contact zone location has been difficult due to the lack of broad scale environmental data. Recent developments in species distribution modelling (SDM) now allow disentangling the relative contributions of climate and species' interactions in hybrid zones and their responses to future climate change. We investigated the moving hybrid zone between the breeding ranges of two parapatric passerines in Europe. We conducted SDMs representing the climatic conditions during the breeding season. Our results show a large mismatch between the realized and potential distributions of the two species, suggesting that interspecific interactions, not climate, account for the present location of the contact zone. The SDM scenarios show that the southerly distributed species, Hippolais polyglotta, might lose large parts of its southern distribution under climate change, but a similar gain of novel habitat along the hybrid zone seems unlikely, because interactions with the other species (H. icterina) constrain its range expansion. Thus, whenever biotic interactions limit range expansion, species may become 'trapped' if range loss due to climate change is faster than the movement of the contact zone. An increasing number of moving hybrid zones are being reported, but the proximate causes of movement often remain unclear. In a global context of climate change, we call for more interest in their interactions with climate change. PMID:24016292

  2. Determinants of RNA polymerase alpha subunit for interaction with beta, beta', and sigma subunits: hydroxyl-radical protein footprinting.

    PubMed Central

    Heyduk, T; Heyduk, E; Severinov, K; Tang, H; Ebright, R H

    1996-01-01

    Escherichia coli RNA polymerase (RNAP) alpha subunit serves as the initiator for RNAP assembly, which proceeds according to the pathway 2 alpha-->alpha 2-->alpha 2 beta-->alpha 2 beta beta'-->alpha 2 beta beta' sigma. In this work, we have used hydroxyl-radical protein footprinting to define determinants of alpha for interaction with beta, beta', and sigma. Our results indicate that amino acids 30-75 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta (i.e., in alpha 2 beta, alpha 2 beta beta', and alpha 2 beta beta' sigma), and amino acids 175-210 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta' (i.e., in alpha 2 beta beta' and alpha 2 beta beta' sigma). The protected regions are conserved in the alpha homologs of prokaryotic, eukaryotic, archaeal, and chloroplast RNAPs and contain sites of substitutions that affect RNAP assembly. We conclude that the protected regions define determinants of alpha for direct functional interaction with beta and beta'. The observed maximal magnitude of protection upon interaction with beta and the observed maximal magnitude of protection upon interaction with beta' both correspond to the expected value for complete protection of one of the two alpha protomers of RNAP (i.e., 50% protection). We propose that only one of the two alpha protomers of RNAP interacts with beta and that only one of the two alpha protomers of RNAP interacts with beta'. Images Fig. 1 Fig. 4 PMID:8816769

  3. The genomic determinants of genotype × environment interactions in gene expression.

    PubMed

    Grishkevich, Vladislav; Yanai, Itai

    2013-08-01

    Predicting phenotype from genotype is greatly complicated by the polygenic nature of most traits and by the complex interactions between phenotype and the environment. Here, we review recent whole-genome approaches to understand the underlying principles, mechanisms, and evolutionary impacts of genotype × environment (G×E) interactions, defined as genotype-specific phenotypic responses to different environments. There is accumulating evidence that G×E interactions are ubiquitous, accounting perhaps for the greater part of the phenotypic variation seen across genotypes. Such interactions appear to be the consequence of changes to upstream regulators as opposed to local changes to promoters. Moreover, genes are not equally likely to exhibit G×E interactions; promoter architecture, expression level, regulatory complexity, and essentiality correlate with the differential regulation of a gene by the environment. One implication of this correlation is that expression variation across genotypes alone could be used as a proxy for G×E interactions in those experimental cases where identifying environmental variation is costly or impossible. PMID:23769209

  4. Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties.

    PubMed

    Nia, Hadi Tavakoli; Han, Lin; Bozchalooi, Iman Soltani; Roughley, Peter; Youcef-Toumi, Kamal; Grodzinsky, Alan J; Ortiz, Christine

    2015-03-24

    Poroelastic interactions between interstitial fluid and the extracellular matrix of connective tissues are critical to biological and pathophysiological functions involving solute transport, energy dissipation, self-stiffening and lubrication. However, the molecular origins of poroelasticity at the nanoscale are largely unknown. Here, the broad-spectrum dynamic nanomechanical behavior of cartilage aggrecan monolayer is revealed for the first time, including the equilibrium and instantaneous moduli and the peak in the phase angle of the complex modulus. By performing a length scale study and comparing the experimental results to theoretical predictions, we confirm that the mechanism underlying the observed dynamic nanomechanics is due to solid-fluid interactions (poroelasticity) at the molecular scale. Utilizing finite element modeling, the molecular-scale hydraulic permeability of the aggrecan assembly was quantified (kaggrecan = (4.8 ± 2.8) × 10(-15) m(4)/N·s) and found to be similar to the nanoscale hydraulic permeability of intact normal cartilage tissue but much lower than that of early diseased tissue. The mechanisms underlying aggrecan poroelasticity were further investigated by altering electrostatic interactions between the molecule's constituent glycosaminoglycan chains: electrostatic interactions dominated steric interactions in governing molecular behavior. While the hydraulic permeability of aggrecan layers does not change across species and age, aggrecan from adult human cartilage is stiffer than the aggrecan from newborn human tissue. PMID:25758717

  5. Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles.

    PubMed

    Tenney, Craig M; Cygan, Randall T

    2014-01-01

    Capture and subsequent geologic storage of CO2 in deep brine reservoirs plays a significant role in plans to reduce atmospheric carbon emission and resulting global climate change. The interaction of CO2 and brine species with mineral surfaces controls the ultimate fate of injected CO2 at the nanoscale via geochemistry, at the pore-scale via capillary trapping, and at the field-scale via relative permeability. We used large-scale molecular dynamics simulations to study the behavior of supercritical CO2 and aqueous fluids on both the hydrophilic and hydrophobic basal surfaces of kaolinite, a common clay mineral. In the presence of a bulk aqueous phase, supercritical CO2 forms a nonwetting droplet above the hydrophilic surface of kaolinite. This CO2 droplet is separated from the mineral surface by distinct layers of water, which prevent the CO2 droplet from interacting directly with the mineral surface. Conversely, both CO2 and H2O molecules interact directly with the hydrophobic surface of kaolinite. In the presence of bulk supercritical CO2, nonwetting aqueous droplets interact with the hydrophobic surface of kaolinite via a mixture of adsorbed CO2 and H2O molecules. Because nucleation and precipitation of minerals should depend strongly on the local distribution of CO2, H2O, and ion species, these nanoscale surface interactions are expected to influence long-term mineralization of injected carbon dioxide. PMID:24410258

  6. Interfacial and intermolecular interactions determining the rotational orientation of C60 adsorbed on Au(111)

    NASA Astrophysics Data System (ADS)

    Paßens, Michael; Karthäuser, Silvia

    2015-12-01

    Close-packed monolayers of fullerenes on metallic substrates are very rich systems with respect to their rotational degrees of freedom and possible interactions with different adsorption sites or next neighbours. In this connection, we report in detail on the (2√3 × 2√3)R30°-superstructure of C60 with respect to the Au(111)-surface. We use molecular orbital imaging in systematic UHV-STM studies to reveal the delicate balance of interfacial and intermolecular interactions in this system. Thus, bright C60-molecules in 5:6-top and 6:6-top geometries are observed depending on the respective next neighbours. Moreover, tiny changes in the appearance of the unoccupied molecular orbitals of dim C60-molecules in hex-vac positions are identified which are caused by the respective interaction with the facets surrounding the Au-vacancy.

  7. The role of solvent heterogeneity in determining the dispersion interaction between nanoassemblies.

    PubMed

    Chun, Jaehun; Mundy, Christopher J; Schenter, Gregory K

    2015-05-01

    Understanding fundamental nanoassembly processes on intermediate scales between molecular and continuum scales requires an in-depth analysis of the coupling between particle interactions and molecular details. This is because the discrete nature of the solvent becomes comparable to the characteristic length scales of assembly. Utilizing the spatial density response of a solvent to a surface in conjunction with the Clausius-Mossotti equation, we present a simple theory relating the discrete nature of solvent to dispersion interactions. Our study reveals that dispersion interactions are indeed sensitive to the spatial variation of solvent density, manifesting in dramatic deviations in van der Waals forces from the conventional formulation (e.g., with uniform solvent density). This study provides the first steps toward relating molecular scale principles, namely the detailed nature of solvent response to an interface, to the underlying hydration forces between surfaces. PMID:25872971

  8. Experimentally determined swelling pressures and geochemical interactions of compacted Wyoming bentonite with highly alkaline solutions

    NASA Astrophysics Data System (ADS)

    Karnland, Ola; Olsson, Siv; Nilsson, Ulf; Sellin, Patrik

    The estimated quantity of cement for construction and sealing purposes is around 9E5 kg in the planned Swedish KBS3 repository for nuclear waste. The highly alkaline cement pore fluid (pH > 12) may affect other components in the repository, and especially the bentonite buffer is of concern. In this study, we simulated possible interactions between cement and bentonite by contacting highly compacted bentonite with high molar hydroxide solutions in a series of laboratory experiments. Wyoming bentonite (MX-80) and purified homo-ionic Na- and Ca-montmorillonite were used for tests with 0.1, 0.3 and 1.0 M NaOH, and saturated Ca(OH) 2 solutions. Pressure cells with permeable filters were loaded with compacted discs of bentonite at the proposed buffer density (2000 kg/m 3 at full water saturation). A hydroxide solution was circulated on one side of the cell and an isotonic chloride solution on the other during a minimum of 45 days. Swelling pressure and solution pH were monitored during the tests and the change in the solution composition and bentonite mineralogy were determined after completed tests. No effect on swelling pressure was observed in tests with 0.1 M NaOH (pH 12.9) or saturated Ca(OH) 2 solutions (pH 12.4) and the mineralogical/chemical changes of the clay were minimal. The bentonite swelling pressure was significantly reduced in the tests with 0.3 (pH 13.3) and 1.0 M (pH 13.8) NaOH solutions. The reduction seems to be due to an instant osmotic effect, and to a continuous dissolution of silica minerals, resulting in mass loss and, consequently, a decrease in density. At these high pH, the release of silica was dominating and the CEC of the clay increased by 20-25%. The structural formula of the smectite and X-ray diffraction tests for non-expandability (Greene-Kelly test) provided strong evidence that the dissolution of montmorillonite proceeds incongruently through an initial step of beidellitization. The calculated rate of silica release from

  9. Preferential interactions determine protein solubility in three-component solutions: the MgCl2 system.

    PubMed

    Arakawa, T; Bhat, R; Timasheff, S N

    1990-02-20

    The correlation between protein solubility and the preferential interactions of proteins with solvent components was critically examined with aqueous MgCl2 as the solvent system. Preferential interaction and solubility measurements with three proteins, beta-lactoglobulin, bovine serum albumin, and lysozyme, resulted in similar patterns of interaction. At acid pH (pH 2-3) and lower salt concentrations (less than 2 M), the proteins were preferentially hydrated, while at higher salt concentrations, the interaction was either that of preferential salt binding or low salt exclusion. At pH 4.5-5, all three proteins exhibited either very low preferential hydration or preferential binding of MgCl2. These results were analyzed in terms of the balance between salt binding and salt exclusion attributed to the increase in the surface tension of water by salts, which is invariant with conditions. It was shown that the increase in salt binding at high salt concentration is a reflection of mass action, while its decrease at acid pH is due to the electrostatic repulsion between Mg2+ ions and the high net positive charge on the protein. The preferential interaction pattern was paralleled by the variation of protein solubility with solvent conditions. Calculation of the transfer free energies from water to the salt solutions for proteins in solution and in the precipitate showed dependencies on salt concentration. This indicates that the nature of interactions between proteins and solvent components is the same in solution and in the solid state, which implies no change in protein structure during precipitation. Analysis of the transfer free energies and preferential interaction parameter in terms of the salting-in, salting-out, and weak ion binding contributions has led to the conclusions that, when the weak ion binding contribution is small, the predominant protein-salt interaction must be that of preferential salt exclusion most probably caused by the increase of the surface

  10. An Interactive Classroom Activity Demonstrating Reaction Mechanisms and Rate-Determining Steps

    ERIC Educational Resources Information Center

    Jennings, Laura D.; Keller, Steven W.

    2005-01-01

    An interactive classroom activity that includes two-step reaction of unwrapping and eating chocolate candies is described which brings not only the reaction intermediate, but also the reactants and products into macroscopic view. The qualitative activation barriers of both steps can be adjusted independently.

  11. Species interactions determine the spatial mortality patterns emerging in plant communities after extreme events.

    PubMed

    Liao, Jinbao; Bogaert, Jan; Nijs, Ivan

    2015-01-01

    Gap disturbance is assumed to maintain species diversity by creating environmental heterogeneity. However, little is known about how interactions with neighbours, such as competition and facilitation, alter the emerging gap patterns after extreme events. Using a spatially explicit community model we demonstrate that negative interactions, especially intraspecific competition, greatly promote both average gap size and gap-size diversity relative to positive interspecific interaction. This suggests that competition would promote diversity maintenance but also increase community invasibility, as large gaps with a wide size variety provide more diverse niches for both local and exotic species. Under interspecific competition, both gap metrics interestingly increased with species richness, while they were reduced under intraspecific competition. Having a wider range of species interaction strengths led to a smaller average gap size only under intraspecific competition. Increasing conspecific clumping induced larger gaps with more variable sizes under intraspecific competition, in contrast to interspecific competition. Given the range of intraspecific clumping in real communities, models or experiments based on randomly synthesized communities may yield biased estimates of the opportunities for potential colonizers to fill gaps. Overall, our "static" model on gap formation offers perspectives to better predict recolonization opportunity and thus community secondary succession under extreme event regimes. PMID:26054061

  12. The Sex Differentiated Interaction of Environmental and Hereditary Determinants of Intelligence.

    ERIC Educational Resources Information Center

    Seaver, Judith W.

    This paper examines evidence supporting the hypothesis that environment differentially affects intelligence in a sex-specific manner. The current position that environment and heredity contribute interactively to intelligence obscures the greater vulnerability and exposure of males to environmental influences and the reciprocal lack of equivalent…

  13. Determinants of Mobile Wireless Technology for Promoting Interactivity in Lecture Sessions: An Empirical Analysis

    ERIC Educational Resources Information Center

    Gan, Chin Lay; Balakrishnan, Vimala

    2014-01-01

    The aim of this paper is to identify adoption factors of mobile wireless technology to increase interactivity between lecturers and students during lectures. A theoretical framework to ascertain lecturers' intentions to use mobile wireless technology during lectures (dependent variable) is proposed with seven independent variables. The…

  14. Species interactions determine the spatial mortality patterns emerging in plant communities after extreme events

    PubMed Central

    Liao, Jinbao; Bogaert, Jan; Nijs, Ivan

    2015-01-01

    Gap disturbance is assumed to maintain species diversity by creating environmental heterogeneity. However, little is known about how interactions with neighbours, such as competition and facilitation, alter the emerging gap patterns after extreme events. Using a spatially explicit community model we demonstrate that negative interactions, especially intraspecific competition, greatly promote both average gap size and gap-size diversity relative to positive interspecific interaction. This suggests that competition would promote diversity maintenance but also increase community invasibility, as large gaps with a wide size variety provide more diverse niches for both local and exotic species. Under interspecific competition, both gap metrics interestingly increased with species richness, while they were reduced under intraspecific competition. Having a wider range of species interaction strengths led to a smaller average gap size only under intraspecific competition. Increasing conspecific clumping induced larger gaps with more variable sizes under intraspecific competition, in contrast to interspecific competition. Given the range of intraspecific clumping in real communities, models or experiments based on randomly synthesized communities may yield biased estimates of the opportunities for potential colonizers to fill gaps. Overall, our “static” model on gap formation offers perspectives to better predict recolonization opportunity and thus community secondary succession under extreme event regimes. PMID:26054061

  15. π–π Interaction Energies as Determinants of the Photodimerization of Mono-, Di-, and Triazastilbenes

    PubMed Central

    2015-01-01

    We describe the quantitative [2 + 2] photocycloaddition of crystalline trans-2,4-dichloro-6-styrylpyrimidine to produce the corresponding htt r-ctt cyclobutane dimer, and we present 1H NMR analysis of the photolysis of this and six other mono-, di-, and triazastilbenes in solid and solution states. Density functional (M06-2X) and correlated ab initio (MP2) calculations were used to obtain interaction energies between two monomers of each azastilbene. These energies mirror the relative polarization of the stilbene moieties and can be quantitatively correlated with the rate of reaction and selective formation of the htt r-ctt dimers. In the solid state, poor correlation is observed between interaction energy and reactivity/selectivity. This lack of correlation is explained through X-ray analysis of the azastilbene monomers and is shown to be in accordance with the principles of Schmidt’s topochemical postulate. Conversely, in solution there is a strong positive correlation (R2 = 0.96) between interaction energies and formation of the htt r-ctt dimer. These results are the first to show this correlation and to demonstrate the utility of calculated interaction energies as a tool for the prediction of stereo- and regioselectivity in solution-state stilbene-type photocycloadditions. PMID:24837276

  16. Quality of Adolescent Mother-Infant Interactions and Clinical Determinations of Risk Status.

    ERIC Educational Resources Information Center

    Brophy-Herb, Holly E.; Honig, Alice Sterling

    1999-01-01

    Observed 37 pairs of low-income adolescent mothers and infants over a 6-month period to determine efficacy of clinical determinations of risk. Found that maternal-risk status was significantly associated with more sensitive parenting behaviors including responsiveness to infant cues and to infant distress, and social, emotional, and cognitive…

  17. Determining Plant – Leaf Miner – Parasitoid Interactions: A DNA Barcoding Approach

    PubMed Central

    Derocles, Stéphane A. P.; Evans, Darren M.; Nichols, Paul C.; Evans, S. Aifionn; Lunt, David H.

    2015-01-01

    A major challenge in network ecology is to describe the full-range of species interactions in a community to create highly-resolved food-webs. We developed a molecular approach based on DNA full barcoding and mini-barcoding to describe difficult to observe plant – leaf miner – parasitoid interactions, consisting of animals commonly regarded as agricultural pests and their natural enemies. We tested the ability of universal primers to amplify the remaining DNA inside leaf miner mines after the emergence of the insect. We compared the results of a) morphological identification of adult specimens; b) identification based on the shape of the mines; c) the COI Mini-barcode (130 bp) and d) the COI full barcode (658 bp) fragments to accurately identify the leaf-miner species. We used the molecular approach to build and analyse a tri-partite ecological network of plant – leaf miner – parasitoid interactions. We were able to detect the DNA of leaf-mining insects within their feeding mines on a range of host plants using mini-barcoding primers: 6% for the leaves collected empty and 33% success after we observed the emergence of the leaf miner. We suggest that the low amplification success of leaf mines collected empty was mainly due to the time since the adult emerged and discuss methodological improvements. Nevertheless our approach provided new species-interaction data for the ecological network. We found that the 130 bp fragment is variable enough to identify all the species included in this study. Both COI fragments reveal that some leaf miner species could be composed of cryptic species. The network built using the molecular approach was more accurate in describing tri-partite interactions compared with traditional approaches based on morphological criteria. PMID:25710377

  18. Interaction Mechanism of Oil-in-Water Emulsions with Asphaltenes Determined Using Droplet Probe AFM.

    PubMed

    Shi, Chen; Zhang, Ling; Xie, Lei; Lu, Xi; Liu, Qingxia; Mantilla, Cesar A; van den Berg, Frans G A; Zeng, Hongbo

    2016-03-15

    Emulsions with interface-active components at the oil/water interface have long been of fundamental and practical interest in many fields. In this work, the interaction forces between two oil droplets in water in the absence/presence of asphaltenes were directly measured using droplet probe atomic force microscopy (AFM) and analyzed using a theoretical model based on Reynolds lubrication theory and the augmented Young-Laplace equation by including the effects of disjoining pressure. It was revealed that the interaction forces measured between two pristine oil droplets (i.e., toluene) could be well described by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, while an additional steric interaction should be included in the presence of asphaltenes in the oil. The surface interaction and the stability of oil droplets in aqueous solution were demonstrated to be significantly influenced by the asphaltenes concentration in oil, salt concentration, pH, and presence of divalent ions (Ca(2+)) in water. Adsorbed asphaltenes at the oil/water interface led to more negative surface potential of the oil/water interface and also induced steric repulsion between oil droplets, inhibiting the drop coalescence and stabilizing the oil-in-water emulsion. Lower pH of aqueous solution could lead to less negative surface potential and weaken the repulsion between oil droplets. Addition of divalent ions (Ca(2+)) was found to disrupt the protecting effects of adsorbed asphaltenes at oil/water interface and induce coalescence of oil droplets. Our results provide a useful methodology for quantifying the interaction forces and investigating the properties of asphaltenes at the oil/water interfaces and provide insights into the stabilization mechanism of oil-in-water emulsions due to asphaltenes in oil production and water treatment. PMID:26901396

  19. Experimental Determination of the Electrostatic Nature of Carbonyl Hydrogen-Bonding Interactions Using IR-NMR Correlations.

    PubMed

    Kashid, Somnath M; Bagchi, Sayan

    2014-09-18

    Hydrogen-bonding plays a fundamental role in the structure, function, and dynamics of various chemical and biological systems. Understanding the physical nature of interactions and the role of electrostatics in hydrogen-bonding has been the focus of several theoretical and computational research. We present an experimental approach involving IR-(13)C NMR correlations to determine the electrostatic nature of carbonyl hydrogen-bonding interactions. This report provides a direct experimental evidence of the classical nature of hydrogen-bonding interaction in carbonyls, independent of any theoretical approximation. These results have important implications in chemistry and biology and can be applied to probe the reaction mechanisms involving carbonyl activation/stabilization by hydrogen bonds using spectroscopic techniques. PMID:26276334

  20. Interactions of solutes and streambed sediment. 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport.

    USGS Publications Warehouse

    Bencala, K.E.

    1984-01-01

    Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solute-streambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. -from Author

  1. Evolution of species interactions determines microbial community productivity in new environments.

    PubMed

    Fiegna, Francesca; Moreno-Letelier, Alejandra; Bell, Thomas; Barraclough, Timothy G

    2015-05-01

    Diversity generally increases ecosystem productivity over short timescales. Over longer timescales, both ecological and evolutionary responses to new environments could alter productivity and diversity-productivity relationships. In turn, diversity might affect how component species adapt to new conditions. We tested these ideas by culturing artificial microbial communities containing between 1 and 12 species in three different environments for ∼60 generations. The relationship between community yields and diversity became steeper over time in one environment. This occurred despite a general tendency for the separate yields of isolates of constituent species to be lower at the end if they had evolved in a more diverse community. Statistical comparisons of community and species yields showed that species interactions had evolved to be less negative over time, especially in more diverse communities. Diversity and evolution therefore interacted to enhance community productivity in a new environment. PMID:25387206

  2. Evolution of species interactions determines microbial community productivity in new environments

    PubMed Central

    Fiegna, Francesca; Moreno-Letelier, Alejandra; Bell, Thomas; Barraclough, Timothy G

    2015-01-01

    Diversity generally increases ecosystem productivity over short timescales. Over longer timescales, both ecological and evolutionary responses to new environments could alter productivity and diversity–productivity relationships. In turn, diversity might affect how component species adapt to new conditions. We tested these ideas by culturing artificial microbial communities containing between 1 and 12 species in three different environments for ∼60 generations. The relationship between community yields and diversity became steeper over time in one environment. This occurred despite a general tendency for the separate yields of isolates of constituent species to be lower at the end if they had evolved in a more diverse community. Statistical comparisons of community and species yields showed that species interactions had evolved to be less negative over time, especially in more diverse communities. Diversity and evolution therefore interacted to enhance community productivity in a new environment. PMID:25387206

  3. Direct Determination of Multiple Ligand Interactions with the Extracellular Domain of the Calcium-sensing Receptor*

    PubMed Central

    Zhang, Chen; Zhuo, You; Moniz, Heather A.; Wang, Shuo; Moremen, Kelley W.; Prestegard, James H.; Brown, Edward M.; Yang, Jenny J.

    2014-01-01

    Numerous in vivo functional studies have indicated that the dimeric extracellular domain (ECD) of the CaSR plays a crucial role in regulating Ca2+ homeostasis by sensing Ca2+ and l-Phe. However, direct interaction of Ca2+ and Phe with the ECD of the receptor and the resultant impact on its structure and associated conformational changes have been hampered by the large size of the ECD, its high degree of glycosylation, and the lack of biophysical methods to monitor weak interactions in solution. In the present study, we purified the glycosylated extracellular domain of calcium-sensing receptor (CaSR) (ECD) (residues 20–612), containing either complex or high mannose N-glycan structures depending on the host cell line employed for recombinant expression. Both glycosylated forms of the CaSR ECD were purified as dimers and exhibit similar secondary structures with ∼50% α-helix, ∼20% β-sheet content, and a well buried Trp environment. Using various spectroscopic methods, we have shown that both protein variants bind Ca2+ with a Kd of 3.0–5.0 mm. The local conformational changes of the proteins induced by their interactions with Ca2+ were visualized by NMR with specific 15N Phe-labeled forms of the ECD. Saturation transfer difference NMR approaches demonstrated for the first time a direct interaction between the CaSR ECD and l-Phe. We further demonstrated that l-Phe increases the binding affinity of the CaSR ECD for Ca2+. Our findings provide new insights into the mechanisms by which Ca2+ and amino acids regulate the CaSR and may pave the way for exploration of the structural properties of CaSR and other members of family C of the GPCR superfamily. PMID:25305020

  4. Determination of accurate dissociation limits and interatomic interactions at large internuclear distances

    NASA Astrophysics Data System (ADS)

    Stwalley, W. C.; Verma, K. K.; Rajaei-Rizi, A.; Bahns, J. T.; Harding, D. R.

    This paper illustrates (using the molecules LiH, Li2 and Na2) how laser-induced fluorescence can be used to greatly expand the range of observed vibrational levels in ground electronic states. This expanded vibrational range leads to the determination of virtually the full well of the potential energy curve. This also leads to improved determination of the dissociation limit and serves as a severe test for highly accurate ab initio calculations now available for many small molecules.

  5. Determination of accurate dissociation limits and interatomic interactions at large internuclear distances

    NASA Technical Reports Server (NTRS)

    Stwalley, W. C.; Verma, K. K.; Rajaei-Rizi, A.; Bahns, J. T.; Harding, D. R.

    1982-01-01

    This paper illustrates (using the molecules LiH, Li2 and Na2) how laser-induced fluorescence can be used to greatly expand the range of observed vibrational levels in ground electronic states. This expanded vibrational range leads to the determination of virtually the full well of the potential energy curve. This also leads to improved determination of the dissociation limit and serves as a severe test for highly accurate ab initio calculations now available for many small molecules.

  6. Microcalorimetric and SAXS determination of PEO-SDS interactions: the effect of cosolutes formed by ions.

    PubMed

    Barbosa, Aparecida Mageste; Santos, Igor José Boggione; Ferreira, Guilherme Max Dias; da Silva, Maria do Carmo Hespanhol; Teixeira, Alvaro Vianna Novaes de Carvalho; da Silva, Luis Henrique Mendes

    2010-09-23

    The effect of different ionic cosolutes (NaCl, Na(2)SO(4), Li(2)SO(4), NaSCN, Na(2)[Fe(CN)(5)NO], and Na(3)[Co(NO)(6)]) on the interaction between sodium dodecyl sulfate (SDS) and poly(ethylene oxide) (PEO) was examined by small-angle X-ray scattering (SAXS) and isothermal titration calorimetric techniques. The critical aggregation concentration values (cac), the saturation concentration (C(2)), the integral enthalpy change for aggregate formation (ΔH(agg)(int)) and the standard free energy change of micelle adsorption on the macromolecule chain (ΔΔG(agg)) were derived from the calorimetric titration curves. In the presence of 1.00 mmol L(-1) cosolute, no changes in the parameters were observed when compared with those obtained for SDS-PEO interactions in pure water. For NaCl, Na(2)SO(4), Li(2)SO(4), and NaSCN at 10.0 and 100 mmol L(-1), the cosolute presence lowered cac, increased C(2), and the PEO-SDS aggregate became more stable. In the presence of Na(2)[Fe(CN)(5)NO], the calorimetric titration curves changed drastically, showing a possible reduction in the PEO-SDS degree of interaction, possibility disrupting the formed nanostructure; however, the SAXS data confirmed, independent of the small energy observed, the presence of aggregates adsorbed on the polymer chain. PMID:20806942

  7. Antigen availability determines CD8+ T cell-dendritic cell interaction kinetics and memory fate decisions

    PubMed Central

    Henrickson, Sarah E.; Stutte, Susanne; Quigley, Michael; Alexe, Gabriela; Iannacone, Matteo; Flynn, Michael P.; Omid, Shaida; Jesneck, Jonathan L.; Imam, Sabrina; Mempel, Thorsten R.; Mazo, Irina B.; Haining, William N.; von Andrian, Ulrich H.

    2014-01-01

    Summary T cells are activated by antigen (Ag) bearing dendritic cells (DCs) in lymph nodes in 3 phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8+ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, while higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation, but yielded different transcriptome signatures at 12h and 24h. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics. PMID:24054328

  8. Molecular determinants of α–synuclein mutants’ oligomerization and membrane interactions

    PubMed Central

    Tsigelny, Igor F.; Sharikov, Yuriy; Kouznetsova, Valentina L.; Greenberg, Jerry P.; Wrasidlo, Wolf; Overk, Cassia; Gonzalez, Tania; Trejo, Margarita; Spencer, Brian; Kosberg, Kori; Masliah, Eliezer

    2016-01-01

    Parkinson’s disease (PD) is associated with the formation of toxic α-synuclein oligomers and their penetration the cell membrane. Familial forms of PD are caused by the point mutations A53T, A30P, E46K, and H50Q. Artificial point mutations E35K and E57K also increase oligomerization and pore formation. We generated structural conformations of α-synuclein and the abovementioned mutants using molecular dynamics. We elucidated four main regions in these conformers contacting the membrane and found that the region including residues 37–45 (Zone2) may have maximum membrane penetration. E57K mutant had the highest rate of interaction with the membrane by Zone2, followed by A53T, E46K, E35K mutants, and wt α-synuclein. The mutant A30P had the smallest percentage of conformers that contact the membrane than all other mutants and wt α-synuclein. These results were confirmed by experiments. We identified the key amino acids that can interact with the membrane (Y38, E62, and N65 (1st hydrophilic layer); E104, E105, and D115 (2nd hydrophilic layer), and V15 and V26 (central hydrophobic layer)) and the residues that are involved in the interprotein contacts (L38, V48, V49, Q62, and T64). Understanding the molecular interactions of α-synuclein mutants is important for the design of compounds blocking the formation of toxic oligomers. PMID:25561023

  9. Molecular interactions of dimethyl methylphosphonate (DMMP) with metalloporphyrins: Determination of the binding mechanism by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Zhang, Suyi; Yang, Limin; Huo, Danqun; Liu, Xiaojuan; Li, Juan; Fa, Huanbao; Zhang, Liang; Hou, Changjun

    2012-03-01

    The molecular interactions of 5,10,15,20-tetraphenylporphine zinc (ZnTPP) and 5,10,15,20-tetraphenyl-21H,23H-porphine cobalt(II) (CoTPP) with dimethyl methylphosphonate (DMMP) have been investigated by absorption/absorption difference spectroscopy. The interactions between the metalloporphyrins and DMMP change the absorbance characteristics of the porphyrins resulted from the formation of the metalloporphyrin-DMMP complexes. According to the Benesi-Hildebrand (B-H) equation, the equilibrium constants and stoichiometries of the binding systems at four different temperatures (288, 293, 298 and 303 K) were obtained. Experimental results showed that both ZnTPP and CoTPP bind to DMMP via axial coordination, resulting in the formation of 1:1 metalloporphyrin-DMMP complexes. However, it was found that ZnTPP showed stronger binding capacity with the equilibrium constant (K) of 83.864 M-1 at room temperature, while CoTPP exhibited weaker binding with K of 24.904 M-1. The thermodynamic parameters, enthalpy change (ΔHmθ), entropy change (ΔSmθ) and free energy changes (ΔGmθ) were also studied for the interactions, indicating that the formation of the metalloporphyrins-DMMP complex was an exothermic reaction.

  10. A selective determination of azide by ion-interaction reversed-phase HPLC

    SciTech Connect

    Gennaro, M.C.; Abrigo, C.; Marengo, E.; Liberatori, A.

    1993-01-01

    A method is presented for the analysis of sodium azide, based on the use of ion-interaction reversed-phase HPLC chromatography. A C-18 reversed-phase is the stationary phase and octylammonium ortho-phosphate at different pH values is the interaction reagent. Spectrophotometric detection at 230 nm is employed. The analysis is free from interference by acetate, carbonate, chloride, fluoride, sulfite, hydrazine, hydroxylamine, nitrate, bromide, iodide, sulfide, thiocyanate and nitrite. A good correlation (r[sup 2] = 0.9782) is obtained between peak area and concentration in the range between 1 and 250 ppb. Samples of tap water spiked with sodium azide (in the range within 25 and 250 ppb) gave per cent average recovery of 98%. The method sensitivity, expressed as signal-to-noise ratio equal to 3, is 50 ppb when the pH of the interaction reagent is equal to 3.0, 30 ppb for pH 6.4 and 10 ppb at pH 8.0.

  11. Determination of Lipid-Protein Interactions in Lung Surfactants Using Computer Simulations and Structural Bioinformatics.

    NASA Astrophysics Data System (ADS)

    Kaznessis, Yiannis

    2001-06-01

    Proteins are the primary components of the networks that conduct the flows of mass, energy and information in living organisms. The discovery of the principles of protein structure and function allows the development of design rules for biological activities. The microscopic nature of the operating mechanisms of protein activity, and the vast complexity of the networks of interaction call for the employment of powerful computational methodologies that can decipher the physicochemical and evolutionary principles underlying protein structure and function. An example will be presented that reflects the strength of computational approaches. Atomistic molecular dynamics simulations and structural bioinformatics tools are employed to investigate the interactions between the first 25 N-terminal residues of surfactant protein B (SP-B 1-25) and the lipid components of the lung surfactant (LS). An understanding of the molecular level interactions between the LS components is essential for the establishment of design rules for the development of synthetic LS and the treatment of the neonatal respiratory distress syndrome, which results from deficiency or inactivation of LS.

  12. A methodology for determining interactions in probabilistic safety assessment models by varying one parameter at a time.

    PubMed

    Borgonovo, Emanuele

    2010-03-01

    In risk analysis problems, the decision-making process is supported by the utilization of quantitative models. Assessing the relevance of interactions is an essential information in the interpretation of model results. By such knowledge, analysts and decisionmakers are able to understand whether risk is apportioned by individual factor contributions or by their joint action. However, models are oftentimes large, requiring a high number of input parameters, and complex, with individual model runs being time consuming. Computational complexity leads analysts to utilize one-parameter-at-a-time sensitivity methods, which prevent one from assessing interactions. In this work, we illustrate a methodology to quantify interactions in probabilistic safety assessment (PSA) models by varying one parameter at a time. The method is based on a property of the functional ANOVA decomposition of a finite change that allows to exactly determine the relevance of factors when considered individually or together with their interactions with all other factors. A set of test cases illustrates the technique. We apply the methodology to the analysis of the core damage frequency of the large loss of coolant accident of a nuclear reactor. Numerical results reveal the nonadditive model structure, allow to quantify the relevance of interactions, and to identify the direction of change (increase or decrease in risk) implied by individual factor variations and by their cooperation. PMID:20199656

  13. Potentiometric Determination of Phytic Acid and Investigations of Phytate Interactions with Some Metal Ions.

    PubMed

    Marolt, Gregor; Pihlar, Boris

    2015-01-01

    Determination of correct amount (concentration) of phytic acid is of vital importance when dealing with protonation and/or metal complexation equilibria. A novel approach for precise and reliable assay of phytic acid, based on the difference between end points by potentiometric titration, has been presented. Twelve phytic acid protons are classified into three groups of acidity, which enables detection of 2 to 3 distinct equivalent points (EPs) depending on experimental conditions, e.g. counter-ion concentration. Using the differences between individual EPs enables correct phytate determination as well as identification of potential contamination and/or determination of initial protonation degree. Impact of uncertainty of phytate amount on the calculation of protonation constants has been evaluated using computer simulation program (Hyperquad2013). With the analysis of titration curves different binding sites on phytate ligand have been proposed for complexation of Ca2+ and Fe3+ ions. PMID:26085413

  14. Interactive forces between lignin and cellulase as determined by atomic force microscopy

    PubMed Central

    2014-01-01

    Background Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups involved in binding of cellulase to lignin. Results Trichoderma reesei, ATCC 26921, a commercial cellulase system, was immobilized onto silicon wafers and used as a substrate to measure forces involved in cellulase non-productive binding to lignin. Attraction forces between cellulase and lignin, and between cellulase and cellulose were compared using kraft lignin- and hydroxypropyl cellulose-coated tips with the immobilized cellulase substrate. The measured adhesion forces between kraft lignin and cellulase were on average 45% higher than forces between hydroxypropyl cellulose and cellulase. Specialized AFM tips with hydrophobic, -OH, and -COOH chemical characteristics were used with immobilized cellulase to represent hydrophobic, H-bonding, and charge-charge interactions, respectively. Forces between hydrophobic tips and cellulase were on average 43% and 13% higher than forces between cellulase with tips exhibiting OH and COOH groups, respectively. A strong attractive force during the AFM tip approach to the immobilized cellulase was observed with the hydrophobic tip. Conclusions This work shows that there is a greater overall attraction between kraft lignin and cellulase than between hydroxypropyl cellulose and cellulase, which may have implications during the enzymatic reaction process. Furthermore, hydrophobic interactions appear to be the dominating attraction force in cellulase binding to lignin, while a number of other interactions may establish the irreversible binding

  15. Trophic interactions determine the effects of drought on an aquatic ecosystem.

    PubMed

    Amundrud, Sarah L; Srivastava, Diane S

    2016-06-01

    Species interactions can be important mediators of community and ecosystem responses to environmental stressors. However, we still lack a mechanistic understanding of the indirect ecological effects of stress that arise via altered species interactions. To understand how species interactions will be altered by environmental stressors, we need to know if the species that are vulnerable to such stressors also have large impacts on the ecosystem. As predators often exhibit certain traits that are linked to a high vulnerability to stress (e.g., large body size, long generation time), as well as having large effects on communities (e.g., top-down trophic effects), predators may be particularly likely to mediate ecological effects of environmental stress. Other functional groups, like facilitators, are known to have large impacts on communities, but their vulnerability to perturbations remains undocumented. Here, we use aquatic insect communities in bromeliads to examine the indirect effects of an important stressor (drought) on community and ecosystem responses. In a microcosm experiment, we manipulated predatory and facilitative taxa under a range of experimental droughts, and quantified effects on community structure and ecosystem function. Drought, by adversely affecting the top predator, had indirect cascading effects on the entire food web, altering community composition and decomposition. We identified the likely pathway of how drought cascaded through the food web from the top-down as drought -->predator --> shredder --> decomposition. This stress-induced cascade depended on predators exhibiting both a strong vulnerability to drought and large impacts on prey (especially shredders), as well as shredders exhibiting high functional importance as decomposers. PMID:27459778

  16. Determination of cluster size in particle-nucleus interactions at 50 and 400 GeV

    SciTech Connect

    Irfan, M.; Khushnood, H.; Shakeel, A.; Zafar, M.; Shafi, M.

    1984-07-01

    We have investigated the formation of clusters and their sizes in 50-GeV ..pi../sup -/-nucleus and 400-GeV proton-nucleus interactions. The maximum multiplicity of charged shower particles constituting the clusters at the two incident energies is observed to be four. Furthermore, the cluster size has been found to be independent of the gray-particle multiplicity and hence the target mass. The cluster size has also been observed to be independent of the energy and identity of the impinging hadrons.

  17. Using Isothermal Titration Calorimetry to Determine Thermodynamic Parameters of Protein–Glycosaminoglycan Interactions

    PubMed Central

    Dutta, Amit K.; Rösgen, Jörg; Rajarathnam, Krishna

    2015-01-01

    It has now become increasingly clear that a complete atomic description of how biomacromolecules recognize each other requires knowledge not only of the structures of the complexes but also of how kinetics and thermodynamics drive the binding process. In particular, such knowledge is lacking for protein–glycosaminoglycan (GAG) complexes. Isothermal titration calorimetry (ITC) is the only technique that can provide various thermodynamic parameters—enthalpy, entropy, free energy (binding constant), and stoichiometry—from a single experiment. Here we describe different factors that must be taken into consideration in carrying out ITC titrations to obtain meaningful thermodynamic data of protein–GAG interactions. PMID:25325962

  18. Jacalin-carbohydrate interactions: distortion of the ligand molecule as a determinant of affinity.

    PubMed

    Abhinav, K V; Sharma, Kaushal; Swaminathan, C P; Surolia, A; Vijayan, M

    2015-02-01

    Jacalin is among the most thoroughly studied lectins. Its carbohydrate-binding site has also been well characterized. It has been postulated that the lower affinity of β-galactosides for jacalin compared with α-galactosides is caused by steric interactions of the substituents in the former with the protein. This issue has been explored energetically and structurally using different appropriate carbohydrate complexes of jacalin. It turns out that the earlier postulation is not correct. The interactions of the substituent with the binding site remain essentially the same irrespective of the anomeric nature of the substitution. This is achieved through a distortion of the sugar ring in β-galactosides. The difference in energy, and therefore in affinity, is caused by a distortion of the sugar ring in β-galactosides. The elucidation of this unprecedented distortion of the ligand as a strategy for modulating affinity is of general interest. The crystal structures also provide a rationale for the relative affinities of the different carbohydrate ligands for jacalin. PMID:25664742

  19. Triple SILAC to determine stimulus specific interactions in the Wnt pathway.

    PubMed

    Hilger, Maximiliane; Mann, Matthias

    2012-02-01

    Many important regulatory functions are performed by dynamic multiprotein complexes that adapt their composition and activity in response to different stimuli. Here we employ quantitative affinity purification coupled with mass spectrometry to efficiently separate background from specific interactors but add an additional quantitative dimension to explicitly characterize stimulus-dependent interactions. This is accomplished by SILAC in a triple-labeling format, in which pull-downs with bait, with bait and stimulus, and without bait are quantified against each other. As baits, we use full-length proteins fused to the green fluorescent protein and expressed under endogenous control. We applied this technology to Wnt signaling, which is important in development, tissue homeostasis, and cancer, and investigated interactions of the key components APC, Axin-1, DVL2, and CtBP2 with differential pathway activation. Our screens identify many known Wnt signaling complex components and link novel candidates to Wnt signaling, including FAM83B and Girdin, which we found as interactors to multiple Wnt pathway players. Girdin binds to DVL2 independent of stimulation with the ligand Wnt3a but to Axin-1 and APC in a stimulus-dependent manner. The core destruction complex itself, which regulates beta-catenin stability as the key step in canonical Wnt signaling, remained essentially unchanged. PMID:22011079

  20. Message frames interact with motivational systems to determine depth of message processing.

    PubMed

    Shen, Lijiang; Dillard, James Price

    2009-09-01

    Although several theoretical perspectives predict that negatively framed messages will be processed more deeply than positively framed messages, a recent meta-analysis found no such difference. In this article, the authors explore 2 explanations for this inconsistency. One possibility is methodological: the statistics used in the primary studies underestimated framing effects on depth of message processing because the data were maldistributed. The other is theoretical: the absence of a main effect is veridical, but framing interacts with individual differences that predispose individuals to greater or lesser depth of processing. Data from 2 experiments (Ns = 286 and 252) were analyzed via tobit regression, a technique designed to overcome the limitations of maldistributed data. One study showed the predicted main effect for framing, but the other did not. Both studies showed the anticipated interaction: Depth of processing correlated positively with a measure of the behavioral activation system in the advantage framing condition, whereas depth of processing correlated positively with the behavioral inhibition system in the disadvantage framing condition. PMID:19735028

  1. How van der Waals interactions determine the unique properties of water.

    PubMed

    Morawietz, Tobias; Singraber, Andreas; Dellago, Christoph; Behler, Jörg

    2016-07-26

    Whereas the interactions between water molecules are dominated by strongly directional hydrogen bonds (HBs), it was recently proposed that relatively weak, isotropic van der Waals (vdW) forces are essential for understanding the properties of liquid water and ice. This insight was derived from ab initio computer simulations, which provide an unbiased description of water at the atomic level and yield information on the underlying molecular forces. However, the high computational cost of such simulations prevents the systematic investigation of the influence of vdW forces on the thermodynamic anomalies of water. Here, we develop efficient ab initio-quality neural network potentials and use them to demonstrate that vdW interactions are crucial for the formation of water's density maximum and its negative volume of melting. Both phenomena can be explained by the flexibility of the HB network, which is the result of a delicate balance of weak vdW forces, causing, e.g., a pronounced expansion of the second solvation shell upon cooling that induces the density maximum. PMID:27402761

  2. Which shape characteristics of the intermolecular interaction of liquid water determine its compressibility ?

    NASA Astrophysics Data System (ADS)

    Yasutomi, Makoto

    2016-05-01

    We consider a fluid of spherical particles with a pair potential given by a hard core repulsion and a tail, and show that the isothermal compressibility of liquid water is determined by the degree of steepness of the soft repulsion near the hard-core contact. This helps us understand the thermodynamic mechanism that causes the compressibility anomaly of liquid water.

  3. The Determinants of Negative Maternal Parenting Behaviours: Maternal, Child, and Paternal Characteristics and Their Interaction

    ERIC Educational Resources Information Center

    Kopala-Sibley, Daniel C.; Zuroff, David C.; Koestner, Richard

    2012-01-01

    This study tested Belsky's determinants of parenting, namely maternal characteristics, child characteristics, and contextual issues, namely the mother's perception of the husband as a father, husband, and person. Three hundred and seventy-nine mothers first investigated by Sears, Maccoby, and Levin completed a standardised interview to assess…

  4. Gene-to-gene interaction between sodium channel-related genes in determining the risk of antiepileptic drug resistance.

    PubMed

    Jang, Sin-Young; Kim, Myeong-Kyu; Lee, Kee-Ra; Park, Man-Seok; Kim, Byeong-Chae; Cho, Ki-Hyun; Lee, Min-Cheol; Kim, Yo-Sik

    2009-02-01

    The pathogenesis of antiepileptic drug (AED) resistance is multifactorial. However, most candidate gene association studies typically assess the effects of candidate genes independently of each other, which is partly because of the limitations of the parametric-statistical methods for detecting the gene-to-gene interactions. A total of 200 patients with drug-resistant epilepsy and 200 patients with drug-responsive epilepsy were genotyped for 3 representative the single nucleotide polymorphisms (SNPs) of the voltage-gated sodium channel genes (SCN1A, SCN1B, and SCN2A) by polymerase chain reaction and direct sequencing analysis. Besides the typical parametric statistical method, a new statistical method (multifactor dimensionality reduction [MDR]) was used to determine whether gene-to-gene interactions increase the risk of AED resistance. None of the individual genotypes or alleles tested in the present study showed a significant association with AED resistance, regardless of their theoretical functional value. With the MDR method, of three possible 2-locus genotype combinations, the combination of SCN2A-PM with SCN1B-PM was the best model for predicting susceptibility to AED resistance, with a p value of 0.0547. MDR, as an analysis paradigm for investigating multi-locus effects in complex disorders, may be a useful statistical method for determining the role of gene-to-gene interactions in the pathogenesis of AED resistance. PMID:19270815

  5. Comparison of zonal elution and nonlinear chromatography in determination of the interaction between seven drugs and immobilised β(2)-adrenoceptor.

    PubMed

    Li, Qian; Wang, Jing; Zheng, Yuqing Yuan; Yang, Lingjian; Zhang, Yajun; Bian, Liujiao; Zheng, Jianbin; Li, Zijian; Zhao, Xinfeng; Zhang, Youyi

    2015-07-01

    Zonal elution and nonlinear chromatography are two mainstream models for the determination of drug-protein interaction in affinity chromatography. This work intended to compare the results by zonal elution with that by nonlinear chromatography when it comes to the analysis of the interaction between seven drugs and immobilised β2-adrenoceptor (β2-AR). The results of the zonal elution showed that clorprenaline, clenbuterol, methoxyphenamine, salbutamol, terbutaline, tulobuterol and bambuterol have only one type of binding site on immobilised β2-AR, while nonlinear chromatography confirmed the existence of at least two types of binding sites between β2-AR and clorprenaline, clenbuterol and bambuterol. On these sites, both zonal elution and nonlinear chromatography presented the same rank order for the association constants of the seven drugs. Compared with the data from zonal elution, the association constants calculated using nonlinear chromatography gave a good linear response to the corresponding values by radio-ligand binding assay. The sampling efficiencies of nonlinear chromatography were clearly higher than zonal elution. Nonlinear chromatography will probably become a powerful alternative for the high throughput determination of drug-protein interaction. PMID:26002106

  6. Weak and Transient Protein Interactions Determined by Solid-State NMR.

    PubMed

    Dannatt, Hugh R W; Felletti, Michele; Jehle, Stefan; Wang, Yao; Emsley, Lyndon; Dixon, Nicholas E; Lesage, Anne; Pintacuda, Guido

    2016-06-01

    Despite their roles in controlling many cellular processes, weak and transient interactions between large structured macromolecules and disordered protein segments cannot currently be characterized at atomic resolution by X-ray crystallography or solution NMR. Solid-state NMR does not suffer from the molecular size limitations affecting solution NMR, and it can be applied to molecules in different aggregation states, including non-crystalline precipitates and sediments. A solid-state NMR approach based on high magnetic fields, fast magic-angle sample spinning, and deuteration provides chemical-shift and relaxation mapping that enabled the characterization of the structure and dynamics of the transient association between two regions in an 80 kDa protein assembly. This led to direct verification of a mechanism of regulation of E. coli DNA metabolism. PMID:27101578

  7. Analytical method for determining iminoctadine triacetate by LC/ESI/MS using hydrophilic interaction chromatography.

    PubMed

    Kawamoto, Tatsuhiko; Yano, Miho; Makihata, Nobuko

    2006-04-01

    A target value for iminoctadine triacetate residues in tap water was set at 6 microg/l in Japan. We have developed a highly selective and sensitive analytical method for iminoctadine triacetate by solid phase extraction LC/ESI/MS using hydrophilic interaction chromatography. The recovery rates at concentration of 0.06, 0.6, and 6 microg/l in distilled water, tap water, and raw water were 77.1 - 96.7%, and CV were 3.7 - 13.2%. The quantitation limit of the present method was 0.04 microg/l, and it was able to measure even one-hundredth of the target value of iminoctadine triacetate quantitatively. PMID:16760588

  8. Basic Physicochemical Properties of Polyethylene Glycol Coated Gold Nanoparticles that Determine Their Interaction with Cells.

    PubMed

    Del Pino, Pablo; Yang, Fang; Pelaz, Beatriz; Zhang, Qian; Kantner, Karsten; Hartmann, Raimo; Martinez de Baroja, Natalia; Gallego, Marta; Möller, Marco; Manshian, Bella B; Soenen, Stefaan J; Riedel, René; Hampp, Norbert; Parak, Wolfgang J

    2016-04-25

    A homologous nanoparticle library was synthesized in which gold nanoparticles were coated with polyethylene glycol, whereby the diameter of the gold cores, as well as the thickness of the shell of polyethylene glycol, was varied. Basic physicochemical parameters of this two-dimensional nanoparticle library, such as size, ζ-potential, hydrophilicity, elasticity, and catalytic activity ,were determined. Cell uptake of selected nanoparticles with equal size yet varying thickness of the polymer shell and their effect on basic structural and functional cell parameters was determined. Data indicates that thinner, more hydrophilic coatings, combined with the partial functionalization with quaternary ammonium cations, result in a more efficient uptake, which relates to significant effects on structural and functional cell parameters. PMID:27028669

  9. Interactions between Social Structure, Demography, and Transmission Determine Disease Persistence in Primates

    PubMed Central

    Ryan, Sadie J.; Jones, James H.; Dobson, Andrew P.

    2013-01-01

    Catastrophic declines in African great ape populations due to disease outbreaks have been reported in recent years, yet we rarely hear of similar disease impacts for the more solitary Asian great apes, or for smaller primates. We used an age-structured model of different primate social systems to illustrate that interactions between social structure and demography create ‘dynamic constraints’ on the pathogens that can establish and persist in primate host species with different social systems. We showed that this varies by disease transmission mode. Sexually transmitted infections (STIs) require high rates of transmissibility to persist within a primate population. In particular, for a unimale social system, STIs require extremely high rates of transmissibility for persistence, and remain at extremely low prevalence in small primates, but this is less constrained in longer-lived, larger-bodied primates. In contrast, aerosol transmitted infections (ATIs) spread and persist at high prevalence in medium and large primates with moderate transmissibility;, establishment and persistence in small-bodied primates require higher relative rates of transmissibility. Intragroup contact structure – the social network - creates different constraints for different transmission modes, and our model underscores the importance of intragroup contacts on infection prior to intergroup movement in a structured population. When alpha males dominate sexual encounters, the resulting disease transmission dynamics differ from when social interactions are dominated by mother-infant grooming events, for example. This has important repercussions for pathogen spread across populations. Our framework reveals essential social and demographic characteristics of primates that predispose them to different disease risks that will be important for disease management and conservation planning for protected primate populations. PMID:24204688

  10. Determination of the Polymer-Solvent Interaction Parameter for PEG Hydrogels in Water: Application of a Self Learning Algorithm

    PubMed Central

    Akalp, Umut; Chu, Stanley; Skaalure, Stacey C.; Bryant, Stephanie J.; Doostan, Alireza; Vernerey, Franck J.

    2015-01-01

    Concentrating on the case of poly(ethylene glycol) hydrogels, this paper introduces a methodology that enables a natural integration between the development of a so-called mechanistic model and experimental data relating material’s processing to response. In a nutshell, we develop a data-driven modeling component that is able to learn and indirectly infer its own parameters and structure by observing experimental data. Using this method, we investigate the relationship between processing conditions, microstructure and chemistry (cross-link density and polymer-solvent interactions) and response (swelling and elasticity) of non-degradable and degradable PEG hydrogels. We show that the method not only enables the determination of the polymer-solvent interaction parameter, but also it predicts that this parameter, among others, varies with processing conditions and degradation. The proposed methodology therefore offers a new approach that accounts for subtle changes in the hydrogel processing. PMID:25999615

  11. Measurable differences between sequential and parallel diagnostic decision processes for determining stroke subtype: a representation of interacting pathologies.

    PubMed

    Helgason, Cathy M; Watkins, Fred A; Jobe, Thomas H

    2002-08-01

    Stroke diagnosis depends on causal subtype. The accepted classification procedure is a succession of diagnostic tests administered in an order based on prior reported frequencies of the subtypes. The first positive test result completely determines diagnosis. An alternative approach tests multiple concomitant diagnostic hypotheses in parallel. This method permits multiple simultaneous pathologies in the patient. These two diagnostic procedures can be compared by novel numeric criteria presented here. Thrombosis, a type of ischemic stroke, results from interaction between endothelium, blood flow and blood components. We tested for ischemic stroke on thirty patients using both methods. For each patient the procedure produced an assessment of severity as an ordered set of three numbers in the interval [0, 1]. We measured the difference in diagnosis between the sequential and parallel diagnostic algorithms. The computations reveal systematic differences: The sequential procedure tends to under-diagnose and excludes any measure of interaction between pathologic elements. PMID:12195691

  12. Precise, fast, and flexible determination of protein interactions by affinity capillary electrophoresis: part 3: anions.

    PubMed

    Xu, Yuanhong; Redweik, Sabine; El-Hady, Deia Abd; Albishri, Hassan M; Preu, Lutz; Wätzig, Hermann

    2014-08-01

    The binding of physiologically anionic species or negatively charged drug molecules to proteins is of great importance in biochemistry and medicine. Since affinity capillary electrophoresis (ACE) has already proven to be a suitable analytical tool to study the influence of ions on proteins, this technique was applied here for comprehensively studying the influence of various anions on proteins of BSA, β-lactoglobulin, ovalbumin, myoglobin, and lysozyme. The analysis was performed using different selected anions of succinate, glutamate, phosphate, acetate, nitrate, iodide, thiocyanate, and pharmaceuticals (salicylic acid, aspirin, and ibuprofen) that exist in the anionic form at physiological pH 7.4. Due to the excellent repeatability and precision of the ACE measurements, not necessarily strong but significant influences of the anions on the proteins were found in many cases. Different influences in the observed bindings indicated change of charge, mass, or conformational changes of the proteins due to the binding with the studied anions. Combining the mobility-shift and pre-equilibrium ACE modes, rapidity and reversibility of the protein-anion bindings were discussed. Further, circular dichroism has been used as an orthogonal approach to characterize the interactions between the studied proteins and anions to confirm the ACE results. Since phosphate and various anions from amino acids and small organic acids such as succinate or acetate are present in very high concentrations in the cellular environment, even weak influences are certainly relevant as well. PMID:24436007

  13. Genes and environment interact to determine the fitness costs of resistance to Bacillus thuringiensis

    PubMed Central

    Raymond, Ben; Sayyed, Ali H; Wright, Denis J

    2005-01-01

    Genes which provide resistance to novel challenges such as pesticides, toxins or pathogens often impose fitness costs on individuals with a resistant phenotype. Studies of resistance to Bacillus thuringiensis and its insecticidal Cry toxins indicate that fitness costs may be variable and cryptic. Using two field populations (Karak and Serd4) of the diamondback moth, Plutella xylostella, we tested the hypothesis that the costs associated with resistance to the B. thuringiensis toxin Cry1Ac would be evident when insects were grown under poor environmental conditions, namely limited or poor quality resources. On a poor quality resource, a cultivar of Brassica oleracea var. capitata with varietal resistance to P. xylostella, only one resistant population, Karak, showed reduced fitness. Conversely, when we limited a high quality resource, Brassica pekinensis, by imposing larval competition, only resistant Serd4 insects had reduced survival at high larval densities. Furthermore, Cry1Ac resistance in Serd4 insects declined when reared at high larval densities while resistance at low densities fluctuated but did not decline significantly. These results confirm the hypothesis that resistance costs can appear under stressful conditions and demonstrate that the fitness cost of resistance to Bacillus thuringiensis can depend on the particular interaction between genes and the environment. PMID:16011928

  14. Biotic interactions as determinants of ecosystem structure in prairie wetlands: An example using fish

    USGS Publications Warehouse

    Hanson, M.A.; Zimmer, K.D.; Butler, Malcolm G.; Tangen, B.A.; Herwig, B.R.; Euliss, N.H., Jr.

    2005-01-01

    Wetlands are abundant throughout the prairie pothole region (PPR), an area comprising over 700,000 km2 in central North America. Prairie wetland communities are strongly influenced by regional physiography and climate, resulting in extreme spatial and temporal variability relative to other aquatic ecosystems. Given the strong influence of abiotic factors, PPR wetland communities have been viewed traditionally in the context of their responses to chemical and physical features of landscape and climate. Although useful, this physical-chemical paradigm may fail to account for ecosystem variability due to biotic influences, particularly those associated with presence of fish. Spatial and temporal variability in fish populations, in turn, may reflect anthropogenic activities, landscape characteristics, and climate-mediated effects on water levels, surface connectivity, and hydroperiods. We reviewed studies assessing influences of fish on prairie wetlands and examined precipitation patterns and biological data from PPR wetlands in east-central North Dakota and western Minnesota, USA. Our review and analysis indicated that native fish influence many characteristics of permanently flooded prairie wetlands, including water clarity and abundance of phytoplankton, submerged macrophytes, and aquatic invertebrates. We suggest that ecologists and managers will benefit from conceptual paradigms that better meld biotic interactions associated with fish, and perhaps other organisms, with chemical and physical influences on prairie wetland communities. ?? 2005, The Society of Wetland Scientists.

  15. Reproductive and socioeconomic determinants of child survival: confounded, interactive, and age-dependent effects.

    PubMed

    Kost, K; Amin, S

    1992-01-01

    Studies of infant and child mortality have evolved to distinguish between two sets of explanatory variables-factors related to reproductive or maternal characteristics and socioeconomic factors, generally described as characteristics of the family or household. Almost all multivariate analyses include variables from each of these two sets, but there has been little consideration of the relationship between them. We examine how these two sets of variables jointly affect mortality. We test first for confounded effects by examining socioeconomic effects while excluding and then including reproductive variables in nested multivariate models. Next, we look for age-dependent effects among the explanatory variables and find that reproductive and socioeconomic factors affect mortality at differing ages of children. Finally, we examine interactive effects of the two sets of variables. We conclude that the higher mortality observed among the low status groups is not a result of greater concentration of poor reproductive patterns in those groups. Instead, higher status groups probably have more resources available for combating the negative effects of the same high-risk reproductive patterns. PMID:1514117

  16. Determination of interaction forces between parallel dislocations by the evaluation of J integrals of plane elasticity

    NASA Astrophysics Data System (ADS)

    Lubarda, Vlado A.

    2016-03-01

    The Peach-Koehler expressions for the glide and climb components of the force exerted on a straight dislocation in an infinite isotropic medium by another straight dislocation are derived by evaluating the plane and antiplane strain versions of J integrals around the center of the dislocation. After expressing the elastic fields as the sums of elastic fields of each dislocation, the energy momentum tensor is decomposed into three parts. It is shown that only one part, involving mixed products from the two dislocation fields, makes a nonvanishing contribution to J integrals and the corresponding dislocation forces. Three examples are considered, with dislocations on parallel or intersecting slip planes. For two edge dislocations on orthogonal slip planes, there are two equilibrium configurations in which the glide and climb components of the dislocation force simultaneously vanish. The interactions between two different types of screw dislocations and a nearby circular void, as well as between parallel line forces in an infinite or semi-infinite medium, are then evaluated.

  17. Determination of Oxidized Phosphatidylcholines by Hydrophilic Interaction Liquid Chromatography Coupled to Fourier Transform Mass Spectrometry

    PubMed Central

    Sala, Pia; Pötz, Sandra; Brunner, Martina; Trötzmüller, Martin; Fauland, Alexander; Triebl, Alexander; Hartler, Jürgen; Lankmayr, Ernst; Köfeler, Harald C.

    2015-01-01

    A novel liquid chromatography-mass spectrometry (LC-MS) approach for analysis of oxidized phosphatidylcholines by an Orbitrap Fourier Transform mass spectrometer in positive electrospray ionization (ESI) coupled to hydrophilic interaction liquid chromatography (HILIC) was developed. This method depends on three selectivity criteria for separation and identification: retention time, exact mass at a resolution of 100,000 and collision induced dissociation (CID) fragment spectra in a linear ion trap. The process of chromatography development showed the best separation properties with a silica-based Kinetex column. This type of chromatography was able to separate all major lipid classes expected in mammalian samples, yielding increased sensitivity of oxidized phosphatidylcholines over reversed phase chromatography. Identification of molecular species was achieved by exact mass on intact molecular ions and CID tandem mass spectra containing characteristic fragments. Due to a lack of commercially available standards, method development was performed with copper induced oxidation products of palmitoyl-arachidonoyl-phosphatidylcholine, which resulted in a plethora of lipid species oxidized at the arachidonoyl moiety. Validation of the method was done with copper oxidized human low-density lipoprotein (LDL) prepared by ultracentrifugation. In these LDL samples we could identify 46 oxidized molecular phosphatidylcholine species out of 99 possible candidates. PMID:25874761

  18. Determination of Base Binding Strength and Base Stacking Interaction of DNA Duplex Using Atomic Force Microscope

    PubMed Central

    Zhang, Tian-biao; Zhang, Chang-lin; Dong, Zai-li; Guan, Yi-fu

    2015-01-01

    As one of the most crucial properties of DNA, the structural stability and the mechanical strength are attracting a great attention. Here, we take advantage of high force resolution and high special resolution of Atom Force Microscope and investigate the mechanical force of DNA duplexes. To evaluate the base pair hydrogen bond strength and base stacking force in DNA strands, we designed two modes (unzipping and stretching) for the measurement rupture forces. Employing k-means clustering algorithm, the ruptured force are clustered and the mean values are estimated. We assessed the influence of experimental parameters and performed the force evaluation for DNA duplexes of pure dG/dC and dA/dT base pairs. The base binding strength of single dG/dC and single dA/dT were estimated to be 20.0 ± 0.2 pN and 14.0 ± 0.3 pN, respectively, and the base stacking interaction was estimated to be 2.0 ± 0.1 pN. Our results provide valuable information about the quantitative evaluation of the mechanical properties of the DNA duplexes. PMID:25772017

  19. Locality interactions with prominence in determining the scope of phrasal lengthening

    PubMed Central

    Byrd, Dani; Riggs, Daylen

    2009-01-01

    Temporal lengthening of gestures and segments located in a boundary-adjacent syllable has been found in both pre- and postboundary contexts. However, the temporal extent or scope of this lengthening, particularly in the articulatory domain, is not well described. We address the question of scope of prosodic lengthening by considering specifically whether prominence interacts with boundary-related articulatory lengthening in such a way that prominent elements not immediately at a phrase edge are lengthened relative to the same prominent elements phrase-medially (i.e. at a considerable distance from a boundary). Articulatory kinematic data were collected for three subjects to analyze consonant constrictions of prominent syllables located (1) either immediately before or after a boundary and (2) two and three syllables away from that boundary. The results indicate that, as expected, gestures undergo prosodic lengthening when immediately local to the phase boundary. However, some subjects did display prosodic lengthening at a small remove from the boundary for a prominent syllable. This effect was strongest in the postboundary condition. These results suggest that a consideration of prominence may be relevant in understanding the temporal patterning of boundary-related articulatory lengthening. PMID:19888443

  20. Lifetime number of mates interacts with female age to determine reproductive success in female guppies.

    PubMed

    Evans, Jonathan P

    2012-01-01

    In many species, mating with multiple males confers benefits to females, but these benefits may be offset by the direct and indirect costs associated with elevated mating frequency. Although mating frequency (number of mating events) is often positively associated with the degree of multiple mating (actual number of males mated), most studies have experimentally separated these effects when exploring their implications for female fitness. In this paper I describe an alternative approach using the guppy Poecilia reticulata, a livebearing freshwater fish in which females benefit directly and indirectly from mating with multiple males via consensual matings but incur direct and indirect costs of mating as a consequence of male sexual harassment. In the present study, females were experimentally assigned different numbers of mates throughout their lives in order to explore how elevated mating frequency and multiple mating combine to influence lifetime reproductive success (LRS) and survival (i.e. direct components of female fitness). Under this mating design, survival and LRS were not significantly affected by mating treatment, but there was a significant interaction between brood size and reproductive cycle (a correlate of female age) because females assigned to the high mating treatment produced significantly fewer offspring later in life compared to their low-mating counterparts. This negative effect of mating treatment later in life may be important in these relatively long-lived fishes, and this effect may be further exacerbated by the known cross-generational fitness costs of sexual harassment in guppies. PMID:23071816

  1. A new method for depth of interaction determination in PET detectors

    NASA Astrophysics Data System (ADS)

    Pizzichemi, M.; Stringhini, G.; Niknejad, T.; Liu, Z.; Lecoq, P.; Tavernier, S.; Varela, J.; Paganoni, M.; Auffray, E.

    2016-06-01

    A new method for obtaining depth of interaction (DOI) information in PET detectors is presented in this study, based on sharing and redirection of scintillation light among multiple detectors, together with attenuation of light over the length of the crystals. The aim is to obtain continuous DOI encoding with single side readout, and at the same time without the need for one-to-one coupling between scintillators and detectors, allowing the development of a PET scanner with good spatial, energy and timing resolutions while keeping the complexity of the system low. A prototype module has been produced and characterized to test the proposed method, coupling a LYSO scintillator matrix to a commercial SiPMs array. Excellent crystal separation is obtained for all the scintillators in the array, light loss due to depolishing is found to be negligible, energy resolution is shown to be on average 12.7% FWHM. The mean DOI resolution achieved is 4.1 mm FWHM on a 15 mm long crystal and preliminary coincidence time resolution was estimated in 353 ps FWHM.

  2. A new method for depth of interaction determination in PET detectors.

    PubMed

    Pizzichemi, M; Stringhini, G; Niknejad, T; Liu, Z; Lecoq, P; Tavernier, S; Varela, J; Paganoni, M; Auffray, E

    2016-06-21

    A new method for obtaining depth of interaction (DOI) information in PET detectors is presented in this study, based on sharing and redirection of scintillation light among multiple detectors, together with attenuation of light over the length of the crystals. The aim is to obtain continuous DOI encoding with single side readout, and at the same time without the need for one-to-one coupling between scintillators and detectors, allowing the development of a PET scanner with good spatial, energy and timing resolutions while keeping the complexity of the system low. A prototype module has been produced and characterized to test the proposed method, coupling a LYSO scintillator matrix to a commercial SiPMs array. Excellent crystal separation is obtained for all the scintillators in the array, light loss due to depolishing is found to be negligible, energy resolution is shown to be on average 12.7% FWHM. The mean DOI resolution achieved is 4.1 mm FWHM on a 15 mm long crystal and preliminary coincidence time resolution was estimated in 353 ps FWHM. PMID:27245174

  3. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics

    PubMed Central

    Harcombe, William R.; Riehl, William J.; Dukovski, Ilija; Granger, Brian R.; Betts, Alex; Lang, Alex H.; Bonilla, Gracia; Kar, Amrita; Leiby, Nicholas; Mehta, Pankaj; Marx, Christopher J.; Segrè, Daniel

    2014-01-01

    Summary The inter-species exchange of metabolites plays a key role in the spatio-temporal dynamics of microbial communities. This raises the question whether ecosystem-level behavior of structured communities can be predicted using genome-scale models of metabolism for multiple organisms. We developed a modeling framework that integrates dynamic flux balance analysis with diffusion on a lattice, and applied it to engineered consortia. First, we predicted, and experimentally confirmed, the species-ratio to which a 2-species mutualistic consortium converges, and the equilibrium composition of a newly engineered 3-member community. We next identified a specific spatial arrangement of colonies, which gives rise to what we term the “eclipse dilemma”: does a competitor placed between a colony and its cross-feeding partner benefit or hurt growth of the original colony? Our experimentally validated finding, that the net outcome is beneficial, highlights the complex nature of metabolic interactions in microbial communities, while at the same time demonstrating their predictability. PMID:24794435

  4. Determination of ethyl glucuronide in human hair by hydrophilic interaction liquid chromatography-tandem mass spectrometry.

    PubMed

    Yaldiz, Fadile; Daglioglu, Nebile; Hilal, Ahmet; Keten, Alper; Gülmen, Mete Korkut

    2013-10-01

    Ethyl glucuronide (EtG) is a direct metabolite of ethanol and has been utilized as a marker for alcohol intake. This study presents development, validation and application of a new hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method for the analysis of EtG in human hair samples. The linearity was assessed in the range of 5-2000 pg/mg hair, with a correlation coefficient of >0.99. The method was selective and sensitive, with a limit of detection (LOD) and limit of quantitation (LOQ) of 0.05 pg/mg and 0.18 pg/mg in hair, respectively. Differently from the extraction procedures in the literature, a fast and simple liquid-liquid method was used and highest recoveries and cleanest extracts were obtained. The method was successfully applied to 30 human hair samples which were taken from those who state they consume alcohol. EtG concentrations in the hair samples of alcohol users participated in this study, ranged between 1.34 and 82.73 pg/mg. From the concentration of EtG in hair strands 20 of the 30 subjects can be considered regular moderate drinkers. PMID:24112322

  5. Ethyl glucuronide determination in meconium and hair by hydrophilic interaction liquid chromatography-tandem mass spectrometry.

    PubMed

    Tarcomnicu, Isabela; van Nuijs, Alexander L N; Aerts, Katrien; De Doncker, Mireille; Covaci, Adrian; Neels, Hugo

    2010-03-20

    Ethyl glucuronide (EtG) detection in non-conventional matrices, such as hair and meconium, can provide useful information on alcohol abuse over a long time frame, for example during pregnancy or after a withdrawal treatment. This study reports on the development, validation and application of a new hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method for the analysis of EtG in meconium and hair. For each matrix, the sample preparation and the chromatographic separation were thoroughly optimised. Additionally, experiments with reversed-phase liquid chromatography were also performed in the development stages. Analyses were carried out using a Phenomenex Luna HILIC column (150 mm x 3 mm, 5 microm) and a mobile phase composed by ammonium acetate 2mM and acetonitrile, in gradient. Different SPE cartridges (Oasis MAX, Oasis WAX, aminopropyl silica) and solvents were tested in order to obtain the highest recoveries and cleanest extracts. Optimal results were obtained for meconium with aminopropyl cartridges, while for hair an incubation of 16 h with 2 mL of water and acetonitrile (50/50, v/v) provided good results. The analytical method was validated for both matrices (meconium and hair) by assessing linearity, precision, accuracy, recovery and limit of quantification. The calibration curve concentrations ranged from 50 to 1200 pg/mg for meconium and from 20 to 1000 pg/mg for hair. Real meconium and hair samples were analyzed and results were consistent with literature. PMID:20061101

  6. Mycobacterium leprae–host-cell interactions and genetic determinants in leprosy: an overview

    PubMed Central

    Pinheiro, Roberta Olmo; de Souza Salles, Jorgenilce; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2011-01-01

    Leprosy, also known as Hansen’s disease, is a chronic infectious disease caused by Mycobacterium leprae in which susceptibility to the mycobacteria and its clinical manifestations are attributed to the host immune response. Even though leprosy prevalence has decreased dramatically, the high number of new cases indicates active transmission. Owing to its singular features, M. leprae infection is an attractive model for investigating the regulation of human immune responses to pathogen-induced disease. Leprosy is one of the most common causes of nontraumatic peripheral neuropathy worldwide. The proportion of patients with disabilities is affected by the type of leprosy and delay in diagnosis. This article briefly reviews the clinical features as well as the immunopathological mechanisms related to the establishment of the different polar forms of leprosy, the mechanisms related to M. leprae–host cell interactions and prophylaxis and diagnosis of this complex disease. Host genetic factors are summarized and the impact of the development of interventions that prevent, reverse or limit leprosy-related nerve impairments are discussed. PMID:21366421

  7. Electron-ion interaction cross sections determined by x-ray spectroscopy on EBIT

    SciTech Connect

    Beiersdorfer, P.; Cauble, R.; Chantrenne, S.; Chen, M.; Knapp, D.; Marrs, R.; Phillips, T.; Reed, K.; Schneider, M.; Scofield, J.; Wong, K.; Vogel, D.; Zasadzinski, R. ); Wargelin, B. . Space Sciences Lab.); Bitter, M.; von Goeler, S. . Plasma Physics Lab.)

    1991-06-26

    The Livermore electron beam ion trap (EBIT) is used to measure electron-ion interactions with high-resolution x-ray spectroscopy. Measurements are presented of the K{alpha} x-ray emission of heliumlike Fe{sup 24+} that demonstrate the effect of various processes on the spectrum of highly charged heliumlike ions. In particular, we have studied how dielectronic recombination into high-n Rydberg levels and resonance excitation processes contribute to the x-ray emission near threshold for direct electron-impact excitation. From these and other measurements we infer the cross sections for impact excitation of heliumlike titanium, chromium, manganese, and iron. Comparing the results with theoretical cross sections from distorted-wave calculations we find excellent agreement for all transitions but the heliumlike resonance transition from 1s2p {sup 1}P{sub 1} to ground, whose excitation cross section is measured to be 10%--20% smaller than calculated. 36 refs., 6 figs., 1 tab.

  8. Individual and social determinants of obesity in strategic health messages: Interaction with political ideology.

    PubMed

    Young, Rachel; Hinnant, Amanda; Leshner, Glenn

    2016-07-01

    Antiobesity health communication campaigns often target individual behavior, but these ads might inflate the role of individual responsibility at the expense of other health determinants. In a 2 × 2 full-factorial, randomized, online experiment, 162 American adults viewed antiobesity advertisements that varied in emphasizing social or individual causation for obesity through text and images. Locus for attribution of responsibility for obesity causes and solutions was measured, as was how these responses were moderated by political ideology. Participants who viewed text emphasizing individual responsibility were less likely to agree that genetic factors caused obesity. Conservative participants who viewed images of overweight individuals were less likely than liberal participants to agree that social factors were responsible for causing obesity. In addition, among conservative participants who viewed images of fast food versus images of overweight individuals, agreement that the food industry bore some responsibility mediated support for policy solutions to obesity. These findings, among others, demonstrate that awareness of multilevel determinants of health outcomes can be a precursor of support for policy solutions to obesity among those not politically inclined to support antiobesity policy. In addition, stigmatizing images of overweight individuals in antiobesity campaigns might overemphasize the role of individual behavior in obesity at the expense of other factors. PMID:26698295

  9. Comparison Between Interactive Closest Point and Procrustes Analysis for Determining the Median Sagittal Plane of Three-Dimensional Facial Data

    PubMed Central

    Xiong, Yuxue; Zhao, Yijiao; Yang, Huifang; Sun, Yucun; Wang, Yong

    2016-01-01

    Objective: To compare 2 digital methods to determine median sagittal plane of three-dimensional facial data—the interactive closest point algorithm and Procrustes analysis. Methods: The three-dimensional facial data of the 30 volunteers were got by the Face Scan 3D optical sensor (3D-Shape GmbH, Erlangen, Germany), and then were input to the reverse engineering software Imageware 13.0 (Siemens, Plano, TX) and Geomagic 2012 (Cary, NC). Their mirrored data were acquired and superimposed with the original data by the methods of interactive closest points and Procrustes analysis. The median sagittal planes of the 2 methods were extracted from the original and mirrored facial data respectively, 3 asymmetry indices were measured for comparison. Differences between the facial asymmetry indices of the 2 methods were evaluated using the paired sample t-test. Results: In terms of the 3 asymmetry indices, there were no significant differences between interactive closest points and Procrustes analysis for extracting median sagittal plane from three-dimensional facial data.(t = 0.0.060, P = 0.953 for asymmetry index (AI) 1, t = −0.926, P = 0.362 for AI 2, t = 1.1172, P = 0.0.251 for AI 3). Conclusions: In this evaluation of 30 subjects, the Procrustes analysis and the interactive closest point median-sagittal planes were similar in terms of the 3 asymmetry indices. Thus, Procrustes analysis and interactive closest point can both be used to abstract median sagittal plane from three-dimensional facial data. PMID:26825747

  10. Preparation of a new nanobiosensor for the determination of some biogenic polyamines and investigation of their interaction with DNA.

    PubMed

    Bagheryan, Zahra; Noori, Abolhassan; Zahra Bathaie, S; Yousef-Elahi, Mozhdeh; Mousavi, Mir F

    2016-03-15

    Biogenic polyamines are small organic polycations involving in a variety of biological processes. They form high affinity complexes with DNA. Here, we have followed two different novel approaches, either fabrication of an electrochemical nanobiosensor for determination of three of the most important biogenic polyamines; spermine (SPM), spermidine (SPD) and putrescine (PUT), or electrochemical investigation of their interaction with DNA. Strong binding of polyamines to DNA makes the DNA a suitable recognition element for construction of a sensitive biosensor. The fabricated biosensor responded to SPM, SPD and PUT over an extended dynamic range of 0.04-100 μM, 0.01-24 μM, and 0.08-100 μM respectively, with low detection limits of a few nM. We also studied the interaction of polyamines with three different DNA sequences with base composition of 100% AT, 80% AT and 100% GC in the presence of [Ru(NH3)6]3(+) as a redox probe. The highest kb values were obtained in the interaction of polyamines with 80% AT (mixed) DNA sequence. The kb values were 5.24 × 10(5), 4.17 × 10(5) and 1.46 × 10(5)M(-1) for SPM, SPD and PUT, respectively, which correlated well with their increasing number of amino groups. In addition, competition study showed the impotence of SPD to replace with histone H1 in histone H1-DNA complex, which indicates the more potent interaction of histone H1 with DNA. In this proof-of-principle study, we have proposed an approach for simple, cost-effective, miniaturizable, and direct-readout detection of polyamines, as well as the understanding of the modes of interaction between polyamines and DNA. PMID:26513283

  11. Full configuration interaction pseudopotential determination of the ground-state potential energy curves of Li2 and LiH

    NASA Astrophysics Data System (ADS)

    Maniero, Angelo M.; Acioli, Paulo H.

    A full configuration interaction (CI) with a norm-conserving pseudopotential procedure to determine potential energy surfaces is proposed. Analysis of the potentiality and the possible sources of inaccuracies of the methodology is given in terms of its application to the generation of the ground-state potential energy curves of the LiH and Li2 molecules. The vibrational energy levels were obtained using the discrete variable representation. The agreement between our results and those from Rydberg-Klein-Ress-derived potentials is very good. The extension of this procedure to larger systems is straightforward.

  12. Rapid hydrophilic interaction chromatography determination of lysine in pharmaceutical preparations with fluorescence detection after postcolumn derivatization with o-phtaldialdehyde.

    PubMed

    Douša, Michal; Břicháč, Jiří; Gibala, Petr; Lehnert, Petr

    2011-04-01

    A rapid procedure for the determination of lysine based on hydrophilic interaction chromatography (HILIC) separation of arginine and lysine with fluorescence detection has been developed. The separation conditions and parameters of lysine postcolumn derivatization with o-phtaldialdehyde (OPA)/2-mercaptoethanol were studied. The various HILIC columns were employed using isocratic elution. Fluorescence detection was performed at excitation and emission wavelength of 345 nm and 450 nm, respectively. An advantage of the reported method is a simple sample pre-treatment and a quick and very sensitive HPLC method. The developed method was successfully applied for analysis of commercial samples of Ibalgin Fast tablets (Zentiva, Czech Republic). PMID:21163603

  13. Tree species identity and interactions with neighbors determine nutrient leaching in model tropical forests.

    PubMed

    Ewel, John J; Bigelow, Seth W

    2011-12-01

    An ecosystem containing a mixture of species that differ in phenology, morphology, and physiology might be expected to resist leaching of soil nutrients to a greater extent than one composed of a single species. We tested the effects of species identity and plant-life-form richness on nutrient leaching at a lowland tropical site where deep infiltration averages >2 m year(-1). Three indigenous tree species with contrasting leafing phenologies (evergreen, dry-season deciduous, and wet-season deciduous) were grown in monoculture and together with two other life-forms with which they commonly occur in tropical forests: a palm and a giant, perennial herb. To calculate nutrient leaching over an 11-year period, concentrations of nutrients in soil water were multiplied by drainage rates estimated from a water balance. The effect of plant-life-form richness on retention differed according to tree species identity and nutrient. Nitrate retention was greater in polycultures of the dry-season deciduous tree species (mean of 7.4 kg ha(-1) year(-1) of NO(3)-N lost compared to 12.7 in monoculture), and calcium and magnesium retention were greater in polycultures of the evergreen and wet-season deciduous tree species. Complementary use of light led to intensification of soil exploitation by roots, the main agent responsible for enhanced nutrient retention in some polycultures. Other mechanisms included differences in nutrient demand among species, and avoidance of catastrophic failure due to episodic weather events or pest outbreaks. Even unrealistically simple multi-life-form mimics of tropical forest can safeguard a site's nutrient capital if careful attention is paid to species' characteristics and temporal changes in interspecific interactions. PMID:21691855

  14. Evolutionary History and Novel Biotic Interactions Determine Plant Responses to Elevated CO2 and Nitrogen Fertilization

    PubMed Central

    Wooliver, Rachel; Senior, John K.; Schweitzer, Jennifer A.; O'Reilly-Wapstra, Julianne M.; Langley, J. Adam; Chapman, Samantha K.; Bailey, Joseph K.

    2014-01-01

    A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N) are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1) native species monocultures and 2) mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass) in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use) was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both plant

  15. Evolutionary history and novel biotic interactions determine plant responses to elevated CO2 and nitrogen fertilization.

    PubMed

    Wooliver, Rachel; Senior, John K; Schweitzer, Jennifer A; O'Reilly-Wapstra, Julianne M; Langley, J Adam; Chapman, Samantha K; Bailey, Joseph K

    2014-01-01

    A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N) are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1) native species monocultures and 2) mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass) in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use) was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both plant

  16. HIV-1 Capsid-Cyclophilin Interactions Determine Nuclear Import Pathway, Integration Targeting and Replication Efficiency

    PubMed Central

    Schaller, Torsten; Ocwieja, Karen E.; Rasaiyaah, Jane; Price, Amanda J.; Brady, Troy L.; Roth, Shoshannah L.; Hué, Stéphane; Fletcher, Adam J.; Lee, KyeongEun; KewalRamani, Vineet N.; Noursadeghi, Mahdad; Jenner, Richard G.; James, Leo C.; Bushman, Frederic D.; Towers, Greg J.

    2011-01-01

    Lentiviruses such as HIV-1 traverse nuclear pore complexes (NPC) and infect terminally differentiated non-dividing cells, but how they do this is unclear. The cytoplasmic NPC protein Nup358/RanBP2 was identified as an HIV-1 co-factor in previous studies. Here we report that HIV-1 capsid (CA) binds directly to the cyclophilin domain of Nup358/RanBP2. Fusion of the Nup358/RanBP2 cyclophilin (Cyp) domain to the tripartite motif of TRIM5 created a novel inhibitor of HIV-1 replication, consistent with an interaction in vivo. In contrast to CypA binding to HIV-1 CA, Nup358 binding is insensitive to inhibition with cyclosporine, allowing contributions from CypA and Nup358 to be distinguished. Inhibition of CypA reduced dependence on Nup358 and the nuclear basket protein Nup153, suggesting that CypA regulates the choice of the nuclear import machinery that is engaged by the virus. HIV-1 cyclophilin-binding mutants CA G89V and P90A favored integration in genomic regions with a higher density of transcription units and associated features than wild type virus. Integration preference of wild type virus in the presence of cyclosporine was similarly altered to regions of higher transcription density. In contrast, HIV-1 CA alterations in another patch on the capsid surface that render the virus less sensitive to Nup358 or TRN-SR2 depletion (CA N74D, N57A) resulted in integration in genomic regions sparse in transcription units. Both groups of CA mutants are impaired in replication in HeLa cells and human monocyte derived macrophages. Our findings link HIV-1 engagement of cyclophilins with both integration targeting and replication efficiency and provide insight into the conservation of viral cyclophilin recruitment. PMID:22174692

  17. Determining Phosphorus-sediment Interactions in a Groundwater-fed River through In Situ Measurement

    NASA Astrophysics Data System (ADS)

    Mullinger, N. J.; Heathwaite, L.; Zhang, H.; Keenan, P. O.

    2011-12-01

    In stream processing is potentially important in the regulation and availability of nutrients to riverine flora and also in attenuating point and non-point source inputs to rivers, such as wastewater outflows and agricultural runoff. Phosphorus is an important macronutrient and often cited as a limiting factor to plant and algal growth in freshwater systems. The particle-reactive nature of the orthophosphate anion means that river sediments can play an important role in phosphorus attenuation and availability in rivers. However, it is also known that plant root exudates can also affect the mobilisation of sediment adsorbed phosphorus. Results are presented from high resolution (centimetre) measurements of vertical riverbed pore water profiles at a field site in the River Leith, Cumbria, UK. The River Leith is a sub-catchment of the River Eden and is characterised by significant groundwater-surface water interactions at the monitoring site. In situ measurements of soluble reactive phosphorus (SRP) in riverbed pore waters were made using passive sampling diffusive gradient and diffusive equilibration in thin film (DGT and DET) probes. These probes allow in situ measurements of riverbed pore waters to be made to a depth of 30 cm below the riverbed at centimetre resolution. The resulting profiles provide information on the variability in phosphorus pore waters for vegetated and non-vegetated regions of the riverbed. The impact of vegetated root zones in riverbed sediments is poorly characterised for hyporheic exchanges. Comparison of the vertical profiles obtained by DGT and DET probes identifies the potential of sediments to act sources or sinks of in stream phosphorus. Simultaneous analysis for redox sensitive elements provides additional information on the redox status of riverbed sediments. Initial results show spatial and temporal variability of phosphorus in different sedimentary environments and also between vegetated and non-vegetated areas of the riverbed

  18. The behavior of multiple independent managers and ecological traits interact to determine prevalence of weeds.

    PubMed

    Coutts, Shaun R; Yokomizo, Hiroyuki; Buckley, Yvonne M

    2013-04-01

    Management of damaging invasive plants is often undertaken by multiple decision makers, each managing only a small part of the invader's population. As weeds can move between properties and re-infest eradicated sites from unmanaged sources, the dynamics of multiple decision makers plays a significant role in weed prevalence and invasion risk at the landscape scale. We used a spatially explicit agent-based simulation to determine how individual agent behavior, in concert with weed population ecology, determined weed prevalence. We compared two invasive grass species that differ in ecology, control methods, and costs: Nassella trichotoma (serrated tussock) and Eragrostis curvula (African love grass). The way decision makers reacted to the benefit of management had a large effect on the extent of a weed. If benefits of weed control outweighed the costs, and either net benefit was very large or all agents were very sensitive to net benefits, then agents tended to act synchronously, reducing the pool of infested agents available to spread the weed. As N. trichotoma was more damaging than E. curvula and had more effective control methods, agents chose to manage it more often, which resulted in lower prevalence of N. trichotoma. A relatively low number of agents who were intrinsically less motivated to control weeds led to increased prevalence of both species. This was particularly apparent when long-distance dispersal meant each infested agent increased the invasion risk for a large portion of the landscape. In this case, a small proportion of land mangers reluctant to control, regardless of costs and benefits, could lead to the whole landscape being infested, even when local control stopped new infestations. Social pressure was important, but only if it was independent of weed prevalence, suggesting that early access to information, and incentives to act on that information, may be crucial in stopping a weed from infesting large areas. The response of our model to both

  19. Few Residues within an Extensive Binding Interface Drive Receptor Interaction and Determine the Specificity of Arrestin Proteins*

    PubMed Central

    Vishnivetskiy, Sergey A.; Gimenez, Luis E.; Francis, Derek J.; Hanson, Susan M.; Hubbell, Wayne L.; Klug, Candice S.; Gurevich, Vsevolod V.

    2011-01-01

    Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements. PMID:21471193

  20. Molecular determinants and interaction data of cyclic peptide inhibitor with the extracellular domain of TrkB receptor

    PubMed Central

    Chitranshi, Nitin; Gupta, Vivek; Dheer, Yogita; Gupta, Veer; Vander Wall, Roshana; Graham, Stuart

    2016-01-01

    TrkB is a high affinity receptor for the brain derived neurotrophic factor (BDNF) and its phosphorylation stimulates activation of several intracellular signalling pathways linked to cellular growth, differentiation and maintenance. Identification of various activators and inhibitors of the TrkB receptor and greater understanding their binding mechanisms is critical to elucidate the biochemical and pharmacological pathways and analyse various protein crystallization studies. The data presented here is related to the research article entitled “Brain Derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3β (GSK3β) signalling” [1]. Cyclotraxin B (CTXB) is a disulphide bridge linked cyclic peptide molecule that interacts with TrkB receptor and inhibits the BDNF/TrkB downstream signalling. This article reports for the first time binding mechanism and interaction parameters of CTXB with the TrkB receptor. The molecular model of CTXB has been generated and it’s docking with TrkB domain carried out to determine the critical residues involved in the protein peptide interaction. PMID:26909388

  1. Questioning the answer: questioning style, choice and self-determination in interactions with young people with intellectual disabilities*

    PubMed Central

    Pilnick, Alison; Clegg, Jennifer; Murphy, Elizabeth; Almack, Kathryn

    2010-01-01

    For young people with intellectual disabilities (ID), the transition from children's to adult services has long been recognised as a challenging move. One of the aims of the White Paper Valuing People (2001) was to address some of the problems associated with this transition. This paper reports on data from a project which examines the impact of these service changes, and the ways in which transition is negotiated by carers, professionals and users. It presents a conversation analysis of eight tape-recorded formal review meetings at which transition to adult services is discussed. It takes as its starting point the existing interactional work on ID and the way in which this demonstrates the effects of the local and contextual specifics of particular kinds of interaction on the eventual outcomes (e.g. Rapley 2004, Antaki 2001, Maynard and Marlaire 1992). We show that an attempt to allow self-determination in the context of transitions can paradoxically result in undermining user choice and control. We also argue that, while a rule-based approach to practice may offer moral clarity for professionals, it can result in interactional and practical difficulties which cannot be easily reconciled. PMID:20415789

  2. Reliable Determinations of Protein-Ligand Interactions by Direct ESI-MS Measurements. Are We There Yet?

    NASA Astrophysics Data System (ADS)

    Kitova, Elena N.; El-Hawiet, Amr; Schnier, Paul D.; Klassen, John S.

    2012-03-01

    The association-dissociation of noncovalent interactions between protein and ligands, such as other proteins, carbohydrates, lipids, DNA, or small molecules, are critical events in many biological processes. The discovery and characterization of these interactions is essential to a complete understanding of biochemical reactions and pathways and to the design of novel therapeutic agents that may be used to treat a variety of diseases and infections. Over the last 20 y, electrospray ionization mass spectrometry (ESI-MS) has emerged as a versatile tool for the identification and quantification of protein-ligand interactions in vitro. Here, we describe the implementation of the direct ESI-MS assay for the determination of protein-ligand binding stoichiometry and affinity. Additionally, we outline common sources of error encountered with these measurements and various strategies to overcome them. Finally, we comment on some of the outstanding challenges associated with the implementation of the assay and highlight new areas where direct ESI-MS measurements are expected to make significant contributions in the future.

  3. Genetic Determinants of Cardio-Metabolic Risk: A Proposed Model for Phenotype Association and Interaction

    PubMed Central

    Blackett, Piers R; Sanghera, Dharambir K

    2012-01-01

    This review provides a translational and unifying summary of metabolic syndrome genetics and highlights evidence that genetic studies are starting to unravel and untangle origins of the complex and challenging cluster of disease phenotypes. The associated genes effectively express in the brain, liver, kidney, arterial endothelium, adipocytes, myocytes and β cells. Progression of syndrome traits has been associated with ectopic lipid accumulation in the arterial wall, visceral adipocytes, myocytes, and liver. Thus it follows that the genetics of dyslipidemia, obesity, and non-alcoholic fatty liver (NAFLD) disease are central in triggering progression of the syndrome to overt expression of disease traits, and have become a key focus of interest for early detection and for designing prevention and treatments. To support the “birds’ eye view” approach we provide a road-map depicting commonality and interrelationships between the traits and their genetic and environmental determinants based on known risk factors, metabolic pathways, pharmacological targets, treatment responses, gene networks, pleiotropy, and association with circadian rhythm. Although only a small portion of the known heritability is accounted for and there is insufficient support for clinical application of gene-based prediction models, there is direction and encouraging progress in a rapidly moving field that is beginning to show clinical relevance. PMID:23351585

  4. Selective determination of thiram residues in fruit and vegetables by hydrophilic interaction LC-MS.

    PubMed

    Ringli, Daniela; Schwack, Wolfgang

    2013-01-01

    Thiram belongs to the most important class of dithiocarbamate (DTC) fungicides including dimethyldithiocarbamates (DMDs), ethylenebis(dithiocarbamtes) (EBDs) and propylenebis(dithiocarbamates) (PBDs). During the surface extraction of fruit and vegetables for the LC-MS determination of residues of DMDs, EBDs and PBDs, thiram is reduced by the penicillamine buffer to the DMD anion, thus resulting in false-positive findings of DMD fungicides like ziram. Therefore, an alkaline sulfite buffer was applied for surface extraction, quantitatively transforming thiram into the DMD anion and a stable DMD-sulfite adduct that was used as a selective marker for thiram. Separation was performed isocratically on a ZIC-pHILIC column with acetonitrile-10 mM ammonium hydroxide solution (85/15). Mass selective detection was carried out on a single-quadrupole mass spectrometer coupled to an electrospray ionisation interface operating in negative mode. Using d12-thiram as the internal standard, recoveries of 80-108% were obtained from apples, tomatoes, grapes and sweet peppers, spiked in the range of 0.02-1 mg kg(-1). Limits of detection and quantification were 0.6 and 2 µg kg(-1), respectively. PMID:24070320

  5. Intramitochondrial positions of cytochrome haem groups determined by dipolar interactions with paramagnetic cations.

    PubMed Central

    Case, G D; Leigh, J S

    1976-01-01

    E.p.r.(electron-paramagnetic-resonance) spectra of the ferricytochromes were studied in normal and 'nickel-plated' pigeon heart mitochondria and pigeon heart submitochondrial particles. NiCL2 added to either mitochondria or particles was bound completely to the membranes, but none was transported across the vesicles. Hence, any perturbations of the haem e.p.r. spectra by Ni(II) should occur only for those cytochromes in close proximity to the exterior surface. Whenever Ni(II) can approach to within 1 nm of cytochrome haem. the consequent acceleration of the haem e.p.r. relaxation kinetics should elicit dipolar line broadening. Relaxation acceleration should also increase the incident power level required to saturate the haem e.p.r. signal. In pigeon heart mitochondria, at least three e.p.r. resonances, attributable in part to cytochromes c1, bK and br, are observed at gz=3.3 resonance. In these submitochondrial particles, the peak at gz=3.5 is missing, and the resonance at gz=3.6 resolves into two components, neither of which is sensitive to added Ni(ii). Addition of free haemin (ferric, a paramagnetic anion) to intact mitochondria elicits the same e.p.r. signal changes as does a preparation of submitochondrial particles. Saturation curves for cytochrome oxidase obtained for e.p.r. spectra of the high-spin form (g = 6) and the low-spin form (gz=3.1) also reveal no effect of Ni(II) on the haem e.p.r. relaxation in either mitochondria or inverted submitochondrial particles. Further, Ni(II) fails to alter the spectra or saturation properties of cytochrome c in either mitochondria or submitochondrial particles therefrom. Only with a 50-fold molar excess of Ni(II) can one accelerate the e.p.r. relaxation of cytochrome c in aqueous solution, although other more subtle types of magnetic interactions may occur between the cytochrome and either Ni(II) or ferricyanide. Addition of haemin to mitochondria likewise failed to alter the e.p.r. characteristics of either cytochrome

  6. Spectroscopic and functional determination of the interaction of Pb2+ with GATA proteins.

    PubMed

    Ghering, Amy B; Jenkins, Lisa M Miller; Schenck, Brandy L; Deo, Sandhya; Mayer, R Aeryn; Pikaart, Michael J; Omichinski, James G; Godwin, Hilary A

    2005-03-23

    GATA proteins are transcription factors that bind GATA DNA elements through Cys4 structural zinc-binding domains and play critical regulatory roles in neurological and urogenital development and the development of cardiac disease. To evaluate GATA proteins as potential targets for lead, spectroscopically monitored metal-binding titrations were used to measure the affinity of Pb2+ for the C-terminal zinc-binding domain from chicken GATA-1 (CF) and the double-finger domain from human GATA-1 (DF). Using this method, Pb2+ coordinating to CF and DF was directly observed through the appearance of intense bands in the near-ultraviolet region of the spectrum (250-380 nm). Absorption data collected from these experiments were best fit to a 1:1 Pb2+ -CF model and a 2:1 Pb2+ -DF model. Competition experiments using Zn2+ were used to determine the absolute affinities of Pb2+ for these proteins. These studies reveal that Pb2+ forms tight complexes with cysteine residues in the zinc-binding sites in GATA proteins, beta1Pb = 6.4 (+/- 2.0) x 10(9) M(-1) for CF and beta2 = 6.3 (+/- 6.3) x 10(19) M(-2) for Pb(2+)2-DF, and within an order of magnitude of the affinity of Zn2+ for these proteins. Furthermore, Pb2+ was able to displace bound Zn2+ from CF and DF. Upon addition of Pb2+, GATA shows a decreased ability to bind to DNA and subsequently activate transcription. Therefore, the DNA binding and transcriptional activity of GATA proteins are most likely to be targeted by Pb2+ in cells and tissues that sequester Pb2+ in vivo, which include the brain and the heart. PMID:15771509

  7. A truly human interface: interacting face-to-face with someone whose words are determined by a computer program

    PubMed Central

    Corti, Kevin; Gillespie, Alex

    2015-01-01

    We use speech shadowing to create situations wherein people converse in person with a human whose words are determined by a conversational agent computer program. Speech shadowing involves a person (the shadower) repeating vocal stimuli originating from a separate communication source in real-time. Humans shadowing for conversational agent sources (e.g., chat bots) become hybrid agents (“echoborgs”) capable of face-to-face interlocution. We report three studies that investigated people’s experiences interacting with echoborgs and the extent to which echoborgs pass as autonomous humans. First, participants in a Turing Test spoke with a chat bot via either a text interface or an echoborg. Human shadowing did not improve the chat bot’s chance of passing but did increase interrogators’ ratings of how human-like the chat bot seemed. In our second study, participants had to decide whether their interlocutor produced words generated by a chat bot or simply pretended to be one. Compared to those who engaged a text interface, participants who engaged an echoborg were more likely to perceive their interlocutor as pretending to be a chat bot. In our third study, participants were naïve to the fact that their interlocutor produced words generated by a chat bot. Unlike those who engaged a text interface, the vast majority of participants who engaged an echoborg did not sense a robotic interaction. These findings have implications for android science, the Turing Test paradigm, and human–computer interaction. The human body, as the delivery mechanism of communication, fundamentally alters the social psychological dynamics of interactions with machine intelligence. PMID:26042066

  8. Interactions between ultraviolet light and MC1R and OCA2 variants are determinants of childhood nevus and freckle phenotypes

    PubMed Central

    Barón, Anna E.; Asdigian, Nancy L.; Gonzalez, Victoria; Aalborg, Jenny; Terzian, Tamara; Stiegmann, Regan A.; C.Torchia, Enrique; Berwick, Marianne; Dellavalle, Robert P.; G.Morelli, Joseph; Mokrohisky, Stefan T.; Crane, Lori A.; Box, Neil F.

    2014-01-01

    Background Melanocytic nevi (moles) and freckles are well known biomarkers of melanoma risk, and they are influenced by similar ultraviolet (UV) light exposures and genetic susceptibilities to those that increase melanoma risk. Nevertheless, the selective interactions between UV exposures and nevus and freckling genes remain largely undescribed. Methods We conducted a longitudinal study from ages 6 through 10 in 477 Colorado children who had annual information collected for sun exposure, sun protection behaviors, and full body skin exams. MC1R and HERC2/OCA2 rs12913832 were genotyped and linear mixed models were used to identify main and interaction effects. Results All measures of sun exposure (chronic, sunburns and waterside vacations) contributed to total nevus counts, and cumulative chronic exposure acted as the major driver of nevus development. Waterside vacations strongly increased total nevus counts in children with rs12913832 blue eye color alleles and facial freckling scores in those with MC1R red hair color variants. Sunburns increased numbers of larger nevi (≥2 mm) in subjects with certain MC1R and rs12913832 genotypes. Conclusions Complex interactions between different UV exposure profiles and genotype combinations determine nevus numbers and size, and the degree of facial freckling. Impact Our findings emphasize the importance of implementing sun-protective behavior in childhood regardless of genetic make-up; although children with particular genetic variants may benefit from specifically targeted preventive measures to counteract their inherent risk of melanoma. Moreover, we demonstrate, for the first time, that longitudinal studies are a highly powered tool to uncover new gene-environment interactions that increase cancer risk. PMID:25410285

  9. A fast, simple, and reliable hydrophilic interaction liquid chromatography method for the determination of ascorbic and isoascorbic acids.

    PubMed

    Barros, Ana I R N A; Silva, Ana P; Gonçalves, Berta; Nunes, Fernando M

    2010-03-01

    A reliable method for the determination of total vitamin C must be able to resolve ascorbic acid (AA) and the epimeric isoascorbic acid (IAA) and determine the sum of AA and its oxidized form dehydroascorbic acid. AA and IAA are polar molecules with a low retention time in conventional reversed phase systems, and hence of difficult resolution. Hydrophilic interaction chromatography using a TSKgel Amide-80 stationary phase with isocratic elution was successful in resolving the two epimers. The column was compatible with injections of high concentrations of metaphosphoric acid, tris(2-carboxyethyl)-phosphine, and EDTA without drift of baseline and retention time. Total AA and IAA were extracted, stabilized, and reduced in one step at 40 °C, using 5% m-phosphoric acid, 2 mM of EDTA, and 2 mM of tris(2-carboxyethyl)-phosphine as reducing agent. This simple, fast, and robust hydrophilic interaction chromatography-DAD method was applied for the analysis of food products namely fruit juices, chestnut, and ham and also in pharmaceutical and multivitamin tablets. Method validation was performed on the food products, including parameters of precision, accuracy, linearity, limit of detection, and quantification (LOQ). The absence of matrix interferences was assessed by the standard addition method and Youden calibration. The method was fast, accurate, and precise with a LOQ(AA) of 1.5 mg/L and LOQ(IAA) of 3.7 mg/L. The simple experimental procedure, completed in 1 h, the possibility of using IAA as an internal standard, and low probability of artifacts are the major advantages of the proposed method for the routine determination of these compounds in a large number of samples. PMID:20091158

  10. Study of photorespiration in marine microalgae through the determination of glycolic acid using hydrophilic interaction liquid chromatography.

    PubMed

    Rigobello-Masini, Marilda; Penteado, José C P; Tiba, Maurício; Masini, Jorge C

    2012-01-01

    Determination of organic acids in intracellular extracts and in the cultivation media of marine microalgae aid investigations about metabolic routes related to assimilation of atmospheric carbon by these organisms, which are known by their role in the carbon dioxide sink. The separation of these acids was investigated by hydrophilic interaction liquid chromatography (HILIC) using isocratic elution with a mobile phase composed of 70:30 v/v acetonitrile/20 mmol/L ammonium acetate buffer (pH 6.8) and detection at 220 nm. HILIC allowed the determinations of glycolic acid, the most important metabolite for the evaluation of the photorespiration process in algae, to be made with better selectivity than that achieved by reversed phase liquid chromatography, but with less detectability. The concentration of glycolic acid was determined in the cultivation media and in intracellular extracts of the algae Tetraselmis gracilis and Phaeodactylum tricornutum submitted to different conditions of aeration: (i) without forced aeration, (ii) aeration with atmospheric air, and (iii) bubbling with N(2). The concentration of glycolic acid had a higher increase as the cultures were aerated with nitrogen, showing higher photorespiratory flux than that occurring in the cultures aerated with atmospheric air. PMID:22128110

  11. Determination of glutathione and cysteine in yeasts by hydrophilic interaction liquid chromatography followed by on-line postcolumn derivatization.

    PubMed

    Karakosta, Theano D; Tzanavaras, Paraskevas D; Themelis, Demetrius G

    2013-06-01

    In the present study, we report a new method for the determination of two primary thiols, cysteine (CYS) and glutathione (GSH), by hydrophilic interaction LC. The polar analytes are separated isocratically using a mobile phase consisting of 65% acetonitrile/35% ammonium acetate (15 mmol/L, pH 2.0) and are detected at 285 nm following on-line postcolumn derivatization by the thiol-selective reagent methyl propiolate. The main figures of merit included linearity in the range of 5-200 μmol/L and an LOD 0.6 μmol/L for both compounds. The absence of matrix effect allowed the determination of CYS and GSH in various yeast samples. GSH was present in most of the samples at levels ranging between 0.9 and 3.1 mg/g, whereas CYS was determined in only one sample at a significantly lower concentration. In terms of accuracy, the percent recoveries ranged between 91.2 and 105.6% for GSH, and 91.6 and 106.9% for CYS. PMID:23559570

  12. Structure and Interactions of a Dimeric Variant of sHIP, a Novel Virulence Determinant of Streptococcus pyogenes

    PubMed Central

    Diehl, Carl; Wisniewska, Magdalena; Frick, Inga-Maria; Streicher, Werner; Björck, Lars; Malmström, Johan; Wikström, Mats

    2016-01-01

    Streptococcus pyogenes is one of the most significant bacterial pathogens in the human population mostly causing superficial and uncomplicated infections (pharyngitis and impetigo) but also invasive and life-threatening disease. We have previously identified a virulence determinant, protein sHIP, which is secreted at higher levels by an invasive compared to a non-invasive strain of S. pyogenes. The present work presents a further characterization of the structural and functional properties of this bacterial protein. Biophysical and structural studies have shown that protein sHIP forms stable tetramers both in the crystal and in solution. The tetramers are composed of four helix-loop-helix motifs with the loop regions connecting the helices displaying a high degree of flexibility. Owing to interactions at the tetramer interface, the observed tetramer can be described as a dimer of dimers. We identified three residues at the tetramer interface (Leu84, Leu88, Tyr95), which due to largely non-polar side-chains, could be important determinants for protein oligomerization. Based on these observations, we produced a sHIP variant in which these residues were mutated to alanines. Biophysical experiments clearly indicated that the sHIP mutant appear only as dimers in solution confirming the importance of the interfacial residues for protein oligomerisation. Furthermore, we could show that the sHIP mutant interacts with intact histidine-rich glycoprotein (HRG) and the histidine-rich repeats in HRG, and inhibits their antibacterial activity to the same or even higher extent as compared to the wild type protein sHIP. We determined the crystal structure of the sHIP mutant, which, as a result of the high quality of the data, allowed us to improve the existing structural model of the protein. Finally, by employing NMR spectroscopy in solution, we generated a model for the complex between the sHIP mutant and an HRG-derived heparin-binding peptide, providing further molecular

  13. Structure and Interactions of a Dimeric Variant of sHIP, a Novel Virulence Determinant of Streptococcus pyogenes.

    PubMed

    Diehl, Carl; Wisniewska, Magdalena; Frick, Inga-Maria; Streicher, Werner; Björck, Lars; Malmström, Johan; Wikström, Mats

    2016-01-01

    Streptococcus pyogenes is one of the most significant bacterial pathogens in the human population mostly causing superficial and uncomplicated infections (pharyngitis and impetigo) but also invasive and life-threatening disease. We have previously identified a virulence determinant, protein sHIP, which is secreted at higher levels by an invasive compared to a non-invasive strain of S. pyogenes. The present work presents a further characterization of the structural and functional properties of this bacterial protein. Biophysical and structural studies have shown that protein sHIP forms stable tetramers both in the crystal and in solution. The tetramers are composed of four helix-loop-helix motifs with the loop regions connecting the helices displaying a high degree of flexibility. Owing to interactions at the tetramer interface, the observed tetramer can be described as a dimer of dimers. We identified three residues at the tetramer interface (Leu84, Leu88, Tyr95), which due to largely non-polar side-chains, could be important determinants for protein oligomerization. Based on these observations, we produced a sHIP variant in which these residues were mutated to alanines. Biophysical experiments clearly indicated that the sHIP mutant appear only as dimers in solution confirming the importance of the interfacial residues for protein oligomerisation. Furthermore, we could show that the sHIP mutant interacts with intact histidine-rich glycoprotein (HRG) and the histidine-rich repeats in HRG, and inhibits their antibacterial activity to the same or even higher extent as compared to the wild type protein sHIP. We determined the crystal structure of the sHIP mutant, which, as a result of the high quality of the data, allowed us to improve the existing structural model of the protein. Finally, by employing NMR spectroscopy in solution, we generated a model for the complex between the sHIP mutant and an HRG-derived heparin-binding peptide, providing further molecular

  14. Food Web Architecture and Basal Resources Interact to Determine Biomass and Stoichiometric Cascades along a Benthic Food Web

    PubMed Central

    Guariento, Rafael D.; Carneiro, Luciana S.; Caliman, Adriano; Leal, João J. F.; Bozelli, Reinaldo L.; Esteves, Francisco A.

    2011-01-01

    Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus) were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé – RJ) to evaluate the individual and interactive effects of resource availability (nutrients and light) and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry. PMID:21789234

  15. 3-Hydroxy-4-pyridinone derivatives designed for fluorescence studies to determine interaction with amyloid protein as well as cell permeability.

    PubMed

    Telpoukhovskaia, Maria A; Cawthray, Jacqueline F; Rodríguez-Rodríguez, Cristina; Scott, Lauren E; Page, Brent D G; Patrick, Brian O; Orvig, Chris

    2015-09-01

    Finding a cure for Alzheimer's disease is an urgent goal. Multifunctional metal binders are used to elucidate its pathological features and investigated as potential therapeutics. The use of physicochemical and TD-DFT calculations constituted successful strategy in the design of 1-(4-(benzo[d]oxazol-2-yl)phenyl)-3-hydroxy-2-methylpyridin-4(1H)-one (HL21) and 1-(4-(benzo[d]thiazol-2-yl)phenyl)-3-hydroxy-2-methylpyridin-4(1H)-one (HL22). We report the synthesis and full characterization of these compounds, including X-ray crystallography. Using fluorescent signal as the readout, it was determined that HL22 interacts with amyloid-beta protein fibrils, and permeates into bEnd.3 cells used as a mimic of the blood-brain barrier. This provides the first example of direct investigation of our hydroxypyridinone compounds within a biological setting. PMID:26141772

  16. Analytical determination of the reflection coefficient by the evanescent modes model during the wave-current-horizontal plate interaction

    NASA Astrophysics Data System (ADS)

    Errifaiy, Meriem; Naasse, Smail; Chahine, Chakib

    2016-07-01

    Our work presents an analytical study of the determination of the reflection coefficient during the interaction between the regular wave current and a horizontal plate. This study was done using the linearized potential flow theory with the evanescent modes model, while searching for complex solutions to the dispersion equation that are neither real pure nor imaginary pure. To validate the established model, it has been confronted with the experimental results of V. Rey and J. Touboul, in a first phase, and then compared to those of the numerical study by H.-X. Lin et al. Then, this model was used to study the effect of current on the reflection coefficient. xml:lang="fr"

  17. Aerosol-Cloud Interaction Determined by Both in Situ and Satellite Data Over a Northern High-Latitude Site

    NASA Technical Reports Server (NTRS)

    Lihavainen, H.; Kerminen, V.-M.; Remer, L. A.

    2009-01-01

    The first aerosol indirect effect over a clean, northern high-latitude site was investigated by determining the aerosol cloud interaction (ACI) using three different approaches; ground-based in situ measurements, combined ground-based in situ measurements 5 and satellite retrievals and using only satellite retrievals. The obtained values of ACI were highest for in situ ground-based data, clearly lower for combined ground-based and satellite data, and lowest for data relying solely on satellite retrievals. One of the key findings of this study was the high sensitivity of ACI to the definition of the aerosol burden. We showed that at least a part of the variability in ACI can be explained by 10 how different investigators have related dierent cloud properties to "aerosol burden".

  18. Analysis of Performance of Jet Engine from Characteristics of Components II : Interaction of Components as Determined from Engine Operation

    NASA Technical Reports Server (NTRS)

    Goldstein, Arthur W; Alpert, Sumner; Beede, William; Kovach, Karl

    1949-01-01

    In order to understand the operation and the interaction of jet-engine components during engine operation and to determine how component characteristics may be used to compute engine performance, a method to analyze and to estimate performance of such engines was devised and applied to the study of the characteristics of a research turbojet engine built for this investigation. An attempt was made to correlate turbine performance obtained from engine experiments with that obtained by the simpler procedure of separately calibrating the turbine with cold air as a driving fluid in order to investigate the applicability of component calibration. The system of analysis was also applied to prediction of the engine and component performance with assumed modifications of the burner and bearing characteristics, to prediction of component and engine operation during engine acceleration, and to estimates of the performance of the engine and the components when the exhaust gas was used to drive a power turbine.

  19. Diagnostics of corotating interaction regions with the kinetic properties of iron ions as determined with STEREO/PLASTIC

    NASA Astrophysics Data System (ADS)

    Bochsler, P.; Lee, M. A.; Karrer, R.; Jian, L. K.; Ellis, L.; Farrugia, C. J.; Galvin, A. B.; Kistler, L. M.; Kucharek, H.; Möbius, E.; Popecki, M. A.; Simunac, K. D. C.; Blush, L. M.; Daoudi, H.; Wurz, P.; Klecker, B.; Wimmer-Schweingruber, R. F.; Thompson, B.; Luhmann, J. G.; Russell, C. T.; Opitz, A.

    2010-02-01

    STEREO/PLASTIC determines three-dimensional distributions of solar wind iron ions with unprecedented time resolution. Typically 300 to 1000 counts are registered within each 5 min time interval. For the present study we use the information contained in these distributions to characterize CIRs (Corotating Interaction Regions) in two test cases. We perform a consistency test for both the derived physical parameters and for the analytical model of CIRs of Lee (2000). At 1 AU we find that apart from compositional changes the most indicative parameter for marking the time when a CIR passes a spacecraft is the angular deflection of the flow vector of particles. Changes in particle densities and the changes in magnitudes of speeds are apparently less reliable indicators of stream interfaces.

  20. Interaction of Formulation and Device Factors Determine the In Vitro Performance of Salbutamol Sulphate Dry Powders for Inhalation.

    PubMed

    Muddle, Joanna; Murnane, Darragh; Parisini, Irene; Brown, Marc; Page, Clive; Forbes, Ben

    2015-11-01

    A variety of capsule-based dry powder inhalers were used to evaluate formulation-device interaction. The in vitro deposition of salbutamol sulphate (SS) was compared directly to published data for salmeterol xinafoate (SX). A 3(2) factorial design was used to assess the effect of SS formulations with three blends of different grade coarse lactose supplemented with different levels of fine lactose. These formulations were tested for homogeneity and evaluated for their in vitro deposition using Aeroliser, Handihaler and Rotahaler devices. The performance of the SS-lactose formulations differed across the grade of lactose and amount of fine lactose used compared to the same powder compositions blended with SX. SX had a greater fine particle fraction than SS for most of the comparable formulations, probably because of the different cohesiveness of the drugs. A head-to-head comparison of 'matched' SX and SS formulations when aerosolised from the same three devices demonstrated that formulation-device interactions are as critical in determining the in vitro deposition of drug-lactose blends as the identity of the active pharmaceutical ingredient. This work has revealed the limitations of the interpretative value of published in vitro performance data generated with a single device (even at equivalent aerosolisation force), when designing formulations for a different device. PMID:26220184

  1. A model-based approach to determine the long-term effects of multiple interacting stressors on coral reefs.

    PubMed

    Blackwood, Julie C; Hastings, Alan; Mumby, Peter J

    2011-10-01

    The interaction between multiple stressors on Caribbean coral reefs, namely, fishing effort and hurricane impacts, is a key element in the future sustainability of reefs. We develop an analytic model of coral-algal interactions and explicitly consider grazing by herbivorous reef fish. Further, we consider changes in structural complexity, or rugosity, in addition to the direct impacts of hurricanes, which are implemented as stochastic jump processes. The model simulations consider various levels of fishing effort corresponding to' several hurricane frequencies and impact levels dependent on geographic location. We focus on relatively short time scales so we do not explicitly include changes in ocean temperature, chemistry, or sea level rise. The general features of our approach would, however, apply to these other stressors and to the management of other systems in the face of multiple stressors. It is determined that the appropriate management policy, either local reef restoration or fisheries management, greatly depends on hurricane frequency and impact level. For sufficiently low hurricane impact and macroalgal growth rate, our results indicate that regions with lower-frequency hurricanes require stricter fishing regulations, whereas management in regions with higher-frequency hurricanes might be less concerned with enhancing grazing and instead consider whether local-scale restorative activities to increase vertical structure are cost-effective. PMID:22073655

  2. A turn-on fluorescence-sensing technique for glucose determination based on graphene oxide-DNA interaction.

    PubMed

    Zhang, Hao; Huang, Hui; Lin, Zihan; Su, Xingguang

    2014-11-01

    Graphene is a two-dimensional carbon nanomaterial one atom thick. Interactions between graphene oxide (GO) and ssDNA containing different numbers of bases have been proved to be remarkably different. In this paper we propose a novel approach for turn-on fluorescence sensing determination of glucose. Hydrogen peroxide (H2O2) is produced by glucose oxidase-catalysed oxidation of glucose. In the presence of ferrous iron (Fe(2+)) the hydroxyl radical (•OH) is generated from H2O2 by the Fenton reaction. This attacks FAM-labelled long ssDNA causing irreversible cleavage, as a result of the oxidative effect of •OH, producing an FAM-linked DNA fragment. Because of the weak interaction between GO and short FAM-linked DNA fragments, restoration of DNA fluorescence can be achieved by addition of glucose. Due to the excellent fluorescence quenching efficiency of GO and the specific catalysis of glucose oxidase, the sensitivity and selectivity of this method for GO-DNA sensing are extremely high. The linear range is from 0.5 to 10 μmol L(-1) and the detection limit for glucose is 0.1 μmol L(-1). The method has been successfully used for analysis of glucose in human serum. PMID:24830395

  3. Contingent interactions among biofilm-forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos.

    PubMed

    Raff, Elizabeth C; Andrews, Mary E; Turner, F Rudolf; Toh, Evelyn; Nelson, David E; Raff, Rudolf A

    2013-01-01

    Fossils of soft tissues provide important records of early animals and embryos, and there is substantial evidence for a role for microbes in soft tissue fossilization. We are investigating the initial events in interactions of bacteria with freshly dead tissue, using marine embryos as a model system. We previously found that microbial invasion can stabilize embryo tissue that would otherwise disintegrate in hours or days by generating a bacterial pseudomorph, a three dimensional biofilm that both replaces the tissue and replicates its morphology. In this study, we sampled seawater at different times and places near Sydney, Australia, and determined the range and frequency of different taphonomic outcomes. Although destruction was most common, bacteria in 35% of seawater samples yielded morphology‐preserving biofilms. We could replicate the taphonomic pathways seen with seawater bacterial communities using single cultured strains of marine gammaproteobacteria. Each given species reproducibly generated a consistent taphonomic outcome and we identified species that yielded each of the distinct pathways produced by seawater bacterial communities. Once formed,bacterial pseudomorphs are stable for over a year and resist attack by other bacteria and destruction by proteases and other lytic enzymes. Competition studies showed that the initial action of a pseudomorphing strain can be blocked by a strain that destroys tissues. Thus embryo preservation in nature may depend on contingent interactions among bacterial species that determine if pseudomorphing occurs.We used Artemia nauplius larvae to show that bacterial biofilm replacement of tissue is not restricted to embryos, but is relevant for preservation of small multicellular organisms. We present a model for bacterial self‐assembly of large‐scale three‐dimensional tissue pseudomorphs, based on smallscaleinteractions among individual bacterial cells to form local biofilms at structural boundaries within the tissue

  4. Delay-specific stimuli and genotype interact to determine temporal discounting in a rapid-acquisition procedure.

    PubMed

    Pope, Derek A; Newland, M Christopher; Hutsell, Blake A

    2015-05-01

    The importance of delay discounting to many socially important behavior problems has stimulated investigations of biological and environmental mechanisms responsible for variations in the form of the discount function. The extant experimental research, however, has yielded disparate results, raising important questions regarding Gene X Environment interactions. The present study determined the influence of stimuli that uniquely signal delays to reinforcement on delay discounting in two inbred mouse strains using a rapid-acquisition procedure. BALB/c and C57BL/6 mice responded under a six-component, concurrent-chained schedule in which the terminal-link delays preceding the larger-reinforcer were presented randomly across components of an individual session. Across conditions, components were presented either with or without delay-specific auditory stimuli, i.e., as multiple or mixed schedules. A generalized matching-based model was used to incorporate the impact of current and previous component reinforcer-delay ratios on current component response allocation. Sensitivity to reinforcer magnitude and delay were higher for BALB/c mice, but within-component preference reached final levels faster for C57Bl/6 mice. For BALB/c mice, acquisition of preference across blocks of a component was faster under the multiple than the mixed schedule, but final levels of sensitivity to reinforcement were unaffected by schedule. The speed of acquisition of preference was not different across schedules for C57Bl/6 mice, but sensitivity to reinforcement was higher under the multiple than the mixed schedule. Overall, differences in the acquisition and final form of the discount function were determined by a Gene X Environment interaction, but the presence of delay-specific stimuli attenuated genotype-dependent differences in magnitude and delay sensitivity. PMID:25869302

  5. Simultaneous determination of residues of dipyrone metabolites in goat tissues by hydrophilic interaction liquid chromatography tandem mass spectrometry.

    PubMed

    Zhang, Chong; Zhang, Lifang; Cao, Suqing; Jiang, Zhaoling; Wu, Hao; Yan, Ming; Zhang, Xiaoxiao; Jiang, Shanxiang; Xue, Feiqun

    2016-04-01

    A reliable LC-MS/MS method with high sensitivity was developed and validated for the determination of dipyrone (DIP) metabolites in goat muscle, fat, liver, and kidney samples. Analytes were extracted using acetonitrile mixed with ammonia solution. After dehydration and evaporation to dryness, extracts were purified using an Oasis MAX cartridge. Chromatographic separation was performed on a hydrophilic interaction liquid chromatography column. The analytes were then detected using triple-quadrupole mass spectrometry in positive electrospray ionization and multiple reaction monitoring mode. Calibration plots were constructed using matrix-matched standards and showed good linearity. Limits of quantification for 4-methylaminoantipyrine (MAA), 4-formylaminoantipyrine (FAA), and 4-acetylaminoantipyrone (AAA) ranged from 0.4 μg kg(-1) to 6 μg kg(-1), while those for 4-aminoantipyrone (AA) ranged from 10 μg kg(-1) to 125 μg kg(-1) in all tissues. The developed method was successfully applied in the determination of DIP metabolite residues in actual goat tissues. PMID:26593468

  6. Botulinum neurotoxin type A: structure and interaction with the micellar concentration of SDS determined by FT-IR spectroscopy.

    PubMed

    Singh, B R; Fuller, M P; DasGupta, B R

    1991-12-01

    Secondary structures of botulinum neurotoxin type A have been determined using Fourier transform infrared spectroscopy in the amide I and amide III frequency regions. Using Fourier self-deconvolution, second derivatization, and curve-fit analysis, the amide I frequency contour was resolved into Gaussian bands at 1678, 1654, 1644, and 1634 cm-1. In the amide III frequency region, several small bands were resolved between 1320 and 1225 cm-1. Assignments of the bands in both amide I and amide III frequency regions to various types of secondary structures and the estimation of spectral band strengths by integrating areas under each band suggested that the neurotoxin contains 29% alpha-helix, 45-49% beta-sheets and 22-26% random coils. These values agreed very well with those determined earlier from CD spectra. The neurotoxin was treated with a micellar concentration of sodium dodecyl sulfate to simulate interaction between the protein and the amphipathic molecules. Sodium dodecyl sulfate micelles induced significant alterations both in the spectral band positions, and their strengths suggest refolding of the neurotoxin polypeptides. However, these changes were not entirely reversible, which could implicate the role of the altered structures in the function of the neurotoxin. PMID:1815589

  7. Determination of nicotine and its metabolites accumulated in fish tissue using hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Chang, Yun-Wei; Nguyen, Hien P; Chang, Mike; Burket, S Rebekah; Brooks, Bryan W; Schug, Kevin A

    2015-07-01

    The determination of nicotine and its major metabolites (cotinine and anabasine) in fish tissue was performed using liquid chromatography and tandem mass spectrometry. Marine and freshwater fish were purchased from local grocery stores and were prepared based on a quick, easy, cheap, effective, rugged, and safe sample preparation protocol. To determine the highly polar compounds, hydrophilic interaction liquid chromatography was also used. There were modest suppressions on measured nicotine signals (10%) due to the matrix effects from marine fish but no obvious effects on freshwater fish signals. Method validation was incorporated with internal standards and carried out with matrix-matched calibration. The detection limits for nicotine, cotinine, and anabasine were 9.4, 3.0, and 1.5 ng/g in fish, respectively. Precision was quite acceptable returning less than 8% RSD at low, medium, and high concentrations. Acceptable and reproducible extraction recoveries (70-120%) of all three compounds were achieved, except for anabasine at low concentration (61%). The method was then applied to define nicotine bioaccumulation in a fathead minnow model, which resulted in rapid uptake with steady state internal tissue levels, reached within 12 h. This developed method offers a fast, easy, and sensitive way to evaluate nicotine and its metabolite residues in fish tissues. PMID:25953492

  8. Solution Structure of Mouse Hepatitis Virus (MHV) nsp3a and Determinants of the Interaction with MHV Nucleocapsid (N) Protein

    PubMed Central

    Keane, Sarah C.

    2013-01-01

    Coronaviruses (CoVs) are positive-sense, single-stranded, enveloped RNA viruses that infect a variety of vertebrate hosts. The CoV nucleocapsid (N) protein contains two structurally independent RNA binding domains, designated the N-terminal domain (NTD) and the dimeric C-terminal domain (CTD), joined by a charged linker region rich in serine and arginine residues (SR-rich linker). An important goal in unraveling N function is to molecularly characterize N-protein interactions. Recent genetic evidence suggests that N interacts with nsp3a, a component of the viral replicase. Here we present the solution nuclear magnetic resonance (NMR) structure of mouse hepatitis virus (MHV) nsp3a and show, using isothermal titration calorimetry, that MHV N219, an N construct that extends into the SR-rich linker (residues 60 to 219), binds cognate nsp3a with high affinity (equilibrium association constant [Ka], [1.4 ± 0.3] × 106 M−1). In contrast, neither N197, an N construct containing only the folded NTD (residues 60 to 197), nor the CTD dimer (residues 260 to 380) binds nsp3a with detectable affinity. This indicates that the key nsp3a binding determinants localize to the SR-rich linker, a finding consistent with those of reverse genetics studies. NMR chemical shift perturbation analysis reveals that the N-terminal region of an MHV N SR-rich linker peptide (residues 198 to 230) binds to the acidic face of MHV nsp3a containing the acidic α2 helix with an affinity (expressed as Ka) of 8.1 × 103 M−1. These studies reveal that the SR-rich linker of MHV N is necessary but not sufficient to maintain this high-affinity binding to N. PMID:23302895

  9. The Defective Prophage Pool of Escherichia coli O157: Prophage–Prophage Interactions Potentiate Horizontal Transfer of Virulence Determinants

    PubMed Central

    Asadulghani, Md; Ogura, Yoshitoshi; Ooka, Tadasuke; Itoh, Takehiko; Sawaguchi, Akira; Iguchi, Atsushi; Nakayama, Keisuke; Hayashi, Tetsuya

    2009-01-01

    Bacteriophages are major genetic factors promoting horizontal gene transfer (HGT) between bacteria. Their roles in dynamic bacterial genome evolution have been increasingly highlighted by the fact that many sequenced bacterial genomes contain multiple prophages carrying a wide range of genes. Enterohemorrhagic Escherichia coli O157 is the most striking case. A sequenced strain (O157 Sakai) possesses 18 prophages (Sp1–Sp18) that encode numerous genes related to O157 virulence, including those for two potent cytotoxins, Shiga toxins (Stx) 1 and 2. However, most of these prophages appeared to contain multiple genetic defects. To understand whether these defective prophages have the potential to act as mobile genetic elements to spread virulence determinants, we looked closely at the Sp1–Sp18 sequences, defined the genetic defects of each Sp, and then systematically analyzed all Sps for their biological activities. We show that many of the defective prophages, including the Stx1 phage, are inducible and released from O157 cells as particulate DNA. In fact, some prophages can even be transferred to other E. coli strains. We also show that new Stx1 phages are generated by recombination between the Stx1 and Stx2 phage genomes. The results indicate that these defective prophages are not simply genetic remnants generated in the course of O157 evolution, but rather genetic elements with a high potential for disseminating virulence-related genes and other genetic traits to other bacteria. We speculate that recombination and various other types of inter-prophage interactions in the O157 prophage pool potentiate such activities. Our data provide new insights into the potential activities of the defective prophages embedded in bacterial genomes and lead to the formulation of a novel concept of inter-prophage interactions in defective prophage communities. PMID:19412337

  10. Determinants and Outcomes of Decision-Making, Group Coordination and Social Interactions during a Foraging Experiment in a Wild Primate

    PubMed Central

    Pyritz, Lennart W.; Fichtel, Claudia; Huchard, Elise; Kappeler, Peter M.

    2013-01-01

    Social animals have to coordinate joint movements to maintain group cohesion, but the latter is often compromised by diverging individual interests. A widespread behavioral mechanism to achieve coordination relies on shared or unshared consensus decision-making. If consensus costs are high, group fission represents an alternative tactic. Exploring determinants and outcomes of spontaneous group decisions and coordination of free-ranging animals is methodologically challenging. We therefore conducted a foraging experiment with a group of wild redfronted lemurs (Eulemur rufifrons) to study decision outcomes, coordination of movements, individual foraging benefits and social interactions in response to the presentation of drinking platforms with varying baiting patterns. Behavioral observations were complemented with data from recordings of motion detector cameras installed at the platforms. The animal's behavior in the experimental conditions was compared to natural group movements. We could not determine the type of consensus decision-making because the group visited platforms randomly. The group fissioned during 23.3% of platform visits, and fissioning resulted in more individuals drinking simultaneously. As under natural conditions, adult females initiated most group movements, but overtaking by individuals of different age and sex classes occurred in 67% of movements to platforms, compared to only 18% during other movements. As a result, individual resource intake at the platforms did not depend on departure position, age or sex, but on arrival order. Aggression at the platforms did not affect resource intake, presumably due to low supplanting rates. Our findings highlight the diversity of coordination processes and related consequences for individual foraging benefits in a primate group living under natural conditions. PMID:23326392

  11. Determinants and outcomes of decision-making, group coordination and social interactions during a foraging experiment in a wild primate.

    PubMed

    Pyritz, Lennart W; Fichtel, Claudia; Huchard, Elise; Kappeler, Peter M

    2013-01-01

    Social animals have to coordinate joint movements to maintain group cohesion, but the latter is often compromised by diverging individual interests. A widespread behavioral mechanism to achieve coordination relies on shared or unshared consensus decision-making. If consensus costs are high, group fission represents an alternative tactic. Exploring determinants and outcomes of spontaneous group decisions and coordination of free-ranging animals is methodologically challenging. We therefore conducted a foraging experiment with a group of wild redfronted lemurs (Eulemur rufifrons) to study decision outcomes, coordination of movements, individual foraging benefits and social interactions in response to the presentation of drinking platforms with varying baiting patterns. Behavioral observations were complemented with data from recordings of motion detector cameras installed at the platforms. The animal's behavior in the experimental conditions was compared to natural group movements. We could not determine the type of consensus decision-making because the group visited platforms randomly. The group fissioned during 23.3% of platform visits, and fissioning resulted in more individuals drinking simultaneously. As under natural conditions, adult females initiated most group movements, but overtaking by individuals of different age and sex classes occurred in 67% of movements to platforms, compared to only 18% during other movements. As a result, individual resource intake at the platforms did not depend on departure position, age or sex, but on arrival order. Aggression at the platforms did not affect resource intake, presumably due to low supplanting rates. Our findings highlight the diversity of coordination processes and related consequences for individual foraging benefits in a primate group living under natural conditions. PMID:23326392

  12. Interaction of exposure concentration and duration in determining the apoptosis of testis in rats after cigarette smoke inhalation.

    PubMed

    He, Lijuan; Gong, Haiyan; Zhang, Jing; Zhong, Chunxue; Huang, Yunfei; Zhang, Chen; Aqeel Ashraf, Muhammad

    2016-07-01

    The effects of differences in smoke concentration and exposure duration in Sprague Dawley rats to determine variation in type and severity of the testis apoptosis were evaluated. The daily dosages were 10, 20 and 30 non-filter cigarettes for a period of 2, 4, 6, 8 and 12 weeks. Mainstream smoke exposure suppressed body weight gain in all regimens. A dose-related increase in plasma nicotine concentration was observed in smoke-exposed groups for 4, 6, 8 and 12 week regimens. Histopathological examination of the exposed groups showed disturbances in the stages of spermatogenesis, tubules atrophying and these appeared to be dose-related. Cytoplasmic caspase-3 immunostaining was detected both in Sertoli cells and germ cells in smoke-exposure groups. An increase in TUNEL-positive cells of testicular cells was observed after 6 weeks of cigarette exposure. The results indicate that cigarette exposure concentration and duration have interaction effect to induce apoptosis in the rat testes. PMID:27298588

  13. Interaction between c-jun and Androgen Receptor Determines the Outcome of Taxane Therapy in Castration Resistant Prostate Cancer

    PubMed Central

    Tinzl, Martina; Chen, Binshen; Chen, Shao-Yong; Semenas, Julius; Abrahamsson, Per-Anders; Dizeyi, Nishtman

    2013-01-01

    Taxane based chemotherapy is the standard of care treatment in castration resistant prostate cancer (CRPC). There is convincing evidence that taxane therapy affects androgen receptor (AR) but the exact mechanisms have to be further elucidated. Our studies identified c-jun as a crucial key player which interacts with AR and thus determines the outcome of the taxane therapy given. Docetaxel (Doc) and paclitaxel (Pac) agents showed different effects on LNCaP and LNb4 evidenced by alteration in the protein and mRNA levels of c-jun, AR and PSA. Docetaxel-induced phophorylation of c-jun occurred before JNK phosphorylation which suggests that c-jun phosphorylation is independent of JNK pathways in prostate cancer cells. A xenograft study showed that mice treated with Pac and bicalutamide showed worse outcome supporting our hypothesis that upregulation of c-jun might act as a potent antiapoptotic factor. We observed in our in vitro studies an inverse regulation of PSA- and AR-mRNA levels in Doc treated LNb4 cells. This was also seen for kallikrein 2 (KLK 2) which followed the same pattern. Given the fact that response to taxane therapy is measured by PSA decrease we have to consider that this might not reflect the true activity of AR in CRPC patients. PMID:24260253

  14. Determination of aminoglycoside residues in kidney and honey samples by hydrophilic interaction chromatography-tandem mass spectrometry.

    PubMed

    Kumar, Praveen; Rúbies, Antoni; Companyó, Ramon; Centrich, Francesc

    2012-10-01

    Two methods based on liquid chromatography-tandem mass spectrometry were developed for the determination of ten aminoglycosides (streptomycin, dihydrostreptomycin, spectinomycin, apramycin, paromomycin, kanamycin A, gentamycin C1, gentamycin C2/C2a, gentamycin C1a, and neomycin B) in kidney samples from food-producing animals and in honey samples. The methods involved extraction with an aqueous solution (for the kidney samples) or sample dissolution in water (for the honey samples), solid-phase extraction with a weak cation exchange cartridge and injection of the eluate into a liquid chromatography-tandem mass spectrometry system. A zwitterionic hydrophilic interaction chromatography column was used for separation of aminoglycosides and a triple quadrupole mass analyzer was used for detection. The methods were validated according to Decision 2002/657/EC. The limits of quantitation ranged from 2 to 125 μg/kg in honey and 25 to 264 μg/kg in the kidney samples. Interday precision (RSD%) ranged from 6 to 26% in honey and 2 to 21% in kidney. Trueness, expressed as the percentage of error, ranged from 7 to 20% in honey and 1 to 11% in kidney. PMID:23065931

  15. Determination of the Dresselhaus spin-orbit interaction in a (110)-oriented GaAs quantum well

    NASA Astrophysics Data System (ADS)

    Chen, Yuansen; Faelt, Stefan; Wegscheider, Werner; Salis, Gian

    2014-03-01

    The Dresselhaus spin-orbit (SO) interaction is studied in a (110) -oriented and symmetrically doped GaAs quantum well (QW) by means of time-resolved Kerr rotation with a magnetic field applied along an oblique angle. The nonzero averaged SO field is obtained by introducing a DC current through the QW to shift the Fermi circle of the electron gas. By monitoring the change of the electron Larmor precession frequency induced by the current, we can determine both the magnitude and the direction of the Dresselhaus SO field. In agreement with the theoretical expectation, we find the SO field to be out-of-plane and to linearly increase with a current applied along the [ 1 1 0 ] direction. A negligible SO field is observed for a current along the [ 001 ] direction. The vector sum of the SO field and the in-plane component of an external magnetic field leads to an observable tilting of the spin precession axis. The unidirectional SO field is expected to support a persistent spin helix state in the QW. This work is financially supported by the NCCR QSIT.

  16. Non-Linear Interactions Determine the Impact of Sea-Level Rise on Estuarine Benthic Biodiversity and Ecosystem Processes

    PubMed Central

    Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C. L.

    2013-01-01

    Sea-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated sea-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by interactions among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. Sea-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of sea-level rise will also be affected by local ecological context, especially for less sloping beaches. PMID:23861863

  17. Analysis of Usp DNA binding domain targeting reveals critical determinants of the ecdysone receptor complex interaction with the response element.

    PubMed

    Grad, I; Niedziela-Majka, A; Kochman, M; Ozyhar, A

    2001-07-01

    The steroid hormone, 20-hydroxyecdysone (20E), directs Drosophila metamorphosis via a heterodimeric receptor formed by two members of the nuclear hormone receptors superfamily, the product of the EcR (EcR) and of the ultraspiracle (Usp) genes. Our previous study [Niedziela-Majka, A., Kochman, M., Ozyhar, A. (2000) Eur. J. Biochem. 267, 507-519] on EcR and Usp DNA-binding domains (EcRDBD and UspDBD, respectively) suggested that UspDBD may act as a specific anchor that preferentially binds the 5' half-site of the pseudo-palindromic response element from the hsp27 gene promoter and thus locates the heterocomplex in the defined orientation. Here, we analyzed in detail the determinants of the UspDBD interaction with the hsp27 element. The roles of individual amino acids in the putative DNA recognition alpha helix and the roles of the base pairs of the UspDBD target sequence have been probed by site-directed mutagenesis. The results show how the hsp27 element specifies UspDBD binding and thus the polar assembly of the UspDBD/EcRDBD heterocomplex. It is suggested how possible nucleotide deviations within the 5' half-site of the element may be used for the fine-tuning of the 20E-response element specificity and consequently the physiological response. PMID:11432742

  18. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions

    NASA Astrophysics Data System (ADS)

    Yan, Yangqian; Blume, D.

    2016-06-01

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b4 of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4 , our b4 agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

  19. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions.

    PubMed

    Yan, Yangqian; Blume, D

    2016-06-10

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions. PMID:27341213

  20. Path integral Monte Carlo determination of the fourth-order virial coefficient for unitary two-component Fermi gas with zero-range interactions

    NASA Astrophysics Data System (ADS)

    Yan, Yangqian; Blume, D.

    2016-05-01

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astro physics. This work determines the fourth-order virial coefficient b4 of such a strongly-interacting Fermi gas using a customized ab inito path integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4, our b4 agrees with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly anti-symmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions. We gratefully acknowledge support by the NSF.

  1. Identification of Three Interactions to Determine the Conformation Change and to Maintain the Function of Kir2.1 Channel Protein

    NASA Astrophysics Data System (ADS)

    Li, Jun-Wei; Xiao, Shao-Ying; Xie, Xiao-Xiao; Yu, Hui; Zhang, Hai-Lin; Zhan, Yong; An, Hai-Long

    2015-02-01

    We find that a conserved mutation residue Glu to residue Asp (E303D), which both have the same polar and charged properties, makes Kir2.1 protein lose its function. To understand the mechanism, we identify three interactions which control the conformation change and maintain the function of the Kir2.1 protein by combining homology modeling and molecular dynamics with targeted molecular dynamics. We find that the E303D mutation weakens these interactions and results in the loss of the related function. Our data indicate that not only the amino residues but also the interactions determine the function of proteins.

  2. Next-generation analysis of cataracts: determining knowledge driven gene-gene interactions using biofilter, and gene-environment interactions using the Phenx Toolkit*.

    PubMed

    Pendergrass, Sarah A; Verma, Shefali S; Hall, Molly A; Holzinger, Emily R; Moore, Carrie B; Wallace, John R; Dudek, Scott M; Huggins, Wayne; Kitchner, Terrie; Waudby, Carol; Berg, Richard; Mccarty, Catherine A; Ritchie, Marylyn D

    2015-01-01

    Investigating the association between biobank derived genomic data and the information of linked electronic health records (EHRs) is an emerging area of research for dissecting the architecture of complex human traits, where cases and controls for study are defined through the use of electronic phenotyping algorithms deployed in large EHR systems. For our study, cataract cases and controls were identified within the Marshfield Personalized Medicine Research Project (PMRP) biobank and linked EHR, which is a member of the NHGRI-funded electronic Medical Records and Genomics (eMERGE) Network. Our goal was to explore potential gene-gene and gene-environment interactions within these data for 527,953 and 527,936 single nucleotide polymorphisms (SNPs) for gene-gene and gene-environment analyses, respectively, with minor allele frequency > 1%, in order to explore higher level associations with cataract risk beyond investigations of single SNP-phenotype associations. To build our SNP-SNP interaction models we utilized a prior-knowledge driven filtering method called Biofilter to minimize the multiple testing burden of exploring the vast array of interaction models possible from our extensive number of SNPs. Using Biofilter, we developed 57,376 prior-knowledge directed SNP-SNP models to test for association with cataract status. We selected models that required 6 sources of external domain knowledge. We identified 13 statistically significant SNP-SNP models with an interaction with p-value < 1 × 10(-4), as well as an overall model with p-value < 0.01 associated with cataract status. We also conducted gene-environment interaction analyses for all GWAS SNPs and a set of environmental factors from the PhenX Toolkit: smoking, UV exposure, and alcohol use;these environmental factors have been previously associated with the formation of cataracts. We found a total of 782 gene-environment models that exhibit an interaction with a p-value < 1 × 10(-4) associatedwith cataract

  3. Next-generation analysis of cataracts: determining knowledge driven gene-gene interactions using Biofilter, and gene-environment interactions using the PhenX Toolkit.

    PubMed

    Pendergrass, Sarah A; Verma, Shefali S; Holzinger, Emily R; Moore, Carrie B; Wallace, John; Dudek, Scott M; Huggins, Wayne; Kitchner, Terrie; Waudby, Carol; Berg, Richard; McCarty, Catherine A; Ritchie, Marylyn D

    2013-01-01

    Investigating the association between biobank derived genomic data and the information of linked electronic health records (EHRs) is an emerging area of research for dissecting the architecture of complex human traits, where cases and controls for study are defined through the use of electronic phenotyping algorithms deployed in large EHR systems. For our study, 2580 cataract cases and 1367 controls were identified within the Marshfield Personalized Medicine Research Project (PMRP) Biobank and linked EHR, which is a member of the NHGRI-funded electronic Medical Records and Genomics (eMERGE) Network. Our goal was to explore potential gene-gene and gene-environment interactions within these data for 529,431 single nucleotide polymorphisms (SNPs) with minor allele frequency > 1%, in order to explore higher level associations with cataract risk beyond investigations of single SNP-phenotype associations. To build our SNP-SNP interaction models we utilized a prior-knowledge driven filtering method called Biofilter to minimize the multiple testing burden of exploring the vast array of interaction models possible from our extensive number of SNPs. Using the Biofilter, we developed 57,376 prior-knowledge directed SNP-SNP models to test for association with cataract status. We selected models that required 6 sources of external domain knowledge. We identified 5 statistically significant models with an interaction term with p-value < 0.05, as well as an overall model with p-value < 0.05 associated with cataract status. We also conducted gene-environment interaction analyses for all GWAS SNPs and a set of environmental factors from the PhenX Toolkit: smoking, UV exposure, and alcohol use; these environmental factors have been previously associated with the formation of cataracts. We found a total of 288 models that exhibit an interaction term with a p-value ≤ 1×10(-4) associated with cataract status. Our results show these approaches enable advanced searches for epistasis

  4. Hydrophilic interaction liquid chromatography coupled to high-resolution mass spectrometry to determine artificial sweeteners in environmental waters.

    PubMed

    Salas, Daniela; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa Maria

    2015-06-01

    Artificial sweeteners are food additives employed as sugar substitutes which are now considered to be emerging organic contaminants. In the present study, a method is developed for the determination of a group of artificial sweeteners in environmental waters. Considering the polar and hydrophilic character of these compounds, hydrophilic interaction liquid chromatography is proposed for their separation as an alternative to traditional reversed-phase liquid chromatography. Two stationary phases with different chemistry were compared for this purpose. For the detection of the analytes, high-resolution mass spectrometry (Orbitrap) was employed to take advantage of its benefits in terms of reliable quantification and confirmation for the measurement of accurate masses. Solid-phase extraction was chosen as the sample treatment, in which the extract in a mixture of NH4OH:MeOH:ACN (1:4:15) was directly injected into the chromatographic system, simplifying the analytical procedure. The optimized method was validated on river and waste water samples. For example, in the case of effluent water samples, limits of detection ranged from 0.002 to 0.7 μg/L and limits of quantification ranged from 0.004 to 1.5 μg/L. Apparent (whole method) recoveries ranged from 57 to 74% with intra-day precision (%RSD, n = 5) ranging from 6 to 25%. The method was successfully applied to water samples from different rivers in Catalonia and different waste water treatment plants in Tarragona. Acesulfame, cyclamate, saccharine and sucralose were found in several samples. PMID:25428455

  5. Foraging modality and plasticity in foraging traits determine the strength of competitive interactions among carnivorous plants, spiders and toads.

    PubMed

    Jennings, David E; Krupa, James J; Rohr, Jason R

    2016-07-01

    Foraging modalities (e.g. passive, sit-and-wait, active) and traits are plastic in some species, but the extent to which this plasticity affects interspecific competition remains unclear. Using a long-term laboratory mesocosm experiment, we quantified competition strength and the plasticity of foraging traits in a guild of generalist predators of arthropods with a range of foraging modalities. Each mesocosm contained eight passively foraging pink sundews, and we employed an experimental design where treatments were the presence or absence of a sit-and-wait foraging spider and actively foraging toad crossed with five levels of prey abundance. We hypothesized that actively foraging toads would outcompete the other species at low prey abundance, but that spiders and sundews would exhibit plasticity in foraging traits to compensate for strong competition when prey were limited. Results generally supported our hypotheses. Toads had a greater effect on sundews at low prey abundances, and toad presence caused spiders to locate webs higher above the ground. Additionally, the closer large spider webs were to the ground, the greater the trichome densities produced by sundews. Also, spider webs were larger with than without toads and as sundew numbers increased, and these effects were more prominent as resources became limited. Finally, spiders negatively affected toad growth only at low prey abundance. These findings highlight the long-term importance of foraging modality and plasticity of foraging traits in determining the strength of competition within and across taxonomic kingdoms. Future research should assess whether plasticity in foraging traits helps to maintain coexistence within this guild and whether foraging modality can be used as a trait to reliably predict the strength of competitive interactions. PMID:27061175

  6. Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico docking.

    PubMed

    Zhang, Yihong; Colenso, Charlotte K; El Harchi, Aziza; Cheng, Hongwei; Witchel, Harry J; Dempsey, Chris E; Hancox, Jules C

    2016-08-01

    The antiarrhythmic drug amiodarone delays cardiac repolarisation through inhibition of hERG-encoded potassium channels responsible for the rapid delayed rectifier potassium current (IKr). This study aimed to elucidate molecular determinants of amiodarone binding to the hERG channel. Whole-cell patch-clamp recordings were made at 37°C of ionic current (IhERG) carried by wild-type (WT) or mutant hERG channels expressed in HEK293 cells. Alanine mutagenesis and ligand docking were used to investigate the roles of pore cavity amino-acid residues in amiodarone binding. Amiodarone inhibited WT outward IhERG tails with a half-maximal inhibitory concentration (IC50) of ∼45nM, whilst inward IhERG tails in a high K(+) external solution ([K(+)]e) of 94mM were blocked with an IC50 of 117.8nM. Amiodarone's inhibitory action was contingent upon channel gating. Alanine-mutagenesis identified multiple residues directly or indirectly involved in amiodarone binding. The IC50 for the S6 aromatic Y652A mutation was increased to ∼20-fold that of WT IhERG, similar to the pore helical mutant S624A (∼22-fold WT control). The IC50 for F656A mutant IhERG was ∼17-fold its corresponding WT control. Computational docking using a MthK-based hERG model differentiated residues likely to interact directly with drug and those whose Ala mutation may affect drug block allosterically. The requirements for amiodarone block of aromatic residues F656 and Y652 within the hERG pore cavity are smaller than for other high affinity IhERG inhibitors, with relative importance to amiodarone binding of the residues investigated being S624A∼Y652A>F656A>V659A>G648A>T623A. PMID:27256139

  7. Fast HPLC method using ion-pair and hydrophilic interaction liquid chromatography for determination of phenylephrine in pharmaceutical formulations.

    PubMed

    Dousa, Michal; Gibala, Petr

    2010-01-01

    A rapid procedure based on a direct extraction and HPLC determination with fluorescence detection of phenylephrine in pharmaceutical sachets that include a large excess of paracetamol (65 + 1, w/w), ascorbic acid (5 + 1, w/w), and other excipients (aspartame and sucrose) was developed and validated. The final optimized chromatographic method for ion-pair chromatography used an XTerra RP18 column, 3 microm particle size, 50 x 3.0 mm id. The mobile phase consisted of a mixture of acetonitrile and buffer (10 mM sodium octane-1-sulfonate, adjusted with H3PO4 to pH 2.2; 200 + 800, v/v), with a constant flow rate of 0.3 mL/min. The separation was carried out at 30 degrees C, and the injection volume was 3 microL. Fluorescence detection was performed at excitation and emission wavelengths of 275 and 310 nm, respectively. The mobile phase parameters, such as the organic solvent fraction (acetonitrile) in mobile phase as an organic modifier, the concentration of sodium octane-1-sulfonate as a counter-ion, temperature, and pH of mobile phase, were studied. As an alternative to ion-pair chromatography, hydrophilic interaction liquid chromatography (HILIC) was investigated using a Luna HILIC column, 3 microm, 100 x 4.6 mm id. The mobile phase consisted of acetonitrile and buffer (5 mM potassium dihydrogen phosphate, adjusted with H3PO4 to pH 2.5; 750 + 250, v/v) at a flow rate of 0.8 mL/min. The separation was carried out at 25 degrees C, and the injection volume was 5 microL. The proposed method has an advantage of a very simple sample pretreatment, and is much faster than the currently utilized HPLC methods using gradient elution and UV detection. Commercial samples of sachets were successfully analyzed by the proposed HPLC method. PMID:21140654

  8. Land-use history, historical connectivity, and land management interact to determine longleaf pine woodland understory richness and composition.

    SciTech Connect

    Brudvig, Lars A.; Damschen, Ellen L.

    2010-08-13

    Restoration and management activities targeted at recovering biodiversity can lead to unexpected results. In part, this is due to a lack of understanding of how site-level characteristics, landscape factors, and land-use history interact with restoration and management practices to determine patterns of diversity. For plants, such factors may be particularly important since plant populations often exhibit lagged responses to habitat loss and degradation. Here, we assess the importance of site-level, landscape, and historical effects for understory plant species richness and composition across a set of 40 longleaf pine Pinus palustris woodlands undergoing restoration for the federally endangered red-cockaded woodpecker in the southeastern United States. Land-use history had an overarching effect on richness and composition. Relative to historically forested sites, sites with agricultural histories (i.e. former pastures or cultivated fields) supported lower species richness and an altered species composition due to fewer upland longleaf pine woodland community members. Landscape effects did not influence the total number of species in either historically forested or post-agricultural sites; however, understory species composition was affected by historical connectivity, but only for post-agricultural sites. The influences of management and restoration activities were only apparent once land-use history was accounted for. Prescribed burning and mechanical overstory thinning were key drivers of understory composition and promoted understory richness in post-agricultural sites. In historically forested sites these activities had no impact on richness and only prescribed fire influenced composition. Our findings reveal complex interplays between site-level, landscape, and historical effects, suggest fundamentally different controls over plant communities in longleaf pine woodlands with varying land-use history, and underscore the importance of considering land

  9. Interaction of cosmic ray muons with spent nuclear fuel dry casks and determination of lower detection limit

    NASA Astrophysics Data System (ADS)

    Chatzidakis, S.; Choi, C. K.; Tsoukalas, L. H.

    2016-08-01

    The potential non-proliferation monitoring of spent nuclear fuel sealed in dry casks interacting continuously with the naturally generated cosmic ray muons is investigated. Treatments on the muon RMS scattering angle by Moliere, Rossi-Greisen, Highland and, Lynch-Dahl were analyzed and compared with simplified Monte Carlo simulations. The Lynch-Dahl expression has the lowest error and appears to be appropriate when performing conceptual calculations for high-Z, thick targets such as dry casks. The GEANT4 Monte Carlo code was used to simulate dry casks with various fuel loadings and scattering variance estimates for each case were obtained. The scattering variance estimation was shown to be unbiased and using Chebyshev's inequality, it was found that 106 muons will provide estimates of the scattering variances that are within 1% of the true value at a 99% confidence level. These estimates were used as reference values to calculate scattering distributions and evaluate the asymptotic behavior for small variations on fuel loading. It is shown that the scattering distributions between a fully loaded dry cask and one with a fuel assembly missing initially overlap significantly but their distance eventually increases with increasing number of muons. One missing fuel assembly can be distinguished from a fully loaded cask with a small overlapping between the distributions which is the case of 100,000 muons. This indicates that the removal of a standard fuel assembly can be identified using muons providing that enough muons are collected. A Bayesian algorithm was developed to classify dry casks and provide a decision rule that minimizes the risk of making an incorrect decision. The algorithm performance was evaluated and the lower detection limit was determined.

  10. Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO

    PubMed Central

    Keusekotten, Kirstin; Bade, Veronika N.; Meyer-Teschendorf, Katrin; Sriramachandran, Annie Miriam; Fischer-Schrader, Katrin; Krause, Anke; Horst, Christiane; Schwarz, Günter; Hofmann, Kay; Dohmen, R. Jürgen; Praefcke, Gerrit J. K.

    2013-01-01

    RNF4 (RING finger protein 4) is a STUbL [SUMO (small ubiquitin-related modifier)-targeted ubiquitin ligase] controlling PML (promyelocytic leukaemia) nuclear bodies, DNA double strand break repair and other nuclear functions. In the present paper, we describe that the sequence and spacing of the SIMs (SUMO-interaction motifs) in RNF4 regulate the avidity-driven recognition of substrate proteins carrying SUMO chains of variable length. PMID:24151981

  11. Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO.

    PubMed

    Keusekotten, Kirstin; Bade, Veronika N; Meyer-Teschendorf, Katrin; Sriramachandran, Annie Miriam; Fischer-Schrader, Katrin; Krause, Anke; Horst, Christiane; Schwarz, Günter; Hofmann, Kay; Dohmen, R Jürgen; Praefcke, Gerrit J K

    2014-01-01

    RNF4 (RING finger protein 4) is a STUbL [SUMO (small ubiquitin-related modifier)-targeted ubiquitin ligase] controlling PML (promyelocytic leukaemia) nuclear bodies, DNA double strand break repair and other nuclear functions. In the present paper, we describe that the sequence and spacing of the SIMs (SUMO-interaction motifs) in RNF4 regulate the avidity-driven recognition of substrate proteins carrying SUMO chains of variable length. PMID:24151981

  12. Pharmacokinetic drug–drug interactions between 1,4-dihydropyridine calcium channel blockers and statins: factors determining interaction strength and relevant clinical risk management

    PubMed Central

    Zhou, Yi-Ting; Yu, Lu-Shan; Zeng, Su; Huang, Yu-Wen; Xu, Hui-Min; Zhou, Quan

    2014-01-01

    Background Coadministration of 1,4-dihydropyridine calcium channel blockers (DHP-CCBs) with statins (or 3-hydroxy-3-methylglutaryl-coenzyme A [HMG-CoA] reductase inhibitors) is common for patients with hypercholesterolemia and hypertension. To reduce the risk of myopathy, in 2011, the US Food and Drug Administration (FDA) Drug Safety Communication set a new dose limitation for simvastatin, for patients taking simvastatin concomitantly with amlodipine. However, there is no such dose limitation for atorvastatin for patients receiving amlodipine. The combination pill formulation of amlodipine/atorvastatin is available on the market. There been no systematic review of the pharmacokinetic drug–drug interaction (DDI) profile of DHP-CCBs with statins, the underlying mechanisms for DDIs of different degree, or the corresponding management of clinical risk. Methods The relevant literature was identified by performing a PubMed search, covering the period from January 1987 to September 2013. Studies in the field of drug metabolism and pharmacokinetics that described DDIs between DHP-CCB and statin or that directly compared the degree of DDIs associated with cytochrome P450 (CYP)3A4-metabolized statins or DHP-CCBs were included. The full text of each article was critically reviewed, and data interpretation was performed. Results There were three circumstances related to pharmacokinetic DDIs in the combined use of DHP-CCB and statin: 1) statin is comedicated as the precipitant drug (pravastatin–nimodipine and lovastatin–nicardipine); 2) statin is comedicated as the object drug (isradipine–lovastatin, lacidipine–simvastatin, amlodipine–simvastatin, benidipine-simvastatin, azelnidipine– simvastatin, lercanidipine–simvastatin, and amlodipine–atorvastatin); and 3) mutual interactions (lercanidipine–fluvastatin). Simvastatin has an extensive first-pass effect in the intestinal wall, whereas atorvastatin has a smaller intestinal first-pass effect. The interaction

  13. The prevalence and determinants of problem gambling in Australia: assessing the impact of interactive gambling and new technologies.

    PubMed

    Gainsbury, Sally M; Russell, Alex; Hing, Nerilee; Wood, Robert; Lubman, Dan I; Blaszczynski, Alex

    2014-09-01

    New technology is changing the nature of gambling with interactive modes of gambling becoming putatively associated with higher rates of problem gambling. This paper presents the first nationally representative data on the prevalence and correlates of problem gambling among Australian adults since 1999 and focuses on the impact of interactive gambling. A telephone survey of 15,006 adults was conducted. Of these, 2,010 gamblers (all interactive gamblers and a randomly selected subsample of those reporting land-based gambling in the past 12 months) also completed more detailed measures of problem gambling, substance use, psychological distress, and help-seeking. Problem gambling rates among interactive gamblers were 3 times higher than for noninteractive gamblers. However, problem and moderate risk gamblers were most likely to attribute problems to electronic gaming machines and land-based gambling, suggesting that although interactive forms of gambling are associated with substantial problems, interactive gamblers experience significant harms from land-based gambling. The findings demonstrate that problem gambling remains a significant public health issue that is changing in response to new technologies, and it is important to develop strategies that minimize harms among interactive gamblers. PMID:24865462

  14. Simultaneous determination of erlotinib and tamoxifen in rat plasma using UPLC-MS/MS: Application to pharmacokinetic interaction studies.

    PubMed

    Maher, Hadir M; Alzoman, Nourah Z; Shehata, Shereen M

    2016-08-15

    Tamoxifen (TAM) is a non-steroidal estrogen receptor antagonist that enhances erlotinib (ERL)-induced cytotoxicity in the treatment of NSCLC. ERL and TAM are metabolized by CYP3A4 enzymes. In addition, both drugs have the potential of altering the enzymatic activity through either inhibition (ERL) or induction (TAM). Thus it was expected that pharmacokinetics (PK) drug-drug interactions (DDIs) could be encountered following their co-administration. In this respect, a bioanalytical UPLC-MS/MS method has been developed and validated for the simultaneous determination of ERL and TAM in rat plasma samples, using ondansetron (OND) as an internal standard (IS). Plasma samples were prepared using mixed mode cationic solid phase extraction (SPE) STRATA™ -X-C 33μm cartridges with good extraction recovery of both drugs from rat plasma (Er% from -13.92 to -3.32). The drugs were separated on a Waters BEH™ C18 column with an isocratic elution using a mobile phase composed of a mixture of acetonitrile and water, each with 0.15% formic acid, in the ratio of 80: 20, v/v. Quantitation was carried out using the positive ionization mode with multiple reaction monitoring (MRM) at m/z 394.20>278.04 (ERL), m/z 372.25>72.01 (TAM), and m/z 294.18>170.16 (OND). The method was fully validated as per the FDA guidelines over the concentration range of 0.2-50ng/mL with very low lower limit of quantification (LLOQ) of 0.2ng/mL for both ERL and TAM. The intra- and inter-day assay precision (in terms of relative standard deviation, RSD) and accuracy (in terms of percentage relative error, % Er) were evaluated for both drugs and the calculated values evaluated at four different concentration levels were within the acceptable limits (<15%) for concentrations other than LLOQ and 20% for LLOQ. The method was successfully applied to the study of possible PK-DDI following the oral administration of ERL and TAM in a combination, compared to their single administration. PMID:27336702

  15. Simultaneous determination of four local anesthetics by CE with ECL and study on interaction between procainamide and human serum albumin.

    PubMed

    Duan, Hong-Bing; Cao, Jun-Tao; Yang, Jiu-Jun; Wang, Hui; Liu, Yan-Ming

    2016-07-01

    A new method of capillary electrophoresis (CE) coupled with tris(2, 2'-bipyridyl) ruthenium(II) electrochemiluminescence (ECL) detection has been developed to detect four local anesthetics procainamide (PAH), tetracaine (TCH), proparacaine (PCH) and cinchocaine (CIN) simultaneously. An europium (III)-doped prussian blue analogue film (Eu-PB) modified platinum electrode was prepared and applied to improve the detection sensitivity. The parameters including additives, concentration and pH of the running buffer, separation voltage and detection potential that affect CE separation and ECL detection were optimized in detail. The four local anesthetics were baseline separated and detected within 10min under the optimized conditions. The detection limits (LOD) of PAH, TCH, PCH and CIN are 5.5×10(-8), 9.6×10(-8), 2.5×10(-8) and 3.5×10(-8)molL(-1) (S/N=3), respectively. RSDs of the migration time for four analytes range from 1.2% to 2.5% within intraday and from 2.4% to 4.9% in interday, RSDs of the peak area for four analytes are from 1.7% to 3.3% within intraday and from 2.2% to 5.6% in interday, respectively. The limits of quantitation (LOQ) (S/N=10) for PAH, TCH, PCH and CIN in human urine sample are 5.9×10(-7), 9.2×10(-7), 8.3×10(-7) and 5.0×10(-7)molL(-1), separately. The recoveries (n=3) of four analytes in human urine are from 87.6% to 107.7% with less than 5.9% in RSDs. The developed method was used to determine four local anesthetics in human urine samples and investigate the interaction between PAH and human serum albumin (HSA). The number of binding sites and the binding constant of PAH with HSA were calculated to be 1.03 and 2.4×10(4)Lmol(-1), respectively. PMID:27154684

  16. Real-time non-invasive eyetracking and gaze-point determination for human-computer interaction and biomedicine

    NASA Technical Reports Server (NTRS)

    Talukder, Ashit; Morookian, John-Michael; Monacos, S.; Lam, R.; Lebaw, C.; Bond, A.

    2004-01-01

    Eyetracking is one of the latest technologies that has shown potential in several areas including human-computer interaction for people with and without disabilities, and for noninvasive monitoring, detection, and even diagnosis of physiological and neurological problems in individuals.

  17. Molecular determinants mediating gating of Transient Receptor Potential Canonical (TRPC) channels by stromal interaction molecule 1 (STIM1).

    PubMed

    Lee, Kyu Pil; Choi, Seok; Hong, Jeong Hee; Ahuja, Malini; Graham, Sarabeth; Ma, Rong; So, Insuk; Shin, Dong Min; Muallem, Shmuel; Yuan, Joseph P

    2014-03-01

    Transient receptor potential canonical (TRPC) channels mediate a critical part of the receptor-evoked Ca(2+) influx. TRPCs are gated open by the endoplasmic reticulum Ca(2+) sensor STIM1. Here we asked which stromal interaction molecule 1 (STIM1) and TRPC domains mediate the interaction between them and how this interaction is used to open the channels. We report that the STIM1 Orai1-activating region domain of STIM1 interacts with the TRPC channel coiled coil domains (CCDs) and that this interaction is essential for opening the channels by STIM1. Thus, disruption of the N-terminal (NT) CCDs by triple mutations eliminated TRPC surface localization and reduced binding of STIM1 to TRPC1 and TRPC5 while increasing binding to TRPC3 and TRPC6. Single mutations in TRPC1 NT or C-terminal (CT) CCDs reduced interaction and activation of TRPC1 by STIM1. Remarkably, single mutations in the TRPC3 NT CCD enhanced interaction and regulation by STIM1. Disruption in the TRPC3 CT CCD eliminated regulation by STIM1 and the enhanced interaction caused by NT CCD mutations. The NT CCD mutations converted TRPC3 from a TRPC1-dependent to a TRPC1-independent, STIM1-regulated channel. TRPC1 reduced the FRET between BFP-TRPC3 and TRPC3-YFP and between CFP-TRPC3-YFP upon stimulation. Accordingly, knockdown of TRPC1 made TRPC3 STIM1-independent. STIM1 dependence of TRPC3 was reconstituted by the TRPC1 CT CCD alone. Knockout of Trpc1 and Trpc3 similarly inhibited Ca(2+) influx, and inhibition of Trpc3 had no further effect on Ca(2+) influx in Trpc1(-/-) cells. Cell stimulation enhanced the formation of Trpc1-Stim1-Trpc3 complexes. These findings support a model in which the TRPC3 NT and CT CCDs interact to shield the CT CCD from interaction with STIM1. The TRPC1 CT CCD dissociates this interaction to allow the STIM1 Orai1-activating region within STIM1 access to the TRPC3 CT CCD and regulation of TRPC3 by STIM1. These studies provide evidence that the TRPC channel CCDs participate in channel

  18. Molecular Determinants Mediating Gating of Transient Receptor Potential Canonical (TRPC) Channels by Stromal Interaction Molecule 1 (STIM1)*

    PubMed Central

    Lee, Kyu Pil; Choi, Seok; Hong, Jeong Hee; Ahuja, Malini; Graham, Sarabeth; Ma, Rong; So, Insuk; Shin, Dong Min; Muallem, Shmuel; Yuan, Joseph P.

    2014-01-01

    Transient receptor potential canonical (TRPC) channels mediate a critical part of the receptor-evoked Ca2+ influx. TRPCs are gated open by the endoplasmic reticulum Ca2+ sensor STIM1. Here we asked which stromal interaction molecule 1 (STIM1) and TRPC domains mediate the interaction between them and how this interaction is used to open the channels. We report that the STIM1 Orai1-activating region domain of STIM1 interacts with the TRPC channel coiled coil domains (CCDs) and that this interaction is essential for opening the channels by STIM1. Thus, disruption of the N-terminal (NT) CCDs by triple mutations eliminated TRPC surface localization and reduced binding of STIM1 to TRPC1 and TRPC5 while increasing binding to TRPC3 and TRPC6. Single mutations in TRPC1 NT or C-terminal (CT) CCDs reduced interaction and activation of TRPC1 by STIM1. Remarkably, single mutations in the TRPC3 NT CCD enhanced interaction and regulation by STIM1. Disruption in the TRPC3 CT CCD eliminated regulation by STIM1 and the enhanced interaction caused by NT CCD mutations. The NT CCD mutations converted TRPC3 from a TRPC1-dependent to a TRPC1-independent, STIM1-regulated channel. TRPC1 reduced the FRET between BFP-TRPC3 and TRPC3-YFP and between CFP-TRPC3-YFP upon stimulation. Accordingly, knockdown of TRPC1 made TRPC3 STIM1-independent. STIM1 dependence of TRPC3 was reconstituted by the TRPC1 CT CCD alone. Knockout of Trpc1 and Trpc3 similarly inhibited Ca2+ influx, and inhibition of Trpc3 had no further effect on Ca2+ influx in Trpc1−/− cells. Cell stimulation enhanced the formation of Trpc1-Stim1-Trpc3 complexes. These findings support a model in which the TRPC3 NT and CT CCDs interact to shield the CT CCD from interaction with STIM1. The TRPC1 CT CCD dissociates this interaction to allow the STIM1 Orai1-activating region within STIM1 access to the TRPC3 CT CCD and regulation of TRPC3 by STIM1. These studies provide evidence that the TRPC channel CCDs participate in channel gating

  19. Evaluation of Taylor dispersion injections: determining kinetic/affinity interaction constants and diffusion coefficients in label-free biosensing.

    PubMed

    Quinn, John G

    2012-02-15

    In label-free biomolecular interaction analysis, a standard injection provides an injection of uniform analyte concentration. An alternative approach exploiting Taylor dispersion produces a continuous analyte titration allowing a full analyte dose response to be recorded in a single injection. The enhanced biophysical characterization that is possible with this new technique is demonstrated using a commercially available surface plasmon resonance-based biosensor. A kinetic interaction model was fitted locally to Taylor dispersion curves for estimation of the analyte diffusion coefficient in addition to affinity/kinetic constants. Statistical confidence in the measured parameters from a single Taylor dispersion injection was comparable to that obtained for global analysis of multiple standard injections. The affinity constants for multisite interactions were resolved with acceptable confidence limits. Importantly, a single analyte injection could be treated as a high-resolution real-time affinity isotherm and was demonstrated using the complex two-site interaction of warfarin with human serum albumin. In all three model interactions tested, the kinetic/affinity constants compared favorably with those obtained from standard kinetic analysis and the estimates of analyte diffusion coefficients were in good agreement with the expected values. PMID:22197422

  20. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change.

    PubMed

    Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja

    2015-05-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance. PMID:26236843

  1. Interactions among lactose, β-lactoglobulin and starch in co-lyophilized mixtures as determined by Fourier Transform Infrared Spectroscopy.

    PubMed

    Hajihashemi, Zohreh; Nasirpour, Ali; Scher, Joël; Desobry, Stéphane

    2014-11-01

    Processing and storage change food powders containing a large quantity of lactose due to lactose crystallization and interactions among components. Model food systems were prepared by co-lyophilization of lactose, β-lactoglobulin (BLG), and gelatinized starch. A mixture design was used to define the percentage of each mixture component to simulate a wide range of food powders. Interactions among lactose, BLG and starch were studied using Fourier Transform Infrared (FT-IR) at different relative humidities (RH), before and after 3 months storage. Results showed the presence of hydrogen bonds among these components. Moreover, interactions or formation of hydrogen bonds among lactose, starch and BLG preserved BLG against freezing and freeze-drying shocks. Lactose crystallization could be identified by comparing infrared spectra of amorphous and crystallized lactose at O - H and C - H stretching vibration bands. PMID:26396334

  2. MEK1act/tubulin interaction is an important determinant of mitotic stability in cultured HT1080 human fibrosarcoma cells

    PubMed Central

    Cao, Jia-ning; Shafee, Norazizah; Vickery, Larry; Kaluz, Stefan; Ru, Ning; Stanbridge, Eric J.

    2010-01-01

    Activation of the MAPK pathway plays a major role in neoplastic cell transformation. Using a proteomics approach we identified α tubulin and β tubulin as proteins that interact with activated MEK1, a central MAPK regulatory kinase. Confocal analysis revealed spatio-temporal control of MEK1-tubulin co-localization that was most prominent in the mitotic spindle apparatus in variant HT1080 human fibrosarcoma cells. Peptide arrays identified the critical role of positively charged amino acids R108, R113, R160 and K157 on the surface of MEK1 for tubulin interaction. Overexpression of activated MEK1 caused defects in spindle arrangement, chromosome segregation and ploidy. In contrast, chromosome polyploidy was reduced in the presence of an activated MEK1 mutant (R108A, R113A) that disrupted interactions with tubulin. Our findings indicate the importance of signaling by activated MEK1-tubulin in spindle organization and chromosomal instability. PMID:20570892

  3. A binding site outside the canonical PDZ domain determines the specific interaction between Shank and SAPAP and their function.

    PubMed

    Zeng, Menglong; Shang, Yuan; Guo, Tingfeng; He, Qinghai; Yung, Wing-Ho; Liu, Kai; Zhang, Mingjie

    2016-05-31

    Shank and SAPAP (synapse-associated protein 90/postsynaptic density-95-associated protein) are two highly abundant scaffold proteins that directly interact with each other to regulate excitatory synapse development and plasticity. Mutations of SAPAP, but not other reported Shank PDZ domain binders, share a significant overlap on behavioral abnormalities with the mutations of Shank both in patients and in animal models. The molecular mechanism governing the exquisite specificity of the Shank/SAPAP interaction is not clear, however. Here we report that a sequence preceding the canonical PDZ domain of Shank, together with the elongated PDZ BC loop, form another binding site for a sequence upstream of the SAPAP PDZ-binding motif, leading to a several hundred-fold increase in the affinity of the Shank/SAPAP interaction. We provide evidence that the specific interaction afforded by this newly identified site is required for Shank synaptic targeting and the Shank-induced synaptic activity increase. Our study provides a molecular explanation of how Shank and SAPAP dosage changes due to their gene copy number variations can contribute to different psychiatric disorders. PMID:27185935

  4. Supply determines demand: influence of partner quality and quantity on the interactions between bats and pitcher plants.

    PubMed

    Schöner, Caroline R; Schöner, Michael G; Kerth, Gerald; Grafe, T Ulmar

    2013-09-01

    Interspecific relationships such as mutualism and parasitism are major drivers of biodiversity. Because such interactions often comprise more than two species, ecological studies increasingly focus on complex multispecies systems. However, the spatial heterogeneity of multi-species interactions is often poorly understood. Here, we investigate the unusual interaction of a bat (Kerivoula hardwickii hardwickii) and two pitcher plant species (Nepenthes hemsleyana and N. bicalcarata) whose pitchers serve as roost for bats. Nepenthes hemsleyana offers roosts of higher quality, indicated by a more stable microclimate compared to N. bicalcarata but occurs at lower abundance and is less common than the latter. Whereas N. hemsleyana benefits from the roosting bats by gaining nitrogen from their feces, the bats' interaction with N. bicalcarata seems to be commensal or even parasitic. Bats stayed longer in roosts of higher quality provided by N. hemsleyana and preferred them to pitchers of N. bicalcarata in a disturbance experiment. Moreover, bats roosting only in pitchers of N. hemsleyana had a higher body condition and were less infested with parasites compared to bats roosting in pitchers of N. bicalcarata. Our study shows how the local supply of roosts with different qualities affects the behavior and status of their inhabitants and-as a consequence-how the demand of the inhabitants can influence evolutionary adaptations of the roost providing species. PMID:23436020

  5. The calculation of electrostatic interactions and their role in determining the energies and geometries of explosive molecular crystals

    SciTech Connect

    Ritchie, J.P.; Kober, E.M.; Copenhaver, A.S.

    1993-01-01

    Three different procedures were used to calculate electrostatic interactions in explosive molecular crystals. The use of Potential Derived Charges (PDC's) and atom-centered multipole expansions (ACME's) provides reasonable fits of the molecular electrostatic potential. The ability of these approaches to reproduce observed crystal structures was also evaluated.

  6. Preferential domain orientation of HMGB2 determined by the weak intramolecular interactions mediated by the interdomain linker

    NASA Astrophysics Data System (ADS)

    Uewaki, Jun-ichi; Kamikubo, Hironari; Kurita, Jun-ichi; Hiroguchi, Noriteru; Moriuchi, Hiroshi; Yoshida, Michiteru; Kataoka, Mikio; Utsunomiya-Tate, Naoko; Tate, Shin-ichi

    2013-06-01

    High mobility group box protein 2 (HMGB2) contains homologous tandem HMG box DNA-binding domains, boxes A and B. These two boxes are linked by a short basic linker having a sequence characteristic of an intrinsically disordered element. The combined use of NMR and small angle X-ray scattering (SAXS) showed that the two boxes assume a preferred orientation to make their DNA binding surface in opposite directions, although the linker does not keep any specific conformation. A series of site directed mutations to the residues in the linker showed that a network of CH-π interactions connects the N-terminal part of the linker to box A. The mutants having impaired intramolecular CH-π interactions changed the interdomain dynamics and their dynamic averaged orientation relative to the wild-type. This work demonstrates that the apparently unstructured linker plays a role in defining the preferential domain orientation through the intramolecular CH-π interactions, even though the interactions are weak and transient.

  7. Role of directed van der Waals bonded interactions in the determination of the structures of molecular arsenate solids.

    PubMed

    Gibbs, G V; Wallace, A F; Cox, D F; Dove, P M; Downs, R T; Ross, N L; Rosso, K M

    2009-01-29

    Bond paths, local energy density properties, and Laplacian, L(r) = -wedge(2)rho(r), composite isosurfaces of the electron density distributions were calculated for the intramolecular and intermolecular bonded interactions for molecular solids of As(2)O(3) and AsO(2) composition, an As(2)O(5) crystal, a number of arsenate molecules, and the arsenic metalloid, arsenolamprite. The directed intermolecular van der Waals As-O, O-O, and As-As bonded interactions are believed to serve as mainstays between the individual molecules in each of the molecular solids. As-O bond paths between the bonded atoms connect Lewis base charge concentrations and Lewis acid charge depletion domains, whereas the O-O and As-As paths connect Lewis base pair and Lewis acid pair domains, respectively, giving rise to sets of intermolecular directed bond paths. The alignment of the directed bond paths results in the periodic structures adopted by the arsenates. The arrangements of the As atoms in the claudetite polymorphs of As(2)O(3) and the As atoms in arsenolamprite are similar. Like the As(2)O(3) polymorphs, arsenolamprite is a molecular solid connected by relatively weak As-As intermolecular directed van der Waals bond paths between the layers of stronger As-As intramolecular bonded interactions. The bond critical point and local energy density properties of the intermolecular As-As bonded interactions in arsenolamprite are comparable with the As-As interactions in claudetite I. As such, the structure of claudetite I can be viewed as a stuffed derivative of the arsenolamprite structure with O atoms between pairs of As atoms comprising the layers of the structure. The cubic structure adopted by the arsenolite polymorph can be understood in terms of sets of directed acid-base As-O and base-base O-O pair domains and bond paths that radiate from the tetrahedral faces of its constituent molecules, serving as face-to-face key-lock mainstays in forming a periodic tetrahedral array of molecules

  8. Argon Interaction with Gold Surfaces: Ab Initio-Assisted Determination of Pair Ar-Au Potentials for Molecular Dynamics Simulations.

    PubMed

    Grenier, Romain; To, Quy-Dong; de Lara-Castells, María Pilar; Léonard, Céline

    2015-07-01

    Global potentials for the interaction between the Ar atom and gold surfaces are investigated and Ar-Au pair potentials suitable for molecular dynamics simulations are derived. Using a periodic plane-wave representation of the electronic wave function, the nonlocal van-der-Waals vdW-DF2 and vdW-OptB86 approaches have been proved to describe better the interaction. These global interaction potentials have been decomposed to produce pair potentials. Then, the pair potentials have been compared with those derived by combining the dispersionless density functional dlDF for the repulsive part with an effective pairwise dispersion interaction. These repulsive potentials have been obtained from the decomposition of the repulsive interaction between the Ar atom and the Au2 and Au4 clusters and the dispersion coefficients have been evaluated by means of ab initio calculations on the Ar+Au2 complex using symmetry adapted perturbation theory. The pair potentials agree very well with those evaluated through periodic vdW-DF2 calculations. For benchmarking purposes, CCSD(T) calculations have also been performed for the ArAu and Ar+Au2 systems using large basis sets and extrapolations to the complete basis set limit. This work highlights that ab initio calculations using very small surface clusters can be used either as an independent cross-check to compare the performance of state-of-the-art vdW-corrected periodic DFT approaches or, directly, to calculate the pair potentials necessary in further molecular dynamics calculations. PMID:26046588

  9. Use of Molecular Modeling to Determine the Interaction and Competition of Gases within Coal for Carbon Dioxide Sequestration

    SciTech Connect

    Jeffrey D. Evanseck; Jeffry D. Madura

    2003-02-23

    A 3-dimensional coal structural model for the Argonne Premium Coal Pocahontas No. 3 has been generated. The model was constructed based on the wealth of structural information available in the literature with the enhancement that the structural diversity within the structure was represented implicitly (for the first time) based on image analysis of HRTEM in combination with LDMS data. The complex and large structural model (>10,000 carbon atoms) will serve as a basis for examining the interaction of gases within this low volatile bituminous coal. Simulations are of interest to permit reasonable simulations of the host-guest interactions with regard to carbon dioxide sequestration within coal and methane displacement from coal. The molecular structure will also prove useful in examining other coal related behavior such as solvent swelling, liquefaction and other properties. Molecular models of CO{sub 2} have been evaluated with water to analyze which classical molecular force-field parameters are the most reasonable to predict the interactions of CO{sub 2} with water. The comparison of the molecular force field models was for a single CO{sub 2}-H{sub 2}O complex and was compared against first principles quantum mechanical calculations. The interaction energies and the electrostatic interaction distances were used as criteria in the comparison. The ab initio calculations included Hartree-Fock, B3LYP, and Moeller-Plesset 2nd, 3rd, and 4th order perturbation theories with basis sets up to the aug-cc-pvtz basis set. The Steele model was the best literature model, when compared to the ab initio data, however, our new CO{sub 2} model reproduces the QM data significantly better than the Steele force-field model.

  10. Multiple Interactions across the Surface of the gp120 Core Structure Determine the Global Neutralization Resistance Phenotype of Human Immunodeficiency Virus Type 1

    PubMed Central

    Bouma, Peter; Leavitt, Maria; Zhang, Peng Fei; Sidorov, Igor A.; Dimitrov, Dimiter S.; Quinnan, Gerald V.

    2003-01-01

    Resistance to neutralization is an important characteristic of primary isolates of human immunodeficiency virus type 1 (HIV-1) that relates to the potential for successful vaccination to prevent infection and use of immunotherapeutics for treatment of established infection. In order to further elucidate mechanisms responsible for neutralization resistance, we studied the molecular mechanisms that determine the resistance of the primary virus isolate of the strain HIV-1 MN to neutralization by soluble CD4 (sCD4). As is the case for the global neutralization resistance phenotype, sCD4 resistance depended upon sequences in the amino-terminal heptad repeat region of gp41 (HR1), as well as on multiple functional interactions within the envelope complex. The functional interactions that determined the resistance included interactions between the variable loop 1 and 2 (V1/V2) region and sequences in or near the CD4 binding site (CD4bs) and with the V3 loop. Additionally, the V3 loop region was found to interact functionally with sequences in the outer domain of gp120, distant from the CD4bs and coreceptor-binding site, as well as with a residue thought to be located centrally in the coreceptor-binding site. These and previous results provide the basis for a model by which functional signals that determine the neutralization resistance, high-infectivity phenotype depend upon interactions occurring across the surface of the gp120 core structure and involving variable loop structures and gp41. This model should be useful in efforts to define epitopes that may be important for primary virus neutralization. PMID:12829845

  11. Inelastic Neutron Scattering and Molecular Dynamics Determination of the Interaction Potential in Liquid CD{sub 4}

    SciTech Connect

    Guarini, E.; Barocchi, F.

    2007-10-19

    Anisotropic interactions of liquid CD{sub 4} are studied in detail by comparison of inelastic neutron Brillouin scattering data with molecular dynamics simulations using up to four different models of the methane site-site potential. We demonstrate that the experimental dynamic structure factor S(Q,{omega}) acts as a highly discriminating quantity for possible interaction schemes. In particular, the Q evolution of the spectra enables a selective probing of the short- and medium-range features of the anisotropic potentials. We show that the preferential configuration of methane dimers at liquid densities can thus be discerned by analyzing the orientation-dependent model potential curves, in light of the experimental and simulation results.

  12. The Cell Fate Determinant Numb Interacts with EHD/Rme-1 Family Proteins and Has a Role in Endocytic Recycling

    PubMed Central

    Smith, Christian A.; Dho, Sascha E.; Donaldson, Julie; Tepass, Ulrich; McGlade, C. Jane

    2004-01-01

    The adaptor protein Numb is necessary for the cell fate specification of progenitor cells in the Drosophila nervous system. Numb is evolutionarily conserved and previous studies have provided evidence for a similar functional role during mammalian development. The Numb protein has multiple protein-protein interaction regions including a phosphotyrosine binding (PTB) domain and a carboxy-terminal domain that contains conserved interaction motifs including an EH (Eps15 Homology) domain binding motif and α-adaptin binding site. In this study we identify the EHD/Rme-1/Pincher family of endocytic proteins as Numb interacting partners in mammals and Drosophila. The EHD/Rme-1 proteins function in recycling of plasma membrane receptors internalized by both clathrin-mediated endocytosis and a clathrin-independent pathway regulated by ADP ribosylation factor 6 (Arf6). Here we report that Numb colocalizes with endogenous EHD4/Pincher and Arf6 and that Arf6 mutants alter Numb subcellular localization. In addition, we present evidence that Numb has a novel function in endosomal recycling and intracellular trafficking of receptors. PMID:15155807

  13. Antigen availability determines CD8⁺ T cell-dendritic cell interaction kinetics and memory fate decisions.

    PubMed

    Henrickson, Sarah E; Perro, Mario; Loughhead, Scott M; Senman, Balimkiz; Stutte, Susanne; Quigley, Michael; Alexe, Gabriela; Iannacone, Matteo; Flynn, Michael P; Omid, Shaida; Jesneck, Jonathan L; Imam, Sabrina; Mempel, Thorsten R; Mazo, Irina B; Haining, W Nicholas; von Andrian, Ulrich H

    2013-09-19

    T cells are activated by antigen (Ag)-bearing dendritic cells (DCs) in lymph nodes in three phases. The duration of the initial phase of transient, serial DC-T cell interactions is inversely correlated with Ag dose. The second phase, characterized by stable DC-T cell contacts, is believed to be necessary for full-fledged T cell activation. Here we have shown that this is not the case. CD8⁺ T cells interacting with DCs presenting low-dose, short-lived Ag did not transition to phase 2, whereas higher Ag dose yielded phase 2 transition. Both antigenic constellations promoted T cell proliferation and effector differentiation but yielded different transcriptome signatures at 12 hr and 24 hr. T cells that experienced phase 2 developed long-lived memory, whereas conditions without stable contacts yielded immunological amnesia. Thus, T cells make fate decisions within hours after Ag exposure, resulting in long-term memory or abortive effector responses, correlating with T cell-DCs interaction kinetics. PMID:24054328

  14. The making of winners (and losers): how early dominance interactions determine adult social structure in a clonal fish.

    PubMed

    Laskowski, Kate L; Wolf, Max; Bierbach, David

    2016-05-11

    Across a wide range of animal taxa, winners of previous fights are more likely to keep winning future contests, just as losers are more likely to keep losing. At present, such winner and loser effects are considered to be fairly transient. However, repeated experiences with winning and/or losing might increase the persistence of these effects, generating long-lasting consequences for social structure. To test this, we exposed genetically identical individuals of a clonal fish, the Amazon molly (Poecilia formosa), to repeated winning and/or losing dominance interactions during the first two months of their life. We subsequently investigated whether these experiences affected the fish's ability to achieve dominance in a hierarchy five months later after sexual maturity, a major life-history transition. Individuals that had only winning interactions early in life consistently ranked at the top of the hierarchy. Interestingly, individuals with only losing experience tended to achieve the middle dominance rank, whereas individuals with both winning and losing experiences generally ended up at the bottom of the hierarchy. In addition to demonstrating that early social interactions can have dramatic and long-lasting consequences for adult social behaviour and social structure, our work also shows that higher cumulative winning experience early in life can counterintuitively give rise to lower social rank later in life. PMID:27170711

  15. Rubrene: The Interplay between Intramolecular and Intermolecular Interactions Determines the Planarization of Its Tetracene Core in the Solid State.

    PubMed

    Sutton, Christopher; Marshall, Michael S; Sherrill, C David; Risko, Chad; Brédas, Jean-Luc

    2015-07-15

    Rubrene is one of the most studied molecular semiconductors; its chemical structure consists of a tetracene backbone with four phenyl rings appended to the two central fused rings. Derivatization of these phenyl rings can lead to two very different solid-state molecular conformations and packings: One in which the tetracene core is planar and there exists substantive overlap among neighboring π-conjugated backbones; and another where the tetracene core is twisted and the overlap of neighboring π-conjugated backbones is completely disrupted. State-of-the-art electronic structure calculations show for all isolated rubrene derivatives that the twisted conformation is more favorable (by -1.7 to -4.1 kcal mol(-1)), which is a consequence of energetically unfavorable exchange-repulsion interactions among the phenyl side groups. Calculations based on available crystallographic structures reveal that planar conformations of the tetracene core in the solid state result from intermolecular interactions that can be tuned through well-chosen functionalization of the phenyl side groups and lead to improved intermolecular electronic couplings. Understanding the interplay of these intramolecular and intermolecular interactions provides insight into how to chemically modify rubrene and similar molecular semiconductors to improve the intrinsic materials electronic properties. PMID:26075966

  16. SiO2 nanoparticles modified CPE as a biosensor for determination of i-motif DNA/Tamoxifen interaction.

    PubMed

    Heydari, Elham; Raoof, Jahan Bakhsh; Ojani, Reza; Bagheryan, Zahra

    2016-08-01

    Cytosine-rich DNA sequences can form a highly ordered structure known as i-motif in slightly acidic solutions. The stability of the folded i-motif structure is a good strategy to inhibit the telomerase reaction in cancer cells. The electrochemical biosensor was prepared by modifying carbon paste electrode with SiO2 nanoparticles to investigate drugs which can stabilize this structure. Tamoxifen (Tam), an antiestrogen hormonal agent for treatment of breast cancer, was chosen as the model ligand and its interaction with i-motif structure was examined. The interaction between i-motif DNA and Tam was studied in PBS buffer and [Fe(CN)6](3-) through the cyclic voltammetry and square wave voltammetry methods. The oxidation peak of Tam, due to the i-motif DNA/Tam interaction, was observed after i-motif immobilized on the surface of the electrode. The i-motif formation was investigated by circular dichroism spectroscopy and the results showed that this structure can certainly be made with pH around 4.5, but its stability reduced by going to the more alkaline pH. The selectivity which was studied in the presence of complementary strand demonstrated that i-motif structure could be stabilized in acidic pH even in the presence of its complementary strand. PMID:27151665

  17. Linear 3d-4f compounds: synthesis, structure, and determination of the d-f magnetic interaction.

    PubMed

    Wu, Jianfeng; Zhao, Lang; Zhang, Peng; Zhang, Li; Guo, Mei; Tang, Jinkui

    2015-07-14

    A family of [RE2M2L2(BA)6] (RE = Gd, Tb, Dy, Y; M = Co, Ni, Cu, Zn; L = 1,2-bis(2-hydroxy-3-methoxybenzylidene)hydrazine; BA = benzoic acid) complexes were synthesized and structurally and magnetically characterized. The magnetic interactions between spin centers were systematically investigated. The interactions of M-M (M = Co, Ni and Cu) and Gd-Ni/Cu were extracted from the fitting of the experimental data of Y2M2 (M = Co, Ni and Cu) and Gd2M2 (M = Ni and Cu) derivatives, respectively. Furthermore, the Ln-M interactions were qualitatively analyzed by deducting the M-M coupling and the contribution of the crystal-field effects of the Ln(III) ion from the total magnetic susceptibility of Ln2M2 (Ln = Dy and Tb) compounds. In addition, complex [Dy2Zn2L2(BA)6] shows field induced single molecular magnet behavior profiting from the isolated anisotropic dysprosium ions. PMID:26066788

  18. Environment and host genotype determine the outcome of a plant-virus interaction: from antagonism to mutualism.

    PubMed

    Hily, Jean-Michel; Poulicard, Nils; Mora, Miguel-Ángel; Pagán, Israel; García-Arenal, Fernando

    2016-01-01

    It has been hypothesized that plant-virus interactions vary between antagonism and conditional mutualism according to environmental conditions. This hypothesis is based on scant experimental evidence, and to test it we examined the effect of abiotic factors on the Arabidopsis thaliana-Cucumber mosaic virus (CMV) interaction. Four Arabidopsis genotypes clustering into two allometric groups were grown under six environments defined by three temperature and two light-intensity conditions. Plants were either CMV-infected or mock-inoculated, and the effects of environment and infection on temporal and resource allocation life-history traits were quantified. Life-history traits significantly differed between allometric groups over all environments, with group 1 plants tolerating abiotic stress better than those of group 2. The effect of CMV infection on host fitness (virulence) differed between genotypes, being lower in group 1 genotypes. Tolerance to abiotic stress and to infection was similarly achieved through life-history trait responses, which resulted in resource reallocation from growth to reproduction. Effects of infection varied according to plant genotype and environment from detrimental to beneficial for host fitness. These results are highly relevant and demonstrate that plant viruses can be pleiotropic parasites along the antagonism-mutualism continuum, which should be considered in analyses of the evolution of plant-virus interactions. PMID:26365599

  19. Role of Directed van der Waals Bonded Interactions in the Determination of the Structures of Molecular Arsenate Solids

    SciTech Connect

    Gibbs, Gerald V.; Wallace, Adam F.; Cox, David F.; Dove, Patricia M; Downs, R. T.; Ross, Nancy L.; Rosso, Kevin M.

    2009-01-05

    Bond paths, local energy density properties, and Laplacian, L(r) = -2ρ(r), composite isosurfaces of the electron density distributions were calculated for the intramolecular and intermolecular bonded interactions for molecular solids of As2O3 and AsO2 composition, an As2O5 crystal, a number of arsenate molecules, and the arsenic metalloid, arsenolamprite. The directed intermolecular van der Waals As-O, O-O, and As-As bonded interactions are believed to serve as mainstays between the individual molecules in each of the molecular solids. As-O bond paths between the bonded atoms connect Lewis base charge concentrations and Lewis acid charge depletion domains, whereas the O-O and As-As paths connect Lewis base pair and Lewis acid pair domains, respectively, giving rise to sets of intermolecular directed bond paths. The alignment of the directed bond paths results in the periodic structures adopted by the arsenates. The arrangements of the As atoms in the claudetite polymorphs of As2O3 and the As atoms in arsenolamprite are similar. Like the As2O3 polymorphs, arsenolamprite is a molecular solid connected by relatively weak As-As intermolecular directed van der Waals bond paths between the layers of stronger As-As intramolecular bonded interactions. The bond critical point and local energy density properties of the intermolecular As-As bonded interactions in arsenolamprite are comparable with the As-As interactions in claudetite I. As such, the structure of claudetite I can be viewed as a stuffed derivative of the arsenolamprite structure with O atoms between pairs of As atoms comprising the layers of the structure. The cubic structure adopted by the arsenolite polymorph can be understood in terms of sets of directed acid-base As-O and base-base O-O pair domains and bond paths that radiate from the tetrahedral faces of its constituent molecules, serving as face-to-face key

  20. Interaction mechanisms between organic UV filters and bovine serum albumin as determined by comprehensive spectroscopy exploration and molecular docking.

    PubMed

    Ao, Junjie; Gao, Li; Yuan, Tao; Jiang, Gaofeng

    2015-01-01

    Organic UV filters are a group of emerging PPCP (pharmaceuticals and personal care products) contaminants. Current information is insufficient to understand the in vivo processes and health risks of organic UV filters in humans. The interaction mechanism of UV filters with serum albumin provides critical information for the health risk assessment of these active ingredients in sunscreen products. This study investigates the interaction mechanisms of five commonly used UV filters (2-hydroxy-4-methoxybenzophenone, BP-3; 2-ethylhexyl 4-methoxycinnamate, EHMC; 4-methylbenzylidene camphor, 4-MBC; methoxydibenzoylmethane, BDM; homosalate, HMS) with bovine serum albumin (BSA) by spectroscopic measurements of fluorescence, circular dichroism (CD), competitive binding experiments and molecular docking. Our results indicated that the fluorescence of BSA was quenched by these UV filters through a static quenching mechanism. The values of the binding constant (Ka) ranged from (0.78±0.02)×10(3) to (1.29±0.01)×10(5) L mol(-1). Further exploration by synchronous fluorescence and CD showed that the conformation of BSA was demonstrably changed in the presence of these organic UV filters. It was confirmed that the UV filters can disrupt the α-helical stability of BSA. Moreover, the results of molecular docking revealed that the UV filter molecule is located in site II (sub-domain IIIA) of BSA, which was further confirmed by the results of competitive binding experiments. In addition, binding occurred mainly through hydrogen bonding and hydrophobic interaction. This study raises critical concerns regarding the transportation, distribution and toxicity effects of organic UV filters in human body. PMID:25128891

  1. Interaction study of bioactive molecules with fibrinogen and human platelets determined by 1H NMR relaxation experiments.

    PubMed

    Bonechi, Claudia; Martini, Silvia; Rossi, Claudio

    2009-02-15

    In order to investigate the interaction processes between bioactive molecules and macromolecular receptors NMR methodology based on the analysis of selective and non-selective spin-lattice relaxation rate enhancements of ligand protons was used. The contribution from the bound ligand fraction to the observed relaxation rate in relation to macromolecular target concentration allowed the calculation of the normalized affinity index[A(I)(N)](L)(T) in which the effects of motional anisotropies and different proton densities have been removed. In this paper, we applied this methodology to investigate the affinity of epinephrine and isoproterenol towards two different systems: fibrinogen and platelets. PMID:19157885

  2. FIT: Computer Program that Interactively Determines Polynomial Equations for Data which are a Function of Two Independent Variables

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.; Roy, M. L.; Tiffany, S. H.

    1985-01-01

    A computer program for interactively developing least-squares polynomial equations to fit user-supplied data is described. The program is characterized by the ability to compute the polynomial equations of a surface fit through data that are a function of two independent variables. The program utilizes the Langley Research Center graphics packages to display polynomial equation curves and data points, facilitating a qualitative evaluation of the effectiveness of the fit. An explanation of the fundamental principles and features of the program, as well as sample input and corresponding output, are included.

  3. Chemical interactions in complex matrices: Determination of polar impurities in biofuels and fuel contaminants in building materials

    NASA Astrophysics Data System (ADS)

    Baglayeva, Ganna

    The solutions to several real-life analytical and physical chemistry problems, which involve chemical interactions in complex matrices are presented. The possible interferences due to the analyte-analyte and analyte-matrix chemical interactions were minimized on each step of the performed chemical analysis. Concrete and wood, as major construction materials, typically become contaminated with fuel oil hydrocarbons during their spillage. In the catastrophic scenarios (e.g., during floods), fuel oil mixes with water and then becomes entrained within the porous structure of wood or concrete. A strategy was proposed for the efficient extraction of fuel oil hydrocarbons from concrete to enable their monitoring. The impacts of sample aging and inundation with water on the extraction efficiency were investigated to elucidate the nature of analytematrix interactions. Two extraction methods, 4-days cold solvent extraction with shaking and 24-hours Soxhlet extraction with ethylacetate, methanol or acetonitrile yielded 95-100 % recovery of fuel oil hydrocarbons from concrete. A method of concrete remediation after contamination with fuel oil hydrocarbons using activated carbon as an adsorbent was developed. The 14 days remediation was able to achieve ca. 90 % of the contaminant removal even from aged water-submerged concrete samples. The degree of contamination can be qualitatively assessed using transport rates of the contaminants. Two models were developed, Fickian and empirical, to predict long-term transport behavior of fuel oil hydrocarbons under flood representative scenarios into wood. Various sorption parameters, including sorption rate, penetration degree and diffusion coefficients were obtained. The explanations to the observed three sorption phases are provided in terms of analyte-matrix interactions. The detailed simultaneous analysis of intermediate products of the cracking of triacylglycerol oils, namely monocarboxylic acids, triacyl-, diacyl- and

  4. Determination of the interaction parameters of ions from a rarefied plasma flow with electrically conducting surfaces using thermoanemometric probes

    SciTech Connect

    Shuvalov, V.A.; Gubin, V.V.; Kostenko, V.S.; Reznichenko, N.P.

    1985-05-01

    A method is proposed for measuring a combination of parameters associated with the interaction of ions from a rarefied plasma with electrically conducting surfaces using thermoanemometric probes. Results of measurements of the ion-electron secondary emission coefficients and of the accommodation coefficients for the energy and the normal and tangential momenta of inert gas and molecular nitrogen ions on the surfaces of commercial materials are presented. Empirical approximations are given for the dependences of the energy and normal momentum accommodation coefficients on the orientation of the probe-target with respect to the velocity vector of the flow.

  5. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry

    SciTech Connect

    Sundlov, Jesse A.; Gulick, Andrew M.

    2013-08-01

    The structure of the functional interaction of NRPS adenylation and carrier protein domains, trapped with a mechanism-based inhibitor, is described. Crystals exhibit translational non-crystallographic symmetry, which challenged structure determination and refinement. The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain–carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described.

  6. Gene-environment interactions in determining differences in genetic susceptibility to cancer in subsites of the head and neck.

    PubMed

    Maurya, Shailendra S; Katiyar, Tridiv; Dhawan, Ankur; Singh, Sudhir; Jain, Swatantra K; Pant, Mohan C; Parmar, Devendra

    2015-04-01

    Genetic differences in susceptibility to cancer in subsites of the head and neck were investigated in a case-control study involving 750 cases of cancers of the oral cavity, larynx, or pharynx, and an equal number of healthy controls. The prevalence of variant genotypes of cytochrome P450 (CYP) 1A1, 1B1, 2E1, or glutathione-S-transferase M1 (null) in cases suggests that polymorphisms in drug metabolizing enzymes (DMEs) modify cancer risk within subsites of the head and neck. Tobacco or alcohol use was found to increase the risk in cases of laryngeal, pharyngeal, or oral cavity cancers. Interaction between genetic variation in DMEs and tobacco smoke (or smoking) exposures conferred significant risk for laryngeal cancer. Likewise, strong associations of the polymorphic genotypes of DMEs with cases of pharyngeal and oral cavity cancer who were tobacco chewers or alcohol users demonstrate that gene-environment interactions may explain differences in genetic susceptibility for cancers of the oral cavity, larynx, and pharynx. PMID:25399842

  7. Functional traits determine formation of mutualism and predation interactions in seed-rodent dispersal system of a subtropical forest

    NASA Astrophysics Data System (ADS)

    Chang, Gang; Zhang, Zhibin

    2014-02-01

    Network structure in plant-animal systems has been widely investigated but the roles of functional traits of plants and animals in formation of mutualism and predation interactions and community structure are still not fully understood. In this study, we quantitatively assessed interaction strength of mutualism and predation between 5 tree species and 7 rodent species by using semi-natural enclosures in a subtropical forest in southwest China. Seeds with high handling-time and nutrition traits (for both rat and mouse species) or high tannin trait (for mouse species) show high mutualism but low predation with rodents; while seeds with low handling-time and low nutrition traits show high predation but low mutualism with rodents. Large-sized rat species are more linked to seeds with high handling-time and high nutrition traits, while small-sized mouse species are more connected with seeds with low handling-time, low nutrition value and high tannin traits. Anti-predation seed traits tend to increase chance of mutualism instead of reducing predation by rodents, suggesting formation of mutualism may be connected with that of predation. Our study demonstrates that seed and animal traits play significant roles in the formation of mutualism and predation and network structure of the seed-rodent dispersal system.

  8. Interaction between the Linker, Pre-S1, and TRP Domains Determines Folding, Assembly, and Trafficking of TRPV Channels.

    PubMed

    Garcia-Elias, Anna; Berna-Erro, Alejandro; Rubio-Moscardo, Fanny; Pardo-Pastor, Carlos; Mrkonjić, Sanela; Sepúlveda, Romina V; Vicente, Rubén; González-Nilo, Fernando; Valverde, Miguel A

    2015-08-01

    Functional transient receptor potential (TRP) channels result from the assembly of four subunits. Here, we show an interaction between the pre-S1, TRP, and the ankyrin repeat domain (ARD)-S1 linker domains of TRPV1 and TRPV4 that is essential for proper channel assembly. Neutralization of TRPV4 pre-S1 K462 resulted in protein retention in the ER, defective glycosylation and trafficking, and unresponsiveness to TRPV4-activating stimuli. Similar results were obtained with the equivalent mutation in TRPV1 pre-S1. Molecular dynamics simulations revealed that TRPV4-K462 generated an alternating hydrogen network with E745 (TRP box) and D425 (pre-S1 linker), and that K462Q mutation affected subunit folding. Consistently, single TRPV4-E745A or TRPV4-D425A mutations moderately affected TRPV4 biogenesis while double TRPV4-D425A/E745A mutation resumed the TRPV4-K462Q phenotype. Thus, the interaction between pre-S1, TRP, and linker domains is mandatory to generate a structural conformation that allows the contacts between adjacent subunits to promote correct assembly and trafficking to the plasma membrane. PMID:26146187

  9. Combining Steady-State and Dynamic Methods for Determining Absolute Signs of Hyperfine Interactions: Pulsed ENDOR Saturation and Recovery (PESTRE)

    PubMed Central

    Doan, Peter E.

    2010-01-01

    The underlying causes of asymmetric intensities in Davies pulsed ENDOR spectra that are associated with the signs of the hyperfine interaction are reinvestigated. The intensity variations in these asymmetric ENDOR patterns are best described as shifts in an apparent baseline intensity that occurs dynamically following on-resonance ENDOR transitions. We have developed an extremely straightforward multi-sequence protocol that is capable of giving the sign of the hyperfine interaction by probing a single ENDOR transition, without reference to its partner transition. This technique, Pulsed ENDOR Saturatation and Recovery (PESTRE) monitors dynamic shifts in the ‘baseline’ following measurements at a single RF frequency (single ENDOR peak), rather than observing anomalous ENDOR intensity differences between the two branches of an ENDOR response. These baseline shifts, referred to as dynamic reference levels (DRLs), can be directly tied to the electron spin manifold from which that ENDOR transition arises. The application of this protocol is demonstrated on 57Fe ENDOR of a 2Fe-2S ferredoxin. We use the 14N ENDOR transitions of the S = 3/2 [Fe(II)NO]2+ center of the non-heme iron enzyme, anthranilate dioxygenase (AntDO) to examine the details of the relaxation model using PESTRE. PMID:21075026

  10. Modeling Taylor dispersion injections: determination of kinetic/affinity interaction constants and diffusion coefficients in label-free biosensing.

    PubMed

    Quinn, John G

    2012-02-15

    A new method based on Taylor dispersion has been developed that enables an analyte gradient to be titrated over a ligand-coated surface for kinetic/affinity analysis of interactions from a minimal number of injections. Taylor dispersion injections generate concentration ranges in excess of four orders of magnitude and enable the analyte diffusion coefficient to be reliably estimated as a fitted parameter when fitting binding interaction models. A numerical model based on finite element analysis, Monte Carlo simulations, and statistical profiling were used to compare the Taylor dispersion method with standard fixed concentration injections in terms of parameter correlation, linearity of parameter error space, and global versus local model fitting. A dramatic decrease in parameter correlations was observed for TDi curves relative to curves from standard fixed concentration injections when surface saturation was achieved. In FCI the binding progress is recorded with respect to injection time, whereas in TDi the second time dependency encoded in the analyte gradient increases resolving power. This greatly lowers the dependence of all parameters on each other and on experimental interferences. When model parameters were fitted locally, the performance of TDis remained comparable to global model fitting, whereas fixed concentration binding response curves yielded unreliable parameter estimates. PMID:22197421

  11. Structure of the bacterial cell division determinant GpsB and its interaction with penicillin-binding proteins.

    PubMed

    Rismondo, Jeanine; Cleverley, Robert M; Lane, Harriet V; Großhennig, Stephanie; Steglich, Anne; Möller, Lars; Mannala, Gopala Krishna; Hain, Torsten; Lewis, Richard J; Halbedel, Sven

    2016-03-01

    Each bacterium has to co-ordinate its growth with division to ensure genetic stability of the population. Consequently, cell division and growth are tightly regulated phenomena, albeit different bacteria utilise one of several alternative regulatory mechanisms to maintain control. Here we consider GpsB, which is linked to cell growth and division in Gram-positive bacteria. ΔgpsB mutants of the human pathogen Listeria monocytogenes show severe lysis, division and growth defects due to distortions of cell wall biosynthesis. Consistent with this premise, GpsB interacts both in vitro and in vivo with the major bi-functional penicillin-binding protein. We solved the crystal structure of GpsB and the interaction interfaces in both proteins are identified and validated. The inactivation of gpsB results in strongly attenuated virulence in animal experiments, comparable in degree to classical listerial virulence factor mutants. Therefore, GpsB is essential for in vitro and in vivo growth of a highly virulent food-borne pathogen, suggesting that GpsB could be a target for the future design of novel antibacterials. PMID:26575090

  12. Determining Wheel-Soil Interaction Loads Using a Meshfree Finite Element Approach Assisting Future Missions with Rover Wheel Design

    NASA Technical Reports Server (NTRS)

    Contreras, Michael T.; Peng, Chia-Yen; Wang, Dongdong; Chen, Jiun-Shyan

    2012-01-01

    A wheel experiencing sinkage and slippage events poses a high risk to rover missions as evidenced by recent mobility challenges on the Mars Exploration Rover (MER) project. Because several factors contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc., there are significant benefits to modeling these events to a sufficient degree of complexity. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree finite element approaches enable simulations that capture sufficient detail of wheel-soil interaction while remaining computationally feasible. This study demonstrates some of the large deformation modeling capability of meshfree methods and the realistic solutions obtained by accounting for the soil material properties. A benchmark wheel-soil interaction problem is developed and analyzed using a specific class of meshfree methods called Reproducing Kernel Particle Method (RKPM). The benchmark problem is also analyzed using a commercially available finite element approach with Lagrangian meshing for comparison. RKPM results are comparable to classical pressure-sinkage terramechanics relationships proposed by Bekker-Wong. Pending experimental calibration by future work, the meshfree modeling technique will be a viable simulation tool for trade studies assisting rover wheel design.

  13. Specific Inter-residue Interactions as Determinants of Human Monoacylglycerol Lipase Catalytic Competency: A ROLE FOR GLOBAL CONFORMATIONAL CHANGES.

    PubMed

    Tyukhtenko, Sergiy; Karageorgos, Ioannis; Rajarshi, Girija; Zvonok, Nikolai; Pavlopoulos, Spiro; Janero, David R; Makriyannis, Alexandros

    2016-02-01

    The serine hydrolase monoacylglycerol lipase (MGL) functions as the main metabolizing enzyme of 2-arachidonoyl glycerol, an endocannabinoid signaling lipid whose elevation through genetic or pharmacological MGL ablation exerts therapeutic effects in various preclinical disease models. To inform structure-based MGL inhibitor design, we report the direct NMR detection of a reversible equilibrium between active and inactive states of human MGL (hMGL) that is slow on the NMR time scale and can be modulated in a controlled manner by pH, temperature, and select point mutations. Kinetic measurements revealed that hMGL substrate turnover is rate-limited across this equilibrium. We identify a network of aromatic interactions and hydrogen bonds that regulates hMGL active-inactive state interconversion. The data highlight specific inter-residue interactions within hMGL modulating the enzymes function and implicate transitions between active (open) and inactive (closed) states of the hMGL lid domain in controlling substrate access to the enzymes active site. PMID:26555264

  14. Very low density lipoprotein receptor (VLDLR) expression is a determinant factor in adipose tissue inflammation and adipocyte-macrophage interaction.

    PubMed

    Nguyen, Andrew; Tao, Huan; Metrione, Michael; Hajri, Tahar

    2014-01-17

    Obesity is associated with adipose tissue remodeling, characterized by adipocyte hypertrophy and macrophage infiltration. Previously, we have shown that very low density lipoprotein receptor (VLDLR) is virtually absent in preadipocytes but is strongly induced during adipogenesis and actively participates in adipocyte hypertrophy. In this study, we investigated the role of VLDLR in adipose tissue inflammation and adipocyte-macrophage interactions in wild type and VLDLR-deficient mice fed a high fat diet. The results show that VLDLR deficiency reduced high fat diet-induced inflammation and endoplasmic reticulum (ER) stress in adipose tissue in conjunction with reduced macrophage infiltration, especially those expressing pro-inflammatory markers. In adipocyte culture, VLDLR deficiency prevented adipocyte hypertrophy and strongly reduced VLDL-induced ER stress and inflammation. Likewise, cultures of primary peritoneal macrophages show that VLDLR deficiency reduced lipid accumulation and inflammation but did not alter chemotactic response of macrophages to adipocyte signals. Moreover, VLDLR deficiency tempered the synergistic inflammatory interactions between adipocytes and macrophages in a co-culture system. Collectively, these results show that VLDLR contributes to adipose tissue inflammation and mediates VLDL-induced lipid accumulation and induction of inflammation and ER stress in adipocytes and macrophages. PMID:24293365

  15. Accurate determination of the interaction between Λ hyperons and nucleons from auxiliary field diffusion Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Lonardoni, D.; Pederiva, F.; Gandolfi, S.

    2014-01-01

    Background: An accurate assessment of the hyperon-nucleon interaction is of great interest in view of recent observations of very massive neutron stars. The challenge is to build a realistic interaction that can be used over a wide range of masses and in infinite matter starting from the available experimental data on the binding energy of light hypernuclei. To this end, accurate calculations of the hyperon binding energy in a hypernucleus are necessary. Purpose: We present a quantum Monte Carlo study of Λ and ΛΛ hypernuclei up to A =91. We investigate the contribution of two- and three-body Λ-nucleon forces to the Λ binding energy. Method: Ground state energies are computed solving the Schrödinger equation for nonrelativistic baryons by means of the auxiliary field diffusion Monte Carlo algorithm extended to the hypernuclear sector. Results: We show that a simple adjustment of the parameters of the ΛNN three-body force yields a very good agreement with available experimental data over a wide range of hypernuclear masses. In some cases no experiments have been performed yet, and we give new predictions. Conclusions: The newly fitted ΛNN force properly describes the physics of medium-heavy Λ hypernuclei, correctly reproducing the saturation property of the hyperon separation energy.

  16. Genomic and p16-specific DNA methylation of the mouse colon: elder age and dietary folate as interactive determinants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elder age and inadequate folate intake are strongly implicated as important risk factors for colon cancer and each is associated with altered DNA methylation. This study was designed to determine the effect of aging and dietary folate on select features of DNA methylation in the colon that are relev...

  17. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution

    PubMed Central

    Tse, Amanda; Verkhivker, Gennady M.

    2015-01-01

    Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating

  18. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution.

    PubMed

    Tse, Amanda; Verkhivker, Gennady M

    2015-01-01

    Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating

  19. Prediction of Protein Aggregation in High Concentration Protein Solutions Utilizing Protein-Protein Interactions Determined by Low Volume Static Light Scattering.

    PubMed

    Hofmann, Melanie; Winzer, Matthias; Weber, Christian; Gieseler, Henning

    2016-06-01

    The development of highly concentrated protein formulations is more demanding than for conventional concentrations due to an elevated protein aggregation tendency. Predictive protein-protein interaction parameters, such as the second virial coefficient B22 or the interaction parameter kD, have already been used to predict aggregation tendency and optimize protein formulations. However, these parameters can only be determined in diluted solutions, up to 20 mg/mL. And their validity at high concentrations is currently controversially discussed. This work presents a μ-scale screening approach which has been adapted to early industrial project needs. The procedure is based on static light scattering to directly determine protein-protein interactions at concentrations up to 100 mg/mL. Three different therapeutic molecules were formulated, varying in pH, salt content, and addition of excipients (e.g., sugars, amino acids, polysorbates, or other macromolecules). Validity of the predicted aggregation tendency was confirmed by stability data of selected formulations. Based on the results obtained, the new prediction method is a promising screening tool for fast and easy formulation development of highly concentrated protein solutions, consuming only microliter of sample volumes. PMID:27157445

  20. Interaction of chromosomal proteins with BrdU substituted DNA as determined by chromatin-DNA competition.

    PubMed Central

    Bick, M D; Devine, E A

    1977-01-01

    Chromatin-DNA competition has been utilized to examine the general nature of chromosomal proteins interacting more strongly with BrdU substituted DNA. When chromatin is incubated with an excess of purified DNA, a portion of the chromosomal proteins will exchange to the purified DNA. These two complexes can then be separated on Metrizamide gradients due to their differing protein/DNA ratios. Using this technique we observe that most nonhistone chromosomal proteins will exchange to a competitor DNA, the extent of exchange being directly dependent upon the competitor DNA being present in excess. While essentially the same proteins will migrate to either unsubstituted or BrdU substituted DNA, the substituted DNA is found to be a quantitatively better competitor and its effectiveness as a competitor is directly related to the level of BrdU substitution. Images PMID:593882

  1. Energetics of the interaction between water and the helical peptide group and its role in determining helix propensities

    PubMed Central

    Avbelj, Franc; Luo, Peizhi; Baldwin, Robert L.

    2000-01-01

    The alanine helix provides a model system for studying the energetics of interaction between water and the helical peptide group, a possible major factor in the energetics of protein folding. Helix formation is enthalpy-driven (−1.0 kcal/mol per residue). Experimental transfer data (vapor phase to aqueous) for amides give the enthalpy of interaction with water of the amide group as ≈−11.5 kcal/mol. The enthalpy of the helical peptide hydrogen bond, computed for the gas phase by quantum mechanics, is −4.9 kcal/mol. These numbers give an enthalpy deficit for helix formation of −7.6 kcal/mol. To study this problem, we calculate the electrostatic solvation free energy (ESF) of the peptide groups in the helical and β-strand conformations, by using the delphi program and parse parameter set. Experimental data show that the ESF values of amides are almost entirely enthalpic. Two key results are: in the β-strand conformation, the ESF value of an interior alanine peptide group is −7.9 kcal/mol, substantially less than that of N-methylacetamide (−12.2 kcal/mol), and the helical peptide group is solvated with an ESF of −2.5 kcal/mol. These results reduce the enthalpy deficit to −1.5 kcal/mol, and desolvation of peptide groups through partial burial in the random coil may account for the remainder. Mutant peptides in the helical conformation show ESF differences among nonpolar amino acids that are comparable to observed helix propensity differences, but the ESF differences in the random coil conformation still must be subtracted. PMID:10984522

  2. Molecular Determinants for Targeting Heterochromatin Protein 1-Mediated Gene Silencing: Direct Chromoshadow Domain–KAP-1 Corepressor Interaction Is Essential

    PubMed Central

    Lechner, Mark S.; Begg, Gillian E.; Speicher, David W.; Rauscher, Frank J.

    2000-01-01

    The KRAB domain is a highly conserved transcription repression module commonly found in eukaryotic zinc finger proteins. KRAB-mediated repression requires binding to the KAP-1 corepressor, which in turn recruits members of the heterochromatin protein 1 (HP1) family. The HP1 proteins are nonhistone chromosomal proteins, although it is unclear how they are targeted to unique chromosomal domains or promoters. In this report, we have reconstituted and characterized the HP1–KAP-1 interaction using purified proteins and have compared KAP-1 to three other known HP1 binding proteins: SP100, lamin B receptor (LBR), and the p150 subunit from chromatin assembly factor (CAF-1 p150). We show that the chromoshadow domain (CSD) of HP1 is a potent repression domain that binds directly to all four previously described proteins. For KAP-1, we have mapped the CSD interaction region to a 15-amino-acid segment, termed the HP1BD, which is also present in CAF-1 p150 but not SP100 or LBR. The region of KAP-1 harboring the HP1BD binds as a monomer to a dimer of the CSD, as revealed by gel filtration, analytical ultracentrifugation, and optical biosensor analyses. The use of a spectrum of amino acid substitutions in the human HP1α CSD revealed a strong correlation between CSD-mediated repression and binding to KAP-1, CAF-1 p150, and SP100 but not LBR. Differences among the HP1 binding partners could also be discerned by fusion to a heterologous DNA binding domain and by the potential to act as dominant negative molecules. Together, these results strongly suggest that KAP-1 is a physiologically relevant target for HP1 function. PMID:10938122

  3. Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.).

    PubMed

    Saillant, Eric; Fostier, Alexis; Haffray, Pierrick; Menu, Bruno; Thimonier, Jacques; Chatain, Béatrice

    2002-04-01

    The effect of temperature on sex-ratios in 27 families of sea bass reared in the same tank from the fertilization stage onward was investigated. An excess of males (68%) was found in the groups that were reared at high temperature (mean +/- standard deviation: 20+/-1 degrees C) until they reached the mean size of 8.1 cm (Standard Length, 149 days post-fertilization [p.f.]). Masculinization was higher (89% of males) in the groups maintained at low temperature (13 degrees C), from fertilization to a mean length of 6.5 cm (346 days p.f.). Shifts from high to low temperature at 8.1cm and from low to high temperature at 6.5 cm had no consequence on the sex-ratio. The percentage of males showing intratesticular oocytes was higher at low temperature (63%) than at high temperature (36%), suggesting that these males may be sensitive fish that have been masculinized by environmental factors. Fish sampled in the groups reared at high (2,200 fish) and low (500 fish) temperature were genotyped on three microsatellite loci. This allowed them to be assigned to the breeders used in the crossing design, thus permitting an analysis of parental influence on sex-ratios. In groups reared at high temperature, both parents had a significant additive effect on the percentage of females, and the interaction between sire and dam was not significant. Genotype temperature interactions were also detected and their existence suggests the interesting possibility of selecting nonsensitive genotypes in breeding programs. PMID:11857484

  4. Past agricultural land use and present-day fire regimes can interact to determine the nature of seed predation.

    PubMed

    Stuhler, John D; Orrock, John L

    2016-06-01

    Historical agriculture and present-day fire regimes can have significant effects on contemporary ecosystems. Although past agricultural land use can lead to long-term changes in plant communities, it remains unclear whether these persistent land-use legacies alter plant-consumer interactions, such as seed predation, and whether contemporary disturbance (e.g., fire) alters the effects of historical agriculture on these interactions. We conducted a study at 27 sites distributed across 80,300 ha in post-agricultural and non-agricultural longleaf pine woodlands with different degrees of fire frequency to test the hypothesis that past and present-day disturbances that alter plant communities can subsequently alter seed predation. We quantified seed removal by arthropods and rodents for Tephrosia virginiana and Vernonia angustifolia, species of conservation interest. We found that the effects of land-use history and fire frequency on seed removal were contingent on granivore guild and microhabitat characteristics. Tephrosia virginiana removal was greater in low fire frequency sites, due to greater seed removal by rodents. Although overall removal of V. angustifolia did not differ among habitats, rodents removed more seeds than arthropods at post-agricultural sites and non-agricultural sites with low fire frequencies, but not at non-agricultural sites with high fire frequencies. Land-use history and fire frequency also affected the relationship between microhabitat characteristics and removal of V. angustifolia. Our results suggest that historical agriculture and present-day fire regimes may alter seed predation by shifting the impact of rodent and arthropod seed predators among habitats, with potential consequences for the establishment of rare plant species consumed by one or both predators. PMID:26905418

  5. Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii.

    PubMed

    Moens, Frédéric; Weckx, Stefan; De Vuyst, Luc

    2016-08-16

    Prebiotic inulin-type fructans (ITF) display a bifidogenic and butyrogenic effect. Four bifidobacterial strains (Bifidobacterium breve Yakult, Bifidobacterium adolescentis LMG 10734, Bifidobacterium angulatum LMG 11039(T), and Bifidobacterium longum subsp. longum LMG 11047), displaying different ITF degradation capacities, were each grown in cocultivation with Faecalibacterium prausnitzii DSM 17677(T), an ITF-degrading butyrate-producing colon bacterium, as to unravel their cross-feeding interactions. These coculture fermentations were performed in a medium for colon bacteria, whether or not including acetate (necessary for the growth of F. prausnitzii DSM 17677(T) and whether or not provided through cross-feeding), supplemented with oligofructose or inulin as the sole energy source. Bifidobacterium breve Yakult did not degrade oligofructose, resulting in the production of high concentrations of butyrate by F. prausnitzii DSM 17677(T) through oligofructose degradation. The degradation of oligofructose by B. adolescentis LMG 10734 and of oligofructose and inulin by B. angulatum LMG 11039(T) and B. longum LMG 11047 resulted in the production of acetate, which was cross-fed to F. prausnitzii DSM 17677(T), enabling the latter strain to degrade oligofructose and inulin. Slow preferential degradation of the short chain length fractions of oligofructose (intracellularly) by B. adolescentis LMG 10734 enabled substantial oligofructose degradation by F. prausnitzii DSM 17677(T). However, fast non-preferential degradation of all chain length fractions of oligofructose (extracellularly) and efficient degradation of the short chain length fractions of inulin by B. angulatum LMG 11039(T) and B. longum LMG 11047 made it impossible for F. prausnitzii DSM 17677(T) to compete for the available substrate. These results indicate that cross-feeding interactions between bifidobacteria and acetate-depending, butyrate-producing colon bacteria can be either a pure commensal or beneficial

  6. NMR Determines Transient Structure and Dynamics in the Disordered C-Terminal Domain of WASp Interacting Protein

    PubMed Central

    Haba, Noam Y.; Gross, Renana; Novacek, Jiri; Shaked, Hadassa; Zidek, Lukas; Barda-Saad, Mira; Chill, Jordan H.

    2013-01-01

    WASp-interacting protein (WIP) is a 503-residue proline-rich polypeptide expressed in human T cells. The WIP C-terminal domain binds to Wiskott-Aldrich syndrome protein (WASp) and regulates its activation and degradation, and the WIP-WASp interaction has been shown to be critical for actin polymerization and implicated in the onset of WAS and X-linked thrombocytopenia. WIP is predicted to be an intrinsically disordered protein, a class of polypeptides that are of great interest because they violate the traditional structure-function paradigm. In this first (to our knowledge) study of WIP in its unbound state, we used NMR to investigate the biophysical behavior of WIPC, a C-terminal domain fragment of WIP that includes residues 407–503 and contains the WASp-binding site. In light of the poor spectral dispersion exhibited by WIPC and the high occurrence (25%) of proline residues, we employed 5D-NMR13C-detected NMR experiments with nonuniform sampling to accomplish full resonance assignment. Secondary chemical-shift analysis, 15N relaxation rates, and protection from solvent exchange all concurred in detecting transient structure located in motifs that span the WASp-binding site. Residues 446–456 exhibited a propensity for helical conformation, and an extended conformation followed by a short, capped helix was observed for residues 468–478. The 13C-detected approach allows chemical-shift assignment in the WIPC polyproline stretches and thus sheds light on their conformation and dynamics. The effects of temperature on chemical shifts referenced to a denatured sample of the polypeptide demonstrate that heating reduces the structural character of WIPC. Thus, we conclude that the disordered WIPC fragment is comprised of regions with latent structure connected by flexible loops, an architecture with implications for binding affinity and function. PMID:23870269

  7. Interactions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme.

    PubMed

    Ibba, M; Hong, K W; Sherman, J M; Sever, S; Söll, D

    1996-07-01

    Sequence-specific interactions between aminoacyl-tRNA synthetases and their cognate tRNAs both ensure accurate RNA recognition and prevent the binding of noncognate substrates. Here we show for Escherichia coli glutaminyl-tRNA synthetase (GlnRS; EC 6.1.1.18) that the accuracy of tRNA recognition also determines the efficiency of cognate amino acid recognition. Steady-state kinetics revealed that interactions between tRNA identity nucleotides and their recognition sites in the enzyme modulate the amino acid affinity of GlnRS. Perturbation of any of the protein-RNA interactions through mutation of either component led to considerable changes in glutamine affinity with the most marked effects seen at the discriminator base, the 10:25 base pair, and the anticodon. Reexamination of the identity set of tRNA(Gln) in the light of these results indicates that its constituents can be differentiated based upon biochemical function and their contribution to the apparent Gibbs' free energy of tRNA binding. Interactions with the acceptor stem act as strong determinants of tRNA specificity, with the discriminator base positioning the 3' end. The 10:25 base pair and U35 are apparently the major binding sites to GlnRS, with G36 contributing both to binding and recognition. Furthermore, we show that E. coli tryptophanyl-tRNA synthetase also displays tRNA-dependent changes in tryptophan affinity when charging a noncognate tRNA. The ability of tRNA to optimize amino acid recognition reveals a novel mechanism for maintaining translational fidelity and also provides a strong basis for the coevolution of tRNAs and their cognate synthetases. PMID:8692925

  8. Dual isotopic approach for determining groundwater origin and water-rock interactions in over exploited watershed in India

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Pauwels, Hélène; Millot, Romain; Roy, Stéphane; Guerrot, Catherine

    2010-05-01

    Groundwater flow and storage in hard rock areas is becoming a matter of great interest and importance to researchers and water managers either with regards to the quantity, quality of water as well as delimitation of resources and aquifers. Degradation of groundwater resources by abstraction, contamination, ... has been increasing in many areas and is of growing concern for few decades. In terms of hydrogeology, hard rocks represent a quite heterogeneous and anisotropic media with irregular distribution of pathways of groundwater flow, typically consisting of three vertical zones, upper weathered, middle fractured and lower massive bedrock. Aim of this work is dual and the Maheshwaram watershed (53 km2, Andhra Pradesh, India) representative of watersheds in southern India in terms of geology, overpumping of its hard-rock aquifer (more than 700 classical open end wells in use), its cropping pattern (rice dominating), and its rural socio-economy mainly based on traditional agriculture is investigated through stable isotopes of the water molecule and lead isotopes in groundwater. The overall objective is to incorporate isotopic- and chemical-tracing data and constraints into methods for evaluating groundwater circulation. It divides into fingerprinting the groundwater recharge processes (e.g. the input by the monsoon) and the water use in such agricultural watershed, which is of primary importance in such semi-arid context and investigating the processes of water-rock interactions (e.g. granite-water interaction). In the frame of delimitation of resources and aquifers and long-term sustainability, we monitored the input from monsoon-precipitation over 2 years, and measured spatial and temporal variations in δ18O and δ2H in the groundwater and in precipitation. Individual recharge from the two monsoon periods was identified. This led to identification of periods during which evaporation affects groundwater quality through a higher concentration of salts and stable

  9. Molecular dynamics in hydrogen-bonded interactions - A preliminary experimentally determined harmonic stretching force field for HCN---HF

    NASA Astrophysics Data System (ADS)

    Wofford, B. A.; Lieb, S. G.; Bevan, J. W.

    1987-10-01

    The anharmonicity constant X sub 11 is presently evaluated, and the anharmonicity-corrected fundamental frequency omega sub 1 is determined, on the basis of observations of the 2nu sub 1 overtone band in the hydrogen-bonded HNC---HF complex. These data are used in conjunction with rovibrational analyses in the common and perdeuterated isotopic species of HCN---HF to calculate an approximate stretching harmonic force. The results obtained are the basis of a quantitative assessment of the applicability of the Cummings and Wood (1974) approximation of this hydrogen-bonded complex, as well as of an estimate of the equilibrium distortion constant in the harmonic limit.

  10. Purification of bacterial membrane sensor kinases and biophysical methods for determination of their ligand and inhibitor interactions

    PubMed Central

    Hussain, Rohanah; Harding, Stephen E.; Hughes, Charlotte S.; Ma, Pikyee; Patching, Simon G.; Edara, Shalini; Siligardi, Giuliano; Henderson, Peter J.F.; Phillips-Jones, Mary K.

    2016-01-01

    This article reviews current methods for the reliable heterologous overexpression in Escherichia coli and purification of milligram quantities of bacterial membrane sensor kinase (MSK) proteins belonging to the two-component signal transduction family of integral membrane proteins. Many of these methods were developed at Leeds alongside Professor Steve Baldwin to whom this review is dedicated. It also reviews two biophysical methods that we have adapted successfully for studies of purified MSKs and other membrane proteins–synchrotron radiation circular dichroism (SRCD) spectroscopy and analytical ultracentrifugation (AUC), both of which are non-immobilization and matrix-free methods that require no labelling strategies. Other techniques such as isothermal titration calorimetry (ITC) also share these features but generally require high concentrations of material. In common with many other biophysical techniques, both of these biophysical methods provide information regarding membrane protein conformation, oligomerization state and ligand binding, but they possess the additional advantage of providing direct assessments of whether ligand binding interactions are accompanied by conformational changes. Therefore, both methods provide a powerful means by which to identify and characterize inhibitor binding and any associated protein conformational changes, thereby contributing valuable information for future drug intervention strategies directed towards bacterial MSKs. PMID:27284046

  11. Direct experimental determination of onset of electron-electron interactions in gap opening of zigzag graphene nanoribbons.

    PubMed

    Li, Y Y; Chen, M X; Weinert, M; Li, L

    2014-01-01

    Nanoribbons are model systems for studying nanoscale effects in graphene. For ribbons with zigzag edges, tunable bandgaps have been predicted due to coupling of spin-polarized edge states, which have yet to be systematically demonstrated experimentally. Here we synthesize zigzag nanoribbons using Fe nanoparticle-assisted hydrogen etching of epitaxial graphene/SiC(0001) in ultrahigh vacuum. We observe two gaps in their local density of states by scanning tunnelling spectroscopy. For ribbons wider than 3 nm, gaps up to 0.39 eV are found independent of width, consistent with standard density functional theory calculations. Ribbons narrower than 3 nm, however, exhibit much larger gaps that scale inversely with width, supporting quasiparticle corrections to the calculated gap. These results provide direct experimental confirmation of electron-electron interactions in gap opening in zigzag nanoribbons, and reveal a critical width of 3 nm for its onset. Our findings demonstrate that practical tunable bandgaps can be realized experimentally in zigzag nanoribbons. PMID:24986261

  12. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes.

    PubMed

    Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby

    2016-07-01

    How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward. PMID:27330557

  13. USE OF MOLECULAR MODELING TO DETERMINE THE INTERACTION AND COMPETITION OF GASES WITHIN COAL FOR CARBON DIOXIDE SEQUESTRATION

    SciTech Connect

    Jeffrey D. Evanseck; Jeffry D. Madura; Jonathan P. Mathews

    2005-05-27

    We have made progress in carrying out large scale molecular dynamics simulations using the CHARMM force field in order to refine our coal/guest interactions. There have been two issues facing us over the last year. First, we have had to create a completely new topology and parameter definition for coal. Since we are using a classical force field, we have adopted the strategy of treating coal composed of individual common fragments based upon a distribution of mass, composition, and bonding. Our procedure is similar to treating a protein as being composed of the discrete set of amino acids. Second, we have had to incorporate the quality CO{sub 2} parameters that we have developed over the last two years. There are the geometric and arithmetic procedures, which we have successfully implemented. We have utilized computational molecular modeling to generate a state-of-the-art large scale structural representation of a bituminous coal of low volatile bituminous rank. This structure(s) has been used to investigate the molecular forces between the bituminous coal structure (or idealized pores) and the molecular species CH{sub 4} and CO{sub 2}. We are close to carrying out molecular dynamics simulations, which will allow us to explore and test the newly created model of coal.

  14. Neighbourhood density and genetic relatedness interact to determine fruit set and abortion rates in a continuous tropical tree population

    PubMed Central

    Jones, F.A; Comita, L.S

    2008-01-01

    Tropical trees may show positive density dependence in fruit set and maturation due to pollen limitation in low-density populations. However, pollen from closely related individuals in the local neighbourhood might reduce fruit set or increase fruit abortion in self-incompatible tree species. We investigated the role of neighbourhood density and genetic relatedness on individual fruit set and abortion in the neotropical tree Jacaranda copaia in a large forest plot in central Panama. Using nested neighbourhood models, we found a strong positive effect of increased conspecific density on fruit set and maturation. However, high neighbourhood genetic relatedness interacted with density to reduce total fruit set and increase the proportion of aborted fruit. Our results imply a fitness advantage for individuals growing in high densities as measured by fruit set, but realized fruit set is lowered by increased neighbourhood relatedness. We hypothesize that the mechanism involved is increased visitation by density-dependent invertebrate pollinators in high-density populations, which increases pollen quantity and carry-over and increases fruit set and maturation, coupled with self-incompatibility at early and late stages due to biparental inbreeding that lowers fruit set and increases fruit abortion. Implications for the reproductive ecology and conservation of tropical tree communities in continuous and fragmented habitats are discussed. PMID:18713714

  15. Determination of the cross sections for the production of fragments from relativistic nucleus-nucleus interactions. I. Measurements

    SciTech Connect

    Cummings, J.R.; Binns, W.R.; Garrard, T.L.; Israel, M.H.; Klarmann, J.; Stone, E.C.; Waddington, C.J. Department of Physics, Washington, University, St. Louis, MO McDonnell Center for the Space Sciences, Washington University, St. Louis, MO George W. Downs Laboratory, California Institute of Technology, Pasadena, CA )

    1990-12-01

    Relativistic iron, lanthanum, holmium, and gold projectile nuclei with several different energies have been fragmented in targets of polyethylene, carbon, aluminum, copper, and lead. Our detectors cleanly resolve the individual charges of the heaviest of these fragments and provide some limited information on the masses. We have measured 1256 elemental partial cross sections for the production of fragments from interactions in these target materials. Values have been derived for another 417 cross sections in a hydrogen medium. These cross sections depend on the energy and mass of the projectile nuclei as well as on the nature of the target. Total charge-changing cross sections were also found, but only in a composite target, and have been shown to be weakly dependent on energy. The mean mass losses observed for fragments that have lost a few protons show that typically many neutrons are lost with each proton, producing fragment nuclei that must be highly proton rich, and consequently very unstable. The cross sections for charge pickup on heavy targets show a rapid increase with decreasing energy, particularly for the heaviest targets. The systematics of the dependencies of the partial cross sections will be discussed in a companion paper.

  16. Purification of bacterial membrane sensor kinases and biophysical methods for determination of their ligand and inhibitor interactions.

    PubMed

    Hussain, Rohanah; Harding, Stephen E; Hughes, Charlotte S; Ma, Pikyee; Patching, Simon G; Edara, Shalini; Siligardi, Giuliano; Henderson, Peter J F; Phillips-Jones, Mary K

    2016-06-15

    This article reviews current methods for the reliable heterologous overexpression in Escherichia coli and purification of milligram quantities of bacterial membrane sensor kinase (MSK) proteins belonging to the two-component signal transduction family of integral membrane proteins. Many of these methods were developed at Leeds alongside Professor Steve Baldwin to whom this review is dedicated. It also reviews two biophysical methods that we have adapted successfully for studies of purified MSKs and other membrane proteins-synchrotron radiation circular dichroism (SRCD) spectroscopy and analytical ultracentrifugation (AUC), both of which are non-immobilization and matrix-free methods that require no labelling strategies. Other techniques such as isothermal titration calorimetry (ITC) also share these features but generally require high concentrations of material. In common with many other biophysical techniques, both of these biophysical methods provide information regarding membrane protein conformation, oligomerization state and ligand binding, but they possess the additional advantage of providing direct assessments of whether ligand binding interactions are accompanied by conformational changes. Therefore, both methods provide a powerful means by which to identify and characterize inhibitor binding and any associated protein conformational changes, thereby contributing valuable information for future drug intervention strategies directed towards bacterial MSKs. PMID:27284046

  17. Application of Analytical Quality by Design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method.

    PubMed

    Terzić, Jelena; Popović, Igor; Stajić, Ana; Tumpa, Anja; Jančić-Stojanović, Biljana

    2016-06-01

    This paper deals with the development of hydrophilic interaction liquid chromatographic (HILIC) method for the analysis of bilastine and its degradation impurities following Analytical Quality by Design approach. It is the first time that the method for bilastine and its impurities is proposed. The main objective was to identify the conditions where an adequate separation in minimal analysis duration could be achieved within a robust region. Critical process parameters which have the most influence on method performance were defined as acetonitrile content in the mobile phase, pH of the aqueous phase and ammonium acetate concentration in the aqueous phase. Box-Behnken design was applied for establishing a relationship between critical process parameters and critical quality attributes. The defined mathematical models and Monte Carlo simulations were used to identify the design space. Fractional factorial design was applied for experimental robustness testing and the method is validated to verify the adequacy of selected optimal conditions: the analytical column Luna(®) HILIC (100mm×4.6mm, 5μm particle size); mobile phase consisted of acetonitrile-aqueous phase (50mM ammonium acetate, pH adjusted to 5.3 with glacial acetic acid) (90.5:9.5, v/v); column temperature 30°C, mobile phase flow rate 1mLmin(-1), wavelength of detection 275nm. PMID:27131148

  18. Analysis of the interaction of a laser pulse with a silicon wafer - Determination of bulk lifetime and surface recombination velocity

    NASA Technical Reports Server (NTRS)

    Luke, Keung L.; Cheng, Li-Jen

    1987-01-01

    The decay of excess minority carriers produced in a silicon wafer of thickness d by a laser pulse is analyzed. A comprehensive theory based on this analysis is presented for the determination of bulk lifetime Tau(b) and surface recombination velocity S. It is shown that, starting with an exponential spatial profile, the carrier profile assumes a spatially symmetrical form after approximately one time constant of the fundamental mode of decay. Expressions for the spatial average of the carrier density as a function of time are derived for three temporal laser pulse shapes: impulse, square, and Gaussian. Particular attention is paid to the time constants of the fundamental and higher modes of decay. The ratios of the time constants of the higher modes to the fundamental mode, as well as the time constant of the fundamental mode, are presented over wide ranges of values of S and d. For Sd less than about 40 sq cm/s, a two-wafer method is developed to determine Tau(b) and S; it is also shown that the requirement of d/Tau(b) greater than about 20S is sufficient to adequately guarantee that the asymptotic value of the instantaneous observed lifetime differs from the bulk lifetime by no more than 10 percent.

  19. Determination of creatinine, uric and ascorbic acid in bovine milk and orange juice by hydrophilic interaction HPLC.

    PubMed

    Zuo, Ruiting; Zhou, Si; Zuo, Yuegang; Deng, Yiwei

    2015-09-01

    Creatinine (Cr), uric (UA) and ascorbic acid (AA) are common constituents in human fluids. Their abnormal concentrations in human fluids are associated with various diseases. Thus, apart from the endogenous formation in human body, it is also important to examine their sources from food products. In this study, a rapid and accurate HILIC method was developed for simultaneous determination of Cr, UA and AA in bovine milk and orange juice. Milk samples were pretreated by protein precipitation, centrifugation and filtration, followed by HPLC separation and quantification using a Waters Spherisorb S5NH2 column. The developed method has been successfully applied to determine the concentration of UA, AA and Cr in milk and fruit juice samples. The milk samples tested were found to contain UA and creatinine in the concentration range of 24.1-86.0 and 5.07-11.2 μg mL(-1), respectively. The orange juices contain AA over 212 μg mL(-1). PMID:25842333

  20. DMC (Distinct Motion Code): A rigid body motion code for determining the interaction of multiple spherical particles

    SciTech Connect

    Taylor, L.M.; Preece, D.S.

    1989-07-01

    The computer program DMC (Distinct Motion Code) determines the two-dimensional planar rigid body motion of an arbitrary number of spherical shaped particles. The code uses an explicit central difference time integration algorithm to calculate the motion of the particles. Contact constraints between the particles are enforced using the penalty method. Coulomb friction and viscous damping are included in the collisions. The explicit time integration is conditionally stable with a time increment size which is dependent on the mass of the smallest particle in the mesh and the penalty stiffness used for the contact forces. The code chooses the spring stiffness based on the Young's modulus and Poisson's ratio of the material. The ability to tie spheres in pairs with a constraint condition is included in the code. The code has been written in an extremely efficient manner with particular emphasis placed on vector processing. While this does not impose any restrictions on non-vector processing computers, it does provide extremely fast results on vector processing computers. A bucket sorting or boxing algorithm is used to reduce the number of comparisons which must be made between spheres to determine the contact pairs. The sorting algorithm is completely algebraic and contains no logical branching. 13 refs., 14 figs., 4 tabs.

  1. DMC (Distinct Motion Code): A rigid body motion code for determining the interaction of multiple spherical particles

    NASA Astrophysics Data System (ADS)

    Taylor, L. M.; Preece, D. S.

    1989-07-01

    The computer program Distinct Motion Code (DMC) determines the two-dimensional planar rigid body motion of an arbitrary number of spherical shaped particles. The code uses an explicit central difference time integration algorithm to calculate the motion of the particles. Contact constraints between the particles are enforced using the penalty method. Coulomb friction and viscous damping are included in the collisions. The explicit time integration is conditionally stable with a time increment size which is dependent on the mass of the smallest particle in the mesh and the penalty stiffness used for the contact forces. The code chooses the spring stiffness based on the Young's modulus and Poisson's ratio of the material. The ability to tie spheres in pairs with a constraint condition is included in the code. The code has been written in an extremely efficient manner with particular emphasis placed on vector processing. While this does not impose any restrictions on non-vector processing computers, it does provide extremely fast results on vector processing computers. A bucket sorting or boxing algorithm is used to reduce the number of comparisons which must be made between spheres to determine the contact pairs. The sorting algorithm is completely algebraic and contains no logical branching.

  2. Interaction effects of time of day and sub-maximal treadmill exercise on the main determinants of blood fluidity.

    PubMed

    Ahmadizad, Sajad; Bassami, Minoo

    2010-01-01

    The purpose of this study was to investigate the effects of time of day on responses of the main determinants of blood rheology to acute endurance exercise. Ten healthy male subjects (age, 26.9 +/- 5.5 yr) performed two bouts of running at 65% of VO2peak for 45 min on a motorised treadmill in the morning (08:00 h) and evening (20:00 h), which were followed by 30 min recovery. The two exercise trials were performed in two separate days with 7 days intervening. Haemorheological variables were measured before, immediately after exercise and after recovery. Haematocrit, haemoglobin and RBC count were increased significantly (p < 0.01) after 45 min running in both morning and evening trials and normalised following recovery, irrespective of time of day. Plasma viscosity increased significantly (F2,18 = 12.4, p < 0.01) following sub-maximal exercise in both trials and returned to pre-exercise level at the end of recovery. Baseline values (p < 0.05) but not responses of plasma viscosity to exercise were significantly affected by time of day. Neither a significant main effect of exercise nor a significant (p > 0.05) time-of-day effect was found for plasma proteins. It was concluded that sub-maximal running at 08:00 or 20:00 h does not induce different responses in the main determinant of blood rheology. PMID:20675898

  3. Sequence determination of a new parrot bornavirus-5 strain in Japan: implications of clade-specific sequence diversity in the regions interacting with host factors.

    PubMed

    Komorizono, Ryo; Makino, Akiko; Horie, Masayuki; Honda, Tomoyuki; Tomonaga, Keizo

    2016-06-01

    In this study, the genome sequence of a new parrot bornavirus-5 (PaBV-5) detected in Eclectus roratus was determined. Phylogenetic analysis showed that the genus Bornavirus is divided into three major clades and that PaBV-5 belongs to clade 2, which contains avian viruses that exhibit infectivity to mammalian cells. Sequence comparisons of the regions known to interact with host factors indicated that the clade 2 avian viruses possess sequences intermediate between the clade 1 mammalian viruses and the clade 3 avian viruses, suggesting that the identified regions might contribute to the differences in virological properties between the three clades. PMID:27166599

  4. Potential for the detection of molecular complexes and determination of interaction geometry by 2DIR: application to protein sciences.

    PubMed

    Guo, Rui; Miele, Margherita; Gardner, Elizabeth M; Fournier, Frederic; Kornau, Kathryn M; Gould, Ian R; Klug, David R

    2011-01-01

    The ability to detect molecular complexes and determine their geometries is crucial to our understanding of all biological phenomena, including protein structures and functions. We recently demonstrated that a novel 2DIR technique, EVV 2DIR spectroscopy, can be used for this purpose. In this paper, we evaluate the potential utility of the method for the analysis of protein composition, structure and function. In order to do this we apply computational tools to a group of selected biological systems, for which our calculated spectra all showed features that can in principle be detected with existing sensitivities. We also investigate the possibility of using our technique to detect and analyse hydrogen-bonded systems through a tyrosine-water model. PMID:22457947

  5. Development of hyperbranched polymers with non-covalent interactions for extraction and determination of aflatoxins in cereal samples.

    PubMed

    Liu, Xiaoyan; Li, Huihui; Xu, Zhigang; Peng, Jialin; Zhu, Shuqiang; Zhang, Haixia

    2013-10-01

    A novel approach for assembling homogeneous hyperbranched polymers based on non-covalent interactions with aflatoxins was developed; the polymers were used to evaluate the extraction of aflatoxins B1, B2, G1 and G2 (AFB1, AFB2, AFG1 and AFG2) in simulant solutions. The results showed that the extraction efficiencies of three kinds of synthesized polymers for the investigated analytes were not statistically different; as a consequence, one of the representative polymers (polymer I) was used as the solid-phase extraction (SPE) sorbent to evaluate the influences of various parameters, such as desorption conditions, pH, ionic strength, concentration of methanol in sample solutions, and the mass of the sorbent on the extraction efficiency. In addition, the extraction efficiencies for these aflatoxins were compared between the investigated polymer and the traditional sorbent C18. The results showed that the investigated polymer had superior extraction efficiencies. Subsequently, the proposed polymer for the SPE packing material was employed to enrich and analyze four aflatoxins in the cereal powder samples. The limits of detection (LODs) at a signal-to-noise (S/N) ratio of 3 were in the range of 0.012-0.120 ng g(-1) for four aflatoxins, and the limits of quantification (LOQs) calculated at S/N=10 were from 0.04 to 0.40 ng g(-1) for four aflatoxins. The recoveries of four aflatoxins from cereal powder samples were in the range of 82.7-103% with relative standard deviations (RSDs) lower than 10%. The results demonstrate the suitability of the SPE approach for the analysis of trace aflatoxins in cereal powder samples. PMID:24050668

  6. Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome

    PubMed Central

    Toh, K. C.; Stojković, Emina A.; van Stokkum, Ivo H. M.; Moffat, Keith; Kennis, John T. M.

    2010-01-01

    Phytochromes are red-light photoreceptor proteins that regulate a variety of responses and cellular processes in plants, bacteria, and fungi. The phytochrome light activation mechanism involves isomerization around the C15═C16 double bond of an open-chain tetrapyrrole chromophore, resulting in a flip of its D-ring. In an important new development, bacteriophytochrome (Bph) has been engineered for use as a fluorescent marker in mammalian tissues. Here we report that an unusual Bph, RpBphP3 from Rhodopseudomonas palustris, denoted P3, is fluorescent. This Bph modulates synthesis of light-harvesting complex in combination with a second Bph exhibiting classical photochemistry, RpBphP2, denoted P2. We identify the factors that determine the fluorescence and isomerization quantum yields through the application of ultrafast spectroscopy to wild-type and mutants of P2 and P3. The excited-state lifetime of the biliverdin chromophore in P3 was significantly longer at 330–500 ps than in P2 and other classical phytochromes and accompanied by a significantly reduced isomerization quantum yield. H/D exchange reduces the rate of decay from the excited state of biliverdin by a factor of 1.4 and increases the isomerization quantum yield. Comparison of the properties of the P2 and P3 variants shows that the quantum yields of fluorescence and isomerization are determined by excited-state deprotonation of biliverdin at the pyrrole rings, in competition with hydrogen-bond rupture between the D-ring and the apoprotein. This work provides a basis for structure-based conversion of Bph into an efficient near-IR fluorescent marker. PMID:20435909

  7. Potential of Cupriavidus metallidurans CH34 for in situ resource utilization from basalt by determining the molecular micro-mineral interactions

    NASA Astrophysics Data System (ADS)

    Byloos, Bo; Van Houdt, Rob; Boon, Nico; Leys, Natalie

    In order to maintain a persistent human presence in space, materials must either be provided from Earth or generated from material already present in space, in a process referred to as 'in situ resource utilization (ISRU)'. Microorganisms can biomine useful elements from extra-terrestrial materials for use as nutrients in a life support system or to aid in the creation of soil. To effectively use bacteria in an ISRU process more needs to be known about the molecular mechanisms behind microbe-mineral interaction and the influence of microgravity and radiation that affect bioleaching. The aim of this research project is to define the microbe-mineral interactions on basalt, which is a major constituent of Lunar or Martian regolith, the mechanisms that are important in bioleaching and how this process will be altered by space flight conditions. In particular, the research will be focussed on the determination of the genes and proteins involved in the biosynthesis of metallophores and exopolysaccharides (EPS), and biofilm formation. Iron, copper and phosphate uptake mechanisms are investigated in detail because these have been shown to be essential for life and bacteria are faced with limitation of these nutrients in the environment. In this study the bacterium Cupriavidus metallidurans CH34 is used to study these interactions. C. metallidurans CH34 is a soil bacterium which is resistant to up to 20 different heavy metal ions. Its behaviour in space has already been determined with earlier flight experiments to the ISS. It was recently discovered that C. metallidurans forms a biofilm and is capable of leaching calcium, magnesium and iron from basalt to sustain its growth First, C. metallidurans was grown in conditions with and without basalt, iron, copper and phosphate and the production of EPS and metallophores was examined. The iron, copper and phosphate concentrations which are limiting and optimal to allow C. metallidurans cell proliferation could be determined as

  8. Simultaneous high-throughput determination of interaction kinetics for drugs and cyclodextrins by high performance affinity chromatography with mass spectrometry detection.

    PubMed

    Wang, Caifen; Wang, Xiaobo; Xu, Xiaonan; Liu, Botao; Xu, Xu; Sun, Lixin; Li, Haiyan; Zhang, Jiwen

    2016-02-25

    The individual determination of the apparent dissociation rate constant (kd,app) using high performance affinity chromatography (HPAC) is a tedious process requiring numerous separate tests and massive data fitting, unable to provide the apparent association rate constant (ka) and equilibrium binding constant (Ka). In this study, a HPAC with mass spectrometry detection (HPAC-MS/MS) was employed to determine the drug-cyclodextrin (CD) interaction kinetics with low sample loading quantity (<10 ng per injection for single compound) and high-throughput yield as twenty drugs determined in one injection. The kd,app measured by HPAC-MS/MS approach were 0.89 ± 0.07, 4.34 ± 0.01, 1.48 ± 0.01 and 7.77 ± 0.04 s(-1) for ketoprofen, trimethoprim, indapamide and acetaminophen, with kd,app for acetaminophen consistent with that from the HPAC method with UV detector in our previous studies. For twenty drugs with diverse structures and chemical properties, good correlationship was found between kd,app measured by single compound analysis method and high-throughput HPAC-MS/MS approach, with the correlation coefficient of 0.987 and the significance F less than 0.001. Comprehensive quantification of ka,app, kd,app and Ka values was further performed based on the measurement of kd,app by peak profiling method and Ka by the peak fitting method. And the investigation of the drug-CD interaction kinetics under different conditions indicated that the column temperature and mobile phase composition significantly affected the determination of ka,app, kd,app and Ka while also dependent on the acidity and basicity of drugs. In summary, the high-throughput HPAC-MS/MS approach has been demonstrated high efficiency in determination of the drug-CD primary interaction kinetic parameter, especially, kd,app, being proven as a novel tool in screening the right CD for the solubilization of the right drug. PMID:26851087

  9. Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Zaehle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Heumann, B. W.; Ramankutty, N.; Rödenbeck, C.; Heimann, M.; Jones, C.

    2010-03-01

    European ecosystems are thought to uptake significant amounts of carbon, but neither the rate nor the contributions of the underlying processes are well known. In the second half of the 20th century, carbon dioxide concentrations have risen by more than 100 ppm, atmospheric nitrogen deposition has more than doubled, and European mean temperatures were increasing by 0.02 °C per year. The extents of forest and grasslands have increase with the respective rates of 5800 km2 yr-1 and 1100 km2 yr-1 as agricultural land has been abandoned at a rate of 7000 km2 yr-1. In this study, we analyze the responses of European land ecosystems to the aforementioned environmental changes using results from four process-based ecosystem models: BIOME-BGC, JULES, ORCHIDEE, and O-CN. All four models suggest that European terrestrial ecosystems sequester carbon at a rate of 100 TgC yr-1 (1980-2007 mean) with strong interannual variability (± 85 TgC yr-1) and a substantial inter-model uncertainty (± 45 TgC yr-1). Decadal budgets suggest that there has been a slight increase in terrestrial net carbon storage from 85 TgC yr-1 in 1980-1989 to 114 TgC yr-1 in 2000-2007. The physiological effect of rising CO2 in combination with nitrogen deposition and forest re-growth have been identified as the important explanatory factors for this net carbon storage. Changes in the growth of woody vegetation are an important contributor to the European carbon sink. Simulated ecosystem responses were more consistent for the two models accounting for terrestrial carbon-nitrogen dynamics than for the two models which only accounted for carbon cycling and the effects of land cover change. Studies of the interactions of carbon-nitrogen dynamics with land use changes are needed to further improve the quantitative understanding of the driving forces of the European land carbon balance.

  10. Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Zaehle, S.; Hughes, J.; Viovy, N.; Chen, Y.; Jung, M.; Heumann, B. W.; Ramankutty, N.; Heimann, M.; Jones, C.

    2010-09-01

    European ecosystems are thought to take up large amounts of carbon, but neither the rate nor the contributions of the underlying processes are well known. In the second half of the 20th century, carbon dioxide concentrations have risen by more that 100 ppm, atmospheric nitrogen deposition has more than doubled, and European mean temperatures were increasing by 0.02 °C yr-1. The extents of forest and grasslands have increased with the respective rates of 5800 km2 yr-1 and 1100 km2 yr-1 as agricultural land has been abandoned at a rate of 7000 km2 yr-1. In this study, we analyze the responses of European land ecosystems to the aforementioned environmental changes using results from four process-based ecosystem models: BIOME-BGC, JULES, ORCHIDEE, and O-CN. The models suggest that European ecosystems sequester carbon at a rate of 56 TgC yr-1 (mean of four models for 1951-2000) with strong interannual variability (±88 TgC yr-1, average across models) and substantial inter-model uncertainty (±39 TgC yr-1). Decadal budgets suggest that there has been a continuous increase in the mean net carbon storage of ecosystems from 85 TgC yr-1 in 1980s to 108 TgC yr-1 in 1990s, and to 114 TgC yr-1 in 2000-2007. The physiological effect of rising CO2 in combination with nitrogen deposition and forest re-growth have been identified as the important explanatory factors for this net carbon storage. Changes in the growth of woody vegetation are suggested as an important contributor to the European carbon sink. Simulated ecosystem responses were more consistent for the two models accounting for terrestrial carbon-nitrogen dynamics than for the two models which only accounted for carbon cycling and the effects of land cover change. Studies of the interactions of carbon-nitrogen dynamics with land use changes are needed to further improve the quantitative understanding of the driving forces of the European land carbon balance.

  11. Toward a new approach for determination of solute's charge distribution to analyze interatomic electrostatic interactions in quantum mechanical/molecular mechanical simulations.

    PubMed

    Yamada, Kenta; Koyano, Yoshiyuki; Okamoto, Takuya; Asada, Toshio; Koga, Nobuaki; Nagaoka, Masataka

    2011-11-15

    We present an alternative approach to determine "density-dependent property"-derived charges for molecules in the condensed phase. In the case of a solution, it is essential to take into consideration the electron polarization of molecules in the active site of this system. The solute and solvent molecules in this site have to be described by a quantum mechanical technique and the others are allowed to be treated by a molecular mechanical method (QM/MM scheme). For calculations based on this scheme, using the forces and interaction energy as density-dependent property our charges from interaction energy and forces (CHIEF) approach can provide the atom-centered charges on the solute atoms. These charges reproduce well the electrostatic potentials around the solvent molecules and present properly the picture of the electron density of the QM subsystem in the solution system. Thus, the CHIEF charges can be considered as the atomic charges under the conditions of the QM/MM simulation, and then enable one to analyze electrostatic interactions between atoms in the QM and MM regions. This approach would give a view of the QM nuclei and electrons different from the conventional methods. PMID:21815177

  12. Virulence determinants in enteroaggregative Escherichia coli from North India and their interaction in in vitro organ culture system.

    PubMed

    Gupta, Deepika; Sharma, Monica; Sarkar, Subendu; Thapa, B R; Chakraborti, Anuradha

    2016-09-01

    Enteroaggregative Escherichia coli (EAEC) is an important diarrhoeal pathogen causing diseases in multiple epidemiological and clinical settings. In developing countries like India, diarrhoeal diseases are one of the major killers among paediatric population and oddly, few studies are available from Indian paediatric population on the variability of EAEC virulence genes. In this study, we examined the distribution of plasmid and chromosomal-encoded virulence determinants in EAEC isolates, and analysed cytokines response generated against EAEC with specific aggregative adherence fimbriae (AAF) type in duodenal biopsies using in vitro organ culture (IVOC) mimicking in vivo conditions. Different virulence marker combinations among strains were reflected as a function of specific adhesins signifying EAEC heterogeneity. fis gene emerged as an important genetic marker apart from aggA and aap Further, EAEC infection in IVOC showed upregulation of IL-8, IL-1β, IL-6, TNF-α and TLR-5 expression. EAEC with AAFII induced significant TLR-5 and IL-8 response, conceivably owing to more pathogenicity markers. This study sheds light on the pattern of EAEC pathotypes prevalent in North Indian paediatric population and highlights the presence of unique virulence combinations in pathogenic strains. Thus, evident diversity in EAEC virulence and multifaceted bacteria-host crosstalk can provide useful insights for the strategic management of diarrhoeal diseases in India, where diarrhoeal outbreaks are more frequent. PMID:27493010

  13. Structural requirements of tetracycline-Tet repressor interaction: determination of equilibrium binding constants for tetracycline analogs with the Tet repressor.

    PubMed Central

    Degenkolb, J; Takahashi, M; Ellestad, G A; Hillen, W

    1991-01-01

    We used the Tn10-encoded Tet repressor, which has a highly specific binding capacity for tetracycline, to probe contacts between the drug and protein by chemical interference studies of the antibiotic. For that purpose, the equilibrium association constants of modified tetracyclines with the Tet repressor and Mg2+ cations were determined quantitatively. The results confirm the previous notion that Mg2+ probably binds with the oxygens at positions 11 and 12 and is absolutely required for protein-drug recognition. Modifications were introduced at positions seven, six, five, and four of the drug, and anhydrotetracycline was also studied. Substitutions or eliminations of functions at these positions influenced binding to the Tet repressor up to 35-fold. The introduction of an azido function at position seven in 7-azidotetracycline and epimerization of the substituents at position four in 4-epitetracycline lead to a 2- or 25-fold reduction, respectively, of Tet repressor affinity in those compounds. Anhydrotetracycline bound about 35-fold more strongly than tetracycline did, indicating that the oxygen at position 11 may be involved in Tet repressor recognition. This increased binding is in contrast to the lower antibiotic activity of anhydrotetracycline and indicates that the Tet repressor and ribosomes recognize the drug differently. PMID:1929330

  14. Species sequence differences determine the interaction of GnRH receptor with the cellular quality control system.

    PubMed

    Cabrera-Wrooman, Alejandro; Janovick, Jo Ann; Conn, P Michael

    2013-12-01

    Plasma membrane expression (PME) of the human GnRHR (hGnRHR) is regulated by a primate-specific Lys(191) which destabilizes a Cys(14)-Cys(200) bridge required by the cellular quality control system (QCS). A 4-amino, non-contiguous "motif" (Leu(112), Gln(208), Leu(300), Asp(302)) is required for this effect. The hGnRHR sequence, with or without Lys(191), decreases PME and inositol phosphate (IP) production when co-expressed with calnexin, a QCS chaperone. WT rat GnRHR, decreases PME and IP production, when co-expressed with calnexin, but to a lesser degree than hGnRH. When the human sequence contains the rat motif, IP production is closer to that of rat GnRHR. When Lys(191) is deleted from hGnRHR and co-expressed with calnexin, IP production is similar to the rat sequence. When rat GnRHR containing Lys(191) and the human motif is co-expressed with calnexin, IP production is similar to cells expressing the hGnRHR. The motif sequence appears to be a determinant of calnexin recognition. PMID:23891857

  15. The interaction of taurine-salicylaldehyde Schiff base copper(II) complex with DNA and the determination of DNA using the complex as a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Wang, Yong; Zhang, Qianru; Yang, Zhousheng

    2010-09-01

    The interaction of taurine-salicylaldehyde Schiff base copper(II) (Cu(TSSB) 22+) complex with DNA was explored by using UV-vis, fluorescence spectrophotometry, and voltammetry. In pH 7.4 Tris-HCl buffer solution, the binding constant of the Cu(TSSB) 22+ complex interaction with DNA was 3.49 × 10 4 L mol -1. Moreover, due to the fluorescence enhancing of Cu(TSSB) 22+ complex in the presence of DNA, a method for determination of DNA with Cu(TSSB) 22+ complex as a fluorescence probe was developed. The fluorescence spectra indicated that the maximum excitation and emission wavelength were 389 nm and 512 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range of 0.03-9.03 μg mL -1 for calf thymus DNA (CT-DNA), 0.10-36 μg mL -1 for yeast DNA and 0.01-10.01 μg mL -1 for salmon DNA (SM-DNA), respectively. The corresponding detection limits are 7 ng mL -1 for CT-DNA, 3 ng mL -1 for yeast DNA and 3 ng mL -1 for SM-DNA. Using this method, DNA in synthetic samples was determined with satisfactory results.

  16. Identification of regions interacting with ovo{sup D} mutations: Potential new genes involved in germline sex determination or differentiation in Drosophila melanogaster

    SciTech Connect

    Pauli, D.; Oliver, B.; Mahowald, A.P.

    1995-02-01

    Only a few Drosophila melanogaster germline sex determination genes are known, and there have been no systematic screens to identify new genes involved in this important biological process. The ovarian phenotypes produced by females mutant for dominant alleles of the ovo gene are modified in flies with altered doses of other loci involved in germline sex determination in Drosophila (Sex-lethal{sup +}, snas fille{sup +} and ovarian tumor{sup +}). This observation constitutes the basis for a screen to identify additional genes required for proper establishment of germline sexual identity. We tested 300 deletions, which together cover {approximately}58% of the euchromatic portion of the genome, for genetic interactions with ovo{sup D}. Hemizygosity for more than a dozen small regions show interactions that either partially suppress or enhance the ovarian phenotypes of females mutant for one or more of the three dominant ovo mutations. These regions probably contain genes whose products act in developmental heirarchies that include ovo{sup +} protein. 40 refs, 7 figs., 5 tabs.

  17. Ground-Atmosphere Interactions at Gale: Determination of the Surface Energy Budget, Thermal Inertia and Water Sorption on the Regolith

    NASA Astrophysics Data System (ADS)

    Martinez, German; Renno, Nilton; Fischer, Erik; Borlina, Caue; Hallet, Bernard; De la Torre Juarez, Manuel; Vasavada, Aswhin; Gomez-Elvira, Javier

    2014-05-01

    The analysis of the Surface Energy Budget (SEB) yields insights into the local climate and the soil-atmosphere interactions, while the analysis of the thermal inertia of the shallow subsurface augments surface observations, providing information about the local geology. The Mars Global Surveyor Thermal Emission Spectrometer and the Mars Odyssey Thermal Emission Imaging System have measured near subsurface thermal inertia from orbit at scales of ~104 m2 to ~10 km2. Here we report analysis of the thermal inertia at a few locations at Gale Crater at scales of 100 m2. The thermal inertia is calculated by solving the heat conduction equation in the soil using hourly measurements by the Rover Environmental Station (REMS) ground temperature sensor as an upper boundary condition. Three Sols representative of different environmental conditions and soil properties, namely, Sol 82 at Rocknest (RCK), Sol 112 at Point Lake (PL) and Sol 139 at Yellowknife Bay (YKB) are analyzed in detail. The largest thermal inertia (I) value is found at YKB, I = 445 J m-2 K-1 s-1/2 or 445 tiu (thermal inertia unit), followed by PL with I= 300 tiu and RCK withI = 280 tiu [1]. These values are consistent with the type of terrain imaged by MastCam and with previous satellite estimates at Gale Crater [2,3]. The SEB is calculated by using all REMS data products as well as dust opacity values derived from MastCam measurements, whereas previously, the SEB has been calculated using numerical models only [4]. At each location and during the daytime, the SEB is dominated by the downwelling shortwave (SW) solar radiation (~450-500 W/m2) and the upwelling longwave (LW) radiation emitted by the surface (~300-400 W/m2). The sum of these two terms accounts for at least 70% of the net surface heating rate between 0900 and 1400 local solar time. At nighttime, the SEB is dominated by the upwelling LW radiation emitted by the surface (~50-100 W/m2) and the downwelling LW radiation from the atmosphere (~50 W/m2

  18. Characterization of the Bacterioferritin/Bacterioferritin Associated Ferredoxin Protein-Protein Interaction in Solution and Determination of Binding Energy Hot Spots.

    PubMed

    Wang, Yan; Yao, Huili; Cheng, Yuan; Lovell, Scott; Battaile, Kevin P; Midaugh, C Russell; Rivera, Mario

    2015-10-13

    Mobilization of iron stored in the interior cavity of BfrB requires electron transfer from the [2Fe−2S] cluster in Bfd to the core iron in BfrB. A crystal structure of the Pseudomonas aeruginosa BfrB:Bfd complex revealed that BfrB can bind up to 12 Bfd molecules at 12 structurally identical binding sites, placing the [2Fe−2S] cluster of each Bfd immediately above a heme group in BfrB [Yao, H., et al. (2012) J. Am. Chem. Soc., 134, 13470−13481]. We report here study aimed at characterizing the strength of the P. aeruginosa BfrB:Bfd association using surface plasmon resonance and isothermal titration calorimetry as well as determining the binding energy hot spots at the protein−protein interaction interface. The results show that the 12 Bfd-binding sites on BfrB are equivalent and independent and that the protein−protein association at each of these sites is driven entropically and is characterized by a dissociation constant (Kd) of approximately 3 μM. Determination of the binding energy hot spots was carried out by replacing certain residues that comprise the protein−protein interface with alanine and by evaluating the effect of the mutation on Kd and on the efficiency of core iron mobilization from BfrB. The results identified hot spot residues in both proteins [LB 68, EA 81, and EA 85 in BfrB (superscript for residue number and subscript for chain) and Y2 and L5 in Bfd] that network at the interface to produce a highly complementary hot region for the interaction. The hot spot residues are conserved in the amino acid sequences of Bfr and Bfd proteins from a number of Gram-negative pathogens, indicating that the BfrB:Bfd interaction is of widespread significance in bacterial iron metabolism. PMID:26368531

  19. Non-linear interactions between consumers and flow determine the probability of plant community dominance on Maine rocky shores.

    PubMed

    Silliman, Brian R; McCoy, Michael W; Trussell, Geoffrey C; Crain, Caitlin M; Ewanchuk, Patrick J; Bertness, Mark D

    2013-01-01

    Although consumers can strongly influence community recovery from disturbance, few studies have explored the effects of consumer identity and density and how they may vary across abiotic gradients. On rocky shores in Maine, recent experiments suggest that recovery of plant- or animal- dominated community states is governed by rates of water movement and consumer pressure. To further elucidate the mechanisms of consumer control, we examined the species-specific and density-dependent effects of rocky shore consumers (crabs and snails) on community recovery under both high (mussel dominated) and low flow (plant dominated) conditions. By partitioning the direct impacts of predators (crabs) and grazers (snails) on community recovery across a flow gradient, we found that grazers, but not predators, are likely the primary agent of consumer control and that their impact is highly non-linear. Manipulating snail densities revealed that herbivorous and bull-dozing snails (Littorina littorea) alone can control recovery of high and low flow communities. After ∼1.5 years of recovery, snail density explained a significant amount of the variation in macroalgal coverage at low flow sites and also mussel recovery at high flow sites. These density-dependent grazer effects were were both non-linear and flow-dependent, with low abundance thresholds needed to suppress plant community recovery, and much higher levels needed to control mussel bed development. Our study suggests that consumer density and identity are key in regulating both plant and animal community recovery and that physical conditions can determine the functional forms of these consumer effects. PMID:23940510

  20. Non-Linear Interactions between Consumers and Flow Determine the Probability of Plant Community Dominance on Maine Rocky Shores

    PubMed Central

    Silliman, Brian R.; McCoy, Michael W.; Trussell, Geoffrey C.; Crain, Caitlin M.; Ewanchuk, Patrick J.; Bertness, Mark D.

    2013-01-01

    Although consumers can strongly influence community recovery from disturbance, few studies have explored the effects of consumer identity and density and how they may vary across abiotic gradients. On rocky shores in Maine, recent experiments suggest that recovery of plant- or animal- dominated community states is governed by rates of water movement and consumer pressure. To further elucidate the mechanisms of consumer control, we examined the species-specific and density-dependent effects of rocky shore consumers (crabs and snails) on community recovery under both high (mussel dominated) and low flow (plant dominated) conditions. By partitioning the direct impacts of predators (crabs) and grazers (snails) on community recovery across a flow gradient, we found that grazers, but not predators, are likely the primary agent of consumer control and that their impact is highly non-linear. Manipulating snail densities revealed that herbivorous and bull-dozing snails (Littorina littorea) alone can control recovery of high and low flow communities. After ∼1.5 years of recovery, snail density explained a significant amount of the variation in macroalgal coverage at low flow sites and also mussel recovery at high flow sites. These density-dependent grazer effects were were both non-linear and flow-dependent, with low abundance thresholds needed to suppress plant community recovery, and much higher levels needed to control mussel bed development. Our study suggests that consumer density and identity are key in regulating both plant and animal community recovery and that physical conditions can determine the functional forms of these consumer effects. PMID:23940510

  1. Demonstration of N- and C-terminal domain intramolecular interactions in rat liver carnitine palmitoyltransferase 1 that determine its degree of malonyl-CoA sensitivity

    PubMed Central

    Faye, Audrey; Borthwick, Karen; Esnous, Catherine; Price, Nigel T.; Gobin, Stéphanie; Jackson, Vicky N.; Zammit, Victor A.; Girard, Jean; Prip-Buus, Carina

    2004-01-01

    We have previously proposed that changes in malonyl-CoA sensitivity of rat L-CPT1 (liver carnitine palmitoyltransferase 1) might occur through modulation of interactions between its cytosolic N- and C-terminal domains. By using a cross-linking strategy based on the trypsin-resistant folded state of L-CPT1, we have now shown the existence of such N–C (N- and C-terminal domain) intramolecular interactions both in wild-type L-CPT1 expressed in Saccharomyces cerevisiae and in the native L-CPT1 in fed rat liver mitochondria. These N–C intramolecular interactions were found to be either totally (48-h starvation) or partially abolished (streptozotocin-induced diabetes) in mitochondria isolated from animals in which the enzyme displays decreased malonyl-CoA sensitivity. Moreover, increasing the outer membrane fluidity of fed rat liver mitochondria with benzyl alcohol in vitro, which induced malonyl-CoA desensitization, attenuated the N–C interactions. This indicates that the changes in malonyl-CoA sens-itivity of L-CPT1 observed in mitochondria from starved and diabetic rats, previously shown to be associated with altered membrane composition in vivo, are partly due to the disruption of N–C interactions. Finally, we show that mutations in the regulatory regions of the N-terminal domain affect the ability of the N terminus to interact physically with the C-terminal domain, irrespective of whether they increased [S24A (Ser24→Ala)/Q30A] or abrogated (E3A) malonyl-CoA sensitivity. Moreover, we have identified the region immediately N-terminal to transmembrane domain 1 (residues 40–47) as being involved in the chemical N–C cross-linking. These observations provide the first demonstration by a physico-chemical method that L-CPT1 adopts different conformational states that differ in their degree of proximity between the cytosolic N-terminal and the C-terminal domains, and that this determines its degree of malonyl-CoA sensitivity depending on the physiological state

  2. Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice

    PubMed Central

    Liu, Jing Miao; Park, Soon Ju; Huang, Jin; Lee, Eun Jin; Xuan, Yuan Hu; Je, Byoung Il; Kumar, Vikranth; Priatama, Ryza A.; Raj K, Vimal; Kim, Sung Hoon; Min, Myung Ki; Cho, Jun Hyeon; Kim, Tae Ho; Chandran, Anil Kumar Nalini; Jung, Ki Hong; Takatsuto, Suguru; Fujioka, Shozo; Han, Chang-deok

    2016-01-01

    Lamina inclination is a key agronomical character that determines plant architecture and is sensitive to auxin and brassinosteroids (BRs). Loose Plant Architecture1 (LPA1) in rice (Oryza sativa) and its Arabidopsis homologues (SGR5/AtIDD15) have been reported to control plant architecture and auxin homeostasis. This study explores the role of LPA1 in determining lamina inclination in rice. LPA1 acts as a positive regulator to suppress lamina bending. Genetic and biochemical data indicate that LPA1 suppresses the auxin signalling that interacts with C-22-hydroxylated and 6-deoxo BRs, which regulates lamina inclination independently of OsBRI1. Mutant lpa1 plants are hypersensitive to indole-3-acetic acid (IAA) during the lamina inclination response, which is suppressed by the brassinazole (Brz) inhibitor of C-22 hydroxylase involved in BR synthesis. A strong synergic effect is detected between lpa1 and d2 (the defective mutant for catalysis of C-23-hydroxylated BRs) during IAA-mediated lamina inclination. No significant interaction between LPA1 and OsBRI1 was identified. The lpa1 mutant is sensitive to C-22-hydroxylated and 6-deoxo BRs in the d61-1 (rice BRI1 mutant) background. We present evidence verifying that two independent pathways function via either BRs or BRI1 to determine IAA-mediated lamina inclination in rice. RNA sequencing analysis and qRT-PCR indicate that LPA1 influences the expression of three OsPIN genes (OsPIN1a, OsPIN1c and OsPIN3a), which suggests that auxin flux might be an important factor in LPA1-mediated lamina inclination in rice. PMID:26826218

  3. Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice.

    PubMed

    Liu, Jing Miao; Park, Soon Ju; Huang, Jin; Lee, Eun Jin; Xuan, Yuan Hu; Je, Byoung Il; Kumar, Vikranth; Priatama, Ryza A; Raj K, Vimal; Kim, Sung Hoon; Min, Myung Ki; Cho, Jun Hyeon; Kim, Tae Ho; Chandran, Anil Kumar Nalini; Jung, Ki Hong; Takatsuto, Suguru; Fujioka, Shozo; Han, Chang-Deok

    2016-03-01

    Lamina inclination is a key agronomical character that determines plant architecture and is sensitive to auxin and brassinosteroids (BRs). Loose Plant Architecture1 (LPA1) in rice (Oryza sativa) and its Arabidopsis homologues (SGR5/AtIDD15) have been reported to control plant architecture and auxin homeostasis. This study explores the role of LPA1 in determining lamina inclination in rice. LPA1 acts as a positive regulator to suppress lamina bending. Genetic and biochemical data indicate that LPA1 suppresses the auxin signalling that interacts with C-22-hydroxylated and 6-deoxo BRs, which regulates lamina inclination independently of OsBRI1. Mutant lpa1 plants are hypersensitive to indole-3-acetic acid (IAA) during the lamina inclination response, which is suppressed by the brassinazole (Brz) inhibitor of C-22 hydroxylase involved in BR synthesis. A strong synergic effect is detected between lpa1 and d2 (the defective mutant for catalysis of C-23-hydroxylated BRs) during IAA-mediated lamina inclination. No significant interaction between LPA1 and OsBRI1 was identified. The lpa1 mutant is sensitive to C-22-hydroxylated and 6-deoxo BRs in the d61-1 (rice BRI1 mutant) background. We present evidence verifying that two independent pathways function via either BRs or BRI1 to determine IAA-mediated lamina inclination in rice. RNA sequencing analysis and qRT-PCR indicate that LPA1 influences the expression of three OsPIN genes (OsPIN1a, OsPIN1c and OsPIN3a), which suggests that auxin flux might be an important factor in LPA1-mediated lamina inclination in rice. PMID:26826218

  4. Gadd45γ and Map3k4 Interactions Regulate Mouse Testis Determination via p38 MAPK-Mediated Control of Sry Expression

    PubMed Central

    Warr, Nick; Carre, Gwenn-Aël; Siggers, Pam; Faleato, Jessica Vitos; Brixey, Rachel; Pope, Madeleine; Bogani, Debora; Childers, Melissa; Wells, Sara; Scudamore, Cheryl L.; Tedesco, Marianna; del Barco Barrantes, Ivan; Nebreda, Angel R.; Trainor, Paul A.; Greenfield, Andy

    2012-01-01

    Summary Loss of the kinase MAP3K4 causes mouse embryonic gonadal sex reversal due to reduced expression of the testis-determining gene, Sry. However, because of widespread expression of MAP3K4, the cellular basis of this misregulation was unclear. Here, we show that mice lacking Gadd45γ also exhibit XY gonadal sex reversal caused by disruption to Sry expression. Gadd45γ is expressed in a dynamic fashion in somatic cells of the developing gonads from 10.5 days postcoitum (dpc) to 12.5 dpc. Gadd45γ and Map3k4 genetically interact during sex determination, and transgenic overexpression of Map3k4 rescues gonadal defects in Gadd45γ-deficient embryos. Sex reversal in both mutants is associated with reduced phosphorylation of p38 MAPK and GATA4. In addition, embryos lacking both p38α and p38β also exhibit XY gonadal sex reversal. Taken together, our data suggest a requirement for GADD45γ in promoting MAP3K4-mediated activation of p38 MAPK signaling in embryonic gonadal somatic cells for testis determination in the mouse. PMID:23102580

  5. Study on the interaction between hematoporphyrin monomethyl ether and DNA and the determination of hematoporphyrin monomethyl ether using the resonance light scattering technique.

    PubMed

    Chen, Zhanguang; Song, Tianhe; Chen, Xi; Wang, Shaobin; Chen, Junhui

    2010-10-15

    The interaction between photosensitizer anticancer drug hematoporphyrin monomethyl ether (HMME) and ctDNA has been studied based on the decreased resonance light scattering (RLS) phenomenon. The RLS, UV-vis and fluorescence spectra characteristics of the HMME-ctDNA system were investigated. Besides, the phosphodiesters quaternary ammonium salt (PQAS), a kind of new gemini surfactant synthesized recently, was used to determine anticancer drug HMME based on the increasing RLS intensity. Under the optimum assay conditions, the enhanced RLS intensity was proportional to the concentration of HMME. The linear range was 0.8-8.4microgmL(-1), with correlation coefficient R(2)=0.9913. The detection limit was 0.014microgmL(-1). The human serum samples and urine samples were determined satisfactorily, which proved that this method was reliable and applicable in the determination of HMME in body fluid. The presented method was simple, sensitive and straightforward and could be a significant method in clinical analysis. PMID:20643575

  6. Study on the interaction between hematoporphyrin monomethyl ether and DNA and the determination of hematoporphyrin monomethyl ether using the resonance light scattering technique

    NASA Astrophysics Data System (ADS)

    Chen, Zhanguang; Song, Tianhe; Chen, Xi; Wang, Shaobin; Chen, Junhui

    2010-10-01

    The interaction between photosensitizer anticancer drug hematoporphyrin monomethyl ether (HMME) and ctDNA has been studied based on the decreased resonance light scattering (RLS) phenomenon. The RLS, UV-vis and fluorescence spectra characteristics of the HMME-ctDNA system were investigated. Besides, the phosphodiesters quaternary ammonium salt (PQAS), a kind of new gemini surfactant synthesized recently, was used to determine anticancer drug HMME based on the increasing RLS intensity. Under the optimum assay conditions, the enhanced RLS intensity was proportional to the concentration of HMME. The linear range was 0.8-8.4 μg mL -1, with correlation coefficient R2 = 0.9913. The detection limit was 0.014 μg mL -1. The human serum samples and urine samples were determined satisfactorily, which proved that this method was reliable and applicable in the determination of HMME in body fluid. The presented method was simple, sensitive and straightforward and could be a significant method in clinical analysis.

  7. INTERACTION OF COCAINE-, BENZTROPINE-, AND GBR12909-LIKE COMPOUNDS WITH WILDTYPE AND MUTANT HUMAN DOPAMINE TRANSPORTERS: MOLECULAR FEATURES THAT DIFFERENTIALLY DETERMINE ANTAGONIST BINDING PROPERTIES

    PubMed Central

    Schmitt, Kyle C.; Zhen, Juan; Kharkar, Prashant; Mishra, Manoj; Chen, Nianhang; Dutta, Aloke K.; Reith, Maarten E.A.

    2009-01-01

    The widely abused psychostimulant cocaine is thought to elicit its reinforcing effects primarily via inhibition of the neuronal dopamine transporter (DAT). However, not all DAT inhibitors share cocaine’s behavioral profile, despite similar or greater affinity for the DAT. This may be due to differential molecular interactions with the DAT. Our previous work using transporter mutants with altered conformational equilibrium (W84L and D313N) indicated that benztropine and GBR12909 interact with the DAT in a different manner than cocaine. Here, we expand upon these previous findings, studying a number of structurally different DAT inhibitors for their ability to inhibit [3H]CFT binding to wildtype, W84L and D313N transporters. We systematically tested structural intermediates between cocaine and benztropine, structural hybrids of benztropine and GBR12909 and a number of other structurally heterologous inhibitors. Derivatives of the stimulant desoxypipradrol (2-benzhydrylpiperidine) exhibited a cocaine-like binding profile with respect to mutation, whereas compounds possessing the diphenylmethoxy moiety of benztropine and GBR12909 were dissimilar to cocaine-like compounds. In tests with specific isomers of cocaine and tropane analogues, compounds with 3α stereochemistry tended to exhibit benztropine-like binding, whereas those with 3β stereochemistry were more cocaine-like. Our results point to the importance of specific molecular features—most notably the presence of a diphenylmethoxy moiety—in determining a compound’s binding profile. This study furthers the concept of using DAT mutants to differentiate cocaine-like inhibitors from atypical inhibitors in vitro. Further studies of the molecular features that define inhibitor-transporter interaction could lead to the development of DAT inhibitors with differential clinical utility. PMID:18786172

  8. Interaction of cocaine-, benztropine-, and GBR12909-like compounds with wild-type and mutant human dopamine transporters: molecular features that differentially determine antagonist-binding properties.

    PubMed

    Schmitt, Kyle C; Zhen, Juan; Kharkar, Prashant; Mishra, Manoj; Chen, Nianhang; Dutta, Aloke K; Reith, Maarten E A

    2008-11-01

    The widely abused psychostimulant cocaine is thought to elicit its reinforcing effects primarily via inhibition of the neuronal dopamine transporter (DAT). However, not all DAT inhibitors share cocaine's behavioral profile, despite similar or greater affinity for the DAT. This may be due to differential molecular interactions with the DAT. Our previous work using transporter mutants with altered conformational equilibrium (W84L and D313N) indicated that benztropine and GBR12909 interact with the DAT in a different manner than cocaine. Here, we expand upon these previous findings, studying a number of structurally different DAT inhibitors for their ability to inhibit [(3)H]CFT binding to wild-type, W84L and D313N transporters. We systematically tested structural intermediates between cocaine and benztropine, structural hybrids of benztropine and GBR12909 and a number of other structurally heterologous inhibitors. Derivatives of the stimulant desoxypipradrol (2-benzhydrylpiperidine) exhibited a cocaine-like binding profile with respect to mutation, whereas compounds possessing the diphenylmethoxy moiety of benztropine and GBR12909 were dissimilar to cocaine-like compounds. In tests with specific isomers of cocaine and tropane analogues, compounds with 3alpha stereochemistry tended to exhibit benztropine-like binding, whereas those with 3beta stereochemistry were more cocaine-like. Our results point to the importance of specific molecular features--most notably the presence of a diphenylmethoxy moiety--in determining a compound's binding profile. This study furthers the concept of using DAT mutants to differentiate cocaine-like inhibitors from atypical inhibitors in vitro. Further studies of the molecular features that define inhibitor-transporter interaction could lead to the development of DAT inhibitors with differential clinical utility. PMID:18786172

  9. Determination of nucleosides and nucleotides in baby foods by hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of hydrophilic ion-pairing reagents.

    PubMed

    Mateos-Vivas, María; Rodríguez-Gonzalo, Encarnación; Domínguez-Álvarez, Javier; García-Gómez, Diego; Carabias-Martínez, Rita

    2016-11-15

    In this work we propose a rapid and efficient method for the joint determination of nucleosides and nucleotides in dairy and non-dairy baby foods based on hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of diethylammonium (DEA) as a hydrophilic ion-pairing reagent (IP-HILIC-MS/MS). Sample treatment of the baby food included dilution with water and centrifugal ultrafiltration (CUF) with an additional washing step that notably improved the global performance of the process. Later dilution of the extract with acetonitrile allowed adequate separation in the HILIC system. With the proposed treatment, we obtained extraction recoveries higher than 80% and, additionally, no matrix effects were observed. The CUF-IP-HILIC-MS/MS method was validated according to the 2002/657/EC decision and was used for the quantification of nucleotides and nucleosides in sixteen samples of commercial baby foods. PMID:27283702

  10. Ab initio determination of spin Hamiltonians with anisotropic exchange interactions: The case of the pyrochlore ferromagnet Lu2V2O7

    NASA Astrophysics Data System (ADS)

    Riedl, Kira; Guterding, Daniel; Jeschke, Harald O.; Gingras, Michel J. P.; Valentí, Roser

    2016-07-01

    We present a general framework for deriving effective spin Hamiltonians of correlated magnetic systems based on a combination of relativistic ab initio density functional theory calculations, exact diagonalization of a generalized Hubbard Hamiltonian on finite clusters, and spin projections onto the low-energy subspace. A key motivation is to determine anisotropic bilinear exchange couplings in materials of interest. As an example, we apply this method to the pyrochlore Lu2V2O7 where the vanadium ions form a lattice of corner-sharing spin-1/2 tetrahedra. In this compound, anisotropic Dzyaloshinskii-Moriya interactions (DMIs) play an essential role in inducing a magnon Hall effect. We obtain quantitative estimates of the nearest-neighbor Heisenberg exchange, the DMI, and the symmetric part of the anisotropic exchange tensor. Finally, we compare our results with experimental ones on the Lu2V2O7 compound.

  11. Interaction between hexon and L4-100K determines virus rescue and growth of hexon-chimeric recombinant Ad5 vectors

    PubMed Central

    Yan, Jingyi; Dong, Jianing; Wu, Jiaxin; Zhu, Rui; Wang, Zhen; Wang, Baoming; Wang, Lizheng; Wang, Zixuan; Zhang, Haihong; Wu, Hui; Yu, Bin; Kong, Wei; Yu, Xianghui

    2016-01-01

    The immunogenicity of recombinant adenovirus serotype 5 (rAd5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against hexon hypervariable regions (HVRs). Preexisting immunity can be circumvented by replacing HVRs of rAd5 hexon with those derived from alternate adenovirus serotypes. However, chimeric modification of rAd5 hexon HVRs tends to cause low packaging efficiency or low proliferation of rAd5 vectors, but the related mechanism remains unclear. In this study, several Ad5-based vectors with precise replacement of HVRs with those derived from Ad37 and Ad43 were generated. We first observed that a HVR-exchanged rAd5 vector displayed a higher efficacy of the recombinant virus rescue and growth improvement compared with the rAd5 vector, although most hexon-chimeric rAd5 vectors constructed by us and other groups have proven to be nonviable or growth defective. We therefore evaluated the structural stability of the chimeric hexons and their interactions with the L4-100K chaperone. We showed that the viability of hexon-chimeric Ad5 vectors was not attributed to the structural stability of the chimeric hexon, but rather to the hexon maturation which was assisted by L4-100K. Our results suggested that the intricate interaction between hexon and L4-100K would determine the virus rescue and proliferation efficiency of hexon-chimeric rAd5 vectors. PMID:26934960

  12. Host-range determinants on the PB2 protein of influenza A viruses control the interaction between the viral polymerase and nucleoprotein in human cells.

    PubMed

    Labadie, Karine; Dos Santos Afonso, Emmanuel; Rameix-Welti, Marie-Anne; van der Werf, Sylvie; Naffakh, Nadia

    2007-06-01

    The transcription/replication activity of ribonucleoproteins derived from influenza A primary isolates of human (A/Paris/908/97) or avian origin (A/Mallard/Marquenterre/MZ237/83, A/Hong Kong/156/97) was compared upon reconstitution in mammalian or avian cells, using viral-like reporter RNAs synthesized under the control of the human and chicken RNA polymerase I promoters, respectively. In avian cells, transcription/replication activities were in the same range with all ribonucleoproteins tested. In human cells, ribonucleoproteins derived from A/Mallard/Marquenterre/MZ237/83 showed reduced transcription/replication activity and reduced NP binding to the PB1-PB2-PA complex (P) or to the isolated PB2 subunit, as compared to the ribonucleoproteins derived from A/Paris/908/97. Both defects were restored when PB2 residue Glu-627 was changed to a Lys. Ribonucleoproteins derived from the human A/Hong Kong/156/97 H5N1 isolate showed efficient NP-P interaction in human cells, and high levels of activity which were determined mostly by the PB2 and PA proteins. Our data suggest that PB2 might play a pivotal role in molecular interactions involving both the viral nucleoprotein and cellular proteins. PMID:17270230

  13. Expression of cFLIPL Determines the Basal Interaction of Bcl-2 With Beclin-1 and Regulates p53 Dependent Ubiquitination of Beclin-1 During Autophagic Stress.

    PubMed

    Ranjan, Kishu; Pathak, Chandramani

    2016-08-01

    Autophagy and apoptosis are two different physiological processes, which is required for the maintenance of cellular homeostasis. The apoptosis associated proteins such as Bcl-2 and p53 have a close association with autophagic proteins HMGB1 and Beclin-1 to modulate autophagic signaling. We demonstrate here the involvement of anti-apoptotic protein cFLIPL in the regulation of autophagy during cellular stress. We found that ectopic expression of cFLIPL decreases the sensitivity of HEK 293T cells against rapamycin and H2 O2 induced autophagic stress. Notably, the selective knockdown of cFLIPL augments autophagic stress in the cells accompanied with JNK1 activation and p53 dependent ubiquitination of Beclin-1. However, re-expression of cFLIPL in cFLIP knockdown cells restores autophagic equilibrium collectively with reversible effects on JNK1 and Beclin-1 integrity. The co-immunoprecipitation analysis suggests that cFLIPL is essential to maintain the canonical interaction of Bcl-2 with Beclin-1 to regulate autophagic stress and cell death. Altogether, our findings suggest that expression of cFLIPL regulates the basal interaction of Bcl-2 with Beclin-1 and substantiates p53 dependent ubiquitination of Beclin-1 during autophagic stress to determine the fate of cell death or survival. J. Cell. Biochem. 117: 1757-1768, 2016. © 2015 Wiley Periodicals, Inc. PMID:26682748

  14. Complex interactions among residues within pore region determine the K+ dependence of a KAT1-type potassium channel AmKAT1.

    PubMed

    Yang, Guangzhe; Sentenac, Hervé; Véry, Anne-Aliénor; Su, Yanhua

    2015-08-01

    KAT1-type channels mediate K(+) influx into guard cells that enables stomatal opening. In this study, a KAT1-type channel AmKAT1 was cloned from the xerophyte Ammopiptanthus mongolicus. In contrast to most KAT1-type channels, its activation is strongly dependent on external K(+) concentration, so it can be used as a model to explore the mechanism for the K(+) -dependent gating of KAT1-type channels. Domain swapping between AmKAT1 and KAT1 reveals that the S5-pore-S6 region controls the K(+) dependence of AmKAT1, and residue substitutions show that multiple residues within the S5-Pore linker and Pore are involved in its K(+) -dependent gating. Importantly, complex interactions occur among these residues, and it is these interactions that determine its K(+) dependence. Finally, we analyzed the potential mechanism for the K(+) dependence of AmKAT1, which could originate from the requirement of K(+) occupancy in the selectivity filter to maintain its conductive conformation. These results provide new insights into the molecular basis of the K(+) -dependent gating of KAT1-type channels. PMID:26032087

  15. [Determination of the interaction kinetics between meloxicam and β-cyclodextrin using the quantitative high-performance affinity chromatography coupled with mass spectrometry].

    PubMed

    Wang, Cai-fen; Li, Zhuo; Wang, Xiao-bo; Li, Hai-yan; Zhang, Ji-wen; Sun, Li-xin

    2015-09-01

    The association rate constant and dissociation rate constant are important parameters of the drug-cyclodextrin supermolecule systems, which determine the dissociation of drugs from the complex and the further in vivo absorption of drugs. However, the current studies of drug-cyclodextrin interactions mostly focus on the thermodynamic parameter of equilibrium constants (K). In this paper, a method based on quantitative high performance affinity chromatography coupled with mass spectrometry was developed to determine the apparent dissociation rate constant (k(off,app)) of drug-cyclodextrin supermolecule systems. This method was employed to measure the k(off,app) of meloxicam and acetaminophen. Firstly, chromatographic peaks of drugs and non-retained solute (uracil) on β-cyclodextrin column at different flow rates were acquired, and the retention time and variance values were obtained via the fitting the peaks. Then, the plate heights of drugs (H(R)) and uracil (H(M,C)) were calculated. The plate height of theoretical non-retained solute (H(M,T)) was calculated based on the differences of diffusion coefficient and the stagnant mobile phase mass transfer between drugs and uracil. Finally, the k(off,app) was calculated from the slope of the regression equation between (H(R)-H(M,T)) and uk/(1+k)2, (0.13 ± 0.00) s(-1) and (4.83 ± 0.10) s(-1) for meloxicam and acetaminophen (control drug), respectively. In addition, the apparent association rate constant (k(on,app)) was also calculated through the product of K (12.53 L x mol(-1)) and k(off,app). In summary, it has been proved that the method established in our study was simple, efficiently fast and reproducible for investigation on the kinetics of drug-cyclodextrin interactions. PMID:26757555

  16. Rapid determination of glyphosate, glufosinate, bialaphos, and their major metabolites in serum by liquid chromatography-tandem mass spectrometry using hydrophilic interaction chromatography.

    PubMed

    Yoshioka, Naoki; Asano, Migiwa; Kuse, Azumi; Mitsuhashi, Takao; Nagasaki, Yasushi; Ueno, Yasuhiro

    2011-06-10

    We developed a simple and rapid method for the simultaneous determination of phosphorus-containing amino acid herbicides (glyphosate, glufosinate, bialaphos) and their major metabolites, aminomethylphosphonic acid (AMPA) and 3-methylphosphinicopropionic acid (MPPA), in human serum. Serum samples were filtrated through an ultrafiltration membrane to remove proteins. The filtrate was then washed with chloroform, and injected into a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. Chromatographic separation was achieved on a hydrophilic interaction chromatography (HILIC) column. Determination of the target herbicides and metabolites was successfully carried out without derivatization or solid phase extraction (SPE) cartridge clean-up. The recoveries of these compounds, added to human serum at 0.2μg/mL, ranged from 94% to 108%, and the relative standard deviations (RSDs) were within 5.9%. The limits of detection (LODs) were 0.01μg/mL for MPPA, 0.02μg/mL for AMPA, 0.03μg/mL for both glyphosate and glufosinate, and 0.07μg/mL for bialaphos, respectively. PMID:21530973

  17. Spectrofluorimetric study on the inclusion interaction between vitamin K 3 with p-( p-sulfonated benzeneazo)calix[6]arene and determination of VK 3

    NASA Astrophysics Data System (ADS)

    Zhou, Yunyou; Xu, Hongwei; Wu, Lian; Liu, Chun; Lu, Qin; Wang, Lun

    2008-11-01

    The characteristics of host-guest complexation between p-( p-sulfonated benzeneazo) calix[6]arene (SBC6A) and vitamin K 3 (VK 3) were investigated by fluorescence spectrometry. A 1:1 stoichiometry for the complexation was established and was verified by Job's plot. An association constant of 4.95 × 10 3 L mol -1 at 20 °C was calculated by applying a deduced equation. The interaction mechanism of the inclusion complex was discussed. It was found that the fluorescence of SBC6A could be remarkably quenched by an appropriate amount of VK 3 especially when non-ionic surfactant Triton X-100 existed. According to the obtained results, a novel sensitive spectrofluorimetric method for the determination of VK 3 based on supramolecular complex was developed with a linear range of 5.0 × 10 -7-3.0 × 10 -5 mol L -1 and a detection limit of 2.0 × 10 -7 mol L -1. The proposed method was used to determine VK 3 in commercial preparations with satisfactory results.

  18. Isoform-specific Prolongation of Kv7 (KCNQ) Potassium Channel Opening Mediated by New Molecular Determinants for Drug-Channel Interactions*

    PubMed Central

    Gao, Zhaobing; Zhang, Tangzhi; Wu, Meng; Xiong, Qiaojie; Sun, Haiyan; Zhang, Yinan; Zu, Liansuo; Wang, Wei; Li, Min

    2010-01-01

    Kv7 channels, especially Kv7.2 (KCNQ2) and Kv7.3 (KCNQ3), are key determinants for membrane excitability in the brain. Some chemical modulators of KCNQ channels are in development for use as anti-epileptic drugs, such as retigabine (D-23129, N-(2-amino-4-(4-fluorobenzylamino)-phenyl)), which was recently approved for clinical use. In addition, several other compounds were also reported to potentiate activity of the Kv7 channels. It is therefore of interest to investigate compound-channel interactions, so that more insights may be gained to aid future development of therapeutics. We have conducted a screen of 20,000 compounds for KCNQ2 potentiators using rubidium flux combined with atomic absorption spectrometry. Here, we report the characterization of a series of new structures that display isoform specificity and induce a marked reduction of deactivation distinct from that of retigabine. Furthermore, KCNQ2(W236L), a previously reported mutation that abolishes sensitivity to retigabine, remains fully sensitive to these compounds. This result, together with mutagenesis and other studies, suggests that the reported compounds confer a unique mode of action and involve new molecular determinants on the channel protein, consistent with the idea of recognizing a new site on channel protein. PMID:20584905

  19. New multi-component solid forms of anti-cancer drug Erlotinib: role of auxiliary interactions in determining a preferred conformation.

    PubMed

    Sanphui, Palash; Rajput, Lalit; Gopi, Shanmukha Prasad; Desiraju, Gautam R

    2016-06-01

    Erlotinib is a BCS (biopharmaceutical classification system) class II drug used for the treatment of non-small cell lung cancer. There is an urgent need to obtain new solid forms of higher solubility to improve the bioavailability of the API (active pharmaceutical ingredient). In this context, cocrystals with urea, succinic acid, and glutaric acid and salts with maleic acid, adipic acid, and saccharin were prepared via wet granulation and solution crystallizations. Crystal structures of the free base (Z' = 2), cocrystals of erlotinib-urea (1:1), erlotinib-succinic acid monohydrate (1:1:1), erlotinib-glutaric acid monohydrate (1:1:1) and salts of erlotinib-adipic acid adipate (1:0.5:0.5) are determined and their hydrogen-bonding patterns are analyzed. Self recognition via the (amine) N-H...N (pyridine) hydrogen bond between the API molecules is replaced by several heterosynthons such as acid-pyridine, amide-pyridine and carboxylate-pyridinium in the new binary systems. Auxiliary interactions play an important role in determining the conformation of the API in the crystal. FT-IR spectroscopy is used to distinguish between the salts and cocrystals in the new multi-component systems. The new solid forms are characterized by powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC) to confirm their unique phase identity. PMID:27240760

  20. Rapid determination of cocamidopropyl betaine impurities in cosmetic products by core-shell hydrophilic interaction liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Perry G; Zhou, Wanlong

    2016-08-26

    Cocamidopropyl betaine (CAPB) is a common surfactant widely used in personal care products. Dimethylaminopropylamine (DMAPA) and lauramidopropyldimethylamine (LAPDMA) are two chemicals present as impurities in CAPB and have been reported as skin sensitizers. A rapid and sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method, using a core shell hydrophilic interaction liquid chromatography (HILIC) column, has been developed to quantify DMAPA and LAPDMA in cosmetic products. Corresponding stable isotopically labeled analogues of the above native compounds were used as internal standards to compensate for matrix effect and for loss of recovery. Each sample was first screened to determine whether the sample needed to be diluted to minimize matrix effects as well as to fit the calibration range. The concept of matrix effect factor (MEF) was introduced to quantitatively evaluate each sample with a unique matrix using the internal standards. Recoveries at three spiking levels of low, medium, and high concentrations ranged from 98.4 to 112% with RSDs less than 5%. This method has been validated and is the first UHPLC-MS/MS method, which uses core shell HILIC column and stable isotopically labeled internal standards to simultaneously determine these two CAPB impurities in cosmetic products. PMID:27473511

  1. Determination of polar pesticides in olive oil and olives by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry and high resolution mass spectrometry.

    PubMed

    Nortes-Méndez, Rocío; Robles-Molina, José; López-Blanco, Rafael; Vass, Andrea; Molina-Díaz, Antonio; Garcia-Reyes, Juan F

    2016-09-01

    This article reports the development of two HPLC-MS methods for the determination of polar pesticides in olive oil and olive samples by hydrophilic interaction liquid chromatography (HILIC) separation followed by mass spectrometry detection with tandem mass spectrometry using a triple quadrupole instrument operated in multiple reaction monitoring mode (HILIC-MS/MS) or electrospray time-of-flight mass spectrometry (HILIC-TOFMS). The selected polar pesticides included in the study were: amitrol, cyromazine, diquat, paraquat, mepiquat, trimethylsulfonium (trimesium, glyphosate counterion) and fosetyl aluminium. The simple sample treatment procedure was based on liquid partitioning with methanol. The performance of the sample extraction was evaluated in terms of recovery rates and matrix effects in both olive oil and olives matrices. The results obtained for olive oil were satisfactory while, due to the high complexity of olives, poor recovery rates were obtained for the extraction of diquat, paraquat and amitrol, although with a reasonable precision enabling its use in routine analysis. Similarly, matrix effects were minor in the case of olive oil (ca. 20% suppression average), while significantly higher suppression was observed for olives (30-50% suppression average). The studied approaches were found to be useful for the determination of the pesticides studied in olive oil and olives with limits of quantitation below 5µgkg(-1) in most cases when tandem mass spectrometry was used, thus being in compliance with MRLs set by current EU regulation. PMID:27343599

  2. The interaction of poly(ethylenimine) with nucleic acids and its use in determination of nucleic acids based on light scattering

    NASA Astrophysics Data System (ADS)

    Zhou, Ying-lin; Li, Yuan-zong

    2004-01-01

    For the first time, poly(ethylenimine) (PEI) was used to determine nucleic acids with a light scattering technique using a common spectrofluorometer. The interaction of PEI with DNA results in greatly enhanced intensity of light scattering at 300 nm, which is caused by the formation of the big particles between DNA and PEI. Based on this, a new quantitative method for nucleic acid determination in aqueous solutions has been developed. Under the optimum conditions, the enhanced intensity of light scattering is proportional to the concentration of nucleic acid in the range of 0.01-10.0 μg ml -1 for herring sperm DNA (hsDNA), 0.02-10.0 μg ml -1 for calf thymus DNA (ctDNA), 0.02-20.0 μg ml -1 for yeast RNA (yRNA). The detection limits are 5.3, 9.9, and 13.7 ng ml -1, respectively. Synthetic samples were determined satisfactorily. At the same time, the light scattering technique has been successfully used to obtain the information on the effects of pH and ionic strength on the formation and the stability of the DNA/PEI complex, which is important in some fields such as genetic engineering and gene transfer. Using ethidium bromide (EB) as a fluorescent probe, the binding of PEI with hsDNA was studied. Both the binding constant of EB with DNA and the number of binding sites per nucleotide decrease with increasing concentration of PEI, indicating noncompetitive inhibition of EB binding to DNA in the presence of PEI. And the association constant of PEI to DNA obtained is 1.2×10 5 M -1. IR-spectra show that PEI interacts with DNA through both the phosphate groups and the bases of DNA and the formation of DNA/PEI complex may cause the change of the conformation of the DNA secondary structure, which is also proved by UV-spectra.

  3. Electron paramagnetic resonance investigation of photosynthetic reaction centers from Rhodobacter sphaeroides R-26 in which Fe2+ was replaced by Cu2+. Determination of hyperfine interactions and exchange and dipole-dipole interactions between Cu2+ and QA-.

    PubMed Central

    Calvo, R; Passeggi, M C; Isaacson, R A; Okamura, M Y; Feher, G

    1990-01-01

    We report electron paramagnetic resonance (EPR) experiments in frozen solutions of unreduced and reduced photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides R-26 in which Fe2+ has been chemically replaced by the isotope 65Cu2+. Samples in which the primary quinone acceptor QA is unreduced (Cu2+QA:RCs) give a powder EPR spectrum typical for Cu2+ having axial symmetry, corresponding to a d(x2 - y2) ground state orbital, with g values g parallel = 2.314 +/- 0.001 and g perpendicular = 2.060 +/- 0.003. The spectrum shows a hyperfine structure for the nuclear spin of copper (65I = 3/2) with A parallel = (-167 +/- 1) x 10(-4) cm-1 and /A perpendicular/ = (16 +/- 2) x 10(-4) cm-1, and hyperfine couplings with three nitrogen ligands. This has been verified in samples containing the naturally occurring 14N isotope (l = 1), and in samples where the nitrogen ligands to copper were replaced by the isotope 15N (l = 1/2). We introduce a model for the electronic structure at the position of the metal ion which reflects the recently determined three-dimensional structure of the RCs of Rb. sphaeroides (Allen, J. P., G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees. 1987. Proc. Natl. Acad. Sci. USA. 84:5730: Allen, J. P., G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees. 1988. Proc. Natl. Acad. Sci. USA, 85:8487) as well as our EPR results. In this model the copper ion is octahedrally coordinated to three nitrogens from histidine residues and to one carboxylate oxygen from a glutamic acid, forming a distorted square in the plane of the d(x2 = y2) ground state orbital. It is also bound to a nitrogen of another histidine and to the other carboxylate oxygen of the same glutamic acid residue, in a direction approximately normal to this plane. The EPR spectrum changes drastically when the quinone acceptor QA is chemically reduced (Cu2+QA-:RCs); the change is due to the exchange and dipole-dipole interactions between the Cu2+ and QA- spins. A model spin Hamiltonian

  4. Salting-out assisted extraction method coupled with hydrophilic interaction liquid chromatography for determination of selected β-blockers and their metabolites in human urine.

    PubMed

    Magiera, Sylwia; Kolanowska, Anna; Baranowski, Jacek

    2016-06-01

    In this study, a new analytical method was developed and validated for the simultaneous analysis of β-blockers (metoprolol, propranolol, carvedilol) and their metabolites (5'-hydroxycarvedilol, O-desmethylcarvedilol, α-hydroxymetoprolol, O-desmethylmetoprolol, 5-hydroxypropranolol) in human urine. A salting-out assisted liquid-liquid extraction (SALLE) procedure was used for sample preparation. Several parameters affecting the extraction efficiency and method sensitivity including the type and volume of the extraction solvent, the type and quantity of the inorganic salt, extraction time and sample pH were investigated. Hydrophilic interaction liquid chromatography-ultraviolet detection (HILIC-UV) was used for the determination of all analytes. During method development, the effects of mobile phase components (type, pH, concentration of salt, organic modifier type and content, flow rate, column temperature) on the retention and separation of β-blockers and metabolites on the five different HILIC columns were examined. The method was linear for concentrations ranging from 0.1 to 8.0μg/mL, with determination coefficients higher than 0.993 for all analytes. The limits of quantification were in the range from 0.1 to 0.2μg/mL. Intra- and inter-day precision ranged from 0.1 to 8.9%, and accuracy was within±13% interval for all analytes. Under the optimized conditions, extraction efficiency was greater than 83.4% for determined compounds. The validated method was then applied to the measurement of β-blockers and their metabolites in human urine samples. PMID:27085018

  5. Membrane location of apocytochrome c and cytochrome c determined from lipid-protein spin exchange interactions by continuous wave saturation electron spin resonance.

    PubMed Central

    Snel, M M; Marsh, D

    1994-01-01

    Apocytochrome c derived from horse heart cytochrome c was spin-labeled on the cysteine residue at position 14 or 17 in the N-terminal region of the primary sequence, and cytochrome c from yeast was spin-labeled on the single cysteine residue at sequence position 102 in the C-terminal region. The spin-labeled apocytochrome c and cytochrome c were bound to fluid bilayers composed of different negatively charged phospholipids that also contained phospholipid probes that were spin-labeled either in the headgroup or at different positions in the sn-2 acyl chain. The location of the spin-labeled cysteine residues on the lipid-bound proteins was determined relative to the spin-label positions in the different spin-labeled phospholipids by the influence of spin-spin interactions on the microwave saturation properties of the spin-label electron spin resonance spectra. The enhanced spin relaxation observed in the doubly labeled systems arises from Heisenberg spin exchange, which is determined by the accessibility of the spin-label group on the protein to that on the lipid. It is found that the labeled cysteine groups in horse heart apocytochrome c are located closest to the 14-C atom of the lipid acyl chain when the protein is bound to dimyristoyl- or dioleoyl-phosphatidylglycerol, and to that of the 5-C atom when the protein is bound to a dimyristoylphosphatidylglycerol/dimyristoylphosphatidylcholine (15:85 mol/mol mixture. On binding to dioleoylphosphatidylglycerol, the labeled cysteine residue in yeast cytochrome c is located closest to the phospholipid headgroups but possibly between the polar group region and the 5-C atom of the acyl chains. These data determine the extent to which the different regions of the proteins are able to penetrate negatively charged phospholipid bilayers. Images FIGURE 1 PMID:7948687

  6. Endoplasmic Reticulum Protein Quality Control Is Determined by Cooperative Interactions between Hsp/c70 Protein and the CHIP E3 Ligase*

    PubMed Central

    Matsumura, Yoshihiro; Sakai, Juro; Skach, William R.

    2013-01-01

    The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70. PMID:23990462

  7. Genetic Analysis Reveals a Hierarchy of Interactions between Polycystin-Encoding Genes and Genes Controlling Cilia Function during Left-Right Determination

    PubMed Central

    Grimes, Daniel T.; Keynton, Jennifer L.; Buenavista, Maria T.; Jin, Xingjian; Patel, Saloni H.; Kyosuke, Shinohara; Williams, Debbie J.; Hamada, Hiroshi; Hussain, Rohanah; Nauli, Surya M.; Norris, Dominic P.

    2016-01-01

    During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This ‘nodal flow’ is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo. PMID:27272319

  8. Genetic Analysis Reveals a Hierarchy of Interactions between Polycystin-Encoding Genes and Genes Controlling Cilia Function during Left-Right Determination.

    PubMed

    Grimes, Daniel T; Keynton, Jennifer L; Buenavista, Maria T; Jin, Xingjian; Patel, Saloni H; Kyosuke, Shinohara; Vibert, Jennifer; Williams, Debbie J; Hamada, Hiroshi; Hussain, Rohanah; Nauli, Surya M; Norris, Dominic P

    2016-06-01

    During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This 'nodal flow' is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo. PMID:27272319

  9. Pulsed electron spin nutation spectroscopy of weakly exchange-coupled biradicals: a general theoretical approach and determination of the spin dipolar interaction.

    PubMed

    Ayabe, Kazuki; Sato, Kazunobu; Nishida, Shinsuke; Ise, Tomoaki; Nakazawa, Shigeaki; Sugisaki, Kenji; Morita, Yasushi; Toyota, Kazuo; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji

    2012-07-01

    Weakly exchange-coupled biradicals have attracted much attention in terms of their DNP application in NMR spectroscopy for biological systems or the use of synthetic electron-spin qubits. Pulse-ESR based electron spin nutation (ESN) spectroscopy applied to biradicals is generally treated as transition moment spectroscopy from the theoretical side, illustrating that it is a powerful and facile tool to determine relatively short distances between weakly exchange-coupled electron spins. The nutation frequency as a function of the microwave irradiation strength ω(1) (angular frequency) for any cases of weakly exchange-coupled systems can be classified into three categories; D(12) (spin dipolar interaction)-driven, Δg-driven and ω(1)-driven nutation behaviour with the increasing strength of ω(1). For hetero-spin biradicals, Δg effects can be a dominating characteristic in the biradical nutation spectroscopy. Two-dimensional pulse-based electron spin nutation (2D-ESN) spectroscopy operating at the X-band can afford to determine small values of D(12) in weakly exchange-coupled biradicals in rigid glasses. The analytical expressions derived here for ω(1)-dependent nutation frequencies are based on only four electronic spin states relevant to the biradicals, while real biradical systems often have sizable hyperfine interactions. Thus, we have evaluated nuclear hyperfine effects on the nutation frequencies to check the validity of the present theoretical treatment. The experimental spin dipolar coupling of a typical TEMPO-based biradical 1, (2,2,6,6-tetra[((2)H(3))methyl]-[3,3-(2)H(2),4-(2)H(1),5,5-(2)H(2)]piperidin-N-oxyl-4-yl)(2,2,6,6-tetra[((2)H(3))methyl]-[3,3-(2)H(2),4-(2)H(1),5,5-(2)H(2),(15)N]piperidin-(15)N-oxyl-4-yl) terephthalate in a toluene glass, with a distance of 1.69 nm between the two spin sites is D(12) = -32 MHz (the effect of the exchange coupling J(12) is vanishing due to the homo-spin sites of 1, i.e.Δg = 0), while 0 < |J(12)|≦ 1.0 MHz as

  10. Cell entry and trafficking of human adenovirus bound to blood factor X is determined by the fiber serotype and not hexon:heparan sulfate interaction.

    PubMed

    Corjon, Stéphanie; Gonzalez, Gaëlle; Henning, Petra; Grichine, Alexei; Lindholm, Leif; Boulanger, Pierre; Fender, Pascal; Hong, Saw-See

    2011-01-01

    Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon:FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors. PMID

  11. Cell Entry and Trafficking of Human Adenovirus Bound to Blood Factor X Is Determined by the Fiber Serotype and Not Hexon:Heparan Sulfate Interaction

    PubMed Central

    Henning, Petra; Grichine, Alexei; Lindholm, Leif; Boulanger, Pierre; Fender, Pascal; Hong, Saw-See

    2011-01-01

    Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon∶FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors

  12. Determining P-glycoprotein-drug interactions: evaluation of reconstituted P-glycoprotein in a liposomal system and LLC-MDR1 polarized cell monolayers

    PubMed Central

    Melchior, Donald L.; Sharom, Frances J.; Evers, Raymond; Wright, George E.; Chu, Joseph W.K.; Wright, Stephen E.; Chu, Xiaoyan; Yabut, Jocelyn

    2012-01-01

    Introduction P-Glycoprotein (ABCB1, MDR1) is a multidrug efflux pump that is a member of the ATP-binding cassette (ABC) superfamily. Many drugs in common clinical use are either substrates or inhibitors of this transporter. Quantitative details of P-glycoprotein inhibition by pharmaceutical agents are essential for assessment of their pharmacokinetic behavior and prevention of negative patient reactions. Cell-based systems have been widely used for determination of drug interactions with P-glycoprotein, but they suffer from several disadvantages, and results are often widely variable between laboratories. We aimed to demonstrate that a novel liposomal system employing contemporary biochemical methodologies could measure the ability of clinically used drugs to inhibit the P-glycoprotein pump. To accomplish this we compared results with those of cell-based approaches. Methods Purified transport-competent hamster Abcb1a P-glycoprotein was reconstituted into a unilamellar liposomal system, Fluorosome-trans-pgp, whose aqueous interior contains fluorescent drug sensors. This provides a well-defined system for measuring P-glycoprotein transport inhibition by test drugs in real time using rapid fluorescence-based technology. Results Inhibition of ATP-driven transport by Fluorosome-trans-pgp employed a panel of 46 representative drugs. Resulting IC50 values correlated well (r2 = 0.80) with Kd values for drug binding to purified P-glycoprotein. They also showed a similar trend to transport inhibition data obtained using LLC-MDR1 cell monolayers. Fluorosome-trans-pgp IC50 values were in agreement with published results of digoxin drug-drug interaction studies in humans. Discussion This novel approach using a liposomal system and fluorescence-based technology is shown to be suitable to study whether marketed drugs and drug candidates are P-glycoprotein inhibitors. The assay is rapid, allowing a 7-point IC50 determination in <6 minutes, and requires minimal quantities of test

  13. Quantitative pharmacological analyses of the interaction between flumazenil and midazolam in monkeys discriminating midazolam: Determination of the functional half life of flumazenil.

    PubMed

    Zanettini, Claudio; France, Charles P; Gerak, Lisa R

    2014-01-15

    The duration of action of a drug is commonly estimated using plasma concentration, which is not always practical to obtain or an accurate estimate of functional half life. For example, flumazenil is used clinically to reverse the effects of benzodiazepines like midazolam; however, its elimination can be altered by other drugs, including some benzodiazepines, thereby altering its half life. This study used Schild analyses to characterize antagonism of midazolam by flumazenil and determine the functional half life of flumazenil. Four monkeys discriminated 0.178mg/kg midazolam while responding under a fixed-ratio 10 schedule of stimulus-shock termination; flumazenil was given at various times before determination of a midazolam dose-effect curve. There was a time-related decrease in the magnitude of shift of the midazolam dose-effect curve as the interval between flumazenil and midazolam increased. The potency of flumazenil, estimated by apparent pA2 values (95% CI), was 7.30 (7.12, 7.49), 7.17 (7.03, 7.31), 6.91 (6.72, 7.10) and 6.80 (6.67, 6.92) at 15, 30, 60 and 120min after flumazenil administration, respectively. The functional half life of flumazenil, derived from potency estimates, was 57±13min. Thus, increasing the interval between flumazenil and midazolam causes orderly decreases in flumazenil potency; however, across a broad range of conditions, the qualitative nature of the interaction does not change, as indicated by slopes of Schild plots at all time points that are not different from unity. Differences in potency of flumazenil are therefore due to elimination of flumazenil and not due to pharmacodynamic changes over time. PMID:24216249

  14. Magnetocrystalline interactions and oxidation state determination of Mn(2-x)V(1+x)O4 (x=0, 1/3 and 1) magnetorresistive spinel family

    NASA Astrophysics Data System (ADS)

    Pomiro, F.; Ceppi, S.; De Paoli, J. M.; Sánchez, R. D.; Mesquita, A.; Tirao, G.; Pannunzio Miner, E. V.

    2013-09-01

    Oxidation states of transition metal cations in spinels-type oxides are sometimes extremely difficult to determine by conventional spectroscopic methods. One of the most complex cases occurs when there are different cations, each one with several possible oxidation states, as in the case of the magnetoresistant Mn(2-x)V(1+x)O4 (x=0, 1/3 and 1) spinel-type family. In this contribution we describe the determination of the oxidation state of manganese and vanadium in Mn(2-x)V(1+x)O4 (x=0, 1/3,1) spinel-type compounds by analyzing XANES and high-resolution Kβ X-ray fluorescence spectra. The ionic models found are Mn2+2V4+O4, Mn2+5/3V3.5+4/3O4 and Mn2+V3+2O4. Combination of the present results with previous data provided a reliable cation distribution model. For these spinels, single magnetic electron paramagnetic resonance (EPR) lines are observed at 480 K showing the interaction among the different magnetic ions. The analysis of the EPR parameters show that g-values and relative intensities are highly influenced by the concentration and the high-spin state of Mn2+. EPR broadening linewidth is explained in terms of the bottleneck effect, which is due to the presence of the fast relaxing V3+ ion instead of the weak Mn2+ (S state) coupled to the lattice. The EPR results, at high temperature, are well explained assuming the oxidation states of the magnetic ions obtained by the other spectroscopic techniques.

  15. Validation of a Stability-Indicating Hydrophilic Interaction Liquid Chromatographic Method for the Quantitative Determination of Vitamin K3 (Menadione Sodium Bisulfite) in Injectable Solution Formulation

    PubMed Central

    Ghanem, Mashhour M.; Abu-Lafi, Saleh A.; Hallak, Hussein O.

    2013-01-01

    A simple, specific, accurate, and stability-indicating method was developed and validated for the quantitative determination of menadione sodium bisulfite in the injectable solution formulation. The method is based on zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) coupled with a photodiode array detector. The desired separation was achieved on the ZIC-HILIC column (250 mm × 4.6 mm, 5 μm) at 25°C temperature. The optimized mobile phase consisted of an isocratic solvent mixture of 200mM ammonium acetate (NH4AC) solution and acetonitrile (ACN) (20:80; v/v) pH-adjusted to 5.7 by glacial acetic acid. The mobile phase was fixed at 0.5 ml/min and the analytes were monitored at 261 nm using a photodiode array detector. The effects of the chromatographic conditions on the peak retention, peak USP tailing factor, and column efficiency were systematically optimized. Forced degradation experiments were carried out by exposing menadione sodium bisulfite standard and the injectable solution formulation to thermal, photolytic, oxidative, and acid-base hydrolytic stress conditions. The degradation products were well-resolved from the main peak and the excipients, thus proving that the method is a reliable, stability-indicating tool. The method was validated as per ICH and USP guidelines (USP34/NF29) and found to be adequate for the routine quantitative estimation of menadione sodium bisulfite in commercially available menadione sodium bisulfite injectable solution dosage forms. PMID:24106670

  16. Rapid determination of endogenous cytokinins in plant samples by combination of magnetic solid phase extraction with hydrophilic interaction chromatography-tandem mass spectrometry.

    PubMed

    Liu, Zhao; Cai, Bao-Dong; Feng, Yu-Qi

    2012-04-01

    A 2-acrylamido-2-methyl-1-propanesulfonic acid-co-ethylene glycol dimethacrylate (Fe₃O₄/SiO₂/P(AMPS-co-EGDMA)) copolymer was prepared and used as a magnetic solid phase extraction (MSPE) medium for recovery of endogenous cytokinins (CKs) from plant extracts. This magnetic porous polymer was characterized by electron microscopy, nitrogen sorption experiments, elemental analysis and Fourier-transformed infrared spectroscopy. It was demonstrated to have high extraction capacity toward CKs in plants due to its specificity, surface area and porous structure. Coupled with hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS), a rapid, simple, and effective MSPE-HILIC-MS/MS analytical method for the quantitative analysis of endogenous CKs in Oryza sativa (O. sativa) roots was successfully established. Good linearities were obtained for all CKs investigated with correlation coefficients (R²>0.9975. The results showed that LODs (S/N=3) were ranged from 0.18 to 3.65 pg mL⁻¹. Reproducibility of the method was obtained with intra-day and inter-day relative standard deviations (RSDs) less than 16.1% and the recoveries in plant samples ranged from 72.8% to 115.5%. Finally, the MSPE-HILIC-MS/MS method was applied to several plant samples, and the amounts of endogenous CKs in O. sativa roots, leaves and Arabidopsis thaliana (A. thaliana) were successfully determined. PMID:22401906

  17. Molecular Insights into the Coding Region Determinant-binding Protein-RNA Interaction through Site-directed Mutagenesis in the Heterogeneous Nuclear Ribonucleoprotein-K-homology Domains*

    PubMed Central

    Barnes, Mark; van Rensburg, Gerrit; Li, Wai-Ming; Mehmood, Kashif; Mackedenski, Sebastian; Chan, Ching-Man; King, Dustin T.; Miller, Andrew L.; Lee, Chow H.

    2015-01-01

    The ability of its four heterogeneous nuclear RNP-K-homology (KH) domains to physically associate with oncogenic mRNAs is a major criterion for the function of the coding region determinant-binding protein (CRD-BP). However, the particular RNA-binding role of each of the KH domains remains largely unresolved. Here, we mutated the first glycine to an aspartate in the universally conserved GXXG motif of the KH domain as an approach to investigate their role. Our results show that mutation of a single GXXG motif generally had no effect on binding, but the mutation in any two KH domains, with the exception of the combination of KH3 and KH4 domains, completely abrogated RNA binding in vitro and significantly retarded granule formation in zebrafish embryos, suggesting that any combination of at least two KH domains cooperate in tandem to bind RNA efficiently. Interestingly, we found that any single point mutation in one of the four KH domains significantly impacted CRD-BP binding to mRNAs in HeLa cells, suggesting that the dynamics of the CRD-BP-mRNA interaction vary over time in vivo. Furthermore, our results suggest that different mRNAs bind preferentially to distinct CRD-BP KH domains. The novel insights revealed in this study have important implications on the understanding of the oncogenic mechanism of CRD-BP as well as in the future design of inhibitors against CRD-BP function. PMID:25389298

  18. Determination of D-glucaric acid and/or D-glucaro-1,4-lacton in different apple varieties through hydrophilic interaction chromatography.

    PubMed

    Xie, Baogang; Liu, Yalan; Zou, Huiqin; Son, Yong; Wang, Huiyun; Wang, Haipeng; Shao, Jianghua

    2016-07-15

    d-Glucaric acid (GA) derivatives exhibit anti-cancerogenic properties in vivo in apples, but quantitative information about these derivatives is limited. Hydrophilic interaction-based HPLC with ultraviolet detection or mass spectrometry was developed to quantify GA and/or D-glucaro-1,4-lacton (1,4-GL) in apples. Although the formation of 1,4-GL from GA could be the prerequisite to exert biological effects in vivo, only a small portion of GA (<5%) was identified and converted to 1,4-GL in the rat stomach. The 1,4-GL content in apples ranged from 0.3 mg/g to 0.9 mg/g, and this amount can substantiate health claims associated with apples. The amount of 1,4-GL was 1.5 times higher in Gala and the ratio of 1,4-GL to GA was lower in Green Delicious apples than those in the other varieties. Our findings suggested that the variety and maturity of apples at harvest are factors that determine 1,4-GL content. PMID:26948581

  19. A new hydrophilic interaction liquid chromatographic (HILIC) procedure for the simultaneous determination of pseudoephedrine hydrochloride (PSH), diphenhydramine hydrochloride (DPH) and dextromethorphan hydrobromide (DXH) in cough-cold formulations.

    PubMed

    Ali, Mohammed Shahid; Ghori, Mohsin; Rafiuddin, Syed; Khatri, Aamer Roshanali

    2007-01-01

    A new HILIC method has been developed for the simultaneous determination of pseudoephedrine hydrochloride (PSH), diphenhydramine hydrochloride (DPH) and dextromethorphan hydrobromide (DXH) in cough-cold syrup. Mobile phase consists of methanol:water (containing 6.0 g of ammonium acetate and 10 mL of triethylamine per liter, pH adjusted to 5.2 with orthophosphoric acid), 95:5 (v/v). Column containing porous silica particles (Supelcosil LC-Si, 25 cm x 4.6 mm, 5 microm) is used as stationary phase. Detection is carried out using a variable wavelength UV-vis detector at 254 nm for PSH and DPH, and at 280 nm for DXH. Solutions are injected into the chromatograph under isocratic condition at constant flow rate of 1.2 mL/min. Linearity range and percent recoveries for PSH, DPH and DXH were 150-600, 62.5-250, 75-300 microg/mL and 100.7%, 100.1% and 100.8%, respectively. Method is stability indicating and excipients like saccharin sodium, sodium citrate, flavour and sodium benzoate did not interfere in the analysis. Compounds elute in order of increasing ionization degree caused by cation-exchange mechanism in a run time of less than 15 min. Mobile phase pH is manipulated to regulate ionization and ion-exchange interaction and thereby retention of compounds. PMID:16887317

  20. The effect of drought and interspecific interactions on depth of water uptake in deep- and shallow-rooting grassland species as determined by δ18O natural abundance

    NASA Astrophysics Data System (ADS)

    Hoekstra, N. J.; Finn, J. A.; Hofer, D.; Lüscher, A.

    2014-08-01

    . pratense decrease under drought conditions. In line with hypothesis (2), in monoculture, the PCWU0-10 of shallow-rooting species L. perenne and T. repens was 0.53 averaged over the two drought treatments, compared to 0.16 for the deep-rooting C. intybus. Surprisingly, in monoculture, water uptake by T. pratense was shallower than for the shallow-rooting species (PCWU0-10 = 0.68). Interspecific interactions in mixtures resulted in a shift in the depth of water uptake by the different species. As hypothesised, the shallow-rooting species L. perenne and T. repens tended to become shallower, and the deep-rooting T. pratense made a dramatic shift to deeper soil layers (reduction in PCWU0-10 of 58% on average) in mixture compared to monoculture. However, these shifts did not result in a reduction in the proportional similarity of the proportional water uptake from different soil depth intervals (niche overlap) in mixtures compared to monocultures. There was no clear link between interspecific differences in depth of water uptake and the reduction of biomass production under drought compared to control conditions (drought resistance). Cichorium intybus, the species with water uptake from the deepest soil layers was one of the species most affected by drought. Interestingly, T. pratense, which was least affected by drought, also had the greatest plasticity in depth of water uptake. This suggests that there may be an indirect effect of rooting depth on drought resistance, as it determines the potential plasticity in the depth of water uptake.

  1. Hydrophilic interaction chromatography combined with dispersive liquid-liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples.

    PubMed

    Konieczna, Lucyna; Roszkowska, Anna; Niedźwiecki, Maciej; Bączek, Tomasz

    2016-01-29

    A simple and sensitive method using dispersive liquid-liquid microextraction (DLLME) followed by liquid chromatography coupled to mass spectrometry (LC-MS) with a hydrophilic interaction chromatography (HILIC) column was developed for the simultaneous determination of 13 compounds of different polarities, comprising monoamine neurotransmitters (dopamine, norepinephrine, epinephrine and serotonin) along with their respective precursors and metabolites, in human urine samples. The microextraction procedure was based on the fast injection of a mixture of ethanol (disperser solvent) and dichloromethane (extraction solvent) into a human urine sample, forming a cloudy solution in the Eppendorf tube. After centrifugation, the sedimented phase was collected and subsequently analyzed by LC-HILIC-MS in about 12min without a derivatization step. The separation was performed on an XBridge Amide™ BEH column 3.0×100mm, 3.5mm and the mobile phase consisted of phase A: 10mM ammonium formate buffer in water pH 3.0 and phase B: 10 mM ammonium formate buffer in acetonitrile, under gradient program elution. Tyrosine, tryptophan, 5-hydroxytryptophan, dopamine, epinephrine, norepinephrine, serotonin, 3-methoxytyramine, 5-hydroxyindole-3-acetic acid, 3,4-dihydroxy-l-phenylalanine and norvaline (internal standard) were detected in the positive ionization mode. While vanillylmandelic acid, homovanillic acid, 3,4-dihydroxyphenylacetic acid and 3,4-dihydroxybenzylamine (internal standard) were detected in the negative ionization mode. Parameters influencing DLLME and LC-HILIC-MS were investigated. Under the optimum conditions, the proposed method exhibited a low detection limit (5-10ngmL(-1)), and good linearity with R between 0.9991 and 0.9998. The recoveries in human urine samples were 99.0%±3.6%. for the 13 studied biogenic amines with intra- and inter-day RSDs of 0.24-9.55% and 0.31-10.0%, respectively. The developed DLLME-LC-MS method could be successfully applied for the

  2. Determination of glycine in biofluid by hydrophilic interaction chromatography coupled with tandem mass spectrometry and its application to the quantification of glycine released by embryonal carcinoma stem cells.

    PubMed

    Tang, Ya-Bin; Teng, Lin; Sun, Fan; Wang, Xiao-Lin; Peng, Liang; Cui, Yong-Yao; Hu, Jin-Jia; Luan, Xin; Zhu, Liang; Chen, Hong-Zhuan

    2012-09-15

    Because glycine plays a prominent role in living creatures, an accurate and precise quantitative analysis method for the compound is needed. Herein, a new approach to analyze glycine by hydrophilic interaction chromatography (HILIC) coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS) was developed. This method avoids the use of derivatization and/or ion-pairing reagents. N-methyl-D-aspartate (NMDA) is used as the internal standard (IS). The mobile phase for the isocratic elution consisted of 10 mM ammonium formate in acetonitrile-water (70:30, v/v, adjusted to pH 2.8 with formic acid), and a flow rate of 250 μL/min was used. Two microliters of sample was injected for analysis. The signal was monitored in the positive multiple reaction monitoring (MRM) mode. The total run time was 5 min. The dynamic range was 40-2000 ng/mL for glycine in the biological matrix. The LLOQ (lower limit of quantification) of this method was 40 ng/mL (80 pg on column). The validated method was applied to determine the dynamic release of glycine from P19 embryonal carcinoma stem cells (ECSCs). Glycine spontaneously released from the ECSCs into the intercellular space gradually increased from 331.02±60.36 ng/mL at 2 min in the beginning to 963.52±283.80 ng/mL at 60 min and 948.27±235.09 ng/mL at 120 min, finally reaching a plateau, indicating that ECSCs consecutively release glycine until achieving equilibration between the release and the reuptake of the compound; on the contrary, the negative control NIH/3T3 embryonic fibroblast cells did not release glycine. This finding will help to improve our understanding of the novel effects of neurotransmitters, including glycine, on non-neural systems. PMID:22906796

  3. Comparison of hydrophilic interaction and reversed phase liquid chromatography coupled with tandem mass spectrometry for the determination of eight artificial sweeteners and common steviol glycosides in popular beverages.

    PubMed

    Kubica, Paweł; Namieśnik, Jacek; Wasik, Andrzej

    2016-08-01

    Hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass spectrometry (MS/MS) was used to separate artificial and natural sweeteners approved for use in European Union (EU). Among three tested HILIC columns (BlueOrchid PAL-HILIC, Ascentis Express Si and Acclaim™ Trinity™ P2) the last one was selected for the development of HILIC method due to the best results obtained with it. Early eluting and coeluting compounds in HILIC (acesulfame-K, saccharin, cyclamate, sucralose and aspartame) were successfully separated by the HILIC-based approach for the first time. The developed HILIC method allows for determination of all high potency sweeteners in one analytical run. The calibration curves for all analytes had good linearity within the tested ranges. The limits of detection and quantitation were in the range 0.81-3.30ng/mL and 2.32-9.89ng/mL, respectively. The obtained recoveries used for trueness and precision estimation were from 98.6% to 106.2% with standard deviation less than 4.1%. Sample preparation was reduced to a necessary minimum and contained only proper dilution and centrifugation. More than twenty samples of beverages were analyzed with the developed HILIC method. Finally, the chromatographic parameters of peaks (reduced retention time, width at baseline, width at 50% of peak height, tailing factor and efficiency) obtained in HILIC mode and in RPLC mode were compared. Developed HILIC method along with RPLC method can be applied for rapid evaluation of sweeteners' content, quality and safety control. PMID:26782293

  4. Determination of vanadium as 4-(2-pyridylazo)resorcinol-hydrogen peroxide ternary complexes by ion-interaction reversed-phase liquid chromatography.

    PubMed

    Vachirapatama, Narumol; Dicinoski, Greg W; Townsend, Ashley T; Haddad, Paul R

    2002-05-17

    The separation and determination of the vanadium(V) ternary complex formed with 4-(2-pyridylazo)resorcinol (PAR) and hydrogen peroxide using ion-interaction reversed-phase high-performance liquid chromatography on a C18 column has been investigated. The optimal mobile phase was a methanol-water solution (32:68, v/v) containing 3 mM tetrabutylammonium bromide, 5 mM acetic acid and 5 mM citrate buffer at pH 7, with absorbance detection at 540 nm. The stoichiometry of the ternary complex of vanadium at pH 6 in 10 mM acetate buffer using the mole ratio and Job's method by HPLC indicated that the mole ratio of V(V):PAR:H2O2 was 1:1:1. The optimal conditions for precolumn formation of the ternary complex were 10 mM acetate, 7 mM H2O2, 0.3 mM PAR, and pH 6. The method gave relative standard deviations of retention time, peak area and peak height for the ternary complex of 0.187, 0.45 and 0.57%, respectively. The detection limit (at a signal-to-noise ratio of 3) for V(V) was 0.09 ng/ml in the digested sample using a 100-microl injection loop (or 0.09 microg/g in the solid fertiliser sample). The method was applied to the analysis of fertilisers (phosphate rocks and nitrogen, phosphorus and potassium fertiliser). The results for vanadium obtained by the HPLC method agreed well with those from magnetic sector inductively coupled plasma MS analysis. PMID:12108654

  5. One-step assay for the determination of free protein S antigen in plasma using real-time biospecific interaction analysis.

    PubMed

    Ravanat, C; Wiesel, M L; Schuhler, S; Dambach, J; Amiral, J; Cazenave, J P

    1998-06-01

    Real-time biospecific interaction analysis based on optical detection by surface plasmon resonance was used to develop an accurate one-step method for the direct measurement of free protein S in human plasma. This assay was validated, compared with classical immunological methods and shown to be suitable for the routine clinical diagnosis of protein S deficiency. The method relies on the specific capture of free protein S directly from plasma by a monoclonal antibody (mAb), 34G2, immobilized on a sensor chip surface. A calibration curve was established with serial dilutions of standard plasma (working range 5-50%) and a linear relationship was found to exist between the relative response in resonance units (RU) and the concentration of free protein S expressed as percentage plasma dilution (r = 0.99). The specificity of the assay was confirmed using purified human protein S and polyethylene glycol treated plasma. In addition, it could be demonstrated that no dissociation of C4b-BP-protein S complexes occurred under the chosen experimental conditions. The technique was reproducible with inter-assay, intra-assay and inter-sensor chip variation coefficients of 1.5-5.4%, 2-3.1% and 4.4-4.9%, respectively, as evaluated in two different plasma samples. Since all tests are automatic and long series of analyses can be performed with the same sensor chip, the method was applied to the determination of free protein S antigen in plasma from 20 normal blood donors and 38 thrombophilic patients. Results displayed excellent correlation with those of free protein S enzyme-linked immunosorbent assay (r = 0.99) and rocket immunoelectrophoresis of polyethylene glycol-treated plasma (r = 0.93). PMID:9690804

  6. Determination of salivary cotinine through solid phase extraction using a bead-injection lab-on-valve approach hyphenated to hydrophilic interaction liquid chromatography.

    PubMed

    Ramdzan, Adlin N; Barreiros, Luísa; Almeida, M Inês G S; Kolev, Spas D; Segundo, Marcela A

    2016-01-15

    Cotinine, the first metabolite of nicotine, is often used as a biomarker in the monitoring of environmental tobacco smoke (ETS) exposure due to its long half-life. This paper reports on the development of an at-line automatic micro-solid phase extraction (μSPE) method for the determination of salivary cotinine followed by its analysis via hydrophilic interaction liquid chromatography (HILIC). The SPE methodology is based on the bead injection (BI) concept in a mesofluidic lab-on-valve (LOV) flow system to automatically perform all SPE steps. Three commercially available reversed-phase sorbents were tested, namely, Oasis HLB, Lichrolut EN and Focus, and the spherically shaped sorbents (i.e., Oasis HLB and Focus) provided better packing within the SPE column and hence higher column efficiency. An HILIC column was chosen based on its potential for achieving higher sensitivity and better retention of polar compounds such as cotinine. The method uses an isocratic program with acetonitrile:100mM ammonium acetate buffer, pH 5.8 in 95:5 v/v ratio as the mobile phase at a flow rate of 1.0 mL min(-1). Using this approach, the linear calibration range was from 10 to 1000 ng which corresponded to 5-500 μg L(-1). The corresponding μSPE-BI-LOV system was proven to be reliable in the handing and analysis of viscous biological samples such as saliva, achieving a sampling rate of 6h(-1) and a limit of detection and quantification of 1.5 and 3μgL(-1), respectively. PMID:26747690

  7. Rapid determination of chlormequat in meat by dispersive solid-phase extraction and hydrophilic interaction liquid chromatography (HILIC)-electrospray tandem mass spectrometry.

    PubMed

    Li, Chunmei; Jin, Fen; Yu, Zhiyong; Qi, Yamei; Shi, Xiaomei; Wang, Miao; Shao, Hua; Jin, Maojun; Wang, Jing; Yang, Mingqi

    2012-07-11

    A rapid method for analyzing trace levels of chlormequat (CQ) in meat samples by hydrophilic interaction liquid chromatography (HILIC)-electrospray tandem mass spectrometry was developed. The samples were extracted with acetonitrile, followed by a rapid cleanup through a dispersive solid-phase extraction (DSPE) technique with octadecyl (C18) DSPE sorbents. The chromatographic separation was achieved within 6 min using a HILIC column with 10 mM ammonium acetate and 0.1% (v/v) formic acid in water/acetonitrile (v/v, 40:60) as the mobile phase. Quantification was performed using a matrix-matched calibration curve, which was linear in the range of the 0.05-100 μg/L. The limit of detection (LOD) was estimated at 0.03 μg/kg for CQ on the basis of a peak to peak signal noise (S/N = 3). The limit of quantification (LOQ) was 0.1 μg/kg on the basis of the lowest spiked concentration with suitable precision and accuracy. The average recovery of CQ in spiked meat samples was 86.4-94.7% at 2, 20, and 200 μg/kg. Finally, this method was applied to determine CQ in the livestock and poultry meats purchased from markets in Beijing in 2011. CQ was detected in all 12 samples, and the concentration was 0.4-636.0 μg/kg. Concentrations in a chicken sample (636.0 μg/kg) and a goat meat sample (486.0 μg/kg) were found to be 15.9 and 2.43 times the corresponding Codex maximum residue limits, respectively. PMID:22686367

  8. Enhancing User Experience through Emotional Interaction: Determining Users' Interests in Online Art Collections Using AMARA (Affective Museum of Art Resource Agent)

    ERIC Educational Resources Information Center

    Park, S. Joon

    2013-01-01

    The need for emotional interaction has already influenced various disciplines and industries, and online museums represent a domain where providing emotional interactions could have a significant impact. Today, online museums lack the appropriate affective and hedonic values necessary to engage art enthusiasts on an emotional level. To address…

  9. "I'm Prepared for Anything Now": Student Teacher and Cooperating Teacher Interaction as a Critical Factor in Determining the Preparation of "Quality" Elementary Reading Teachers

    ERIC Educational Resources Information Center

    Lesley, Mellinee K.; Hamman, Doug; Olivarez, Arturo; Button, Kathryn; Griffith, Robin

    2009-01-01

    This research is an examination of the interactions between 19 pairs of student teachers and cooperating teachers engaged in guided reading instruction in Grades 1 through 3. As the basis for the study, the authors analyzed interaction patterns through conducting content analysis (Van Sluys, Lewison, & Seely Flint, 2006) and discourse analysis…

  10. Membrane interactions in nerve myelin. I. Determination of surface charge from effects of pH and ionic strength on period.

    PubMed Central

    Inouye, H.; Kirschner, D. A.

    1988-01-01

    We have used x-ray diffraction to study the interactions between myelin membranes in the sciatic nerve (PNS) and optic nerve (CNS) as a function of pH (2-10) and ionic strength (0-0.18). The period of myelin was found to change in a systematic manner with pH and ionic strength. PNS periods ranged from 165 to 250 A or more, while CNS periods ranged from 150 to 230 A. The native periods were observed only near physiological ionic strength at neutral or alkaline pH. The smallest periods were observed in the pH range 2.5-4 for PNS myelin and pH 2.5-5 for CNS myelin. The minimum period was also observed for PNS myelin after prolonged incubation in distilled water. At pH 4, within these acidic pH ranges, myelin period increased slightly with ionic strength; however, above these ranges, the period increased with pH and decreased with ionic strength. Electron density profiles calculated at different pH and ionic strength showed that the major structural alteration underlying the changes in period was in the width of the aqueous space at the extracellular apposition of membranes; the width of the cytoplasmic space was virtually constant. Assuming that the equilibrium myelin periods are determined by a balance of nonspecific forces/i.e., the electrostatic repulsion force and the van der Walls attractive force, as well as the short-range repulsion force (hydration force, or steric stabilization), then values in the period-dependency curve can be used to define the isoelectric pH and exclusion length of the membrane. The exclusion length, which is related to the minimum period at isoelectric pH, was used to calculate the electrostatic repulsion force given the other forces. The electrostatic repulsion was then used to calculate the surface potential, which in turn was used to calculate the surface charge density (at different pH and ionic strength). We found the negative surface charge increases with pH at constant ionic strength and with ionic strength at constant pH. We

  11. Solution structure of the two-iron rubredoxin of Pseudomonas oleovorans determined by NMR spectroscopy and solution X-ray scattering and interactions with rubredoxin reductase.

    PubMed

    Perry, Ashlee; Tambyrajah, Winston; Grossmann, J Günter; Lian, Lu-Yun; Scrutton, Nigel S

    2004-03-23

    Here we provide insights into the molecular structure of the two-iron 19-kDa rubredoxin (AlkG) of Pseudomonas oleovorans using solution-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering studies. Sequence alignment and biochemical studies have suggested that AlkG comprises two rubredoxin folds connected by a linker region of approximately 70 amino acid residues. The C-terminal domain (C-Rb) of this unusual rubredoxin, together with approximately 35 amino acid residues of the predicted linker region, was expressed in Escherichia coli, purified in the one-iron form and the structure of the cadmium-substituted form determined at high-resolution by NMR spectroscopy. The structure shows that the C-Rb domain is similar in fold to the conventional one-iron rubredoxins from other organisms, whereas the linker region does not have any discernible structure. This tandem "flexible-folded" structure of the polypeptide chain derived for the C-Rb protein was confirmed using solution X-ray scattering methods. X-ray scattering studies of AlkG indicated that the 70-amino acid residue linker forms a structured, yet mobile, polypeptide segment connecting the globular N- and C-terminal domains. The X-ray scattering studies also showed that the N-terminal domain (N-Rb) has a molecular conformation similar to that of C-Rb. The restored molecular shape indicates that the folded N-Rb and C-Rb domains of AlkG are noticeably separated, suggesting some domain movement on complex formation with rubredoxin reductase to allow interdomain electron transfer between the metal centers in AlkG. This study demonstrates the advantage of combining X-ray scattering and NMR methods in structural studies of dynamic, multidomain proteins that are not suited to crystallographic analysis. The study forms a structural foundation for functional studies of the interaction and electron-transfer reactions of AlkG with rubredoxin reductase, also reported herein. PMID:15023067

  12. Putting the pieces into place: Properties of intact zinc metallothionein 1A determined from interaction of its isolated domains with carbonic anhydrase.

    PubMed

    Pinter, Tyler B J; Stillman, Martin J

    2015-11-01

    Mammalian metallothioneins (MTs) bind up to seven Zn(2+) using a large number of cysteine residues relative to their small size and can act as zinc-chaperones. In metal-saturated Zn7-MTs, the seven zinc ions are co-ordinated tetrahedrally into two distinct clusters separated by a linker; the N-terminal β-domain [(Zn3Cys9)(3-)] and C-terminal α-domain [(Zn4Cys11)(3-)]. We report on the competitive zinc metalation of apo-carbonic anhydrase [CA; metal-free CA (apo-CA)] in the presence of apo-metallothionein 1A domain fragments to identify domain specific determinants of zinc binding and zinc donation in the intact two-domain Znn-βαMT1A (human metallothionein 1A isoform; n=0-7). The apo-CA is shown to compete effectively only with Zn2-3-βMT and Zn4-αMT. Detailed modelling of the ESI mass spectral data have revealed the zinc-binding affinities of each of the zinc-binding sites in the two isolated fragments. The three calculated equilibrium zinc affinities [log(KF)] of the isolated β-domain were: 12.2, 11.7 and 11.4 and the four isolated α-domain affinities were: 13.5, 13.2, 12.7 and 12.6. These data provide guidance in identification of the location of the strongest-bound and weakest-bound zinc in the intact two-domain Zn7βαMT. The β-domain has the weakest zinc-binding site and this is where zinc ions are donated from in the Zn7-βαMT. The α-domain with the highest affinity binds the first zinc, which we propose leads to an unscrambling of the cysteine ligands from the apo-peptide bundle. We propose that stabilization of the intact Zn6-MT and Zn7-MT, relative to that of the sum of the separated fragments, is due to the availability of additional cysteine ligand orientations (through interdomain interactions) to support the clustered structures. PMID:26475450

  13. Interaction of Notch Signaling Modulator Numb with α-Adaptin Regulates Endocytosis of Notch Pathway Components and Cell Fate Determination of Neural Stem Cells*

    PubMed Central

    Song, Yan; Lu, Bingwei

    2012-01-01

    The ability to balance self-renewal and differentiation is a hallmark of stem cells. In Drosophila neural stem cells (NSCs), Numb/Notch (N) signaling plays a key role in this process. However, the molecular and cellular mechanisms underlying Numb function in a stem cell setting remain poorly defined. Here we show that α-Adaptin (α-Ada), a subunit of the endocytic AP-2 complex, interacts with Numb through a new mode of interaction to regulate NSC homeostasis. In α-ada mutants, N pathway component Sanpodo and the N receptor itself exhibited altered trafficking, and N signaling was up-regulated in the intermediate progenitors of type II NSC lineages, leading to their transformation into ectopic NSCs. Surprisingly, although the Ear domain of α-Ada interacts with the C terminus of Numb and is important for α-Ada function in the sensory organ precursor lineage, it was dispensable in the NSCs. Instead, α-Ada could regulate Sanpodo, N trafficking, and NSC homeostasis by interacting with Numb through new domains in both proteins previously not known to mediate their interaction. This interaction could be bypassed when α-Ada was directly fused to the phospho-tyrosine binding domain of Numb. Our results identify a critical role for the AP-2-mediated endocytosis in regulating NSC behavior and reveal a new mechanism by which Numb regulates NSC behavior through N. These findings are likely to have important implications for cancer biology. PMID:22474327

  14. When Boy Meets Girl (Revisited): Gender, Gender Role Orientation, and Prospect of Future Interaction as Determinants of Self-Disclosure among Same- and Opposite-Sex Acquaintances.

    ERIC Educational Resources Information Center

    Shaffer, David R.; And Others

    1996-01-01

    Male and female research participants (n=254) self-disclosed to a male or female confederate with whom they anticipated or did not anticipate further interaction. Women disclosed more intimately, with increasing emotion, and displayed more topical responsiveness with female than with male targets. Only the highly masculine men reliably disclosed…

  15. Root distribution and interactions between allelopathic rice and c4 grass weed species as determined by 13c isotope discrimination analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivars which carry allelopathic traits (traits that enable them to suppress weeds) could improve the economical management and sustainability of rice production. Interactions between roots of rice and weeds are thought to be modulated by the weed-suppressive activity of some rice cultivars, but ...

  16. A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants

    PubMed Central

    Kong, Ling-Jie; Orozco, Beverly M.; Roe, Judith L.; Nagar, Steve; Ou, Sharon; Feiler, Heidi S.; Durfee, Tim; Miller, Ann B.; Gruissem, Wilhelm; Robertson, Dominique; Hanley-Bowdoin, Linda

    2000-01-01

    Geminiviruses replicate in nuclei of mature plant cells after inducing the accumulation of host DNA replication machinery. Earlier studies showed that the viral replication factor, AL1, is sufficient for host induction and interacts with the cell cycle regulator, retinoblastoma (pRb). Unlike other DNA virus proteins, AL1 does not contain the pRb binding consensus, LXCXE, and interacts with plant pRb homo logues (pRBR) through a novel amino acid sequence. We mapped the pRBR binding domain of AL1 between amino acids 101 and 180 and identified two mutants that are differentially impacted for AL1–pRBR interactions. Plants infected with the E-N140 mutant, which is wild-type for pRBR binding, developed wild-type symptoms and accumulated viral DNA and AL1 protein in epidermal, mesophyll and vascular cells of mature leaves. Plants inoculated with the KEE146 mutant, which retains 16% pRBR binding activity, only developed chlorosis along the veins, and viral DNA, AL1 protein and the host DNA synthesis factor, proliferating cell nuclear antigen, were localized to vascular tissue. These results established the importance of AL1–pRBR interactions during geminivirus infection of plants. PMID:10880461

  17. Effect of short- and long-range interactions on trp rotamer populations determined by site-directed tryptophan fluorescence of tear lipocalin.

    PubMed

    Gasymov, Oktay K; Abduragimov, Adil R; Glasgow, Ben J

    2013-01-01

    In the lipocalin family, the conserved interaction between the main α-helix and the β-strand H is an ideal model to study protein side chain dynamics. Site-directed tryptophan fluorescence (SDTF) has successfully elucidated tryptophan rotamers at positions along the main alpha helical segment of tear lipocalin (TL). The rotamers assigned by fluorescent lifetimes of Trp residues corroborate the restriction expected based on secondary structure. Steric conflict constrains Trp residues to two (t, g⁻) of three possible χ₁ (t, g⁻, g⁺) canonical rotamers. In this study, investigation focused on the interplay between rotamers for a single amino acid position, Trp 130 on the α-helix and amino acids Val 113 and Leu 115 on the H strand, i.e. long range interactions. Trp130 was substituted for Phe by point mutation (F130W). Mutations at positions 113 and 115 with combinations of Gly, Ala, Phe residues alter the rotamer distribution of Trp130. Mutations, which do not distort local structure, retain two rotamers (two lifetimes) populated in varying proportions. Replacement of either long range partner with a small amino acid, V113A or L115A, eliminates the dominance of the t rotamer. However, a mutation that distorts local structure around Trp130 adds a third fluorescence lifetime component. The results indicate that the energetics of long-range interactions with Trp 130 further tune rotamer populations. Diminished interactions, evident in W130G113A115, result in about a 22% increase of α-helix content. The data support a hierarchic model of protein folding. Initially the secondary structure is formed by short-range interactions. TL has non-native α-helix intermediates at this stage. Then, the long-range interactions produce the native fold, in which TL shows α-helix to β-sheet transitions. The SDTF method is a valuable tool to assess long-range interaction energies through rotamer distribution as well as the characterization of low-populated rotameric states of

  18. Effect of Short- and Long-Range Interactions on Trp Rotamer Populations Determined by Site-Directed Tryptophan Fluorescence of Tear Lipocalin

    PubMed Central

    Gasymov, Oktay K.; Abduragimov, Adil R.; Glasgow, Ben J.

    2013-01-01

    In the lipocalin family, the conserved interaction between the main α-helix and the β-strand H is an ideal model to study protein side chain dynamics. Site-directed tryptophan fluorescence (SDTF) has successfully elucidated tryptophan rotamers at positions along the main alpha helical segment of tear lipocalin (TL). The rotamers assigned by fluorescent lifetimes of Trp residues corroborate the restriction expected based on secondary structure. Steric conflict constrains Trp residues to two (t, g−) of three possible χ1 (t, g−, g+) canonical rotamers. In this study, investigation focused on the interplay between rotamers for a single amino acid position, Trp 130 on the α-helix and amino acids Val 113 and Leu 115 on the H strand, i.e. long range interactions. Trp130 was substituted for Phe by point mutation (F130W). Mutations at positions 113 and 115 with combinations of Gly, Ala, Phe residues alter the rotamer distribution of Trp130. Mutations, which do not distort local structure, retain two rotamers (two lifetimes) populated in varying proportions. Replacement of either long range partner with a small amino acid, V113A or L115A, eliminates the dominance of the t rotamer. However, a mutation that distorts local structure around Trp130 adds a third fluorescence lifetime component. The results indicate that the energetics of long-range interactions with Trp 130 further tune rotamer populations. Diminished interactions, evident in W130G113A115, result in about a 22% increase of α-helix content. The data support a hierarchic model of protein folding. Initially the secondary structure is formed by short-range interactions. TL has non-native α-helix intermediates at this stage. Then, the long-range interactions produce the native fold, in which TL shows α-helix to β-sheet transitions. The SDTF method is a valuable tool to assess long-range interaction energies through rotamer distribution as well as the characterization of low-populated rotameric states of

  19. Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system.

    PubMed

    Moon, Y H; Kang, H G; Jung, J Y; Jeon, J S; Sung, S K; An, G

    1999-08-01

    A MADS family gene, OsMADS6, was isolated from a rice (Oryza sativa L.) young flower cDNA library using OsAMDS1 as a probe. With this clone, various MADS box genes that encode for protein-to-protein interaction partners of the OsMADS6 protein were isolated by the yeast two-hybrid screening method. On the basis of sequence homology, OsMADS6 and the selected partners can be classified in the APETALA1/AGAMOUS-LIKE9 (AP1/AGL9) family. One of the interaction partners, OsMADS14, was selected for further study. Both genes began expression at early stages of flower development, and their expression was extended into the later stages. In mature flowers the OsMADS6 transcript was detectable in lodicules and also weakly in sterile lemmas and carpels, whereas the OsMADS14 transcript was detectable in sterile lemmas, paleas/lemmas, stamens, and carpels. Using the yeast two-hybrid system, we demonstrated that the region containing of the 109th to 137th amino acid residues of OsMADS6 is indispensable in the interaction with OsMADS14. Site-directed mutation analysis revealed that the four periodical leucine residues within the region are essential for this interaction. Furthermore, it was shown that the 14 amino acid residues located immediately downstream of the K domain enhance the interaction, and that the two leucine residues within this region play an important role in that enhancement. PMID:10444103

  20. Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions.

    PubMed

    Swann, Marcus J; Peel, Louise L; Carrington, Simon; Freeman, Neville J

    2004-06-15

    The study of solution-phase interactions between small molecules and immobilized proteins is of intense interest, especially to the pharmaceutical industry. An optical sensing technique, dual polarization interferometry, has been employed for the detailed study of a model protein system, namely, d-biotin interactions with streptavidin immobilized on a solid surface. Changes in thickness and density of an immobilized streptavidin layer as a result of the binding of d-biotin have been directly measured in solution and in real time. The results obtained from this approach are in excellent agreement with X-ray crystallographic data for the structural changes expected in the streptavidin-D-biotin system. The mass changes measured on binding d-biotin also agree closely with anticipated binding capacity values. Determination of the density changes occurring in the protein adlayer provides a means for differentiation between specific and nonspecific interactions. PMID:15158477

  1. Intraosseous stress distribution and bone interaction during load application across the canine elbow joint: A preliminary finite element analysis for determination of condylar fracture pathogenesis in immature and mature dogs.

    PubMed

    Böhme, Beatrice; d'Otreppe, Vinciane; Ponthot, Jean-Phillippe; Balligand, Marc

    2016-06-01

    Distal humeral fractures are common fractures especially in immature small breed dogs. The pathogenesis is still unknown. For this study, a three- dimensional bone model of the canine elbow was created and finite element analysis performed in order to determine the relationship between fracture type and bone interactions. Fused and non-fused humeral condyles were considered. A failure criterion was implemented to simulate the pathogenesis until fracture. Our study results confirm the clinical observation that lateral condylar fracture is the most common fracture type, implying interaction with the radius. Medial and Y-fractures are less common and occur always in interaction with the ulna whereas the radius causes lateral condylar fracture. Additionally, the fracture type is sensitive to bone positioning during trauma. The pathogenesis of distal humeral fractures is more complex than generally reported in the literature. PMID:27234552

  2. The Role of CH···O Coulombic Interactions in Determining Rotameric Conformations of Phenyl Substituted 1,3-Dioxanes and Tetrahydropyrans.

    PubMed

    Wiberg, Kenneth B; Lambert, Kyle M; Bailey, William F

    2015-08-21

    The rotameric conformations of the phenyl ring in both the axial and the equatorial conformers of phenyl substituted 1,3-dioxanes and tetrahydropyrans are compared with those of the corresponding phenylcyclohexanes at the MP2/6-311+G* level. The compounds with an axial phenyl commonly adopt a conformation in which the plane of the aromatic ring is perpendicular to the benzylic C-H bond. However, axial 5-phenyl-1,3-dioxane adopts a "parallel" conformation that allows an ortho hydrogen to be proximate to the two ring oxygens, leading to attractive CH···O interactions. Stabilizing Coulombic interactions of this sort are found with many of the oxygen-containing six-membered rings that were investigated. PMID:26182246

  3. Determination of cell metabolite VEGF₁₆₅ and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe.

    PubMed

    Lin, Xuexia; Leung, Ka-Ho; Lin, Ling; Lin, Luyao; Lin, Sheng; Leung, Chung-Hang; Ma, Dik-Lung; Lin, Jin-Ming

    2016-05-15

    In this paper, we rationally design a novel G-quadruplex-selective luminescent iridium (III) complex for rapid detection of oligonucleotide and VEGF165 in microfluidics. This new probe is applied as a convenient biosensor for label-free quantitative analysis of VEGF165 protein from cell metabolism, as well as for studying the kinetics of the aptamer-protein interaction combination with a microfluidic platform. As a result, we have successfully established a quantitative analysis of VEGF165 from cell metabolism. Furthermore, based on the principles of hydrodynamic focusing and diffusive mixing, different transient states during kinetics process were monitored and recorded. Thus, the combination of microfluidic technique and G-quadruplex luminescent probe will be potentially applied in the studies of intramolecular interactions and molecule recognition in the future. PMID:26686922

  4. Interrogation of the Protein-Protein Interactions between Human BRCA2 BRC Repeats and RAD51 Reveals Atomistic Determinants of Affinity

    PubMed Central

    Cole, Daniel J.; Rajendra, Eeson; Roberts-Thomson, Meredith; Hardwick, Bryn; McKenzie, Grahame J.; Payne, Mike C.; Venkitaraman, Ashok R.; Skylaris, Chris-Kriton

    2011-01-01

    The breast cancer suppressor BRCA2 controls the recombinase RAD51 in the reactions that mediate homologous DNA recombination, an essential cellular process required for the error-free repair of DNA double-stranded breaks. The primary mode of interaction between BRCA2 and RAD51 is through the BRC repeats, which are ∼35 residue peptide motifs that interact directly with RAD51 in vitro. Human BRCA2, like its mammalian orthologues, contains 8 BRC repeats whose sequence and spacing are evolutionarily conserved. Despite their sequence conservation, there is evidence that the different human BRC repeats have distinct capacities to bind RAD51. A previously published crystal structure reports the structural basis of the interaction between human BRC4 and the catalytic core domain of RAD51. However, no structural information is available regarding the binding of the remaining seven BRC repeats to RAD51, nor is it known why the BRC repeats show marked variation in binding affinity to RAD51 despite only subtle sequence variation. To address these issues, we have performed fluorescence polarisation assays to indirectly measure relative binding affinity, and applied computational simulations to interrogate the behaviour of the eight human BRC-RAD51 complexes, as well as a suite of BRC cancer-associated mutations. Our computational approaches encompass a range of techniques designed to link sequence variation with binding free energy. They include MM-PBSA and thermodynamic integration, which are based on classical force fields, and a recently developed approach to computing binding free energies from large-scale quantum mechanical first principles calculations with the linear-scaling density functional code onetep. Our findings not only reveal how sequence variation in the BRC repeats directly affects affinity with RAD51 and provide significant new insights into the control of RAD51 by human BRCA2, but also exemplify a palette of computational and experimental tools for the

  5. Interrogation of the protein-protein interactions between human BRCA2 BRC repeats and RAD51 reveals atomistic determinants of affinity.

    PubMed

    Cole, Daniel J; Rajendra, Eeson; Roberts-Thomson, Meredith; Hardwick, Bryn; McKenzie, Grahame J; Payne, Mike C; Venkitaraman, Ashok R; Skylaris, Chris-Kriton

    2011-07-01

    The breast cancer suppressor BRCA2 controls the recombinase RAD51 in the reactions that mediate homologous DNA recombination, an essential cellular process required for the error-free repair of DNA double-stranded breaks. The primary mode of interaction between BRCA2 and RAD51 is through the BRC repeats, which are ∼35 residue peptide motifs that interact directly with RAD51 in vitro. Human BRCA2, like its mammalian orthologues, contains 8 BRC repeats whose sequence and spacing are evolutionarily conserved. Despite their sequence conservation, there is evidence that the different human BRC repeats have distinct capacities to bind RAD51. A previously published crystal structure reports the structural basis of the interaction between human BRC4 and the catalytic core domain of RAD51. However, no structural information is available regarding the binding of the remaining seven BRC repeats to RAD51, nor is it known why the BRC repeats show marked variation in binding affinity to RAD51 despite only subtle sequence variation. To address these issues, we have performed fluorescence polarisation assays to indirectly measure relative binding affinity, and applied computational simulations to interrogate the behaviour of the eight human BRC-RAD51 complexes, as well as a suite of BRC cancer-associated mutations. Our computational approaches encompass a range of techniques designed to link sequence variation with binding free energy. They include MM-PBSA and thermodynamic integration, which are based on classical force fields, and a recently developed approach to computing binding free energies from large-scale quantum mechanical first principles calculations with the linear-scaling density functional code onetep. Our findings not only reveal how sequence variation in the BRC repeats directly affects affinity with RAD51 and provide significant new insights into the control of RAD51 by human BRCA2, but also exemplify a palette of computational and experimental tools for the

  6. A functional interaction between TRPC/NCKX induced by DAG plays a role in determining calcium influx independently from PKC activation.

    PubMed

    Pulcinelli, Fabio M; Trifirò, Elisabetta; Massimi, Isabella; Di Renzo, Livia

    2013-01-01

    Ca(2+)influx might occur through K(+)-dependent Na(+)/Ca(2+) exchanger operating in reverse mode (rNCKX). In a cellular model different from platelets, an interaction between canonical transient receptor potential cation (TRPC) channels and NCX has been found. The aim of this study was to verify whether the TRPC/NCKX interaction operates in human platelets. Our results showed that the diacylglycerol (DAG) analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG) induced rNCKX-mediated Ca(2+) influx through TRPC-mediated Na(+) influx. DAG-induced activation of TRPC/NCKX occurs independently of protein kinase C (PKC) activation, as PKC inhibitor did not modify OAG-mediated Ca(2+) influx. Moreover, as both rNCKX and TRPC inhibitors reduced OAG-induced platelet aggregation which, conversely, was increased by flufenamic acid, known to develop TRPC activity, it could be suggested that the TRPC/NCKX interaction has a role in OAG-dependent platelet aggregation. PMID:23249278

  7. Determination of apical membrane polarity in mammary epithelial cell cultures: The role of cell-cell, cell-substratum, and membrane-cytoskeleton interactions

    SciTech Connect

    Parry, G.; Beck, J.C.; Moss, L.; Bartley, J. ); Ojakian, G.K. )

    1990-06-01

    The membrane glycoprotein, PAS-O, is a major differentiation antigen on mammary epithelial cells and is located exclusively in the apical domain of the plasma membrane. The authors have used 734B cultured human mammary carcinoma cells as a model system to study the role of tight junctions, cell-substratum contacts, and submembranous cytoskeletal elements in restricting PAS-O to the apical membrane. Immunofluorescence and immunoelectronmicroscopy experiments demonstrated that while tight junctions demarcate PAS-O distribution in confluent cultures, apical polarity could be established at low culture densities when cells could not form tight junctions with neighboring cells. They suggest, then, that interactions between vitronectin and its receptor, are responsible for establishment of membrane domains in the absence of tight junctions. The role of cytoskeletal elements in restricting PAS-O distribution was examined by treating cultures with cytochalasin D, colchicine, or acrylamide. Cytochalasin D led to a redistribution of PAS0O while colchicine and acrylamide did not. They hypothesize that PAS-O is restricted to the apical membrane by interactions with a microfilament network and that the cytoskeletal organization is dependent upon cell-cell and cell-substratum interactions.

  8. Results of test MA22 in the NASA/LaRC 31-inch CFHT on an 0.010-scale model (32-0) of the space shuttle configuration 3 to determine RCS jet flow field interaction, volume 1. [wind tunnel tests for interactions of aerodynamic heating on jet flow

    NASA Technical Reports Server (NTRS)

    Kanipe, D. B.

    1976-01-01

    A wind tunnel test was conducted in the Langley Research Center 31-inch Continuous Flow Hypersonic Wind Tunnel from May 6, 1975 through June 3, 1975. The primary objectives of this test were the following: (1) to study the ability of the wind tunnel to repeat, on a run-to-run basis, data taken for identical configurations to determine if errors in repeatability could have a significant effect on jet interaction data, (2) to determine the effect of aerodynamic heating of the scale model on jet interaction, (3) to investigate the effects of elevon and body flap deflections on jet interaction, (4) to determine if the effects from jets fired separately along different axes can be added to equal the effects of the jets fired simultaneously (super position effects), (5) to study multiple jet effects, and (6) to investigate area ratio effects, i.e., the effect on jet interaction measurements of using wind tunnel nozzles with different area ratios in the same location. The model used in the test was a .010-scale model of the Space Shuttle Orbiter Configuration 3. The test was conducted at Mach 10.3 and a dynamic pressure of 150 psf. RCS chamber pressure was varied to simulate free flight dynamic pressures of 5, 7.5, 10, and 20 psf.

  9. Interactions between Multiple Genetic Determinants in the 5′ UTR and VP1 Capsid Control Pathogenesis of Chronic Post-Viral Myopathy caused by Coxsackievirus B1

    PubMed Central

    Sandager, Maribeth M.; Nugent, Jaime L.; Schulz, Wade L.; Messner, Ronald P.; Tam, Patricia E.

    2008-01-01

    Mice infected with coxsackievirus B1 Tucson (CVB1T) develop chronic, post-viral myopathy (PVM) with clinical manifestations of hind limb muscle weakness and myositis. The objective of the current study was to establish the genetic basis of myopathogenicity in CVB1T. Using a reverse genetics approach, full attenuation of PVM could only be achieved by simultaneously mutating four sites located at C706U in the 5′ untranslated region (5′ UTR) and at Y87F, V136A, and T276A in the VP1 capsid. Engineering these four myopathic determinants into an amyopathic CVB1T variant restored the ability to cause PVM. Moreover, these same four determinants controlled PVM expression in a second strain of mice, indicating that the underlying mechanism is operational in mice of different genetic backgrounds. Modeling studies predict that C706U alters both local and long-range pairing in the 5′ UTR, and that VP1 determinants are located on the capsid surface. However, these differences did not affect viral titers, temperature stability, pH stability, or the antibody response to virus. These studies demonstrate that PVM develops from a complex interplay between viral determinants in the 5′ UTR and VP1 capsid and have uncovered intriguing similarities between genetic determinants that cause PVM and those involved in pathogenesis of other enteroviruses. PMID:18029287

  10. IgE-FcεRI Interactions Determine HIV Coreceptor Usage and Susceptibility to Infection during Ontogeny of Mast Cells1

    PubMed Central

    Sundstrom, J. Bruce; Hair, Gregory A.; Ansari, Aftab A.; Secor, W. Evan; Gilfillan, Alasdair M.; Metcalfe, Dean D.; Kirshenbaum, Arnold S.

    2009-01-01

    Progenitor mast cells (prMCs), derived from CD34+ precursors are CD4+/CCR5+/CXCR4+ and susceptible to CCR5(R5)-tropic virus but only marginally susceptible to CXCR4(X4)-tropic HIV. As infected prMCs mature within extravascular compartments, they become both latently infected and HIV-infection resistant, and thus capable of establishing an inducible reservoir of CCR5-tropic infectious clones. In this report we provide the first evidence that IgE-FcεRI interactions, occurring during a unique period of mast cell (MC) ontogeny, enhance prMC susceptibility to X4 and R5X4 virus. IgE-FcεRI interactions significantly increased expression of CXCR4 mRNA (∼400- to 1800-fold), enhanced prMC susceptibility to X4 and R5X4 virus (∼3000- to 16,000-fold), but had no significant effect on CD4, CCR3, or CCR5 expression, susceptibility to R5 virus, or degranulation. Enhanced susceptibility to infection with X4 virus occurred during the first 3–5 wk of MC ontogeny and was completely inhibited by CXCR4-specific peptide antagonists and omalizumab, a drug that inhibits IgE-FcεRI interactions. IgE-FcεRI coaggregation mediated by HIVgp120 or Schistosoma mansoni soluble egg Ag accelerated maximal CXCR4 expression and susceptibility to X4 virus by prMCs. Our findings suggest that for HIV-positive individuals with atopic or helminthic diseases, elevated IgE levels could potentially influence the composition of CXCR4-tropic and R5X4-tropic variants archived within the long-lived tissue MC reservoir created during infection. PMID:19414793

  11. Is there an interaction between socioeconomic status and FRAX 10-year fracture probability determined with and without bone density measures? Data from the Geelong Osteoporosis Study of female cohort.

    PubMed

    Brennan, S L; Quirk, S E; Hosking, S M; Kotowicz, M A; Holloway, K L; Moloney, D J; Dobbins, A G; Pasco, J A

    2015-02-01

    FRAX(©) evaluates 10-year fracture probabilities and can be calculated with and without bone mineral density (BMD). Low socioeconomic status (SES) may affect BMD, and is associated with increased fracture risk. Clinical risk factors differ by SES; however, it is unknown whether aninteraction exists between SES and FRAX determined with and without the BMD. From the Geelong Osteoporosis Study, we drew 819 females aged ≥50 years. Clinical data were collected during 1993-1997. SES was determined by cross-referencing residential addresses with Australian Bureau of Statistics census data and categorized in quintiles. BMD was measured by dual energy X-ray absorptiometry at the same time as other clinical data were collected. Ten-year fracture probabilities were calculated using FRAX (Australia). Using multivariable regression analyses, we examined whether interactions existed between SES and 10-year probability for hip and any major osteoporotic fracture (MOF) defined by use of FRAX with and without BMD. We observed a trend for a SES * FRAX(no-BMD) interaction term for 10-year hip fracture probability (p = 0.09); however, not for MOF (p = 0.42). In women without prior fracture (n = 518), we observed a significant SES * FRAX(no-BMD) interaction term for hip fracture (p = 0.03) and MOF (p = 0.04). SES does not appear to have an interaction with 10-year fracture probabilities determined by FRAX with and without BMD in women with previous fracture; however, it does appear to exist for those without previous fracture. PMID:25578145

  12. Assembly of Helicobacter pylori initiation complex is determined by sequence-specific and topology-sensitive DnaA-oriC interactions.

    PubMed

    Donczew, Rafał; Mielke, Thorsten; Jaworski, Paweł; Zakrzewska-Czerwińska, Jolanta; Zawilak-Pawlik, Anna

    2014-07-29

    In bacteria, chromosome replication is initiated by binding of the DnaA initiator protein to DnaA boxes located in the origin of chromosomal replication (oriC). This leads to DNA helix opening within the DNA-unwinding element. Helicobacter pylori oriC, the first bipartite origin identified in Gram-negative bacteria, contains two subregions, oriC1 and oriC2, flanking the dnaA gene. The DNA-unwinding element region is localized in the oriC2 subregion downstream of dnaA. Surprisingly, oriC2-DnaA interactions were shown to depend on DNA topology, which is unusual in bacteria but is similar to initiator-origin interactions observed in higher organisms. In this work, we identified three DnaA boxes in the oriC2 subregion, two of which were bound only as supercoiled DNA. We found that all three DnaA boxes play important roles in orisome assembly and subsequent DNA unwinding, but different functions can be assigned to individual boxes. This suggests that the H. pylori oriC may be functionally divided, similar to what was described recently for Escherichia coli oriC. On the basis of these results, we propose a model of initiation complex formation in H. pylori. PMID:24862285

  13. Glucose-β-CD interaction assisted ACN field-amplified sample stacking in CZE for determination of trace amlodipine in beagle dog plasma.

    PubMed

    Li, Ji; Li, You; Zhang, Wenting; Chen, Zhao; Fan, Guorong

    2013-06-01

    A simple, sensitive and low-cost method using CE coupled with glucose-β-CD interaction assisted ACN stacking technique has been developed for quantification of trace amlodipine in dog plasma. The plasma samples were extracted with methyl tert-butyl ether. The separation was performed at 25°C in a 31.2 cm × 75 μm fused-silica capillary with an applied voltage of 15 kV. The BGE was composed of 6.25 mM borate/25 mM phosphate (pH 2.5) and 5 mg/mL glucose-β-CD. The detection wavelength was 200 nm. Because CD could diminish the interaction between drugs and matrix, and derivation groups of CD play an important role in separation performance, the effects of β-CD, and its derivatives on the separation were studied at several concentrations (0, 2.5, 5.0, 10.0 mg/mL). In this study, organic solvent field-amplified sample stacking technique in combination with glucose-β-CD enhanced the sensitivity about 60-70 folds and glucose-β-CD could effectively improve the peak shape. All the validation data, such as accuracy, precision extraction recovery, and stability, were within the required limits. The calibration curve was linear for amlodipine from 1 to 200 ng/mL. The method developed was successfully applied to the pharmacokinetic studies of amlodipine besylate in beagle dogs. PMID:23495256

  14. The interaction among age, thermal acclimation and growth rate in determining muscle metabolic capacities and tissue masses in the threespine stickleback, Gasterosteus aculeatus.

    PubMed

    Guderley, H; Lavoie, B A; Dubois, N

    1994-11-01

    Thermal acclimation may directly modify muscle metabolic capacities, or may modify them indirectly via effects upon physiological processes such as growth, reproduction or senescence. To evaluate these interacting effects, we examined the influence of thermal acclimation and acclimatization upon muscle metabolic capacities and tissue masses in 1 + stickleback, Gasterosteus aculeatus, in which confounding interactions between temperature and senescense should be absent. Furthermore, we examined the influence of thermal acclimation upon individual growth rate, muscle enzyme levels and tissue masses in 2 + stickleback sampled at the beginning of their final reproductive season. For 1 + stickleback, cold acclimation more than doubles mitochondrial enzyme levels in the axial muscle. Thermal acclimation did not change the condition of 1 + stickleback at feeding levels which could not maintain the condition of 2+ stickleback. Compensatory metabolic responses to temperature were not apparent in field acclimatized 1 + stickleback. The growth rate of 2 + stickleback was markedly affected by temperature: warm-acclimated fish generally lost mass even at very high levels of feeding (up to 78 enchytraid worms per day) while cold-acclimated fish gained mass. This suggests that warm temperatures accelerate the senescence of 2 + stickleback. Generally, muscle enzyme activities increased with growth rate. In axial muscle, the relationships between CS activity and growth rate differed with acclimation temperature. Independent of the influence of growth rate, CS activities were consistently higher in cold- than warm-acclimated 2 + stickleback, suggesting compensatory increases of CS activity with cold acclimation. PMID:24197078

  15. Determining an Effective Interactive Multimedia Arabic Language Courseware for Malaysian Primary School Children: An Alternative Paradigm for Learning in the Classroom

    ERIC Educational Resources Information Center

    Faryadi, Qais; Bakar, Zainab Abu; Maidinsah, Hamidah

    2007-01-01

    The prime purpose of this experimental research was to determine whether learning Arabic as a foreign language can be effectively enhanced through traditional methodology. As such, this research carefully investigated and critically analyzed the effectiveness of the traditional paradigm in teaching Arabic as a foreign language to 3rd grade primary…

  16. Structure Determination and CH\\cdotsF Interactions in H_2C=CHF\\cdotsH_2C=CF_2 by Fourier-Transform Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dorris, Rachel E.; Peebles, Rebecca A.; Peebles, Sean A.

    2015-06-01

    The structure of the weakly bound dimer between fluoroethylene (FE) and 1,1-difluoroethylene (DFE) has been determined using a combination of chirped-pulse and resonant-cavity Fourier-transform microwave spectroscopy over a 7.5 to 19 GHz range. The rotational constants of the most abundant isotopomer were determined to be A = 6601.14(35) MHz, B = 833.3336(5) MHz and C = 744.0217(5) MHz, and are in excellent agreement with ab initio predictions at the MP2/6-311++G(2d,2p) level. Observation of all four unique 13C isotopologues in natural abundance allowed for a full structure determination, showing that the dimer takes on a planar configuration with the H-C-F end of FE aligned with one of the F-C=C-H sides of DFE, forming two inequivalent CH\\cdotsF contacts. The dipole moment components (μa = 0.9002(18) D, μb = 0.0304(80) D) were determined using Stark effect measurements and confirm the observed structure.

  17. PIC: Protein Interactions Calculator.

    PubMed

    Tina, K G; Bhadra, R; Srinivasan, N

    2007-07-01

    Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791

  18. Analytic determination of the eight-and-a-half post-Newtonian self-force contributions to the two-body gravitational interaction potential

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Damour, Thibault

    2014-05-01

    We analytically compute, to the eight-and-a-half post-Newtonian order, and to linear order in the mass ratio, the radial potential describing (within the effective one-body formalism) the gravitational interaction of two bodies, thereby extending previous analytic results. These results are obtained by applying analytical gravitational self-force theory (for a particle in circular orbit around a Schwarzschild black hole) to Detweiler's gauge-invariant redshift variable. We emphasize the increase in "transcendentality" of the numbers entering the post-Newtonian expansion coefficients as the order increases, in particular we note the appearance of ζ(3) (as well as the square of Euler's constant γ) starting at the seventh post-Newtonian order. We study the convergence of the post-Newtonian expansion as the expansion parameter u =GM/(c2r) leaves the weak-field domain u ≪1 to enter the strong field domain u=O(1).

  19. Kinetic Stability May Determine the Interaction Dynamics of the Bifunctional Protein DCoH1, the Dimerization Cofactor of the Transcription Factor HNF-1[alpha

    SciTech Connect

    Rho, H.; Jones, C.N.; Rose, R.B.

    2010-12-07

    The two disparate functions of DCoH1 (dimerization cofactor of HNF-1)/PCD (pterin-4a-carbinolamine dehydratase) are associated with a change in oligomeric state. DCoH dimers enhance the activity of the diabetes-associated transcription factor HNF-1{alpha} (hepatocyte nuclear factor-1{alpha}), while the PCD activity of DCoH1 homotetramers aids in aromatic amino acid metabolism. These complexes compete for the same interface of the DCoH dimer. Formation of the DCoH1/HNF-1{alpha} complex requires cofolding. The homotetramer of the DCoH1 paralogue, DCoH2, interacts with HNF-1{alpha} through simple mixing. To further investigate regulation of DCoH/HNF-1{alpha} complex formation, we measured the stability of the DCoH1 homotetramer through unfolding studies by intrinsic tryptophan fluorescence. DCoH2 unfolding is reversible. Surprisingly, the DCoH1 homotetramer is resistant to guanidine unfolding but refolds at a much lower guanidine concentration. We show that a point mutation at the DCoH1 tetramer interface, Thr 51 Ser, overcomes the dissociation barrier of the homotetramer and increases the interaction with HNF-1{alpha}. The 1.8 {angstrom} resolution crystal structure of DCoH1 T51S shows the presence of an ordered water molecule at the tetramer interface, as in DCoH2, which may destabilize the homotetramer. The equilibrium unfolding data were fit to a two-state model with no apparent intermediate. Folding intermediates were detectable by size exclusion chromatography. For wild-type DCoH1 the intermediates changed with time, suggesting a kinetic origin for the unfolding barrier of the homotetramer. We propose an unfolding pathway in which the tetramer unfolds slowly, but the dimer folds reversibly. Implications for regulation of DCoH1/HNF-1{alpha} complex formation are discussed.

  20. A Single-Center, Open-Label, 3-Way Crossover Trial to Determine the Pharmacokinetic and Pharmacodynamic Interaction Between Nebivolol and Valsartan in Healthy Volunteers at Steady State

    PubMed Central

    Chen, Chun Lin; Desai-Krieger, Daksha; Ortiz, Stephan; Kerolous, Majid; Wright, Harold M.; Ghahramani, Parviz

    2015-01-01

    Combining different classes of antihypertensives is more effective for reducing blood pressure (BP) than increasing the dose of monotherapies. The aims of this phase I study were to investigate pharmacokinetic and pharmacodynamic interactions between nebivolol, a vasodilatory β1-selective blocker, and valsartan, an angiotensin II receptor blocker, and to assess safety and tolerability of the combination. This was a single-center, randomized, open-label, multiple-dose, 3-way crossover trial in 30 healthy adults aged 18–45 years. Participants were randomized into 1 of 6 treatment sequences (1:1:1:1:1:1) consisting of three 7-day treatment periods followed by a 7-day washout. Once-daily oral treatments comprised nebivolol (20 mg), valsartan (320 mg), and nebivolol–valsartan combination (20/320 mg). Outcomes included AUC0-τ,ss, Cmax,ss, Tmax,ss, changes in BP, pulse rate, plasma angiotensin II, plasma renin activity, 24-hour urinary aldosterone, and adverse events. Steady-state pharmacokinetic interactions were observed but deemed not clinically significant. Systolic and diastolic BP reduction was significantly greater with nebivolol–valsartan combination than with either monotherapy. The mean pulse rate associated with nebivolol and nebivolol–valsartan treatments was consistently lower than that associated with valsartan monotherapy. A sharp increase in mean day 7 plasma renin activity and plasma angiotensin II that occurred in valsartan-treated participants was significantly attenuated with concomitant nebivolol administration. Mean 24-hour urine aldosterone at day 7 was substantially decreased after combined treatment, as compared with either monotherapy. All treatments were safe and well tolerated. In conclusion, nebivolol and valsartan coadministration led to greater reductions in BP compared with either monotherapy; nebivolol and valsartan lower BP through complementary mechanisms. PMID:25853236

  1. Interactions between Inhibitory Interneurons and Excitatory Associational Circuitry in Determining Spatio-Temporal Dynamics of Hippocampal Dentate Granule Cells: A Large-Scale Computational Study

    PubMed Central

    Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.

    2015-01-01

    This paper reports on findings from a million-cell granule cell model of the rat dentate gyrus that was used to explore the contributions of local interneuronal and associational circuits to network-level activity. The model contains experimentally derived morphological parameters for granule cells, which each contain approximately 200 compartments, and biophysical parameters for granule cells, basket cells, and mossy cells that were based both on electrophysiological data and previously published models. Synaptic input to cells in the model consisted of glutamatergic AMPA-like EPSPs and GABAergic-like IPSPs from excitatory and inhibitory neurons, respectively. The main source of input to the model was from layer II entorhinal cortical neurons. Network connectivity was constrained by the topography of the system, and was derived from axonal transport studies, which provided details about the spatial spread of axonal terminal fields, as well as how subregions of the medial and lateral entorhinal cortices project to subregions of the dentate gyrus. Results of this study show that strong feedback inhibition from the basket cell population can cause high-frequency rhythmicity in granule cells, while the strength of feedforward inhibition serves to scale the total amount of granule cell activity. Results furthermore show that the topography of local interneuronal circuits can have just as strong an impact on the development of spatio-temporal clusters in the granule cell population as the perforant path topography does, both sharpening existing clusters and introducing new ones with a greater spatial extent. Finally, results show that the interactions between the inhibitory and associational loops can cause high frequency oscillations that are modulated by a low-frequency oscillatory signal. These results serve to further illustrate the importance of topographical constraints on a global signal processing feature of a neural network, while also illustrating how rich

  2. Simultaneous Determination of Metformin, Metoprolol and its Metabolites in Rat Plasma by LC-MS-MS: Application to Pharmacokinetic Interaction Study.

    PubMed

    Ma, Yan-rong; Rao, Zhi; Shi, A-xi; Wang, Ya-feng; Huang, Jing; Han, Miao; Wang, Xin-dong; Jin, Yong-wen; Zhang, Guo-qiang; Zhou, Yan; Zhang, Fan; Qin, Hong-yan; Wu, Xin-an

    2016-01-01

    A simple, rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed and validated for the simultaneous quantitation of metformin (MTF), metoprolol (MET), α-hydroxymetoprolol (HMT) and O-desmethylmetoprolol (DMT) in rat plasma using paracetamol as an internal standard (IS), respectively. The sample preparation involved a protein-precipitation method with methanol after the addition of IS. The separation was performed on an Agilent HC-C18 column (4.6 × 250 mm, 5 µm) at a flow rate of 1.0 mL/min, using methanol-water containing 0.1% formic acid (39:61, v/v) as mobile phase, and total run time was 8.5 min. MS-MS detection was accomplished in multiple reaction monitoring mode with positive electrospray ionization. The monitored transitions were m/z 130.1 → 60.2 for MTF, m/z 268.2 → 116.1 for MET, m/z 284.2 → 116.1 for HMT, m/z 254.2 → 116.1 for DMT and m/z 152.3 → 110.1 for IS. The method was fully validated in terms of selectivity, linearity, accuracy, precision, stability, matrix effect and recovery over a concentration range of 19.53-40,000 ng/mL for MTF, 3.42-7,000 ng/mL for MET, 2.05-4,200 ng/mL for HMT and 1.95-4,000 ng/mL for DMT, respectively. The analytical method was successfully applied to drug interaction study of MTF and MET after oral administration of MTF and MET. Results suggested that the coadministration of MTF and MET results in a significant drug interaction in rat. PMID:26187926

  3. Short-term solar pressure effect and GM uncertainty on TDRS orbital accuracy: A study of the interaction of modeling error with tracking and orbit determination

    NASA Technical Reports Server (NTRS)

    Fang, B. T.

    1979-01-01

    The TDRS was modeled as a combination of a sun-pointing solar panel and earth-pointing plate. Based on this model, explanations are given for the following orbit determination error characteristics: inherent limits in orbital accuracy, the variation of solar pressure induced orbital error with time of the day of epoch, the insensitivity of range-rate orbits to GM error, and optimum bilateration baseline.

  4. IFPA Meeting 2013 Workshop Report III: maternal placental immunological interactions, novel determinants of trophoblast cell fate, dual ex vivo perfusion of the human placenta.

    PubMed

    Abumaree, M H; Brownbill, P; Burton, G; Castillo, C; Chamley, L; Croy, B A; Drewlo, S; Dunk, C; Girard, S; Hansson, S; Jones, S; Jurisicova, A; Lewis, R; Letarte, M; Parast, M; Pehrson, C; Rappolee, D; Schneider, H; Tannetta, D; Varmuza, S; Wadsack, C; Wallace, A E; Zenerino, C; Lash, G E

    2014-02-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialised topics. At IFPA meeting 2013 there were twelve themed workshops, three of which are summarized in this report. These workshops related to various aspects of placental biology but collectively covered areas of placental function, cell turnover and immunology: 1) immunology; 2) novel determinants of placental cell fate; 3) dual perfusion of human placental tissue. PMID:24321780

  5. Molecular determinants for drug-receptor interactions. Part 2. An ab initio molecular orbital and dipole moment study of the novel nootropic agent piracetam (2-oxopyrrolidin-1-ylacetamide)

    NASA Astrophysics Data System (ADS)

    Lumbroso, H.; Liégeois, C.; Pappalardo, G. C.; Grassi, A.

    From the ab initio molecular energies of the possible conformers and from a classical dipole moment analysis of 2-oxopyrrolidin-l-ylacetamide (μ = 4.02 D in dioxan at 30.0°C), the preferred conformation in solution of this novel nootropic agent has been determined. The exocyclic N-CH 2 bond is rotated in one sense by 90° and the exocyclic CH 2-C bond rotated in the same sense by 120° from the "planar" ( OO)- cis conformation. The structures of the two enantiomers in solution differ from that of the crystalline molecule.

  6. Structure and DNA-Binding Sites of the SWI1 AT-rich Interaction Domain (ARID) Suggest Determinants for Sequence-Specific DNA Recognition

    SciTech Connect

    Kim, Suhkmann; Zhang, Ziming; Upchurch, Sean; Isern, Nancy G.; Chen, Yuan

    2004-04-16

    2 ARID is a homologous family of DNA-binding domains that occur in DNA binding proteins from a wide variety of species, ranging from yeast to nematodes, insects, mammals and plants. SWI1, a member of the SWI/SNF protein complex that is involved in chromatin remodeling during transcription, contains the ARID motif. The ARID domain of human SWI1 (also known as p270) does not select for a specific DNA sequence from a random sequence pool. The lack of sequence specificity shown by the SWI1 ARID domain stands in contrast to the other characterized ARID domains, which recognize specific AT-rich sequences. We have solved the three-dimensional structure of human SWI1 ARID using solution NMR methods. In addition, we have characterized non-specific DNA-binding by the SWI1 ARID domain. Results from this study indicate that a flexible long internal loop in ARID motif is likely to be important for sequence specific DNA-recognition. The structure of human SWI1 ARID domain also represents a distinct structural subfamily. Studies of ARID indicate that boundary of the DNA binding structural and functional domains can extend beyond the sequence homologous region in a homologous family of proteins. Structural studies of homologous domains such as ARID family of DNA-binding domains should provide information to better predict the boundary of structural and functional domains in structural genomic studies. Key Words: ARID, SWI1, NMR, structural genomics, protein-DNA interaction.

  7. Live Imaging of Host-Parasite Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous System Invasion

    PubMed Central

    Tenor, Jennifer L.; Oehlers, Stefan H.; Yang, Jialu L.

    2015-01-01

    ABSTRACT The human fungal pathogen Cryptococcus neoformans is capable of infecting a broad range of hosts, from invertebrates like amoebas and nematodes to standard vertebrate models such as mice and rabbits. Here we have taken advantage of a zebrafish model to investigate host-pathogen interactions of Cryptococcus with the zebrafish innate immune system, which shares a highly conserved framework with that of mammals. Through live-imaging observations and genetic knockdown, we establish that macrophages are the primary immune cells responsible for responding to and containing acute cryptococcal infections. By interrogating survival and cryptococcal burden following infection with a panel of Cryptococcus mutants, we find that virulence factors initially identified as important in causing disease in mice are also necessary for pathogenesis in zebrafish larvae. Live imaging of the cranial blood vessels of infected larvae reveals that C. neoformans is able to penetrate the zebrafish brain following intravenous infection. By studying a C. neoformans FNX1 gene mutant, we find that blood-brain barrier invasion is dependent on a known cryptococcal invasion-promoting pathway previously identified in a murine model of central nervous system invasion. The zebrafish-C. neoformans platform provides a visually and genetically accessible vertebrate model system for cryptococcal pathogenesis with many of the advantages of small invertebrates. This model is well suited for higher-throughput screening of mutants, mechanistic dissection of cryptococcal pathogenesis in live animals, and use in the evaluation of therapeutic agents. PMID:26419880

  8. Determination of therapeutic γ-aminobutyric acid analogs in forensic whole blood by hydrophilic interaction liquid chromatography-electrospray tandem mass spectrometry.

    PubMed

    Sørensen, Lambert K; Hasselstrøm, Jørgen B

    2014-05-01

    Vigabatrin, pregabalin, gabapentin and baclofen are γ-aminobutyric acid analogs that are used in the treatment of epileptic seizures (vigabatrin, pregabalin and gabapentin) and spasticity (baclofen). The intake of these drugs may induce adverse reactions and impair the ability of an individual to drive a vehicle. There have also been reports of cases of intoxication and fatalities from overdoses. For rapid and accurate quantification of these drugs in forensic cases, an ultraperformance liquid chromatography tandem mass spectrometry method using pneumatically assisted electrospray ionization has been developed. The technique has been validated on both ante- and postmortem human whole blood. The protein in the blood samples was removed by the addition of a mixture of methanol and acetonitrile, and the extract was ultrafiltered and diluted with acetonitrile. The separation was performed by hydrophilic interaction liquid chromatography. Calibration of the system was achieved through use of matrix-matched calibrants combined with isotope dilution. The lower limits of quantification were 0.02-0.04 mg/L, and the relative intra-laboratory reproducibility standard deviations were <4 and 8% at concentrations of 10 and 1 mg/L, respectively. The mean true recoveries were >89%. The trueness expressed as the relative bias of the test results was within ±7% at concentrations of 1-40 mg/L for vigabatrin, pregabalin and gabapentin and of 0.1-4 mg/L for baclofen. PMID:24523295

  9. Hydrophilic interaction liquid chromatography-tandem mass spectrometry methylphosponic and alkyl methylphosphonic acids determination in environmental samples after pre-column derivatization with p-bromophenacyl bromide.

    PubMed

    Baygildiev, T M; Rodin, I A; Stavrianidi, A N; Braun, A V; Lebedev, A T; Rybalchenko, I V; Shpigun, O A

    2016-04-15

    Once exposed to the environment organophosphate nerve agents readily degrade by rapid hydrolysis to the corresponding alkyl methylphosphonic acids which do not exist in nature. These alkyl methylphosphonic acids are finally slowly hydrolyzed to methylphosphonic acid. Methylphosphonic acid is the most stable hydrolysis product of organophosphate nerve agents, persisting in environment for a long time. A highly sensitive method of methylphosphonic acid and alkyl methylphosphonic acids detection in dust and ground mixed samples has been developed and validated. The fact that alkyl methylphosphonic acids unlike methylphosphonic acid did not react with p-bromophenacyl bromide under chosen conditions was discovered. This allowed simultaneous chromatographic separation and mass spectrometric detection of derivatized methylphosphonic acid and underivatized alkyl methylphosphonic acids using HILIC-MS/MS method. Very simple sample pretreatment with high recoveries for each analyte was developed. Methylphosphonic acid pre-column derivate and alkyl methylphosphonic acids were detected using tandem mass spectrometry with electrospray ionization after hydrophilic interaction liquid chromatography separation. The developed approach allows achieving ultra-low detection limits: 200 pg mL(-1) for methylphosphonic acid, 70 pg mL(-1) for ethyl methylphosphonic acid, 8 pg mL(-1) for i-propyl methylphosphonic acid, 8 pg mL(-1) for i-butyl methylphosphonic acid, 5 pg mL(-1) for pinacolyl methylphosphonic acid in the extracts of dust and ground mixed samples. This approach was successfully applied to the dust and ground mixed samples from decommissioned plant for the production of chemical weapons. PMID:26965649

  10. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles

    PubMed Central

    Pfeiffer, Christian; Rehbock, Christoph; Hühn, Dominik; Carrillo-Carrion, Carolina; de Aberasturi, Dorleta Jimenez; Merk, Vivian; Barcikowski, Stephan; Parak, Wolfgang J.

    2014-01-01

    The physico-chemical properties of colloidal nanoparticles (NPs) are influenced by their local environment, as, in turn, the local environment influences the physico-chemical properties of the NPs. In other words, the local environment around NPs has a profound impact on the NPs, and it is different from bulk due to interaction with the NP surface. So far, this important effect has not been addressed in a comprehensive way in the literature. The vicinity of NPs can be sensitively influenced by local ions and ligands, with effects already occurring at extremely low concentrations. NPs in the Hückel regime are more sensitive to fluctuations in the ionic environment, because of a larger Debye length. The local ion concentration hereby affects the colloidal stability of the NPs, as it is different from bulk owing to Debye Hückel screening caused by the charge of the NPs. This can have subtle effects, now caused by the environment to the performance of the NP, such as for example a buffering effect caused by surface reaction on ultrapure ligand-free nanogold, a size quenching effect in the presence of specific ions and a significant impact on fluorophore-labelled NPs acting as ion sensors. Thus, the aim of this review is to clarify and give an unifying view of the complex interplay between the NP's surface with their nanoenvironment. PMID:24759541

  11. A new electronic structure method for doublet states: configuration interaction in the space of ionized 1h and 2h1p determinants.

    PubMed

    Golubeva, Anna A; Pieniazek, Piotr A; Krylov, Anna I

    2009-03-28

    An implementation of gradient and energy calculations for configuration interaction variant of equation-of-motion coupled cluster with single and double substitutions for ionization potentials (EOM-IP-CCSD) is reported. The method (termed IP-CISD) treats the ground and excited doublet electronic states of an N-electron system as ionizing excitations from a closed-shell N+1-electron reference state. The method is naturally spin adapted, variational, and size intensive. The computational scaling is N(5), in contrast with the N(6) scaling of EOM-IP-CCSD. The performance and capabilities of the new approach are demonstrated by application to the uracil cation and water and benzene dimer cations by benchmarking IP-CISD against more accurate IP-CCSD. The equilibrium geometries, especially relative differences between different ionized states, are well reproduced. The average absolute errors and the standard deviations averaged for all bond lengths in all electronic states (58 values in total) are 0.014 and 0.007 A, respectively. IP-CISD systematically underestimates intramolecular distances and overestimates intermolecular ones, because of the underlying uncorrelated Hartree-Fock reference wave function. The IP-CISD excitation energies of the cations are of a semiquantitative value only, showing maximum errors of 0.35 eV relative to EOM-IP-CCSD. Trends in properties such as dipole moments, transition dipoles, and charge distributions are well reproduced by IP-CISD. PMID:19334814

  12. Development of a chemical kinetic measurement apparatus and the determination of the reaction rate constants for lithium-lead/water interaction

    SciTech Connect

    Biney, P.O.

    1993-04-01

    An experimental set-up for accurate measurement of hydrogen generation rate in Lithium-Lead (Li[sub 17]Pb[sub 83]) Steam or water interactions has been designed. The most important features of the design include a pneumatic actuated quick opening and closing high temperature all stainless steel valve used to control the reaction time and the placement of most measuring devices below a water line to minimize leakage of the hydrogen collected. A PC based data acquisition and control system provides remote process sequencing, acquisition and control of all major components of the set-up. Initial tests indicate that the first design objective of maintaining leakproof gas collection chamber has been achieved. Initial pressure tests indicated that the pressure drop over a time span of 30 minutes was within the tolerance of the pressure transducer used to measure the pressure (within 0.690 kPa) at a nominal system pressure of 685 kPa. The experimental system hardware, data acquisition and control programs and data analysis program have been completed, tested and are currently functional.

  13. Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence

    PubMed Central

    Houston, Kelly; McKim, Sarah M.; Comadran, Jordi; Bonar, Nicola; Druka, Ilze; Uzrek, Nicola; Cirillo, Elisa; Guzy-Wrobelska, Justyna; Collins, Nicholas C.; Halpin, Claire; Hansson, Mats; Dockter, Christoph; Druka, Arnis; Waugh, Robbie

    2013-01-01

    Within the cereal grasses, variation in inflorescence architecture results in a conspicuous morphological diversity that in crop species influences the yield of cereal grains. Although significant progress has been made in identifying some of the genes underlying this variation in maize and rice, in the temperate cereals, a group that includes wheat, barley, and rye, only the dosage-dependent and highly pleiotropic Q locus in hexaploid wheat has been molecularly characterized. Here we show that the characteristic variation in the density of grains along the inflorescence, or spike, of modern cultivated barley (Hordeum vulgare) is largely the consequence of a perturbed interaction between microRNA172 and its corresponding binding site in the mRNA of an APELATA2 (AP2)-like transcription factor, HvAP2. We used genome-wide association and biparental mapping to identify HvAP2. By comparing inflorescence development and HvAP2 transcript abundance in an extreme dense-spike mutant and its nearly isogenic WT line, we show that HvAP2 turnover driven by microRNA 172 regulates the length of a critical developmental window that is required for elongation of the inflorescence internodes. Our data indicate that this heterochronic change, an altered timing of developmental events caused by specific temporal variation in the efficiency of HvAP2 turnover, leads to the striking differences in the size and shape of the barley spike. PMID:24065816

  14. Studying wind energy/bird interactions: a guidance document. Metrics and methods for determining or monitoring potential impacts on birds at existing and proposed wind energy sites

    USGS Publications Warehouse

    Anderson, R.; Morrison, M.; Sinclair, K.; Strickland, D.; Davis, H.; Kendall, W.

    1999-01-01

    In the 1980s little was known about the potential environmental effects associated with large scale wind energy development. Although wind turbines have been used in farming and remote location applications throughout this country for centuries, impacts on birds resulting from these dispersed turbines had not been reported. Thus early wind energy developments were planned, permitted, constructed, and operated with little consideration for the potential effects on birds. In the ensuing years wind plant impacts on birds became a source of concern among a number of stakeholder groups. Based on the studies that have been done to date, significant levels of bird fatalities have been identified at only one major commercial wind energy development in the United States. Research on wind energy/bird interactions has spanned such a wide variety of protocols and vastly different levels of study effort that it is difficult to make comparisons among study findings. As a result there continues to be interest, confusion, and concern over wind energy development's potential impacts on birds. Some hypothesize that technology changes, such as less dense wind farms with larger, slower-moving turbines, will decrease the number of bird fatalities from wind turbines. Others hypothesize that, because the tip speed may be the same or faster, new turbines will not result in decreased bird fatalities but may actually increase bird impacts. Statistically significant data sets from scientifically rigorous studies will be required before either hypothesis can be tested.

  15. Analysis of the multiple roles of gld-1 in germline development: Interactions with the sex determination cascade and the glp-1 signaling pathway

    SciTech Connect

    Francis, R.; Schedl, T.; Maine, E.

    1995-02-01

    The Caenorhabditis elegans gene gld-1 is essential for oocyte development; in gld-1 (null) hermaphrodites, a tumor forms where oogenesis would normally occur. We use genetic epistasis analysis to demonstrate that tumor formation is dependent on the sexual fate of the germline. When the germline sex determination pathway is set in the female mode (terminal fem/fog genes inactive), gld-1 (null) germ cells exit meiotic prophase and proliferate to form a tumor, but when the pathway is et in the male mode, they develop into sperm. We conclude that the gld-1 (null) phenotype is cell-type specific and that gld-1(+) acts at the end of the cascade to direct oogenesis. We also use cell ablation and epistasis analysis to examine the dependence of tumor formation on the glp-1 signaling pathway. Although glp-1 activity promotes tumor growth, it is not essential for tumor formation by gld-1 (null) germ cells. These data also reveal that gld-1(+) plays a nonessential (and sex nonspecific) role in regulating germ cell proliferation before their entry into meiosis. Thus gld-1(+) may negatively regulate proliferation at two distinct points in germ cell development: before entry into meiotic prophase in both sexes (nonessential premeiotic gld-1 function) and during meiotic prophase when the sex determination pathway is set in the female mode (essential meiotic gld-1 function). 46 refs., 9 figs., 4 tabs.

  16. Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the TSW gene.

    PubMed

    Margaria, P; Ciuffo, M; Pacifico, D; Turina, M

    2007-05-01

    All known pepper cultivars resistant to Tomato spotted wilt virus (TSWV) possess a single dominant resistance gene, Tsw. Recently, naturally occurring resistance-breaking (RB) TSWV strains have been identified, causing major concerns. We used a collection of such strains to identify the specific genetic determinant that allows the virus to overcome the Tsw gene in Capsicum spp. A reverse genetic approach is still not feasible for TSWV; therefore, we analyzed reassortants between wild-type (WT) and RB strains. Our results confirmed that the S RNA, which encodes both the nucleocapsid protein (N) and a nonstructural protein (NSs), carries the genetic determinant responsible for Tsw resistance breakdown. We then used full-length S RNA segments or the proteins they encode to compare the sequences of WT and related RB strains, and obtained indirect evidence that the NSs protein is the avirulence factor in question. Transient expression of NSs protein from WT and RB strains showed that they both can equally suppress post-transcriptional gene silencing (PTGS). Moreover, biological characterization of two RB strains carrying deletions in the NSs protein showed that NSs is important in maintaining TSWV infection in newly emerging leaves over time, preventing recovery. Analysis of another RB strain phenotype allowed us to conclude that local necrotic response is not sufficient for resistance in Capsicum spp. carrying the Tsw gene. PMID:17506332

  17. Analysis of the Multiple Roles of Gld-1 in Germline Development: Interactions with the Sex Determination Cascade and the Glp-1 Signaling Pathway

    PubMed Central

    Francis, R.; Maine, E.; Schedl, T.

    1995-01-01

    The Caenorhabditis elegans gene gld-1 is essential for oocyte development; in gld-1 (null) hermaphrodites, a tumor forms where oogenesis would normally occur. We use genetic epistasis analysis to demonstrate that tumor formation is dependent on the sexual fate of the germline. When the germline sex determination pathway is set in the female mode (terminal fem/fog genes inactive), gld-1 (null) germ cells exit meiotic prophase and proliferate to form a tumor, but when the pathway is set in the male mode, they develop into sperm. We conclude that the gld-1 (null) phenotype is cell-type specific and that gld-1 (+) acts at the end of the cascade to direct oogenesis. We also use cell ablation and epistasis analysis to examine the dependence of tumor formation on the glp-1 signaling pathway. Although glp-1 activity promotes tumor growth, it is not essential for tumor formation by gld-1 (null) germ cells. These data also reveal that gld-1 (+) plays a nonessential (and sex nonspecific) role in regulating germ cell proliferation before their entry into meiosis. Thus gld-1 (+) may negatively regulate proliferation at two distinct points in germ cell development: before entry into meiotic prophase in both sexes (nonessential premeiotic gld-1 function) and during meiotic prophase when the sex determination pathway is set in the female mode (essential meiotic gld-1 function). PMID:7713420

  18. Interaction of high-density and low-density lipoproteins to solid surfaces coated with cholesterol as determined by an optical fiber-based biosensor

    NASA Astrophysics Data System (ADS)

    Singh, Bal R.; Poirier, Michelle A.

    1993-05-01

    In recent years, the use of fiber optics has become an important tool in biomedicine and biotechnology. We are involved in developing and employing a new system which, through the use of fiber optics, may be capable of measuring the content of cholesterol and lipoproteins in blood samples in real time. In the optical fiber-based biosensor, a laser beam having a wavelength of 512 nm (green light) is launched into an optical fiber, which transmits the light to its distal end. An evanescent wave (travelling just outside the fiber core) is used to excite rhodamine-labelled HDL or LDL which become bound to the fiber or to fiber-bound molecules. The fluorescence (red light) is coupled back into the fiber and detected with a photodiode. Preliminary work has involved testing of high density lipoprotein (HDL) binding to a cholesterol-coated fiber and to a bare fiber and low density lipoprotein (LDL) binding to a cholesterol-coated fiber. A significant difference was observed in the binding rate of HDL (5 (mu) g/mL and lower) to a bare fiber as opposed to a cholesterol-coated fiber. The binding rate of HDL (5 (mu) g/mL) to a bare fiber was 7.5 (mu) V/sec and to a cholesterol-coated fiber was 3.5 (mu) V/sec. We have calculated the binding affinity of LDL to a cholesterol- coated fiber as 1.4 (mu) M-1. These preliminary results suggest that the optical fiber-based biosensor can provide a unique and promising approach to the analysis of lipoprotein interaction with solid surfaces and with cholesterol. More importantly, the results suggest that this technique may be used to assess the binding of blood proteins to artificial organs/tissues, and to measure the amount of cholesterol, HDL and LDL in less than a minute.

  19. Pristane-Induced Arthritis Loci Interact with the Slc11a1 Gene to Determine Susceptibility in Mice Selected for High Inflammation

    PubMed Central

    De Franco, Marcelo; Peters, Luciana C.; Correa, Mara A.; Galvan, Antonella; Canhamero, Tatiane; Borrego, Andrea; Jensen, José R.; Gonçalves, Jussara; Cabrera, Wafa H. K.; Starobinas, Nancy; Ribeiro, Orlando G.; Dragani, Tommaso; Ibañez, Olga M.

    2014-01-01

    AIRmax (maximal inflammation) and AIRmin (minimal inflammation) mice show distinct susceptibilities to pristane-induced arthritis (PIA). The Slc11a1 gene, which regulates macrophage and neutrophil activity, is involved in this infirmity. AIRmaxSS mice homozygous for the non-functional Slc11a1 S (gly169asp) allele obtained by genotype-assisted crosses from AIRmax and AIRmin mice are more susceptible than mice homozygous for the Slc11a1 resistant (R) allele. The present work sought to identify the quantitative trait loci (QTL) regulating PIA and to examine the interactions of these QTL with Slc11a1 alleles in modulating PIA. Mice were given two ip injections of 0.5 mL pristane at 60 day intervals, and the incidence and severity of PIA was scored up to 160 days. Genome-wide linkage studies were performed to search for arthritis QTL in an F2 (AIRmax × AIRmin, n = 290) population. Significant arthritis QTL (LODscore>4) were detected on chromosomes 5 and 8, and suggestive QTL on chromosomes 7, 17 and 19. Global gene expression analyses performed on Affymetrix mouse 1.0 ST bioarrays (27k genes) using RNA from arthritic or control mice paws showed 419 differentially expressed genes between AIRmax and AIRmin mice and demonstrated significantly (P<0.001) over-represented genes related to inflammatory responses and chemotaxis. Up-regulation of the chemokine genes Cxcl1, Cxcl9, Cxcl5, Cxcl13 on chromosome 5 was higher in AIRmaxSS than in the other lines. Macrophage scavenger receptor 1 and hemeoxigenase (decycling) 1 genes on chromosome 8 were also expressed at higher levels in AIRmaxSS mice. Our results show that the gene expression profiles of the two arthritis QTL (on chromosomes 5 and 8) correlate with Slc11a1 alleles, resulting in enhanced AIRmaxSS mice susceptibility to PIA. PMID:24505471

  20. Pristane-induced arthritis loci interact with the Slc11a1 gene to determine susceptibility in mice selected for high inflammation.

    PubMed

    De Franco, Marcelo; Peters, Luciana C; Correa, Mara A; Galvan, Antonella; Canhamero, Tatiane; Borrego, Andrea; Jensen, José R; Gonçalves, Jussara; Cabrera, Wafa H K; Starobinas, Nancy; Ribeiro, Orlando G; Dragani, Tommaso A; Dragani, Tommaso; Ibañez, Olga M

    2014-01-01

    AIRmax (maximal inflammation) and AIRmin (minimal inflammation) mice show distinct susceptibilities to pristane-induced arthritis (PIA). The Slc11a1 gene, which regulates macrophage and neutrophil activity, is involved in this infirmity. AIRmax (SS) mice homozygous for the non-functional Slc11a1 S (gly169asp) allele obtained by genotype-assisted crosses from AIRmax and AIRmin mice are more susceptible than mice homozygous for the Slc11a1 resistant (R) allele. The present work sought to identify the quantitative trait loci (QTL) regulating PIA and to examine the interactions of these QTL with Slc11a1 alleles in modulating PIA. Mice were given two ip injections of 0.5 mL pristane at 60 day intervals, and the incidence and severity of PIA was scored up to 160 days. Genome-wide linkage studies were performed to search for arthritis QTL in an F2 (AIRmax × AIRmin, n = 290) population. Significant arthritis QTL (LODscore>4) were detected on chromosomes 5 and 8, and suggestive QTL on chromosomes 7, 17 and 19. Global gene expression analyses performed on Affymetrix mouse 1.0 ST bioarrays (27k genes) using RNA from arthritic or control mice paws showed 419 differentially expressed genes between AIRmax and AIRmin mice and demonstrated significantly (P<0.001) over-represented genes related to inflammatory responses and chemotaxis. Up-regulation of the chemokine genes Cxcl1, Cxcl9, Cxcl5, Cxcl13 on chromosome 5 was higher in AIRmax(SS) than in the other lines. Macrophage scavenger receptor 1 and hemeoxigenase (decycling) 1 genes on chromosome 8 were also expressed at higher levels in AIRmax(SS) mice. Our results show that the gene expression profiles of the two arthritis QTL (on chromosomes 5 and 8) correlate with Slc11a1 alleles, resulting in enhanced AIRmax(SS) mice susceptibility to PIA. PMID:24505471

  1. Interactions with successional stage and nutrient status determines the life-form-specific effects of increased soil temperature on boreal forest floor vegetation

    PubMed Central

    Hedwall, Per-Ola; Skoglund, Jerry; Linder, Sune

    2015-01-01

    The boreal forest is one of the largest terrestrial biomes and plays a key role for the global carbon balance and climate. The forest floor vegetation has a strong influence on the carbon and nitrogen cycles of the forests and is sensitive to changes in temperature conditions and nutrient availability. Additionally, the effects of climate warming on forest floor vegetation have been suggested to be moderated by the tree layer. Data on the effects of soil warming on forest floor vegetation from the boreal forest are, however, very scarce. We studied the effects on the forest floor vegetation in a long-term (18 years) soil warming and fertilization experiment in a Norway spruce stand in northern Sweden. During the first 9 years, warming favored early successional species such as grasses and forbs at the expense of dwarf shrubs and bryophytes in unfertilized stands, while the effects were smaller after fertilization. Hence, warming led to significant changes in species composition and an increase in species richness in the open canopy nutrient limited forest. After another 9 years of warming and increasing tree canopy closure, most of the initial effects had ceased, indicating an interaction between forest succession and warming. The only remaining effect of warming was on the abundance of bryophytes, which contrary to the initial phase was strongly favored by warming. We propose that the suggested moderating effects of the tree layer are specific to plant life-form and conclude that the successional phase of the forest may have a considerable impact on the effects of climate change on forest floor vegetation and its feedback effects on the carbon and nitrogen cycles, and thus on the climate. PMID:25750720

  2. A hydrophilic interaction liquid chromatography electrospray tandem mass spectrometry method for the simultaneous determination of γ-hydroxybutyrate and its precursors in forensic whole blood.

    PubMed

    Sørensen, Lambert K; Hasselstrøm, Jørgen B

    2012-10-10

    A liquid-chromatography-tandem-mass-spectrometry method using pneumatically assisted electrospray ionisation (LC-ESI-MS/MS) was developed for the simultaneous determination of γ-hydroxybutyric acid (GHB), γ-butyrolactone (GBL) and 1,4-butanediol (1,4-BD) in human ante-mortem and post-mortem whole blood. The blood proteins were precipitated using a mixture of methanol and acetonitrile, and the extract was cleaned-up by passage through a polymeric strong cation exchange sorbent. Separation of the analytes and their structural isomers was obtained using a column with a zwitterionic stationary phase. Matrix-matched calibrants, combined with isotope dilution, were used for quantitative analysis. GHB was determined in both positive and negative ion modes. The relative intra-laboratory reproducibility standard deviations were better than 10% and 6% for blood samples at concentrations of 2 mg/L and 20-150 mg/L, respectively. The mean true extraction recoveries were 80% for GHB and greater than 90% for GBL and 1,4-BD at concentration levels of 20-50 mg/L. The limits of detection were approximately 0.5 mg/L for GHB and GBL, and 0.02 mg/L for 1,4-BD in ante-mortem blood. The corresponding lower limits of quantification were less than 1 mg/L for GHB and GBL, and less than 0.1 mg/L for 1,4-BD. GBL was unstable in whole blood freshly preserved with a sodium fluoride oxalate mixture, but the stability could be improved significantly by preservation with a sodium fluoride citrate EDTA mixture. PMID:22917943

  3. Biased Gs versus Gq proteins and β-arrestin signaling in the NK1 receptor determined by interactions in the water hydrogen bond network.

    PubMed

    Valentin-Hansen, Louise; Frimurer, Thomas M; Mokrosinski, Jacek; Holliday, Nicholas D; Schwartz, Thue W

    2015-10-01

    X-ray structures, molecular dynamics simulations, and mutational analysis have previously indicated that an extended water hydrogen bond network between trans-membranes I-III, VI, and VII constitutes an allosteric interface essential for stabilizing different active and inactive helical constellations during the seven-trans-membrane receptor activation. The neurokinin-1 receptor signals efficiently through Gq, Gs, and β-arrestin when stimulated by substance P, but it lacks any sign of constitutive activity. In the water hydrogen bond network the neurokinin-1 has a unique Glu residue instead of the highly conserved AspII:10 (2.50). Here, we find that this GluII:10 occupies the space of a putative allosteric modulating Na(+) ion and makes direct inter-helical interactions in particular with SerIII:15 (3.39) and AsnVII:16 (7.49) of the NPXXY motif. Mutational changes in the interface between GluII:10 and AsnVII:16 created receptors that selectively signaled through the following: 1) Gq only; 2) β-arrestin only; and 3) Gq and β-arrestin but not through Gs. Interestingly, increased constitutive Gs but not Gq signaling was observed by Ala substitution of four out of the six core polar residues of the network, in particular SerIII:15. Three residues were essential for all three signaling pathways, i.e. the water-gating micro-switch residues TrpVI:13 (6.48) of the CWXP motif and TyrVII:20 (7.53) of the NPXXY motif plus the totally conserved AsnI:18 (1.50) stabilizing the kink in trans-membrane VII. It is concluded that the interface between position II:10 (2.50), III:15 (3.39), and VII:16 (7.49) in the center of the water hydrogen bond network constitutes a focal point for fine-tuning seven trans-membrane receptor conformations activating different signal transduction pathways. PMID:26269596

  4. A computational approach to determine susceptibility to cancer by evaluating the deleterious effect of nsSNP in XRCC1 gene on binding interaction of XRCC1 protein with ligase III.

    PubMed

    Singh, Preety Kadian; Mistry, Kinnari N

    2016-01-15

    Several reports suggest that non-synonymous single nucleotide polymorphisms affect the function of XRCC1 which impairs DNA repair capacity and thus increases risk to diseases like cancer. In our study, we predicted the most damaging nsSNPs using a computational approach and analysed its functional impact on the XRCC1 and LIG3 interaction. SNP rs2307166 was predicted to be deleterious using eight software programs: SIFT, PolyPhen, PANTHER, PhD-SNP, nsSNPAnalyzer, SNPS&GO, SNAP and I-Mutant. Protein structural analysis was performed using Swiss PDB viewer, and PyMOL. Xenoview was used for molecular dynamic simulation and energy minimisation. Finally, PatchDock and FireDock were used to analyse the interactions of XRCC1 and LIG3. By comparing the results we found that the mutant protein has less binding energy and the interacting amino acids than native protein. In silico analysis predicted rs2307166 to be more damaging than three other extensively studied SNPs. Identification of this SNP will help in determining the susceptibility of the individual to cancer, their prognosis and further treatment. PMID:26449312

  5. To Float or Not to Float: How Interactions between Light and Dissolved Inorganic Carbon Species Determine the Buoyancy of Stratiotes aloides.

    PubMed

    Harpenslager, Sarah F; Smolders, Alfons J P; Kieskamp, Ariët A M; Roelofs, Jan G M; Lamers, Leon P M

    2015-01-01

    Structural diversity formed by dense, floating Stratiotes aloides stands, generates hotspots of biodiversity of flora and fauna in wetlands. However, only part of the populations become emergent and provide this important facilitation. Since it has been hypothesised that its buoyancy depends on the rates of underwater photosynthesis, we investigated the role of dissolved CO2 availability and PAR on photosynthesis, biomass production and buoyancy in a controlled greenhouse experiment. Photosynthesis and growth were strongly influenced by both PAR and CO2 availability. At low PAR, plants formed less biomass and produced no emergent leaves, even when CO2 was abundant. At low CO2 levels, S. aloides switched to HCO3- use, resulting in a lower photosynthetic O2 production, decreased emergent leaf formation and increased CaCO3 precipitation on its leaves, all of which impaired buoyancy. At high PAR, low CO2 availability resulted in slower colonisation of the water layer, whereas CO2 availability did not influence PAR-limited plants. Our study shows that site conditions, rather than the sole abundance of potentially facilitating species, may strongly determine whether or not they form the structure necessary to act as a facilitator for biodiversity in aquatic environments. PMID:25909504

  6. To Float or Not to Float: How Interactions between Light and Dissolved Inorganic Carbon Species Determine the Buoyancy of Stratiotes aloides

    PubMed Central

    Harpenslager, Sarah F.; Smolders, Alfons J. P.; Kieskamp, Ariët A. M.; Roelofs, Jan G. M.; Lamers, Leon P. M.

    2015-01-01

    Structural diversity formed by dense, floating Stratiotes aloides stands, generates hotspots of biodiversity of flora and fauna in wetlands. However, only part of the populations become emergent and provide this important facilitation. Since it has been hypothesised that its buoyancy depends on the rates of underwater photosynthesis, we investigated the role of dissolved CO2 availability and PAR on photosynthesis, biomass production and buoyancy in a controlled greenhouse experiment. Photosynthesis and growth were strongly influenced by both PAR and CO2 availability. At low PAR, plants formed less biomass and produced no emergent leaves, even when CO2 was abundant. At low CO2 levels, S. aloides switched to HCO3- use, resulting in a lower photosynthetic O2 production, decreased emergent leaf formation and increased CaCO3 precipitation on its leaves, all of which impaired buoyancy. At high PAR, low CO2 availability resulted in slower colonisation of the water layer, whereas CO2 availability did not influence PAR-limited plants. Our study shows that site conditions, rather than the sole abundance of potentially facilitating species, may strongly determine whether or not they form the structure necessary to act as a facilitator for biodiversity in aquatic environments. PMID:25909504

  7. Thermodynamic investigation of the interaction between cyclodextrins and preservatives - Application and verification in a mathematical model to determine the needed preservative surplus in aqueous cyclodextrin formulations.

    PubMed

    Holm, René; Olesen, Niels Erik; Alexandersen, Signe Dalgaard; Dahlgaard, Birgitte N; Westh, Peter; Mu, Huiling

    2016-05-25

    Preservatives are inactivated when added to conserve aqueous cyclodextrin (CD) formulations due to complex formation between CDs and the preservative. To maintain the desired conservation effect the preservative needs to be added in apparent surplus to account for this inactivation. The purpose of the present work was to establish a mathematical model, which defines this surplus based upon knowledge of stability constants and the minimal concentration of preservation to inhibit bacterial growth. The stability constants of benzoic acid, methyl- and propyl-paraben with different frequently used βCDs were determined by isothermal titration calorimetry. Based upon this knowledge mathematical models were constructed to account for the equilibrium systems and to calculate the required concentration of the preservations, which was evaluated experimentally based upon the USP/Ph. Eur./JP monograph. The mathematical calculations were able to predict the needed concentration of preservation in the presence of CDs; it clearly demonstrated the usefulness of including all underlying chemical equilibria in a mathematical model, such that the formulation design can be based on quantitative arguments. PMID:26391874

  8. Cations modulate polysaccharide structure to determine FGF-FGFR signaling: a comparison of signaling and inhibitory polysaccharide interactions with FGF-1 in solution.

    PubMed

    Guimond, Scott E; Rudd, Timothy R; Skidmore, Mark A; Ori, Alessandro; Gaudesi, Davide; Cosentino, Cesare; Guerrini, Marco; Edge, Ruth; Collison, David; McInnes, Eric; Torri, Giangiacomo; Turnbull, Jeremy E; Fernig, David G; Yates, Edwin A

    2009-06-01

    For heparan sulfate (HS) to bind and regulate the activity of proteins, the polysaccharide must present an appropriate sequence and adopt a suitable conformation. The conformations of heparin derivatives, as models of HS, are altered via a change in the associated cations, and this can drastically modify their FGF signaling activities. Here, we report that changing the cations associated with an N-acetyl-enriched heparin polysaccharide, from sodium to copper(II), converted it from supporting signaling through the fibroblast growth factor receptor (FGF-1-FGFR1c) tyrosine kinase signaling system to being inhibitory in a cell-based BaF3 assay. Nuclear magnetic resonance and synchrotron radiation circular dichroism (SRCD) spectroscopy demonstrated that the polysaccharide conformation differed in the presence of sodium or copper(II) cations. Electron paramagnetic resonance confirmed the environment of the copper(II) ion on the N-acetyl-enriched polysaccharide was distinct from that previously observed with intact heparin, which supported signaling. Secondary structures in solution complexes of polysaccharides with FGF-1 (which either supported signaling through FGFR1c or were inhibitory) were determined by SRCD. This allowed direct comparison of the two FGF-1-polysaccharide complexes in solution, containing identical molecular components and differing only in their cation content. Subtle structural differences were revealed, including a reduction in the level of disordered structure in the inhibitory complex. PMID:19400583

  9. Solution structure of the HMG protein NHP6A and its interaction with DNA reveals the structural determinants for non-sequence-specific binding.

    PubMed Central

    Allain, F H; Yen, Y M; Masse, J E; Schultze, P; Dieckmann, T; Johnson, R C; Feigon, J

    1999-01-01

    NHP6A is a chromatin-associated protein from Saccharomyces cerevisiae belonging to the HMG1/2 family of non-specific DNA binding proteins. NHP6A has only one HMG DNA binding domain and forms relatively stable complexes with DNA. We have determined the solution structure of NHP6A and constructed an NMR-based model structure of the DNA complex. The free NHP6A folds into an L-shaped three alpha-helix structure, and contains an unstructured 17 amino acid basic tail N-terminal to the HMG box. Intermolecular NOEs assigned between NHP6A and a 15 bp 13C,15N-labeled DNA duplex containing the SRY recognition sequence have positioned the NHP6A HMG domain onto the minor groove of the DNA at a site that is shifted by 1 bp and in reverse orientation from that found in the SRY-DNA complex. In the model structure of the NHP6A-DNA complex, the N-terminal basic tail is wrapped around the major groove in a manner mimicking the C-terminal tail of LEF1. The DNA in the complex is severely distorted and contains two adjacent kinks where side chains of methionine and phenylalanine that are important for bending are inserted. The NHP6A-DNA model structure provides insight into how this class of architectural DNA binding proteins may select preferential binding sites. PMID:10228169

  10. Hydrophilic-interaction liquid chromatography-tandem mass spectrometric determination of erythrocyte 5-phosphoribosyl 1-pyrophosphate in patients with hypoxanthine-guanine phosphoribosyltransferase deficiency.

    PubMed

    Hasegawa, Hiroshi; Shinohara, Yoshihiko; Nozaki, Sayako; Nakamura, Makiko; Oh, Koei; Namiki, Osamu; Suzuki, Kiyotaka; Nakahara, Akihiko; Miyazawa, Mari; Ishikawa, Ken; Himeno, Takahiro; Yoshida, Sayaka; Ueda, Takanori; Yamada, Yasukazu; Ichida, Kimiyoshi

    2015-01-22

    Mutations in the gene encoding hypoxanthine-guanine phosphoribosyltransferase (HPRT) cause Lesch-Nyhan disease (LND) and its variants (LNV). Due to the technical problems for measuring the HPRT activity in vitro, discordances between the residual HPRT activity and the clinical severity were found. 5-Phosphoribosyl 1-pyrophosphate (PRPP) is a substrate for HPRT. Since increased PRPP concentrations were observed in erythrocytes from patients with LND and LNV, we have turned our attention to erythrocyte PRPP as a biomarker for the phenotype classification. In the present work, a method for determination of PRPP concentration in erythrocyte was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM). Packed erythrocyte samples were deproteinized by heating and the supernatants were injected into the LC-MS/MS system. All measurement results showed good precision with RSD <6%. PRPP concentrations of nine normal male subjects, four male patents with LND and six male patients with LNV were compared. The PRPP concentrations in erythrocyte from patients with LND were markedly increased compared with those from normal subjects, and those from patients with LNV were also increased but the degree was smaller than those with LND. The increase pattern of PRPP concentration in erythrocyte from patients with HPRT deficiency was consistent with the respective phenotypes and was correlated with the disease severity. PRPP concentration was suggested to give us supportive information for the diagnosis and the phenotype classification of LND and LNV. PMID:25482009

  11. Sulphate radical generation through interaction of peroxymonosulphate with Co(II) for in-line sample preparation aiming at spectrophotometric flow-based determination of phosphate and phosphite in fertilizers.

    PubMed

    Crispino, Carla C; Kamogawa, Marcos Y; Ferreira, José R; Zagatto, Elias A G

    2016-09-01

    An advanced oxidative process relying on the interaction of peroxymonosulphate and cobalt(II) was implemented for generating the sulphate radicals in flow analysis, in order to accomplish in-line sample preparation thus improving the spectrophotometric determination of phosphate and phosphite in liquid foliar fertilizers. To this end, a flow-batch system with a heated chamber was designed. The sample was handled twice, with and without the step of phosphite oxidation to phosphate, and the formed orthophosphate was quantified after interaction with the vanadate-molybdate reagent. Phosphite was determined as the difference in analytical signals corresponding to sample handling with and without the oxidation step. Influence of Co(II) on the peroxymonosulphate activation, reagent concentrations and added volumes, acidity, temperature and heating time were investigated like aiming at to improve analytical recovery and measurement repeatability, as well as the and system ruggedness. The 6.6-20.0mgL(-1) P2O5 standards were in-line prepared from a single stock solution. Detection limits were estimated as 0.8 and 0.1mgL(-1) for P2O5 and P-PO4. Twenty-four samples are were run per hour, and results are were in agreement with those obtained by the official procedure. PMID:27343605

  12. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    SciTech Connect

    McFarquhar, Greg

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  13. Powerful Interactions

    ERIC Educational Resources Information Center

    Dombro, Amy Laura; Jablon, Judy R.; Stetson, Charlotte

    2011-01-01

    Interactions are the daily exchanges in words and gestures one has with others. As a teacher, the interactions he/she has with young children can make a positive difference in their lives. A teacher's powerful interactions with children play an important role in their emotional well-being and learning. Powerful interactions are not the same as…

  14. Isopiestic Determination of the Osmotic and Activity Coefficients of NaCl + SrCl2 + H2O at 298.15 K, and Representation with an Extended Ion-Interaction Model

    SciTech Connect

    Clegg, S L; Rard, J A; Miller, D G

    2004-11-09

    Isopiestic vapor-pressure measurements were made at 298.15 K for aqueous NaCl + SrCl{sub 2} solutions, using NaCl(aq) as the reference standard. The measurements for these ternary solutions were made at NaCl ionic strength fractions of y{sub 1} = 0.17066, 0.47366, and 0.82682 for the water activity range 0.9835 {ge} a{sub w} {ge} 0.8710. Our results, and those from two previous isopiestic studies, were combined and used with previously determined parameters for NaCl(aq) and those for SrCl{sub 2}(aq) determined here to evaluate the mixing parameters{sup S}{Theta}{sub Na,Sr} = (0.0562 {+-} 0.0007) kg {center_dot} mol{sup -1} and {Psi}{sub Na,Sr,Cl} = -(0.00705 {+-} 0.00017) kg{sup 2} {center_dot} mol{sup -2} for an extended form of Pitzer's ion-interaction model. These model parameters are valid for ionic strengths of I {le} 7.0 mol {center_dot} kg{sup -1}, where higher-order electrostatic effects have been included in the mixture model. If the fitting range is extended to the saturated solution molalities, then {sup S}{Theta}{sub Na,Sr} = (0.07885 {+-} 0.00195) kg {center_dot} mol{sup -1} and {Psi}{sub Na,Sr,Cl} = -(0.01230 {+-} 0.00033) kg{sup 2} {center_dot} mol{sup -2}. The extended ion-interaction model parameters obtained from available isopiestic data for SrCl{sub 2}(aq) at 298.15 K yield recommended values of the water activities and osmotic and activity coefficients.

  15. Molecular Determinants in Phagocyte-Bacteria Interactions.

    PubMed

    Kaufmann, Stefan H E; Dorhoi, Anca

    2016-03-15

    Phagocytes are crucial for host defense against bacterial pathogens. As first demonstrated by Metchnikoff, neutrophils and mononuclear phagocytes share the capacity to engulf, kill, and digest microbial invaders. Generally, neutrophils focus on extracellular, and mononuclear phagocytes on intracellular, pathogens. Reciprocally, extracellular pathogens often capitalize on hindering phagocytosis and killing of phagocytes, whereas intracellular bacteria frequently allow their engulfment and then block intracellular killing. As foreseen by Metchnikoff, phagocytes become highly versatile by acquiring diverse phenotypes, but still retaining some plasticity. Further, phagocytes engage in active crosstalk with parenchymal and immune cells to promote adjunctive reactions, including inflammation, tissue healing, and remodeling. This dynamic network allows the host to cope with different types of microbial invaders. Here we present an update of molecular and cellular mechanisms underlying phagocyte functions in antibacterial defense. We focus on four exemplary bacteria ranging from an opportunistic extracellular to a persistent intracellular pathogen. PMID:26982355

  16. Interactions of H562 in the S5 Helix with T618 and S621 in the Pore Helix Are Important Determinants of hERG1 Potassium Channel Structure and Function

    PubMed Central

    Lees-Miller, James P.; Subbotina, Julia O.; Guo, Jiqing; Yarov-Yarovoy, Vladimir; Noskov, Sergei Y.; Duff, Henry J.

    2009-01-01

    hERG1 is a member of the cyclic nucleotide binding domain family of K+ channels. Alignment of cyclic nucleotide binding domain channels revealed an evolutionary conserved sequence HwX(A/G)C in the S5 domain. We reasoned that histidine 562 in hERG1 could play an important structure-function role. To explore this role, we created in silica models of the hERG1 pore domain based on the KvAP crystal structure with Rosetta-membrane modeling and molecular-dynamics simulations. Simulations indicate that the H562 residue in the S5 helix spans the gap between the S5 helix and the pore helix, stabilizing the pore domain, and that mutation at the H562 residue leads to a disruption of the hydrogen bonding to T618 and S621, resulting in distortion of the selectivity filter. Analysis of the simulated point mutations at positions 562/618/621 showed that the reciprocal double mutations H562W/T618I would partially restore the orientation of the 562 residue. Matching hydrophobic interactions between mutated W562 residue and I618 partially compensate for the disrupted hydrogen bonding. Complementary in vitro electrophysiological studies confirmed the results of the molecular-dynamics simulations on single mutations at positions 562, 618, and 621. Experimentally, mutations of the H562 to tryptophan produced a functional channel, but with slowed deactivation and shifted V1/2 of activation. Furthermore, the double mutation T618I/H562W rescued the defects seen in activation, deactivation, and potassium selectivity seen with the H562W mutation. In conclusion, interactions between H562 in the S5 helix and amino acids in the pore helix are important determinants of hERG1 potassium channel function, as confirmed by theory and experiment. PMID:19413965

  17. The interactive brain hypothesis

    PubMed Central

    Di Paolo, Ezequiel; De Jaegher, Hanne

    2012-01-01

    Enactive approaches foreground the role of interpersonal interaction in explanations of social understanding. This motivates, in combination with a recent interest in neuroscientific studies involving actual interactions, the question of how interactive processes relate to neural mechanisms involved in social understanding. We introduce the Interactive Brain Hypothesis (IBH) in order to help map the spectrum of possible relations between social interaction and neural processes. The hypothesis states that interactive experience and skills play enabling roles in both the development and current function of social brain mechanisms, even in cases where social understanding happens in the absence of immediate interaction. We examine the plausibility of this hypothesis against developmental and neurobiological evidence and contrast it with the widespread assumption that mindreading is crucial to all social cognition. We describe the elements of social interaction that bear most directly on this hypothesis and discuss the empirical possibilities open to social neuroscience. We propose that the link between coordination dynamics and social understanding can be best grasped by studying transitions between states of coordination. These transitions form part of the self-organization of interaction processes that characterize the dynamics of social engagement. The patterns and synergies of this self-organization help explain how individuals understand each other. Various possibilities for role-taking emerge during interaction, determining a spectrum of participation. This view contrasts sharply with the observational stance that has guided research in social neuroscience until recently. We also introduce the concept of readiness to interact to describe the practices and dispositions that are summoned in situations of social significance (even if not interactive). This latter idea links interactive factors to more classical observational scenarios. PMID:22701412

  18. Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5′-terminal regions of cap0-, cap1- and 5′ppp- mRNAs

    PubMed Central

    Kumar, Parimal; Sweeney, Trevor R.; Skabkin, Maxim A.; Skabkina, Olga V.; Pestova, Tatyana V.

    2014-01-01

    Ribosomal recruitment of cellular mRNAs depends on binding of eIF4F to the mRNA’s 5′-terminal ‘cap’. The minimal ‘cap0’ consists of N7-methylguanosine linked to the first nucleotide via a 5′-5′ triphosphate (ppp) bridge. Cap0 is further modified by 2′-O-methylation of the next two riboses, yielding ‘cap1’ (m7GpppNmN) and ‘cap2’ (m7GpppNmNm). However, some viral RNAs lack 2′-O-methylation, whereas others contain only ppp- at their 5′-end. Interferon-induced proteins with tetratricopeptide repeats (IFITs) are highly expressed effectors of innate immunity that inhibit viral replication by incompletely understood mechanisms. Here, we investigated the ability of IFIT family members to interact with cap1-, cap0- and 5′ppp- mRNAs and inhibit their translation. IFIT1 and IFIT1B showed very high affinity to cap-proximal regions of cap0-mRNAs (K1/2,app ∼9 to 23 nM). The 2′-O-methylation abrogated IFIT1/mRNA interaction, whereas IFIT1B retained the ability to bind cap1-mRNA, albeit with reduced affinity (K1/2,app ∼450 nM). The 5′-terminal regions of 5′ppp-mRNAs were recognized by IFIT5 (K1/2,app ∼400 nM). The activity of individual IFITs in inhibiting initiation on a specific mRNA was determined by their ability to interact with its 5′-terminal region: IFIT1 and IFIT1B efficiently outcompeted eIF4F and abrogated initiation on cap0-mRNAs, whereas inhibition on cap1- and 5′ppp- mRNAs by IFIT1B and IFIT5 was weaker and required higher protein concentrations. PMID:24371270

  19. Voltammetric studies on the potent carcinogen, 7,12-dimethylbenz[a]anthracene: Adsorptive stripping voltammetric determination in bulk aqueous forms and human urine samples and detection of DNA interaction on pencil graphite electrode.

    PubMed

    Yardim, Y; Keskin, E; Levent, A; Ozsöz, M; Sentürk, Z

    2010-01-15

    7,12-Dimethylbenz[a]anthracene (DMBA), is a widely studied polycyclic aromatic hydrocarbon that has long been recognized as a very potent carcinogen. Initially, the electrochemical oxidation of DMBA at the glassy carbon and pencil graphite electrodes in non-aqueous media (dimethylsulphoxide with lithium perchlorate) was studied by cyclic voltammetry. DMBA was irreversibly oxidized in two steps at high positive potentials, resulting in the ill-resolved formation of a couple with a reduction and re-oxidation wave at much lower potentials. Special attention was given to the use of adsorptive stripping voltammetry together with a medium exchange procedure on disposable pencil graphite electrode in aqueous solutions over the pH range of 3.0-9.0. The response was characterized with respect to pH of the supporting electrolyte, pre-concentration time and accumulation potential. Using square-wave stripping mode, the compound yielded a well-defined voltammetric response in acetate buffer, pH 4.8 at +1.15V (vs. Ag/AgCl) (a pre-concentration step being carried out at a fixed potential of +0.60V for 360s). The process could be used to determine DMBA concentrations in the range 2-10nM, with an extremely low detection limit of 0.194nM (49.7ngL(-1)). The applicability to assay of spiked human urine samples was also illustrated. Finally, the interaction of DMBA with fish sperm double-stranded DNA based on decreasing of the oxidation signal of adenine base was studied electrochemically by using differential pulse voltammetry with a pencil graphite electrode at the surface and also in solution. The favorable signal-to-noise characteristics of biosensor resulted in low detection limit (ca. 46nM) following a 300-s interaction. These results displayed that the electrochemical DNA-based biosensor could be used for the sensitive, rapid, simple and cost effective detection of DMBA-DNA interaction. PMID:20006098

  20. Synthesis, structure determination, and infrared spectroscopy of (NpO{sub 2}){sub 2}(SO{sub 4})(H{sub 2}O){sub 4}: Prevalence of cation-cation interactions and cationic nets in neptunyl sulfate compounds

    SciTech Connect

    Forbes, T.Z. Burns, P.C.

    2009-01-15

    The compound (NpO{sub 2}){sub 2}(SO{sub 4})(H{sub 2}O){sub 4} was synthesized by evaporation of a Np{sup 5+} sulfate solution. The crystal structure was determined using single crystal X-ray diffraction and refined to an R{sub 1}=0.0310. (NpO{sub 2}){sub 2}(SO{sub 4})(H{sub 2}O){sub 4} crystallizes in triclinic space group P-1, a=8.1102(7) A, b=8.7506(7) A, c=16.234(1) A, {alpha}=90.242(2){sup o}, {beta}=92.855(2){sup o}, {gamma}=113.067(2){sup o}, V=1058.3(2) A{sup 3}, and Z=2. The structure contains neptunyl pentagonal bipyramids that share vertices through cation-cation interactions to form a sheet or cationic net. The sheet is decorated on each side by vertex sharing with sulfate tetrahedra, and adjacent sheets are linked together through hydrogen bonding. A graphical representation of (NpO{sub 2}){sub 2}(SO{sub 4})(H{sub 2}O){sub 4} was constructed to facilitate the structural comparison to similar Np{sup 5+} compounds. The prevalence of the cationic nets in neptunyl sulfate compounds related to the overall stability of the structure is also discussed. - Graphical abstract: (NpO{sub 2}){sub 2}(SO{sub 4})(H{sub 2}O){sub 4} was synthesized by hydrothermal methods and its structure determined. A graphical representation of the compound was constructed to facilitate the structural comparison to similar Np{sup 5+} compounds and the prevalence of the cationic nets in neptunyl sulfate compounds related to the overall stability of the structure is discussed.

  1. A rapid and simple method for the simultaneous determination of four endogenous monoamine neurotransmitters in rat brain using hydrophilic interaction liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry.

    PubMed

    Zhou, Wenbin; Zhu, Bangjie; Liu, Feng; Lyu, Chunming; Zhang, Shen; Yan, Chao; Cheng, Yu; Wei, Hai

    2015-10-01

    Endogenous monoamine neurotransmitters play an essential role in neural communication in mammalians. Many quantitative methods for endogenous monoamines have been developed during recent decades. Yet, matrix effect was usually a challenge in the quantification, in many cases asking for tedious sample preparation or sacrificing sensitivity. In this work, a simple, fast and sensitive method with no matrix effect was developed to simultaneously determine four endogenous monoamines including serotonin, dopamine, epinephrine and norepinephrine in rat brain tissues, using hydrophilic interaction liquid chromatography coupled with atmospheric-pressure chemical ionization tandem mass spectrometry. Various conditions, including columns, chromatographic conditions, ion source, MS/MS conditions, and brain tissue preparation methods, were optimized and validated. Pre-weighed 20mg brain sample could be effectively and reproducibly homogenized and protein-precipitated by 20 times value of 0.2% formic acid in cold organic solvents (methanol-acetonitrile, 10:90, v/v). This method exhibited excellent linearity for all analytes (regression coefficients>0.998 or 0.999). The precision, expressed as coefficients of variation, was less than 3.43% for intra-day analyses and ranged from 4.17% to 15.5% for inter-day analyses. Good performance was showed in limit of detection (between 0.3nM and 3.0nM for all analytes), recovery (90.8-120%), matrix effect (84.4-107%), accuracy (89.8-100%) and stability (88.3-104%). The validated method was well applied to simultaneously determine the endogenous serotonin, dopamine, epinephrine and norepinephrine in four brain sections of 18 Wistar rats. The quantification of four endogenous monoamines in rat brain performed excellently in the sensitivity, high throughput, simple sample preparation and matrix effect. PMID:26363373

  2. Dynamic and Static Simulations of Fluvoxamine-Perpetrated Drug-Drug Interactions Using Multiple Cytochrome P450 Inhibition Modeling, and Determination of Perpetrator-Specific CYP Isoform Inhibition Constants and Fractional CYP Isoform Contributions to Victim Clearance.

    PubMed

    Iga, Katsumi

    2016-03-01

    Fluvoxamine-perpetrated drug-drug interactions (DDIs) of victims metabolized by multiple cytochrome P450 isoforms (CYP1A2, CYP2C19, and CYP3A4) were simulated using 2 compartment-based tube modeling, assuming a multiple inhibition-constant (Ki) model, as well as a previously reported single Ki model. Good fittings were obtained for all DDIs using consistent perpetrator-specific CYP isoform Kis and fractional CYP isoform contributions to victim clearance in concordance with literature information. Through these simulations, the following rules to predict DDI were derived. Overall enzymatic inhibitory activity calculated from static DDI data determines entirely dynamic DDIs. DDI-relevant time-dependent hepatic blood unbound perpetrator levels can be approximated to mean hepatic blood unbound perpetrator levels in any victim DDIs when a perpetrator is supplied consistently. Static and dynamic multiple CYP model-based simulations agree with one another. Fluvoxamine-perpetrated DDIs can be bridged to other perpetrator DDIs. The derived rules will allow simpler prediction of DDIs from in vivo DDI databases. Tens or hundreds of Ki gaps between in vitro and in vivo data could be reduced to within severalfold using the liver-microsome contamination model, thus suggesting that microsomes qualified with contamination would greatly improve prediction of DDIs from in vitro data. PMID:26886336

  3. Development of a hydrophilic interaction liquid chromatography-tandem mass spectrometric method for the determination of kinsenoside, an antihyperlipidemic candidate, in rat plasma and its application to pharmacokinetic studies.

    PubMed

    Rehman, Shaheed Ur; Kim, In Sook; Choi, Min Sun; Luo, Zengwei; Yao, Guangming; Xue, Yongbo; Zhang, Yonghui; Yoo, Hye Hyun

    2016-02-20

    Kinsenoside is a major bioactive constituent isolated from Anoectochilus formosanus and is investigated as an antihyperlipidemic candidate. In this study, a rapid, sensitive, and reliable bioanalytical method was developed for the determination of kinsenoside in rat plasma using hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). The plasma sample was pretreated with 1% acetic acid, followed by protein precipitation with acetonitrile:methanol (70:30). Chromatographic separation was performed on a HILIC silica column (2.1mm×100mm, 3μm). The mobile phases consisted of 0.1% acetic acid in distilled water (solvent A) and 0.1% acetic acid in acetonitrile (solvent B). A gradient program was used at a flow rate of 0.2mL/min. For mass spectrometric detection, the multiple reaction monitoring mode was used; the MRM transitions were m/z 265.2→m/z 102.9 for kinsenoside and m/z 163.3→m/z 132.1 for the internal standard (IS) nicotine in the positive ionization mode. A calibration curve was constructed in the range of 2-500ng/mL. The intra- and interday precision and accuracy were within 5%. The HILIC-MS/MS method was specific, accurate, and reproducible and was successfully applied in a pharmacokinetic study of kinsenoside in rats. PMID:26686829

  4. Drug Interactions

    PubMed Central

    Tong Logan, Angela; Silverman, Andrew

    2012-01-01

    One of the most clinically significant complications related to the use of pharmacotherapy is the potential for drug-drug or drug-disease interactions. The gastrointestinal system plays a large role in the pharmacokinetic profile of most medications, and many medications utilized in gastroenterology have clinically significant drug interactions. This review will discuss the impact of alterations of intestinal pH, interactions mediated by phase I hepatic metabolism enzymes and P-glycoprotein, the impact of liver disease on drug metabolism, and interactions seen with commonly utilized gastrointestinal medications. PMID:22933873

  5. Imagined Interactions

    ERIC Educational Resources Information Center

    Honeycutt, James M.

    2010-01-01

    Social scientists have been studying imagined interactions since the mid-1980s and have measured numerous physiological correlates (Honeycutt, 2010). In this commentary I assess the research reported in Crisp and Turner (May-June 2009) and highlight the underlying mechanisms of imagined interactions that have empirically been laid out across…

  6. Magnetocrystalline interactions and oxidation state determination of Mn{sub (2−x)}V{sub (1+x)}O{sub 4} (x=0, 1/3 and 1) magnetorresistive spinel family

    SciTech Connect

    Pomiro, F.; Ceppi, S.; De Paoli, J.M.; Sánchez, R.D.; Mesquita, A.; Tirao, G.; and others

    2013-09-15

    Oxidation states of transition metal cations in spinels-type oxides are sometimes extremely difficult to determine by conventional spectroscopic methods. One of the most complex cases occurs when there are different cations, each one with several possible oxidation states, as in the case of the magnetoresistant Mn{sub (2−x)}V{sub (1+x)}O{sub 4} (x=0, 1/3 and 1) spinel-type family. In this contribution we describe the determination of the oxidation state of manganese and vanadium in Mn{sub (2−x)}V{sub (1+x)}O{sub 4} (x=0, 1/3,1) spinel-type compounds by analyzing XANES and high-resolution Kβ X-ray fluorescence spectra. The ionic models found are Mn{sup 2+}{sub 2}V{sup 4+}O{sub 4}, Mn{sup 2+}{sub 5/3}V{sup 3.5+}{sub 4/3}O{sub 4} and Mn{sup 2+}V{sup 3+}{sub 2}O{sub 4}. Combination of the present results with previous data provided a reliable cation distribution model. For these spinels, single magnetic electron paramagnetic resonance (EPR) lines are observed at 480 K showing the interaction among the different magnetic ions. The analysis of the EPR parameters show that g-values and relative intensities are highly influenced by the concentration and the high-spin state of Mn{sup 2+}. EPR broadening linewidth is explained in terms of the bottleneck effect, which is due to the presence of the fast relaxing V{sup 3+} ion instead of the weak Mn{sup 2+} (S state) coupled to the lattice. The EPR results, at high temperature, are well explained assuming the oxidation states of the magnetic ions obtained by the other spectroscopic techniques. - Graphical abstract: View of the crystallographic structure of a spinel. It shows as an example one of the models of ion distribution determined for the spinels Mn{sub (2−x)}V{sub (1+x)}O{sub 4} (x=0, 1/3,1). Display Omitted - Highlights: • Determination of oxidation state of the metallic ions in Mn{sub (2−x)}V{sub (1+x)}O{sub 4} (x=0,1/3,1) by XAS and XES techniques. • The ionic models found are Mn{sup 2+}{sub 2}V{sup 4+}O

  7. Analytical approach to determining human biogenic amines and their metabolites using eVol microextraction in packed syringe coupled to liquid chromatography mass spectrometry method with hydrophilic interaction chromatography column.

    PubMed

    Konieczna, Lucyna; Roszkowska, Anna; Synakiewicz, Anna; Stachowicz-Stencel, Teresa; Adamkiewicz-Drożyńska, Elżbieta; Bączek, Tomasz

    2016-04-01

    Analysis of biogenic amines (BAs) in different human samples provides insight into the mechanisms of various biological processes, including pathological conditions, and thus may be very important in diagnosing and monitoring several neurological disorders and cancerous tumors. In this work, we developed a simple and fast procedure using a digitally controlled microextraction in packed syringe (MEPS) coupled to liquid chromatography mass spectrometry (LC-MS) method for simultaneous determination of biogenic amines, their precursors and metabolites in human plasma and urine samples. The separation of 12 low molecular weight and hydrophilic molecules with a wide range of polarities was achieved with hydrophilic interaction chromatography (HILIC) column without derivatization step in 12 min. MEPS was implemented using the APS sorbent in semi-automated analytical syringe (eVol(®)) and small volume of urine and plasma samples, 5 0µL and 100 μL, respectively. We evaluated important parameters influencing MEPS efficiency, including stationary phase selection, sample pH and volume, number of extraction cycles, and washing and elution volumes. In optimized MEPS conditions, the analytes were eluted by 3 × 50 μL of methanol with 0.1% formic acid. The chromatographic separation of analytes was performed on XBridge Amide™ BEH analytical column (3.0mm × 100 mm, 3.5 µm) using gradient elution with mobile phase consisting of phase A: 10mM ammonium formate buffer in water pH 3.0 and phase B: 10mM ammonium formate buffer in acetonitrile pH 3.0. The LC-HILIC-MS method was validated and, in optimum conditions, presented good linearity in concentration range within 10-2000 ng/mL for all the analytes with a determination coefficient (r(2)) higher than 0.999 for plasma and urine samples. Method recovery ranged within 87.6-104.3% for plasma samples and 84.2-98.6% for urine samples. The developed method utilizing polar APS sorbent along with polar HILIC column was applied for

  8. Structural interaction with control systems

    NASA Technical Reports Server (NTRS)

    Noll, R. B.; Zvara, J.

    1971-01-01

    A monograph which assesses the state of the art of space vehicle design and development is presented. The monograph presents criteria and recommended practices for determining the structural data and a mathematical structural model of the vehicle needed for accurate prediction of structure and control-system interaction; for design to minimize undesirable interactions between the structure and the control system; and for determining techniques to achieve the maximum desirable interactions and associated structural design benefits. All space vehicles are treated, including launch vehicles, spacecraft, and entry vehicles. Important structural characteristics which affect the structural model used for structural and control-system interaction analysis are given.

  9. Development of a LC-MS/MS method for simultaneous determination of metoprolol and its metabolites, α-hydroxymetoprolol and O-desmethylmetoprolol, in rat plasma: application to the herb-drug interaction study of metoprolol and breviscapine.

    PubMed

    Rao, Zhi; Ma, Yan-rong; Qin, Hong-yan; Wang, Ya-feng; Wei, Yu-hui; Zhou, Yan; Zhang, Guo-qiang; Wang, Xing-dong; Wu, Xin-an

    2015-09-01

    A simple, specific and sensitive LC-MS/MS method was developed and validated for the simultaneous determination of metoprolol (MET), α-hydroxymetoprolol (HMT) and O-desmethylmetoprolol (DMT) in rat plasma. The plasma samples were prepared by protein precipitation, then the separation of the analytes was performed on an Agilent HC-C18 column (4.6 × 250 mm, 5 µm) at a flow rate of 1.0 mL/min, and post-column splitting (1:4) was used to give optimal interface flow rates (0.2 mL/min) for MS detection; the total run time was 8.5 min. Mass spectrometric detection was achieved using a triple-quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. The method was fully validated in terms of selectivity, linearity, accuracy, precision, stability, matrix effect and recovery over a concentration range of 3.42-7000 ng/mL for MET, 2.05-4200 ng/mL for HMT and 1.95-4000 ng/mL for DMT. The analytical method was successfully applied to herb-drug interaction study of MET and breviscapine after administration of breviscapine (12.5 mg/kg) and MET (40 mg/kg). The results suggested that breviscapine have negligible effect on pharmacokinetics of MET in rats; the information may be beneficial for the application of breviscapine in combination with MET in clinical therapy. PMID:25753317

  10. Structural Determination and Tryptophan Fluorescence of Heterokaryon Incompatibility C2 Protein (HET-C2), a Fungal Glycolipid Transfer Protein (GLTP), Provide Novel Insights into Glycolipid Specificity and Membrane Interaction by the GLTP Fold

    SciTech Connect

    Kenoth, Roopa; Simanshu, Dhirendra K.; Kamlekar, Ravi Kanth; Pike, Helen M.; Molotkovsky, Julian G.; Benson, Linda M.; Bergen, III, H. Robert; Prendergast, Franklyn G.; Malinina, Lucy; Venyaminov, Sergei Y.; Patel, Dinshaw J.; Brown, Rhoderick E.

    2010-06-21

    HET-C2 is a fungal protein that transfers glycosphingolipids between membranes and has limited sequence homology with human glycolipid transfer protein (GLTP). The human GLTP fold is unique among lipid binding/transfer proteins, defining the GLTP superfamily. Herein, GLTP fold formation by HET-C2, its glycolipid transfer specificity, and the functional role(s) of its two Trp residues have been investigated. X-ray diffraction (1.9 {angstrom}) revealed a GLTP fold with all key sugar headgroup recognition residues (Asp{sup 66}, Asn{sup 70}, Lys{sup 73}, Trp{sup 109}, and His{sup 147}) conserved and properly oriented for glycolipid binding. Far-UV CD showed secondary structure dominated by {alpha}-helices and a cooperative thermal unfolding transition of 49 C, features consistent with a GLTP fold. Environmentally induced optical activity of Trp/Tyr/Phe (2:4:12) detected by near-UV CD was unaffected by membranes containing glycolipid but was slightly altered by membranes lacking glycolipid. Trp fluorescence was maximal at {approx}355 nm and accessible to aqueous quenchers, indicating free exposure to the aqueous milieu and consistent with surface localization of the two Trps. Interaction with membranes lacking glycolipid triggered significant decreases in Trp emission intensity but lesser than decreases induced by membranes containing glycolipid. Binding of glycolipid (confirmed by electrospray injection mass spectrometry) resulted in a blue-shifted emission wavelength maximum ({approx}6 nm) permitting determination of binding affinities. The unique positioning of Trp{sup 208} at the HET-C2 C terminus revealed membrane-induced conformational changes that precede glycolipid uptake, whereas key differences in residues of the sugar headgroup recognition center accounted for altered glycolipid specificity and suggested evolutionary adaptation for the simpler glycosphingolipid compositions of filamentous fungi.

  11. Interacting parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2010-01-01

    Parasitism is the most popular life-style on Earth, and many vertebrates host more than one kind of parasite at a time. A common assumption is that parasite species rarely interact, because they often exploit different tissues in a host, and this use of discrete resources limits competition (1). On page 243 of this issue, however, Telfer et al. (2) provide a convincing case of a highly interactive parasite community in voles, and show how infection with one parasite can affect susceptibility to others. If some human parasites are equally interactive, our current, disease-by-disease approach to modeling and treating infectious diseases is inadequate (3).

  12. Drug Interactions

    MedlinePlus

    ... not be taken at the same time as antacids. WHAT CAUSES THE MOST INTERACTIONS WITH HIV MEDICATIONS? ... azole” Some antibiotics (names end in “mycin”) The antacid cimetidine (Tagamet) Some drugs that prevent convulsions, including ...

  13. Leo space plasma interactions

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1991-01-01

    Photovoltaic arrays interact with the low earth orbit (LEO) space plasma in two fundamentally different ways. One way is the steady collection of current from the plasma onto exposed conductors and semiconductors. The relative currents collected by different parts of the array will then determine the floating potential of the spacecraft. In addition, these steady state collected currents may lead to sputtering or heating of the array by the ions or electrons collected, respectively. The second kind of interaction is the short time scale arc into the space plasma, which may deplete the array and/or spacecraft of stored charge, damage solar cells, and produce EMI. Such arcs only occur at high negative potentials relative to the space plasma potential, and depend on the steady state ion currents being collected. New high voltage solar arrays being incorporated into advanced spacecraft and space platforms may be endangered by these plasma interactions. Recent advances in laboratory testing and current collection modeling promise the capability of controlling, and perhaps even using, these space plasma interactions to enable design of reliable high voltage space power systems. Some of the new results may have an impact on solar cell spacing and/or coverslide design. Planned space flight experiments are necessary to confirm the models of high voltage solar array plasma interactions. Finally, computerized, integrated plasma interactions design tools are being constructed to place plasma interactions models into the hands of the spacecraft designer.

  14. The Search for More Effective Methods of Teaching High School Biology to Slow Learners Through Interaction Analysis: An Investigation to Determine the Value of Interaction Analysis in the Adaptation of Biology Instruction to the Needs of Slow Learners at the Secondary School Level.

    ERIC Educational Resources Information Center

    Citron, Irvin M.

    This study extended over two academic years and involved six biology teachers and 199 students in nine slow-learner classes in four high schools. Classroom interaction was observed and recorded, then analyzed using the Flanders System of Interaction Analysis. Teachers were assigned specific roles of maintaining a definite interaction pattern or of…

  15. The D1-173 amino acid is a structural determinant of the critical interaction between D1-Tyr161 (TyrZ) and D1-His190 in Photosystem II.

    PubMed

    Sugiura, Miwa; Ozaki, Yui; Nakamura, Masato; Cox, Nicholas; Rappaport, Fabrice; Boussac, Alain

    2014-12-01

    The main cofactors of Photosystem II (PSII) are borne by the D1 and D2 subunits. In the thermophilic cyanobacterium Thermosynechococcus elongatus, three psbA genes encoding D1 are found in the genome. Among the 344 residues constituting the mature form of D1, there are 21 substitutions between PsbA1 and PsbA3, 31 between PsbA1 and PsbA2, and 27 between PsbA2 and PsbA3. In a previous study (Sugiura et al., J. Biol. Chem. 287 (2012), 13336-13347) we found that the oxidation kinetics and spectroscopic properties of TyrZ were altered in PsbA2-PSII when compared to PsbA(1/3)-PSII. The comparison of the different amino acid sequences identified the residues Cys144 and Pro173 found in PsbA1 and PsbA3, as being substituted in PsbA2 by Pro144 and Met173, and thus possible candidates accounting for the changes in the geometry and/or the environment of the TyrZ/His190 phenol/imidizol motif. Indeed, these amino acids are located upstream of the α-helix bearing TyrZ and between the two α-helices bearing TyrZ and its hydrogen-bonded partner, D1/His190. Here, site-directed mutants of PSII, PsbA3/Pro173Met and PsbA2/Met173Pro, were analyzed using X- and W-band EPR and UV-visible time-resolved absorption spectroscopy. The Pro173Met substitution in PsbA2-PSII versus PsbA3-PSII is shown to be the main structural determinant of the previously described functional differences between PsbA2-PSII and PsbA3-PSII. In PsbA2-PSII and PsbA3/Pro173Met-PSII, we found that the oxidation of TyrZ by P680+● was specifically slowed during the transition between S-states associated with proton release. We thus propose that the increase of the electrostatic charge of the Mn4CaO5 cluster in the S2 and S3 states could weaken the strength of the H-bond interaction between TyrZ● and D1/His190 in PsbA2 versus PsbA3 and/or induce structural modification(s) of the water molecules network around TyrZ. PMID:25193561

  16. Examining Classroom Interactions & Mathematical Discourses

    ERIC Educational Resources Information Center

    Grant, Melva R.

    2009-01-01

    This investigation examined interactions in three classrooms to determine how they influenced Discourses related to mathematics learning and teaching. Mathematics education literature suggests that effective mathematics instruction includes mathematical Discourses. However, effective mathematical Discourses within mathematics classrooms vary…

  17. Strong Interaction

    SciTech Connect

    Karsch, F.; Vogelsang, V.

    2009-09-29

    We will give here an overview of our theory of the strong interactions, Quantum Chromo Dynamics (QCD) and its properties. We will also briefly review the history of the study of the strong interactions, and the discoveries that ultimately led to the formulation of QCD. The strong force is one of the four known fundamental forces in nature, the others being the electromagnetic, the weak and the gravitational force. The strong force, usually referred to by scientists as the 'strong interaction', is relevant at the subatomic level, where it is responsible for the binding of protons and neutrons to atomic nuclei. To do this, it must overcome the electric repulsion between the protons in an atomic nucleus and be the most powerful force over distances of a few fm (1fm=1 femtometer=1 fermi=10{sup -15}m), the typical size of a nucleus. This property gave the strong force its name.

  18. Weak