Numerical Modelling of the Mining Induced Horizontal Displacement
NASA Astrophysics Data System (ADS)
Tajduś, Krzysztof
2015-12-01
The paper presents results of numerical calculations and modeling of mining-induced surface deformation based on Finite Element Method (FEM). Applying the numerical method discussed to calculations allows us to assume a larger number of factors, such as rock mass structure, fracture network, rock properties, etc., which essentially affect the results obtained. On the basis of an elastic transversely isotropic model, an analysis of horizontal displacement distribution and surface subsidence was carried out for two sample regions of mines. The results of numerical calculations were later compared with the measured values. Such an analysis proved that the applied numerical model properly described distribution and values of subsidence and slope of subsidence trough, though there were serious differences in the values of calculated horizontal displacement, especially in areas of far influence range. In order to improve the matching, the influence of boundary conditions of the model on the value of calculated horizontal displacement was analyzed. The results are presented in graphs.
Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong
2012-01-01
Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467
NASA Astrophysics Data System (ADS)
Nguyen, Desmond
Arguably the most important prerequisite to a good primary cementing job is mud displacement. In order to have effective mud displacement, complete removal of drilled cuttings from the well bore is required. This becomes more challenging in highly-deviated to horizontal wells where the casing tends to lie on the low side of the well bore creating an eccentric annular flow geometry. In this study, a theoretical approach based on the theory of particles transport and fluid mechanics is adopted to develop two new mathematical models: (1) cuttings transport; and (2) drilling fluid displacement by cement slurry in horizontal wells. Two computer algorithms are developed based on these models. The effects of various operational conditions, hole geometry and fluid properties are simulated using these computer models. The results compare favourably with those obtained by previous investigators. These simulated examples demonstrate that the two models can be used to analyse the sensitivity of the cuttings transport and displacement processes to changes in the operational conditions, hole geometry and fluid properties. Hence, they can potentially be used as design and/or analysis tools for the optimisation of these processes in highly- deviated to horizontal wells.
Some Considerations on Horizontal Displacement and Horizontal Displacement Coefficient B
NASA Astrophysics Data System (ADS)
Tajduś, Krzysztof; Tajduś, Antoni
2015-12-01
Mining-induced deformations of the ground surface and within the rock mass may pose danger not only for surface constructions but also for underground objects (e.g., tunnels, underground storages, garages), diverse types of pipelines, electric cables, etc. For a proper evaluation of hazard for surface and underground objects, such parameters as horizontal displacement and horizontal deformations, especially their maximum values, are of crucial importance. The paper is an attempt at a critical review of hitherto accomplished studies and state of the art of predicting horizontal displacement u, in particular the coefficient B, whose value allows determination of the value of maximum displacement if the value of maximum slope is known, or the value of maximum deformation if the value of maximum trough slope is recognized. Since the geodesic observations of fully developed subsidence troughs suggest that the value of the coefficient depends on the depth H, radius of main influences range r and properties of overburden rock, in particular the occurrence of sub-eras Paleogene and Neogene layers (old name: Quaternary and Tertiary) with low strength parameters, therefore a formula is provided in the present paper allowing for the estimation of the influence of those factors on the value of coefficient B.
Seismic transducer measures small horizontal displacements
NASA Technical Reports Server (NTRS)
Greenwood, T. L.
1965-01-01
Pendular seismic transducer mounted on base plate measures small horizontal displacements of structures subjected to vibration where no fixed reference point is available. Enclosure of transducer in transparent plastic case prevents air currents from disturbing the pendulum balance.
Faris, Allison T.; Seed, Raymond B.; Kayen, Robert E.; Wu, Jiaer
2006-01-01
During the 1906 San Francisco Earthquake, liquefaction-induced lateral spreading and resultant ground displacements damaged bridges, buried utilities, and lifelines, conventional structures, and other developed works. This paper presents an improved engineering tool for the prediction of maximum displacement due to liquefaction-induced lateral spreading. A semi-empirical approach is employed, combining mechanistic understanding and data from laboratory testing with data and lessons from full-scale earthquake field case histories. The principle of strain potential index, based primary on correlation of cyclic simple shear laboratory testing results with in-situ Standard Penetration Test (SPT) results, is used as an index to characterized the deformation potential of soils after they liquefy. A Bayesian probabilistic approach is adopted for development of the final predictive model, in order to take fullest advantage of the data available and to deal with the inherent uncertainties intrinstiic to the back-analyses of field case histories. A case history from the 1906 San Francisco Earthquake is utilized to demonstrate the ability of the resultant semi-empirical model to estimate maximum horizontal displacement due to liquefaction-induced lateral spreading.
Horizontal displacement profiles in N Reactor horizontal control rod channels
Woodruff, E.M.
1988-12-01
One of the potential results from N Reactor graphite moderator distortion is horizontal curvature of the horizontal control rod (HCR) channels. Mockup testing has identified two possible problem scenarios resulting from such curvature: slow scram times and rod abrasion due to rubbing of the rod on the side of the channel and subsequent displacement of T-blocks that form the sides of the channels. As a result of these potential events, surveillance tools (instrumentation) to measure HCR channel horizontal displacement was recently developed. Surveillance of HCR channel 65, performed on December 11, 1987, indicated a six inch rearward displacement near the center of the channel. This approximated the displacement which mockup testing has identified as a concern with regard to T-block movement. Closed Circuit Television (CCTV) observations indicate that T-block movement has not occurred in HCR channel 65, but that there has been some rubbing of the rod on the channel sides. Review of most recent rod hot scram times indicates normal performance for HCR 65. To further evaluate this concern, horizontal deflection and CCTV surveillance was scheduled in six HCR channels surrounding HCR channel 65. Inspection of the HCR rod tip was also performed. 13 refs., 6 figs.
NASA Astrophysics Data System (ADS)
Malarski, Ryszar; Nagórski, Kamil; Woźniak, Marek
2013-10-01
One of the basic criterion for safety evaluation of structures erected on embankment or sliding slopes is relative horizontal displacement at different elevations. Relative horizontal displacements beneath ground surfaces are performed with inclinometer measurements. This report presents results on horizontal relative ground displacements with the probe SISGEO S242SV30. Investigations were performed with two inclinometer columns 14m height embedded in Warsaw Bank Slope. Mean square error of single observation was determined and mean relative errors of relative displacements in relation to column height. On the basis measurement results several relevant recommendations and practical hints were formulated allowing to avoid survey blunders and discrepancies in measuring procedures often encountered. Detailed inclinometer horizontal displacement measurements results at Warsaw hillside St Ana's Church grounds were listed and presented.
A design chart for estimation of horizontal displacement in municipal landfills
Singh, M.K. Sharma, J.S.; Fleming, I.R.
2009-05-15
This paper describes the development of a design chart for the estimation of maximum horizontal displacement within a municipal landfill using the height and the side slope of the landfill. The design chart is based on the results of a finite element parametric study in which the behaviour of the municipal solid waste (MSW) was modeled using a non-linear elastic hyperbolic model. The model input parameters, i.e. non-linear stiffness, shear strength and unit weight of MSW, were obtained from laboratory testing data and an extensive stochastic numerical modelling exercise. Non-linear variations of unit weight as well as Young's modulus of MSW with depth were incorporated in the finite element analyses. The validity of the design chart was assessed using field monitoring results from a large landfill located in Ontario, Canada.
Sliding and rotary PDM drilling keep horizontal well on target. [Positive Displacement Motors
Johnson, M.L. )
1993-07-12
Improved drilling efficiency and the use of steerable positive displacement motors (PDMs) helped keep an Austin chalk horizontal well on target and below cost. Field development in the Austin chalk began more than 60 years ago; however, many wells have had low-to-average oil recovery. Recent thorough studies of the natural fracture matrix in the Austin chalk revealed that the fractures were not interconnected. The ability of a horizontal well to intersect numerous fracture systems made the Austin chalk an excellent candidate for horizontal drilling. This paper describes the well plan, its trajectory, bottom hole assemblies, and drilling results.
Ma, Hongcai; Wu, Lin
2015-07-10
We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages. PMID:26193396
Long-delayed bright dancing sprite with large horizontal displacement from its parent flash
NASA Astrophysics Data System (ADS)
Yang, J.; Lu, G.; Lee, L. J.; Feng, G.
2015-12-01
A long-delayed very bright dancing sprite with large horizontal displacement from its parent flash was observed. The dancing sprite lasted only 60 ms, and the morphology consisted of three fields with two slim dim sprite elements in the first two fields and a very bright large sprite element in the third field, different from other observations. The bright sprite displaced at least 38 km from its parent flash and occurred over comparatively higher cloud top region. The parent flash was positive, with only one return stroke (~24 kA) and obvious continuing current process, and the charge moment change of the stroke was small (roughly the threshold for sprite production). All of the sprite elements occurred during the continuing current period, and the bright sprite induced considerable current. The sprite dancing features may be linked to parent storm electrical structure, dynamics and microphysics, and the parent CG discharge process which was consistent with VHF observations.
Modelling Toehold-Mediated RNA Strand Displacement
Šulc, Petr; Ouldridge, Thomas E.; Romano, Flavio; Doye, Jonathan P.K.; Louis, Ard A.
2015-01-01
We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperature and make two experimentally testable predictions: that the displacement is faster if the toehold is placed at the 5′ end of the substrate; and that the displacement slows down with increasing temperature for longer toeholds. PMID:25762335
Long-delayed bright dancing sprite with large Horizontal displacement from its parent flash
NASA Astrophysics Data System (ADS)
Yang, Jing; Lu, Gaopeng; Lee, Li-Jou; Feng, Guili
2015-07-01
We reported in this paper the observation of a very bright long-delayed dancing sprite with distinct horizontal displacement from its parent stroke. The dancing sprite lasted only 60 ms, and the morphology consisted of three fields with two slim dim sprite elements in the first two fields and a very bright large element in the third field, different from other observations where the dancing sprites usually contained multiple elements over a longer time interval, and the sprite shape and brightness in the video field are often similar to the previous fields. The bright sprite was displaced at least 38 km from its parent cloud-to-ground (CG) stroke and occurred over comparatively higher cloud top region. The parent flash of this compact dancing sprite was of positive polarity, with only one return stroke (approximately +24 kA) and obvious continuing current process, and the charge moment change of stroke was small (barely above the threshold for sprite production). All the sprite elements occurred during the continuing current stage, and the bright long-delayed sprite element induced a considerable current pulse. The dancing feature of this sprite may be linked to the electrical charge structure, dynamics and microphysics of parent storm, and the inferred development of parent CG flash was consistent with previous very high-frequency (VHF) observations of lightning in the same region.
An Ion Displacement Membrane Model
Hladky, Stephen B.; Harris, Joseph D.
1967-01-01
The usual assumption in treating the diffusion of ions in an electric field has been that the movement of each ion is independent of the movement of the others. The resulting equation for diffusion by a succession of spontaneous jumps has been well stated by Parlin and Eyring. This paper will consider one simple case in which a different assumption is reasonable. Diffusion of monovalent positive ions is considered as a series of jumps from one fixed negative site to another. The sites are assumed to be full (electrical neutrality). Interaction occurs by the displacement of one ion by another. An ion leaves a site if and only if another ion, not necessarily of the same species, attempts to occupy the same site. Flux ratios and net fluxes are given as functions of the electrical potential, concentration ratios, and number of sites encountered in crossing the membrane. Quantitative comparisons with observations of Hodgkin and Keynes are presented. PMID:6048876
Displaced vertices in extended supersymmetric models
NASA Astrophysics Data System (ADS)
Hesselbach, S.; Franke, F.; Fraas, H.
2000-10-01
In extended supersymmetric models with additional singlet Higgs fields displaced vertices could be observed if the decay width of the next-to-lightest supersymmetric particle becomes very small due to a singlino dominated LSP. We study the supersymmetric parameter space where displaced vertices of the second lightest neutralino exist in the NMSSM and an E6 inspired model. For a mass difference between LSP and NLSP of more than 10 GeV the singlet vacuum expectation value has to be at least of the order of /100 TeV in order to obtain a lightest neutralino with a singlino component large enough for displaced vertices.
Modeling Horizontal GPS Seasonal Signals Caused by Ocean Loading
NASA Astrophysics Data System (ADS)
Bartlow, N. M.; Fialko, Y. A.
2014-12-01
GPS monuments around the world exhibit seasonal signals in both the horizontal and vertical components with amplitudes on the order of centimeters. For analysis of tectonic signals, researchers typically fit and remove a sine wave with an annual period, and sometimes an additional sine wave with a semiannual period. As interest grows in analyzing smaller, slower signals it becomes more important to correct for these seasonal signals accurately. It is well established that the vertical component of seasonal GPS signals is largely due to continental water storage cycles (e.g. van Dam et al., GRL, 2001). Horizontal seasonal signals however are not well explained by continental water storage. We examine horizontal seasonal signals across western North America and find that the horizontal component is coherent at very large spatial scales and is in general oriented perpendicular to the nearest coastline, indicating an oceanic origin. Additionally, horizontal and vertical annual signals are out of phase by approximately 2 months indicating different physical origins. Studies of GRACE and ocean bottom pressure data indicate an annual variation of non-steric, non-tidal ocean height with an average amplitude of 1 cm globally (e.g. Ponte et al., GRL, 2007). We use Some Programs for Ocean Tide Loading (SPOTL; Agnew, SIO Technical Report, 2012) to model predicted displacements due to these (non-tidal) ocean loads and find general agreement with observed horizontal GPS seasonal signals. In the future, this may lead to a more accurate way to predict and remove the seasonal component of GPS displacement time-series, leading to better discrimination of the true tectonic signal. Modeling this long wavelength signal also provides a potential opportunity to probe the structure of the Earth.
NASA Astrophysics Data System (ADS)
Fuhrmann, T.; Knöpfler, A.; Masson, F.; Mayer, M.; Ulrich, P.; Westerhaus, M.; Zippelt, K.; Heck, B.
2012-04-01
At the Geodetic Institute, Karlsruhe Institute of Technology, the Upper Rhine Graben (URG) area is investigated using various geodetic techniques. The recent objective is to gain detailed insight in the horizontal and vertical velocity field of the URG from GNSS and levelling data. In addition, it is planned to integrate InSAR data and to rigorously merge the three geodetic measurement techniques into a combined 3D displacement solution. For the GNSS part, a transnational network called GURN (GNSS Upper Rhine Graben Network) was established in 2008 in close cooperation with the Institute de Physique du Globe de Strasbourg (France). GURN actually consist of more than 80 permanently operating GNSS sites of Germany, France and Switzerland. A continuous database is existing since 2002. The analysis strategy for the determination of horizontal and vertical displacement rates and first results from up to 10 years long GNSS time series will be presented. Besides GNSS, the analysis of precise levelling data enables an accurate determination of vertical displacement rates at levelling benchmarks, if repeated measurements at identical benchmarks are available. The levelling measurements in the URG area were carried out by the ordnance survey of Germany, France and Switzerland along levelling lines. These levelling lines were measured up to five times within the last 100 years. Therefore, at discrete benchmarks a detailed assessment of surface displacements could be carried out. The presentation will compare the results of the two geodetic measurement techniques applied within the research activities in the URG area. As levelling and GNSS are point-wise measurement techniques, the spatial resolution of estimated surface displacements is poor. Therefore, InSAR data is used to fill the gap in the future. A short outlook will point out possibilities and limitations on the combination of GNSS, levelling, and InSAR data for an accurate solution aiming for horizontal and vertical
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Kiefel, Steven M.
1988-01-01
Four independent variables of visual perception during binocular viewing were studied. In 24 observers, the vertical displacement threshold (DT) sensitivity along the horizontal meridian was determined as a function of the rate, duration, and length of the stimulus. It was found that the DT increases with an increased angular separation of the stimulus image from the fovea (i.e., the stimulus must move farther in order to be correctly discriminated as having moved). In addition, it was found that the sensitivity to the stimulus displacement increases with increasing of the stimulus length, duration, and/or angular rate. These findings are related to the design optimization of dynamic attitude displays and symbology for aircraft.
Regression models for estimating coseismic landslide displacement
Jibson, R.W.
2007-01-01
Newmark's sliding-block model is widely used to estimate coseismic slope performance. Early efforts to develop simple regression models to estimate Newmark displacement were based on analysis of the small number of strong-motion records then available. The current availability of a much larger set of strong-motion records dictates that these regression equations be updated. Regression equations were generated using data derived from a collection of 2270 strong-motion records from 30 worldwide earthquakes. The regression equations predict Newmark displacement in terms of (1) critical acceleration ratio, (2) critical acceleration ratio and earthquake magnitude, (3) Arias intensity and critical acceleration, and (4) Arias intensity and critical acceleration ratio. These equations are well constrained and fit the data well (71% < R2 < 88%), but they have standard deviations of about 0.5 log units, such that the range defined by the mean ?? one standard deviation spans about an order of magnitude. These regression models, therefore, are not recommended for use in site-specific design, but rather for regional-scale seismic landslide hazard mapping or for rapid preliminary screening of sites. ?? 2007 Elsevier B.V. All rights reserved.
Rupture models with dynamically determined breakdown displacement
Andrews, D.J.
2004-01-01
The critical breakdown displacement, Dc, in which friction drops to its sliding value, can be made dependent on event size by specifying friction to be a function of variables other than slip. Two such friction laws are examined here. The first is designed to achieve accuracy and smoothness in discrete numerical calculations. Consistent resolution throughout an evolving rupture is achieved by specifying friction as a function of elapsed time after peak stress is reached. Such a time-weakening model produces Dc and fracture energy proportional to the square root of distance rupture has propagated in the case of uniform stress drop. The second friction law is more physically motivated. Energy loss in a damage zone outside the slip zone has the effect of increasing Dc and limiting peak slip velocity (Andrews, 1976). This article demonstrates a converse effect, that artificially limiting slip velocity on a fault in an elastic medium has a toughening effect, increasing fracture energy and Dc proportionally to rupture propagation distance in the case of uniform stress drop. Both the time-weakening and the velocity-toughening models can be used in calculations with heterogeneous stress drop.
Shallow water model for horizontal centrifugal casting
NASA Astrophysics Data System (ADS)
Boháček, J.; Kharicha, A.; Ludwig, A.; Wu, M.
2012-07-01
A numerical model was proposed to simulate the solidification process of an outer shell of work roll made by the horizontal centrifugal casting technique. Shallow water model was adopted to solve the 2D average flow dynamics of melt spreading and the average temperature distribution inside the centrifugal casting mould by considering the centrifugal force, Coriolis force, viscous force due to zero velocity on the mould wall, gravity, and energy transport by the flow. Additionally, a 1D sub-model was implemented to consider the heat transfer in the radial direction from the solidifying shell to the mould. The solidification front was tracked by fulfilling the Stefan condition. Radiative and convective heat losses were included from both, the free liquid surface and the outer wall of the mould. Several cases were simulated with the following assumed initial conditions: constant height of the liquid metal (10, 20, and 30 mm), uniform temperature of the free liquid surface (1755 K). The simulation results have shown that while the solidification front remained rather flat, the free surface was disturbed by waves. The amplitude of waves increased with the liquid height. Free surface waves diminished as the solidification proceeded.
Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings
NASA Astrophysics Data System (ADS)
Cunha, Americo; Soize, Christian; Sampaio, Rubens
2015-11-01
This work intends to analyze the nonlinear stochastic dynamics of drillstrings in horizontal configuration. For this purpose, it considers a beam theory, with effects of rotatory inertia and shear deformation, which is capable of reproducing the large displacements that the beam undergoes. The friction and shock effects, due to beam/borehole wall transversal impacts, as well as the force and torque induced by bit-rock interaction, are also considered in the model. Uncertainties of bit-rock interaction model are taken into account using a parametric probabilistic approach. Numerical simulations have shown that the mechanical system of interest has a very rich nonlinear stochastic dynamics, which generate phenomena such as bit-bounce, stick-slip, and transverse impacts. A study aiming to maximize the drilling process efficiency, varying drillstring velocities of translation and rotation is presented. Also, the work presents the definition and solution of two optimizations problems, one deterministic and one robust, where the objective is to maximize drillstring rate of penetration into the soil respecting its structural limits.
Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor
Shentu, Nanying; Li, Qing; Li, Xiong; Tong, Renyuan; Shentu, Nankai; Jiang, Guoqing; Qiu, Guohua
2014-01-01
Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor) by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA). Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications. PMID:24858960
Displacement parameter inversion for a novel electromagnetic underground displacement sensor.
Shentu, Nanying; Li, Qing; Li, Xiong; Tong, Renyuan; Shentu, Nankai; Jiang, Guoqing; Qiu, Guohua
2014-01-01
Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor) by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA). Based on that work, this paper presents an underground displacement inversion approach named "EELA forward modeling-approximate inversion method". Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0-100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications. PMID:24858960
Analytical Modeling for the Grating Eddy Current Displacement Sensors
NASA Astrophysics Data System (ADS)
Lv, Chunfeng; Tao, Wei; Lei, Huaming; Jiang, Yingying; Zhao, Hui
2015-02-01
As a new type of displacement sensor, grating eddy current displacement sensor (GECDS) combines traditional eddy current sensors and grating structure in one. The GECDS performs a wide range displacement measurement without precision reduction. This paper proposes an analytical modeling approach for the GECDS. The solution model is established in the Cartesian coordinate system, and the solving domain is limited to finite extents by using the truncated region eigenfunction expansion method. Based on the second order vector potential, expressions for the electromagnetic field as well as coil impedance related to the displacement can be expressed in closed-form. Theoretical results are then confirmed by experiments, which prove the suitability and effectiveness of the analytical modeling approach.
A novel approach to modeling unstable EOR displacements. Final report
Peters, E.J.
1994-04-01
Most enhanced oil recovery schemes involve the displacement of a more dense and more viscous oil by a less dense and less viscous fluid in a heterogeneous porous medium. The interaction of heterogeneity with the several competing forces, namely, viscous, capillary, gravitational, and dispersive forces, can conspire to make the displacements unstable and difficult to model and to predict. The objective of this research was to develop a systematic methodology for modeling unstable fluid displacements in heterogeneous media. Flow visualization experiments were conducted using X-ray computed tomography imaging and a video imaging workstation to gain insights into the dynamics of unstable displacements, acquire detailed quantitative experimental image data for calibrating numerical models of unstable displacements, and image and characterize heterogeneities in laboratory cores geostatistically. High-resolution numerical models modified for use on vector-architecture supercomputers were used to replicate the image data. Geostatistical models of reservoir heterogeneity were incorporated in order to study the interaction of hydrodynamic instability and heterogeneity in reservoir displacements. Finally, a systematic methodology for matching the experimental data with the numerical models and scaling the laboratory results to other systems were developed. The result is a new method for predicting the performance of unstable EOR displacements in the field based on small-scale displacements in the laboratory. The methodology is general and can be applied to forecast the performance of most processes that involve fluid flow and transport in porous media. Therefore, this research should be of interest to those involved in forecasting the performance of enhanced oil recovery processes and the spreading of contaminants in heterogeneous aquifers.
HORSMIC. Horizontal Salt Solution Mining Model
Russo, A.J.
1994-01-01
The code HORSMIC was written to solve the problem of calculating the shape of hydrocarbon (gas or liquid) storage caverns formed by solution mining in bedded salt formations. In the past many storage caverns have been formed by vertically drilling into salt dome formations and solution mining large-aspect-ratio, vertically axisymmetric caverns. This approach is generally not satisfactory for shallow salt beds because it would result in geomechanically-unstable, pancake-shaped caverns. In order to produce a high aspect ratio cavern in the horizontal direction a more complicated strategy must be employed. This code was developed to implement such a strategy, and can be used to estimate the shape of the cavern produced by a prescribed leaching schedule. Multiple trials can then be used to investigate the effects of various pipe hole configurations in order to optimize over the cavern shape.
Model based estimation of image depth and displacement
NASA Technical Reports Server (NTRS)
Damour, Kevin T.
1992-01-01
Passive depth and displacement map determinations have become an important part of computer vision processing. Applications that make use of this type of information include autonomous navigation, robotic assembly, image sequence compression, structure identification, and 3-D motion estimation. With the reliance of such systems on visual image characteristics, a need to overcome image degradations, such as random image-capture noise, motion, and quantization effects, is clearly necessary. Many depth and displacement estimation algorithms also introduce additional distortions due to the gradient operations performed on the noisy intensity images. These degradations can limit the accuracy and reliability of the displacement or depth information extracted from such sequences. Recognizing the previously stated conditions, a new method to model and estimate a restored depth or displacement field is presented. Once a model has been established, the field can be filtered using currently established multidimensional algorithms. In particular, the reduced order model Kalman filter (ROMKF), which has been shown to be an effective tool in the reduction of image intensity distortions, was applied to the computed displacement fields. Results of the application of this model show significant improvements on the restored field. Previous attempts at restoring the depth or displacement fields assumed homogeneous characteristics which resulted in the smoothing of discontinuities. In these situations, edges were lost. An adaptive model parameter selection method is provided that maintains sharp edge boundaries in the restored field. This has been successfully applied to images representative of robotic scenarios. In order to accommodate image sequences, the standard 2-D ROMKF model is extended into 3-D by the incorporation of a deterministic component based on previously restored fields. The inclusion of past depth and displacement fields allows a means of incorporating the temporal
The role of finite displacements in vocal fold modeling.
Chang, Siyuan; Tian, Fang-Bao; Luo, Haoxiang; Doyle, James F; Rousseau, Bernard
2013-11-01
Human vocal folds experience flow-induced vibrations during phonation. In previous computational models, the vocal fold dynamics has been treated with linear elasticity theory in which both the strain and the displacement of the tissue are assumed to be infinitesimal (referred to as model I). The effect of the nonlinear strain, or geometric nonlinearity, caused by finite displacements is yet not clear. In this work, a two-dimensional model is used to study the effect of geometric nonlinearity (referred to as model II) on the vocal fold and the airflow. The result shows that even though the deformation is under 1 mm, i.e., less than 10% of the size of the vocal fold, the geometric nonlinear effect is still significant. Specifically, model I underpredicts the gap width, the flow rate, and the impact stress on the medial surfaces as compared to model II. The study further shows that the differences are caused by the contact mechanics and, more importantly, the fluid-structure interaction that magnifies the error from the small-displacement assumption. The results suggest that using the large-displacement formulation in a computational model would be more appropriate for accurate simulations of the vocal fold dynamics. PMID:24008392
A heat transfer model of a horizontal ground heat exchanger
NASA Astrophysics Data System (ADS)
Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.
2016-04-01
Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.
Horizontal density compensation in ocean general circulation models
NASA Astrophysics Data System (ADS)
Koch, Andrey O.; Helber, Robert W.; Richman, James G.; Barron, Charlie N.
2013-04-01
Density compensation is the condition where temperature (T) and salinity (S) gradients counteract in their effect on density. Open ocean observations with SeaSoar tows and recent glider observations in the Gulf of Mexico reported in the scientific literature suggest that horizontal gradients in the surface mixed layer tend to be strongly density compensated over a range of spatial scales while in seasonal thermocline and deeper layers T,S-fronts are only partially compensated or uncompensated. We assess the capability of ocean general circulation models (OGCM) to develop horizontal density compensation as observed in the upper ocean. The physics required to evolve the initial density compensated mixed layer toward the partially compensated conditions of the thermocline is tested. Idealistic scenarios with horizontal, partially compensated density fronts in the mixed layer are examined in submesoscale-resolved run-down simulations on Hybrid Coordinate Ocean Model (HYCOM). Simulations with no atmospheric forcing show that initial Density compensation does not change substantially experiencing only minor decrease with time simultaneously with the restratification of the mixed layer by submesoscale eddies. Submesoscale fronts tend to be more compensated than mesoscale fronts. A sensitivity analysis shows that the density compensation of submesoscale fronts is particularly sensitive to the horizontal diffusion rate. Simulations with wind forcing exhibit destruction of initial density compensation due to ageostrophic frontogenesis which is confirmed by recent glider observations in the Gulf of Mexico. The lack of the model skill to develop and maintain compensated thermohaline variability is attributed to the T, S horizontal diffusion parameterization used in HYCOM and generally in modern OGCMs: it is decoupled from vertical diffusion and T and S diffusion is horizontally identical. Our findings suggest that OGCM's skill to develop compensated thermohaline variability
Force-displacement model for analysis of pulsed-GMAW
NASA Astrophysics Data System (ADS)
Arif, Nabeel; Lee, Jae Hak; Yoo, Choong Don
2009-02-01
A force-displacement model (FDM) is introduced in this work to analyse pulsed gas metal arc welding (GMAW). The drop detaching criterion is established based on the displacement of the pendant drop instead of the previous force balance criterion. The displacement of the drop is calculated by integrating the acceleration of the drop, and the force exerted on the drop is predicted using the modified force balance model coupled with wire melting. When the peak current, base current and time of pulsed-GMAW are given, the peak time for the one-drop one-pulse condition is determined using the FDM. While the peak current has the most significant effect on drop detachment, the initial drop mass prior to the peak time also influences the drop transfer. The FDM is applied to the dc as well as pulsed-GMAW, and the calculated results show good agreement with the experimental data.
Effects of vertical shear in modelling horizontal oceanic dispersion
NASA Astrophysics Data System (ADS)
Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.
2016-02-01
The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.
Dynamic modeling of the neck muscles during horizontal head movement.
Haapala, Stephenie A; Enderle, John D
2002-01-01
This paper presents modeling and simulation of superficial neck muscle movement in the horizontal plane (yaw). The parametric muscle model was constructed using Pro/Engineer 2000i Student Edition, Parametric Technologies Corp, and simulated using Pro/Mechanica. Pennation angles, force-tension, force-generation and rate of muscle activation data were obtained from anatomic and physiological studies. Saccadic eye movement models developed by G. Alexander Korentis and John Enderle also provided the basis for this model. PMID:12085608
The subtraction of mutually displaced Gaussian Schell-model beams
NASA Astrophysics Data System (ADS)
de Sande, J. Carlos G.; Santarsiero, Massimo; Piquero, Gemma; Gori, Franco
2015-12-01
Using recently derived results about the difference of two cross-spectral densities, we consider a source whose correlation function is the difference of two mutually displaced Gaussian Schell-model cross-spectral densities. We examine the main features of this new cross-spectral density in terms of coherence and intensity distribution, both across the source plane and after free propagation.
EXAMINATION OF MODEL PREDICTIONS AT DIFFERENT HORIZONTAL GRID RESOLUTIONS
While fluctuations in meteorological and air quality variables occur on a continuum of spatial scales, the horizontal grid spacing of coupled meteorological and photochemical models sets a lower limit on the spatial scales that they can resolve. However, both computational costs ...
Solar UV geometric conversion factors: horizontal plane to cylinder model.
Pope, Stanley J; Godar, Dianne E
2010-01-01
Most solar UV measurements are relative to the horizontal plane. However, problems arise when one uses those UV measurements to perform risk or benefit assessments because they do not yield the actual doses people get while they are outdoors. To better estimate the UV doses people actually get while outdoors, scientists need geometric conversion factors (GCF) that change horizontal plane irradiances to average irradiances on the human body. Here we describe a simple geometric method that changes unweighted, erythemally weighted and previtamin D(3)-weighted UV irradiances on the horizontal plane to full cylinder and semicylinder irradiances. Scientists can use the full cylinder model to represent the complete human body, while they can use the semicylinder model to represent the face, shoulders, tops of hands and feet. We present daily, monthly and seasonally calculated averages of the GCF for these cylinder models every 5 degrees from 20 to 70 degrees N so that scientists can now get realistic UV doses for people who are outdoors doing a variety of different activities. The GCF show that people actually get less than half their annual erythemally weighted, and consequently half their previtamin D(3)-weighted, UV doses relative to the horizontal plane. Thus, scientists can now perform realistic UV risk and benefit assessments. PMID:20059727
A thermal modelling of displacement cascades in uranium dioxide
NASA Astrophysics Data System (ADS)
Martin, G.; Garcia, P.; Sabathier, C.; Devynck, F.; Krack, M.; Maillard, S.
2014-05-01
The space and time dependent temperature distribution was studied in uranium dioxide during displacement cascades simulated by classical molecular dynamics (MD). The energy for each simulated radiation event ranged between 0.2 keV and 20 keV in cells at initial temperatures of 700 K or 1400 K. Spheres into which atomic velocities were rescaled (thermal spikes) have also been simulated by MD to simulate the thermal excitation induced by displacement cascades. Equipartition of energy was shown to occur in displacement cascades, half of the kinetic energy of the primary knock-on atom being converted after a few tenths of picoseconds into potential energy. The kinetic and potential parts of the system energy are however subjected to little variations during dedicated thermal spike simulations. This is probably due to the velocity rescaling process, which impacts a large number of atoms in this case and would drive the system away from a dynamical equilibrium. This result makes questionable MD simulations of thermal spikes carried out up to now (early 2014). The thermal history of cascades was compared to the heat equation solution of a punctual thermal excitation in UO2. The maximum volume brought to a temperature above the melting temperature during the simulated cascade events is well reproduced by this simple model. This volume eventually constitutes a relevant estimate of the volume affected by a displacement cascade in UO2. This definition of the cascade volume could also make sense in other materials, like iron.
The structure of horizontal-branch models. I - The zero-age horizontal branch
NASA Technical Reports Server (NTRS)
Dorman, Ben
1992-01-01
A detailed study of the structure of zero-age horizontal-branch (ZAHB) models is studied in order to show how the hydrostatic structure of these models changes with the input parameters and determines the H-R diagram location of a given model. The properties of composite polytropes on the homology-invariant (U,V)-plane are demonstrated. A variety of test models and sequences were constructed to elucidate the underlying factors that give rise to the wide variation in HB model properties with composition. The roles of the CNO elements as nuclear catalysts and of the envelope sources, as well as the envelope helium abundance are reexamined. It is found that, for stars of a fixed range of mass arriving on the HB, the stellar distribution is determined mainly by CNO for low metallicities (Fe/H of less than about -1), but mainly by opacity sources for high metallicities. The value of Fe/H where CNO ceases to dominate depends significantly on the adopted opacity and will decrease if and when opacity estimates are revised upward.
A Simple Model of Cirrus Horizontal Inhomogeneity and Cloud Fraction
NASA Technical Reports Server (NTRS)
Smith, Samantha A.; DelGenio, Anthony D.
1998-01-01
A simple model of horizontal inhomogeneity and cloud fraction in cirrus clouds has been formulated on the basis that all internal horizontal inhomogeneity in the ice mixing ratio is due to variations in the cloud depth, which are assumed to be Gaussian. The use of such a model was justified by the observed relationship between the normalized variability of the ice water mixing ratio (and extinction) and the normalized variability of cloud depth. Using radar cloud depth data as input, the model reproduced well the in-cloud ice water mixing ratio histograms obtained from horizontal runs during the FIRE2 cirrus campaign. For totally overcast cases the histograms were almost Gaussian, but changed as cloud fraction decreased to exponential distributions which peaked at the lowest nonzero ice value for cloud fractions below 90%. Cloud fractions predicted by the model were always within 28% of the observed value. The predicted average ice water mixing ratios were within 34% of the observed values. This model could be used in a GCM to produce the ice mixing ratio probability distribution function and to estimate cloud fraction. It only requires basic meteorological parameters, the depth of the saturated layer and the standard deviation of cloud depth as input.
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Vu-Quoc, Loc
2007-07-01
We present in this paper the displacement-driven version of a tangential force-displacement (TFD) model that accounts for both elastic and plastic deformations together with interfacial friction occurring in collisions of spherical particles. This elasto-plastic frictional TFD model, with its force-driven version presented in [L. Vu-Quoc, L. Lesburg, X. Zhang. An accurate tangential force-displacement model for granular-flow simulations: contacting spheres with plastic deformation, force-driven formulation, Journal of Computational Physics 196(1) (2004) 298-326], is consistent with the elasto-plastic frictional normal force-displacement (NFD) model presented in [L. Vu-Quoc, X. Zhang. An elasto-plastic contact force-displacement model in the normal direction: displacement-driven version, Proceedings of the Royal Society of London, Series A 455 (1991) 4013-4044]. Both the NFD model and the present TFD model are based on the concept of additive decomposition of the radius of contact area into an elastic part and a plastic part. The effect of permanent indentation after impact is represented by a correction to the radius of curvature. The effect of material softening due to plastic flow is represented by a correction to the elastic moduli. The proposed TFD model is accurate, and is validated against nonlinear finite element analyses involving plastic flows in both the loading and unloading conditions. The proposed consistent displacement-driven, elasto-plastic NFD and TFD models are designed for implementation in computer codes using the discrete-element method (DEM) for granular-flow simulations. The model is shown to be accurate and is validated against nonlinear elasto-plastic finite-element analysis.
Modeling of two-hot-arm horizontal thermal actuator
NASA Astrophysics Data System (ADS)
Yan, Dong; Khajepour, Amir; Mansour, Raafat
2003-03-01
Electrothermal actuators have a very promising future in MEMS applications since they can generate large deflection and force with low actuating voltages and small device areas. In this study, a lumped model of a two-hot-arm horizontal thermal actuator is presented. In order to prove the accuracy of the lumped model, finite element analysis (FEA) and experimental results are provided. The two-hot-arm thermal actuator has been fabricated using the MUMPs process. Both the experimental and FEA results are in good agreement with the results of lumped modeling.
A physical model for measuring thermally-induced block displacements
NASA Astrophysics Data System (ADS)
Bakun-Mazor, Dagan; Feldhiem, Aviran; Keissar, Yuval; Hatzor, Yossef H.
2016-04-01
A new model for thermally-induced block displacement in discontinuous rock slopes has been recently suggested. The model consists of a discrete block that is separated from the rock mass by a tension crack and rests on an inclined plane. The tension crack is filled with a wedge block or rock fragments. Irreversible block sliding is assumed to develop in response to climatic thermal fluctuations and consequent contraction and expansion of the sliding block material. While a tentative analytical solution for this model is already available, we are exploring here the possibility of obtaining such a permanent, thermally-induced, rock block displacement, under fully controlled conditions at the laboratory, and the sensitivity of the mechanism to geometry, mechanical properties, and temperature fluctuations. A large scale concrete physical model (50x150x60 cm^3) is being examined in a Climate-Controlled Room (CCR). The CCR permits accurate control of ambient temperature from 5 to 45 Celsius degrees. The permanent plastic displacement is being measured using four displacement transducers and a high resolution (29M pixel) visual range camera. A series of thermocouples measure the heating front inside the sliding block, hence thermal diffusivity is evaluated from the measured thermal gradient and heat flow. In order to select the appropriate concrete mixture, the mechanical and thermo-physical properties of concrete samples are determined in the lab. Friction angle and shear stiffness of the sliding interface are determined utilizing a hydraulic, servo-controlled direct shear apparatus. Uniaxial compression tests are performed to determine the uniaxial compressive strength, Young's modulus and Poison's ratio of the intact block material using a stiff triaxial load frame. Thermal conductivity and linear thermal expansion coefficient are determined experimentally using a self-constructed measuring system. Due to the fact that this experiment is still in progress, preliminary
INCAS: an analytical model to describe displacement cascades
NASA Astrophysics Data System (ADS)
Jumel, Stéphanie; Claude Van-Duysen, Jean
2004-07-01
REVE (REactor for Virtual Experiments) is an international project aimed at developing tools to simulate neutron irradiation effects in Light Water Reactor materials (Fe, Ni or Zr-based alloys). One of the important steps of the project is to characterise the displacement cascades induced by neutrons. Accordingly, the Department of Material Studies of Electricité de France developed an analytical model based on the binary collision approximation. This model, called INCAS (INtegration of CAScades), was devised to be applied on pure elements; however, it can also be used on diluted alloys (reactor pressure vessel steels, etc.) or alloys composed of atoms with close atomic numbers (stainless steels, etc.). INCAS describes displacement cascades by taking into account the nuclear collisions and electronic interactions undergone by the moving atoms. In particular, it enables to determine the mean number of sub-cascades induced by a PKA (depending on its energy) as well as the mean energy dissipated in each of them. The experimental validation of INCAS requires a large effort and could not be carried out in the framework of the study. However, it was verified that INCAS results are in conformity with those obtained from other approaches. As a first application, INCAS was applied to determine the sub-cascade spectrum induced in iron by the neutron spectrum corresponding to the central channel of the High Flux Irradiation Reactor of Oak Ridge National Laboratory.
Modeling averaged displacement fronts in heterogeneous media with multirate mass transfer models
NASA Astrophysics Data System (ADS)
Neuweiler, Insa; Heiss, Veronica; Tecklenburg, Jan
2013-04-01
of the heterogeneous structure has a crucial influence on the front morphology. For these numerical simulations we compare the averaged fluid distribution to an upscaled one-dimensional model. In the upscaled model, the immobilization of displaced fluid behind the front is captured by a double continuum approach, where the immobilized fluid is considered an immobile continuum. The size of the immobile continuum changes with time. The flow is modeled in the mobile continuum with a multi-rate mass-transfer term to capture exchange with the immobile domain. The rate coefficients for the mass transfer have to be estimated from the size distribution of immobilized fluid clusters. It is demonstrated that such a simplified model can describe the displacement well, if the front morphology is not too complex.
Wind-Tunnel Tests of a 1/5-Scale Semispan Model of the Republic XF-12 Horizontal Tail Surface
NASA Technical Reports Server (NTRS)
Denaci, H. G.
1945-01-01
Wind-tunnel tests of a 1/5-scale semispan model of the Republic XF-12 horizontal tail surface equipped with an internally balanced elevator were conducted in the 6- by 6-foot test section of the Langley stability tunnel. The tests included measurements of the aerodynamic characteristics of the horizontal tail with and without a beveled trailing edge and also included measurements of the tab characteristics. The variation of the aerodynamic characteristics with boundary-layer conditions and leakage in the internal-balance chambers, measurements of the boundary-layer displacement thickness near the elevator hinge axis, and pressure distributions at the mean geometric chord were also obtained. The results showed that the hinge-moment characteristics of the elevator were critical to boundary-layer conditions and internal-balance leakage. Increasing the boundary-layer displacement thickness by use of roughness strips reduced the rate of change of elevator hinge moments with tab deflection by about 20 percent. The present horizontal tail appears to be unsatisfactory for longitudinal stability with power on, however, an increase in horizontal-tail lift effectiveness should correct this difficulty. The maneuvering stick force per unit acceleration will be extremely critical to minor variations of the elevator hinge moments if the elevator is linked directly to the stick.
Testing the Beat Frequency Model of Horizontal Branch Qpos
NASA Astrophysics Data System (ADS)
Hertz, Paul
The beat frequency modulated accretion (BFMA) model requires strong correlations in the horizontal branch quasiperiodic oscillations (HBO) and low frequency noise (LFN) amplitudes on time scales <1 s as they are both carried by the same accreting clumps. But such correlations have not been observed on time scales <8 s. With RXTE individual HBOs will be detectable in GX5-1 at the 1-2 sigma level. Using an optimal filter we will measure the phase coherence, strength, and clustering length of individual HBOs and the overall shot rate. We will test for the correlations between HBO and LFN amplitude predicted by the BFMA model and constrain some of the free observable parameters in the model. Any HBO model must account for these properties.
Simplified aeroelastic modeling of horizontal axis wind turbines
NASA Astrophysics Data System (ADS)
Wendell, J. H.
1982-09-01
Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.
Simplified aeroelastic modeling of horizontal axis wind turbines
NASA Technical Reports Server (NTRS)
Wendell, J. H.
1982-01-01
Certain aspects of the aeroelastic modeling and behavior of the horizontal axis wind turbine (HAWT) are examined. Two simple three degree of freedom models are described in this report, and tools are developed which allow other simple models to be derived. The first simple model developed is an equivalent hinge model to study the flap-lag-torsion aeroelastic stability of an isolated rotor blade. The model includes nonlinear effects, preconing, and noncoincident elastic axis, center of gravity, and aerodynamic center. A stability study is presented which examines the influence of key parameters on aeroelastic stability. Next, two general tools are developed to study the aeroelastic stability and response of a teetering rotor coupled to a flexible tower. The first of these tools is an aeroelastic model of a two-bladed rotor on a general flexible support. The second general tool is a harmonic balance solution method for the resulting second order system with periodic coefficients. The second simple model developed is a rotor-tower model which serves to demonstrate the general tools. This model includes nacelle yawing, nacelle pitching, and rotor teetering. Transient response time histories are calculated and compared to a similar model in the literature. Agreement between the two is very good, especially considering how few harmonics are used. Finally, a stability study is presented which examines the effects of support stiffness and damping, inflow angle, and preconing.
Modelling of horizontal centrifugal casting of work roll
NASA Astrophysics Data System (ADS)
Xu, Zhian; Song, Nannan; Tol, Rob Val; Luan, Yikun; Li, Dianzhong
2012-07-01
A numerical model to simulate horizontal centrifugal roll castings is presented in this paper. In order to simulate the flow fluid and solidification of horizontal centrifugal roll casting correctly, the model uses a body fitted mesh technique to represent the geometry. This new method maps a plate layer mesh to a circular mesh. The smooth body fitted mesh method gives more accurate calculation results for cylindrical geometries. A velocity depending on the angular velocity and inner radius of the mould is set up as a velocity boundary condition. The fluid flow coupled with heat transfer and solidification in a rapidly rotating roll is simulated. A gravity free falling method is applied as a pouring condition. A moveable pouring system is also used in the simulations. High speed steel is used to produce the work roll. Two different gating positions and a moveable gating system are simulated in this paper. Results show that the position of pouring system has a significant influence on the temperature distribution. The temperature distribution at a fixed central pouring system is more favourable than the distribution from a side pouring system. A moving gating system method is a better way to obtain a uniform temperature field in centrifugal casting and offers an alternative for existing techniques.
Global horizontal irradiance clear sky models : implementation and analysis.
Stein, Joshua S.; Hansen, Clifford W.; Reno, Matthew J.
2012-03-01
Clear sky models estimate the terrestrial solar radiation under a cloudless sky as a function of the solar elevation angle, site altitude, aerosol concentration, water vapor, and various atmospheric conditions. This report provides an overview of a number of global horizontal irradiance (GHI) clear sky models from very simple to complex. Validation of clear-sky models requires comparison of model results to measured irradiance during clear-sky periods. To facilitate validation, we present a new algorithm for automatically identifying clear-sky periods in a time series of GHI measurements. We evaluate the performance of selected clear-sky models using measured data from 30 different sites, totaling about 300 site-years of data. We analyze the variation of these errors across time and location. In terms of error averaged over all locations and times, we found that complex models that correctly account for all the atmospheric parameters are slightly more accurate than other models, but, primarily at low elevations, comparable accuracy can be obtained from some simpler models. However, simpler models often exhibit errors that vary with time of day and season, whereas the errors for complex models vary less over time.
A model approach to assess diaphragmatic volume displacement.
Petroll, W M; Knight, H; Rochester, D F
1990-12-01
Diaphragmatic volume displacement (Vdi) is calculated from two models using measurements obtained from anteroposterior fluoroscopic images of supine anesthetized dogs. In model 1, diaphragmatic descent was treated as if it were a "piston in a cylinder." In contrast, model 2 incorporated thoracic configuration as well as inspiratory changes in rib cage diameter and diaphragm shape. In one dog, a computerized tomography reconstruction of Vdi was compared with Vdi calculated using the models. Vdi calculated from model 2 lay within 11% of the computerized tomographic value, whereas Vdi based on model 1 was 30% larger. In seven animals, radiopaque markers were sewn to the right costal diaphragm. Digitized fluoroscopic images were used to measure intermarker distance, an index of muscle shortening. For four tidal breaths per dog, in model 2 Vdi averaged 49 +/- 18% of tidal volume and was weakly correlated with costal diaphragm muscle shortening (R = 0.74). It is concluded that Vdi can be estimated from linear dimensions in the coronal plane, provided that inspiratory changes in rib cage diameter and diaphragmatic shape change are taken into account. PMID:2077014
Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor
Shentu, Nanying; Qiu, Guohua; Li, Qing; Tong, Renyuan; Shentu, Nankai; Wang, Yanjie
2015-01-01
Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor. PMID:25871714
Horizontal shear zones: physical modeling of formation and structure
NASA Astrophysics Data System (ADS)
Bokun, A. N.
2009-11-01
On examples of ductile viscous materials (pastes), which demonstrated the deformational type of coagulation behavior and the reproduced zones of the horizontal shear of a brittle fracture, ductile flow, and intermediate types. The formation of coagulation agglomerates appeared well organized, both in terms of time and structurally. The found systems of fractures revealed a sequential course of the deformation process and the contribution of each system in the total structural transformation was established. By virtue of rheological analysis of coagulation structures, the basic parameters (yield strength, viscosity), and their input into the model of the deformational response (brittle, ductile), were determined. The substantial composition and its deformational properties of the material under question appeared to dictate the structure of shear zones and their general mutual organization. The rheological analysis of coagulation clusters of model materials allowed for the justified interpretation of experimental data to regulate deformation processes effectively and predict their results.
A GLE multi-block model for the evaluation of seismic displacements of slopes
Bandini, V.; Cascone, E.; Biondi, G.
2008-07-08
The paper describes a multi-block displacement model for the evaluation of seismic permanent displacements of natural slopes with slip surface of general shape. A rigorous limit equilibrium method of stability analysis is considered and an application to an ideal clay slope is presented including the effect of excess pore pressure build-up on the displacement response.
Horizontal gene transfer in eukaryotes: The weak-link model
Huang, Jinling
2013-01-01
The significance of horizontal gene transfer (HGT) in eukaryotic evolution remains controversial. Although many eukaryotic genes are of bacterial origin, they are often interpreted as being derived from mitochondria or plastids. Because of their fixed gene pool and gene loss, however, mitochondria and plastids alone cannot adequately explain the presence of all, or even the majority, of bacterial genes in eukaryotes. Available data indicate that no insurmountable barrier to HGT exists, even in complex multicellular eukaryotes. In addition, the discovery of both recent and ancient HGT events in all major eukaryotic groups suggests that HGT has been a regular occurrence throughout the history of eukaryotic evolution. A model of HGT is proposed that suggests both unicellular and early developmental stages as likely entry points for foreign genes into multicellular eukaryotes. PMID:24037739
Modelling coseismic displacements during the 1997 Umbria-Marche earthquake (central Italy)
NASA Astrophysics Data System (ADS)
Hunstad, Ingrid; Anzidei, Marco; Cocco, Massimo; Baldi, Paolo; Galvani, Alessandro; Pesci, Arianna
1999-11-01
We propose a dislocation model for the two normal faulting earthquakes that struck the central Apennines (Umbria-Marche, Italy) on 1997 September 26 at 00:33 (Mw 5.7) and 09:40 GMT (Mw 6.0). We fit coseismic horizontal and vertical displacements resulting from GPS measurements at several monuments of the IGMI (Istituto Geografico Militare Italiano) by means of a dislocation model in an elastic, homogeneous, isotropic half-space. Our best-fitting model consists of two normal faults whose mechanisms and seismic moments have been taken from CMT solutions; it is consistent with other seismological and geophysical observations. The first fault, which is 6 km long and 7 km wide, ruptured during the 00:33 event with a unilateral rupture towards the SE and an average slip of 27 cm. The second fault is 12 km long and 10 km wide, and ruptured during the 09:40 event with a nearly unilateral rupture towards the NW. Slip distribution on this second fault is non-uniform and is concentrated in its SE portion (maximum slip is 65 cm), where rupture initiated. The 00:33 fault is deeper than the 09:40 one: the top of the first rupture is deeper than 1.7 km the top of the second is 0.6 km deep. In order to interpret the observed epicentral subsidence we have also considered the contributions of two further moderate-magnitude earthquakes that occurred on 1997 October 3 (Mw 5.2) and 6 (Mw 5.4), immediately before the GPS survey, and were located very close to the 09:40 event of September 26. We compare the pattern of vertical displacements resulting from our forward modelling of GPS data with that derived from SAR interferograms: the fit to SAR data is very good, confirming the reliability of the proposed dislocation model.
On Vertically Global, Horizontally Local Models for Astrophysical Disks
NASA Astrophysics Data System (ADS)
McNally, Colin P.; Pessah, Martin E.
2015-10-01
Disks with a barotropic equilibrium structure, for which the pressure is only a function of the density, rotate on cylinders in the presence of a gravitational potential, so that the angular frequency of such a disk is independent of height. Such disks with barotropic equilibria can be approximately modeled using the shearing box framework, representing a small disk volume with height-independent angular frequency. If the disk is in baroclinic equilibrium, the angular frequency does generally depend on height, and it is thus necessary to go beyond the standard shearing box approach. In this paper, we show that given a global disk model, it is possible to develop approximate models that are local in horizontal planes without an expansion in height with shearing-periodic boundary conditions. We refer to the resulting framework as the vertically global shearing box (VGSB). These models can be non-axisymmetric for globally barotropic equilibria but should be axisymmetric for globally baroclinic equilibria. We provide explicit equations for this VGSB which can be implemented in standard magnetohydrodynamic codes by generalizing the shearing-periodic boundary conditions to allow for a height-dependent angular frequency and shear rate. We also discuss the limitations that result from the radial approximations that are needed in order to impose height-dependent shearing periodic boundary conditions. We illustrate the potential of this framework by studying a vertical shear instability and examining the modes associated with the magnetorotational instability.
Multi-quadric collocation model of horizontal crustal movement
NASA Astrophysics Data System (ADS)
Chen, G.; Zeng, A. M.; Ming, F.; Jing, Y. F.
2015-11-01
To establish the horizontal crustal movement velocity field of the Chinese mainland, a Hardy multi-quadric fitting model and collocation are usually used, but the kernel function, nodes, and smoothing factor are difficult to determine in the Hardy function interpolation, and in the collocation model the covariance function of the stochastic signal must be carefully constructed. In this paper, a new combined estimation method for establishing the velocity field, based on collocation and multi-quadric equation interpolation, is presented. The crustal movement estimation simultaneously takes into consideration an Euler vector as the crustal movement trend and the local distortions as the stochastic signals, and a kernel function of the multi-quadric fitting model substitutes for the covariance function of collocation. The velocities of a set of 1070 reference stations were obtained from the Crustal Movement Observation Network of China (CMONOC), and the corresponding velocity field established using the new combined estimation method. A total of 85 reference stations were used as check points, and the precision in the north and east directions was 1.25 and 0.80 mm yr-1, respectively. The result obtained by the new method corresponds with the collocation method and multi-quadric interpolation without requiring the covariance equation for the signals.
Atmospheric Climate Model Experiments Performed at Multiple Horizontal Resolutions
Phillips, T; Bala, G; Gleckler, P; Lobell, D; Mirin, A; Maxwell, R; Rotman, D
2007-12-21
This report documents salient features of version 3.3 of the Community Atmosphere Model (CAM3.3) and of three climate simulations in which the resolution of its latitude-longitude grid was systematically increased. For all these simulations of global atmospheric climate during the period 1980-1999, observed monthly ocean surface temperatures and sea ice extents were prescribed according to standard Atmospheric Model Intercomparison Project (AMIP) values. These CAM3.3 resolution experiments served as control runs for subsequent simulations of the climatic effects of agricultural irrigation, the focus of a Laboratory Directed Research and Development (LDRD) project. The CAM3.3 model was able to replicate basic features of the historical climate, although biases in a number of atmospheric variables were evident. Increasing horizontal resolution also generally failed to ameliorate the large-scale errors in most of the climate variables that could be compared with observations. A notable exception was the simulation of precipitation, which incrementally improved with increasing resolution, especially in regions where orography plays a central role in determining the local hydroclimate.
NASA Technical Reports Server (NTRS)
Ranatunga, Vipul; Bednarcyk, Brett A.; Arnold, Steven M.
2010-01-01
A method for performing progressive damage modeling in composite materials and structures based on continuum level interfacial displacement discontinuities is presented. The proposed method enables the exponential evolution of the interfacial compliance, resulting in unloading of the tractions at the interface after delamination or failure occurs. In this paper, the proposed continuum displacement discontinuity model has been used to simulate failure within both isotropic and orthotropic materials efficiently and to explore the possibility of predicting the crack path, therein. Simulation results obtained from Mode-I and Mode-II fracture compare the proposed approach with the cohesive element approach and Virtual Crack Closure Techniques (VCCT) available within the ABAQUS (ABAQUS, Inc.) finite element software. Furthermore, an eccentrically loaded 3-point bend test has been simulated with the displacement discontinuity model, and the resulting crack path prediction has been compared with a prediction based on the extended finite element model (XFEM) approach.
Preview Scheduled Model Predictive Control For Horizontal Axis Wind Turbines
NASA Astrophysics Data System (ADS)
Laks, Jason H.
This research investigates the use of model predictive control (MPC) in application to wind turbine operation from start-up to cut-out. The studies conducted are focused on the design of an MPC controller for a 650˜KW, three-bladed horizontal axis turbine that is in operation at the National Renewable Energy Laboratory's National Wind Technology Center outside of Golden, Colorado. This turbine is at the small end of utility scale turbines, but it provides advanced instrumentation and control capabilities, and there is a good probability that the approach developed in simulation for this thesis, will be field tested on the actual turbine. A contribution of this thesis is a method to combine the use of preview measurements with MPC while also providing regulation of turbine speed and cyclic blade loading. A common MPC technique provides integral-like control to achieve offset-free operation. At the same time in wind turbine applications, multiple studies have developed "feed-forward" controls based on applying a gain to an estimate of the wind speed changes obtained from an observer incorporating a disturbance model. These approaches are based on a technique that can be referred to as disturbance accommodating control (DAC). In this thesis, it is shown that offset-free tracking MPC is equivalent to a DAC approach when the disturbance gain is computed to satisfy a regulator equation. Although the MPC literature has recognized that this approach provides "structurally stable" disturbance rejection and tracking, this step is not typically divorced from the MPC computations repeated each sample hit. The DAC formulation is conceptually simpler, and essentially uncouples regulation considerations from MPC related issues. This thesis provides a self contained proof that the DAC formulation (an observer-controller and appropriate disturbance gain) provides structurally stable regulation.
Disaster Hits Home: A Model of Displaced Family Adjustment after Hurricane Katrina
ERIC Educational Resources Information Center
Peek, Lori; Morrissey, Bridget; Marlatt, Holly
2011-01-01
The authors explored individual and family adjustment processes among parents (n = 30) and children (n = 55) who were displaced to Colorado after Hurricane Katrina. Drawing on in-depth interviews with 23 families, this article offers an inductive model of displaced family adjustment. Four stages of family adjustment are presented in the model: (a)…
NASA Astrophysics Data System (ADS)
Wlasak, M. A.; Cullen, M. J. P.
2014-06-01
A major difference in the formulation of the univariate part of static background error covariance models for use in global operational 4DVAR arises from the order in which the horizontal and vertical transforms are applied. This is because the atmosphere is non-separable with large horizontal scales generally tied to large vertical scales and small horizontal scales tied to small vertical scales. Also horizontal length scales increase dramatically as one enters the stratosphere. A study is presented which evaluates the strengths and weaknesses of each approach with the Met Office Unified Model. It is shown that if the vertical transform is applied as a function of horizontal wavenumber then the horizontal globally-averaged variance and the homogenous, isotropic length scale on each model level for each control variable of the training data is preserved by the covariance model. In addition the wind variance and associated length scales are preserved as the scheme preserves the variances and length scales of horizontal derivatives. If the vertical transform is applied in physical space, it is possible to make it a function of latitude at the cost of not preserving the variances and length scales of the horizontal derivatives. Summer and winter global 4DVAR trials have been run with both background error covariance models. A clear benefit is seen in the fit to observations when the vertical transform is in spectral space and is a function of total horizontal wavenumber.
Bukač, Martina; Čanić, Sunčica
2013-04-01
Recent in vivo studies, utilizing ultrasound contour and speckle tracking methods, have identified significant longitudinal displacements of the intima-media complex, and viscoelastic arterial wall properties over a cardiac cycle. Existing computational models that use thin structure approximations of arterial walls have so far been limited to models that capture only radial wall displacements. The purpose of this work is to present a simple fluid-struture interaction (FSI) model and a stable, partitioned numerical scheme, which capture both longitudinal and radial displacements, as well as viscoelastic arterial wall properties. To test the computational model, longitudinal displacement of the common carotid artery and of the stenosed coronary arteries were compared with experimental data found in literature, showing excellent agreement. We found that, unlike radial displacement, longitudinal displacement in stenotic lesions is highly dependent on the stenotic geometry. We also showed that longitudinal displacement in atherosclerotic arteries is smaller than in healthy arteries, which is in line with the recent in vivo measurements that associate plaque burden with reduced total longitudinal wall displacement. This work presents a first step in understanding the role of longitudinal displacement in physiology and pathophysiology of arterial wall mechanics using computer simulations. PMID:23458302
Horizontal drilling technology advances
Not Available
1991-03-04
Horizontal drilling technology is making further advances in the Texas Austin chalk play as such drilling continues to spread in many U.S. land areas. One company has completed a Cretaceous Austin chalk oil well with the longest horizontal well bore in Texas and what at 1 1/6 miles is believed to be the world's longest medium radius horizontal displacement.
ALCAR - A Model for Horizontal R&D Consortia
Barthold, G.B.; Das, S.K.; Hayden, H.W.
1999-03-01
The ALCAR^{TM} Consortium was created to develop a low cost, non-heat treatable automotive body sheet alloy. This paper will discuss the management aspects of organizing and running a horizontal consortium for competing companies to cooperate in conducting pre-competitive research and development involving the US Department of Energy, National Laboratories, Universities and industrial consultants.
NASA Astrophysics Data System (ADS)
Liu, Y.; Guo, Q.; Sun, Y.
2014-04-01
In map production and generalization, it is inevitable to arise some spatial conflicts, but the detection and resolution of these spatial conflicts still requires manual operation. It is become a bottleneck hindering the development of automated cartographic generalization. Displacement is the most useful contextual operator that is often used for resolving the conflicts arising between two or more map objects. Automated generalization researches have reported many approaches of displacement including sequential approaches and optimization approaches. As an excellent optimization approach on the basis of energy minimization principles, elastic beams model has been used in resolving displacement problem of roads and buildings for several times. However, to realize a complete displacement solution, techniques of conflict detection and spatial context analysis should be also take into consideration. So we proposed a complete solution of displacement based on the combined use of elastic beams model and constrained Delaunay triangulation (CDT) in this paper. The solution designed as a cyclic and iterative process containing two phases: detection phase and displacement phase. In detection phase, CDT of map is use to detect proximity conflicts, identify spatial relationships and structures, and construct auxiliary structure, so as to support the displacement phase on the basis of elastic beams. In addition, for the improvements of displacement algorithm, a method for adaptive parameters setting and a new iterative strategy are put forward. Finally, we implemented our solution on a testing map generalization platform, and successfully tested it against 2 hand-generated test datasets of roads and buildings respectively.
Horizontal Violence and the Quality and Safety of Patient Care: A Conceptual Model
Purpora, Christina; Blegen, Mary A.
2012-01-01
For many years, nurses in international clinical and academic settings have voiced concern about horizontal violence among nurses and its consequences. However, no known framework exists to guide research on the topic to explain these consequences. This paper presents a conceptual model that was developed from four theories to illustrate how the quality and safety of patient care could be affected by horizontal violence. Research is needed to validate the new model and to gather empirical evidence of the consequences of horizontal violence on which to base recommendations for future research, education, and practice. PMID:22655187
Modeling flow into horizontal wells in a Dupuit-Forchheimer model.
Haitjema, Henk; Kuzin, Sergey; Kelson, Vic; Abrams, Daniel
2010-01-01
Horizontal wells or radial collector wells are used in shallow aquifers to enhance water withdrawal rates. Groundwater flow patterns near these wells are three-dimensional (3D), but difficult to represent in a 3D numerical model because of the high degree of grid refinement needed. However, for the purpose of designing water withdrawal systems, it is sufficient to obtain the correct production rate of these wells for a given drawdown. We developed a Cauchy boundary condition along a horizontal well in a Dupuit-Forchheimer model. Such a steady-state 2D model is not only useful for predicting groundwater withdrawal rates but also for capture zone delineation in the context of source water protection. A comparison of our Dupuit-Forchheimer model for a radial collector well with a 3D model yields a nearly exact production rate. Particular attention is given to horizontal wells that extend underneath a river. A comparison of our approach with a 3D solution for this case yields satisfactory results, at least for moderate-to-large river bottom resistances. PMID:20331744
Displacement rate dependence of irradiation creep as predicted by the production bias model
Woo, C.H.
1996-04-01
Recently, it has been shown that the non-swelling component of irradiation creep of austenitic stainless steels is relatively independent of temperature but is sensitive to the displacement rate. An earlier model of Lewthwaite and Mosedale anticipated the sensitivity of displacement rate and attributed it to the flux sensitivity of point defect recombination. The point-defect recombination process does not yield the observed temperature dependence, however, although it does predict an inverse dependence of the creep rate on the square root of the displacement rate that was experimentally observed at relatively low temperatures.
Modeling of a horizontal steam generator for the submerged nuclear power station concept
Palmrose, D.E.; Herring, J.S.
1993-05-01
A submerged nuclear power station has been proposed as an alternative power station with a relatively low environmental impact for use by both industrialized and developing countries. The station would be placed 10 m above the seabed at a depth of 30--100 m and a distance of 10--30 km from shore. The submerged nuclear power station would be manufactured and refueled in a central facility, thus gaining the economies of factoryfabrication and the flexibility of short-lead-time deployment. To minimize the size of the submerged hull, horizontal steam generators are proposed for the primary-to-secondary heat transfer, instead of the more traditional vertical steam generators. The horizontal steam generators for SNPS would be similar in design to the horizontal steam generators used in the N-Reactors except the tube orientation is horizontal (the tube`s inlet and outlet connection points on the tubesheet are at the same elevation). Previous RELAP5 input decks for horizontal steam generators have been either very simplistic (Loviisa PWR) or used a vertical tube orientation (N-Reactor). This paper will present the development and testing of a RELAP5 horizontal steam generator model, complete with a simple secondary water level control system, that accounts for the dynamic flow conditions which exist inside horizontal steam generators.
Performance of weather research and forecasting model with variable horizontal resolution
NASA Astrophysics Data System (ADS)
Kumar, Prashant; Ojha, Satya P.; Singh, Randhir; Kishtawal, C. M.; Pal, P. K.
2015-08-01
In this paper, Weather Research and Forecasting (WRF) model is employed with three different horizontal grid spacings (45, 15 and 5 km) to assess the impact of horizontal resolution on short-range weather forecast. Simulations are carried out daily at 0000 UTC over the Indian region during the entire month of July 2011. A rigorous validation is performed against surface observations, radiosonde measurements and Tropical Rainfall Measuring Mission (TRMM) 3B42 merged rainfall product. Results show that horizontal resolution has a substantial impact on the WRF model forecast, particularly on the near surface temperature, moisture, winds and rainfall forecasts. Relative to 45-km horizontal grid spacing, 24-h forecasts of near surface temperature, moisture and winds are improved by ˜15, 9 and 4 %, respectively, when horizontal grid spacing is reduced to 5 km. Noteworthy improvement is also seen in the 24-h rainfall forecasts of the WRF model as the horizontal grid spacing decreased from 45 to 5 km. Larger improvements are observed over the Western Ghats and northeastern part of India compared to central India, which demonstrate the importance of finer resolution over the mountainous terrain compared to plains.
Tavares, José Pedro; Lopes, Jorge Dias; Ferreira, Afonso Pinhão
2014-01-01
Objective Facial-type-associated variations in diagnostic features have several implications in orthodontics. For example, in hyperdivergent craniofacial types, growth imbalances are compensated by displacement of the condyle. When diagnosis and treatment planning involves centric relation (CR), detailed knowledge of the condylar position is desirable. The present study aimed to measure condylar displacement (CD) between CR and maximum intercuspation in three facial types of an asymptomatic orthodontic population. Methods The study was conducted in 108 patients classified into three groups of 36 individuals each (27 women and 9 men; mean age, 20.5 years), based on the following facial patterns: hyperdivergent, hypodivergent, and intermediate. To quantify CD along the horizontal and vertical axes, the condylar position was analyzed using mounted casts on a semi-adjustable articulator and a mandibular position indicator. The Student t-test was used to compare CD between the groups. Results Vertical displacement was found to be significantly different between the hyperdivergent and hypodivergent groups (p < 0.0002) and between the hyperdivergent and intermediate groups (p < 0.0006). The differences in horizontal displacement were not significant between the groups. In each group, vertical CD was more evident than horizontal displacement was. Conclusions All facial types, especially the hyperdivergent type, carried a significantly high risk of CD. Therefore, the possibility of CD should be carefully evaluated and considered in the assessment of all orthodontic cases in order to accurately assess jaw relationships and avoid possible misdiagnosis. PMID:25473647
Validation of high displacement piezoelectric actuator finite element models
NASA Astrophysics Data System (ADS)
Taleghani, Barmac K.
2000-08-01
The paper presents the results obtained by using NASTRAN and ANSYS finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness and important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN and ANSYS used different methods for modeling piezoelectric effects. In NASTRAN, a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
NASA Technical Reports Server (NTRS)
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
NASA Astrophysics Data System (ADS)
van Eijk, A. M. J.; Kunz, G. J.
2006-08-01
The effective field-of-view of an electro-optical sensor in a given meteorological scenario can be evaluated using a ray-tracer. The resulting ray trace diagram also provides information pertinent to the quality (distortion, mirages) of the image being viewed by the sensor. The EOSTAR (Electro Optical Signal Transmission And Ranging) model suite contains a ray tracer that has been upgraded to take into account horizontal inhomogeneities in the atmosphere, such as temperature gradients as observed in coastal areas where (e.g.) cold air flows out over warm waters. Initial results for horizontally inhomogeneous atmospheres are presented and compared to calculations for horizontally homogeneous atmospheres. It is shown that the horizontal inhomogeneity of temperature should be taken into account when assessing sensor performance.
A model for diffuse and global irradiation on horizontal surfaces
Jain, P.C. )
1990-01-01
The intensity of the direct radiation and the diffuse radiation at any time on a horizontal surface are each expressed as fractions of the intensity of the extraterrestrial radiation. Using these and assuming a random distribution of the bright sunshine hours and not too wide variations in the values of the transmission coefficients, a number of relations for estimating the global and the diffuse irradiation are derived. Two of the relations derived, including the Angstroem correlation for estimating the global irradiation, are already known empirically while several new correlations have been derived. The relations derived in this paper are: (i) H{sub d}/H{sub o} = a{sub 1} + b{sub 1} (S/S{sub o}); (ii) H/H{sub o} = A{sub 2} + b{sub 2} (S/S{sub o}); (iii) H{sub D}/H{sub o} = a{sub 3} + b{sub 3} (H/H{sub o}); (iv) H{sub D}/H = a{sub 4} + b{sub 4} (h{sub o}/) (v) H/(H{minus}H{sub D}) = a{sub 5} + b{sub 5} (S{sub o}/S); (vi) H{sub D}/(H{minus}H{sub D}) = A{sub 6} + b{sub 6} (S{sub o}/S); (vii) H/H{sub D} = a{sub 7} + b{sub 7} (S/S{sub o}); (viii) H/H{sub D} = A{sub 1} + A{sub 2} (S/S{sub o}) + A{sub 3} (S/S{sub o}){sup 2}. The study identifies three independent basic parameters and the constants appearing in the various equations as simple functions of these three basic parameters. This provides unification and inter-relationships between the various constants. Experimental data for the diffuse irradiation, the global irradiation and the bright sunshine duration for Macerata (Italy), Salisbury and Bulawayo (Zimbabwe) is found to show good correlation for the linear eqns (i) to (vii), and the nature and the interrelationships of the constants is found to be as predicted by theory.
Modeling and parameterization of horizontally inhomogeneous cloud radiative properties
NASA Technical Reports Server (NTRS)
Welch, R. M.
1995-01-01
One of the fundamental difficulties in modeling cloud fields is the large variability of cloud optical properties (liquid water content, reflectance, emissivity). The stratocumulus and cirrus clouds, under special consideration for FIRE, exhibit spatial variability on scales of 1 km or less. While it is impractical to model individual cloud elements, the research direction is to model a statistical ensembles of cloud elements with mean-cloud properties specified. The major areas of this investigation are: (1) analysis of cloud field properties; (2) intercomparison of cloud radiative model results with satellite observations; (3) radiative parameterization of cloud fields; and (4) development of improved cloud classification algorithms.
Study of Surface Displacements on Tunnelling under Buildings Using 3DEC Numerical Modelling
Rebello, Nalini; Sastry, V. R.
2014-01-01
Underground structures at shallow depths are often constructed for metro lines, either in loose or dense layered soils. Tunnelling in urban areas is predominantly under surface structures and on tunnelling, innumerable changes in the form of distortion take place in strata surrounding the tunnel. Extent of displacement/damage to buildings or the tunnel-soil structure interaction depends on the type of building and nature of strata. Effect on displacements has been less studied in granular soils compared to other types of soils like clays. In this paper, parametric studies are conducted to find the displacements at surface, in granular soil conditions, due to varying building storeys and building eccentricities from the tunnel centre line. Effect of presence of geosynthetic layer under footings is further studied. Prior to the parametric studies, validity of the model used is checked with field data available for a stretch of tunnel in South India. Results of simulation studies reveal that inclusion of building reduces displacements at the surface in the dense strata. In very dense strata, the displacements increase as compared to the case without a building. As the centre of the building moves away from the tunnel centre line, settlement above the tunnel matches displacements in the case without building. Applicability of 3DEC software is checked with respect to the present study.
Model for vacancy-loop nucleation in displacement cascades
NASA Astrophysics Data System (ADS)
Kapinos, V. G.; Bacon, D. J.
1995-08-01
A model is proposed for the nucleation of collapsed vacancy clusters in irradiated metals, based on the principle that a vacancy loop may be nucleated in a cascade which has melted and recrystallized. The equation of thermal conduction is solved using the discretization method and initial temperature and vacancy distributions given by the marlowe code. The model simulates the processes of heat propagation, local melting, absorption and release of latent heat, and the redistribution of the density within the melt. Under the influence of the temperature gradient, the concentration of vacancies in the depleted zone increases. Simulation of hundreds of cascades gives the distribution of zones as a function of vacancy concentration and number of vacancies in them, and it is assumed that critical values Ccr and Ncrv have to be achieved to produce a visible vacancy loop. However, if the concentration exceeds a value Camv under sufficiently fast cooling, for example under strong electron-phonon coupling (EPC), the melted zone cannot crystallize completely and solidifies instead to a semiamorphous core. This prevents collapse to a vacancy loop. The model has been used to calculate the yield and mean size of vacancy loops in ion-irradiated Cu, Ni, and Cu-Ge and Cu-Ni alloys. Physically reasonable values of Ccr, Ncr, and Camv have been obtained to give good agreement with experimental values of yield and size. Furthermore, the trends with alloy content can be explained, and it is found that EPC can have a strong influence on loop yield.
NASA Astrophysics Data System (ADS)
Puskas, C. M.; Meertens, C. M.; Phillips, D. A.
2015-12-01
UNAVCO is currently developing forward displacement models from surface water stored in soil moisture, snowpack, and vegetation based on the National Land Data Assimilation System (NLDAS). UNAVCO already produces hydrological models from the Global Land Data Assimilation System (GLDAS), estimating the elastic loading from surface water at GPS coordinates for stations and processed by the GAGE Analysis Center. GLDAS incorporates satellite and ground observations into forcing parameters to be used for climate and weather models. The GLDAS forcing parameters include temperature, humidity, precipitation, radiation, wind, and pressure data at global 1º grid squares, excluding the oceanic surface. NLDAS uses the same set of forcing parameters but in an area restricted to the continental United States plus parts of Canada and Mexico and with a 0.125º grid. Research groups contribute Land Surface Models (LSMs) based on NLDAS or GLDAS to produce time series of modeled environmental parameters. Individual LSMs differ based on model equations and soil and vegetation properties. In this study we extract the parameters from the NLDAS LSMs to produce hydrologic displacement models at GPS station coordinates within the conterminous US. We check whether NLDAS displacement models can resolve regional variations due to topography that are smoothed in the GLDAS models. We compare the soil moisture, snowpack, and vegetation mass per area directly between the GLDAS and NLDAS LSMs, to see whether the mass variations between GLDAS and NLDAS are large enough to cause significant deformation changes. By comparing the hydrologic displacement models with GPS time series, we estimate how well the surface water loading predicts observed seasonal and secular GPS signals as opposed to tectonic signals. These comparisons will help us evaluate the NLDAS-derived displacement models as part of the process of developing a new model product for use in time series analysis, tectonic or hydrologic
Empirical correction of a hydraulic model of mutual displacement of solutions in a porous bed
Kuznetskii, R.S.
1986-09-10
This paper seeks to experimentally verify and correct a hydraulic model for the forced displacement of a homogeneous solution in a porous or granular bed or in a pipe by calibrating the model against empirical data for the hydraulic behavior of sulfonated coal, an ion exchange resin, calcium carbonate, and diatomite.
Newmark displacement model for landslides induced by the 2013 Ms 7.0 Lushan earthquake, China
NASA Astrophysics Data System (ADS)
Yuan, Renmao; Deng, Qinghai; Cunningham, Dickson; Han, Zhujun; Zhang, Dongli; Zhang, Bingliang
2016-01-01
Predicting approximate earthquake-induced landslide displacements is helpful for assessing earthquake hazards and designing slopes to withstand future earthquake shaking. In this work, the basic methodology outlined by Jibson (1993) is applied to derive the Newmark displacement of landslides based on strong ground-motion recordings during the 2013 Lushan Ms 7.0 earthquake. By analyzing the relationships between Arias intensity, Newmark displacement, and critical acceleration of the Lushan earthquake, formulas of the Jibson93 and its modified models are shown to be applicable to the Lushan earthquake dataset. Different empirical equations with new fitting coefficients for estimating Newmark displacement are then developed for comparative analysis. The results indicate that a modified model has a better goodness of fit and a smaller estimation error for the Jibson93 formula. It indicates that the modified model may be more reasonable for the dataset of the Lushan earthquake. The analysis of results also suggests that a global equation is not ideally suited to directly estimate the Newmark displacements of landslides induced by one specific earthquake. Rather it is empirically better to perform a new multivariate regression analysis to derive new coefficients for the global equation using the dataset of the specific earthquake. The results presented in this paper can be applied to a future co-seismic landslide hazard assessment to inform reconstruction efforts in the area affected by the 2013 Lushan Ms 7.0 earthquake, and for future disaster prevention and mitigation.
Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa
NASA Technical Reports Server (NTRS)
Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.
2012-01-01
We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.
Li, Fuyu; Collins, William D.; Wehner, Michael F.; Leung, Lai-Yung R.
2013-06-02
High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, and mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.
NASA Astrophysics Data System (ADS)
Guo, Jian-Chun; Nie, Ren-Shi; Jia, Yong-Lu
2012-09-01
SummaryFractured-vuggy carbonate reservoirs are composed of by matrix, fracture, and vug systems. This paper is the first investigation into the dual permeability flow issue for horizontal well production in a fractured-vuggy carbonate reservoir. Considering dispersed vugs in carbonate reservoirs and treating media directly connected with horizontal wellbore as the matrix and fracture systems, a test analysis model of a horizontal well was created, and triple porosity and dual permeability flow behavior were modeled. Standard log-log type curves were drawn up by numerical simulation and flow behavior characteristics were thoroughly analyzed. Numerical simulations showed that type curves are dominated by external boundary conditions as well as the permeability ratio of the fracture system to the sum of fracture and matrix systems. The parameter κ is only relevant to the dual permeability model, and if κ is one, then the dual permeability model is equivalent to the single permeability model. There are seven main flow regimes with constant rate of horizontal well production and five flow regimes with constant wellbore pressure of horizontal well production; different flow regimes have different flow behavior characteristics. Early radial flow and linear flow regimes are typical characteristics of horizontal well production; duration of early radial flow regime is usually short because formation thickness is generally less than 100 m. Derivative curves are W-shaped, which is a reflection of inter-porosity flows between matrix, fracture, and vug systems. A distorted W-shape, which could be produced in certain situations, such as one involving an erroneously low time of inter-porosity flows, would handicap the recognition of a linear flow regime. A real case application was successfully implemented, and some useful reservoir parameters (e.g., permeability and inter-porosity flow factor) were obtained from well testing interpretation.
Framework for non-coherent interface models at finite displacement jumps and finite strains
NASA Astrophysics Data System (ADS)
Ottosen, Niels Saabye; Ristinmaa, Matti; Mosler, Jörn
2016-05-01
This paper deals with a novel constitutive framework suitable for non-coherent interfaces, such as cracks, undergoing large deformations in a geometrically exact setting. For this type of interface, the displacement field shows a jump across the interface. Within the engineering community, so-called cohesive zone models are frequently applied in order to describe non-coherent interfaces. However, for existing models to comply with the restrictions imposed by (a) thermodynamical consistency (e.g., the second law of thermodynamics), (b) balance equations (in particular, balance of angular momentum) and (c) material frame indifference, these models are essentially fiber models, i.e. models where the traction vector is collinear with the displacement jump. This constraints the ability to model shear and, in addition, anisotropic effects are excluded. A novel, extended constitutive framework which is consistent with the above mentioned fundamental physical principles is elaborated in this paper. In addition to the classical tractions associated with a cohesive zone model, the main idea is to consider additional tractions related to membrane-like forces and out-of-plane shear forces acting within the interface. For zero displacement jump, i.e. coherent interfaces, this framework degenerates to existing formulations presented in the literature. For hyperelasticity, the Helmholtz energy of the proposed novel framework depends on the displacement jump as well as on the tangent vectors of the interface with respect to the current configuration - or equivalently - the Helmholtz energy depends on the displacement jump and the surface deformation gradient. It turns out that by defining the Helmholtz energy in terms of the invariants of these variables, all above-mentioned fundamental physical principles are automatically fulfilled. Extensions of the novel framework necessary for material degradation (damage) and plasticity are also covered.
Neoliberalism in Historical Light: How Business Models Displaced Science Education Goals in Two Eras
ERIC Educational Resources Information Center
Hayes, Kathryn N.
2016-01-01
Although a growing body of work addresses the current role of neoliberalism in displacing democratic equality as a goal of public education, attempts to parse such impacts rarely draw from historical accounts. At least one tenet of neoliberalism--the application of business models to public institutions--was also pervasive at the turn of the 20th…
Displacements Of Brownian Particles In Terms Of Marian Von Smoluchowski's Heuristic Model
ERIC Educational Resources Information Center
Klein, Hermann; Woermann, Dietrich
2005-01-01
Albert Einstein's theory of the Brownian motion, Marian von Smoluchowski's heuristic model, and Perrin's experimental results helped to bring the concept of molecules from a state of being a useful hypothesis in chemistry to objects existing in reality. Central to the theory of Brownian motion is the relation between mean particle displacement and…
Zhang, Zhiqi; Kang, Yan; Chen, Yi; Liao, Weiming
2009-01-01
The centre of rotation of the hip can be displaced in hip dysplasia and revision arthroplasty. This study examined the effect of artificial femoral head load after acetabular component displacement in total hip arthroplasty. Sixteen total hip arthroplasty models of human cadaver specimens were reconstructed, and under different acetabular component position, the load around the femoral head was evaluated by strain gages. The results showed that the load was higher in the same specimens when the cup was moved 2 mm inward or upward, especially after the cup was moved more than 6 mm, and the load had an increasing effect in the inward group. In the upward group, an increasing effect happened at 8 mm upward displacement, but the stress value decreased from 4 mm to 6 mm upward displacement. In the same moving distance, the stress of inward displacement is obviously higher than upward displacement. Altogether, the results suggested that for both inward displacement and upward displacement of the acetabular cup, the load around the femoral head increased gradually, while the distance of the inward displacement and the superior displacement was increased. The greater the displacement, the bigger the loading contact stress. The upward displacement caused less stress change on the femoral head. The stress of the 6 mm upward position was lower than nearby positions; perhaps this site represented a stress buffering zone. PMID:19424694
Axisymmetric model of drop spreading on a horizontal surface
NASA Astrophysics Data System (ADS)
Mistry, Aashutosh; Muralidhar, K.
2015-09-01
Spreading of an initially spherical liquid drop over a textured surface is analyzed by solving an integral form of the governing equations. The mathematical model extends Navier-Stokes equations by including surface tension at the gas-liquid boundary and a force distribution at the three phase contact line. While interfacial tension scales with drop curvature, the motion of the contact line depends on the departure of instantaneous contact angle from its equilibrium value. The numerical solution is obtained by discretizing the spreading drop into disk elements. The Bond number range considered is 0.01-1. Results obtained for sessile drops are in conformity with limiting cases reported in the literature [J. C. Bird et al., "Short-time dynamics of partial wetting," Phys. Rev. Lett. 100, 234501 (2008)]. They further reveal multiple time scales that are reported in experiments [K. G. Winkels et al., "Initial spreading of low-viscosity drops on partially wetting surfaces," Phys. Rev. E 85, 055301 (2012) and A. Eddi et al., "Short time dynamics of viscous drop spreading," Phys. Fluids 25, 013102 (2013)]. Spreading of water and glycerin drops over fully and partially wetting surfaces is studied in terms of excess pressure, wall shear stress, and the dimensions of the footprint. Contact line motion is seen to be correctly captured in the simulations. Water drops show oscillations during spreading while glycerin spreads uniformly over the surface.
Horizontal dispersion in shelf seas: High resolution modelling as an aid to sparse sampling
NASA Astrophysics Data System (ADS)
Stashchuk, Nataliya; Vlasenko, Vasiliy; Inall, Mark E.; Aleynik, Dmitry
2014-11-01
The ability of a hydrodynamic model to reproduce the results of a dye release experiment conducted in a wide shelf sea environment was investigated with the help of the Massachusetts Institute of Technology general circulation model (MITgcm). In the field experiment a fluorescent tracer, Rhodamine WT, was injected into the seasonal pycnocline, and its evolution was tracked for two days using a towed undulating vehicle equipped with a fluorometer and a CTD. With a 50 m horizontal resolution grid, and with three different forcings initialized in the model (viz: tides, stationary current, and wind stress on the free surface), it was possible to replicate the dye patch evolution quite accurately. The mechanisms responsible for the enhancement of horizontal dispersion were investigated on the basis of the model results. It was found that enhancement of the dye dispersion was controlled by vertically sheared currents that, in combination with vertical diapycnal mixing, led to a substantial increase in the “effective” horizontal mixing. The values of “effective” horizontal mixing found from the model runs were in good agreement with those obtained from in-situ data, and the probable degree to which the observational techniques undersampled the dye patch was revealed.
Displacement Models for THUNDER Actuators having General Loads and Boundary Conditions
NASA Technical Reports Server (NTRS)
Wieman, Robert; Smith, Ralph C.; Kackley, Tyson; Ounaies, Zoubeida; Bernd, Jeff; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
This paper summarizes techniques for quantifying the displacements generated in THUNDER actuators in response to applied voltages for a variety of boundary conditions and exogenous loads. The PDE (partial differential equations) models for the actuators are constructed in two steps. In the first, previously developed theory quantifying thermal and electrostatic strains is employed to model the actuator shapes which result from the manufacturing process and subsequent repoling. Newtonian principles are then employed to develop PDE models which quantify displacements in the actuator due to voltage inputs to the piezoceramic patch. For this analysis, drive levels are assumed to be moderate so that linear piezoelectric relations can be employed. Finite element methods for discretizing the models are developed and the performance of the discretized models are illustrated through comparison with experimental data.
NASA Astrophysics Data System (ADS)
Martino, S.; Lenti, L.; Delgado, J.; Garrido, J.; Lopez-Casado, C.
2016-07-01
The interaction between seismic waves and slopes is an important topic to provide reliable scenarios for earthquake-(re)triggered landslides. The physical properties of seismic waves as well as slope topography and geology can significantly modify the local seismic response, influencing landslide triggering. A novel approach is here applied to two case studies in Andalusia (southern Spain) for computing the expected earthquake-induced displacements of existing landslide masses. Towards this aim, dynamic stress-strain numerical modelling was carried out using a selection of seismic signals characterized by different spectral content and energy. In situ geophysical measurements, consisting of noise records and temporary seismometric arrays, were carried out to control the numerical outputs in terms of local seismic response. The results consist of relationships between the characteristic period, Tm, of the seismic signals and the characteristic periods of the landslide masses, related to the thickness (Ts) and length (Tl), respectively. These relationships show that the larger the horizontal dimension (i.e. length of landslide) of a landslide is, the more effective the contribution (to the resulting coseismic displacement) of the long-period seismic waves is, as the maximum displacements are expected for a low Tm at each energy level of the input. On the other hand, when the local seismic response mainly depends on stratigraphy (i.e. landslide thickness), the maximum expected displacements occur close to the resonance period of the landslide, except for high-energy seismic inputs.
NASA Astrophysics Data System (ADS)
Martino, S.; Lenti, L.; Delgado, J.; Garrido, J.; Casado, C. Lopez
2016-04-01
The interaction between seismic waves and slope is an important topic to provide reliable scenarios for earthquake-(re)triggered landslides. The physical properties of seismic waves as well as slope topography and geology can significantly modify the local seismic response, influencing landslide triggering. A novel approach is here applied to two case studies in Andalusia (southern Spain) for computing the expected earthquake-induced displacements of existing landslide masses. Towards this aim, dynamic stress-strain numerical modelling was carried out using a selection of seismic signals characterized by different spectral content and energy. In situ geophysical measurements, consisting of noise records and temporary seismometric arrays, were carried out to control the numerical outputs in terms of the local seismic response. The results consist of relationships between the characteristic period, Tm, of the seismic signals and the characteristic periods of the landslide masses, related to the thickness (Ts) and length (Tl), respectively. These relationships show that the larger the horizontal dimension (i.e., length of landslide) of a landslide is, the more effective the contribution (to the resulting co-seismic displacement) of the long-period seismic waves is, as the maximum displacements are expected for a low Tm at each energy level of the input. On the other hand, when the local seismic response mainly depends on stratigraphy (i.e., landslide thickness), the maximum expected displacements occur close to the resonance period of the landslide, except for high-energy seismic inputs.
Impact of Horizontal Resolution on the Simulation of Tropical Storms in an Idealized Climate Model
NASA Astrophysics Data System (ADS)
Li, F.; Collins, W.; Wehner, M. F.; Williamson, D.; Olson, J. G.
2011-12-01
High-resolution climate models have been shown to improve the statistics of tropical storms. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of AGCM runs with idealized "aquaplanet-steady-state" boundary conditions and a fixed storm tracking algorithm. The results show that increasing horizontal resolution helps to detect more tropical storms, primarily due to the simulated higher vorticity. High resolution simulations produce storms with lower depressions, stronger precipitation intensities, and more detailed storm structures. They also produce more storm systems at the lower latitudes, with the quite localized storm trajectories.
A diagnostic model evaluation effort has been performed to focus on photochemical ozone formation and the horizontal transport process since they strongly impact the temporal evolution and spatial distribution of ozone (O_{3}) within the lower troposphere. Results from th...
NASA Astrophysics Data System (ADS)
Ling, Mingxiang; Cao, Junyi; Zeng, Minghua; Lin, Jing; Inman, Daniel J.
2016-07-01
Piezo-actuated, flexure hinge-based compliant mechanisms have been frequently used in precision engineering in the last few decades. There have been a considerable number of publications on modeling the displacement amplification behavior of rhombus-type and bridge-type compliant mechanisms. However, due to an unclear geometric approximation and mechanical assumption between these two flexures, it is very difficult to obtain an exact description of the kinematic performance using previous analytical models, especially when the designed angle of the compliant mechanisms is small. Therefore, enhanced theoretical models of the displacement amplification ratio for rhombus-type and bridge-type compliant mechanisms are proposed to improve the prediction accuracy based on the distinct force analysis between these two flexures. The energy conservation law and the elastic beam theory are employed for modeling with consideration of the translational and rotational stiffness. Theoretical and finite elemental results show that the prediction errors of the displacement amplification ratio will be enlarged if the bridge-type flexure is simplified as a rhombic structure to perform mechanical modeling. More importantly, the proposed models exhibit better performance than the previous models, which is further verified by experiments.
NASA Astrophysics Data System (ADS)
Qu, Wulin; Zhang, Bei; Huang, Luyuan; Cheng, Huihong; Shi, Yaolin
2016-04-01
The 26 December 2004 Sumatra-Andaman earthquake with moment magnitude (Mw) of 9.1 to 9.3 is the first great earthquake recorded by digital broadband, high-dynamic-range seismometers and global positioning system (GPS) equipment, which recorded many high-quality geophysical data sets. The spherical curvature is not negligible in far field especially for large event and the real Earth is laterally inhomogeneity and the analytical results still are difficult to explain the geodetic measurements. We use equivalent body force finite elements method Zhang et al. (2015) and mesh the whole earth, to compute global co-seismic displacements using four fault slip models of the 2004 Sumatra earthquake provided by different authors. Comparisons of calculated co-seismic displacements and GPS show that the confidences are well in near field for four models, and the confidences are according to different models. In the whole four models, the Chlieh model (Chlieh et al., 2007) is the best as this slip model not only accord well with near field data but also far field data. And then we use the best slip model, Chlieh model to explore influence of three dimensional lateral earth structure on both layered spherically symmetric (PREM) and real 3-D heterogeneous earth model (Crust 1.0 model and GyPSuM). Results show that the effects of 3-D heterogeneous earth model are not negligible and decrease concomitantly with increasing distance from the epicenter. The relative effects of 3-D crust model are 23% and 40% for horizontal and vertical displacements, respectively. The effects of the 3-D mantle model are much smaller than that of 3-D crust model but with wider impacting area.
Wampler, William R. Myers, Samuel M.
2015-01-28
A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers, and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.
NASA Astrophysics Data System (ADS)
Wampler, William R.; Myers, Samuel M.
2015-01-01
A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers, and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.
Ratilal, Purnima; Andrews, Mark; Donabed, Ninos; Galinde, Ameya; Rappaport, Carey; Fenneman, Douglas
2007-02-01
An analytic model is developed for the time-dependent ultrasound field reflected off a randomly rough vibrating surface for a continuously scanning ultrasound vibrometer system in bistatic configuration. Kirchhoff's approximation to Green's theorem is applied to model the three-dimensional scattering interaction of the ultrasound wave field with the vibrating rough surface. The model incorporates the beam patterns of both the transmitting and receiving ultrasound transducers and the statistical properties of the rough surface. Two methods are applied to the ultrasound system for estimating displacement and velocity amplitudes of an oscillating surface: incoherent Doppler shift spectra and coherent interferometry. Motion of the vibrometer over the randomly rough surface leads to time-dependent scattering noise that causes a randomization of the received signal spectrum. Simulations with the model indicate that surface displacement and velocity estimation are highly dependent upon the scan velocity and projected wavelength of the ultrasound vibrometer relative to the roughness height standard deviation and correlation length scales of the rough surface. The model is applied to determine limiting scan speeds for ultrasound vibrometer measuring ground displacements arising from acoustic or seismic excitation to be used in acoustic landmine confirmation sensing. PMID:17348511
NASA Astrophysics Data System (ADS)
Tanaka, Masao; Tanaka, Eiji; Todoh, Masahiro; Asai, Daisuke; Kuroda, Yukiko
Temporomandibular joint (TMJ) disorder relates to the biomechanical irregularity of the structual joint components, and the behavior of soft tissue components is considered as a key to understand the biomechanical condition in the TMJ. The configuration of joint components, however, closely depends on individual patients. In this study, attention has been focused on the stress and displacement of irregular TMJs with anterior disc displacement. Using biplane magnetic resonance (MR) images, typical anterior-disc-displaced (ADD) TMJ of a patient with temporomandibular disorder has been modeled individually. The stress distribution in ADD TMJs has been compared with that in normal TMJs. Parameter studies with the elastic modulus have been carried out and it revealed that the stress distribution in the TMJ is highly dependent on the connective tissue modulus as well as disc modulus in the case of ADD TMJ, and that the disc displacement due to mouth opening movement depends on disc modulus in normal TMJ but depends on retrodiscal connective tissue in ADD TMJ.
Cartilage changes link retrognathic mandibular growth to TMJ disc displacement in a rabbit model.
Bryndahl, F; Warfvinge, G; Eriksson, L; Isberg, A
2011-06-01
Recent experimental research demonstrated that non-reducing temporomandibular joint (TMJ) disc displacement in growing rabbits impaired mandibular growth. TMJ disc displacement is also shown to induce histological changes of the condylar cartilage. The authors hypothesized that the severity of these changes would correlate to the magnitude of mandibular growth. Bilateral non-reducing TMJ disc displacement was surgically created in 10 growing New Zealand White rabbits. Ten additional rabbits constituted a sham operated control group. Aided by tantalum implants, growth was cephalometrically determined for each mandibular side during a period equivalent to childhood and adolescence in man. At the end of the growth period, histologically classified cartilage features were correlated with the assessed ipsilateral mandibular growth. Non-reducing displacement of the TMJ disc during the growth period induced histological reactions of the condylar cartilage in the rabbit model. The severity of cartilage changes was inversely correlated to the magnitude and the direction of mandibular growth, which resulted in a retrognathic growth pattern. PMID:21334177
Lower Bound on the Mean Square Displacement of Particles in the Hard Disk Model
NASA Astrophysics Data System (ADS)
Richthammer, Thomas
2016-08-01
The hard disk model is a 2D Gibbsian process of particles interacting via pure hard core repulsion. At high particle density the model is believed to show orientational order, however, it is known not to exhibit positional order. Here we investigate to what extent particle positions may fluctuate. We consider a finite volume version of the model in a box of dimensions 2 n × 2 n with arbitrary boundary configuration, and we show that the mean square displacement of particles near the center of the box is bounded from below by c log n. The result generalizes to a large class of models with fairly arbitrary interaction.
Measurement and modeling of solar irradiance components on horizontal and tilted planes
Padovan, Andrea; Col, Davide del
2010-12-15
In this work new measurements of global and diffuse solar irradiance on the horizontal plane and global irradiance on planes tilted at 20 and 30 oriented due South and at 45 and 65 oriented due East are used to discuss the modeling of solar radiation. Irradiance data are collected in Padova (45.4 N, 11.9 E, 12 m above sea level), Italy. Some diffuse fraction correlations have been selected to model the hourly diffuse radiation on the horizontal plane. The comparison with the present experimental data shows that their prediction accuracy strongly depends on the sky characteristics. The hourly irradiance measurements taken on the tilted planes are compared with the estimations given by one isotropic and three anisotropic transposition models. The use of an anisotropic model, based on a physical description of the diffuse radiation, provides a much better accuracy, especially when measurements of the diffuse irradiance on the horizontal plane are not available and thus transposition models have to be applied in combination with a diffuse fraction correlation. This is particularly significant for the planes oriented away from South. (author)
Biomechanical model-based displacement estimation in micro-sensor motion capture
NASA Astrophysics Data System (ADS)
Meng, X. L.; Zhang, Z. Q.; Sun, S. Y.; Wu, J. K.; Wong, W. C.
2012-05-01
In micro-sensor motion capture systems, the estimation of the body displacement in the global coordinate system remains a challenge due to lack of external references. This paper proposes a self-contained displacement estimation method based on a human biomechanical model to track the position of walking subjects in the global coordinate system without any additional supporting infrastructures. The proposed approach makes use of the biomechanics of the lower body segments and the assumption that during walking there is always at least one foot in contact with the ground. The ground contact joint is detected based on walking gait characteristics and used as the external references of the human body. The relative positions of the other joints are obtained from hierarchical transformations based on the biomechanical model. Anatomical constraints are proposed to apply to some specific joints of the lower body to further improve the accuracy of the algorithm. Performance of the proposed algorithm is compared with an optical motion capture system. The method is also demonstrated in outdoor and indoor long distance walking scenarios. The experimental results demonstrate clearly that the biomechanical model improves the displacement accuracy within the proposed framework.
Zamani-Dahaj, Seyed Alireza; Okasha, Mohamed; Kosakowski, Jakub; Higgs, Paul G
2016-07-01
We analyze patterns of gene presence and absence in a maximum likelihood framework with rate parameters for gene gain and loss. Standard methods allow independent gains and losses in different parts of a tree. While losses of the same gene are likely to be frequent, multiple gains need to be considered carefully. A gene gain could occur by horizontal transfer or by origin of a gene within the lineage being studied. If a gene is gained more than once, then at least one of these gains must be a horizontal transfer. A key parameter is the ratio of gain to loss rates, a/v We consider the limiting case known as the infinitely many genes model, where a/v tends to zero and a gene cannot be gained more than once. The infinitely many genes model is used as a null model in comparison to models that allow multiple gains. Using genome data from cyanobacteria and archaea, it is found that the likelihood is significantly improved by allowing for multiple gains, but the average a/v is very small. The fraction of genes whose presence/absence pattern is best explained by multiple gains is only 15% in the cyanobacteria and 20% and 39% in two data sets of archaea. The distribution of rates of gene loss is very broad, which explains why many genes follow a treelike pattern of vertical inheritance, despite the presence of a significant minority of genes that undergo horizontal transfer. PMID:27189546
NASA Astrophysics Data System (ADS)
Wagner, Johannes; Gohm, Alexander; Rotach, Mathias; Leukauf, Daniel; Posch, Christian
2014-05-01
The role of horizontal model grid resolution on the development of the daytime boundary layer over mountainous terrain is studied. A simple idealized valley topography with a cross-valley width of 20~km, a valley depth of 1.5~km and a constant surface heat flux forcing is used to generate upslope flows in a warming valley boundary layer. The goal of this study is to investigate differences in the upslope flow and boundary layer structure of the valley when its topography is either fully resolved, smoothed or not resolved by the numerical model. This is done by performing both large-eddy (LES) and kilometer-scale simulations with mesh sizes of 50, 1000, 2000, 4000, 5000 and 10000~m. In LES mode a valley inversion layer develops, which separates two vertically stacked circulation cells in an upper and lower boundary layer. These structures weaken with decreasing horizontal model grid resolution and change to a convective boundary layer similar to the one over an elevated flat plain when the valley is no longer resolved. Mean profiles of the LES run, which are obtained by horizontal averaging over the valley show a three-layer thermal structure and a secondary heat flux maximum at ridge height. Strong smoothing of the valley topography prevents the development of a valley inversion layer with stacked circulation cells and leads to higher valley temperatures due to smaller valley volumes. This investigation shows that a parameterization is needed in coarse resolution models to capture exchange processes over mountainous terrain.
Oxygen-enhanced models for globular cluster stars. III - Horizontal-branch sequences
NASA Technical Reports Server (NTRS)
Dorman, Ben
1992-01-01
A large grid of horizontal-branch (HB) evolutionary sequences which have been calculated with core expansion and semiconvection and with enhanced oxygen composition are presented and described. Tracks for 10 different metallicities are computed; they range from (Fe/H) = -0.47 to -2.26 and comprise a total of 115 sequences. The evolution is traced from the zero-age horizontal-branch (ZAHB) to the lower AGB at a point where log L/solar luminosity = 2.25. All of the sequences are illustrated on both the theoretical H-R diagram and on the B, V color-magnitude diagram. A complete set of tables for the ZAHB models and a representative sample of tabulations of the track parameters are provided. The phenomena which control HB evolution morphology, and existing certainties in theoretical HB models are discussed.
Horizontal Position Optimal Solution Determination for the Satellite Laser Ranging Slope Model
NASA Astrophysics Data System (ADS)
Wang, Yu; Ai, Yu; Hu, Yu; Wang, RenLi
2016-06-01
According to the Gaussian-fit laser echo model and the terrain slope model, the regular mean value theorem and the asymptotic principle of the median point of the double integral mean value theorem are used to derive the optimal solution for the horizontal position of a single-mode laser echo. Through simulation experiments, the horizontal position results of the echo signal peak from various terrain slopes are analyzed. When ignoring the effect of the atmosphere and the surface roughness of the target, considering the geometric position of the Gaussian single-mode echo signal peak to be the center of the laser spot is highly accurate. However, as the accuracy significantly decreases when the slope is greater than 26°, making the range of the peak value of the single-mode echo data (for a slope of less than 26°) to be the range of the geometrical center of the laser spot can obtain a higher degree of accuracy.
Horizontal soil water potential heterogeneity: simplifying approaches for crop water dynamics models
NASA Astrophysics Data System (ADS)
Couvreur, V.; Vanderborght, J.; Beff, L.; Javaux, M.
2014-05-01
Soil water potential (SWP) is known to affect plant water status, and even though observations demonstrate that SWP distribution around roots may limit plant water availability, its horizontal heterogeneity within the root zone is often neglected in hydrological models. As motive, using a horizontal discretisation significantly larger than one centimetre is often essential for computing time considerations, especially for large-scale hydrodynamics models. In this paper, we simulate soil and root system hydrodynamics at the centimetre scale and evaluate approaches to upscale variables and parameters related to root water uptake (RWU) for two crop systems: a densely seeded crop with an average uniform distribution of roots in the horizontal direction (winter wheat) and a wide-row crop with lateral variations in root density (maize). In a first approach, the upscaled water potential at soil-root interfaces was assumed to equal the bulk SWP of the upscaled soil element. Using this assumption, the 3-D high-resolution model could be accurately upscaled to a 2-D model for maize and a 1-D model for wheat. The accuracy of the upscaled models generally increased with soil hydraulic conductivity, lateral homogeneity of root distribution, and low transpiration rate. The link between horizontal upscaling and an implicit assumption on soil water redistribution was demonstrated in quantitative terms, and explained upscaling accuracy. In a second approach, the soil-root interface water potential was estimated by using a constant rate analytical solution of the axisymmetric soil water flow towards individual roots. In addition to the theoretical model properties, effective properties were tested in order to account for unfulfilled assumptions of the analytical solution: non-uniform lateral root distributions and transient RWU rates. Significant improvements were however only noticed for winter wheat, for which the first approach was already satisfying. This study confirms that the
A 3D mathematical model for the horizontal anode baking furnace
Kocaefe, Y.S.; Dernedde, E.; Kocaefe, D.; Ouellet, R.; Jiao, Q.; Crowell, W.F.
1996-10-01
In the aluminum industry, carbon anodes are baked in large horizontal or vertical ring-type furnaces. The anode quality depends strongly on the baking conditions (heating rate, soaking time and final anode temperature). A three-dimensional mathematical model has been developed for a horizontal anode baking furnace to assess the effects of different parameters on the baking process and to improve the furnace operation and design at Noranda Aluminum Smelter in New Madrid, Missouri. The commercial CFD code CFDS-FLOW3D is used to solve the governing differential equations. The model gives the temperature, velocity and concentration distributions in the flue, and the variation of the temperature distribution with time in the pit. In this paper, a description of the 3D model for the horizontal anode baking furnace will be given. Some of the results from a case study will also be presented. The results show clearly the importance of flue geometry on the gas flow distribution in the flue and the heat transfer to the anodes.
NASA Astrophysics Data System (ADS)
Javaherchi, Teymour; Stelzenmuller, Nick; Seydel, Joseph; Aliseda, Alberto
2013-11-01
We investigate, through a combination of scale model experiments and numerical simulations, the evolution of the flow field around the rotor and in the wake of Marine Hydrokinetic (MHK) turbines. Understanding the dynamics of this flow field is the key to optimizing the energy conversion of single devices and the arrangement of turbines in commercially viable arrays. This work presents a comparison between numerical and experimental results from two different case studies of scaled horizontal axis MHK turbines (45:1 scale). In the first case study, we investigate the effect of Reynolds number (Re = 40,000 to 100,000) and Tip Speed Ratio (TSR = 5 to 12) variation on the performance and wake structure of a single turbine. In the second case, we study the effect of the turbine downstream spacing (5d to 14d) on the performance and wake development in a coaxial configuration of two turbines. These results provide insights into the dynamics of Horizontal Axis Hydrokinetic Turbines, and by extension to Horizontal Axis Wind Turbines in close proximity to each other, and highlight the capabilities and limitations of the numerical models. Once validated at laboratory scale, the numerical model can be used to address other aspects of MHK turbines at full scale. Supported by DOE through the National Northwest Marine Renewable Energy Center.
Mathematical models utilized in the retrieval of displacement information encoded in fringe patterns
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Lamberti, Luciano
2016-02-01
All the techniques that measure displacements, whether in the range of visible optics or any other form of field methods, require the presence of a carrier signal. A carrier signal is a wave form modulated (modified) by an input, deformation of the medium. A carrier is tagged to the medium under analysis and deforms with the medium. The wave form must be known both in the unmodulated and the modulated conditions. There are two basic mathematical models that can be utilized to decode the information contained in the carrier, phase modulation or frequency modulation, both are closely connected. Basic problems connected to the detection and recovery of displacement information that are common to all optical techniques will be analyzed in this paper, focusing on the general theory common to all the methods independently of the type of signal utilized. The aspects discussed are those that have practical impact in the process of data gathering and data processing.
A coronal magnetic field model with horizontal volume and sheet currents
NASA Technical Reports Server (NTRS)
Zhao, Xuepu; Hoeksema, J. Todd
1994-01-01
When globally mapping the observed photospheric magnetic field into the corona, the interaction of the solar wind and magnetic field has been treated either by imposing source surface boundary conditions that tacitly require volume currents outside the source surface or by limiting the interaction to thin current sheets between oppositely directed field regions. Yet observations and numerical Magnetohydrodynamic (MHD) calculations suggest the presence of non-force-free volume currents throughout the corona as well as thin current sheets in the neighborhoods of the interfaces between closed and open field lines or between oppositely directed open field lines surrounding coronal helmet-streamer structures. This work presents a model including both horizontal volume currents and streamer sheet currents. The present model builds on the magnetostatic equilibria developed by Bogdan and Low and the current-sheet modeling technique developed by Schatten. The calculation uses synoptic charts of the line-of-sight component of the photospheric magnetic field measured at the Wilcox Solar Observatory. Comparison of an MHD model with the calculated model results for the case of a dipole field and comparison of eclipse observations with calculations for CR 1647 (near solar minimum) show that this horizontal current-current-sheet model reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces coro nal helmet structures better than the current-sheet model.
Modelling the effects of horizontal and vertical shear in stratified turbulent flows
NASA Astrophysics Data System (ADS)
Umlauf, Lars
2005-05-01
Direct numerical simulations (DNS) and model results from a number of one-point turbulence models are compared for homogeneous, stably stratified flows. Because of their wide spread use in numerical ocean modelling, only explicit algebraic second-moment models are investigated. Considered are two types of shear flows with either purely vertical or purely horizontal shear. The dissipation rate is evaluated from the observation that the shear-number becomes independent of stratification for low to moderate Richardson numbers as soon as the flow approaches self-similarity. For the cases with vertical shear, it is found that all statistical models essentially reproduced the DNS results, though with different accuracy. In contrast, only the most recent model was able to predict the salient features of horizontally sheared flows, i.e. a steady-state Richardson number that is about an order of magnitude larger and a vertical mixing efficiency that is about twice as large compared to the case with vertical shear. This model also reproduced other key parameters like the turbulent Froude number and the turbulent Prandtl number with good accuracy, but it failed to predict quantitatively the reduction of the shear anisotropy with increasing stratification. For strong stratification, none of the models was able to describe the rapid decrease of the mixing efficiency associated with the collapse and fossilisation of turbulence.
NASA Astrophysics Data System (ADS)
Berckmans, Julie; Hamdi, Rafiq; De Troch, Rozemien; Giot, Olivier
2015-04-01
At the Royal Meteorological Institute of Belgium (RMI), climate simulations are performed with the regional climate model (RCM) ALARO, a version of the ALADIN model with improved physical parameterizations. In order to obtain high-resolution information of the regional climate, lateral bounary conditions (LBC) are prescribed from the global climate model (GCM) ARPEGE. Dynamical downscaling is commonly done in a continuous long-term simulation, with the initialisation of the model at the start and driven by the regularly updated LBCs of the GCM. Recently, more interest exists in the dynamical downscaling approach of frequent reinitializations of the climate simulations. For these experiments, the model is initialised daily and driven for 24 hours by the GCM. However, the surface is either initialised daily together with the atmosphere or free to evolve continuously. The surface scheme implemented in ALARO is SURFEX, which can be either run in coupled mode or in stand-alone mode. The regional climate is simulated on different domains, on a 20km horizontal resolution over Western-Europe and a 4km horizontal resolution over Belgium. Besides, SURFEX allows to perform a stand-alone or offline simulation on 1km horizontal resolution over Belgium. This research is in the framework of the project MASC: "Modelling and Assessing Surface Change Impacts on Belgian and Western European Climate", a 4-year project funded by the Belgian Federal Government. The overall aim of the project is to study the feedbacks between climate changes and land surface changes in order to improve regional climate model projections at the decennial scale over Belgium and Western Europe and thus to provide better climate projections and climate change evaluation tools to policy makers, stakeholders and the scientific community.
Wampler, William R.; Myers, Samuel M.
2014-02-01
A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.
Performance of European chemistry transport models as function of horizontal resolution
NASA Astrophysics Data System (ADS)
Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.
2015-07-01
Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation
A model for fluid flow during saturated boiling on a horizontal cylinder
NASA Technical Reports Server (NTRS)
Kheyrandish, K.; Dalton, C.; Lienhard, J. H.
1987-01-01
A model has been developed to represent the vapor removal pattern in the vicinity of a cylinder during nucleate flow boiling across a horizontal cylinder. The model is based on a potential flow representation of the liquid and vapor regions and an estimate of the losses that should occur in the flow. Correlation of the losses shows a weak dependence on the Weber number and a slightly stronger dependence on the saturated liquid-to-vapor density ratio. The vapor jet thickness, which is crucial to the prediction of the burnout heat flux, and the shape of the vapor film are predicted. Both are verified by qualitative experimental observations.
Optimized model of oriented-line-target detection using vertical and horizontal filters
NASA Astrophysics Data System (ADS)
Westland, Stephen; Foster, David H.
1995-08-01
A line-element target differing sufficiently in orientation from a background of line elements can be visually detected easily and quickly; orientation thresholds for such detection are lowest when the background elements are all vertical or all horizontal. A simple quantitative model of this performance was constructed from two classes of anisotropic filters, (2) nonlinear point transformation, and (3) estimation of a signal-to-noise ratio based on responses to images with and without a target. A Monte Carlo optimization procedure (simulated annealing) was used to determine the model parameter values required for providing an accurate description of psychophysical data on orientation increment thresholds.
Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model
NASA Astrophysics Data System (ADS)
Chen, Jinglong; Zhang, Chunlin; Xu, Minglong; Zi, Yanyang; Zhang, Xinong
2015-01-01
This paper proposes rhombic micro-displacement amplifier (RMDA) for piezoelectric actuator (PA). First, the geometric amplification relations are analyzed and linear model is built to analyze the mechanical and electrical properties of this amplifier. Next, the accurate modeling method of amplifier is studied for important application of precise servo control. The classical Preisach model (CPM) is generally implemented using a numerical technique based on the first-order reversal curves (FORCs). The accuracy of CPM mainly depends on the number of FORCs. However, it is generally difficult to achieve enough number of FORCs in practice. So, Support Vector Machine (SVM) is employed in the work to circumvent the deficiency of the CPM. Then the hybrid model, which is based on discrete CPM and SVM is developed to account for hysteresis and dynamic effects. Finally, experimental validation is carried out. The analyzed result shows that this amplifier with the hybrid model is suitable for control application.
DYNAMICS OF SI MODELS WITH BOTH HORIZONTAL AND VERTICAL TRANSMISSIONS AS WELL AS ALLEE EFFECTS*
Kang, Yun; Castillo-Chavez, Carlos
2014-01-01
A general SI (Susceptible-Infected) epidemic system of host-parasite interactions operating under Allee effects, horizontal and/or vertical transmission, and where infected individuals experience pathogen-induced reductions in reproductive ability, is introduced. The initial focus of this study is on the analyses of the dynamics of Density-Dependent and Frequency-Dependent effects on SI models (SI-DD and SI-FD). The analyses identify conditions involving horizontal and vertical transmitted reproductive numbers, namely those used to characterize and contrast SI-FD and SI-DD dynamics. Conditions that lead to disease-driven extinction, or disease-free dynamics, or susceptible-free dynamics, or endemic disease patterns are identified. The SI-DD system supports richer dynamics including limit cycles while the SI-FD model only supports equilibrium dynamics. SI models under “small” horizontal transmission rates may result in disease-free dynamics. SI models under with and inefficient reproductive infectious class may lead to disease-driven extinction scenarios. The SI-DD model supports stable periodic solutions that emerge from an unstable equilibrium provided that either the Allee threshold and/or the disease transmission rate is large; or when the disease has limited influence on the infectives growth rate; and/or when disease-induced mortality is low. Host-parasite systems where diffusion or migration of local populations manage to destabilize them are examples of what is known as diffusive instability. The exploration of SI-dynamics in the presence of dispersal brings up the question of whether or not diffusive instability is a possible outcome. Here, we briefly look at such possibility within two-patch coupled SI-DD and SI-FD systems. It is shown that relative high levels of asymmetry, two modes of transmission, frequency dependence, and Allee effects are capable of supporting diffusive instability. PMID:24389426
Sensitivity of snow cover to horizontal resolution in a land surface model
NASA Astrophysics Data System (ADS)
Dutra, E.; Kotlarski, S.; Viterbo, P.; Balsamo, G.; Miranda, P. M. A.; Schär, C.
2010-09-01
Snow cover is a highly variable land surface condition that exerts a strong control on the heat and moisture budget of the overlying atmosphere. Modeling studies based on long integrations of global circulation models (GCM) are normally carried out at very low resolution (typically coarser than 100 km) due to their high computational demand. On local scales, snow cover plays an important socioeconomic role, ranging from water management applications to outdoor recreation. These latter applications vary in horizontal resolution from a few hundred meters to a few kilometers, where small scale topography, land cover and local circulation effects play a significant role. In this study our focus will be on horizontal scales ranging from typical GCM global climate modeling to high resolution global weather forecasts. In the land surface component of a GCM (land surface model - LSM), snow cover temporal and spatial variability is mainly determined by the overlying atmospheric conditions. However, once snowfall settles on the ground, the sub-grid scale variability associated with complex terrain and land cover variability (not resolved at the model resolution) is parameterized following simple physical and/or empirical relations. The present study intends to access the impact of horizontal resolution in the European Centre for Medium-Range Weather Forecasts (ECMWF) land surface model (HTESSEL). HTESSEL is forced by the ECMWF operational weather forecasts since March 2006 to December 2009 (runs in offline/stand-alone mode). The control run is carried out at the horizontal resolution of the forecasts at TL799 (gaussian reduced grid N400 -about 25 km). Two lower horizontal resolutions are then tested: TL255 (gaussian reduced grid - about 80 km, same as the ERA-Interim reanalysis), and TL95 (gaussian reduced grid N48 - about 200 km). The length of the simulations is rather small (only 46 months), however global meteorological forcing at 25 km can only be accessed through the
NASA Astrophysics Data System (ADS)
Bonini, L.; Basili, R.; Burrato, P.; Kastelic, V.; Toscani, G.; Seno, S.; Valensise, G.
2013-12-01
The scaling relation between displacement and length of faults plays a crucial role in understanding the growth history of individual faults and their possible linkage and reactivation in future ruptures. Displacement-length relations are commonly based on empirical data. The measurement of fault geometric properties, however, is generally affected by large scattering due not only to intrinsic difficulties of making observations in natural cases (outcrop availability, seismic profiles), but also to the variety of geological factors that may affect the rupture patterns. These can be the interaction between the present-day tectonic regime and an inherited structural fabric, or that between a master fault at depth and shallow structural features. As an alternative to field observations, analogue modeling provides an opportunity to investigate the faulting processes in a controlled environment. During the last decade, the ability of scaled models to properly reproduce such geological processes has greatly improved thanks to the introduction of new materials (e.g. wet kaolin) suitable for reproducing brittle deformation in the upper crust and hi-tech monitoring systems (e.g. laser scanner, particle image velocimetry) with the ability of capturing structural details and performing accurate measurements. We use a dedicated apparatus with such properties to gain insights on the evolution of extensional faults through a suite of experiments which includes (a) setups in homogeneous material to test our ability in meeting general criteria related with fault displacement-length parameters; and (b) increasing complexities attained by inserting various pre-existing fault patterns to analyze how shallow mechanical discontinuities affect our ability to characterize a major fault at depth. Our results show that pre-existing faults can either halt or favor fault development and growth depending on their location/orientation with respect to the applied stress field and suggest the
Lave, Matthew; Hayes, William; Pohl, Andrew; Hansen, Clifford W.
2015-02-02
We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decomposition models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. Lastly, when only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.
MOCVD of GaAs in a horizontal reactor - Modeling and growth
NASA Technical Reports Server (NTRS)
Clark, Ivan O.; Fox, Bradley A.; Jesser, William A.; Black, Linda R.
1991-01-01
A two-dimensional model for metalorganic chemical vapor deposition of GaAs in a horizontal reactor is presented. The model is characterized by the following parameters: reactor geometry and operating pressure, thermal boundary conditions, ratio of reactants, chemical reactions, total inlet gas flow rate, as well as molecular weights, thermal conductivities, heat capacities, viscosities, and binary diffusion coefficients of the gas-phase species. Film thickness profiles predicted by the model are compared with those of GaAs thin films grown in the modeled reactor. Results obtained show a good agreement between the predictions and data over the entire length of the deposition region for the low pressure and high flow rate run. Attention is also given to the reactor design and growth conditions.
NASA Astrophysics Data System (ADS)
Jalali Farahani, R.; Fitzenz, D. D.; Nyst, M.
2015-12-01
Major components of tsunami hazard modeling include earthquake source characterization, seabed displacement, wave propagation, and coastal inundation/run-up. Accurate modeling of these components is essential to identify the disaster risk exposures effectively, which would be crucial for insurance industry as well as policy makers to have tsunami resistant design of structures and evacuation planning (FEMA, 2008). In this study, the sensitivity and variability of tsunami coastal inundation due to Cascadia megathrust subduction earthquake are studied by considering the different approaches for seabed displacement model. The first approach is the analytical expressions that were proposed by Okada (1985, 1992) for the surface displacements and strains of rectangular sources. The second approach was introduced by Meade (2006) who introduced analytical solutions for calculating displacements, strains, and stresses on triangular sources. In this study, the seabed displacement using triangular representation of geometrically complex fault surfaces is compared with the Okada rectangular representations for the Cascadia subduction zone. In the triangular dislocation algorithm, the displacement is calculated using superposition of two angular dislocations for each of the three triangle legs. The triangular elements could give a better and gap-free representation of the fault surfaces. In addition, the rectangular representation gives large unphysical vertical displacement along the shallow-depth fault edge that generates unrealistic short-wavelength waves. To study the impact of these two different algorithms on the final tsunami inundation, the initial tsunami wave as well as wave propagation and the coastal inundation are simulated. To model the propagation of tsunami waves and coastal inundation, 2D shallow water equations are modeled using the seabed displacement as the initial condition for the numerical model. Tsunami numerical simulation has been performed on high
Energetic dynamics of a rotating horizontal convection model with wind forcing
NASA Astrophysics Data System (ADS)
Zemskova, Varvara; White, Brian; Scotti, Alberto
2015-11-01
We present a new test case for rotating horizontal convection, where the flow is driven by differential buoyancy forcing along a horizontal surface. This simple model is used to understand and quantify the influence of surface heating and cooling and wind stress on the Meridional Overturning Circulation. The domain is a rectangular basin with surface cooling at both ends (the poles) and surface warming in the middle (equatorial) region. To model the effect of the Antarctic Circumpolar Current, reentrant channel is placed near the Southern pole. Free-slip boundary conditions are imposed in the closed box, while zonally periodic boundary conditions are enforced in the channel. The problem is solved numerically using a 3D DNS model based on a finite-volume AMR solver for the Boussinesq Navier-Stokes equations with rotation. The relative contributions of surface buoyancy and wind forcing and the energetic balance are analyzed at a Rayleigh number of 108 and a relatively high aspect ratio of [5, 10, 1] in zonal, meridional and vertical directions, respectively. The overall dynamics, including large-scale overturning, baroclinic eddying, and turbulent mixing are investigated using the local Available Potential Energy framework introduced in [Scotti and White, J. Fluid Mech., 2014]. This research is part of the Blue Waters sustained-petascale computing project, supported by the NSF (awards OCI-0725070, ACI-1238993 and ACI-14-44747) and the state of Illinois.
NASA Astrophysics Data System (ADS)
Li, Yue; Jourdain, Nicolas; Taschetto, Andréa; Gupta, Alex Sen; Masson, Sébastien; Cai, Wenju
2015-04-01
The Maritime Continent (MC) is centred at one of the major monsoon systems in the world. Characterized by massive tropical heating and precipitation, it is strongly influencing both the Hadley and Walker circulations. However, there are significant challenges in correctly represent climate of this region because of the complex topography and the arrangement of lands and seas. It is often argued that improved representation of the diurnal cycle over islands and the complex mesoscale circulation associated with land-sea contrast is important to energy and hydrological cycles of this region. To investigate the sensitivity of precipitation over the MC to model horizontal resolution, we perform three regional numerical experiments using the coupled NEMO-OASIS-WRF model at different horizontal resolutions of 3/4°, 1/4° and 1/12° in both atmosphere and ocean components. The 3/4° and 1/4° experiments are run on a large MC domain for 21 years (1989 to 2009), and the 1/12° experiment is nested within the 1/4° domain using two-way interactive nesting over 5 years. Increasing the resolution reduces biases in mean SST and mean precipitation. The precipitation distribution is also improved at higher resolution, particularly in coastal areas. A part of these improvements are related to different behaviours of the model physical schemes across the three resolutions. Other changes are interpreted in terms of land-sea breeze, that we describe through a new comprehensive method.
Approximation for Horizontal Photon Transport in Cloud Remote Sensing Problems
NASA Technical Reports Server (NTRS)
Plantnick, Steven
1999-01-01
The effect of horizontal photon transport within real-world clouds can be of consequence to remote sensing problems based on plane-parallel cloud models. An analytic approximation for the root-mean-square horizontal displacement of reflected and transmitted photons relative to the incident cloud-top location is derived from random walk theory. The resulting formula is a function of the average number of photon scatterings, and particle asymmetry parameter and single scattering albedo. In turn, the average number of scatterings can be determined from efficient adding/doubling radiative transfer procedures. The approximation is applied to liquid water clouds for typical remote sensing solar spectral bands, involving both conservative and non-conservative scattering. Results compare well with Monte Carlo calculations. Though the emphasis is on horizontal photon transport in terrestrial clouds, the derived approximation is applicable to any multiple scattering plane-parallel radiative transfer problem. The complete horizontal transport probability distribution can be described with an analytic distribution specified by the root-mean-square and average displacement values. However, it is shown empirically that the average displacement can be reasonably inferred from the root-mean-square value. An estimate for the horizontal transport distribution can then be made from the root-mean-square photon displacement alone.
Pore invasion dynamics during fluid front displacement - an interfacial front model
NASA Astrophysics Data System (ADS)
Moebius, F.; Or, D.
2013-12-01
The dynamics of fluid fronts in porous media shape subsequent phase distribution and the transport properties of the partially saturated region with implications ranging from gaseous transport to plant roots to extraction or injection of fluids to petroleum reservoirs. What macroscopically seems as a smooth and continuous motion of a displacement fluid front, involves numerous rapid pore-scale interfacial jumps often resembling avalanches of invasion events. We present a 2D model for simulating interfacial front displacement that was developed to study details of invasion dynamics at the front and to systematically study effects of boundary conditions on the resulting macroscopic properties after passage of a front. The interfacial front is represented by hydraulically connected sinusoidal capillaries allowing for redistribution and capillary pressure relaxation through exchange with neighboring interfaces. The model focuses on processes at the front and neglects interfacial redistribution left behind the front as well as saturated fluid flow below the front. The description of the dynamics of the rapid non-wetting fluid invasions induced by constant wetting fluid withdrawal includes capillary, viscous and hydrostatic component and inertia. Results show that the additional inertial force (not considered in previous studies) does significantly affect invasion pathways such as the hypothesized 'consecutive jumps'. The menisci jump velocities show a strong relation to geometrical throat dimensions that reflect local capillary gradients. The front model further enables to link boundary conditions (macroscopic Capillary number, throat size distribution) effects on pore invasion sequences and impact on residual wetting phase entrapment and front morphology. A limited comparison of model predictions with experimental results from sintered glass-beads micro-models will be presented.
NASA Technical Reports Server (NTRS)
Reddy, J. N.
1986-01-01
An improved plate theory that accounts for the transverse shear deformation is presented, and mixed and displacement finite element models of the theory are developed. The theory is based on an assumed displacement field in which the inplane displacements are expanded in terms of the thickness coordinate up to the cubic term and the transverse deflection is assumed to be independent of the thickness coordinate. The governing equations of motion for the theory are derived from the Hamilton's principle. The theory eliminates the need for shear correction factors because the transverse shear stresses are represented parabolically. A mixed finite element model that uses independent approximations of the displacements and moments, and a displacement model that uses only displacements as degrees of freedom are developed. A comparison of the numerical results for bending with the exact solutions of the new theory and the three-dimensional elasticity theory shows that the present theory (and hence the finite element models) is more accurate than other plate-theories of the same order.
Pham, VT.; Silva, L.; Digonnet, H.; Combeaud, C.; Billon, N.; Coupez, T.
2011-05-04
The objective of this work is to model the viscoelastic behaviour of polymer from the solid state to the liquid state. With this objective, we perform experimental tensile tests and compare with simulation results. The chosen polymer is a PMMA whose behaviour depends on its temperature. The computation simulation is based on Navier-Stokes equations where we propose a mixed finite element method with an interpolation P1+/P1 using displacement (or velocity) and pressure as principal variables. The implemented technique uses a mesh composed of triangles (2D) or tetrahedra (3D). The goal of this approach is to model the viscoelastic behaviour of polymers through a fluid-structure coupling technique with a multiphase approach.
Four-beam model for vibration analysis of a cantilever beam with an embedded horizontal crack
NASA Astrophysics Data System (ADS)
Liu, Jing; Zhu, Weidong; Charalambides, Panos G.; Shao, Yimin; Xu, Yongfeng; Wu, Kai; Xiao, Huifang
2016-01-01
As one of the main failure modes, embedded cracks occur in beam structures due to periodic loads. Hence it is useful to investigate the dynamic characteristics of a beam structure with an embedded crack for early crack detection and diagnosis. A new four-beam model with local flexibilities at crack tips is developed to investigate the transverse vibration of a cantilever beam with an embedded horizontal crack; two separate beam segments are used to model the crack region to allow opening of crack surfaces. Each beam segment is considered as an Euler-Bernoulli beam. The governing equations and the matching and boundary conditions of the four-beam model are derived using Hamilton's principle. The natural frequencies and mode shapes of the four-beam model are calculated using the transfer matrix method. The effects of the crack length, depth, and location on the first three natural frequencies and mode shapes of the cracked cantilever beam are investigated. A continuous wavelet transform method is used to analyze the mode shapes of the cracked cantilever beam. It is shown that sudden changes in spatial variations of the wavelet coefficients of the mode shapes can be used to identify the length and location of an embedded horizontal crack. The first three natural frequencies and mode shapes of a cantilever beam with an embedded crack from the finite element method and an experimental investigation are used to validate the proposed model. Local deformations in the vicinity of the crack tips can be described by the proposed four-beam model, which cannot be captured by previous methods.
Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling
Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.
2016-04-01
Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states atmore » the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less
Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling
NASA Astrophysics Data System (ADS)
Samolyuk, G. D.; Béland, L. K.; Stocks, G. M.; Stoller, R. E.
2016-05-01
Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.
Character displacement and the evolution of niche complementarity in a model biofilm community.
Ellis, Crystal N; Traverse, Charles C; Mayo-Smith, Leslie; Buskirk, Sean W; Cooper, Vaughn S
2015-02-01
Colonization of vacant environments may catalyze adaptive diversification and be followed by competition within the nascent community. How these interactions ultimately stabilize and affect productivity are central problems in evolutionary ecology. Diversity can emerge by character displacement, in which selection favors phenotypes that exploit an alternative resource and reduce competition, or by facilitation, in which organisms change the environment and enable different genotypes or species to become established. We previously developed a model of long-term experimental evolution in which bacteria attach to a plastic bead, form a biofilm, and disperse to a new bead. Here, we focus on the evolution of coexisting mutants within a population of Burkholderia cenocepacia and how their interactions affected productivity. Adaptive mutants initially competed for space, but later competition declined, consistent with character displacement and the predicted effects of the evolved mutations. The community reached a stable equilibrium as each ecotype evolved to inhabit distinct, complementary regions of the biofilm. Interactions among ecotypes ultimately became facilitative and enhanced mixed productivity. Observing the succession of genotypes within niches illuminated changing selective forces within the community, including a fundamental role for genotypes producing small colony variants that underpin chronic infections caused by B. cenocepacia. PMID:25494960
Samolyuk, G D; Béland, L K; Stocks, G M; Stoller, R E
2016-05-01
Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron-phonon (el-ph) coupling. The el-ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el-ph coupling. Thus, the el-ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10-20% in the alloys under consideration. PMID:27033732
Character displacement and the evolution of niche complementarity in a model biofilm community
Ellis, Crystal N; Traverse, Charles C; Mayo-Smith, Leslie; Buskirk, Sean W; Cooper, Vaughn S
2015-01-01
Colonization of vacant environments may catalyze adaptive diversification and be followed by competition within the nascent community. How these interactions ultimately stabilize and affect productivity are central problems in evolutionary ecology. Diversity can emerge by character displacement, in which selection favors phenotypes that exploit an alternative resource and reduce competition, or by facilitation, in which organisms change the environment and enable different genotypes or species to become established. We previously developed a model of long-term experimental evolution in which bacteria attach to a plastic bead, form a biofilm, and disperse to a new bead. Here, we focus on the evolution of coexisting mutants within a population of Burkholderia cenocepacia and how their interactions affected productivity. Adaptive mutants initially competed for space, but later competition declined, consistent with character displacement and the predicted effects of the evolved mutations. The community reached a stable equilibrium as each ecotype evolved to inhabit distinct, complementary regions of the biofilm. Interactions among ecotypes ultimately became facilitative and enhanced mixed productivity. Observing the succession of genotypes within niches illuminated changing selective forces within the community, including a fundamental role for genotypes producing small colony variants that underpin chronic infections caused by B. cenocepacia. PMID:25494960
NASA Astrophysics Data System (ADS)
Akiyama, S.; Kawaji, K.; Fujihara, S.
2013-12-01
Since fault fracturing due to an earthquake can simultaneously cause ground motion and tsunami, it is appropriate to evaluate the ground motion and the tsunami by single fault model. However, several source models are used independently in the ground motion simulation or the tsunami simulation, because of difficulty in evaluating both phenomena simultaneously. Many source models for the 2011 off the Pacific coast of Tohoku Earthquake are proposed from the inversion analyses of seismic observations or from those of tsunami observations. Most of these models show the similar features, which large amount of slip is located at the shallower part of fault area near the Japan Trench. This indicates that the ground motion and the tsunami can be evaluated by the single source model. Therefore, we examine the possibility of the tsunami prediction, using the fault model estimated from seismic observation records. In this study, we try to carry out the tsunami simulation using the displacement field of oceanic crustal movements, which is calculated from the ground motion simulation of the 2011 off the Pacific coast of Tohoku Earthquake. We use two fault models by Yoshida et al. (2011), which are based on both the teleseismic body wave and on the strong ground motion records. Although there is the common feature in those fault models, the amount of slip near the Japan trench is lager in the fault model from the strong ground motion records than in that from the teleseismic body wave. First, the large-scale ground motion simulations applying those fault models used by the voxel type finite element method are performed for the whole eastern Japan. The synthetic waveforms computed from the simulations are generally consistent with the observation records of K-NET (Kinoshita (1998)) and KiK-net stations (Aoi et al. (2000)), deployed by the National Research Institute for Earth Science and Disaster Prevention (NIED). Next, the tsunami simulations are performed by the finite
NASA Astrophysics Data System (ADS)
McGrath, Ray; Nolan, Paul
2016-04-01
Regional Climate Models (RCMs) are widely used to dynamically downscale the outputs from global climate model simulations. There is some evidence that high resolution RCMs with explicit convection can provide more accurate information on extreme precipitation events compared to coarse resolution simulations with parameterized convection. In flooding applications, where the interest may be focused on precipitation over a relatively large river catchment area, compared to the model grid spacing, the value of enhanced resolution needs to be quantified. This is addressed in a study using two RCMs: the COnsortium for Small-scale Modeling-Climate Limited-area Modelling (COSMO-CLM) model (version CCLM_5.00) and the Weather Research and Forecasting (WRF) model (version 3.7.1). Using ERA-Interim global re-analysis data as boundaries, climate simulations were performed for the period 1981-2015, for an area focused on Ireland, using model horizontal grid spacings of 18, 6 and 2 km (WRF) and 18, 6 and 1.5 km (COSMO-CLM). Model hourly precipitation outputs were compared with gridded and point observational datasets for time intervals extending from hours to seasons to assess the performance of the RCMs at the different resolutions.
Horizontal annular flow modelling using a compositional based interface capturing approach
NASA Astrophysics Data System (ADS)
Pavlidis, Dimitrios; Xie, Zhizhua; Percival, James; Gomes, Jefferson; Pain, Chris; Matar, Omar
2014-11-01
Progress on a consistent approach for interface-capturing in which each component represents a different phase/fluid is described. The aim is to develop a general multi-phase modelling approach based on fully-unstructured meshes that can exploit the latest mesh adaptivity methods, and in which each fluid phase may have a number of components. The method is compared against experimental results for a collapsing water column test case and a convergence study is performed. A number of numerical test cases are undertaken to demonstrate the method's ability to model arbitrary numbers of phases with arbitrary equations of state. The method is then used to simulate horizontal annular flows. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.
Development of a model counter-rotating type horizontal-axis tidal turbine
NASA Astrophysics Data System (ADS)
Huang, B.; Yoshida, K.; Kanemoto, T.
2016-05-01
In the past decade, the tidal energies have caused worldwide concern as it can provide regular and predictable renewable energy resource for power generation. The majority of technologies for exploiting the tidal stream energy are based on the concept of the horizontal axis tidal turbine (HATT). A unique counter-rotating type HATT was proposed in the present work. The original blade profiles were designed according to the developed blade element momentum theory (BEMT). CFD simulations and experimental tests were adopted to the performance of the model counter-rotating type HATT. The experimental data provides an evidence of validation of the CFD model. Further optimization of the blade profiles was also carried out based on the CFD results.
Neutrinos in a left-right model with a horizontal symmetry
NASA Astrophysics Data System (ADS)
Kiers, Ken; Assis, Michael; Simons, David; Petrov, Alexey A.; Soni, Amarjit
2006-02-01
We analyze the lepton sector of a left-right model based on the gauge group SU(2)L×SU(2)R×U(1), concentrating mainly on neutrino properties. Using the seesaw mechanism and a horizontal symmetry, we keep the right-handed symmetry breaking scale relatively low, while simultaneously satisfying phenomenological constraints on the light neutrino masses. We take the right-handed scale to be of order 10’s of TeV and perform a full numerical analysis of the model’s parameter space, subject to experimental constraints on neutrino masses and mixings. The numerical procedure yields results for the right-handed neutrino masses and mixings and the various CP-violating phases. We also discuss phenomenological applications of the model to neutrinoless double beta decay, lepton-flavor-violating decays (including decays such as τ→3μ) and leptogenesis.
Cappa, F.; Guglielmi, Y.; Rutqvist, J.; Tsang, C-F.; Thoraval, A.
2006-04-22
In situ fracture mechanical deformation and fluid flowinteractions are investigated through a series of hydraulic pulseinjection tests, using specialized borehole equipment that cansimultaneously measure fluid pressure and fracture displacements. Thetests were conducted in two horizontal boreholes spaced one meter apartvertically and intersecting a near-vertical highly permeable faultlocated within a shallow fractured carbonate rock. The field data wereevaluated by conducting a series of coupled hydromechanical numericalanalyses, using both distinct-element and finite-element modelingtechniques and both two- and three-dimensional model representations thatcan incorporate various complexities in fracture network geometry. Oneunique feature of these pulse injection experiments is that the entiretest cycle, both the initial pressure increase and subsequent pressurefall-off, is carefully monitored and used for the evaluation of the insitu hydromechanical behavior. Field test data are evaluated by plottingfracture normal displacement as a function of fluid pressure, measured atthe same borehole. The resulting normal displacement-versus-pressurecurves show a characteristic loop, in which the paths for loading(pressure increase) and unloading (pressure decrease) are different. Bymatching this characteristic loop behavior, the fracture normal stiffnessand an equivalent stiffness (Young's modulus) of the surrounding rockmass can be back-calculated. Evaluation of the field tests by couplednumerical hydromechanical modeling shows that initial fracture hydraulicaperture and normal stiffness vary by a factor of 2 to 3 for the twomonitoring points within the same fracture plane. Moreover, the analysesshow that hydraulic aperture and the normal stiffness of the pulse-testedfracture, the stiffness of surrounding rock matrix, and the propertiesand geometry of the surrounding fracture network significantly affectcoupled hydromechanical responses during the pulse injection test
Cancer Progression Mediated by Horizontal Gene Transfer in an In Vivo Model
Trejo-Becerril, Catalina; Pérez-Cárdenas, Enrique; Taja-Chayeb, Lucía; Anker, Philippe; Herrera-Goepfert, Roberto; Medina-Velázquez, Luis A.; Hidalgo-Miranda, Alfredo; Pérez-Montiel, Delia; Chávez-Blanco, Alma; Cruz-Velázquez, Judith; Díaz-Chávez, José; Gaxiola, Miguel; Dueñas-González, Alfonso
2012-01-01
It is known that cancer progresses by vertical gene transfer, but this paradigm ignores that DNA circulates in higher organisms and that it is biologically active upon its uptake by recipient cells. Here we confirm previous observations on the ability of cell-free DNA to induce in vitro cell transformation and tumorigenesis by treating NIH3T3 recipient murine cells with serum of colon cancer patients and supernatant of SW480 human cancer cells. Cell transformation and tumorigenesis of recipient cells did not occur if serum and supernatants were depleted of DNA. It is also demonstrated that horizontal cancer progression mediated by circulating DNA occurs via its uptake by recipient cells in an in vivo model where immunocompetent rats subjected to colon carcinogenesis with 1,2-dimethylhydrazine had increased rate of colonic tumors when injected in the dorsum with human SW480 colon carcinoma cells as a source of circulating oncogenic DNA, which could be offset by treating these animals with DNAse I and proteases. Though the contribution of biologically active molecules other than DNA for this phenomenon to occur cannot be ruled out, our results support the fact that cancer cells emit into the circulation biologically active DNA to foster tumor progression. Further exploration of the horizontal tumor progression phenomenon mediated by circulating DNA is clearly needed to determine whether its manipulation could have a role in cancer therapy. PMID:23285175
The horizontal planar structure of kinetic energy in a model vertical-axis wind turbine array
NASA Astrophysics Data System (ADS)
Craig, Anna; Zeller, Robert; Zarama, Francisco; Weitzman, Joel; Dabiri, John; Koseff, Jeffrey
2013-11-01
Recent studies have indicated that arrays of vertical axis wind turbines (VAWTs) could potentially harvest significantly more power per unit land area than arrays composed of conventional horizontal axis wind turbines. However, to design VAWT arrays for optimal power conversion, a more comprehensive understanding of inter-turbine energy transfer is needed. In the presented study, a geometrically scaled array of rotating circular cylinders is used to model a VAWT array. The horizontal inter-cylinder mean fluid velocities and Reynolds stresses are measured on several cross-sections using 2D particle image velocimetry in a flume. Two orientations of the array relative to the incoming flow are tested. The results indicate that cylinder rotation drives asymmetric mean flow patterns within and above the array, resulting in non-uniform distributions of turbulent kinetic energy. The variability is observed to be directly related to the ratio of the cylinder rotation speed to the streamwise water velocity. Emphasis is placed on the implications of the asymmetries for power production. Work supported by a Stanford Graduate Fellowship to A.E.C, by funding to J.O.D. from ONR N000141211047 and the Gordon and Betty Moore Foundation through Grant GBMF2645, and by funding from the Environmental Fluid Mechanics Laboratory, Stanford University.
Nightingale, K R; Nightingale, R W; Palmeri, M L; Trahey, G E
2000-01-01
The early detection of breast cancer reduces patient mortality. The most common method of breast cancer detection is palpation. However, lesions that lie deep within the breast are difficult to palpate when they are small. Thus, a method of remote palpation, which may allow the detection of small lesions lying deep within the breast, is currently under investigation. In this method, acoustic radiation force is used to apply localized forces within tissue (to tissue volumes on the order of 2 mm3) and the resulting tissue displacements are mapped using ultrasonic correlation based methods. A volume of tissue that is stiffer than the surrounding medium (i.e., a lesion) distributes the force throughout the tissue beneath it, resulting in larger regions of displacement, and smaller maximum displacements. The resulting displacement maps may be used to image tissue stiffness. A finite-element-model (FEM) of acoustic remote palpation is presented in this paper. Using this model, a parametric analysis of the affect of varying tissue and acoustic beam characteristics on radiation force induced tissue displacements is performed. The results are used to evaluate the potential of acoustic remote palpation to provide useful diagnostic information in a clinical setting. The potential for using a single diagnostic transducer to both generate radiation force and track the resulting displacements is investigated. PMID:10823496
NASA Astrophysics Data System (ADS)
Bleck, Rainer; Sun, Shan; Li, Haiqin; Benjamin, Stan
2016-04-01
Current efforts to close the gap between weather prediction and climate models have led to the construction of a coupled ocean-atmosphere system consisting of two high-resolution component models, operating on matching icosahedral grids and utilizing adaptive, near-isentropic/isopycnic vertical coordinates. The two components models, FIM and HYCOM (the latter converted to an icosahedral mesh for this purpose), have been tested extensively in twice-daily global medium-range weather prediction (http://fim.noaa.gov) and in real-time ocean data assimilation (http://hycom.org), respectively. The use of matching horizontal grids, currently at resolutions of 15km, 30km and 60km, avoids coastline ambiguities and interpolation errors at the air-sea interface. The intended purpose of the coupled model being subseasonal-to-seasonal prediction, our focus is on mid-term precipitation biases and the statistical steadiness of the atmospheric circulation (blocking frequency, Rossby wave breaking, meridional heat transport, etc.), as well as on possible causes of ocean model drift. An attempt is made to isolate the weather model's role in modifying water mass properties and ocean circulations (including meridional overturning) by comparing coupled model results to ocean-only experiments forced by observed atmospheric boundary conditions. A multi-decadal run at 60km resolution is used to illustrate ENSO variability in the coupled system.
Modelling coastal low-level wind-jets: does horizontal resolution matter?
NASA Astrophysics Data System (ADS)
Ranjha, Raza; Tjernström, Michael; Svensson, Gunilla; Semedo, Alvaro
2016-04-01
Atmospheric flows in coastal regions are impacted by land-sea temperature contrasts, complex terrain, shape of the coastline, among many things. Along the west coast of central North America, winds in the boundary layer are mainly from north or northwest, roughly parallel to the coastline. Frequently, the coastal low-level wind field is characterized by a sharp wind maximum along the coast in the lowest kilometre. This feature, commonly referred to as a coastal low-level jet (CLLJ), has significant impact on the climatology of the coastal region and affects many human activities in the littoral zone. Hence, a good understanding and forecasting of CLLJs are vital. This study evaluates the issue of proper mesoscale numerical model resolution to describe the physics of a CLLJ, and its impact on the upper ocean. The COAMPS® model is used for a summer event to determine the realism of the model results compared to observations, from an area of supercritical flow adjustment between Pt. Sur and Pt. Conception, California. Simulations at different model horizontal resolutions, from 54 to 2 km are performed. While the model produces realistic results with increasing details at higher resolution, the results do not fully converge even at a resolution of only few kilometres and an objective analysis of model errors do not show an increased skill with increasing resolution. Based on all available information, a compromise resolution appears to be at least 6 km. New methods may have to be developed to evaluate models at very high resolution.
Using Microfluidics for Visualisation of Displacement Mechanisms on Pore Network Models
NASA Astrophysics Data System (ADS)
Gerami Kaviri Nejad, A.; Mostaghimi, P.; Armstrong, R. T.; Rafeie, M.; Ebrahimi Warkiani, M.
2015-12-01
We use microfluidic methods for studying displacement mechanisms of immiscible fluids including drainage and imbibition in porous media at the pore scale. We use soft lithography method to make 4' diameter silicon wafer to be used as a mould of our designs. We have fabricated a range of microfluidic chips based on a range of patterns including pore junction with unequal throats, junction of throats with different coordination numbers, and junction of tortuous throats. We also fabricate more complex networks as a combination of the mentioned simple patterns. Decane and water are used as the wetting and non-wetting phases, respectively. Using high-resolution microscopy, we visualise the displacement processes and the movement of the interface between two fluids at different saturations. We initially test to micromodel chip for modelling drainage into a pore junction and compare our results with the prediction by the Young-Laplace equations. Then we focus on the sequence of pore filling and effects of pore space geometry, tortuosity and the injection rate. We use plasma treating to vary the contact angle and then study the effects of wettability on interface movement. Using accurate pump and pressure controller, we measure pressure drop across the micromodels at different time. By image processing of fluids distribution in the microfluidic chip, saturation of both phases can be estimated. Then, we plot relative permeability versus saturation curves for different pore space geometries. Our results can be used for validation of numerical two phase flow simulation and also we provide novel suggestions for modifying the equations of motion in pore network models.
NASA Technical Reports Server (NTRS)
Bjarke, Lisa J.
1991-01-01
During flight testing of the AFTI/F111 aircraft, horizontal tail buffet was observed. Flutter analysis ruled out any aeroelastic instability, so a water-tunnel flow visualization study was conducted to investigate possible flow disturbances on the horizontal tail which might cause buffet. For this study, a 1/48-scale model was used. Four different wing cambers and one horizontal tail setting were tested between 0 and 20 deg angle of attack. These wing cambers corresponded to the following leading training edge deflections: 0/2, 10/10, 10/2, and 0/10. Flow visualization results in the form of still photographs are presented for each of the four wing cambers between 8 and 12 deg angle of attack. In general, the horizontal tail experiences flow disturbances which become more pronounced with angle of attack or wing trailing-edge deflection.
Influence of Reynolds number on performance modeling of horizontal axis wind rotors
Musial, W.D.; Cromack, D.E.
1988-05-01
This paper investigates the influence of Reynolds number on performance modeling of horizontal axis wind rotors. A procedure for accounting for Reynolds number effects on airfoil section models was developed and implemented for NACA 0012 and NACA 4415 profiles; both of these models is valid through angles of attack up to 90 deg and for Reynolds numbers ranging from 4 x 10/sup 4/ to 3 x 10/sup 6/. These models were incorporated into both a lifting line computer code, LL200R, adapted for this report. This enabled greater uncertainty to be obtained in evaluating theoretical performance codes with respect to actual data, as well as providing a means by which a parametric analysis of the relative effects of Re changes on rotor performance to be performed. The use of low Reynolds number section data was found to significantly lower the predicted values of power coefficient, particularly at off-design tip speed-ratios. For symmetrical airfoils, this effect on performance was only significant for low tip-speed- ratios, while cambered airfoils were affected more uniformly at all operating conditions. Changes in performance were induced by parametric variations of wind speed, rotor scale, and rotor generating mode using the Reynolds number dependent section models. Results show that wind speed variations are more significant for smaller rotors at lower wind-speeds, and section models represented at only a single Reynolds number are more suitable for the analysis of constant RPM rotors.
Salazar-Serrano, Luis José; Valencia, Alejandra; Torres, Juan P.
2015-03-15
We report the implementation of a tunable beam displacer, composed of a polarizing beam splitter (PBS) and two mirrors, that divides an initially polarized beam into two parallel beams whose separation can be continuously tuned. The two output beams are linearly polarized with either vertical or horizontal polarization and no optical path difference is introduced between them. The wavelength dependence of the device as well as the maximum separation between the beams achievable is limited mainly by the PBS characteristics.
Muon anomalous magnetic moment and positron excess at AMS-02 in a gauged horizontal symmetric model
NASA Astrophysics Data System (ADS)
Tomar, Gaurav; Mohanty, Subhendra
2014-11-01
We studied an extension of the standard model with a fourth generation of fermions to explain the discrepancy in the muon ( g -2) and explain the positron excess seen in the AMS-02 experiment. We introduce a gauged SU(2)HV horizontal symmetry between the muon and the 4th generation lepton families. The 4th generation right-handed neutrino is identified as the dark matter with mass ~ 700GeV. The dark matter annihilates only to ( μ + μ -) and ( ν {/μ C } ν μ ) states via SU(2)HV gauge boson. The SU(2)HV gauge boson with mass ~ 1.4 TeV gives an adequate contribution to the ( g - 2) of muon and fulfill the experimental constraint from BNL measurement. The higgs production constraints from 4th generation fermions is evaded by extending the higgs sector.
NASA Technical Reports Server (NTRS)
Otterman, J.; Brakke, T.
1986-01-01
The projections of leaf areas onto a horizontal plane and onto a vertical plane are examined for their utility in characterizing canopies for sunlight penetration (direct beam only) models. These projections exactly specify the penetration if the projections on the principal plane of the normals to the top surfaces of the leaves are in the same quadrant as the sun. Inferring the total leaf area from these projections (and therefore the penetration as a function of the total leaf area) is possible only with a large uncertainty (up to + or - 32 percent) because the projections are a specific measure of the total leaf area only if the leaf angle distribution is known. It is expected that this uncertainty could be reduced to more acceptable levels by making an approximate assessment of whether the zenith angle distribution is that of an extremophile canopy.
Numerical modelling of resolution and sensitivity of ERT in horizontal boreholes
NASA Astrophysics Data System (ADS)
Danielsen, Berit E.; Dahlin, Torleif
2010-03-01
Resistivity in horizontal boreholes can give useful detailed information about the geological conditions for construction in rock, i.e. in front of a tunnel bore machine. This paper is an attempt to identify a suitable methodology for an effective measuring routine for this type of geophysical measurements under actual construction site conditions. Prior to any measurements numerical modelling was done in order to evaluate the resolution of different electrode arrays. Four different arrays were tested; dipole-pole, cross-hole dipole-dipole, cross-hole pole-tripole and multiple gradient array. Additionally the resolution of a combination of cross-hole dipole-dipole and multiple gradient was assessed. The 2D sensitivity patterns for various arrangements of the cross-hole dipole-dipole and multiple gradient array were examined. The sensitivity towards inaccurate borehole geometry and the influence of water in the boreholes were also investigated. Based on the model study the cross-hole dipole-dipole array, multiple gradient array and a combination of these were found to give the best result and therefore were used for test measurements in horizontal boreholes. The boreholes were 28.5 m long and drilled 6.5 m apart. Prototypes of semi-rigid borehole cables made it possible to insert multi electrode cables in an efficient way, allowing fast measurement routines. These measurements were then studied to determine their accuracy and applicability. The results showed a high resistivity rock mass at the site. A transition from high resistivity to slightly lower resistivity coincides well with a change in lithology from gneiss-granite to gneiss. It is likely that the shotcrete on the tunnel wall is seen as a low resistivity zone. The measurements are a valuable tool, but further development of the cables and streamlining of measuring routines have to be performed before the resistivity tomography can be used routinely in pilot holes during construction in rocks.
NASA Astrophysics Data System (ADS)
Ofei, T. N.; Irawan, S.; Pao, W.
2015-04-01
During oil and gas drilling operations, frictional pressure loss is experienced as the drilling fluid transports the drilled cuttings from the bottom-hole, through the annulus, to the surface. Estimation of these pressure losses is critical when designing the drilling hydraulic program. Two-phase frictional pressure loss in the annulus is very difficult to predict, and even more complex when there is drillpipe rotation. Accurate prediction will ensure that the correct equivalent circulating density (ECD) is applied in the wellbore to prevent formation fracture, especially in formations with narrow window between the pore pressure and fracture gradient. Few researchers have attempted to propose cuttings-liquid frictional pressure loss models, nevertheless, these models fail when they are applied to narrow wellbores such as in casing- while-drilling and slimhole applications. This study proposes improved cuttings-liquid frictional pressure loss models for narrow horizontal annuli with drillpipe rotation using Dimensional Analysis. Both Newtonian and non-Newtonian fluids were considered. The proposed model constants were fitted by generated data from a full-scale simulation study using ANSYS-CFX. The models showed improvement over existing cuttings-liquid pressure loss correlations in literature.
A dynamical model for reflex activated head movements in the horizontal plane
NASA Technical Reports Server (NTRS)
Peng, G. C.; Hain, T. C.; Peterson, B. W.
1996-01-01
We present a controls systems model of horizontal-plane head movements during perturbations of the trunk, which for the first time interfaces a model of the human head with neural feedback controllers representing the vestibulocollic (VCR) and the cervicocollic (CCR) reflexes. This model is homeomorphic such that model structure and parameters are drawn directly from anthropomorphic, biomechanical and physiological studies. Using control theory we analyzed the system model in the time and frequency domains, simulating neck movement responses to input perturbations of the trunk. Without reflex control, the head and neck system produced a second-order underdamped response with a 5.2 dB resonant peak at 2.1 Hz. Adding the CCR component to the system dampened the response by approximately 7%. Adding the VCR component dampened head oscillations by 75%. The VCR also improved low-frequency compensation by increasing the gain and phase lag, creating a phase minimum at 0.1 Hz and a phase peak at 1.1 Hz. Combining all three components (mechanics, VCR and CCR) linearly in the head and neck system reduced the amplitude of the resonant peak to 1.1 dB and increased the resonant frequency to 2.9 Hz. The closed loop results closely fit human data, and explain quantitatively the characteristic phase peak often observed.
Nitrogen transformation in horizontal subsurface flow constructed wetlands I: Model development
NASA Astrophysics Data System (ADS)
Mayo, A. W.; Bigambo, T.
In this paper a mathematical model for prediction of nitrogen transformation in horizontal subsurface flow constructed wetlands was developed. Two horizontal subsurface flow constructed wetlands were designed to receive organic loading rate below 50 kg/ha/d and hydraulic loading rate of 480 m 3/ha/d from a primary facultative pond. Two rectangular shaped units each 11.0 m long, 3.7 m wide and 1.0 m deep and bottom slope of 1% were constructed and filled with 6-25 mm diameter gravel pack to a depth of 0.75 m. Each unit was planted with Phragmites mauritianus with an initial plant density of 29,000 plants/ha. The plants were allowed to grow for about four months before sampling for water quality parameters commenced. Samples were collected daily for about three months. Dissolved oxygen, pH and temperature were measured in situ and ammonia, total Kjeldahl nitrogen, nitrates, nitrite and Chemical Oxygen Demand were measured in the laboratory in accordance with Standard Methods. The mathematical model took into account activities of biomass suspended in the water body and biofilm on aggregates and plant roots. The state variables modelled include organic, ammonia, and nitrate-nitrogen, which were sectored in water, plant and aggregates. The major nitrogen transformation processes considered in this study were mineralization, nitrification, denitrification, plant uptake, plant decaying, and sedimentation. The forcing functions, which were considered in the model, are temperature, pH and dissolved oxygen. Stella II software was used to simulate the nitrogen processes influencing the removal of nitrogen in the constructed wetland. One of the two-wetland units was used for model calibration and the second unit for model validation. The model results indicated that 0.872 gN/m 2 d was settled at the bottom of the wetland and on gravel bed and roots of the plants. However, 0.752 gN/m 2 d (86.2%) of the settled nitrogen was regenerated back to the water body, which means that
Wolter, Christian; Arlinghaus, Robert; Sukhodolov, Alexander; Engelhardt, Christof
2004-11-01
The likely extension of commercial inland navigation in the future could increase hazards directly impacting on the nurseries of freshwater fish, especially for smaller individuals with limited swimming abilities. One limitation of the evaluation of inland navigation on fish assemblages is the lack of suitable hydraulic models. This article presents a hydraulic model to assess the increase of navigation-induced physical forces due to higher vessel speed, length, and drought in a low-flowing waterway related to maximum swimming performance of fish to (1) foresee hazards of enhancement of inland navigation, (2) derive construction measures to minimize the hydraulic impact on small fish, and (3) improve fish recruitment in waterways. The derived model computed current velocities induced by passing commercial vessels in inland waterways experimentally verified and parameterized in a German lowland waterway. Results were linked with a model of maximum fish swimming performance to elucidate consequences for freshwater fish populations. The absolute magnitude of navigation-induced current limits the availability of littoral habitats for small fish. Typical navigation-induced current velocities of 0.7-1 m/s in the straight reaches of waterways will be maintained by fish longer than 42 mm only. Smaller juveniles unable to withstand those currents could become washed out, injured, or displaced. In contrast, in small local bays, the navigation-induced current declined significantly. According to our model, in a 20-m extended bay, the return current drops below 0.11 m/s, corresponding to the maximum swimming speed of a 9-mm-long fish. Thus, enhancing shoreline development by connecting oxbows, tributaries, and especially by purpose-built bays limits the impact on fish recruitment without restricting navigation resulting in more precautionary and sustainable inland navigation. PMID:15549651
Menzel, Andreas M
2015-11-01
Diffusion of colloidal particles in a complex environment such as polymer networks or biological cells is a topic of high complexity with significant biological and medical relevance. In such situations, the interaction between the surroundings and the particle motion has to be taken into account. We analyze a simplified diffusion model that includes some aspects of a complex environment in the framework of a nonlinear friction process: at low particle speeds, friction grows linearly with the particle velocity as for regular viscous friction; it grows more than linearly at higher particle speeds; finally, at a maximum of the possible particle speed, the friction diverges. In addition to bare diffusion, we study the influence of a constant drift force acting on the diffusing particle. While the corresponding stationary velocity distributions can be derived analytically, the displacement statistics generally must be determined numerically. However, as a benefit of our model, analytical progress can be made in one case of a special maximum particle speed. The effect of a drift force in this case is analytically determined by perturbation theory. It will be interesting in the future to compare our results to real experimental systems. One realization could be magnetic colloidal particles diffusing through a shear-thickening environment such as starch suspensions, possibly exposed to an external magnetic field gradient. PMID:26651690
Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander
2015-04-01
Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106
Adjoint Assimilation of ARGO float displacement data into an eddy-resolving ocean model
NASA Astrophysics Data System (ADS)
Filatoff, N.; Assenbaum, M.
2003-04-01
Within the SHOM/BRESM assimilation group in Toulouse, France, we are investigating means of assimilating ARGO float displacement data into a regional open-boundary implementation of MICOM. The model area covers a small part of the North Atlantic Ocean off the portugese coast, where intensive surveys and float releases were performed in years 2000 and 2001 within the french POMME experiment. Our special topic of interest is the behaviour of assimilation methods with respect to mesoscale structures such as eddies and fronts. The ARGO float cycle of typically 10 days introduces weak or strong aliasing of these structures. The methods beeing developed and tested include various implementation of objective analysis as well as variational methods. Our approach is pragmatic : the methods are implemented and their performances for analysis and forecast are compared, using observed float data provided by the CORIOLIS real-time data center in Brest. We will expose our model and assimilation setup and show results using sequential and variational methods.
Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation
NASA Astrophysics Data System (ADS)
Hong, Difeng; Tang, Jiali; Ren, Gexue
2011-11-01
In this paper, a dynamic model of a linear medium with mass flow, such as traveling strings, cables, belts, beams or pipes conveying fluids, is proposed, in the framework of Arbitrary-Lagrange-Euler (ALE) description. The material coordinate is introduced to characterize the mass-flow of the medium, and the Absolute Nodal Coordinate Formulation (ANCF) is employed to capture geometric nonlinearity of the linear media under large displacement and rotation. The governing equations are derived in terms of d'Alembert's principle. When using an ALE description, complex mass-flowing boundary conditions can be easily enforced. Numerical examples are presented to validate the proposed method by comparison with analytical results of simplified models. The computed critical fluid velocity for the stability of a cantilevered pipe conveying fluid is correlated with the available theory in literature. The large amplitude limit-cycle oscillations of flexible pipes conveying fluid are presented, and the effect of the velocity of the fluid on the static equilibrium of the pipe under gravity is investigated.
NASA Astrophysics Data System (ADS)
Menzel, Andreas M.
2015-11-01
Diffusion of colloidal particles in a complex environment such as polymer networks or biological cells is a topic of high complexity with significant biological and medical relevance. In such situations, the interaction between the surroundings and the particle motion has to be taken into account. We analyze a simplified diffusion model that includes some aspects of a complex environment in the framework of a nonlinear friction process: at low particle speeds, friction grows linearly with the particle velocity as for regular viscous friction; it grows more than linearly at higher particle speeds; finally, at a maximum of the possible particle speed, the friction diverges. In addition to bare diffusion, we study the influence of a constant drift force acting on the diffusing particle. While the corresponding stationary velocity distributions can be derived analytically, the displacement statistics generally must be determined numerically. However, as a benefit of our model, analytical progress can be made in one case of a special maximum particle speed. The effect of a drift force in this case is analytically determined by perturbation theory. It will be interesting in the future to compare our results to real experimental systems. One realization could be magnetic colloidal particles diffusing through a shear-thickening environment such as starch suspensions, possibly exposed to an external magnetic field gradient.
Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation.
Mao, Junwen; Lu, Ting
2016-01-01
Natural transformation is a major mechanism of horizontal gene transfer (HGT) and plays an essential role in bacterial adaptation, evolution, and speciation. Although its molecular underpinnings have been increasingly revealed, natural transformation is not well characterized in terms of its quantitative ecological roles. Here, by using Neisseria gonorrhoeae as an example, we developed a population-dynamic model for natural transformation and analyzed its dynamic characteristics with nonlinear tools and simulations. Our study showed that bacteria capable of natural transformation can display distinct population behaviors ranging from extinction to coexistence and to bistability, depending on their HGT rate and selection coefficient. With the model, we also illustrated the roles of environmental DNA sources-active secretion and passive release-in impacting population dynamics. Additionally, by constructing and utilizing a stochastic version of the model, we examined how noise shapes the steady and dynamic behaviors of the system. Notably, we found that distinct waiting time statistics for HGT events, namely a power-law distribution, an exponential distribution, and a mix of the both, are associated with the dynamics in the regimes of extinction, coexistence, and bistability accordingly. This work offers a quantitative illustration of natural transformation by revealing its complex population dynamics and associated characteristics, therefore advancing our ecological understanding of natural transformation as well as HGT in general. PMID:26745428
Modeling vertical and horizontal solute transport for the Weldon Spring Site Remedial Action Project
Tomasko, D.
1992-11-01
This technical memorandum presents a one-dimensional model to simulate the transport of a contaminant that originates as a liquid release, moves vertically downward through a vadose zone, mixes with initially clean groundwater in an unconfined aquifer, and ends at a downgradient extraction well. Vertical and horizontal segments of the contaminant pathway are coupled by assuming that the breakthrough curve of the contaminant at the water table acts as a contaminant source for the unconfined aquifer. For simplicity, this source is assumed to be a time-shifted unit square wave having an amplitude equal to the peak breakthrough concentration at the water table and a duration equal to the full width of the breakthrough curve at the half-maximum concentration value. The effects of dilution at the water-table interface are evaluated with a simple mass-balance equation. Comparing the model results for the chemical plant area of the Weldon Spring site near St. Louis, Missouri, and the Envirocare facility located near Salt Lake City, Utah, with those obtained from a solution formulated with the real and imaginary parts of a Fourier series in Laplace space indicates that the model provides a conservative estimate of the contaminant breakthrough curve at the receptor.
Assessing the sensitivity to horizontal resolution of Unified Model simulations of Hurricane Katrina
NASA Astrophysics Data System (ADS)
O'Hara, J. P.; Webster, S.
2012-12-01
In August 2005 Hurricane Katrina made landfall close to New Orleans with devastating consequences. It was one of the strongest storms to impact the coast of the United States and was also one of the most costly. At peak intensity, its central pressure was 902 hPa and 10 m wind speeds were 175 mph. The extreme nature of this weather system therefore makes it an ideal case study to assess the ability of the Met Office Unified Model to simulate and potentially forecast such phenomena. In this study we assess the ability of the Met Office Unified Model (UM) to simulate Hurricane Katrina at a range of horizontal resolutions. Thus a set of limited area model simulations have been performed at resolutions of 1.5 km, 4 km and 24 km. By careful implementation of the lateral boundary conditions it has been possible to (one way) nest all these simulations inside the 25 km operational global forecast model version of the UM. The configuration of the 1.5 km and 4 km models is based on the 1.5 km and 4 km models used operationally over the UK and hence convection is treated explicitly, whilst the 24 km LAM is configured in the same way as the operational global forecast model and hence convection is parametrized. The simulations are all performed on a 2400 km x 1600 km domain and are all initialised around four days prior to landfall, when the observed central pressure was close to 990 hPa. The initial data for the simulations are ERA-interim analyses with the 25 km global forecast generating hourly LBCs via a series of 24 hour long forecasts initialised from successive 12z analyses. Overall, these simulations have been configured in order to make as clean an assessment as possible of the impact of horizontal resolution on the simulation of Hurricane Katrina. In this presentation we first describe and illustrate results summarising the impact of model resolution on the simulated hurricane. Consistent with the systematic tropical cyclone behaviour of the global forecast model
NASA Astrophysics Data System (ADS)
Yost, Charles
Although often hard to correctly forecast, mesoscale convective systems (MCSs) are responsible for a majority of warm-season, localized extreme rain events. This study investigates displacement errors often observed by forecasters and researchers in the Global Forecast System (GFS) and the North American Mesoscale (NAM) models, in addition to the European Centre for Medium Range Weather Forecasts (ECMWF) and the 4-km convection allowing NSSL-WRF models. Using archived radar data and Stage IV precipitation data from April to August of 2009 to 2011, MCSs were recorded and sorted into unique six-hour intervals. The locations of these MCSs were compared to the associated predicted precipitation field in all models using the Method for Object-Based Diagnostic Evaluation (MODE) tool, produced by the Developmental Testbed Center and verified through manual analysis. A northward bias exists in the location of the forecasts in all lead times of the GFS, NAM, and ECMWF models. The MODE tool found that 74%, 68%, and 65% of the forecasts were too far to the north of the observed rainfall in the GFS, NAM and ECMWF models respectively. The higher-resolution NSSL-WRF model produced a near neutral location forecast error with 52% of the cases too far to the south. The GFS model consistently moved the MCSs too quickly with 65% of the cases located to the east of the observed MCS. The mean forecast displacement error from the GFS and NAM were on average 266 km and 249 km, respectively, while the ECMWF and NSSL-WRF produced a much lower average of 179 km and 158 km. A case study of the Dubuque, IA MCS on 28 July 2011 was analyzed to identify the root cause of this bias. This MCS shattered several rainfall records and required over 50 people to be rescued from mobile home parks from around the area. This devastating MCS, which was a classic Training Line/Adjoining Stratiform archetype, had numerous northward-biased forecasts from all models, which are examined here. As common with
NASA Astrophysics Data System (ADS)
Nykolaishen, L.; Dragert, H.; Wang, K.; James, T. S.; de Lange Boom, B.; Schmidt, M.; Sinnott, D.
2014-12-01
The M7.8 low-angle thrust earthquake off the west coast of southern Haida Gwaii on October 28, 2012, provided Canadian scientists the opportunity to study a local large thrust earthquake and has provided important information towards an improved understanding of geohazards in coastal British Columbia. Most large events along the Pacific-North America boundary in this region have involved strike-slip motion, such as the 1949 M8.1 earthquake on the Queen Charlotte Fault. In contrast along the southern portion of Haida Gwaii, the young (~8 Ma) Pacific plate crust also underthrusts North America and has been viewed as a small-scale analogy of the Cascadia Subduction Zone. Initial seismic-based rupture models for this event were improved through inclusion of GPS observed coseismic displacements, which are as large as 115 cm of horizontal motion (SSW) and 30 cm of subsidence. Additional campaign-style GPS surveys have since been repeated by the Canadian Hydrographic Service (CHS) at seven vertical reference benchmarks throughout Haida Gwaii, significantly improving the coverage of coseismic displacement observations in the region. These added offsets were typically calculated by differencing a single occupation before and after the earthquake and preliminary displacement estimates are consistent with previous GPS observations from the Geological Survey of Canada. Addition of the CHS coseismic offset estimates may allow direct inversion of the GPS data to derive a purely GPS-based rupture model. To date, cumulative postseismic displacements at six sites indicate up to 6 cm of motion, varying in azimuth between SSW and SE. Preliminary postseismic timeseries curve fitting to date has utilized a double exponential function characteristic of mantle relaxation. The current postseismic trends also suggest afterslip on the deeper plate interface beneath central Haida Gwaii along with possible induced aseismic slip on a deeper segment of the Queen Charlotte Fault located offshore
The distance scale to globular clusters through new horizontal branch models.
NASA Astrophysics Data System (ADS)
Caloi, V.; D'Antona, F.; Mazzitelli, I.
1997-04-01
As a completion of preceding work (Mazzitelli et al. 1995A&A...302..382M), we present new horizontal branch models with mass fractions of heavy element content Z=2x10^-4^ and 6x10^-4^; we discuss the complete set of models with Z from 10^-4^ to 3x10^-3^, and their implications for the ages of galactic globular clusters. Models at low Z are ~0.15mag more luminous than equivalent models of the previous generation, implying a reduction of globular cluster ages of ~2Gyr. Half of this effect depends on the core masses at the helium flash, which are larger by 0.007Msun_ at Z=10^-4^; the remaining half depends on the new microphysical inputs (equation of state and opacities) in present models. The distance scale resulting from these new models for [Fe/H]<~-1 is consistent with Sandage (1993) and Walker (1992) scales, but not with Carney et al. (1992) scale. The relation M_v_(ZAHB) vs. [Fe/H] is not linear, so that the notion of slope turns out to be an elusive one, and in any case depending on the range of [Fe/H] considered. New computations of the core mass at the helium flash are presented and discussed. We finally show that the luminosity at the tip of the giant branch obtained in our computations is compatible with the maximum luminosity of giants observed in globular clusters by Frogel et al. (1983).
2012-01-01
Background If the geographical displacement of one species by another is accompanied by hybridization, mitochondrial DNA can introgress asymmetrically, from the outcompeted species into the invading species, over a large area. We explore this phenomenon using the two parapatric crested newt species, Triturus macedonicus and T. karelinii, distributed on the Balkan Peninsula in south-eastern Europe, as a model. Results We first delimit a ca. 54,000 km2 area in which T. macedonicus contains T. karelinii mitochondrial DNA. This introgression zone bisects the range of T. karelinii, cutting off a T. karelinii enclave. The high similarity of introgressed mitochondrial DNA haplotypes with those found in T. karelinii suggests a recent transfer across the species boundary. We then use ecological niche modeling to explore habitat suitability of the location of the present day introgression zone under current, mid-Holocene and Last Glacial Maximum conditions. This area was inhospitable during the Last Glacial Maximum for both species, but would have been habitable at the mid-Holocene. Since the mid-Holocene, habitat suitability generally increased for T. macedonicus, whereas it decreased for T. karelinii. Conclusion The presence of a T. karelinii enclave suggests that T. karelinii was the first to colonize the area where the present day introgression zone is positioned after the Last Glacial Maximum. Subsequently, we propose T. karelinii was outcompeted by T. macedonicus, which captured T. karelinii mitochondrial DNA via introgressive hybridization in the process. Ecological niche modeling suggests that this replacement was likely facilitated by a shift in climate since the mid-Holocene. We suggest that the northwestern part of the current introgression zone was probably never inhabited by T. karelinii itself, and that T. karelinii mitochondrial DNA spread there through T. macedonicus exclusively. Considering the spatial distribution of the introgressed mitochondrial DNA and
NASA Astrophysics Data System (ADS)
Salah, Ahmad M.; Nelson, E. James; Williams, Gustavious P.
2010-04-01
We present algorithms and tools we developed to automatically link an overland flow model to a hydrodynamic water quality model with different spatial and temporal discretizations. These tools run the linked models which provide a stochastic simulation frame. We also briefly present the tools and algorithms we developed to facilitate and analyze stochastic simulations of the linked models. We demonstrate the algorithms by linking the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model for overland flow with the CE-QUAL-W2 model for water quality and reservoir hydrodynamics. GSSHA uses a two-dimensional horizontal grid while CE-QUAL-W2 uses a two-dimensional vertical grid. We implemented the algorithms and tools in the Watershed Modeling System (WMS) which allows modelers to easily create and use models. The algorithms are general and could be used for other models. Our tools create and analyze stochastic simulations to help understand uncertainty in the model application. While a number of examples of linked models exist, the ability to perform automatic, unassisted linking is a step forward and provides the framework to easily implement stochastic modeling studies.
Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows
Sarkar, Avik; Sun, Xin; Sundaresan, Sankaran
2013-09-08
Immersed cylindrical tube arrays often are used as heat exchangers in gas-particle fluidized beds. In multiphase computational fluid dynamics (CFD) simulations of large fluidized beds, explicit resolution of small cylinders is computationally infeasible. Instead, the cylinder array may be viewed as an effective porous medium in coarse-grid simulations. The cylinders' influence on the suspension as a whole, manifested as an effective drag force, and on the relative motion between gas and particles, manifested as a correction to the gas-particle drag, must be modeled via suitable sub-grid constitutive relationships. In this work, highly resolved unit-cell simulations of flow around an array of horizontal cylinders, arranged in a staggered configuration, are filtered to construct sub-grid, or `filtered', drag models, which can be implemented in coarse-grid simulations. The force on the suspension exerted by the cylinders is comprised of, as expected, a buoyancy contribution, and a kinetic component analogous to fluid drag on a single cylinder. Furthermore, the introduction of tubes also is found to enhance segregation at the scale of the cylinder size, which, in turn, leads to a reduction in the filtered gas-particle drag.
Modeling and analysis of ORNL horizontal storage tank mobilization and mixing
Mahoney, L.A.; Terrones, G.; Eyler, L.L.
1994-06-01
The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m{sup 3} (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m{sup 3} (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents.
Modeling of stress-triggered faulting and displacement magnitude along Agenor Linea, Europa
NASA Astrophysics Data System (ADS)
Nahm, A.; Cameron, M. E.; Smith-Konter, B. R.; Pappalardo, R. T.
2012-12-01
We investigate the relationship between shear and normal stresses at Agenor Linea (AL) to better understand the role of tidal stress sources and implications for faulting on Europa. AL is a ~1500 km long, E-W trending, 20-30 km wide zone of geologically young deformation located in the southern hemisphere, and it forks into two branches at its eastern end. Based on photogeological evidence and stress orientation predictions, AL is primarily a right-lateral strike slip fault and may have accommodated up to 20 km of right-lateral slip. We compute tidal shear and normal stresses along present-day AL using SatStress, a numerical code that calculates tidal stresses at any point on the surface of a satellite for both diurnal and non-synchronous rotation (NSR) stresses. We adopt model parameters appropriate for Europa with a spherically symmetric, 20 km thick ice shell underlain by a global subsurface ocean and assume a coefficient of friction μ = 0.6. Along AL, shear stresses are primarily right-lateral (~1.8 MPa), while normal stresses are predominantly compressive along the west side of the structure (~0.7 MPa) and tensile along the east side (~2.9 MPa). Failure along AL is assessed using the Coulomb failure criterion, which states that shear failure occurs when the shear stress exceeds the frictional resistance of the fault. Where fault segments meet these conditions for shear failure, coseismic displacements are determined (assuming complete stress drop). We calculate shallow displacements as large as ~50 m at 1 km depth and ~10 m at 3 km depth. Triggered stresses from coseismic fault slip may also contribute to the total slip. We investigate the role of stress triggering by computing the change in Coulomb failure stress (ΔCFS) along AL. Where slip has occurred, negative ΔCFS is calculated; positive ΔCFS values indicate segments where failure is promoted. Positive ΔCFS is calculated at the western tip and the intersection of the branches with the main fault at a
NASA Astrophysics Data System (ADS)
Rafiei Renani, Hossein; Martin, C. Derek; Hudson, Richard
2016-04-01
An instrumented section of a 10-m-diameter circular shaft located at a depth of 1.2 km in an average quality rock mass was back analyzed to establish the rock mass behavior. Extensometers were installed radially at four locations and provided the primary data for the back analyses. Three- and two-dimensional continuum models were analyzed using the numerical codes FLAC3Dand Phase2 to assess the rock mass behavior. An initial set of mechanical parameters obtained from empirical relationships were found to give a reasonable match to the measured response of extensometers 2 and 4, when using a Mohr-Coulomb strain softening model. A different set of parameters were needed for FLAC3D when trying to match the significantly higher displacements recorded by only one of the extensometer. It was noted that regardless of the material model and corresponding parameters, the three-dimensional models were not able to give reasonable match to the results of all extensometers. It was shown that for the given problem, there is a theoretical limit for ratio of displacements predicted for different extensometers using a continuum isotropic material model. The two-dimensional models in Phase2, however, gave an apparently better overall match to all the extensometers. Comparison of the results of three-dimensional models with the assumed longitudinal displacement profile for the two-dimensional model indicated that the three-dimensional effects were not adequately captured in the two-dimensional model.
NASA Technical Reports Server (NTRS)
Quirk, W. J.; Atlas, R. M.
1977-01-01
The improved horizontal resolution global circulation model in question has a horizontal spacing of 2.5 deg latitude by 3 deg longitude for a resolution of about 250 km in midlatitude. This paper reports on experiments to determine the improvements in forecasting skill and in initial conditions that were made possible by the ultrafine resolution and ultrafine assimilation. The size of the improvement in skill score when the ultrafine model is used for forecasting and assimilation was so large that 60-hour forecasts with the ultrafine model had as good a skill score as the 48-hour forecasts with the fine model. Synoptic evaluations confirmed that ultrafine model forecasts are better than the fine model forecasts.
NASA Astrophysics Data System (ADS)
Nie, Ren-Shi; Guo, Jian-Chun; Jia, Yong-Lu; Zhu, Shui-Qiao; Rao, Zheng; Zhang, Chun-Guang
2011-09-01
The no-type curve with negative skin of a horizontal well has been found in the current research. Negative skin is very significant to transient well test and rate decline analysis. This paper first presents the negative skin problem where the type curves with negative skin of a horizontal well are oscillatory. In order to solve the problem, we propose a new model of transient well test and rate decline analysis for a horizontal well in a multiple-zone composite reservoir. A new dimensionless definition of rD is introduced in the dimensionless mathematical modelling under different boundaries. The model is solved using the Laplace transform and separation of variables techniques. In Laplace space, the solutions for both constant rate production and constant wellbore pressure production are expressed in a unified formula. We provide graphs and thorough analysis of the new standard type curves for both well test and rate decline analysis; the characteristics of type curves are the reflections of horizontal well production in a multiple-zone reservoir. An important contribution of our paper is that our model removed the oscillation in type curves and thus solved the negative skin problem. We also show that the characteristics of type curves depend heavily on the properties of different zones, skin factor, well length, formation thickness, etc. Our research can be applied to a real case study.
NASA Astrophysics Data System (ADS)
Matichard, F.; Evans, M.; Mittleman, R.; MacInnis, M.; Biscans, S.; Dooley, K. L.; Sohier, H.; Lauriero, A.; Paris, H.; Koch, J.; Knothe, P.; Carbajo, A.; Dufort, C.
2016-06-01
Tilt-horizontal coupling in inertial sensors limits the performance of active isolation systems such as those used in gravitational wave detectors. Inertial rotation sensors can be used to subtract the tilt component from the signal produced by horizontal inertial sensors, but such techniques are often limited by the sensor noise of the tilt measurement. A different approach is to mechanically filter the tilt transmitted to the horizontal inertial sensor, as discussed in this article. This technique does not require an auxiliary rotation sensor and can produce a lower noise measurement. The concept investigated uses a mechanical suspension to isolate the inertial sensor from input tilt. Modeling and simulations show that such a configuration can be used to adequately attenuate the tilt transmitted to the instrument, while maintaining translation sensitivity in the frequency band of interest. The analysis is supported by experimental results showing that this approach is a viable solution to overcome the tilt problem in the field of active inertial isolation.
Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher
2015-01-01
Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement (“jump”) consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106
NASA Astrophysics Data System (ADS)
Wiryadinata, Steven
Service life modeling was performed to gage the viability of unitary 3.5 kWt, ground-source terminal heat pumps (GTHP) employing horizontal directionally drilled geothermal heat exchangers (GHX) over air-source terminal heat pumps (PTHP) in hotels and motels and residential apartment building sectors in California's coastal and inland climates. Results suggest the GTHP can reduce hourly peak demand for the utility by 7%-25% compared to PTHP, depending on the climate and building type. The annual energy savings, which range from -1% to 5%, are highly dependent on the GTHP pump energy use relative to the energy savings attributed to the difference in ground and air temperatures (DeltaT). In mild climates with small ?T, the pump energy use may overcome any advantage to utilizing a GHX. The majority of total levelized cost savings - ranging from 0.18/ft2 to 0.3/ft 2 - are due to reduced maintenance and lifetime capital cost normally associated with geothermal heat pump systems. Without these reductions (not validated for the GTHP system studied), the GTHP technology does not appear to offer significant advantages over PTHP in the climate zones studied here. The GTHP levelized cost was most sensitive to variations in installed cost and in some cases, energy use (influenced by climate zone choice), which together highlights the importance of climate selection for installation, and the need for larger market penetration of ground-source systems in order to bring down installed costs as the technology matures.
Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe
NASA Astrophysics Data System (ADS)
Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy
2016-06-01
Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.
Lave, Matthew; Hayes, William; Pohl, Andrew; Hansen, Clifford W.
2015-02-02
We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decompositionmore » models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. Lastly, when only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.« less
NASA Astrophysics Data System (ADS)
Moreaux, G.; Lemoine, F. G.; Argus, D. F.; Santamaría-Gómez, A.; Willis, P.; Soudarin, L.; Gravelle, M.; Ferrage, P.
2016-07-01
In the context of the 2014 realization of the International Terrestrial Reference Frame (ITRF2014), the International DORIS Service (IDS) has delivered to the IERS a set of 1140 weekly SINEX files including station coordinates and Earth orientation parameters, covering the time period from 1993.0 to 2015.0. From this set of weekly SINEX files, the IDS Combination Center estimated a cumulative DORIS position and velocity solution to obtain mean horizontal and vertical motion of 160 stations at 71 DORIS sites. The main objective of this study is to validate the velocities of the DORIS sites by comparison with external models or time series. Horizontal velocities are compared with two recent global plate models (GEODVEL 2010 and NNR-MORVEL56). Prior to the comparisons, DORIS horizontal velocities were corrected for Global Isostatic Adjustment (GIA) from the ICE-6G (VM5a) model. For more than half of the sites, the DORIS horizontal velocities differ from the global plate models by less than 2-3 mm/yr. For five of the sites (Arequipa, Dionysos/Gavdos, Manila, Santiago) with horizontal velocity differences wrt these models larger than 10 mm/yr, comparisons with GNSS estimates show the veracity of the DORIS motions. Vertical motions from the DORIS cumulative solution are compared with the vertical velocities derived from the latest GPS cumulative solution over the time span 1995.0-2014.0 from the University of La Rochelle (ULR6) solution at 31 co-located DORIS-GPS sites. These two sets of vertical velocities show a correlation coefficient of 0.83. Vertical differences are larger than 2 mm/yr at 23 percent of the sites. At Thule the disagreement is explained by fine-tuned DORIS discontinuities in line with the mass variations of outlet glaciers. Furthermore, the time evolution of the vertical time series from the DORIS station in Thule show similar trends to the GRACE equivalent water height.
Clotet, Xavier; Ortín, Jordi; Santucci, Stéphane
2016-01-01
We report the results of an experimental investigation of the spatiotemporal dynamics of stable imbibition fronts in a disordered medium, in the regime of capillary disorder, for a wide range of experimental conditions. We have used silicone oils of various viscosities μ and nearly identical oil-air surface tension and forced them to slowly invade a model open fracture at different constant flow rates v. In this first part of the study we have focused on the local dynamics at a scale below the size of the quenched disorder. Changing μ and v independently, we have found that the dynamics is not simply controlled by the capillary number Ca∼μv. Specifically, we have found that the wide statistical distributions of local front velocities, and their large spatial correlations along the front, are indeed controlled by the capillary number Ca. However, local velocities exhibit also very large temporal correlations, and these correlations depend more strongly on the mean imposed velocity v than on the viscosity μ of the invading fluid. Correlations between local velocities lead to a burstlike dynamics. Avalanches, defined as clusters of large local velocities, follow power-law distributions-both in size and duration-with exponential cutoffs that diverge as Ca→0, the pinning-depinning transition of stable imbibition displacements. Large data sets have led to reliable statistics, from which we have derived accurate values of critical exponents of the relevant power-law distributions. We have investigated also the dependence of their cutoffs on μ and v and related them to the autocorrelations of local velocities in space and time. PMID:26871064
Displacement cascades in Fesbnd Nisbnd Mnsbnd Cu alloys: RVP model alloys
NASA Astrophysics Data System (ADS)
Terentyev, D.; Zinovev, A.; Bonny, G.
2016-07-01
Primary damage due to displacement cascades (10-100 keV) has been assessed in Fesbnd 1%Mnsbnd 1%Ni-0.5%Cu and its binary alloys by molecular dynamics (MD), using a recent interatomic potential, specially developed to address features of the Fesbnd Mnsbnd Nisbnd Cu system in the dilute limit. The latter system represents the model matrix for reactor pressure vessel steels. The applied potential reproduces major interaction features of the solutes with point defects in the binary, ternary and quaternary dilute alloys. As compared to pure Fe, the addition of one type of a solute or all solutes together does not change the major characteristics of primary damage. However, the chemical structure of the self-interstitial defects is strongly sensitive to the presence and distribution of Mn and Cu in the matrix. 20 keV cascades were also studied in the Fesbnd Nisbnd Mnsbnd Cu matrix containing <100> dislocation loops (with density of 1024 m-3 and size 2 nm). Two solute distributions were investigated, namely: a random one and one obtained by Metropolis Monte Carlo simulations from our previous work. The presence of the loops did not affect the defect production efficiency but slightly reduced the fraction of isolated self-interstitials and vacancies. The cascade event led to the transformation of the loops into ½<111> glissile configurations with a success rate of 10% in the matrix with random solute distribution, while all the pre-created loops remain stable if the alloy's distribution was applied using the Monte-Carlo method. This suggests that solute segregation to loops "stabilizes" the pre-existing loops against transformation or migration induced by collision cascades.
NASA Astrophysics Data System (ADS)
Clotet, Xavier; Ortín, Jordi; Santucci, Stéphane
2016-01-01
We report the results of an experimental investigation of the spatiotemporal dynamics of stable imbibition fronts in a disordered medium, in the regime of capillary disorder, for a wide range of experimental conditions. We have used silicone oils of various viscosities μ and nearly identical oil-air surface tension and forced them to slowly invade a model open fracture at different constant flow rates v . In this first part of the study we have focused on the local dynamics at a scale below the size of the quenched disorder. Changing μ and v independently, we have found that the dynamics is not simply controlled by the capillary number Ca˜μ v . Specifically, we have found that the wide statistical distributions of local front velocities, and their large spatial correlations along the front, are indeed controlled by the capillary number Ca. However, local velocities exhibit also very large temporal correlations, and these correlations depend more strongly on the mean imposed velocity v than on the viscosity μ of the invading fluid. Correlations between local velocities lead to a burstlike dynamics. Avalanches, defined as clusters of large local velocities, follow power-law distributions—both in size and duration—with exponential cutoffs that diverge as Ca→0 , the pinning-depinning transition of stable imbibition displacements. Large data sets have led to reliable statistics, from which we have derived accurate values of critical exponents of the relevant power-law distributions. We have investigated also the dependence of their cutoffs on μ and v and related them to the autocorrelations of local velocities in space and time.
Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model
Liu, Haihu; Valocchi, Albert J.; Werth, Charles J.; Kang, Oinjun; Oostrom, Martinus
2014-11-01
A lattice Boltzmann color-fluid model, which was recently proposed by Liu et al. [H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.] based on a concept of continuum surface force, is improved to simulate immiscible two-phase flows in porous media. The new improvements allow the model to account for different kinematic viscosities of both fluids and to model fluid-solid interactions. The capability and accuracy of this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. This model is then used to simulate liquid CO2 (LCO2) displacing water in a dual-permeability pore network. The extent and behavior of LCO2 preferential flow (i.e., fingering) is found to depend on the capillary number (Ca), and three different displacement patterns observed in previous micromodel experiments are reproduced. The predicted variation of LCO2 saturation with Ca, as well as variation of specific interfacial length with LCO2 saturation, are both in good agreement with the experimental observations. To understand the effect of heterogeneity on pore-scale displacement, we also simulate LCO2 displacing water in a randomly heterogeneous pore network, which has the same size and porosity as the dual-permeability pore network. In comparison to the dual-permeability case, the transition from capillary fingering to viscous fingering occurs at a higher Ca, and LCO2 saturation is higher at low Ca but lower at high Ca. In either pore network, the LCO2-water specific interfacial length is found to obey a power-law dependence on LCO2 saturation.
Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities
ERIC Educational Resources Information Center
Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.
2013-01-01
Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…
NASA Astrophysics Data System (ADS)
Bao, Jian-Wen; Grell, Eveyn; Michelson, Sara
2013-04-01
All numerical weather prediction (NWP) models require parameterizations of sub-grid turbulent mixing in both horizontal and vertical directions. Traditionally, due to the high aspect ratio between the horizontal and vertical dimensions of grids used in NWP models, it is assumed that the parameterizations of horizontal and vertical sub-grid mixing can be parameterized separately and most research efforts in the NWP community to parameterize sub-grid turbulent mixing has been focused on the vertical sub-grid turbulent mixing in the planetary boundary layer (PBL). Consequently, the parameterized vertical sub-grid mixing is formulated according to the vertical mixing theory in the PBL, while the parameterized horizontal sub-grid turbulent mixing in NWP models is formulated to be dependent on the grid-resolved strain rate and used mostly as numerical tuning parameter. Such a framework of parameterizing sub-grid turbulent mixing has a fundamental drawback: the conversion of grid-scale kinetic energy (KE) to sub-grid turbulent kinetic energy (TKE) is not consistently constrained between the vertical and horizontal directions. As the resolution of NWP models increases steadily, such that grid spacing becomes comparable to the typical size of largest energy-containing eddies, a more general and energetically consistent treatment of horizontal and vertical sub-grid turbulent mixing is required to overcome the drawback of the traditional parameterization approach. This presentation highlights major results from a series of sensitivity experiments with the Advanced Research WRF (ARW) model that were carried out for the purpose of comparing and evaluating a more general and energetically consistent parameterization of horizontal and vertical sub-grid turbulent mixing with two traditional schemes for parameterizing vertical sub-grid turbulent mixing in NWP models that share the same strain-rate-dependent parameterization for horizontal sub-grid turbulent mixing: the K
Molenkamp, C.R.; Grossman, A.
1999-12-20
A network of small balloon-borne transponders which gather very high resolution wind and temperature data for use by modern numerical weather predication models has been proposed to improve the reliability of long-range weather forecasts. The global distribution of an array of such transponders is simulated using LLNL's atmospheric parcel transport model (GRANTOUR) with winds supplied by two different general circulation models. An initial study used winds from CCM3 with a horizontal resolution of about 3 degrees in latitude and longitude, and a second study used winds from NOGAPS with a 0.75 degree horizontal resolution. Results from both simulations show that reasonable global coverage can be attained by releasing balloons from an appropriate set of launch sites.
NASA Technical Reports Server (NTRS)
Lenzen, Allen J.; Johnson, Donald R.; Atlas, Robert
1993-01-01
The impact of the Seasat-A satellite scatterometer wind data and the increased horizontal resolution on the Goddard Laboratory for Atmospheres model predictions of the Queen Elizabeth II (QE II) storm of 9-11 September 1978 was evaluated for four different GLA model simulations of the QE II storm. It is shown that the largest impact on the simulation was caused by doubling the model's horizontal resolution from 4 deg x 5 deg to 2 deg x 2.5 deg. The increased resolution resulted in a storm track which was much closer to the one observed, with a much deeper surface development, a stronger mass circulation, stronger heating, and stronger increase of angular momentum.
Dynamics modeling and periodic control of horizontal-axis wind turbines
NASA Astrophysics Data System (ADS)
Stol, Karl Alexander
2001-07-01
The development of large multi-megawatt wind turbines has increased the need for active feedback control to meet multiple performance objectives. Power regulation is still of prime concern but there is an increasing interest in mitigating loads for these very large, dynamically soft and highly integrated power systems. This work explores the opportunities for utilizing state space modeling, modal analysis, and multi-objective controllers in advanced horizontal-axis wind turbines. A linear state-space representation of a generic, multiple degree-of-freedom wind turbine is developed to test various control methods and paradigms. The structural model, SymDyn, provides for limited flexibility in the tower, drive train and blades assuming a rigid component architecture with joint springs and dampers. Equations of motion are derived symbolically, verified by numerical simulation, and implemented in the Matlab with Simulink computational environment. AeroDyn, an industry-standard aerodynamics package for wind turbines, provides the aerodynamic load data through interfaced subroutines. Linearization of the structural model produces state equations with periodic coefficients due to the interaction of rotating and non-rotating components. Floquet theory is used to extract the necessary modal properties and several parametric studies identify the damping levels and dominant dynamic coupling influences. Two separate issues of control design are investigated: full-state feedback and state estimation. Periodic gains are developed using time-varying LQR techniques and many different time-invariant control designs are constructed, including a classical PID controller. Disturbance accommodating control (DAC) allows the estimation of wind speed for minimization of the disturbance effects on the system. Controllers are tested in simulation for multiple objectives using measurement of rotor position and rotor speed only and actuation of independent blade pitch. It is found that
Diwan, Utpal; Kovscek, Anthony R.
1999-08-09
In this investigation, existing analytical models for cyclic steam injection and oil recovery are reviewed and a new model is proposed that is applicable to horizontal wells. A new flow equation is developed for oil production during cyclic steaming of horizontal wells. The model accounts for the gravity-drainage of oil along the steam-oil interface and through the steam zone. Oil viscosity, effective permeability, geometry of the heated zone, porosity, mobile oil saturation, and thermal diffusivity of the reservoir influence the flow rate of oil in the model. The change in reservoir temperature with time is also modeled, and it results in the expected decline in oil production rate during the production cycle as the reservoir cools. Wherever appropriate, correlations and incorporated to minimize data requirements. A limited comparison to numerical simulation results agrees well, indicating that essential physics are successfully captured. Cyclic steaming appears to be a systematic met hod for heating a cold reservoir provided that a relatively uniform distribution of steam is obtained along the horizontal well during injection. A sensitivity analysis shows that the process is robust over the range of expected physical parameters.
NASA Astrophysics Data System (ADS)
Ohtake, Hideaki; Gari da Silva Fonseca, Joao, Jr.; Takashima, Takumi; Oozeki, Takashi; Yamada, Yoshinori
2014-05-01
Many photovoltaic (PV) systems have been installed in Japan after the introduction of the Feed-in-Tariff. For an energy management of electric power systems included many PV systems, the forecast of the PV power production are useful technology. Recently numerical weather predictions have been applied to forecast the PV power production while the forecasted values invariably have forecast errors for each modeling system. So, we must use the forecast data considering its error. In this study, we attempted to estimate confidence intervals for hourly forecasts of global horizontal irradiance (GHI) values obtained from a mesoscale model (MSM) de-veloped by the Japan Meteorological Agency. In the recent study, we found that the forecasted values of the GHI of the MSM have two systematical forecast errors; the first is that forecast values of the GHI are depended on the clearness indices, which are defined as the GHI values divided by the extraterrestrial solar irradiance. The second is that forecast errors have the seasonal variations; the overestimation of the GHI forecasts is found in winter while the underestimation of those is found in summer. The information of the errors of the hourly GHI forecasts, that is, confidence intervals of the forecasts, is of great significance for planning the energy management included a lot of PV systems by an electric company. On the PV systems, confidence intervals of the GHI forecasts are required for a pinpoint area or for a relatively large area control-ling the power system. For the relatively large area, a spatial-smoothing method of the GHI values is performed for both the observations and forecasts. The spatial-smoothing method caused the decline of confidence intervals of the hourly GHI forecasts on an extreme event of the GHI forecast (a case of large forecast error) over the relatively large area of the Tokyo electric company (approximately 68 % than for a pinpoint forecast). For more credible estimation of the confidence
Fard, Mohammad A; Ishihara, Tadashi; Inooka, Hikaru
2003-08-01
Although many studies exist concerning the influence of seat vibration on the head in the seated human body, the dynamic response of the head-neck complex (HNC) to the trunk vibration has not been well investigated. Little quantitative knowledge exists about viscoelastic parameters of the neck. In this study, the dynamics of the HNC is identified when it is exposed to the trunk horizontal (fore-and-aft) vibration. The frequency response functions between the HNC angular velocity and the trunk horizontal acceleration, corresponding to four volunteers, are obtained in the frequency range of 0.5 Hz to 10 Hz. A fourth-order mathematical model, derived by considering a double-inverted-pendulum model for the HNC, is designed to simulate the dynamic response of the HNC to the trunk horizontal vibration. The frequency domain identification method is used to determine the coefficients of the mathematical model of the HNC. Good agreement has been obtained between experimental and simulation results. This indicates that the system, similar to the designed fourth-order model, has mainly two resonance frequencies. The viscoelastic parameters of the neck, including the spring and damping coefficients, are then obtained by use of the optimization method. PMID:12968578
Implementation of a random displacement method (RDM) in the ADPIC model framework
Ermak, D.L.; Nasstrom, J.S.; Taylor, A.G.
1995-06-01
The objective of this work was to implement a 3-D Lagrangian stochastic (also called random walk or Monte Carlo) diffusion method in the framework of the operational ADPIC (Atmospheric Diffusion Particle-In-Cell) code. The Random Displacement Method, RDM, presented here and implemented in the ADPIC code, calculates atmospheric dispersion in a purely Lagrangian, grid-independent manner. Some of the benefits of this approach compared to the previously-used ``particle-in-cell, gradient diffusion`` method are (a) a sub-grid diffusion approximation is no longer needed, (b) numerical accuracy of the diffusion calculation is improved because particle displacement does not depend on the resolution of the Eulerian grid used to calculate species concentration, and (c) adaptation to other grid structures for the input wind field does not affect the diffusion calculation. In addition, the RDM incorporates a unique and accurate treatment of particle interaction with the surface.
Hydrodynamic analysis of the displacement conditions of formation fluids using an axisymmetric model
NASA Astrophysics Data System (ADS)
Chernoshchuk, I. B.
2008-03-01
The axisymmetric problem of the displacement of formation fluids by a drilling mud filtrate with filter cake formation is considered. An analysis is made of the distribution and variation of the main parameters of the process: filtrate volume, filter cake thickness, oil saturation, and pressure. The positions of the water-saturation and salt-concentration fronts are determined. The results are compared with the geophysical logging data for straight-hole drilling.
NASA Astrophysics Data System (ADS)
Auracher, Hein; Wohlfeil, Arnold; Ziegler, Felix
2008-03-01
For one horizontal tube in an absorber the Nusselt solution for film thickness and velocity distribution was applied, assuming steady state in heat transfer and a semi-infinite body’s concentration profile with unsteady state mass transfer. The model was applied to the absorption of steam into aqueous lithium bromide in absorption chillers. The results are compared to published experimental values and show fair agreement.
Nuclear component horizontal seismic restraint
Snyder, Glenn J.
1988-01-01
A nuclear component horizontal seismic restraint. Small gaps limit horizontal displacement of components during a seismic occurrence and therefore reduce dynamic loadings on the free lower end. The reactor vessel and reactor guard vessel use thicker section roll-forged rings welded between the vessel straight shell sections and the bottom hemispherical head sections. The inside of the reactor guard vessel ring forging contains local vertical dovetail slots and upper ledge pockets to mount and retain field fitted and installed blocks. As an option, the horizontal displacement of the reactor vessel core support cone can be limited by including shop fitted/installed local blocks in opposing alignment with the reactor vessel forged ring. Beams embedded in the wall of the reactor building protrude into apertures in the thermal insulation shell adjacent the reactor guard vessel ring and have motion limit blocks attached thereto to provide to a predetermined clearance between the blocks and reactor guard vessel ring.
Assimilation of scalar versus horizontal gradient information from the VAS into a mesoscale model
NASA Technical Reports Server (NTRS)
Diak, George
1987-01-01
Comparisons are made between analyses and forecasts which incorporate VAS geopotential data as either scalar or horizontal gradient information for a case study on the AVE/VAS day of Mar. 6, 1982. On this day, incorporating the VAS information in analysis as a variational constraint on horizontal geopotential gradients significantly mitigated the effects of large data biases which made VAS assimilation by standard scalar methods very difficult. A subsequent forecast made from the gradient assimilation was superior to one made from the standard analysis and of comparable quality in geopotentials to a control forecast from synoptic data. Most impact was noted in the forecasts of vertical motion and precipitation in the gradient vs this control simulation.
NASA Technical Reports Server (NTRS)
Lane, J. E.; Metzger, P. T.
2010-01-01
A simple trajectory model has been developed and is presented. The particle trajectory path is estimated by computing the vertical position as a function of the horizontal position using a constant horizontal velocity and a vertical acceleration approximated as a power law. The vertical particle position is then found by solving the differential equation of motion using a double integral of vertical acceleration divided by the square of the horizontal velocity, integrated over the horizontal position. The input parameters are: x(sub 0) and y(sub 0), the initial particle starting point; the derivative of the trajectory at x(sub 0) and y(sub 0), s(sub 0) = s(x(sub 0))= dx(y)/dy conditional expectation y = y((sub 0); and b where bx(sub 0)/y(sub 0) is the final trajectory angle before gravity pulls the particle down. The final parameter v(sub 0) is an approximation to a constant horizontal velocity. This model is time independent, providing vertical position x as a function of horizontal distance y: x(y) = (x(sub 0) + s(sub 0) (y-y(sub 0))) + bx(sub 0) -(s(sub 0)y(sub 0) ((y - y(sub 0)/y(sub 0) - ln((y/y(sub 0)))-((g(y-y(sub 0)(exp 2))/ 2((v(sub 0)(exp 2). The first term on the right in the above equation is due to simple ballistics and a spherically expanding gas so that the trajectory is a straight line intersecting (0,0), which is the point at the center of the gas impingement on the surface. The second term on the right is due to vertical acceleration, which may be positive or negative. The last term on the right is the gravity term, which for a particle with velocities less than escape velocity will eventually bring the particle back to the ground. The parameters b, s(sub 0), and in some cases v(sub 0), are taken from an interpolation of similar parameters determined from a CFD simulation matrix, coupled with complete particle trajectory simulations.
NASA Technical Reports Server (NTRS)
Bahrami, Parviz A.
1996-01-01
Theoretical analysis and numerical computations are performed to set forth a new model of film condensation on a horizontal cylinder. The model is more general than the well-known Nusselt model of film condensation and is designed to encompass all essential features of the Nusselt model. It is shown that a single parameter, constructed explicitly and without specification of the cylinder wall temperature, determines the degree of departure from the Nusselt model, which assumes a known and uniform wall temperature. It is also known that the Nusselt model is reached for very small, as well as very large, values of this parameter. In both limiting cases the cylinder wall temperature assumes a uniform distribution and the Nusselt model is approached. The maximum deviations between the two models is rather small for cases which are representative of cylinder dimensions, materials and conditions encountered in practice.
NASA Astrophysics Data System (ADS)
Vogel, Gerard N.
1988-02-01
An evaluation is performed for two millimeter wave propagation models: the LIEBE model, developed at the Institute for Telecommunications, Boulder, CO, under the guidance of Dr. H. Liebe; and the EOSAEL model, developed at the U. S. Army Atmospheric Laboratory at White Sands Missile Range, NM. This evaluation is conducted for horizontal attenuation due to both clear atmosphere and hydrometer effects under typical surface meteorological conditions, and within the frequency range 70-115 GHz. Intercomparisons of model theories and predictions show slight differences for molecular oxygen and fog attenuations, but significant differences for water vapor and rain attenuations. Results indicate that, while the qualitative agreement between either the EOSAEL or LIEBE model predictions, and measurements, for horizontal attenuation due to oxygen, water vapor, fog and rain is certainly satisfactory, there is a definite need for improvement. Overall, no clear preference for either the EOSAEL or LIEBE model for operational use is ascertained. Data comparisons suggest that, for several attenuation types, model preference is dependent on either the frequency or meteorological conditions.
Dissipation and displacement of hotspots in reaction-diffusion models of crime.
Short, Martin B; Brantingham, P Jeffrey; Bertozzi, Andrea L; Tita, George E
2010-03-01
The mechanisms driving the nucleation, spread, and dissipation of crime hotspots are poorly understood. As a consequence, the ability of law enforcement agencies to use mapped crime patterns to design crime prevention strategies is severely hampered. We also lack robust expectations about how different policing interventions should impact crime. Here we present a mathematical framework based on reaction-diffusion partial differential equations for studying the dynamics of crime hotspots. The system of equations is based on empirical evidence for how offenders move and mix with potential victims or targets. Analysis shows that crime hotspots form when the enhanced risk of repeat crimes diffuses locally, but not so far as to bind distant crime together. Crime hotspots may form as either supercritical or subcritical bifurcations, the latter the result of large spikes in crime that override linearly stable, uniform crime distributions. Our mathematical methods show that subcritical crime hotspots may be permanently eradicated with police suppression, whereas supercritical hotspots are displaced following a characteristic spatial pattern. Our results thus provide a mechanistic explanation for recent failures to observe crime displacement in experimental field tests of hotspot policing. PMID:20176972
Matichard, F; Evans, M; Mittleman, R; MacInnis, M; Biscans, S; Dooley, K L; Sohier, H; Lauriero, A; Paris, H; Koch, J; Knothe, P; Carbajo, A; Dufort, C
2016-06-01
Tilt-horizontal coupling in inertial sensors limits the performance of active isolation systems such as those used in gravitational wave detectors. Inertial rotation sensors can be used to subtract the tilt component from the signal produced by horizontal inertial sensors, but such techniques are often limited by the sensor noise of the tilt measurement. A different approach is to mechanically filter the tilt transmitted to the horizontal inertial sensor, as discussed in this article. This technique does not require an auxiliary rotation sensor and can produce a lower noise measurement. The concept investigated uses a mechanical suspension to isolate the inertial sensor from input tilt. Modeling and simulations show that such a configuration can be used to adequately attenuate the tilt transmitted to the instrument, while maintaining translation sensitivity in the frequency band of interest. The analysis is supported by experimental results showing that this approach is a viable solution to overcome the tilt problem in the field of active inertial isolation. PMID:27370484
NASA Astrophysics Data System (ADS)
Chen, Shuai; Yuan, Le; Weng, Xiaolong; Deng, Longjiang
2014-11-01
The scattering and absorption cross sections of horizontally oriented metallic flake particles are estimated by extended geometric optics that includes diffraction and edge effects. Emissivity of the coating containing those particles is calculated using Kubelka-Munk theory. The dependence of emissivity of the coating on the radius, thickness, content of metallic flake particles and coating thickness is discussed. Finally, theoretical results are compared with the experimental measurements with Al/acrylic resin coating system and the results show that simulation values are in good agreement with experimental ones.
An efficient horizontal advection scheme for the modeling of global transport of constituents
Hundsdorfer, W.; Spee, E.J.
1995-12-01
In this paper the authors consider a dimensional-splitting scheme for horizontal advection on a sphere with a uniform longitude-latitude grid. The 1D subprocesses that arise within the splitting are solved with an explicit finite-volume type scheme, which is made unconditionally stable by allowing the stencil to vary with the Courant numbers. The scheme is made positive by flux limiting. For the inaccuracies at the poles some special measures are discussed. Numerical tests show that the scheme is almost shape preserving and conservative, and it gives accurate results at low computational costs. 23 refs., 7 figs., 1 tab.
Modeling the Impact of Fracture Growth on Fluid Displacements in Deformable Porous Media
NASA Astrophysics Data System (ADS)
Santillán, D.; Cueto-Felgueroso, L.; Juanes, R.
2015-12-01
Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The flow of a fluid through a deformable porous media is present in manyenvironmental, industrial, and biological processes,such as the removal of pollutants from underground water bodies, enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. However, the injection of a fluid can generate or propagate fractures, which are preferential flow paths. Using numerical simulation, we study the interplay between injection and rock mechanics, and elucidate fracture propagation as a function of injection rate, initial crack topology and mechanical rock properties. Finally, we discuss the role of fracture growth on fluid displacements in porous media. Figure: An example of fracture (in red) propagated in a porous media (in blue)
Modeling the Impact of Deformation on Unstable Miscible Displacements in Porous Media
NASA Astrophysics Data System (ADS)
Santillán, D.; Cueto-Felgueroso, L.
2014-12-01
Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The simultaneous flow of two or more fluids with different densities or viscosities through deformable media is ubiquitous in environmental, industrial, and biological processes, including the removal of non-aqueous phase liquids from underground water bodies, the geological storage of CO2, and current challenges in energy technologies, such as enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. Using numerical simulation, we study the interplay between viscous-driven flow instabilities (viscous fingering) and rock mechanics, and elucidate the structure of the displacement patterns as a function of viscosity contrast, injection rate and rock mechanical properties. Finally, we discuss the role of medium deformation on transport and mixing processes in porous media.
Guan, Wei; Hu, Hengshan; He, Xiao
2009-04-01
Monopole acoustic logs in a homogeneous fluid-saturated porous formation can be simulated by the real-axis integration (RAI) method to analytically solve Biot's equations [(1956a) J. Acoust. Soc. Am. 28, 168-178; (1956b) J. Acoust. Soc. Am. 28, 179-191; (1962) J. Appl. Phys. 33, 1482-1498], which govern the wave propagation in poro-elastic media. Such analytical solution generally is impossible for horizontally stratified formations which are common in reality. In this paper, a velocity-stress finite-difference time-domain (FDTD) algorithm is proposed to solve the problem. This algorithm considers both the low-frequency viscous force and the high-frequency inertial force in poro-elastic media, extending its application to a wider frequency range compared to existing algorithms which are only valid in the low-frequency limit. The perfectly matched layer (PML) is applied as an absorbing boundary condition to truncate the computational region. A PML technique without splitting the fields is extended to the poro-elastic wave problem. The FDTD algorithm is validated by comparisons against the RAI method in a variety of formations with different velocities and permeabilities. The acoustic logs in a horizontally stratified porous formation are simulated with the proposed FDTD algorithm. PMID:19354370
NASA Astrophysics Data System (ADS)
Xu, Yan; Jiang, Nan; Xu, Guochang; Yang, Yuanxi; Schuh, Harald
2015-12-01
Using GPT2 derived meteorological data and actual meteorological observations can achieve the same positioning precision in the most areas worldwide except for the Antarctic region. However, the improvement of the actual meteorological observations on the positioning result is significant comparing to using GPT2 derived meteorological data in Antarctic. In the case of 5° elevation cut-off angle, the height precision can be improved by 25%. Furthermore, when the elevation cut-off angle is lower, the effect of the actual meteorological observations on the positioning precision is more significant in Antarctic due to the retention of low elevation angle observations. This study also shows that the influence of tropospheric horizontal gradient correction can improve the PPP precision. Under the lower elevation cut-off angle and higher humidity conditions, especially in summer time and low-latitudes area, the usefulness of the horizontal gradient correction is remarkable. The average improvement of N, E and U directions can reach up to 51%, 15% and 30%, respectively.
The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1
Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; Gettelman, Andrew; Jablonowski, Christiane
2014-11-05
We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations reveals both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.
NASA Astrophysics Data System (ADS)
Perron, J. Taylor; Hamon, Jennifer L.
2012-03-01
We present analytical solutions for the steady state topographic profile of a soil-mantled hillslope retreating into a level plain in response to a horizontally migrating base level. This model applies to several scenarios that commonly arise in landscapes, including widening valleys, eroding channel banks, and retreating scarps. For a sediment transport law in which sediment flux is linearly proportional to the topographic slope, the steady state profile is exponential, with an e-folding length, L, proportional to the ratio of the sediment transport coefficient to the base level migration speed. For the case in which sediment flux increases nonlinearly with slope, the solution has a similar form that converges to the linear case as L increases. We use a numerical model to explore the effects of different base level geometries and find that the one-dimensional analytical solution is a close approximation for the hillslope profile above an advancing channel tip. We then compare the analytical model with hillslope profiles above the tips of a groundwater sapping channel network in the Florida Panhandle. The model agrees closely with hillslope profiles measured from airborne laser altimetry, and we use a predicted log linear relationship between topographic slope and horizontal distance to estimate L for the measured profiles. Mapping 1/L over channel tips throughout the landscape reveals that adjacent channel networks may be growing at different rates and that south facing slopes experience more efficient hillslope transport.
NASA Astrophysics Data System (ADS)
Klein, E. C.; Le Corvec, N.; Galgana, G.
2014-12-01
Basaltic shield volcanoes are subjected to important gravitational loads that lead to their spreading. Such deformation influences the stress state within the volcano, thus the formation of faults and the location of earthquakes and the propagation of magmas and the potential eruption location. Using distinct numerical approaches constrained by geophysical data from the Hawai`i Island Shield Volcano (HISV), we studied the extent to which horizontal deviatoric stresses (HDS) induced from gravitational loading drives the process of volcanic spreading. Two distinct numerical approaches based on similar models were used: 1- the thin-sheet method, and 2- finite element models using COMSOL Multiphysics. We quantified depth integrals of vertical stress (i.e., the gravitational potential energy per unit area or GPE) and then we derived the HDS that balance the horizontal gradients in GPE. We performed the integration over series of single layers that encompasses the surface of variable topography down to a uniform depth of 10 km b.s.l. consistent with the base of the HISV. To compare the results of our numerical approaches we built a fine-scale, Island-wide, set of kinematically constrained deformation indicators (KCDI) using the slip-rate and fault style information from a comprehensive fault database for the HISV. We measure the success of each numerical approach by how well model HDS match the horizontal styles of the strain rates associated with KCDI. Thus far we find that the HDS obtained using the thin-sheet method match well with the KCDI. This may indicate that to first order that patterns of observed surface deformation on the HISV are governed by gradients in GPE. This provides a balance to the gravitationally-induced stresses associated with the volcano load. These HDS do not account for other competing sources of stress (e.g., flexure, magmatic, or hoop) that taken all together may combine to better explain the volcano spreading process for basaltic shield type
NASA Astrophysics Data System (ADS)
Wang, S.; Sobel, A. H.; Nie, J.
2015-12-01
Two Madden Julian Oscillation (MJO) events were observed during October and November 2011 in the equatorial Indian Ocean during the DYNAMO field campaign. Precipitation rates and large-scale vertical motion profiles derived from the DYNAMO northern sounding array are simulated in a small-domain cloud-resolving model using parameterized large-scale dynamics. Three parameterizations of large-scale dynamics --- the conventional weak temperature gradient (WTG) approximation, vertical mode based spectral WTG (SWTG), and damped gravity wave coupling (DGW) --- are employed. The target temperature profiles and radiative heating rates are taken from a control simulation in which the large-scale vertical motion is imposed (rather than directly from observations), and the model itself is significantly modified from that used in previous work. These methodological changes lead to significant improvement in the results.Simulations using all three methods, with imposed time -dependent radiation and horizontal moisture advection, capture the time variations in precipitation associated with the two MJO events well. The three methods produce significant differences in the large-scale vertical motion profile, however. WTG produces the most top-heavy and noisy profiles, while DGW's is smoother with a peak in midlevels. SWTG produces a smooth profile, somewhere between WTG and DGW, and in better agreement with observations than either of the others. Numerical experiments without horizontal advection of moisture suggest that that process significantly reduces the precipitation and suppresses the top-heaviness of large-scale vertical motion during the MJO active phases, while experiments in which the effect of cloud on radiation are disabled indicate that cloud-radiative interaction significantly amplifies the MJO. Experiments in which interactive radiation is used produce poorer agreement with observation than those with imposed time-varying radiative heating. Our results highlight the
NASA Technical Reports Server (NTRS)
Rainey, A Gerald; Igoe, William B
1958-01-01
The buffeting loads acting on the wing and horizontal tail of a 1/4-scale model of the X-1E airplane have been measured in the Langley 16-foot transonic tunnel in the Mach number range from 0.40 to 0.90. When the buffeting loads were reduced to a nondimensional aerodynamic coefficient of buffeting intensity, it was found that the maximum buffeting intensity of the horizontal tail was about twice as large as that of the wing. Comparison of power spectra of buffeting loads acting on the horizontal tail of the airplaneand of the model indicated that the model horizontal tail, which was of conventional force-test-model design, responded in an entirely different mode than did the airplane.This result implied that if quantitative extrapolation of model data to flight conditions were desired a dynamically scaled model of the rearward portion of the fuselage and empennage would be required. A study of the sources of horizontal-tail buffeting of the model indicated that the wing wake contributed a large part of the total buffeting load. At one condition it was found that removal of the wing wake would reduce the buffeting loads on the horizontal tail to about one-third of the original value.
Horizontal geometrical reaction time model for two-beam nacelle LiDARs
NASA Astrophysics Data System (ADS)
Beuth, Thorsten; Fox, Maik; Stork, Wilhelm
2015-06-01
Wind energy is one of the leading sustainable energies. To attract further private and state investment in this technology, a broad scaled drop of the cost of energy has to be enforced. There is a trend towards using Laser Doppler Velocimetry LiDAR systems for enhancing power output and minimizing downtimes, fatigue and extreme forces. Since most used LiDARs are horizontally setup on a nacelle and work with two beams, it is important to understand the geometrical configuration which is crucial to estimate reaction times for the actuators to compensate wind gusts. In the beginning of this article, the basic operating modes of wind turbines are explained and the literature on wind behavior is analyzed to derive specific wind speed and wind angle conditions in relation to the yaw angle of the hub. A short introduction to the requirements for the reconstruction of the wind vector length and wind angle leads to the problem of wind shear detection of angled but horizontal homogeneous wind fronts due to the spatial separation of the measuring points. A distance is defined in which the wind shear of such homogeneous wind fronts is not present which is used as a base to estimate further distance calculations. The reaction time of the controller and the actuators are having a negative effect on the effective overall reaction time for wind regulation as well. In the end, exemplary calculations estimate benefits and disadvantages of system parameters for wind gust regulating LiDARs for a wind turbine of typical size. An outlook shows possible future improvements concerning the vertical wind behavior.
NASA Astrophysics Data System (ADS)
Iannetti, Aldo; Stickland, Matthew T.; Dempster, William M.
2015-09-01
An advanced transient CFD model of a positive displacement reciprocating pump was created to study its behavior and performance in cavitating condition during the inlet stroke. The "full" cavitation model developed by Singhal et al. was utilized, and a sensitivity analysis test on two air mass fraction amounts (1.5 and 15 parts per million) was carried out to study the influence of the dissolved air content in water on the cavitation phenomenon. The model was equipped with user defined functions to introduce the liquid compressibility, which stabilizes the simulation, and to handle the two-way coupling between the pressure field and the inlet valve lift history. Estimation of the performance is also presented in both cases.
Potter, G.L.
1995-05-01
With expanding computer capability and capacity there has been considerable interest in increasing the resolution in GCMs. The primary driving force behind this are two fold: (1) increased resolution may reduce the systematic errors inherent in parameterization of sub-grid scale processes, and (2) higher resolution may improve confidence in regional scale studies of climatic features that are orographically influenced -- such as the effect of the Tibetan Plateau on the East Asian Monsoon. This study focuses on the effect of horizontal resolution on the spatial and temporal systematic errors of cloud radiative forcing and its components. In this paper, the top-of-the-atmosphere radiation fields are taken from a series of simulations using the European Centre for Medium Range Forecasts (ECMWF) general circulation model (cycle 33), run at four different horizontal resolutions. Section 2 discusses the concept of cloud radiative forcing and describes the simulations from the ECMWF model. The observed global field of cloud forcing from ERBE is presented in section 3 along with the model-produced fields of the net solar and longwave cloud forcing. The seasonal effect of forcing is described in section 4, and the results are summarized in section 5.
NASA Astrophysics Data System (ADS)
Astafev, Vladimir; Kasatkin, Andrey
2016-06-01
Prediction of the motion of the oil-water contact boundary has great importance in the problems of design of oilfield development by flooding. In this paper we consider a piston-like model of oil-water displacement, which takes into account differences in viscosity and density of the two fluids. Oil reservoir assumed to be homogeneous and infinite, fixed thickness, with constant values of porosity and permeability coefficients. Filtration of liquids is described by Darcy's law. It is assumed, that both fluids are weakly compressible and the pressure in the reservoir satisfies the quasi-stationary diffusion equation. Piston-like displacement model leads to the discontinuity of the tangential component of the velocity vector at the boundary of oil-water contact. Use the Cauchy integral reduces the problem of finding the current boundaries of oil-water contact to the system of singular integral equations for the tangential and normal components of the velocity vector and the Cauchy problem for the integration of the differential equations of motion of the boundary of oil-water contact. An algorithm for the numerical solution of this problem is developed. The monitoring of oil-water boundary motion for different regular and irregular schemes of flooding is carried out.
Shin, Kyun Ho; Lee, Haseok; Kang, Seonghyun; Ko, You-Jin; Lee, Seung-Yup; Park, Jung-Ho; Bae, Ji-Hoon
2015-01-01
There are limited reports on the effect of platelet-rich plasma (PRP) on meniscus healing. The purpose of this study was to investigate the effect of leukocyte-rich PRP (L-PRP) on potential healing of the horizontal medial meniscus tears in a rabbit model. A horizontal medial meniscus tear was created in both knees of nine skeletally mature adult rabbits. Left or right knees were randomly assigned to a L-PRP group, or a control group. 0.5 mL of L-PRP from 10 mL of each rabbit's whole blood was prepared and injected into the horizontal tears in a L-PRP group. None was applied to the horizontal tears in a control group. The histological assessment of meniscus healing was performed at two, four, and six weeks after surgery. We found that there were no significant differences of quantitative histologic scoring between two groups at 2, 4, and 6 weeks after surgery (p > 0.05). This study failed to show the positive effect of single injection of L-PRP on enhancing healing of the horizontal medial meniscus tears in a rabbit model. Single injection of L-PRP into horizontal meniscus tears may not effectively enhance healing of horizontal medial meniscus tears. PMID:26180783
Shin, Kyun Ho; Lee, Haseok; Kang, Seonghyun; Ko, You-Jin; Lee, Seung-Yup; Park, Jung-Ho; Bae, Ji-Hoon
2015-01-01
There are limited reports on the effect of platelet-rich plasma (PRP) on meniscus healing. The purpose of this study was to investigate the effect of leukocyte-rich PRP (L-PRP) on potential healing of the horizontal medial meniscus tears in a rabbit model. A horizontal medial meniscus tear was created in both knees of nine skeletally mature adult rabbits. Left or right knees were randomly assigned to a L-PRP group, or a control group. 0.5 mL of L-PRP from 10 mL of each rabbit's whole blood was prepared and injected into the horizontal tears in a L-PRP group. None was applied to the horizontal tears in a control group. The histological assessment of meniscus healing was performed at two, four, and six weeks after surgery. We found that there were no significant differences of quantitative histologic scoring between two groups at 2, 4, and 6 weeks after surgery (p > 0.05). This study failed to show the positive effect of single injection of L-PRP on enhancing healing of the horizontal medial meniscus tears in a rabbit model. Single injection of L-PRP into horizontal meniscus tears may not effectively enhance healing of horizontal medial meniscus tears. PMID:26180783
NASA Astrophysics Data System (ADS)
Galvez, P.; Dalguer, L. A.; Rahnema, K.; Bader, M.
2014-12-01
The 2011 Mw9 Tohoku earthquake has been recorded with a vast GPS and seismic network given unprecedented chance to seismologists to unveil complex rupture processes in a mega-thrust event. In fact more than one thousand near field strong-motion stations across Japan (K-Net and Kik-Net) revealed complex ground motion patterns attributed to the source effects, allowing to capture detailed information of the rupture process. The seismic stations surrounding the Miyagi regions (MYGH013) show two clear distinct waveforms separated by 40 seconds. This observation is consistent with the kinematic source model obtained from the inversion of strong motion data performed by Lee's et al (2011). In this model two rupture fronts separated by 40 seconds emanate close to the hypocenter and propagate towards the trench. This feature is clearly observed by stacking the slip-rate snapshots on fault points aligned in the EW direction passing through the hypocenter (Gabriel et al, 2012), suggesting slip reactivation during the main event. A repeating slip on large earthquakes may occur due to frictional melting and thermal fluid pressurization effects. Kanamori & Heaton (2002) argued that during faulting of large earthquakes the temperature rises high enough creating melting and further reduction of friction coefficient. We created a 3D dynamic rupture model to reproduce this slip reactivation pattern using SPECFEM3D (Galvez et al, 2014) based on a slip-weakening friction with sudden two sequential stress drops . Our model starts like a M7-8 earthquake breaking dimly the trench, then after 40 seconds a second rupture emerges close to the trench producing additional slip capable to fully break the trench and transforming the earthquake into a megathrust event. The resulting sea floor displacements are in agreement with 1Hz GPS displacements (GEONET). The seismograms agree roughly with seismic records along the coast of Japan.The simulated sea floor displacement reaches 8-10 meters of
NASA Astrophysics Data System (ADS)
Errifaiy, Meriem; Naasse, Smail; Chahine, Chakib
2016-07-01
Our work presents an analytical study of the determination of the reflection coefficient during the interaction between the regular wave current and a horizontal plate. This study was done using the linearized potential flow theory with the evanescent modes model, while searching for complex solutions to the dispersion equation that are neither real pure nor imaginary pure. To validate the established model, it has been confronted with the experimental results of V. Rey and J. Touboul, in a first phase, and then compared to those of the numerical study by H.-X. Lin et al. Then, this model was used to study the effect of current on the reflection coefficient. xml:lang="fr"
Saibal Bhattacharya
2005-08-31
constraints afflicting mature Mississippian fields. A publicly accessible databank of representative petrophysical properties and relationships was developed to overcome the paucity of such data that is critical to modeling the storage and flow in these reservoirs. Studies in 3 Mississippian fields demonstrated that traditional reservoir models built by integrating log, core, DST, and production data from existing wells on 40-acre spacings are unable to delineate karst-induced compartments, thus making 3D-seismic data critical to characterize these fields. Special attribute analyses on 3D data were shown to delineate reservoir compartments and predict those with pay porosities. Further testing of these techniques is required to validate their applicability in other Mississippian reservoirs. This study shows that detailed reservoir characterization and simulation on geomodels developed by integrating wireline log, core, petrophysical, production and pressure, and 3D-seismic data enables better evaluation of a candidate field for horizontal infill applications. In addition to reservoir compartmentalization, two factors were found to control the economic viability of a horizontal infill well in a mature Mississippian field: (a) adequate reservoir pressure support, and (b) an average well spacing greater than 40-acres.
Ligand Displacement Reaction Paths in a Diiron Hydrogenase Active Site Model Complex.
Blank, Jan H; Moncho, Salvador; Lunsford, Allen M; Brothers, Edward N; Darensbourg, Marcetta Y; Bengali, Ashfaq A
2016-08-26
The mechanism and energetics of CO, 1-hexene, and 1-hexyne substitution from the complexes (SBenz)2 [Fe2 (CO)6 ] (SBenz=SCH2 Ph) (1-CO), (SBenz)2 [Fe2 (CO)5 (η(2) -1-hexene)] (1-(η(2) -1-hexene)), and (SBenz)2 [Fe2 (CO)5 (η(2) -1-hexyne)] (1-(η(2) -1-hexyne)) were studied by using time-resolved infrared spectroscopy. Exchange of both CO and 1-hexyne by P(OEt)3 and pyridine, respectively, proceeds by a bimolecular mechanism. As similar activation enthalpies are obtained for both reactions, the rate-determining step in both cases is assumed to be the rotation of the Fe(CO)2 L (L=CO or 1-hexyne) unit to accommodate the incoming ligand. The kinetic profile for the displacement of 1-hexene is quite different than that for the alkyne and, in this case, both reaction channels, that is, dissociative (SN 1) and associative (SN 2), were found to be competitive. Because DFT calculations predict similar binding enthalpies of alkene and alkyne to the iron center, the results indicate that the bimolecular pathway in the case of the alkyne is lower in free energy than that of the alkene. In complexes of this type, subtle changes in the departing ligand characteristics and the nature of the mercapto bridge can influence the exchange mechanism, such that more than one reaction pathway is available for ligand substitution. The difference between this and the analogous study of (μ-pdt)[Fe(CO)3 ]2 (pdt=S(CH2 )3 S) underscores the unique characteristics of a three-atom S-S linker in the active site of diiron hydrogenases. PMID:27482938
Berri, G.J.; Nunez, M.N. Pabellon II Ciudad Universitaria, Buenos Aires )
1993-05-01
A hydrostatic and incompressible mesoscale model with transformed horizontal coordinates is presented. The model is applied to study the sea-land-breeze circulation over Rio de La Plata. One of the new coordinates is shoreline-following and the other one is locally quasi-perpendicular to the first one. The original set of equations in the Cartesian coordinates is rewritten in the curvilinear coordinates. This transformation is useful provided that the curvilinear coordinates are close to being orthogonal. The horizontal domain covers 250 km [times] 250 km, and the vertical domain is 2 km deep. To predict the sea-land-breeze circulation the model is integrated over 12 h. The forcing of the model is a cyclic perturbation of the surface temperature. The changes in the wind direction during the day are in good agreement with the observations from six weather stations in the region. The same program code is applied to uniform domains of different resolutions in order to test the coordinate transformation. Results show that the predictions based upon the variable-resolution version resemble ones obtained using high uniform resolution but consume only one-fourth the computer time needed by the latter. Comparison of the vertical velocity patterns predicted by the model to the cumulus clouds distribution observed from satellite images show a very good agreement too. The authors believe that all these results justify the use of the coordinate transformation in this type of model, although further verifications are needed in order to draw more definitive conclusions. 28 refs., 11 figs.
NASA Astrophysics Data System (ADS)
Xu, Chun-mei; Liu, Bing-qi; Li, Li; Huang, Fu-yu; Zhang, Chu
2015-10-01
As the developing appliance range of high-resolution optical design, the requirement on the aberration of system design is becoming higher and higher, but the installation and adjustment error of optical components is an important element which influences the aberration. The decentration and tilt of optical components result not only the image lateral displacement but also the aberration enlargement of the optical system, the research on image quality of plane symmetric optical system is becoming more and more popular. The Gaussian correction methods on lens decentration already exist, but it is short of theoretical research to guide the correction on the lens tilt, which leads to the effect of image lateral displacement. This thesis analyzes theoretically a mathematical model between the lens tilt degree and wave aberration, and deduces mathematically the correction equation of zero aberration increment under the aberration constraint condition. Taking an example of some type optical sight, the ZEMAX simulation is carried out to validate this method, and the results show that: This method can effectively guide the correction of lens tilt, and reduce the influence of lens position change on the optical imaging quality. It has important practical significance to guide high-resolution optical design.
NASA Astrophysics Data System (ADS)
Lalic, Branislava; Firanj, Ana; Mihailovic, Dragutin T.; Podrascanin, Zorica
2013-08-01
radiation transfer within the forest canopy plays crucial role in energy balance and turbulent transfer processes. Objective of this study is to suggest a new relation for vertical profile of photosynthetically active radiation (PAR) in case of horizontally uniform forest canopy. It is based on (i) the Lambert-Beer law relationship and (ii) new parameterization of leaf area density (LAD) profile. We have supposed that absorption coefficient μ varies with height and depends on LAD distribution. To check validity of the relation proposed, we have compared calculated values with the observations using data sets assimilated during Anglo-Brazilian Amazonian Climate Observation Study experiment at two observational sites located in Reserva Jaru and Reserva Ducke (Brazil) with different types of forest. Among all available measurements, 615 profiles observed between 08 and 18 local mean time for 72 days at 2 locations were selected. For comparison study, two more profiles based on constant- and variable-LAD approximation were introduced. Obtained results indicate that suggested relation: (i) well reproduces PAR profile within the forest in comparison with observations and (ii) shows better agreement with observations in comparison with two other profiles used in this study.
Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling.
Xie, Chiyu; Zhang, Jianying; Bertola, Volfango; Wang, Moran
2016-02-01
The evaporation of water drop deposited on a horizontal substrate is investigated using a lattice Boltzmann method (LBM) for multiphase flows with a large-density ratio. To account for the variation of evaporation flux distribution along the drop interface, a novel evaporation scheme is introduced into the LBM framework, and validated by comparison with experimental data. We aim at discovering the effect of gravity on the evaporating drop in detail, and various evaporation conditions are considered as well as different wetting properties of the substrates. An effective diameter is introduced as an indicator of the critical drop size under which gravity is negligible. Our results show that such critical diameter is much smaller than the capillary length, which has been widely accepted as the critical size in previous and current works. The critical diameter is found to be almost independent of the evaporation conditions and the surface wettability. A correlation between this critical diameter and the capillary length is also proposed for easy use in applications. PMID:26562444
NASA Astrophysics Data System (ADS)
Hankin, D.; Graham, J. M. R.
2014-12-01
An unsteady formulation of the vortex lattice method, VLM, is presented that uses a force- free representation of the wake behind a horizontal axis wind turbine, HAWT, to calculate the aerodynamic loading on a turbine operating in the wake of an upstream rotor. A Cartesian velocity grid is superimposed over the computational domain to facilitate the representation of the atmospheric turbulence surrounding the turbine and wind shear. The wake of an upstream rotor is modelled using two methods: a mean velocity deficit with superimposed turbulence, based on experimental observations, and a purely numeric periodic boundary condition. Both methods are treated as frozen and propagated with the velocity grid. Measurements of the mean thrust and blade root bending moment on a three bladed horizontal axis rotor modelling a 5 MW HAWT at 1:250 scale were carried out in a wind tunnel. Comparisons are made between operation in uniform flow and in the wake of a similarly loaded rotor approximately 6.5 diameters upstream. The measurements were used to validate the output from the VLM simulations, assuming a completely rigid rotor. The trends in the simulation thrust predictions are found to compare well with the uniform flow case, except at low tip speed ratios where there are losses due to stall which are yet to be included in the model. The simple wake model predicts the mean deficit, whilst the periodic boundary condition captures more of the frequency content of the loading in an upstream wake. However, all the thrust loads are over-predicted. The simulation results severely overestimate the bending moment, which needs addressing. However, the reduction in bending due to the simple wake model is found to reflect the experimental data reasonably well.
NASA Astrophysics Data System (ADS)
Stoeckl, Leonard; Stefan, Loeffler; Houben, Georg
2013-04-01
Freshwater lenses on islands and in inland areas are often the primary freshwater resource there. The fragile equilibrium between saline and fresh groundwater can be disrupted by excessive pumping, leading to an upward migration of the saline water underneath the well. Sand-box experiments were conducted to compare the upconing at vertical and horizontal wells pumping from a freshwater lens. Results were then compared to numerical simulations. To simulate the cross-section of an "infinite strip island", an acrylic box with a spacing of 5 cm was filled with coarse sand. After saturating the model with degassed saltwater from bottom to top, freshwater recharge was applied from above. By coloring the infiltrating freshwater with different tracer colors using uranine and indigotine we were able to visualize flow paths during pumping. A horizontal and a vertical well were placed at the left and right side of the symmetric island. Both had equal diameter, screen length, depth of placement, and distance to shore. Three increasing pumping rates were applied to each well successively and the electrical conductivity of the abstracted water was continuously measured using a through-flow cell. Results show that no saltwater entered the wells when pumping at the lowest rate. Still, slight saltwater upconing and a shift of the freshwater divide in the island were observed. At the second rate a clear saltwater breakthrough into the vertical well occurred, while the electrical conductivity remained nearly unchanged in the horizontal well. Applying the third (highest) abstraction rate to each of the wells saltwater entered both wells, exceeding drinking water standards in the vertical well. The described behavior indicates the advantage of horizontal over vertical wells on islands and in coastal zones prone to saltwater up-coning. Numerical simulations show similar patterns, even though deviations exist between the second and the third pumping rate, which are under and
NASA Astrophysics Data System (ADS)
Tecklenburg, Jan; Neuweiler, Insa; Dentz, Marco; Carrera, Jesus; Geiger, Sebastian
2013-04-01
Flow processes in geotechnical applications do often take place in highly heterogeneous porous media, such as fractured rock. Since, in this type of media, classical modelling approaches are problematic, flow and transport is often modelled using multi-continua approaches. From such approaches, multirate mass transfer models (mrmt) can be derived to describe the flow and transport in the "fast" or mobile zone of the medium. The porous media is then modeled with one mobile zone and multiple immobile zones, where the immobile zones are connected to the mobile zone by single rate mass transfer. We proceed from a mrmt model for immiscible displacement of two fluids, where the Buckley-Leverett equation is expanded by a sink-source-term which is nonlocal in time. This sink-source-term models exchange with an immobile zone with mass transfer driven by capillary diffusion. This nonlinear diffusive mass transfer can be approximated for particular imbibition or drainage cases by a linear process. We present a numerical scheme for this model together with simulation results for a single fracture test case. We solve the mrmt model with the finite volume method and explicit time integration. The sink-source-term is transformed to multiple single rate mass transfer processes, as shown by Carrera et. al. (1998), to make it local in time. With numerical simulations we studied immiscible displacement in a single fracture test case. To do this we calculated the flow parameters using information about the geometry and the integral solution for two phase flow by McWorther and Sunnada (1990). Comparision to the results of the full two dimensional two phase flow model by Flemisch et. al. (2011) show good similarities of the saturation breakthrough curves. Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G., and Guimera, J.: On matrix diffusion: formulations, solution methods and qualitative effects, Hydrogeology Journal, 6, 178-190, 1998. Flemisch, B., Darcis, M
A Reduced Order Model of Force Displacement Curves for the Failure of Mechanical Bolts in Tension.
Moore, Keegan J.; Brake, Matthew Robert
2015-12-01
Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry causes issues when generating a mesh of the model. This report will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. The results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.
NASA Technical Reports Server (NTRS)
Mock, W. D.; Latham, R. A.; Tisher, E. D.
1982-01-01
The NASTRAN model plans for the horizontal stabilizer, vertical stabilizer, and nacelle structure were expanded in detail to generate the NASTRAN model for each of these substructures. The grid point coordinates were coded for each element. The material properties and sizing data for each element were specified. Each substructure model was thoroughly checked out for continuity, connectivity, and constraints. These substructures were processed for structural influence coefficients (SIC) point loadings and the deflections were compared to those computed for the aircraft detail models. Finally, a demonstration and validation processing of these substructures was accomplished using the NASTRAN finite element program installed at NASA/DFRC facility.
NASA Astrophysics Data System (ADS)
El-Orany, Faisal A. A.
2006-11-01
In this paper, we study the evolution of two two-level atoms interacting with a single-mode quantized radiation field, namely, the two-atom multiphoton Jaynes-Cummings model (JCM). We assume that the field and the atoms are initially prepared in the superposition of displaced number states and excited atomic states, respectively. For this system, we investigate the atomic inversion, Wigner function, phase distribution and entanglement. We show that for symmetric (asymmetric) atoms, the system can generate asymmetric (symmetric) cat states at a quarter of the revival time. Furthermore, the degrees of entanglement for the field-atoms and the one-atom-remainder tangles depend on the rate of energy flow between the parties. The interference in phase space decreases the degree of entanglement in the bipartite.
NASA Astrophysics Data System (ADS)
Abd Al-Kader, G. M.
2006-05-01
The Wigner quasi-probability function for the superposition of squeezed displaced Fock states (SDFS's) is reviewed. The interaction of these states with a two-level atom in cavity with the presence of additional Kerr medium is studied. Exact general matrix elements of the time-dependent operators of a Jaynes-Cummings model (JCM), in the presence of a Kerr medium, with these states are derived. We have obtained the phase distribution by two different ways: one is by Pegg-Barnett formalism, the second is by integration of the Wigner function over the radial variable. Results of these two approaches are compared. The Wigner phase distributions for some values of parameters are illustrated. The behaviors of the distributions have been shown as a function of the squeeze parameter in JCM.
An Evaluation of Sharp Interface Models for CO2 -Brine Displacement in Aquifers.
Swickrath, Michael J; Mishra, Srikanta; Ravi Ganesh, Priya
2016-05-01
Understanding multiphase transport within saline aquifers is necessary for safe and efficient CO2 sequestration. To that end, numerous full-physics codes exist for rigorously modeling multiphase flow within porous and permeable rock formations. High-fidelity simulation with such codes is data- and computation-intensive, and may not be suitable for screening-level calculations. Alternatively, under conditions of vertical equilibrium, a class of sharp-interface models result in simplified relationships that can be solved with limited computing resources and geologic/fluidic data. In this study, the sharp-interface model of Nordbotten and Celia (2006a,2006b) is evaluated against results from a commercial full-physics simulator for a semi-confined system with vertical permeability heterogeneity. In general, significant differences were observed between the simulator and the sharp-interface model results. A variety of adjustments were made to the sharp-interface model including modifications to the fluid saturation and effective viscosity in the two-phase region behind the CO2 -brine interface. These adaptations significantly improved the predictive ability of the sharp interface model while maintaining overall tractability. PMID:26333189
Mayor, T S; Couto, S; Psikuta, A; Rossi, R M
2015-12-01
The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s(-1)) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 10(2)-3 × 10(5)). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow
NASA Astrophysics Data System (ADS)
Mayor, T. S.; Couto, S.; Psikuta, A.; Rossi, R. M.
2015-12-01
The ability of clothing to provide protection against external environments is critical for wearer's safety and thermal comfort. It is a function of several factors, such as external environmental conditions, clothing properties and activity level. These factors determine the characteristics of the different microclimates existing inside the clothing which, ultimately, have a key role in the transport processes occurring across clothing. As an effort to understand the effect of transport phenomena in clothing microclimates on the overall heat transport across clothing structures, a numerical approach was used to study the buoyancy-driven heat transfer across horizontal air layers trapped inside air impermeable clothing. The study included both the internal flow occurring inside the microclimate and the external flow occurring outside the clothing layer, in order to analyze the interdependency of these flows in the way heat is transported to/from the body. Two-dimensional simulations were conducted considering different values of microclimate thickness (8, 25 and 52 mm), external air temperature (10, 20 and 30 °C), external air velocity (0.5, 1 and 3 m s-1) and emissivity of the clothing inner surface (0.05 and 0.95), which implied Rayleigh numbers in the microclimate spanning 4 orders of magnitude (9 × 102-3 × 105). The convective heat transfer coefficients obtained along the clothing were found to strongly depend on the transport phenomena in the microclimate, in particular when natural convection is the most important transport mechanism. In such scenario, convective coefficients were found to vary in wavy-like manner, depending on the position of the flow vortices in the microclimate. These observations clearly differ from data in the literature for the case of air flow over flat-heated surfaces with constant temperature (which shows monotonic variations of the convective heat transfer coefficients, along the length of the surface). The flow patterns and
Sahel decadal rainfall variability and the role of model horizontal resolution
NASA Astrophysics Data System (ADS)
Vellinga, Michael; Roberts, Malcolm; Vidale, Pier Luigi; Mizielinski, Matthew S.; Demory, Marie-Estelle; Schiemann, Reinhard; Strachan, Jane; Bain, Caroline
2016-01-01
Substantial low-frequency rainfall fluctuations occurred in the Sahel throughout the twentieth century, causing devastating drought. Modeling these low-frequency rainfall fluctuations has remained problematic for climate models for many years. Here we show using a combination of state-of-the-art rainfall observations and high-resolution global climate models that changes in organized heavy rainfall events carry most of the rainfall variability in the Sahel at multiannual to decadal time scales. Ability to produce intense, organized convection allows climate models to correctly simulate the magnitude of late-twentieth century rainfall change, underlining the importance of model resolution. Increasing model resolution allows a better coupling between large-scale circulation changes and regional rainfall processes over the Sahel. These results provide a strong basis for developing more reliable and skilful long-term predictions of rainfall (seasons to years) which could benefit many sectors in the region by allowing early adaptation to impending extremes.
Measuring vulnerability to disaster displacement
NASA Astrophysics Data System (ADS)
Brink, Susan A.; Khazai, Bijan; Power, Christopher; Wenzel, Friedemann
2015-04-01
aggregate these ideas into a framework of disaster displacement vulnerability that distinguishes between three main aspects of disaster displacement. Disaster displacement can be considered in terms of the number of displaced people and the length of that displacement. However, the literature emphasizes that the severity of disaster displacement can not be measured completely in quantitative terms. Thus, we include a measure representing people who are trapped and unable to leave their homes due to mobility, resources or for other reasons. Finally the third main aspect considers the difficulties that are associated with displacement and reflects the difference between the experiences of those who are displaced into safe and supportive environments as compared to those whose only alternate shelter is dangerous and inadequate for their needs. Finally, we apply the framework to demonstrate a methodology to estimate vulnerability to disaster displacement. Using data from the Global Earthquake Model (GEM) Social and Economic Vulnerability sub-National Database, we generate an index to measure the vulnerability of Japanese prefectures to the dimensions of displacement included in the framework. References Yonitani, M. (2014). Global Estimates 2014: People displaced by disasters. http://www.internal-displacement.org/publications/2014/global-estimates-2014-people-displaced-by-disasters/
The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1
Wehner, Michael F.; Reed, Kevin A.; Li, Fuyu; Prabhat, -; Bacmeister, Julio; Chen, Cheng -Ta; Paciorek, Christopher; Gleckler, Peter J.; Sperber, Kenneth R.; Collins, William D.; et al
2014-11-05
We present an analysis of version 5.1 of the Community Atmospheric Model (CAM5.1) at a high horizontal resolution. Intercomparison of this global model at approximately 0.25°, 1°, and 2° is presented for extreme daily precipitation as well as for a suite of seasonal mean fields. In general, extreme precipitation amounts are larger in high resolution than in lower-resolution configurations. In many but not all locations and/or seasons, extreme daily precipitation rates in the high-resolution configuration are higher and more realistic. The high-resolution configuration produces tropical cyclones up to category 5 on the Saffir-Simpson scale and a comparison to observations revealsmore » both realistic and unrealistic model behavior. In the absence of extensive model tuning at high resolution, simulation of many of the mean fields analyzed in this study is degraded compared to the tuned lower-resolution public released version of the model.« less