Science.gov

Sample records for horizontal flow regime

  1. A mechanistic determination of horizontal flow regime bound using void wave celerity

    SciTech Connect

    Park, J.W.

    1995-09-01

    The two-phase flow regime boundaries in a horizontal channel has been investigated by using the behavior of the second order void wave celerities. The average two-fluid model has been constituted with closure relations for horizontally stratified and bubbly flows. A vapor phase turbulent stress model for a smooth interface geometry has been included. It is found that the second order waves (i.e., eigenvalues) propagate in opposite direction with almost the same speed when the liquid phase is stationary. Using the well-posedness limit of the two-phase system, the dispersed-stratified flow regime boundary has been modeled. Two-phase Froude number has been theoretically found to be a convenient parameter in quantifying the flow regime boundary as a function of the void fraction. It is found that interaction between void wave celerities become stronger as the two-phase Froude number is reduced. This result should be interpreted as that gravity and the relative velocity are key parameters in determining flow regime boundaries in a horizontal flow. The influence of the vapor phase turbulent stress found to stabilize the flow stratification. This study clearly shows that the average two-fluid model is very effective for a mechanistic determination of horizontal flow regimes if appropriate closure relations are developed.

  2. Prediction of refrigerant void fraction in horizontal tubes using probabilistic flow regime maps

    SciTech Connect

    Jassim, E.W.; Newell, T.A.; Chato, J.C.

    2008-04-15

    A state of the art review of two-phase void fraction models in smooth horizontal tubes is provided and a probabilistic two-phase flow regime map void fraction model is developed for refrigerants under condensation, adiabatic, and evaporation conditions in smooth, horizontal tubes. Time fraction information from a generalized probabilistic two-phase flow map is used to provide a physically based weighting of void fraction models for different flow regimes. The present model and void fraction models in the literature are compared to data from multiple sources including R11, R12, R134a, R22, R410A refrigerants, 4.26-9.58 mm diameter tubes, mass fluxes from 70 to 900 kg/m{sup 2} s, and a full quality range. The present model has a mean absolute deviation of 3.5% when compared to the collected database. (author)

  3. Experimental investigation of the two-phase flow regimes and pressure drop in horizontal mini-size rectangular test section

    NASA Astrophysics Data System (ADS)

    Elazhary, Amr Mohamed; Soliman, Hassan M.

    2012-10-01

    An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.

  4. Condensation of refrigerants in horizontal, spirally grooved microfin tubes: Numerical analysis of heat transfer in the annular flow regime

    SciTech Connect

    Nozu, S.; Honda, H.

    2000-02-01

    A method is presented for estimating the condensation heat transfer coefficient in a horizontal, spirally grooved microfin tube. Based on the flow observation study performed by the authors, a laminar film condensation model in the annular flow regime is proposed. The model assumes that all the condensate flow occurs through the grooves. The condensate film is segmented into thin and thick film regions. In the thin film region formed on the fin surface, the condensate is assumed to be drained by the combined surface tension and vapor shear forces. In the thick film region formed in the groove, on the other hand, the condensate is assumed to be driven by the vapor shear force. The present and previous local heat transfer data including four fluids (CFC11, HCFC22, HCFC123, and HFCl34a) and three microfin tubes are found to agree with the present predictions to a mean absolute deviation of 15.1%.

  5. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    PubMed

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  6. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  7. Probabilistic determination of two-phase flow regimes in horizontal tubes utilizing an automated image recognition technique

    NASA Astrophysics Data System (ADS)

    Jassim, Emad W.; Newell, Ty A.; Chato, John C.

    2007-04-01

    Probabilistic two-phase flow map data is experimentally obtained for R134a at 25.0, 35.0, and 49.7°C, R410A at 25.0°C, mass fluxes from 100 to 600 kg/m2-s, qualities from 0 to1 in 8.00, 5.43, 3.90, and 1.74 mm I.D. single, smooth, adiabatic, horizontal tubes in order to extend probabilistic two-phase flow map modeling techniques to single tubes. A new web camera based flow visualization technique utilizing an illuminated diffuse striped background was used to enhance images, detect fine films, and aid in the automated image recognition process developed in the present study. This technique has an average time fraction classification error of less than 0.01.

  8. Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic Doppler sensor and a neural network

    NASA Astrophysics Data System (ADS)

    Musa Abbagoni, Baba; Yeung, Hoi

    2016-08-01

    The identification of flow pattern is a key issue in multiphase flow which is encountered in the petrochemical industry. It is difficult to identify the gas–liquid flow regimes objectively with the gas–liquid two-phase flow. This paper presents the feasibility of a clamp-on instrument for an objective flow regime classification of two-phase flow using an ultrasonic Doppler sensor and an artificial neural network, which records and processes the ultrasonic signals reflected from the two-phase flow. Experimental data is obtained on a horizontal test rig with a total pipe length of 21 m and 5.08 cm internal diameter carrying air-water two-phase flow under slug, elongated bubble, stratified-wavy and, stratified flow regimes. Multilayer perceptron neural networks (MLPNNs) are used to develop the classification model. The classifier requires features as an input which is representative of the signals. Ultrasound signal features are extracted by applying both power spectral density (PSD) and discrete wavelet transform (DWT) methods to the flow signals. A classification scheme of ‘1-of-C coding method for classification’ was adopted to classify features extracted into one of four flow regime categories. To improve the performance of the flow regime classifier network, a second level neural network was incorporated by using the output of a first level networks feature as an input feature. The addition of the two network models provided a combined neural network model which has achieved a higher accuracy than single neural network models. Classification accuracies are evaluated in the form of both the PSD and DWT features. The success rates of the two models are: (1) using PSD features, the classifier missed 3 datasets out of 24 test datasets of the classification and scored 87.5% accuracy; (2) with the DWT features, the network misclassified only one data point and it was able to classify the flow patterns up to 95.8% accuracy. This approach has demonstrated the

  9. Inlet Jet Interaction in Horizontal Pipe Flow

    NASA Astrophysics Data System (ADS)

    Jha, Pranab; Smith, Chuck; Metcalfe, Ralph

    2012-11-01

    Laminar incompressible flow (Re < 1000) inside a horizontal channel with multiple cross-flow inlets was studied numerically. First, two cross-flow inlets were used to observe the flow interference phenomenon between the inlets. This concept was extended to axisymmetric pipe flow with five cross-flow inlets. Three basic flow regimes - trickle flow, partially blocked flow and fully blocked flow - were identified with respect to the blocking of upstream inlets by the downstream ones. The effects of inlet pressure and different inlet sizes on the flow regimes under steady state condition were studied. A hydrostatic model of fluid reservoirs draining into the channel was constructed using a linear function for pressure at the inlet boundaries to study the dynamic behavior of the inlets. Three different time scales related to the depletion of the reservoirs were identified. The dynamic behavior of two cross-flow inlets was observed with the initial conditions corresponding to the three flow regimes. Similar study was carried out for a five-inlet case and the dynamic behavior of individual reservoirs was observed. The change of flow regimes in the system over time with reservoir draining was evident and the different time-scales involved were identified. Supported in Part by Apache Corporation.

  10. Environment Flow Assessment with Flow Regime Transition

    NASA Astrophysics Data System (ADS)

    Su, J.; Ho, C. C.; Chang, L. C.

    2015-12-01

    To avoid worsen river and estuarine ecosystems cause by overusing water resources, environmental flows conservation is applied to reduce the impact of river environment. Environmental flows refer to water provided within a river, wetland or coastal zone to sustain ecosystems and benefits to human wellbeing. Environment flow assessment is now widely accepted that a naturally variable flow regime, rather than just a minimum low flow. In this study, we propose four methods, experience method, Tenant method, hydraulic method and habitat method to assess the environmental flow of base flow, flush flow and overbank flow with different discharge, frequency and occurrence period. Dahan River has been chosen as a case to demonstrate the assessment mechanism. The alternatives impact analysis of environment and human water used provides a reference for stakeholders when holding an environmental flow consultative meeting.

  11. Merging of Rhine flow regimes

    NASA Astrophysics Data System (ADS)

    Boessenkool, Berry; Bronstert, Axel; Bürger, Gerd

    2016-04-01

    The Rhine flow regime is changing: (a) in the alpine nival regime, snow melt floods occur earlier in the year and (b) in the pluvial middle-Rhine regime, rainfall induced flood magnitudes rise. The seasonality of each is currently separated in time, but it is conceivable that this may shift due to climate change. If extremes of both flood types coincide, this would create a new type of hydrologic extreme with disastrous consequences. Quantifying the probability for a future overlap of pluvial and nival floods is therefore of high relevance to society and particularly to reinsurance companies. In order to investigate possible changes in magnitude and timing of flood types, we are developing a chain of physical models for spatio-temporal combination of flood probabilities. As input, we aim to use stochastically downscaled temperature and rainfall extremes from climate model weather projections. Preliminary research shows a six-week forward-shift of peak discharge at the nival gauge Maxau in the past century. The aim of presenting our early-stage work as a poster is to induce an exchange of ideas with fellow scientists in close research disciplines.

  12. Phase-locked measurements of gas-liquid horizontal flows

    NASA Astrophysics Data System (ADS)

    Zadrazil, Ivan; Matar, Omar; Markides, Christos

    2014-11-01

    A flow of gas and liquid in a horizontal pipe can be described in terms of various flow regimes, e.g. wavy stratified, annular or slug flow. These flow regimes appear at characteristic gas and liquid Reynolds numbers and feature unique wave phenomena. Wavy stratified flow is populated by low amplitude waves whereas annular flow contains high amplitude and long lived waves, so called disturbance waves, that play a key role in a liquid entrainment into the gas phase (droplets). In a slug flow regime, liquid-continuous regions travel at high speeds through a pipe separated by regions of stratified flow. We use a refractive index matched dynamic shadowgraphy technique using a high-speed camera mounted on a moving robotic linear rail to track the formation and development of features characteristic for the aforementioned flow regimes. We show that the wave dynamics become progressively more complex with increasing liquid and gas Reynolds numbers. Based on the shadowgraphy measurements we present, over a range of conditions: (i) phenomenological observations of the formation, and (ii) statistical data on the downstream velocity distribution of different classes of waves. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  13. Flow interaction between multiple cross-flow inlets in a horizontal pipe or channel

    NASA Astrophysics Data System (ADS)

    Jha, Pranab N.; Smith, Chuck; Metcalfe, Ralph W.

    2013-11-01

    Incompressible flow in horizontal channels and pipes with multiple cross-flow inlets was studied numerically. Flow interference among the inlets was studied using an axisymmetric pipe flow model with five cross-flow inlets. Three basic flow regimes - trickle flow, partially blocked flow and fully blocked flow - were identified with respect to the blocking of upstream inlets by the downstream ones. The effects of inlet pressure and inlet size on the flow regimes under steady state conditions were studied. The presence of these regimes was supported by field data obtained from a horizontal natural gas well at two different times in the production cycle. Using a hydrostatic pressure model of reservoirs as the inlet boundary condition that drained fluid into the channel, the dynamic interaction of the inlets was studied. The transient behavior of the flow regimes was simulated and the key time-scales involved were identified. This is supported by field data where a similar behavior can be observed over time. Initially, the upstream inlets were in a blocked state, but opened up at a later time, leading to a trickle flow regime. Supported in Part by Apache Corporation.

  14. Capacitance densitometer for flow regime identification

    DOEpatents

    Shipp, Jr., Roy L.

    1978-01-01

    This invention relates to a capacitance densitometer for determining the flow regime of a two-phase flow system. A two-element capacitance densitometer is used in conjunction with a conventional single-beam gamma densitometer to unambiguously identify the prevailing flow regime and the average density of a flowing fluid.

  15. Dual permeability flow behavior for modeling horizontal well production in fractured-vuggy carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Guo, Jian-Chun; Nie, Ren-Shi; Jia, Yong-Lu

    2012-09-01

    SummaryFractured-vuggy carbonate reservoirs are composed of by matrix, fracture, and vug systems. This paper is the first investigation into the dual permeability flow issue for horizontal well production in a fractured-vuggy carbonate reservoir. Considering dispersed vugs in carbonate reservoirs and treating media directly connected with horizontal wellbore as the matrix and fracture systems, a test analysis model of a horizontal well was created, and triple porosity and dual permeability flow behavior were modeled. Standard log-log type curves were drawn up by numerical simulation and flow behavior characteristics were thoroughly analyzed. Numerical simulations showed that type curves are dominated by external boundary conditions as well as the permeability ratio of the fracture system to the sum of fracture and matrix systems. The parameter κ is only relevant to the dual permeability model, and if κ is one, then the dual permeability model is equivalent to the single permeability model. There are seven main flow regimes with constant rate of horizontal well production and five flow regimes with constant wellbore pressure of horizontal well production; different flow regimes have different flow behavior characteristics. Early radial flow and linear flow regimes are typical characteristics of horizontal well production; duration of early radial flow regime is usually short because formation thickness is generally less than 100 m. Derivative curves are W-shaped, which is a reflection of inter-porosity flows between matrix, fracture, and vug systems. A distorted W-shape, which could be produced in certain situations, such as one involving an erroneously low time of inter-porosity flows, would handicap the recognition of a linear flow regime. A real case application was successfully implemented, and some useful reservoir parameters (e.g., permeability and inter-porosity flow factor) were obtained from well testing interpretation.

  16. Identifying natural flow regimes using fish communities

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Tsai, Wen-Ping; Wu, Tzu-Ching; Chen, Hung-kwai; Herricks, Edwin E.

    2011-10-01

    SummaryModern water resources management has adopted natural flow regimes as reasonable targets for river restoration and conservation. The characterization of a natural flow regime begins with the development of hydrologic statistics from flow records. However, little guidance exists for defining the period of record needed for regime determination. In Taiwan, the Taiwan Eco-hydrological Indicator System (TEIS), a group of hydrologic statistics selected for fisheries relevance, is being used to evaluate ecological flows. The TEIS consists of a group of hydrologic statistics selected to characterize the relationships between flow and the life history of indigenous species. Using the TEIS and biosurvey data for Taiwan, this paper identifies the length of hydrologic record sufficient for natural flow regime characterization. To define the ecological hydrology of fish communities, this study connected hydrologic statistics to fish communities by using methods to define antecedent conditions that influence existing community composition. A moving average method was applied to TEIS statistics to reflect the effects of antecedent flow condition and a point-biserial correlation method was used to relate fisheries collections with TEIS statistics. The resulting fish species-TEIS (FISH-TEIS) hydrologic statistics matrix takes full advantage of historical flows and fisheries data. The analysis indicates that, in the watersheds analyzed, averaging TEIS statistics for the present year and 3 years prior to the sampling date, termed MA(4), is sufficient to develop a natural flow regime. This result suggests that flow regimes based on hydrologic statistics for the period of record can be replaced by regimes developed for sampled fish communities.

  17. Learning Flow Regimes from Snapshot Data

    NASA Astrophysics Data System (ADS)

    Hemati, Maziar

    2015-11-01

    Fluid flow regimes are often categorized based on the qualitative patterns observed by visual inspection of the flow field. For example, bluff body wakes are traditionally classified based on the number and groupings of vortices shed per cycle (e.g., 2S, 2P, P+S), as seen in snapshots of the vorticity field. Subsequently, the existence and nature of these identified flow regimes can be explained through dynamical analyses of the fluid mechanics. Unfortunately, due to the need for manual inspection, the approach described above can be impractical for studies that seek to learn flow regimes from large volumes of numerical and/or experimental snapshot data. Here, we appeal to established techniques from machine learning and data-driven dynamical systems analysis to automate the task of learning flow regimes from snapshot data. Moreover, by appealing to the dynamical structure of the fluid flow, this approach also offers the potential to reveal flow regimes that may be overlooked by visual inspection alone. Here, we will introduce the methodology and demonstrate its capabilities and limitations in the context of several model flows.

  18. Gas flow through rough microchannels in the transition flow regime.

    PubMed

    Deng, Zilong; Chen, Yongping; Shao, Chenxi

    2016-01-01

    A multiple-relaxation-time lattice Boltzmann model of Couette flow is developed to investigate the rarified gas flow through microchannels with roughness characterized by fractal geometry, especially to elucidate the coupled effects of roughness and rarefaction on microscale gas flow in the transition flow regime. The results indicate that the surface roughness effect on gas flow behavior becomes more significant in rarefied gas flow with the increase of Knudsen number. We find the gas flow behavior in the transition flow regime is more sensitive to roughness height than that in the slip flow regime. In particular, the influence of fractal dimension on rarefied gas flow behavior is less significant than roughness height. PMID:26871175

  19. Axisymmetric, Ventilated Supercavitation in Unsteady, Horizontal Flow

    NASA Astrophysics Data System (ADS)

    Kawakami, Ellison; Lee, Seung-Jae; Arndt, Roger

    2012-11-01

    Drag reduction and/or speed augmentation of marine vehicles by means of supercavitation is a topic of great interest. During the initial launch of a supercavitating vehicle, an artificial supercavity is required until the vehicle can reach conditions at which a natural supercavity can be sustained. Previous studies at Saint Anthony Falls Laboratory (SAFL) focused on the behavior of ventilated supercavities in steady horizontal flows. In open waters, vehicles can encounter unsteady flows, especially when traveling under waves. A study has been carried out at SAFL to investigate the effects of unsteady flow on axisymmetric supercavities. An attempt is made to duplicate sea states seen in open waters. In an effort to track cavity dimensions throughout a wave cycle, an automated cavity tracking script has been developed. Using a high speed camera and the proper software, it is possible to synchronize cavity dimensions with pressure measurements taken inside the cavity. Results regarding supercavity shape, ventilation demand, cavitation parameters and closure methods are presented. It was found that flow unsteadiness caused a decrease in the overall length of the supercavity while having only a minimal effect on the maximum diameter. The supercavity volume varied with cavitation number and a possible relationship between the two is being explored. (Supported by ONR)

  20. Constructing an interdisciplinary flow regime recommendation

    USGS Publications Warehouse

    Bartholow, J.M.

    2010-01-01

    It is generally agreed that river rehabilitation most often relies on restoring a more natural flow regime, but credibly defining the desired regime can be problematic. I combined four distinct methods to develop and refine month-by-month and event-based flow recommendations to protect and partially restore the ecological integrity of the Cache la Poudre River through Fort Collins, Colorado. A statistical hydrologic approach was used to summarize the river's natural flow regime and set provisional monthly flow targets at levels that were historically exceeded 75% of the time. These preliminary monthly targets were supplemented using results from three Poudre-specific disciplinary studies. A substrate maintenance flow model was used to better define the high flows needed to flush accumulated sediment from the river's channel and help sustain the riparian zone in this snowmelt-dominated river. A hydraulic/habitat model and a water temperature model were both used to better define the minimum flows necessary to maintain a thriving cool water fishery. The result is a range of recommended monthly flows and daily flow guidance illustrating the advantage of combining a wide range of available disciplinary information, supplemented by judgment based on ecological principles and a general understanding of river ecosystems, in a highly altered, working river. ?? 2010 American Water Resources Association.

  1. Forest damage and snow avalanche flow regime

    NASA Astrophysics Data System (ADS)

    Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.

    2015-01-01

    Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. In the powder regime, the blast of the cloud can produce large bending moments in the tree stem because of the impact area extending over the entire tree crown. We demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. In the wet snow case, avalanche pressure is calculated using a quasi-static model accounting for the motion of plug-like wet snow flows. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. We find (1) powder clouds with velocities over 20 m s-1 can break tree stems, (2) the intermittent regime seldom controls tree breakage and (3) quasi-static pressures of wet snow avalanches can be much higher than pressures calculated using dynamic pressure formulas.

  2. Regimes of flow past a vortex generator

    NASA Astrophysics Data System (ADS)

    Velte, C. M.; Okulov, V. L.; Naumov, I. V.

    2012-04-01

    A complete parametric investigation of the development of multi-vortex regimes in a wake past simple vortex generator has been carried out. It is established that the vortex structure in the wake is much more complicated than a simple monopole tip vortex. The vortices were studied by stereoscopic particle image velocimetry (SPIV). Based on the obtained SPIV data, a map of the regimes of flow past the vortex generator has been constructed. One region with a developed stable multivortex system on this map reaches the vicinity of the optimum angle of attack of the vortex generator.

  3. Forced flow of a vapor-liquid stream in a horizontal pipe with film boiling

    NASA Astrophysics Data System (ADS)

    Kalinin, É. K.; Panevin, V. I.; Firsov, V. P.

    1986-05-01

    The stream structure and flow regime during film boiling of liquid nitrogen in a horizontal pipe are investigated. Data on heat transfer are obtained and a model is proposed for calculating the parameters of the two-phase stream along the channel length.

  4. Forest damage and snow avalanche flow regime

    NASA Astrophysics Data System (ADS)

    Feistl, T.; Bebi, P.; Christen, M.; Margreth, S.; Diefenbach, L.; Bartelt, P.

    2015-06-01

    Snow avalanches break, uproot and overturn trees causing damage to forests. The extent of forest damage provides useful information on avalanche frequency and intensity. However, impact forces depend on avalanche flow regime. In this paper, we define avalanche loading cases representing four different avalanche flow regimes: powder, intermittent, dry and wet. Using a numerical model that simulates both powder and wet snow avalanches, we study documented events with forest damage. First we show that in the powder regime, although the applied impact pressures can be small, large bending moments in the tree stem can be produced due to the torque action of the blast. The impact area of the blast extends over the entire tree crown. We find that, powder clouds with velocities over 20 m s-1 can break tree stems. Second we demonstrate that intermittent granular loadings are equivalent to low-density uniform dry snow loadings under the assumption of homogeneous particle distributions. The intermittent regime seldom controls tree breakage. Third we calculate quasi-static pressures of wet snow avalanches and show that they can be much higher than pressures calculated using dynamic pressure formulas. Wet snow pressure depends both on avalanche volume and terrain features upstream of the tree.

  5. Flow regimes in a trapped vortex cell

    NASA Astrophysics Data System (ADS)

    Lasagna, D.; Iuso, G.

    2016-03-01

    This paper presents results of an experimental investigation on the flow in a trapped vortex cell, embedded into a flat plate, and interacting with a zero-pressure-gradient boundary layer. The objective of the work is to describe the flow features and elucidate some of the governing physical mechanisms, in the light of recent investigations on flow separation control using vortex cells. Hot-wire velocity measurements of the shear layer bounding the cell and of the boundary layers upstream and downstream are reported, together with spectral and correlation analyses of wall-pressure fluctuation measurements. Smoke flow visualisations provide qualitative insight into some relevant features of the internal flow, namely a large-scale flow unsteadiness and possible mechanisms driving the rotation of the vortex core. Results are presented for two very different regimes: a low-Reynolds-number case where the incoming boundary layer is laminar and its momentum thickness is small compared to the cell opening, and a moderately high-Reynolds-number case, where the incoming boundary layer is turbulent and the ratio between the momentum thickness and the opening length is significantly larger than in the first case. Implications of the present findings to flow control applications of trapped vortex cells are also discussed.

  6. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1988-01-01

    A modified cluster analysis method developed for the classification of quasi-stationary events into a few planetary flow regimes and for the examination of transitions between these regimes is described. The method was applied first to a simple deterministic model and then to a 500-mbar data set for Northern Hemisphere (NH), for which cluster analysis was carried out in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters were found in the low-frequency band of more than 10 days, while transient clusters were found in the band-pass frequency window between 2.5 and 6 days. In the low-frequency band, three pairs of clusters determined EOFs 1, 2, and 3, respectively; they exhibited well-known regional features, such as blocking, the Pacific/North American pattern, and wave trains. Both model and low-pass data exhibited strong bimodality.

  7. The relationship between void waves and flow regime transition

    SciTech Connect

    Lahey, R.T. Jr.; Drew, D.A.; Kalkach-Navarro, S.; Park, J.W.

    1992-12-31

    The results of an extensive experimental and analytical study on the relationship between void waves and flow regime transition are presented, in particular, the bubbly/slug flow regime transition. It is shown that void wave instability signals a flow regime transition.

  8. Formation damage effects on horizontal-well flow efficiency

    SciTech Connect

    Renard, G.; Dupuy, J.M. )

    1991-07-01

    Wellbore damage commonly is accounted for by an apparent skin factor. A better relative index for determining the efficiency with which a well has been drilled and completed is the flow efficiency, the ration of a well's actual PI to ideal PI. The flow efficiency of horizontal wells is derived assuming steady-state flow of an incompressible fluid in a homogeneous, anisotropic medium. A comparison between the flow efficiencies of vertical and horizontal wells indicates that permeability reduction around the wellbore is less detrimental to horizontal wells. This paper shows that the effect of damage around a horizontal wellbore is reduced slightly by increasing the well length. Conversely, if the vertical permeability is less than the horizontal permeability, the anisotropy ratio, {radical} k{sub H}/k{sub V}, magnifies the influence of formation damage near the horizontal wellbore. Examples of flow efficiency calculations assuming a formation damage or a formation collapse around a liner in poorly consolidated formations are provided for horizontal and vertical wells.

  9. Wavy regime of a viscoplastic film flow

    NASA Astrophysics Data System (ADS)

    Chakraborty, Symphony; Ruyer-Quil, Christian; Dandapat, Bhabani S.

    2010-11-01

    We consider a power-law fluid flowing down an inclined plane under the action of gravity. The divergence of the viscosity of a shear-thinning fluid at zero strain rate is taken care of by introducing a Newtonian plateau at small strain rate. Applying a weighted residual approach, a two-equations model is formulated in terms of two coupled evolution equations for the film thickness h and the local flow rate q within the framework of lubrication theory. The model accounts for the streamwise diffusion of momentum. Consistency of the model is achieved up to first order in the film parameter for inertia terms and up to second order for viscous terms. Comparison to Orr-Sommerfeld stability analysis and to DNS show convincing agreement in both linear and nonlinear regimes. In the case of shear-thinning fluids, lowering the power index has a non-trivial effect on the primary instability of the film: the threshold of the instability occurs at a smaller Reynolds number but the range of instable wavenumber is also reduced. In the nonlinear regime, we have evidenced a subcritical bifurcation of the traveling-wave solutions from marginal stability conditions.

  10. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  11. SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES

    SciTech Connect

    Richard Schultz

    2010-08-01

    Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

  12. Constraints on flow regimes in wide-aperture fractures

    SciTech Connect

    Ghezzehei, Teamrat A.

    2004-02-28

    In recent years, significant advances have been made in our understanding of the complex flow processes in individual fractures, aided by flow visualization experiments and conceptual modeling efforts. These advances have led to the recognition of several flow regimes in individual fractures subjected to different initial and boundary conditions. Of these, the most important regimes are film flow, rivulet flow, and sliding of droplets. The existence of such significantly dissimilar flow regimes has been a major hindrance in the development of self-consistent conceptual models of flow for single fractures that encompass all the flow regimes. The objective of this study is to delineate the existence of the different flow regimes in individual fractures. For steady-state flow conditions, we developed physical constraints on the different flow regimes that satisfy minimum energy configurations, which enabled us to segregate the wide range of fracture transmissivity (volumetric flow rate per fracture width) into several flow regimes. These are, in increasing order of flow rate, flow of adsorbed films, flow of sliding drops, rivulet flow, stable film flow, and unstable (turbulent) film flow. The scope of this study is limited to wide-aperture fractures with the flow on the opposing sides of fracture being independent.

  13. Online recognition of the multiphase flow regime and study of slug flow in pipeline

    NASA Astrophysics Data System (ADS)

    Liejin, Guo; Bofeng, Bai; Liang, Zhao; Xin, Wang; Hanyang, Gu

    2009-02-01

    Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state[1]. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of

  14. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1987-01-01

    A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.

  15. Regular flow reversals in Rayleigh-Bénard convection in a horizontal magnetic field.

    PubMed

    Tasaka, Yuji; Igaki, Kazuto; Yanagisawa, Takatoshi; Vogt, Tobias; Zuerner, Till; Eckert, Sven

    2016-04-01

    Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally using a liquid metal inside a box with a square horizontal cross section and aspect ratio of five. Systematic flow measurements were performed by means of ultrasonic velocity profiling that can capture time variations of instantaneous velocity profiles. Applying a horizontal magnetic field organizes the convective motion into a flow pattern of quasi-two-dimensional rolls arranged parallel to the magnetic field. The number of rolls has the tendency to decrease with increasing Rayleigh number Ra and to increase with increasing Chandrasekhar number Q. We explored convection regimes in a parameter range, at 2×10^{3}regime diagram provided by Yanagisawa et al. [T. Yanagisawa et al., Phys. Rev. E 88, 063020 (2013)PLEEE81539-375510.1103/PhysRevE.88.063020]. Three regimes were identified, of which the regime of regular flow reversals in which five rolls periodically change the direction of their circulation with gradual skew of the roll axes can be considered as the most remarkable one. The regime appears around a range of Ra/Q=10, where irregular flow reversals were observed in Yanagisawa et al. We performed the proper orthogonal decomposition (POD) analysis on the spatiotemporal velocity distribution and detected that the regular flow reversals can be interpreted as a periodic emergence of a four-roll state in a dominant five-roll state. The POD analysis also provides the definition of the effective number of rolls as a more objective approach. PMID:27176392

  16. Regular flow reversals in Rayleigh-Bénard convection in a horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Tasaka, Yuji; Igaki, Kazuto; Yanagisawa, Takatoshi; Vogt, Tobias; Zuerner, Till; Eckert, Sven

    2016-04-01

    Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally using a liquid metal inside a box with a square horizontal cross section and aspect ratio of five. Systematic flow measurements were performed by means of ultrasonic velocity profiling that can capture time variations of instantaneous velocity profiles. Applying a horizontal magnetic field organizes the convective motion into a flow pattern of quasi-two-dimensional rolls arranged parallel to the magnetic field. The number of rolls has the tendency to decrease with increasing Rayleigh number Ra and to increase with increasing Chandrasekhar number Q . We explored convection regimes in a parameter range, at 2 ×103regime diagram provided by Yanagisawa et al. [T. Yanagisawa et al., Phys. Rev. E 88, 063020 (2013), 10.1103/PhysRevE.88.063020]. Three regimes were identified, of which the regime of regular flow reversals in which five rolls periodically change the direction of their circulation with gradual skew of the roll axes can be considered as the most remarkable one. The regime appears around a range of Ra /Q =10 , where irregular flow reversals were observed in Yanagisawa et al. We performed the proper orthogonal decomposition (POD) analysis on the spatiotemporal velocity distribution and detected that the regular flow reversals can be interpreted as a periodic emergence of a four-roll state in a dominant five-roll state. The POD analysis also provides the definition of the effective number of rolls as a more objective approach.

  17. Flow regimes in a single dimple on the channel surface

    NASA Astrophysics Data System (ADS)

    Kovalenko, G. V.; Terekhov, V. I.; Khalatov, A. A.

    2010-12-01

    The boundaries of the domains of existence of flow regimes past single dimples made as spherical segments on a flat plate are determined with the use of available experimental results. Regimes of a diffuser-confuser flow, a horseshoe vortex, and a tornado-like vortex in the dimple are considered. Neither a horseshoe vortex nor a tornado-like vortex is observed in dimples with the relative depth smaller than 0.1. Transformations from the diffuser-confuser flow regime to the horseshoe vortex regime and from the horseshoe vortex flow to the tornado-like vortex flow are found to depend not only on the Reynolds number, but also on the relative depth of the spherical segment. Dependences for determining the boundaries of the regime existence domains are proposed, and parameters at which the experimental results can be generalized are given.

  18. DETECTION OF SUPERSONIC HORIZONTAL FLOWS IN THE SOLAR GRANULATION

    SciTech Connect

    Bellot Rubio, L. R.

    2009-07-20

    Hydrodynamic simulations of granular convection predict the existence of supersonic flows covering {approx}3%-4% of the solar surface at any time, but these flows have not been detected unambiguously as yet. Using data from the spectropolarimeter aboard the Hinode satellite, I present direct evidence of fast horizontal plasma motions in quiet-Sun granules. Their visibility increases toward the limb due to more favorable viewing conditions. At the resolution of Hinode, the horizontal flows give rise to asymmetric intensity profiles with very inclined blue wings and even line satellites located blueward of the main absorption feature. Doppler shifts of up to 9 km s{sup -1} are observed at the edges of bright granules, demonstrating that the flows reach supersonic speeds. The strongest velocities occur in patches of 0.''5 or less. They tend to be associated with enhanced continuum intensities, line widths, and equivalent widths, but large values of these parameters do not necessarily imply the existence of supersonic flows. Time series of spectropolarimetric measurements in regions away from the disk center show the transient nature of the strong horizontal motions, which last only for a fraction of the granule lifetime. Supersonic flows are expected to produce shocks at the boundaries between granules and intergranular lanes, and may also play a role in the emergence of small-scale magnetic fields in quiet-Sun internetwork regions.

  19. Void fraction correlations in two-phase horizontal flow

    SciTech Connect

    Papathanassiou, G.; Maeder, P.F.; DiPippo, R.; Dickinson, D.A.

    1983-05-01

    This study examines some physical mechanisms which impose limits on the possible existence of two-phase flow in a horizontal pipe. With the aid of this analysis and the use of the Martinelli variable, X, a method is developed which determines the range of possible void fractions for a given two-phase flow. This method affords a means of direct comparison among void fraction correlations, as well as between correlation predictions and experimental results. In this respect, four well-known void fraction correlations are compared against each other and with experimental results obtained in the Brown University Two-Phase Flow Research Facility.

  20. Algebraic instability in shallow water flows with horizontally nonuniform density

    NASA Astrophysics Data System (ADS)

    Goncharov, V. P.; Pavlov, V. I.

    2015-04-01

    The regimes and mechanisms of the Rayleigh-Taylor instability have been studied in the scope of the nonhydrostatic shallow water model with horizontally nonuniform density. As analysis shows, the nonhydrostaticity has a crucial influence on the instability. It is for this reason that at the final stage a collapse tendency predicted on the base of the hydrostatic scenario slows down and turns into the regime of algebraic instability. The numerical testing has shown that in spite of its simplicity, the model is quite able to describe realistically a number of effects. For example, the model captures the shallowing effect, which manifests itself as profile concavities on either side of the jet coming out of the boundary layer.

  1. Estuarine versus transient flow regimes in Juan de Fuca Strait

    NASA Astrophysics Data System (ADS)

    Thomson, Richard E.; MiháLy, Steven F.; Kulikov, Evgueni A.

    2007-09-01

    Residual currents in Juan de Fuca Strait are observed to switch between two fundamental states: estuarine and transient. The estuarine regime, which prevails roughly 90% of the time in summer and 55% of the time in winter, has a fortnightly modulated, three-layer structure characterized by strong (˜50 cm s-1) outflow above 60 ± 15 m depth, moderate (˜25 cm s-1) inflow between 60 and 125 m depth, and weak (˜10 cm s-1) inflow below 125 ± 10 m depth. Rotation increases the upper layer depth by 40 m on the northern side of the channel and upwelling-favorable coastal winds augment inflow in the bottom layer by as much as 5 cm s-1. Rotation, combined with modulation of the estuarine currents by tidal mixing in the eastern strait, leads to fortnightly variability in the along-channel velocity and cross-channel positioning of the core flow regions. Transient flows, which occur roughly 10% of the time in summer and 45% of the time in winter, are rapidly evolving, horizontally and vertically sheared "reversals" in the estuarine circulation generated during poleward wind events along the outer coast. Major events can persist for several weeks, force a net inward transport, and give rise to an O(10) km wide, surface-intensified, O(100) cm s-1 inflow along the southern (Olympic Peninsula) boundary of the strait. This "Olympic Peninsula Countercurrent" is typically accompanied by an abrupt decrease in salinity, indicating that it is a buoyancy flow originating with low-density water on the northern Washington shelf.

  2. Rheological equations in asymptotic regimes of granular flow

    USGS Publications Warehouse

    Chen, C.-L.; Ling, C.-H.

    1998-01-01

    This paper assesses the validity of the generalized viscoplastic fluid (GVF) model in light of the established constitutive relations in two asymptotic flow regimes, namely, the macroviscous and grain-inertia regimes. A comprehensive review of the literature on constitutive relations in both regimes reveals that except for some material constants, such as the coefficient of restitution, the normalized shear stress in both regimes varies only with the grain concentration, C. It is found that Krieger-Dougherty's relative viscosity, ??*(C), is sufficiently coherent among the monotonically nondecreasing functions of C used in describing the variation of the shear stress with C in both regimes. It not only accurately represents the C-dependent relative viscosity of a suspension in the macroviscous regime, but also plays a role of the radial distribution function that describes the statistics of particle collisions in the grain-inertia regime. Use of ??*(C) alone, however, cannot link the two regimes. Another parameter, the shear-rate number, N, is needed in modelling the rheology of neutrally buoyant granular flows in transition between the two asymptotic regimes. The GVF model proves compatible with most established relations in both regimes.

  3. Horizontal flow and capillarity-driven redistribution in porous media.

    PubMed

    Doster, F; Hönig, O; Hilfer, R

    2012-07-01

    A recent macroscopic mixture theory for two-phase immiscible displacement in porous media has introduced percolating and nonpercolating phases. Quasi-analytic solutions are computed and compared to the traditional theory. The solutions illustrate physical insights and effects due to spatiotemporal changes of nonpercolating phases, and they highlight the differences from traditional theory. Two initial and boundary value problems are solved in one spatial dimension. In the first problem a fluid is displaced by another fluid in a horizontal homogeneous porous medium. The displacing fluid is injected with a flow rate that keeps the saturation constant at the injection point. In the second problem a horizontal homogeneous porous medium is considered which is divided into two subdomains with different but constant initial saturations. Capillary forces lead to a redistribution of the fluids. Errors in the literature are reported and corrected. PMID:23005535

  4. Predictive mapping of the natural flow regimes of France

    NASA Astrophysics Data System (ADS)

    Snelder, Ton H.; Lamouroux, Nicolas; Leathwick, John R.; Pella, Hervé; Sauquet, Eric; Shankar, Ude

    2009-06-01

    SummaryHydrologic variability is important in sustaining a variety of ecological processes in streams and rivers. Natural flow regime classifications group streams and rivers that are relatively homogeneous with respect to flow variability and have been promoted as a method of defining units for management of river flows. Although there has been considerable interest in classifying natural flow regimes, there has been less emphasis given to developing accurate methods of extrapolating these classifications to locations without flow data. We developed a method of mapping flow regime classes using boosted regression trees (BRT) that automatically fits non-linear functions and interactions between explanatory variables of flow regimes, both of which can be expected when comparing responses between complex systems such as watersheds. A natural flow regimes classification of continental France was developed from cluster analysis of 157 hydrological indices derived from 763 gauging stations representing unmodified flows. BRT models were used to predict the likelihood of gauging stations belonging to each class based on the watershed characteristics. These models were used to extrapolate the natural flow regime classification to all segments of a national river network. The performance of the BRT models were compared with other methods of assigning locations to flow regime classes, including the use of geographically contiguous regions, linear discriminant analysis (LDA) and classification and regression trees (CART). The "fitted" misclassification rate (associated with model fits) for assignment based on the BRT models was 13% whereas the fitted misclassification rates for geographically contiguous regions, LDA and CART were 52%, 44% and 39% respectively. A "predictive" misclassification rate (calculated for new cases) was estimated for assignments based on the BRT, LDA and CART models using cross validation analysis. For assignment based on the BRT models, the mean

  5. Flow regime shifts in the Little Piney creek (US)

    NASA Astrophysics Data System (ADS)

    Botter, G.

    2014-09-01

    Non-stationarity of climate drivers and soil-use strongly affects the hydrologic cycle, producing significant inter-annual and multi-decadal fluctuations of river flow regimes. Understanding the temporal trajectories of hydrologic regimes is a key issue for the management of freshwater ecosystems and the security of human water uses. Here, long-term changes in the seasonal flow regime of the Little Piney creek (US) are analyzed with the aid of a stochastic mechanistic approach that expresses analytically the streamflow distribution in terms of a few measurable hydroclimatic parameters, providing a basis for assessing the impact of climate and landscape modifications on water resources. Mean rainfall and streamflow rates exhibit a pronounced inter-annual variability across the last century, though in the absence of clear sustained drifts. Long-term modifications of streamflow regimes across different periods of 2 and 8 years are likewise significant. The stochastic model is able to reasonably reproduce the observed 2-years and 8-years regimes in the Little Piney creek, as well as the corresponding inter-annual variations of streamflow probability density. The study evidences that a flow regime shift occurred in the Little Piney creek during the last century, with erratic regimes typical of the 30s/40s that had been progressively replaced by persistent flow regimes featured by more dumped streamflow fluctuations. Causal drivers of regime shift are identified as the increase of the frequency of events (a byproduct of climate variability) and the decrease of recession rates (induced by a decrease of cultivated lands). The approach developed offers an objective basis for the analysis and prediction of the impact of climate/landscape change on water resources.

  6. Numerical study of boundary layer transition in flowing film evaporation on horizontal elliptical cylinder

    NASA Astrophysics Data System (ADS)

    Asbik, M.; Ansari, O.; Zeghmati, B.

    2005-03-01

    A numerical study of the onset of longitudinal transition between turbulent and laminar regimes during the evaporation of a water film is presented. These water film streams along a horizontal elliptical tube under the simultaneous effects of gravity, pressure gradients, caused by the vapor flow and curvature, and viscous forces. At the interface of water vapor, the shear stress is supposed to be negligible. Outside the boundary layer, the vapor phase velocity is obtained from potential flow. In the analysis Von Karman’s turbulence model is used and the inertia and convection terms are retained. Transfers equations are discretised by using the implicit Keller method. The effects of an initial liquid flow rate per unit of length, Froude number, temperature difference between the wall and the liquid vapor interface and ellipticity on the transition position have been evaluated. The transition criterion has been given in term of the critical film Reynolds number (ReΓ)C.

  7. Direct numerical simulation of interfacial wave generation in turbulent gas-liquid flows in horizontal channels

    NASA Astrophysics Data System (ADS)

    Campbell, Bryce; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad

    2014-11-01

    For gas-liquid flows through pipes and channels, a flow regime (referred to as slug flow) may occur when waves form at the interface of a stratified flow and grow until they bridge the pipe diameter trapping large elongated gas bubbles within the liquid. Slug formation is often accompanied by strong nonlinear wave-wave interactions, wave breaking, and gas entrainment. This work numerically investigates the fully nonlinear interfacial evolution of a two-phase density/viscosity stratified flow through a horizontal channel. A Navier-Stokes flow solver coupled with a conservative volume-of-fluid algorithm is use to carry out high resolution three-dimensional simulations of a turbulent gas flowing over laminar (or turbulent) liquid layers. The analysis of such flows over a range of gas and liquid Reynolds numbers permits the characterization of the interfacial stresses and turbulent flow statistics allowing for the development of physics-based models that approximate the coupled interfacial-turbulent interactions and supplement the heuristic models built into existing industrial slug simulators.

  8. Experimental investigation of ice slurry flow pressure drop in horizontal tubes

    SciTech Connect

    Grozdek, Marino; Khodabandeh, Rahmatollah; Lundqvist, Per

    2009-01-15

    Pressure drop behaviour of ice slurry based on ethanol-water mixture in circular horizontal tubes has been experimentally investigated. The secondary fluid was prepared by mixing ethyl alcohol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 C). The pressure drop tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 30% depending on test conditions. Results from flow tests reveal much higher pressure drop for higher ice concentrations and higher velocities in comparison to the single phase flow. However for ice concentrations of 15% and higher, certain velocity exists at which ice slurry pressure drop is same or even lower than for single phase flow. It seems that higher ice concentration delay flow pattern transition moment (from laminar to turbulent) toward higher velocities. In addition experimental results for pressure drop were compared to the analytical results, based on Poiseulle and Buckingham-Reiner models for laminar flow, Blasius, Darby and Melson, Dodge and Metzner, Steffe and Tomita for turbulent region and general correlation of Kitanovski which is valid for both flow regimes. For laminar flow and low buoyancy numbers Buckingham-Reiner method gives good agreement with experimental results while for turbulent flow best fit is provided with Dodge-Metzner and Tomita methods. Furthermore, for transport purposes it has been shown that ice mass fraction of 20% offers best ratio of ice slurry transport capability and required pumping power. (author)

  9. Early regimes of water capillary flow in slit silica nanochannels.

    PubMed

    Oyarzua, Elton; Walther, Jens H; Mejía, Andrés; Zambrano, Harvey A

    2015-06-14

    Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibition of water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopic confinement, initial conditions of liquid uptake and air pressurization on the dynamics of capillary filling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes: an initial regime where the capillary force is balanced only by the inertial drag and characterized by a constant velocity and a plug flow profile. In this regime, the meniscus formation process plays a central role in the imbibition rate. Thereafter, a transitional regime takes place, in which, the force balance has significant contributions from both inertia and viscous friction. Subsequently, a regime wherein viscous forces dominate the capillary force balance is attained. Flow velocity profiles identify the passage from an inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicate a transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling rates computed for higher air pressures reveal a significant retarding effect of the gas displaced by the advancing meniscus. PMID:25976034

  10. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  11. Temporal evolution of flow regimes in urbanizing basins

    NASA Astrophysics Data System (ADS)

    Mejia, A.; Rossel, F.; Gironas, J. A.; Jovanovic, T.

    2014-12-01

    We characterize the temporal evolution of the flow regime of urbanizing basins. By urbanizing basins, we mean basins that have experienced urban growth during their observation period. To represent the flow regime, we use flow duration curves (FDCs). We compute the FDCs using a stochastic model of daily streamflow for urban basins. In this case, the model aids in discerning the influence of key factors (e.g., climate, land use change, stormwater managenment conditions, and the slow and fast properties of the hydrologic response) on streamflow. To implement the model, we first divide the complete observation period of a given urban basin into intervals of equal duration, e.g. 5 years. Subsequently, we apply the model to each interval and this is how we capture the influence of land use changes and climatic fluctuations on the flow regime. We apply this modeling framework to 14 urbanizing basins in the Baltimore-Washington DC region. Results from this application indicate consistent changes in the temporal evolution of the altered flow regimes, which can largely be explained by the progressive redistribution with urban growth of water from slow subsurface runoff and evapotranspiration to fast urban runoff. We also use the modeling framework to determine indicators of ecohydrological alteration for urbanizing basins. The application of these indicators to our study area suggests that the flow regime is sensitive to alterations up to a certain level of urbanization after which sensitivity seems to level off. The flow regime also seems to be relatively more resistant to alterations for both the smaller and larger levels of urbanization considered. In the future, we would like to extend the application of the proposed modeling framework to other metropolitan areas.

  12. Steady particulate flows in a horizontal rotating cylinder

    SciTech Connect

    Yamane, K.; Nakagawa, M.; Altobelli, S.A.; Tanaka, T.; Tsuji, Y.

    1998-06-01

    Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio {approximately}7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit. {copyright} {ital 1998 American Institute of Physics.}

  13. Steady particulate flows in a horizontal rotating cylinder

    NASA Astrophysics Data System (ADS)

    Yamane, K.; Nakagawa, M.; Altobelli, S. A.; Tanaka, T.; Tsuji, Y.

    1998-06-01

    Results of discrete element method (DEM) simulation and magnetic resonance imaging (MRI) experiments are compared for monodisperse granular materials flowing in a half-filled horizontal rotating cylinder. Because opacity is not a problem for MRI, a long cylinder with an aspect ratio ˜7 was used and the flow in a thin transverse slice near the center was studied. The particles were mustard seeds and the ratio of cylinder diameter to particle diameter was approximately 50. The parameters compared were dynamic angle of repose, velocity field in a plane perpendicular to the cylinder axis, and velocity fluctuations at rotation rates up to 30 rpm. The agreement between DEM and MRI was good when the friction coefficient and nonsphericity were adjusted in the simulation for the best fit.

  14. Analysis of horizontal flows in the solar granulation

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Shimizu, T.; Suematsu, Y.

    2016-04-01

    Solar limb observations sometimes reveal the presence of a satellite lobe in the blue wing of the Stokes I profile from pixels belonging to granules. The presence of this satellite lobe has been associated in the past to strong line-of-sight gradients and, as the line-of-sight component is almost parallel to the solar surface, to horizontal granular flows. We aim to increase the knowledge about these horizontal flows studying a spectropolarimetric observation of the north solar pole. We will make use of two state of the art techniques, the spatial deconvolution procedure that increases the quality of the data removing the stray light contamination, and spectropolarimetric inversions that will provide the vertical stratification of the atmospheric physical parameters where the observed spectral lines form. We inverted the Stokes profiles using a two component configuration, obtaining that one component is strongly blueshifted and displays a temperature enhancement at upper photospheric layers while the second component has low redshifted velocities and it is cool at upper layers. In addition, we examined a large number of cases located at different heliocentric angles, finding smaller velocities as we move from the centre to the edge of the granule. Moreover, the height location of the enhancement on the temperature stratification of the blueshifted component also evolves with the spatial location on the granule being positioned on lower heights as we move to the periphery of the granular structure.

  15. Stability of stratified two-phase flows in horizontal channels

    NASA Astrophysics Data System (ADS)

    Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.

    2016-04-01

    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.

  16. Low volume fraction rimming flow in a rotating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Chen, Po-Ju; Tsai, Yu-Te; Liu, Ta-Jo; Wu, Ping-Yao

    2007-12-01

    An experimental study was carried out to examine how uniform rimming flow is established for a very small volume fraction of aqueous Newtonian solutions in a partially filled rotating horizontal cylinder. There exists a certain critical volume fraction (Vc) for each solution, where the rotational speed required to achieve uniform rimming flow takes a minimum value. Counterintuitively, it takes greater rotation speeds for both larger and smaller volume fractions than this. Axial instabilities are observed for liquid volume fractions above or below this critical value. For V >Vc the defects are mainly of shark-teeth and turbulent types, while for V Vc, but has very little effect for V flow found in the present study is 0.25%. The dimensionless minimum rotational speed Ω to achieve rimming flow is presented as a function of the dimensionless liquid volume fraction ϕ. The competing effects of fluid inertia and viscous force on rimming flow are demonstrated from a dimensionless plot of Ω versus ϕ.

  17. Microgravity Flow Regime Data: Buoyancy and Mixing Apparatus Effects

    NASA Astrophysics Data System (ADS)

    Shephard, Adam; Best, Frederick

    2010-01-01

    Zero-g two-phase flow data set qualification and flight experiment design have not been standardized and as a result, agreement among researchers has not been reached regarding what experimental conditions adequately approximate those of microgravity. The effects of buoyancy forces and mixing apparatus on the flow regime transitions are presented in this study. The gravity conditions onboard zero-g aircraft are at best 10-3 g which is used to approximate the 10-5 g conditions of microgravity, thus the buoyancy forces present on zero-g aircraft can become significantly large and unrepresentative of microgravity. When buoyancy forces approach those of surface tension forces, buoyancy induced coalescence occurs. When discussing flow regime transitions, these large buoyancy forces lead to flow regime transitions which otherwise would not occur. The buoyancy attributes of the two-phase flow data sets available in the literature are evaluated to determine which data sets exhibit buoyancy induced transitions. Upon comparison of the representative data sets, the affects of different mixing apparatus can be seen in the superficial velocity flow regime maps.

  18. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    SciTech Connect

    Xia Wang; Xiaodong Sun; Benjamin Doup; Haihua Zhao

    2012-12-01

    In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As twophase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminator s are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  19. Proper horizontal photospheric flows in a filament channel

    NASA Astrophysics Data System (ADS)

    Schmieder, B.; Roudier, T.; Mein, N.; Mein, P.; Malherbe, J. M.; Chandra, R.

    2014-04-01

    Context. An extended filament in the central part of the active region NOAA 11106 crossed the central meridian on Sept. 17, 2010 in the southern hemisphere. It has been observed in Hα with the THEMIS telescope in the Canary Islands and in 304 Å with the EUV imager (AIA) onboard the Solar Dynamic Observatory (SDO). Counterstreaming along the Hα threads and bright moving blobs (jets) along the 304 Å filament channel were observed during 10 h before the filament erupted at 17:03 UT. Aims: The aim of the paper is to understand the coupling between magnetic field and convection in filament channels and relate the horizontal photospheric motions to the activity of the filament. Methods: An analysis of the proper photospheric motions using SDO/HMI continuum images with the new version of the coherent structure tracking (CST) algorithm developed to track granules, as well as the large scale photospheric flows, was performed for three hours. Using corks, we derived the passive scalar points and produced a map of the cork distribution in the filament channel. Averaging the velocity vectors in the southern hemisphere in each latitude in steps of 3.5 arcsec, we defined a profile of the differential rotation. Results: Supergranules are clearly identified in the filament channel. Diverging flows inside the supergranules are similar in and out of the filament channel. Converging flows corresponding to the accumulation of corks are identified well around the Hα filament feet and at the edges of the EUV filament channel. At these convergence points, the horizontal photospheric velocity may reach 1 km s-1, but with a mean velocity of 0.35 km s-1. In some locations, horizontal flows crossing the channel are detected, indicating eventually large scale vorticity. Conclusions: The coupling between convection and magnetic field in the photosphere is relatively strong. The filament experienced the convection motions through its anchorage points with the photosphere, which are

  20. Analytic expression for poloidal flow velocity in the banana regime

    SciTech Connect

    Taguchi, M.

    2013-01-15

    The poloidal flow velocity in the banana regime is calculated by improving the l = 1 approximation for the Fokker-Planck collision operator [M. Taguchi, Plasma Phys. Controlled Fusion 30, 1897 (1988)]. The obtained analytic expression for this flow, which can be used for general axisymmetric toroidal plasmas, agrees quite well with the recently calculated numerical results by Parker and Catto [Plasma Phys. Controlled Fusion 54, 085011 (2012)] in the full range of aspect ratio.

  1. Study of the Transition Flow Regime using Monte Carlo Methods

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.

    1999-01-01

    This NASA Cooperative Agreement presents a study of the Transition Flow Regime Using Monte Carlo Methods. The topics included in this final report are: 1) New Direct Simulation Monte Carlo (DSMC) procedures; 2) The DS3W and DS2A Programs; 3) Papers presented; 4) Miscellaneous Applications and Program Modifications; 5) Solution of Transitional Wake Flows at Mach 10; and 6) Turbulence Modeling of Shock-Dominated Fows with a k-Enstrophy Formulation.

  2. Nozzle Free Jet Flows Within the Strong Curved Shock Regime

    NASA Technical Reports Server (NTRS)

    Shih, Tso-Shin

    1975-01-01

    A study based on inviscid analysis was conducted to examine the flow field produced from a convergent-divergent nozzle when a strong curved shock occurs. It was found that a certain constraint is imposed on the flow solution of the problem which is the unique feature of the flow within this flow regime, and provides the reason why the inverse method of calculation cannot be employed for these problems. An approximate method was developed to calculate the flow field, and results were obtained for two-dimensional flows. Analysis and calculations were performed for flows with axial symmetry. It is shown that under certain conditions, the vorticity generated at the jet boundary may become infinite and the viscous effect becomes important. Under other conditions, the asymptotic free jet height as well as the corresponding shock geometry were determined.

  3. Intermittency of rheological regimes in uniform liquid-granular flows.

    PubMed

    Armanini, Aronne; Larcher, Michele; Fraccarollo, Luigi

    2009-05-01

    We present a detailed analysis of a free surface-saturated liquid-granular mixture flowing over a static loose bed of grains, where the coexistence of layers dominated by collisional and frictional interactions among particles was observed. Kinetic theory was applied to the flow described above and it proved suitable for describing a realistic behavior of the collisional layers, although it failed to interpret the regions of the flow domain dominated by the frictional contacts. The paper provides a conceptual scheme with which to overcome this problem by focusing on the mechanisms governing the transition from the frictional to the collisional regime. In particular we observed that in highly concentrated flows the transition layer exhibits a typical intermittency of the dominating rheological regime, switching alternately from the frictional to the collisional one. By filtering the velocity signal, we introduced an intermittency function that made it possible to extend the validity of the equations derived from dense gas analogy, typical of the collisional regimes, also in the intermittent phase of the flow. Owing to the small values of the Stokes number, in the application of the kinetic theory we accounted for the possible variation of the elastic restitution coefficient along the flow depth. PMID:19518448

  4. A Cahn-Hilliard framework for thin-film flows in the partial-wetting regime

    NASA Astrophysics Data System (ADS)

    Pahlavan, A. A.; Chen, M.; Cueto-Felgueroso, L.; McKinley, G. H.; Juanes, R.

    2014-12-01

    Traditional mathematical descriptions of multiphase flow in porous media rely on a multiphase extension of Darcy's law, and lead to nonlinear second-order (advection-diffusion) partial differential equations for fluid saturations. Here, we study horizontal redistribution of immiscible fluids. The traditional Darcy-flow model predicts that the spreading of a finite amount of liquid in a horizontal porous medium never stops; a prediction that is not substantiated by observation. To help guide the development of new models of multiphase flow in porous media [1], we draw an analogy with the flow of thin films. The flow of thin films over flat surfaces has been the subject of much theoretical, experimental and computational research [2]. Under the lubrication approximation, the classical mathematical model for these flows takes the form of a nonlinear fourth-order PDE, where the fourth-order term models the effect of surface tension [3]. This classical model, however, effectively assumes that the film is perfectly wetting to the substrate and, therefore, does not capture the partial wetting regime. Partial wetting is responsible for stopping the spread of a liquid puddle. Here, we present experiments of (large-volume) liquid spreading over a flat horizontal substrate in the partial wetting regime, and characterize the spreading regimes that we observe. We extend our previous theoretical work of two-phase flow in a capillary tube [4], and develop a macroscopic phase-field model of thin-film flows with partial wetting. Our model naturally accounts for the dynamic contact angle at the contact line, and therefore permits modeling thin-film flows without invoking a precursor film, leading to compactly-supported solutions that reproduce the spreading dynamics and the static equilibrium configuration observed in the experiments. We anticipate that this modeling approach will provide a natural mathematical framework to describe spreading and redistribution of immiscible fluids

  5. Particle seeding flow system for horizontal shock tube

    SciTech Connect

    Johnston, Stephen; Garcia, Nicolas J.; Martinez, Adam A.; Orlicz, Gregory C.; Prestridge, Katherine P.

    2012-08-01

    The Extreme Fluids Team in P-23, Physics Division, studies fluid dynamics at high speeds using high resolution diagnostics. The unsteady forces on a particle driven by a shock wave are not well understood, and they are difficult to model. A horizontal shock tube (HST) is being modified to collect data about the behavior of particles accelerated by shocks. The HST has been used previously for studies of Richtmyer-Meshkov instability using Planar Laser-Induced Fluorescence (PLIF) as well as Particle Image Velocimetry (PIV), diagnostics that measure density and velocity. The purpose of our project is to design a flow system that will introduce particles into the HST. The requirements for this particle flow system (PFS) are that it be non-intrusive, be able to introduce either solid or liquid particles, have an exhaust capability, not interfere with existing diagnostics, and couple with the existing HST components. In addition, the particles must flow through the tube in a uniform way. We met these design criteria by first drawing the existing shock tube and diagnostics and doing an initial design of the ducts for the PFS. We then estimated the losses through the particle flow system from friction and researched possible fans that could be used to drive the particles. Finally, the most challenging component of the design was the coupling to the HST. If we used large inlets, the shock would lose strength as it passed by the inlet, so we designed a novel coupling inlet and outlet that minimize the losses to the shock wave. Our design was reviewed by the Extreme Fluids Team, and it is now being manufactured and built based upon our technical drawings.

  6. Flow regime classification in air magnetic fluid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.

    2008-05-01

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  7. Flow regime classification in air-magnetic fluid two-phase flow.

    PubMed

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors. PMID:21694270

  8. Classification of the stratified fluid flows regimes around a square cylinder

    NASA Astrophysics Data System (ADS)

    Gushchin, V. A.; Matyushin, P. V.

    2015-10-01

    The 2D density stratified (in vertical direction) viscous fluid flows around a square cylinder with diameter d (moving in horizontal direction with the velocity U) have been simulated on the basis of the Navier-Stokes equations in the Boussinesq approximation. For solving of the Navier-Stokes equations the Splitting on physical factors Method for Incompressible Fluid flows (SMIF) with hybrid explicit finite difference scheme (second-order accuracy in space, minimum scheme viscosity and dispersion, monotonous) has been used. The numerical method SMIF has been successfully applied for solving of the different problems: 2D and 3D separated homogeneous and stratified fluid flows around a sphere and a circular cylinder; the flows with free surface including regimes with broken surface wave; the air, heat and mass transfer in the clean rooms. At the present paper the original refined classification of 2D stratified viscous fluid flow regimes around a square cylinder at Re ≤ 200 has been obtained and the interesting fluid flows with two hanging vortices in the wake and with two wavy hanging sheets of density (connected with two hanging vortices) have been investigated in details at Fr = 0.1, Re = 50, where Re = U.d/ν is the Reynolds number, Fr = U/(N.d) is the internal Froude number, ν is the kinematical viscosity coefficient, N is the buoyancy frequency.

  9. Three-dimensional numerical simulations of three-phase slug flows in horizontal pipes

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Yang, Junfeng; Matar, Omar

    2015-11-01

    One of the most common flow regimes in pipelines is that of slug flow: slug bodies corresponding to alternating blocks of aerated liquid which bridge the pipe, separated by elongated bubbles; the latter ride atop a liquid layer. The slugs travel at velocities that exceed the mixture superficial velocity; this can potentially cause structural damage, particularly at pipe bends and junctions. Two-phase slug flows have received considerable attention in the literature both experimentally and computationally but there has been very little work carried out on three-phase slugging. In the present work, the evolution of oil-water-air three-phase slug flow in a horizontal cylindrical pipe is investigated using two-dimensional and three-dimensional computational fluid dynamics simulations. The parameters characterising three-phase slug flow, e.g. slug length, propagation velocity, and slug formation frequency, are determined for various gas and liquid superficial velocities for a given pipe geometry. The results of this work are compared to available experimental data and numerical solutions based on approximate, one-dimensional models relying on the use of empirical correlations. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  10. compartment transfer rates in horizontal flow constructed wetlands

    NASA Astrophysics Data System (ADS)

    Maier, Uli; Oswald, Sascha; Thullner, Martin; Grathwohl, Peter

    2010-05-01

    A conceptual computer model has been constructed to simulate the compartment transfer rates in horizontal flow constructed wetlands. The model accounts for flow and transport in the variably saturated porous medium as well as biogeochemical change reactions. The most concentrated contaminants such as BTEX, MTBE and gasoline hydrocarbons and dissolved as well as mineral phase electron acceptors are considered. Also of major interest are reduced species with high oxygen demand such as ammonium. The influence of marsh plants on microbial activity, gas transport, water balance and contaminant fate in general is matter of current investigation. The constructed wetlands consist of a coarse sand or fine gravel porous medium. Marsh plants were introduced after installation, however, a number of control basins are operated unplanted. Water levels and through flow rates are adjusted to optimize the remediation efficiency. The system is likely to be neither reaction nor mixing limited, thus both, values of dispersivity and degradation kinetics may be crucial for remediation efficiency. Biogeochemical modelling is able to delineate in detail (i) the zonation of processes, (ii) temporal variation (breakthrough curves) and (iii) mass balance information. The contributions of biodegradation and volatilisation and the influence of plants (compartment transfer) can generally best be evaluated by the component's mass balance. More efficient mixing is expected in the wetlands with open water body which leads to both, more biodegradation and volatilisation. An important task is to quantify the role of plants and root systems for contaminant attenuation in constructed wetlands. The long term goal of investigation is to allow for predictions for the design of large scale compartment transfer wetlands that may be applied to remediate the site as a whole.

  11. Regimes of flow induced vibration for tandem, tethered cylinders

    NASA Astrophysics Data System (ADS)

    Nave, Gary; Stremler, Mark

    2015-11-01

    In the wake of a bluff body, there are a number of dynamic response regimes that exist for a trailing bluff body depending on spacing, structural restoring forces, and the mass-damping parameter m* ζ . For tandem cylinders with low values of m* ζ , two such regimes of motion are Gap Flow Switching and Wake Induced Vibration. In this study, we consider the dynamics of a single degree-of-freedom rigid cylinder in the wake of another in these regimes for a variety of center-to-center cylinder spacings (3-5 diameters) and Reynolds numbers (4,000-11,000). The system consists of a trailing cylinder constrained to a circular arc around a fixed leading cylinder, which, for small angle displacements, bears a close resemblance to the transversely oscillating cylinders found more commonly in existing literature. From experiments on this system, we compare and contrast the dynamic response within these two regimes. Our results show sustained oscillations in the absence of a structural restoring force in all cases, providing experimental support for the wake stiffness assumption, which is based on the mean lift toward the center line of flow.

  12. Couette flow regimes with heat transfer in rarefied gas

    SciTech Connect

    Abramov, A. A. Butkovskii, A. V.

    2013-06-15

    Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.

  13. Characterization of river flow fluctuations via horizontal visibility graphs

    NASA Astrophysics Data System (ADS)

    Braga, A. C.; Alves, L. G. A.; Costa, L. S.; Ribeiro, A. A.; de Jesus, M. M. A.; Tateishi, A. A.; Ribeiro, H. V.

    2016-02-01

    We report on a large-scale characterization of river discharges by employing the network framework of the horizontal visibility graph. By mapping daily time series from 141 different stations of 53 Brazilian rivers into complex networks, we present a useful approach for investigating the dynamics of river flows. We verified that the degree distributions of these networks were well described by exponential functions, where the characteristic exponents are almost always larger than the value obtained for random time series. The faster-than-random decay of the degree distributions is an another evidence that the fluctuation dynamics underlying the river discharges has a long-range correlated nature. We further investigated the evolution of the river discharges by tracking the values of the characteristic exponents (of the degree distribution) and the global clustering coefficients of the networks over the years. We show that the river discharges in several stations have evolved to become more or less correlated (and displaying more or less complex internal network structures) over the years, a behavior that could be related to changes in the climate system and other man-made phenomena.

  14. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  15. Predicting regime shifts in flow of the Colorado River

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, S.; McCabe, G. J.; Brekke, L. D.

    2010-12-01

    The effects of continued global warming on water resources are a concern for water managers and stake holders. In the western United States, where the combined climatic demand and consumptive use of water is equal to or greater than the natural supply of water for some locations, there is growing concern regarding the sustainability of future water supplies. In addition to the adverse effects of warming on water supply, another issue for water managers is accounting for, and managing, the effects of natural climatic variability, particularly persistently dry and wet periods. Analyses of paleo-reconstructions of Upper Colorado River Basin (UCRB) flow demonstrate that severe sustained droughts, and persistent pluvial periods, are a recurring characteristic of hydroclimate in the Colorado River basin. Shifts between persistently dry and wet regimes (e.g. decadal to multi-decadal variability (D2M)) have important implications for water supply and water management. In this study paleo-reconstructions of UCRB flow are used to compute the risks of shifts between persistently wet and dry regimes given the length of time in a specific regime. Results indicate that low frequency variability of hydro-climatic conditions and the statistics that describe this low frequency variability can be useful to water managers by providing information about the risk of shifting from one hydrologic regime to another. Boxplot of risk outlooks in the Colorado River Basin from the nine flow reconstructions developed in Gangopadhyay et al. (2009). Gangopadhyay, S., B.L. Harding, B. Rajagopalan, J.J. Lukas, and T.J. Fulp, (2009) A non-parametric approach for paleohydrologic reconstruction of annual streamflow ensembles. Water Resour. Res., 45, W06417.

  16. Numerical analysis of granular flows in a silo bed on flow regime characterization.

    PubMed

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2015-01-01

    The flow characteristics of a gravity-driven dense granular flow in a granular bed with a contracted drainage orifice are studied by using discrete element method and quantitative analysis. Three values of discharging rates, ranging from fast to slow dense flows, are investigated. Time variations and derivatives of mean forces and velocities, as well as their respective correlations, are analyzed to quantitatively depict the characteristics of granular flow as well as flow regime categorization. The auto-correlation functions, as well as their Fourier spectrums, are utilized to characterize the differences between the mechanisms of slow and fast granular flows. Finally, it is suggested that the flow regimes of slow and fast flows can be characterized by the kinetic and kinematic flow properties of particles. PMID:25793996

  17. Numerical Analysis of Granular Flows in a Silo Bed on Flow Regime Characterization

    PubMed Central

    Yang, Xingtuan; Gui, Nan; Tu, Jiyuan; Jiang, Shengyao

    2015-01-01

    The flow characteristics of a gravity-driven dense granular flow in a granular bed with a contracted drainage orifice are studied by using discrete element method and quantitative analysis. Three values of discharging rates, ranging from fast to slow dense flows, are investigated. Time variations and derivatives of mean forces and velocities, as well as their respective correlations, are analyzed to quantitatively depict the characteristics of granular flow as well as flow regime categorization. The auto-correlation functions, as well as their Fourier spectrums, are utilized to characterize the differences between the mechanisms of slow and fast granular flows. Finally, it is suggested that the flow regimes of slow and fast flows can be characterized by the kinetic and kinematic flow properties of particles. PMID:25793996

  18. Zero-G two phase flow regime modeling in adiabatic flow

    NASA Astrophysics Data System (ADS)

    Reinarts, Thomas R.; Best, Frederick R.; Wheeler, Montgomery; Miller, Katheryn M.

    1993-01-01

    Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. This work is concerned with microgravity, two-phase flow regime analysis. The data come from a recent sets of experiments. The experiments were funded by NASA Johnson Space Center (JSC) and conducted by NASA JSC with Texas A&M University. The experiment was on loan to NASA JSC from Foster-Miller, Inc., who constructed it with funding from the Air Force Phillips Laboratory. The experiment used R12 as the working fluid. A Foster-Miller two phase pump was used to circulate the two phase mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown 19 times for 577 parabolas aboard the NASA KC-135 aircraft which simulates zero-G conditions by its parabolic flight trajectory. Test conditions included bubbly, slug and annular flow regimes in 0-G. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes and several flow regime transition predictions. None of the predictions completely describe the transitions as indicated by the data.

  19. Observations on preferential flow and horizontal transport of nitrogen fertilizer in the unsaturated zone

    USGS Publications Warehouse

    Wilkison, D.H.; Blevins, D.W.

    1999-01-01

    A study site underlain by a claypan soil was instrumented to examine the transport of fertilizer nitrogen (N) under corn (Zea mays L.) cultivation. The study was designed to examine N transport within the unsaturated zone and in interflow (the saturated flow of water on top of the claypan). A 15N- labeled fertilizer (labeled N), bromide (Br), and chloride (Cl) were used as field tracers. Rapid or prolonged infiltration events allowed water and dissolved solutes to perch on the claypan for brief periods. However, a well- developed network of preferential flow paths quickly diverted water and solutes through the claypan and into the underlying glacial till aquifer. Excess fertilizer N in the unsaturated zone supplied a continuous, but declining input of N to ground water for a period of 15 mo after a single fertilizer application. Calculated solute velocities through the claypan matrix (6.4 x 10-6 cm s-1) were similar to horizontal transport rates along the claypan (3.5 to 7.3 x 10-6 cm s-1) but much slower than infiltration rates determined for preferential flow paths (1.67 x 10-3 cm s-1). These flow paths accounted for 35% of the transport. A seasonally variable, dual mode of transport (matrix and preferential flow) prevented the claypan from being an effective barrier to vertical transport. Simulations of selected field observations, conducted using the variably saturated two- dimensional flow and transport model, VS2DT, confirmed the presence of a dual flow regime in the claypan.

  20. Predicting regime shifts in flow of the Colorado River

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Subhrendu; McCabe, Gregory J.

    2010-10-01

    The effects of continued global warming on water resources are a concern for water managers and stake holders. In the western United States, where the combined climatic demand and consumptive use of water is equal to or greater than the natural supply of water for some locations, there is growing concern regarding the sustainability of future water supplies. In addition to the adverse effects of warming on water supply, another issue for water managers is accounting for, and managing, the effects of natural climatic variability, particularly persistently dry and wet periods. Analyses of paleo-reconstructions of Upper Colorado River basin (UCRB) flow demonstrate that severe sustained droughts, and persistent pluvial periods, are a recurring characteristic of hydroclimate in the Colorado River basin. Shifts between persistently dry and wet regimes (e.g., decadal to multi-decadal variability (D2M)) have important implications for water supply and water management. In this study paleo-reconstructions of UCRB flow are used to compute the risks of shifts between persistently wet and dry regimes given the length of time in a specific regime. Results indicate that low frequency variability of hydro-climatic conditions and the statistics that describe this low frequency variability can be useful to water managers by providing information about the risk of shifting from one hydrologic regime to another. To manage water resources in the future water managers will have to understand the joint hydrologic effects of natural climate variability and global warming. These joint effects may produce future hydrologic conditions that are unprecedented in both the instrumental and paleoclimatic records.

  1. Space-charge-limited flow in quantum regime

    NASA Astrophysics Data System (ADS)

    Ang, Lay Kee

    2005-10-01

    Space-charge-limited (SCL) flow has been an area of active research in the development of non-neutral plasma physics, high current diodes, high power microwave sources, vacuum microelectronics and sheath physics. According to the classical Child-Langmuir (CL) law for the planar diodes, the current density scales as 3/2's power of gap voltage and to the inverse squared power of gap spacing. In the past decade, there have been renewed interests in extending the classical CL law to multi-dimensional models both numerically and analytically. The study of SCL flow in quantum regime has also attracted considerable interests in the past 3 years [1-3]. With the recent advances in nanotechnology, electron beam with very high current density may be transported in a nano-scale gap with a relatively low gap voltage. In this new operating regime, where the electron wavelength is comparable or larger than the gap spacing, the quantum effects become important. In this talk, the quantum theory of CL law will be introduced to reveal that the classical CL law is enhanced by a large factor due to electron tunneling and exchange-correlation effects, and there is a new quantum scaling for the current density, which is proportional to the 1/2's power of gap voltage, and to the inverse fourth-power of gap spacing [1-2]. Quasi-2D and 3D models with finite emission area will be shown [3]. We will also show that the classical properties of the SCL flow such as bipolar flow, beam-loaded capacitance, transit time and noise will require a complete revision in the quantum regime. The implications of the emission law of Fowler-Nordheim in the presence of intense space charge over the nanometer scale will be discussed.[1] L. K. Ang, T. J. T. Kwan, and Y. Y. Lau, ``New Scaling of Child-Langmuir Law in the Quantum Regime,'' Phys. Rev. Lett. 91, 208303 (2003). [2] L. K. Ang, Y. Y. Lau, and T. J. T. Kwan, ``Simple Derivation of Quantum Scaling in Child-Langmuir law,'' IEEE Trans Plasma Sci. 32, 410

  2. Flow regimes and heat transfer in vertical narrow annuli

    SciTech Connect

    Ulke, A.; Goldberg, I.

    1993-11-01

    In shell side boiling heat exchangers narrow crevices that are formed between the tubes and the tube support structure provide areas for local thermal-hydraulic conditions which differ significantly from bulk fluid conditions. Understanding of the processes of boiling and dryout in flow restricted crevices can help in designing of tube support geometries to minimize the likelihood of tube support plate and tube corrosion observed in commercial power plant steam generators. This paper describes a one dimensional thermal-hydraulic model of a vertical crevice between a tube and a support plate with cylindrical holes. The annulus formed by the support plate hole and an eccentrically located tube has been represented by vertical strips. The formation, growth and collapse of a steam bubble in each strip has been determined. Based on the bubble history, and flow regimes characterized by ``isolated`` bubbles, ``coalesced`` bubbles and liquid deficient regions have been defined.

  3. Large-scale horizontal flows from SOUP observations of solar granulation

    NASA Technical Reports Server (NTRS)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-01-01

    Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  4. Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer

    USGS Publications Warehouse

    Lu, N.; Ge, S.

    1996-01-01

    By including the constant flow of heat and fluid in the horizontal direction, we develop an analytical solution for the vertical temperature distribution within the semiconfining layer of a typical aquifer system. The solution is an extension of the previous one-dimensional theory by Bredehoeft and Papadopulos [1965]. It provides a quantitative tool for analyzing the uncertainty of the horizontal heat and fluid flow. The analytical results demonstrate that horizontal flow of heat and fluid, if at values much smaller than those of the vertical, has a negligible effect on the vertical temperature distribution but becomes significant when it is comparable to the vertical.

  5. Assessing temporal and spatial alterations of flow regimes in the regulated Huai River Basin, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Zhai, Xiaoyan; Shao, Quanxi; Yan, Ziqi

    2015-10-01

    The assessment of flow regime alterations is fundamental in understanding the potential impact of reservoirs and other water infrastructures on aquatic ecosystems and biota. Previously used methods to classify flow regimes have not captured temporal changes between unregulated and regulated flow regimes at individual stations. In this study, a combination of hierarchical classification and trend analysis was used to assess spatial and temporal flow regime alterations in the Huai River Basin, China. Two categories of flow regime indices were selected to characterize the impacts of reservoir and sluice regulation, including the basic flow indices for mean variation, and the cumulative variation indices for long-term alteration. The overall impact of reservoirs and sluices on flow regime included the decrease of high flow magnitudes but the increase of low flow magnitudes through time. Moreover, on average, the flow variability, and the high and low flow frequencies were reduced, while their durations were increased. Reservoirs had a greater impact on flow regimes than sluices. The flow regimes at 18 of 30 stations were altered significantly from a pre-regulation condition and were divided into three main types of alteration corresponding to operational rules of reservoirs and sluices. From a management perspective, water projects in China should address the environmental flow requirements of the rivers, particularly in terms of the hydrologic indices affected mostly by reservoirs and sluices. This study will promote the application of flow regime classification and river restoration in highly regulated basins in China.

  6. Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams

    NASA Astrophysics Data System (ADS)

    Kern, J.; Characklis, G. W.

    2012-12-01

    challenge, the following study was designed to investigate the potential for wind power integration to alter riparian flow regimes below hydroelectric dams. A hydrological model of a three-dam cascade in the Roanoke River basin (Virginia, USA) is interfaced with a simulated electricity market (i.e. a unit commitment problem) representing the Dominion Zone of PJM Interconnection. Incorporating forecasts of electricity demand, hydro capacity and wind availability, a mixed-integer optimization program minimizes the system cost of meeting hourly demand and reserve requirements by means of a diverse generation portfolio (e.g. nuclear, fossil, hydro, and biomass). A secondary 'balancing' energy market is executed if real-time wind generation is less than the day-ahead forecast, calling upon reserved generation resources to meet the supply shortfall. Hydropower release schedules are determined across a range of wind development scenarios (varying wind's fraction of total installed generating capacity, as well as its geographical source region). Flow regimes for each wind development scenario are compared against both historical and simulated flows under current operations (negligible wind power), as well as simulated natural flows (dam removal), in terms of ecologically relevant flow metrics. Results quantify the ability of wind power development to alter within-week stream flows downstream from hydropower dams.

  7. Turbulence- and buoyancy-driven secondary flow in a horizontal square duct heated from below

    NASA Astrophysics Data System (ADS)

    Sekimoto, A.; Kawahara, G.; Sekiyama, K.; Uhlmann, M.; Pinelli, A.

    2011-07-01

    Direct numerical simulations of fully developed turbulent flows in a horizontal square duct heated from below are performed at bulk Reynolds numbers Reb = 3000 and 4400 (based on duct width H) and bulk Richardson numbers 0≤Ri≤1.03. The primary objective of the numerical simulations concerns the characterization of the mean secondary flow that develops in this class of flows. On one hand, it is known that turbulent isothermal flow in a square duct presents secondary mean motions of Prandtl's second kind that finds its origin in the behavior of turbulence structures. On the other hand, thermal convection drives a mean secondary motion of Prandtl's first kind directly induced by buoyancy. As far as the mean structure of the cross-stream motion is concerned, it is found that different types of secondary flow regimes take place when increasing the value of the Richardson number. The mean secondary flow in the range 0.025≲Ri≲0.25 is characterized by a single large-scale thermal convection roll and four turbulence-driven corner vortices of the opposite sense of rotation to the roll, as contrasted with the classical scenario of the eight-vortex secondary flow pattern typical of isothermal turbulent square-duct flow. This remarkable structural difference in the corner regions can be interpreted in terms of combined effects, on instantaneous streamwise vortices, of the large-scale circulation and of the geometrical constraint by the duct corner. When further increasing the Richardson number, i.e., Ri ≳ 0.25, the structure of the mean secondary flow is solely determined by the large-scale circulation induced by the buoyancy force. In this regime, the additional mean cross-stream motion is characterized by the presence of two distinct buoyancy-driven vortices of opposite sense of rotation to the circulation only in two of the four corner regions. With increasing Ri, the large-scale circulation is found to enhance the wall skin friction and heat transfer. In the

  8. A hydrometeorological forecasting approach for basins with complex flow regime

    NASA Astrophysics Data System (ADS)

    Zarkadoulas, Akis; Mantesi, Konstantina; Efstratiadis, Andreas; Koussis, Antonis; Mazi, Aikaterini; Katsanos, Demetris; Koukouvinos, Antonis; Koutsoyiannis, Demetris

    2015-04-01

    The combined use of weather forecasting models and hydrological models in flood risk estimations is an established technique, with several successful applications worldwide. However, most known hydrometeorological forecasting systems have been established in large rivers with perpetual flow. Experience from small- and medium-scale basins, which are often affected by flash floods, is very limited. In this work we investigate the perspectives of hydrometeorological forecasting, by emphasizing two issues: (a) which modelling approach can credibly represent the complex dynamics of basins with highly variable runoff (intermittent or ephemeral); and (b) which transformation of point-precipitation forecasts provides the most reliable estimations of spatially aggregated data, to be used as inputs to semi-distributed hydrological models. Using as case studies the Sarantapotamos river basin, in Eastern Greece (145 km2), and the Nedontas river basin, in SW Peloponnese (120 km2), we demonstrate the advantages of continuous simulation through the HYDROGEIOS model. This employs conjunctive modelling of surface and groundwater flows and their interactions (percolation, infiltration, underground losses), which are key processes in river basins characterized by significantly variability of runoff. The model was calibrated against hourly flow data at two and three hydrometric stations, respectively, for a 3-year period (2011-2014). Next we attempted to reproduce the most intense flood events of that period, by substituting observed rainfall by forecast scenarios. In this respect, we used consecutive point forecasts of a 6-hour lead time, provided by the numerical weather prediction model WRF (Advanced Research version), dynamically downscaled from the ~1° forecast of GSF-NCEP/NOAA successively first to ~18 km, then to ~6 km and ultimately at the horizontal grid resolution of 2x2 km2. We examined alternative spatial integration approaches, using as reference the rainfall stations

  9. Flow regime change in an Endorheic basin in Southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Worku, F. F.; Werner, M.; Wright, N.; van der Zaag, P.; Demissie, S.

    2014-01-01

    Endorheic basins, often found in semi-arid and arid climates, are particularly sensitive to changes in climatological fluxes such as precipitation, evaporation and runoff, resulting in variability of river flows as well as of water levels in end-point lakes that are often present. In this paper we apply the Indicators of Hydrological Alteration (IHA) to characterise change to the natural flow regime of the Omo-Ghibe basin in Southern Ethiopia. This endorheic basin is considered relatively pristine, with the basin being the main source of flow to Lake Turkana, the end-point lake in the East-African rift valley. The water level in Lake Turkana shows significant fluctuation, but an increasing trend can be observed over the past 20 yr. The reasons are currently not well understood. Of the five groups of metrics in the IHA, only those related to magnitude were found to show significant trends, with the main trend being the increase of flow during the dry season. This trend was not reflected in climatological drivers such as rainfall, evaporation, and temperature (which shows an increasing trend), but rather is attributed to the substantial changes in Land Use and Land Cover (LULC) in the basin. The impact on the basin hydrology is apparent mainly in the more humid part of the basin. The significant shift from forest and woodland to grassland and cropland results in a decrease of actual evaporation and subsequent increase in (dry season) runoff. The long term trend of the increasing levels in lake Turkana are related to these trends in dry season flows, while shorter term fluctuations of the lake levels are attributed primarily to anomalies in consecutive wet and dry season rainfall.

  10. Flow regime change in an endorheic basin in southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Worku, F. F.; Werner, M.; Wright, N.; van der Zaag, P.; Demissie, S. S.

    2014-09-01

    Endorheic basins, often found in semi-arid and arid climates, are particularly sensitive to variation in fluxes such as precipitation, evaporation and runoff, resulting in variability of river flows as well as of water levels in end-point lakes that are often present. In this paper we apply the indicators of hydrological alteration (IHA) to characterise change to the natural flow regime of the Omo-Ghibe Basin in southern Ethiopia. Little water resource infrastructure has been developed in the basin to date, and it is considered pristine. The basin is endorheic and is the main source of flow to Lake Turkana in the East African Rift Valley. The water level in Lake Turkana shows significant fluctuation, but increase of its level can be observed over the past 20 years. The reasons are currently not well understood. Of the five groups of hydrological characteristics in the IHA (magnitude, timing, duration, frequency and variability), only those related to magnitude were found to show significant trends, with the main trend being the increase of flow during the dry season. This trend was not reflected in climatological drivers such as rainfall, evaporation and temperature (which shows a positive trend), but rather is attributed to the substantial changes in land use and land cover in the basin. The change in the basin hydrology is apparent mainly in the more humid part of the basin. The significant shift from forest and woodland to grassland and cropland results in a decrease of actual evaporation and subsequent increase in (dry season) runoff. The long-term trend of the increasing levels in Lake Turkana are related to these trends in dry season flows, while shorter-term fluctuations of the lake levels are attributed primarily to anomalies in consecutive wet and dry season rainfall.

  11. Controls of Wellbore Flow Regimes on Pump Effluent Composition

    SciTech Connect

    James Martin-Hayden; plummer; Sanford Britt

    2014-01-01

    Where well water and formation water are compositionally different or heterogeneous, pump effluent composition will vary due to partial mixing and transport induced by pumping. Investigating influences of purging and sampling methodology on composition variability requires quantification of wellbore flow regimes and mixing. As a basis for this quantification, analytical models simulating Poiseuille flow were developed to calculate flow paths and travel times. Finite element modeling was used to incorporate influences of mixing. Parabolic velocity distributions within the screened interval accelerate with cumulative inflow approaching the pump intake while an annulus of inflowing formation water contracts uniformly to displace an axial cylinder of pre-pumping well water as pumping proceeds. Increased dispersive mixing forms a more diffuse formation water annulus and the contribution of formation water to pump effluent increases more rapidly. Models incorporating viscous flow and diffusion scale mixing show that initially pump effluent is predominantly pre-pumping well water and compositions vary most rapidly. After two screen volumes of pumping, 94% of pump effluent is inflowing formation water. Where the composition of formation water and pre-pumping well water are likely to be similar, pump effluent compositions will not vary significantly and may be collected during early purging or with passive sampling. However, where these compositions are expected to be considerably different or heterogeneous, compositions would be most variable during early pumping, that is, when samples are collected during low-flow sampling. Purging of two screen volumes would be required to stabilize the content and collect a sample consisting of 94% formation water.

  12. Flow Visualization Study of a 1/48-Scale AFTI/F111 Model to Investigate Horizontal Tail Flow Disturbances

    NASA Technical Reports Server (NTRS)

    Bjarke, Lisa J.

    1991-01-01

    During flight testing of the AFTI/F111 aircraft, horizontal tail buffet was observed. Flutter analysis ruled out any aeroelastic instability, so a water-tunnel flow visualization study was conducted to investigate possible flow disturbances on the horizontal tail which might cause buffet. For this study, a 1/48-scale model was used. Four different wing cambers and one horizontal tail setting were tested between 0 and 20 deg angle of attack. These wing cambers corresponded to the following leading training edge deflections: 0/2, 10/10, 10/2, and 0/10. Flow visualization results in the form of still photographs are presented for each of the four wing cambers between 8 and 12 deg angle of attack. In general, the horizontal tail experiences flow disturbances which become more pronounced with angle of attack or wing trailing-edge deflection.

  13. The effect of the scale of horizontal subsurface flow constructed wetlands on flow and transport parameters.

    PubMed

    Suliman, F; French, H; Haugen, L E; Kløve, B; Jenssen, P

    2005-01-01

    Horizontal subsurface flow constructed wetlands have proven their efficiency in treating wastewater and removing the pollutants of concern. Treatment efficiency depends on the wastewater residence time, which is a function of the hydraulic loading and the physical conditions of the constructed filter system, which can be described with effective parameters such as: hydraulic conductivity, porosity, dispersivity etc. Because spatial variability is often scale dependent, these effective parameters may be affected by the scale of the system being studied. In this paper the results of tracer experiments in constructed filters using saturated horizontal flow at three scales (small and medium lab scales and full-scale system) using the same filter media is reported. Light-weight aggregate (filter media termed Filtralite-P) was used at all scales. Increasing the scale was associated with increasing dispersivity, meanwhile hydraulic conductivity experienced dramatic reduction and variation by increasing the examined scale. Observed changes in the hydraulic parameters indicate that heterogeneity at different scales should be taken into account when the performance of LWA filters are evaluated from small-scale experiments. PMID:16042266

  14. Study of flow regimes in two-phase pipeline flow using computer-based digital-image processing

    SciTech Connect

    Bowers, C.B.

    1986-01-01

    A new unobtrusive method for liquid-liquid two-phase flow data collection was proven reliable in this research. Drop-size distributions and concentration profiles were determined for a dilute water-in-kerosene system under horizontal straight pipe flow using this technique. The drop-size distributions were found to follow a Rosin-Rammler function for a limited droplet-diameter range, and the average value of the exponent in the Rosin-Rammler equation was determined to be 2.0. The velocity where the flow-regime transitions from stratified to adequately dispersed was found to be between 6.6 and 7.3 ft/s. Concentration profiles predicted by the Segev model were in general agreement with the profiles determined in this work. Using the experimentally determined Rosin-Rammler exponent value of 2.0 and using the proper choice of the dimensionless lateral diffusivity, the Segev model predicts very well the profiles found in this work. The new experimental method developed in this work will be useful to future researchers in two-phase flow. The data generated is useful both for theoretical modeling efforts and for application to industry sampling problems.

  15. Flow regime study of a light material in an industrial scale cold flow circulating fluidized bed

    SciTech Connect

    Mei, J.S.; Monazam, E.R.; Shadle, L.J.

    2006-06-15

    A series of experiments was conducted in the 0.3 meter diameter circulating fluidized bed test facility at the National Energy Technology Laboratory (NETL) of the U. S. Department of Energy. The particle used in this study was a coarse, light material, cork, which has a particle density of 189 kg/m{sup 3} and a mean diameter of 812 {mu}m. Fluidizing this material in ambient air approximates the same gas-solids density ratio as coal and coal char in a pressurized gasifier. The purpose of this study is twofold. First, this study is to provide a better understanding on the fundamentals of flow regimes and their transitions. The second purpose of this study is to generate reliable data to validate the mathematical models, which are currently under development at NETL. This paper presents and discusses the data, which covered operating flow regime from dilute phase, fast fluidization, and to dense phase transport by varying the solid flux, G{sub s}. at a constant gas velocity, U{sub g}. Data are presented by mapping the flow regime for coarse cork particles in a {Delta}P/{Delta} L-G{sub s}-U{sub g} plot. A stable operation can be obtained at a fixed riser gas velocity higher than the transport velocity e.g., at U{sub g} = 3.2 m/s, even though the riser is operated within the fast fluidization flow regime. Depending upon the solids influx, the riser can also be operated at dilute phase or dense phase flow regimes. Experimental data were compared to empirical correlations in published literature for flow regime boundaries as well as solids, fractions in the upper dilute and the lower dense regions for fast fluidization flow regime. Comparisons of measured data with these empirical correlations show rather poor agreements. These discrepancies, however, are not surprising since the correlations for these transitions were derived from experimental data of comparative heavier materials such as sands, FCC, iron ore etc.

  16. Predicted Variations in Flow Patterns in a Horizontal CVD Reactor

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.

    1999-01-01

    Expressions in terms of common reactor operating parameters were derived for the ratio of the Grashof number to the Reynolds number, Gr/Re, the ratio of the Grashof to the square of 2 the Reynolds number, Gr/Re(exp 2), and the Rayleigh number, Ra. Values for these numbers were computed for an example horizontal CVD reactor and compared to numerical simulations to gauge their effectiveness as predictors of the presence or absence of transverse and longitudinal rolls in the reactor. Comparisons were made for both argon and hydrogen carrier gases over the pressure range 2- 101 kPa. Reasonable agreement was achieved in most cases when using Gr/Re to predict the presence of transverse rolls and Ra to predict the presence of longitudinal rolls. The ratio Gr/Re(exp 2) did not yield useful predictions regarding the presence of transverse rolls. This comparison showed that the ratio of the Grashof number to the Reynolds number, as well as the Rayleigh number, can be used to predict the presence or absence of transverse and longitudinal rolls in a horizontal CVD reactor for a given set of reactor conditions. These predictions are approximate, and care must be exercised when making predictions near transition regions.

  17. Flooding characteristics of gas-liquid two-phase flow in a horizontal U bend pipe

    SciTech Connect

    Sakaguchi, T.; Hosokawa, S.; Fujii, Y.

    1995-09-01

    For next-generation nuclear reactors, hybrid safety systems which consist of active and passive safety systems have been planned. Steam generators with horizontal U bend pipelines will be used as one of the passive safety systems. It is required to clarify flow characteristics, especially the onset of flooding, in the horizontal U bend pipelines in order to examine their safety. Flooding in vertical pipes has been studied extensively. However, there is little study on flooding in the horizontal U bend pipelines. It is supposed that the onset of flooding in the horizontal U bend pipelines is different from that in vertical pipes. On the other hand, liquid is generated due to condensation of steam in pipes of the horizontal steam generators at the loss of coolant accident because the steam generators will be used as a condenser of a cooling system of steam from the reactor. It is necessary to simulate this situation by the supply of water at the middle of horizontal pipe. In the present paper, experiments were carried out using a horizontal U bend pipeline with a liquid supply section in the midway of pipeline. The onset of flooding in the horizontal U bend pipeline was measured. Effects of the length of horizontal pipe and the radius of U bend on the onset of flooding were discussed.

  18. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles.

    PubMed

    Zhong, Xin; Duan, Fei

    2016-02-01

    The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern. PMID:26920521

  19. Hot-wire calibration in subsonic/transonic flow regimes

    NASA Technical Reports Server (NTRS)

    Nagabushana, K. A.; Ash, Robert L.

    1995-01-01

    A different approach for calibrating hot-wires, which simplifies the calibration procedure and reduces the tunnel run-time by an order of magnitude was sought. In general, it is accepted that the directly measurable quantities in any flow are velocity, density, and total temperature. Very few facilities have the capability of varying the total temperature over an adequate range. However, if the overheat temperature parameter, a(sub w), is used to calibrate the hot-wire then the directly measurable quantity, voltage, will be a function of the flow variables and the overheat parameter i.e., E = f(u,p,a(sub w), T(sub w)) where a(sub w) will contain the needed total temperature information. In this report, various methods of evaluating sensitivities with different dependent and independent variables to calibrate a 3-Wire hot-wire probe using a constant temperature anemometer (CTA) in subsonic/transonic flow regimes is presented. The advantage of using a(sub w) as the independent variable instead of total temperature, t(sub o), or overheat temperature parameter, tau, is that while running a calibration test it is not necessary to know the recovery factor, the coefficients in a wire resistance to temperature relationship for a given probe. It was deduced that the method employing the relationship E = f (u,p,a(sub w)) should result in the most accurate calibration of hot wire probes. Any other method would require additional measurements. Also this method will allow calibration and determination of accurate temperature fluctuation information even in atmospheric wind tunnels where there is no ability to obtain any temperature sensitivity information at present. This technique greatly simplifies the calibration process for hot-wires, provides the required calibration information needed in obtaining temperature fluctuations, and reduces both the tunnel run-time and the test matrix required to calibrate hotwires. Some of the results using the above techniques are presented

  20. Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code

    SciTech Connect

    Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.

    1992-01-01

    FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime.

  1. Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code

    SciTech Connect

    Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.

    1992-12-31

    FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime.

  2. Magneto-polar fluid flow through a porous medium of variable permeability in slip flow regime

    NASA Astrophysics Data System (ADS)

    Gaur, P. K.; Jha, A. K.; Sharma, R.

    2016-05-01

    A theoretical study is carried out to obtain an analytical solution of free convective heat transfer for the flow of a polar fluid through a porous medium with variable permeability bounded by a semi-infinite vertical plate in a slip flow regime. A uniform magnetic field acts perpendicular to the porous surface. The free stream velocity follows an exponentially decreasing small perturbation law. Using the approximate method the expressions for the velocity, microrotation, and temperature are obtained. Further, the results of the skin friction coefficient, the couple stress coefficient and the rate of heat transfer at the wall are presented with various values of fluid properties and flow conditions.

  3. Well testing and interpretation for horizontal wells

    SciTech Connect

    Kuchuk, F.J. )

    1995-01-01

    The use of transient well testing for determining reservoir parameters and productivity of horizontal wells has become common because of the upsurge in horizontal drilling. Initially, horizontal well tests were analyzed with the conventional techniques designed for vertical wells. During the last decade, analytic solutions have been presented for the pressure behavior of horizontal wells. New flow regimes have been identified, and simple equations and flow regime existence criteria have been presented for them. The flow regimes are now used frequently to estimate horizontal and vertical permeabilities of the reservoir, wellbore skin, and reservoir pressure. Although the existing tools and interpretation techniques may be sufficient for simple systems, innovation and improvement of the present technology are still essential for well testing of horizontal wells in many reservoirs with different geological environments and different well-completion requirements.

  4. Zonal flow regimes in rotating anelastic spherical shells (Invited)

    NASA Astrophysics Data System (ADS)

    Gastine, T.; Wicht, J.; Aurnou, J. M.; Heimpel, M. H.

    2013-12-01

    The surface zonal winds observed in the giant planets form a complex jet pattern with alternating prograde and retrograde direction. While the main equatorial band is prograde on the gas giants, both ice giants have a pronounced retrograde equatorial jet. The depth of these jets is however poorly known and highly debated. Theoretical scenarios range from "shallow models", that assume that these zonal flows are restricted to the outer stably stratified layer; to "deep models" that hypothesise that the surface winds are the signature of deep-seated convection. Most of the numerical models supporting the latter idea employed the Boussinesq approximation where compressibility effects are ignored. While this approximation is suitable for modelling the liquid iron core of terrestrial planets, this becomes questionable in the gas giants interiors, where density increases by several orders of magnitude. To tackle this problem, several numerical models using the "anelastic approximation" have been recently developed to study the compressibility effects while filtering out the fast acoustic waves. Here, we consider such anelastic models of rapidly-rotating spherical shells to explore the properties of the zonal winds in different regimes where either rotation or buoyancy dominates the force balance. We conduct several parameter studies to quantify the dependence of zonal flows on the background density stratification and the driving of convection. We find that the direction of the equatorial wind is controlled by the ratio of buoyancy and Coriolis force. The prograde equatorial band maintained by Reynolds stresses is found in the rotation-dominated regime. At low Ekman numbers, several alternating jets form at high latitude in a similar way to some previous Boussinesq calculations. In cases where buoyancy dominates Coriolis force, the angular momentum per unit mass is homogenised and the equatorial band is retrograde, reminiscent to those observed in the ice giants

  5. Interfacial characteristic measurements in horizontal bubbly two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Huang, W. D.; Srinivasmurthy, S.; Kocamustafaogullari, G.

    1990-10-01

    Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and it is mostly limited to vertical flow configurations. In view of the above, the internal phase distribution of concurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5 percent. The local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void fraction interfacial area concentration and bubble frequency have local maxima near the upper pipe wall, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can go up to 900 approximately 1000 sq m/cu m, and the bubble frequency can reach a value of 2200 per s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency.

  6. Slug-plug flow analyses of stratified flows in a horizontal duct by means of MARS

    SciTech Connect

    Kunugi, T.; Ose, Y.; Banat, M.

    1999-07-01

    The objectives of this study are to perform the slug-plug flow analyses of stratified flows in a horizontal duct by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author which based on the piece-wise linear calculation as a volume tracking procedure and the continuum surface force model (CSF) for the surface tension, and to investigate the effect of the Bernoulli term for slug-plug flows, i.e., so-called the topological law, on the competition between inertial forces and gravitation forces. Some discussion on the primary jump condition at the interface in the MARS is described in the paper. The results of the direct numerical simulation (DNS) by the MARS are compared with the experimental one. The slugging positions obtained by the DNS are in good agreement with the experimental one. Since the mass conservation between before the plugging and after slugging can be shown by the DNS here, the authors may conclude that this physical/numerical model based on the MARS is reliable.

  7. Unbounded wall flow with free surface waves and horizontal shear

    NASA Astrophysics Data System (ADS)

    Lapham, Gary; McHugh, John

    2015-11-01

    Free surface waves in the presence of a non-uniform shear flow are treated. The shear flow of interest varies with both the transverse and vertical coordinates, U (y , z) . Initial results treat a mean flow varying only with the transverse, U (y) . The domain is bounded on one side by a flat rigid vertical wall and is unbounded on the other side. The mean flows considered here are nonzero near the vertical wall and approach zero far from the wall, e.g. U =e-γy . The flowfield is treated as inviscid but rotational. Linear solutions are obtained using a nonuniform coordinate transformation that converts the free surface boundary condition into a modified Bessel equation. Velocity components are expanded in modified Bessel functions of the first kind of purely imaginary order. The dispersion relation for steady waves are found with wavespeeds outside the range of U, matching previous results for a flow bounded on both sides. Corresponding eigenvectors show a sequence of wave profiles of increasing complexity near the wall. The wave amplitude approaches zero far from the wall.

  8. Investigation of single-substance horizontal two-phase flow

    SciTech Connect

    Dickinson, D.A.; Maeder, P.F.

    1984-03-01

    Despite the abundance of work in the field of two-phase flow, it seems as though a consensus has not been reached on some of the fundamental points. Although exceptions exist, adequate physical interpretation of the flow seems to be hindered either by complexity of analysis or, in the opposite extreme, the trend toward limited-range analysis and correlations. The dissertation presents the derivation of basic conservation equations for the phases. The combined equations are used to examine the phenomenon of slip and its practical limitations, the Fanno line for single-substance flow and the effect of slip on choking. Equations for critical mass flux in the presence of slip are derived. The Mach, Reynolds and Froude numbers based on conditions at flashing are introduced as the characteristic parameters, and the importance of compressibility in single-substance two-phase flow is discussed. Experimental measurements of pressure change and void fraction for flow in the highly compressible range (.5 < Ma < 1) are presented. The working fluid is Refrigerant R-114, at room temperature, in a test section of diameter 5 cm and length 8 m. The effect of the Froude and Mach numbers is examined. The experimental facility is operated intermittently with running times of approximately two minutes and is instrumented for rapid measurements using a computer data acquisition and control system. A description of the facility and procedure is provided.

  9. Development of an inflow controlled environmental flow regime for a Norwegian river

    NASA Astrophysics Data System (ADS)

    Alfredsen, Knut; Harby, Atle; Linnansaari, Tommi; Ugedal, Ola

    2010-05-01

    For most regulated rivers in Norway the common environmental flow regime is static and shows very little variation over the year. Recent research indicate that flow regimes that follow the natural inflow variation can meet the ecological and social demands for water in a better way. The implementation of a variable environmental flow regime provides many challenges both related to defining flow for various species and user groups in the river, but also due to practical implementation, legislation and control. A inflow controlled flow regime is developed for a Norwegian river regulated for hydro power as a pilot study. The regime should meet ecological demands from Atlantic salmon and brown trout, recreational use of water and visual impression of the river. This should be achieved preferably without altering the energy production in the hydro power system. The flow regime is developed for wet, dry and normal discharge conditions based on unregulated inflow to the catchment. The development of the seasonal flow requirements for various targets identified is done using a modification of the Building Block Method. Several options are tested regarding the integration of the flow regime into the operational strategy of the hydropower plant, both using real time prognosis of inflow and combinations with historical data. An important topic in selecting the release strategy is how it meets current Norwegian legislation and how well future documentation and environmental control can be carried out. An evaluation protocol is also proposed for the flow regime to test if the ecological targets are met.

  10. Natural flow regimes of the Ozark-Ouachita Interior Highlands region

    USGS Publications Warehouse

    Leasure, D. R.; Magoulick, Daniel D.; Longing, S. D.

    2016-01-01

    Natural flow regimes represent the hydrologic conditions to which native aquatic organisms are best adapted. We completed a regional river classification and quantitative descriptions of each natural flow regime for the Ozark–Ouachita Interior Highlands region of Arkansas, Missouri and Oklahoma. On the basis of daily flow records from 64 reference streams, seven natural flow regimes were identified with mixture model cluster analysis: Groundwater Stable, Groundwater, Groundwater Flashy, Perennial Runoff, Runoff Flashy, Intermittent Runoff and Intermittent Flashy. Sets of flow metrics were selected that best quantified nine ecologically important components of these natural flow regimes. An uncertainty analysis was performed to avoid selecting metrics strongly affected by measurement uncertainty that can result from short periods of record. Measurement uncertainties (bias, precision and accuracy) were assessed for 170 commonly used flow metrics. The ranges of variability expected for select flow metrics under natural conditions were quantified for each flow regime to provide a reference for future assessments of hydrologic alteration. A random forest model was used to predict the natural flow regimes of all stream segments in the study area based on climate and catchment characteristics, and a map was produced. The geographic distribution of flow regimes suggested distinct ecohydrological regions that may be useful for conservation planning. This project provides a hydrologic foundation for future examination of flow–ecology relationships in the region. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  11. The Lakshmi Plateau structure as an indicator of asthenosphere horizontal flows on Venus

    NASA Technical Reports Server (NTRS)

    Pronin, A. A.

    1986-01-01

    The structure of Lakshmi Planum in the western part of Ishtar Terra in a fold-fault setting which conforms to the basic massif of the plateau with eruptive centers is constructed concentrically and is interpreted from the point of view of the subsurface flow of materials in the form of horizontally diverging asthenospheric flows and gravitational creep. The surrounding structures are formed by the deformation of the more rigid lithosphere as it breaks away from the asthenospheric flow.

  12. Counter-current flow in a vertical to horizontal tube with obstructions

    SciTech Connect

    Tye, P.; Matuszkiewicz, A.; Teyssedou, A.

    1995-09-01

    This paper presents experimental results on counter-current flow and flooding in an elbow between a vertical and a horizontal run. The experimental technique used allowed not only the flooding limit to be determined, but also the entire partial delivery region to be studied as well. The influence that various size orifices placed in the horizontal run have on both the delivered liquid flow rates and on the flooding limits is also examined. It is observed that both the flooding limits and the delivered liquid flow rates decrease with decreasing orifice size. Further, it is also observed that the mechanisms that govern the partial delivery of the liquid are significantly different when an orifice is present in the horizontal leg as compared to the case when no orifice is present.

  13. Numerical simulation of flows from free molecular regime to continuum regime by a DVM with streaming and collision processes

    NASA Astrophysics Data System (ADS)

    Yang, L. M.; Shu, C.; Wu, J.; Wang, Y.

    2016-02-01

    A discrete velocity method (DVM) with streaming and collision processes is presented in this work for simulation of flows from free molecular regime to continuum regime. The present scheme can be considered as a semi-Lagrangian like scheme. At first, we follow the conventional DVM to discretize the phase velocity space by a number of discrete velocities. Then, for each discrete velocity, the kinetic equation with BGK-Shakhov model is integrated in space and time within one time step. As a result, a simple algebraic formulation can be obtained, and its solution can be marched in time by the streaming and collision processes. However, differently from the conventional semi-Lagrangian scheme, the present scheme uses the MUSCL approach with van Albada limiter in the process of reconstructing the distribution function at the surrounding points of the cell center, and the transport distance is controlled in order to avoid extrapolation. This makes the present scheme be capable of simulating the hypersonic rarefied flows. In addition, as compared to the unified gas kinetic scheme (UGKS), the present scheme is simpler and easier for implementation. Thus, the computational efficiency can be improved accordingly. To validate the proposed numerical scheme, test examples from free molecular regime to continuum regime are simulated. Numerical results showed that the present scheme can predict the flow properties accurately even for hypersonic rarefied flows.

  14. Computation of flow around a circular cylinder in a supercritical regime

    NASA Technical Reports Server (NTRS)

    Ishii, K.; Kuwahara, K.; Kawamura, T.; Ogawa, S.; Chyu, W. J.

    1985-01-01

    Compressible flows around a circular cylinder in a supercritical regime at Mach number 0.3 have been calculated by using the Beam-Warming-Steger scheme based on the full Navier-Stokes equations with improved accuracy. The flow patterns are visualized extensively to observe the characteristics in this regime. The computations show that the flow at certain Reynolds numbers in a supercritical regime becomes rather steady and irregular with small drag coefficients. This may correspond to the experimental observations that the Strouhal number can not be measured clearly at a certain Reynolds number range in the supercritical regime.

  15. Modality transition-based network from multivariate time series for characterizing horizontal oil-water flow patterns

    NASA Astrophysics Data System (ADS)

    Ding, Mei-Shuang; Jin, Ning-De; Gao, Zhong-Ke

    2015-11-01

    The simultaneous flow of oil and water through a horizontal pipe is a common occurrence during petroleum industrial processes. Characterizing the flow behavior underlying horizontal oil-water flows is a challenging problem of significant importance. In order to solve this problem, we carry out experiment to measure multivariate signals from different flow patterns and then propose a novel modality transition-based network to analyze the multivariate signals. The results suggest that the local betweenness centrality and weighted shortest path of the constructed network can characterize the transitions of flow conditions and further allow quantitatively distinguishing and uncovering the dynamic flow behavior underlying different horizontal oil-water flow patterns.

  16. Horizontal Flows in the Photosphere and Subphotosphere of Two Active Regions

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Zhao, Junwei; Schuck, P. W.

    2012-01-01

    We compare horizontal flow fields in the photosphere and in the subphotosphere (a layer 0.5 megameters below the photosphere) in two solar active regions: AR11084 and AR11158. AR11084 is a mature, simple active region without significant flaring activity, and AR11158 is a multipolar, complex active region with magnetic flux emerging during the period studied. Flows in the photosphere are derived by applying the Differential Affine Velocity Estimator for Vector Magnetograms (DAVE4VM) on HMI-observed vector magnetic fields, and the subphotospheric flows are inferred by time-distance helioseismology using HMI-observed Dopplergrams. Similar flow patterns are found for both layers for AR11084: inward flows in the sunspot umbra and outward flows surrounding the sunspot. The boundary between the inward and outward flows, which is slightly different in the photosphere and the subphotosphere, is within the sunspot penumbra. The area having inward flows in the subphotosphere is larger than that in the photosphere. For AR11158, flows in these two layers show great similarities in some areas and significant differences in other areas. Both layers exhibit consistent outward flows in the areas surrounding sunspots. On the other hand, most well-documented flux-emergence-related flow features seen in the photosphere do not have counterparts in the subphotosphere. This implies that the horizontal flows caused by flux emergence do not extend deeply into the subsurface.

  17. Multiple planetary flow regimes in the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Yoden, Shigeo; Shiotani, Masato; Hirota, Isamu

    1987-01-01

    Low-frequency variations in the general circulation of the Southern Hemisphere during 1983 were studied using daily geopotential height and temperature analyses for 12 pressure levels from 1000 mb up to 50 mb, performed by the National Meteorological Center of Japan. Results disclosed the presence, in the Southern Hemisphere troposphere, of an irregular fluctuation of two zonal mean geostrophic wind patterns (named single-jet and double-jet regimes) during wintertime. The fluctuation is characterized by the persistence of one geostrophic wind regime, with characteristic duration of a month, followed by a rather rapid transition to another regime.

  18. Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes

    USGS Publications Warehouse

    Freeman, Mary C.; Bowen, Z.H.; Bovee, K.D.; Irwin, E.R.

    2001-01-01

    Conserving biological resources native to large river systems increasingly depends on how flow-regulated segments of these rivers are managed. Improving management will require a better understanding of linkages between river biota and temporal variability of flow and instream habitat. However, few studies have quantified responses of native fish populations to multiyear (>2 yr) patterns of hydrologic or habitat variability in flow-regulated systems. To provide these data, we quantified young-of-year (YOY) fish abundance during four years in relation to hydrologic and habitat variability in two segments of the Tallapoosa River in the southeastern United States. One segment had an unregulated flow regime, whereas the other was flow-regulated by a peak-load generating hydropower dam. We sampled fishes annually and explored how continuously recorded flow data and physical habitat simulation models (PHABSIM) for spring (April-June) and summer (July-August) preceding each sample explained fish abundances. Patterns of YOY abundance in relation to habitat availability (median area) and habitat persistence (longest period with habitat area continuously above the long-term median area) differed between unregulated and flow-regulated sites. At the unregulated site, YOY abundances were most frequently correlated with availability of shallow-slow habitat in summer (10 species) and persistence of shallow-slow and shallow-fast habitat in spring (nine species). Additionally, abundances were negatively correlated with 1-h maximum flow in summer (five species). At the flow-regulated site, YOY abundances were more frequently correlated with persistence of shallow-water habitats (four species in spring; six species in summer) than with habitat availability or magnitude of flow extremes. The associations of YOY with habitat persistence at the flow-regulated site corresponded to the effects of flow regulation on habitat patterns. Flow regulation reduced median flows during spring and

  19. Aerothermodynamics of compressible flow past a flat plate in the slip-flow regime

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Yang; Dai, Yi; Li, Genong; Hu, Yitao; Lai, Ming-Chia

    2015-11-01

    Compressible flow past a flat plate in the slip-flow regime features a very simple geometry and flow field, but it retains the most relevant and interesting physics in high-speed rarefied gas dynamics. In the slip-flow regime, the aerothermodynamic issues, especially the recovery factors and the convection heat transfer correlation, are the focus of this presentation. We first present the detailed similarity equations, especially the transformed Maxwell's slip and jump boundary conditions, and the equations for the Chapman-Rubesin parameter as well as how we incorporate the variable gas properties and the constitutive scaling model for the Knudsen layer in the similarity equations. The similarity solutions are compared with results published by E. R. van Driest [NACA Technical Note 2597, 1952]. We point out that van Driest's solutions were computed by using no-slip and no-jump boundary conditions. The recovery factor and Nusselt number of the plate are shown as functions of the Reynolds number and the Mach number. Finally, the similarity solutions are also compared with simulations of a two-dimensional computational fluid dynamics model solving the full Navier-Stokes-Fourier equations with slip and jump boundary conditions.

  20. LHe Flow Regime/Pressure Drop for D0 Solenoid at Steady State Conditions

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-03-03

    This paper describes in a note taking format what was learned from several sources on two phase liquid helium flow regimes and pressure drops as applied to the D-Zero solenoid upgrade project. Calculations to estimate the steady state conditions for the D-Zero solenoid at 5, 10 and 15 g/s are also presented. For the lower flow rates a stratified type regime can be expected with a pressure drop less than 0.5 psi. For the higher flow rate a more homogeneous flow regime can be expected with a pressure drop between 0.4 to 1.5 psi.

  1. Aircraft wake flow effect and horizontal tail buffet. [pressure distribution and responses of fighter aircraft in transonic maneuvers

    NASA Technical Reports Server (NTRS)

    Hwang, C.; Pi, W. S.

    1979-01-01

    As part of a program to investigate the fluctuating pressure distribution and response behavior of a fighter aircraft in transonic maneuver, an F-5A scale model has previously been tested in an 11-ft transonic wind tunnel. The model, with a number of static and dynamic pressure transducers imbedded in the lifting surfaces was tested at various angles of attack up to 16 deg. In this paper, test results of particular interest to wake flow and horizontal tail buffet are described. It is shown that the dynamic pressure data on the tail surface at the specified flight conditions serve to determine the local dynamic loads. They also influence the control performance of the aircraft under maneuver conditions where buffet is encountered. The data presented demonstrate a number of contributing factors that affect the tail dynamic pressures in the transonic regime.

  2. Wave / wave interaction production horizontal mean flows in stably stratified fluids

    NASA Astrophysics Data System (ADS)

    Galmiche, M.; Thual, O.; Bonneton, P.

    2000-01-01

    We show that internal wave/wave interactions in stratified fluids are able to produce strong horizontal mean currents. A simple analytical model allows us to estimate the amplitude of the time-periodic horizontal mean flow induced by the interaction of two monochromatic waves. This model shows that in some cases, the mean flow velocity can overgo a threshold beyond which critical layers and intense energy transfers from the waves to the mean flow are expected. This prediction is confirmed by direct pseudo-spectral simulations of the Navier-Stokes equations under the Boussinesq approximation. Such interactions may help to further understand the presence of strong vertical shear observed in the final stage of stratified flows in oceans and atmospheres.

  3. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Dong, Feng

    2014-04-01

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  4. Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow

    SciTech Connect

    Wu, Hao; Dong, Feng

    2014-04-11

    Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model.

  5. Horizontal Flow of Semantic and Phonological Information in Chinese Spoken Sentence Production

    ERIC Educational Resources Information Center

    Yang, Jin-Chen; Yang, Yu-Fang

    2008-01-01

    A variant of the picture--word interference paradigm was used in three experiments to investigate the horizontal information flow of semantic and phonological information between nouns in spoken Mandarin Chinese sentences. Experiment 1 demonstrated that there is a semantic interference effect when the word in the second phrase (N3) and the first…

  6. STRATIFICATION OF PARTICULATE AND VOC POLLUTANTS IN HORIZONTAL FLOW PAINT SPRAY BOOTHS

    EPA Science Inventory

    The paper discusses stratification of particulate and volatile organic compound (VOC) pollutants in horizontal flow paint spray booths, as part of a joint U. S. Air Force/EPA research and development program on emissions from paint spray booths. The test program discussed in this...

  7. System-focused environmental flow regime prescription, monitoring and adaptive management

    NASA Astrophysics Data System (ADS)

    Hetherington, David; Lexartza Artza, Irantzu

    2016-04-01

    The definition of appropriate environmental flow regimes through hydropower schemes and water storage reservoirs is key part of mitigation. Insufficient (magnitude and variability) environmental flows can result in much environmental harm with negative impacts being encountered by morphological, ecological and societal systems. Conventionally, environmental flow regimes have been determined by using generic protocols and guidance such as the Tennant method of environmental flow estimation. It is generally accepted that such approaches to minimum environmental flow definition, although being a useful starting point, are not universally applicable across catchment typologies and climatic regions. Such approaches will not always produce conditions that would be associated with 'Good Ecological Status' under the Water framework Directive (or equivalent). Other similar approaches to minimum environmental flow estimation are used that are specific to geographies, yet still the associated guidance rarely thoroughly covers appropriate definition for healthy holistic systems across the flow regime. This paper draws on experience of system-focused environmental flow regime determination in the UK and the Georgian Caucasus Mountains, which allowed for a critical analysis of more conventional methods to be undertaken. The paper describes a recommended approach for determining appropriate environmental flow regimes based on analysis of the impacted geomorphological, ecological and societal systems in a way which is sensitive to the local holistic environment and associated complexities and interactions. The paper suggests that a strong understanding of the local geomorphology in key in predicting how flows will manifest habitat differently across the flow regime, and be spatially dynamic. Additionally, an understanding of the geomorphological system allows the flow of course and fine sediment to be factored into the initial suggested environmental flow regime. It is suggested

  8. Homogenization of precipitation and flow regimes across China: Changing properties, causes and implications

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Xu, Chong-Yu; Kong, Dongdong; Xiao, Mingzhong; Chen, Xiaohong

    2015-11-01

    Homogenization and similarities of precipitation and flow regimes across China are thoroughly investigated using Gini coefficient analysis method and the Analysis Of Similarity (ANOSIM) technique, respectively based on daily precipitation data from 554 meteorological stations and monthly streamflow data from 370 hydrological stations covering the period of 1960-2000. The results indicate that: (1) Homogenization of precipitation regimes is increasing from the northwest to the southeast China. However, different spatial patterns of homogenization of flow regions are identified. Spatially, lower homogenization of flow regimes is detected in the northeast China and higher homogenization of flow regimes in the central and southeast China. Temporally, flow regimes during 1961-2000 are characterized mainly by increasing homogenization, and it is particularly true after 1980; (2) precipitation regimes during 1961-2000 are characterized by decreasing dissimilarities. Larger areas of China are characterized by decreasing dissimilarities of precipitation regimes during 1980-2000 when compared to those during 1961-1980, which should be due to increasing precipitation concentration and intensifying precipitation regimes in recent years; (3) distinctly dissimilar precipitation and flow regimes can be identified between geographically separate river basins. Interregional similarities of flow regimes are enhancing after 1980 when compared to those before 1980 though interregional similarities of precipitation regimes are not changed much; and (4) spatial mismatch is evident in terms of spatial range and changing degree of flow and precipitation regimes. Roughly spatial match can be observed between changes of flow and precipitation indicates and it is particularly the case for precipitation and flow changes in dry season such as winter in China. However, influences of human activities and precipitation changes on streamflow are varying as for specific river basins, such as the

  9. Venus' nighttime horizontal plasma flow, 'magnetic congestion', and ionospheric hole production

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Mayr, H. G.; Curtis, S. A.; Taylor, H. A., Jr.

    1983-01-01

    A simple rectilinear, two-dimensional MHD model is used to investigate the effects of field-aligned plasma loss and cooling on a dense plasma convecting across a weak magnetic field, in order to illumine the Venus nighttime phenomena of horizontal plasma flow, magnetic congestion and ionospheric hole production. By parameterizing field-aligned variations and explicitly solving for cross magnetic field variations, it is shown that the abrupt horizontal enhancements of the vertical magnetic field, as well as sudden decreases of the plasma density to very low values (which are characteristic of ionospheric holes), can be produced in the presence of field-aligned losses.

  10. Two Phase Flow Modeling: Summary of Flow Regimes and Pressure Drop Correlations in Reduced and Partial Gravity

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Rame, E.; Kizito, J.; Kassemi, M.

    2006-01-01

    The purpose of this report is to provide a summary of state-of-the-art predictions for two-phase flows relevant to Advanced Life Support. We strive to pick out the most used and accepted models for pressure drop and flow regime predictions. The main focus is to identify gaps in predictive capabilities in partial gravity for Lunar and Martian applications. Following a summary of flow regimes and pressure drop correlations for terrestrial and zero gravity, we analyze the fully developed annular gas-liquid flow in a straight cylindrical tube. This flow is amenable to analytical closed form solutions for the flow field and heat transfer. These solutions, valid for partial gravity as well, may be used as baselines and guides to compare experimental measurements. The flow regimes likely to be encountered in the water recovery equipment currently under consideration for space applications are provided in an appendix.

  11. On the prediction of the phase distribution of bubbly flow in a horizontal pipe.

    PubMed

    Yeoh, G H; Cheung, Sherman C P; Tu, J Y

    2012-01-01

    Horizontal bubbly flow is widely encountered in various industrial systems because of its ability to provide large interfacial areas for heat and mass transfer. Nonetheless, this particular flow orientation has received less attention when compared to vertical bubbly flow. Owing to the strong influence due to buoyancy, the migration of dispersed bubbles towards the top wall of the horizontal pipe generally causes a highly asymmetrical internal phase distributions, which are not experienced in vertical bubbly flow. In this study, the internal phase distribution of air-water bubbly flow in a long horizontal pipe with an inner diameter of 50.3 mm has been predicted using the population balance model based on direct quadrature method of moments (DQMOM) and multiple-size group (MUSIG) model. The predicted local radial distributions of gas void fraction, liquid velocity and interfacial area concentration have been validated against the experimental data of Kocamustafaogullari and Huang (1994). In general, satisfactory agreements between predicted and measured results were achieved. The numerical results indicated that the gas void fraction and interfacial area concentration have a unique internal structure with a prevailing maximum peak near the top wall of the pipe due to buoyancy effect. PMID:24415823

  12. On the prediction of the phase distribution of bubbly flow in a horizontal pipe

    PubMed Central

    Yeoh, G.H.; Cheung, Sherman C.P.; Tu, J.Y.

    2012-01-01

    Horizontal bubbly flow is widely encountered in various industrial systems because of its ability to provide large interfacial areas for heat and mass transfer. Nonetheless, this particular flow orientation has received less attention when compared to vertical bubbly flow. Owing to the strong influence due to buoyancy, the migration of dispersed bubbles towards the top wall of the horizontal pipe generally causes a highly asymmetrical internal phase distributions, which are not experienced in vertical bubbly flow. In this study, the internal phase distribution of air-water bubbly flow in a long horizontal pipe with an inner diameter of 50.3 mm has been predicted using the population balance model based on direct quadrature method of moments (DQMOM) and multiple-size group (MUSIG) model. The predicted local radial distributions of gas void fraction, liquid velocity and interfacial area concentration have been validated against the experimental data of Kocamustafaogullari and Huang (1994). In general, satisfactory agreements between predicted and measured results were achieved. The numerical results indicated that the gas void fraction and interfacial area concentration have a unique internal structure with a prevailing maximum peak near the top wall of the pipe due to buoyancy effect. PMID:24415823

  13. A model for fluid flow during saturated boiling on a horizontal cylinder

    NASA Technical Reports Server (NTRS)

    Kheyrandish, K.; Dalton, C.; Lienhard, J. H.

    1987-01-01

    A model has been developed to represent the vapor removal pattern in the vicinity of a cylinder during nucleate flow boiling across a horizontal cylinder. The model is based on a potential flow representation of the liquid and vapor regions and an estimate of the losses that should occur in the flow. Correlation of the losses shows a weak dependence on the Weber number and a slightly stronger dependence on the saturated liquid-to-vapor density ratio. The vapor jet thickness, which is crucial to the prediction of the burnout heat flux, and the shape of the vapor film are predicted. Both are verified by qualitative experimental observations.

  14. Three-dimensional magnetohydrodynamic simulation of the solar magnetic flux emergence. Parametric study on the horizontal divergent flow

    NASA Astrophysics Data System (ADS)

    Toriumi, S.; Yokoyama, T.

    2013-05-01

    Context. Solar active regions are formed through the emergence of magnetic flux from the deeper convection zone. Recent satellite observations have shown that a horizontal divergent flow (HDF) stretches out over the solar surface just before the magnetic flux appearance. Aims: The aims of this study are to investigate the driver of the HDF and to see the dependency of the HDF on the parameters of the magnetic flux in the convection zone. Methods: We conducted three-dimensional magnetohydrodynamic (3D MHD) numerical simulations of the magnetic flux emergence and varied the parameters in the initial conditions. An analytical approach was also taken to explain the dependency. Results: The horizontal gas pressure gradient is found to be the main driver of the HDF. The maximum HDF speed shows positive correlations with the field strength and twist intensity. The HDF duration has a weak relation with the twist, while it shows negative dependency on the field strength only in the case of the stronger field regime. Conclusions: Parametric dependencies analyzed in this study may allow us to probe the structure of the subsurface magnetic flux by observing properties of the HDF.

  15. Optimal Ranking Regime analysis of TreeFlow dendrohydrological reconstructions

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.

    2015-03-01

    The Optimal Ranking Regime (ORR) method was used to identify 6-100 year time windows containing significant ranking sequences in 55 western US streamflow reconstructions, and reconstructions of the level of the Great Salt Lake and San Francisco Bay salinity during 1500-2007. The method's ability to identify optimally significant and non-overlapping runs of low and high rankings allows it to re-express a reconstruction time series as a simplified sequence of regime segments marking intra- to multi-decadal (IMD) periods of low or high streamflow, lake level, or salinity. Those ORR sequences, referred to here as Z lines, can be plotted to identify consistent regime patterns in the analysis of numerous reconstructions. The Z lines for the 57 reconstructions evaluated here show a common pattern of IMD cycles of drought and pluvial periods during the late 16th and 17th centuries, a relatively dormant period during the 18th century, and the reappearance of alternating dry and wet IMD periods during the 19th and early 20th centuries. Although this pattern suggests the possibility of similarly active and inactive oceanic modes in the North Pacific and North Atlantic, such centennial-scale patterns are not evident in the ORR analyses of reconstructed Pacific Decadal Oscillation (PDO), El Niño-Southern Oscillation, and North Atlantic seas-surface temperature variation. But given the inconsistency in the analyses of four PDO reconstructions the possible role of centennial-scale oceanic mechanisms is uncertain. In future research the ORR method might be applied to climate reconstructions around the Pacific Basin to try to resolve this uncertainty. Given its ability to compare regime patterns in climate reconstructions derived using different methods and proxies, the method may also be used in future research to evaluate long-term regional temperature reconstructions.

  16. Optimal ranking regime analysis of TreeFlow dendrohydrological reconstructions

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.

    2015-08-01

    The optimal ranking regime (ORR) method was used to identify 6-100-year time windows containing significant ranking sequences in 55 western US streamflow reconstructions, and reconstructions of the level of the Great Salt Lake and San Francisco Bay salinity during 1500-2007. The method's ability to identify optimally significant and non-overlapping runs of low- and high-rankings allows it to re-express a reconstruction time series as a simplified sequence of regime segments marking intra- to multi-decadal (IMD) periods of low or high streamflow, lake level, and salinity. Those ORR sequences, referred to here as Z-lines, can be plotted to identify consistent regime patterns in the analysis of numerous reconstructions. The Z-lines for the 57 reconstructions evaluated here show a common pattern of IMD cycles of drought and pluvial periods during the late 16th and 17th centuries, a relatively dormant period during the 18th century, and the reappearance of alternating dry and wet IMD periods during the 19th and early 20th centuries. Although this pattern suggests the possibility of similarly active and inactive oceanic modes in the North Pacific and North Atlantic, such centennial-scale patterns are not evident in the ORR analyses of reconstructed Pacific Decadal Oscillation (PDO), El Niño-Southern Oscillation, and North Atlantic sea-surface temperature variation. However, given the inconsistency in the analyses of four PDO reconstructions, the possible role of centennial-scale oceanic mechanisms is uncertain. In future research the ORR method might be applied to climate reconstructions around the Pacific Basin to try to resolve this uncertainty. Given its ability to compare regime patterns in climate reconstructions derived using different methods and proxies, the method may also be used in future research to evaluate long-term regional temperature reconstructions.

  17. Wind Tunnel Investigation of the Near-wake Flow Dynamics of a Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Hashemi-Tari, P.; Siddiqui, K.; Refan, M.; Hangan, H.

    2014-06-01

    Experiments conducted in a large wind tunnel set-up investigate the 3D flow dynamics within the near-wake region of a horizontal axis wind turbine. Particle Image Velocimetry (PIV) measurements quantify the mean and turbulent components of the flow field. Measurements are performed in multiple adjacent horizontal planes in order to cover the area behind the rotor in a large radial interval, at several locations downstream of the rotor. The measurements were phase-locked in order to facilitate the re-construction of the threedimensional flow field. The mean velocity and turbulence characteristics clearly correlate with the near-wake vortex dynamics and in particular with the helical structure of the flow, formed immediately behind the turbine rotor. Due to the tip and root vortices, the mean and turbulent characteristics of the flow are highly dependent on the azimuth angle in regions close to the rotor and close to the blade tip and root. Further from the rotor, the characteristics of the flow become phase independent. This can be attributed to the breakdown of the vortical structure of the flow, resulting from the turbulent diffusion. In general, the highest levels of turbulence are observed in shear layer around the tip of the blades, which decrease rapidly downstream. The shear zone grows in the radial direction as the wake moves axially, resulting in velocity recovery toward the centre of the rotor due to momentum transport.

  18. Salix response to different flow regimes in controlled experiments: first results

    NASA Astrophysics Data System (ADS)

    Gorla, Lorenzo; Signarbieux, Constant; Buttler, Alexandre; Perona, Paolo

    2013-04-01

    Dams and water management for hydropower production, agriculture and other human activities alter the natural flow regime of rivers. The new river hydrograph components depend on the type of impoundment and the policy of regulation but such a different flow regime will likely affect the riparian environment. The main challenge in order to define sustainable flow releases is to quantify hydrological effects in terms of geomorphology and ecosystem response. A considerable lack of knowledge still affects the link hydrology-ecology and inadequate flow rules (e.g., minimal or residual flows) are consequently still widespread: further research in this direction is urgently required. We present an experiment, which aims to investigate the effects of different water stage regimes on riparian vegetation (salix Viminalis cuttings) development in a temperate region (Switzerland). This work describes the installation setup, together with the first results concerning the first of the two scheduled seasons of campaign. Sixty Salix cuttings were planted in non-cohesive sandy-gravel sediment within 1 meter tall plastic pots installed outside in the EPFL campus. After grouping them in three batteries, the water level within them has been varying following three river regimes simulated by adjusting the water level within the pots by means of an automatic hydraulic system. The three water level regimes reproduce a natural flow regime, a minimum residual flow policy, which only conserves peaks during flooding conditions, and an artificial regime conserving only low frequencies (e.g., seasonality) of the natural dynamic. The natural flow regime of the first battery has been applied for two months to the entire system; the three regimes above said started in June 2012. This triggered a plant response transitory regime, which we monitored by measuring plant growth, soil and atmospheric variables. Particularly, measures concern with branches development leaves photosynthesis and

  19. Comparison of the transport of the aggregates of nanoscale zerovalent iron under vertical and horizontal flow.

    PubMed

    Li, Jing; Ghoshal, Subhasis

    2016-02-01

    Direct injection of nanoscale zerovalent iron (NZVI) particles is being considered for remediation of contaminated sites. However, the transport characteristics of NZVI under horizontal flow conditions are not fully understood. In this study, NZVI particles were stabilized with carboxymethyl cellulose (CMC) and injected in vertical and horizontal columns to compare the effects of the flow direction on the transport. Columns were packed with sand of mean grain diameters of 180, 340 or 1140 µm (referred to as fine, intermediate and coarse sand, respectively), and were injected with CMC-NZVI suspensions of 0.3, 1 or 3 g Fe L(-1). Experimental breakthrough curves showed that with the coarse and intermediate sands, the steady-state effluent concentration in the horizontal column were up to 84% lower than those in the vertical column regardless of the initial NZVI concentration. However, in the fine sand the differences were insignificant, except at the highest NZVI particle concentration. Additionally, in the horizontally-oriented columns containing the coarse or intermediated sand, NZVI aggregates particles were non-uniformly distributed in the cross-section of the columns and there higher deposition in the bottom-half of the cross-section due to gravity effects. These deposition patterns can be accounted for, in part, by the gravitational settling of the large aggregates of NZVI, especially at high NZVI concentrations. A particle trajectory analysis in three dimensions demonstrated that under horizontal flow, gravity forces resulted in lower deposition of NZVI on the bottom-half of a single collector, as particles approaching the bottom-half of the collector were deflected by gravity to collectors below. PMID:26498094

  20. Scaling laws and flow structures of double diffusive convection in the finger regime

    NASA Astrophysics Data System (ADS)

    Yang, Yantao; Verzicco, Roberto; Lohse, Detlef

    2016-09-01

    Direct numerical simulations are conducted for double diffusive convection (DDC) bounded by two parallel plates, with fluid properties similar to the values of seawater. The DDC flow is driven by an unstable salinity difference and stabilized at the same time by a temperature difference. For these conditions the flow can be in the finger regime. We develop scaling laws for three key response parameters of the system: The non-dimensional salinity flux $Nu_S$ mainly depends on the salinity Rayleigh number $Ra_S$, which measures the strength of the salinity difference, and exhibits a very weak dependence on the density ratio $\\Lambda$, which is the ratio of the buoyancy forces induced by two scalar differences. The non-dimensional flow velocity $Re$ and the non-dimensional heat flux $Nu_T$ are dependent on both $Ra_S$ and $\\Lambda$. However, the rescaled Reynolds number $Re\\Lambda^{\\alpha^{\\rm eff}_u}$ and the rescaled convective heat flux $(Nu_T-1)\\Lambda^{\\alpha^{\\rm eff}_T}$ depend only on $Ra_S$. The two exponents are dependent on the fluid properties and are determined from the numerical results. Moreover, the behaviors of $Nu_S$ and $Re\\Lambda^{\\alpha^{\\rm eff}_u}$ agree with the predictions of the Grossmann-Lohse theory which was originally developed for the Rayleigh-B\\'{e}nard flow. The non-dimensional salt-finger width and the thickness of the velocity boundary layers, after being rescaled by $\\Lambda^{\\alpha^{\\rm eff}_u/2}$, collapse and obey a similar power-law scaling relation with $Ra_S$. When $Ra_S$ is large enough, salt fingers do not extend from one plate to the other and horizontal zonal flows emerge in the bulk region. We then show that the current scaling strategy can be successfully applied to the experimental results of a heat-copper-ion system~(Hage and Tilgner, Phys. Fluids, 22, 076603, 2010).

  1. The impact of stormwater source-control strategies on the (low) flow regime of urban catchments.

    PubMed

    Hamel, Perrine; Fletcher, Tim D

    2014-01-01

    Stormwater management strategies increasingly recognise the need to emulate the pre-development flow regime, in addition to reducing pollutant concentrations and loads. However, it is unclear whether current design approaches for stormwater source-control techniques are effective in restoring the whole flow regime, and in particular low flows, towards their pre-development levels. We therefore modelled and compared a range of source-control stormwater management strategies, including some specifically tailored towards enhancing baseflow processes. The strategies were assessed based on the total streamflow volume and three low flow metrics. Strategies based on harvesting tanks showed much greater volume reduction than those based on raingardens. Strategies based on a low flow rate release, aimed at mimicking natural baseflow, failed to completely restore the baseflow regime. We also found that the sensitivity of the low flow metrics to the proportion of catchment treated varied amongst metrics, illustrating the importance of metrics selection in the assessment of stormwater strategies. In practice, our results suggest that realistic scenarios using low flow release from source-control techniques may not be able to fully restore the low flow regime, at least for perennial streams. However, a combination of feasibly-sized tanks and raingardens is likely to restore the baseflow regime to a great extent, while also benefitting water quality through the retention and filtration processes. PMID:24569271

  2. Intermittent Flow Regimes in a Transonic Fan Airfoil Cascade

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; McFarland, E. R.; Chima, R. V.; Capece, V. R.; Hayden, J.

    2002-01-01

    A study was conducted in the NASA Glenn Research Center linear cascade on the intermittent flow on the suction surface of an airfoil section from the tip region of a modern low aspect ratio fan blade. Experimental results revealed that, at a large incidence angle, a range of transonic inlet Mach numbers exist where the leading-edge shock-wave pattern was unstable. Flush mounted high frequency response pressure transducers indicated large local jumps in the pressure in the leading edge area, which generates large intermittent loading on the blade leading edge. These measurements suggest that for an inlet Mach number between 0.9 and 1.0 the flow is bi-stable, randomly switching between subsonic and supersonic flows. Hence, it appears that the change in overall flow conditions in the transonic region is based on the frequency of switching between two stable flow states rather than on the continuous increase of the flow velocity. To date, this flow behavior has only been observed in a linear transonic cascade. Further research is necessary to confirm this phenomenon occurs in actual transonic fans and is not the byproduct of an endwall restricted linear cascade.

  3. Structures in the Oscillatory regime of RLDCC flow

    NASA Astrophysics Data System (ADS)

    Panchapakesan, Nagangudy

    2015-11-01

    Rotating lid driven cubical cavity flow (RLDCC flow) is studied with a view to test structure eduction algorithms. OpenFoam software was used to simulate the RLDCC flow at Reynolds numbers higher than the critical Reynolds number for this geometry. Vortex bubble and other characteristic structures were observed in these simulations. The vector fields of the simulations were further analyzed with LCS and other methodologies to educe the structures. The structures were compared with level sets of different dynamical variables. The ability of these algorithms to present a coherent representation of the time evolution and unsteady dynamics of the bubble and other structures is evaluated. Funded by AR&DB India.

  4. Intermittent flow regimes near the convection threshold in ferromagnetic nanofluids

    NASA Astrophysics Data System (ADS)

    Krauzina, Marina T.; Bozhko, Alexandra A.; Putin, Gennady F.; Suslov, Sergey A.

    2015-01-01

    The onset and decay of convection in a spherical cavity filled with ferromagnetic nanofluid and heated from below are investigated experimentally. It is found that, unlike in a single-component Newtonian fluid where stationary convection sets in as a result of supercritical bifurcation and where convection intensity increases continuously with the degree of supercriticality, convection in a multicomponent ferromagnetic nanofluid starts abruptly and has an oscillatory nature. The hysteresis is observed in the transition between conduction and convection states. In moderately supercritical regimes, the arising fluid motion observed at a fixed temperature difference intermittently transitions from quasiharmonic to essentially irregular oscillations that are followed by periods of a quasistationary convection. The observed oscillations are shown to result from the precession of the axis of a convection vortex in the equatorial plane. When the vertical temperature difference exceeds the convection onset value by a factor of 2.5, the initially oscillatory convection settles to a steady-state regime with no intermittent behavior detected afterward. The performed wavelet and Fourier analyses of thermocouple readings indicate the presence of various oscillatory modes with characteristic periods ranging from one hour to several days.

  5. Intermittent flow regimes near the convection threshold in ferromagnetic nanofluids.

    PubMed

    Krauzina, Marina T; Bozhko, Alexandra A; Putin, Gennady F; Suslov, Sergey A

    2015-01-01

    The onset and decay of convection in a spherical cavity filled with ferromagnetic nanofluid and heated from below are investigated experimentally. It is found that, unlike in a single-component Newtonian fluid where stationary convection sets in as a result of supercritical bifurcation and where convection intensity increases continuously with the degree of supercriticality, convection in a multicomponent ferromagnetic nanofluid starts abruptly and has an oscillatory nature. The hysteresis is observed in the transition between conduction and convection states. In moderately supercritical regimes, the arising fluid motion observed at a fixed temperature difference intermittently transitions from quasiharmonic to essentially irregular oscillations that are followed by periods of a quasistationary convection. The observed oscillations are shown to result from the precession of the axis of a convection vortex in the equatorial plane. When the vertical temperature difference exceeds the convection onset value by a factor of 2.5, the initially oscillatory convection settles to a steady-state regime with no intermittent behavior detected afterward. The performed wavelet and Fourier analyses of thermocouple readings indicate the presence of various oscillatory modes with characteristic periods ranging from one hour to several days. PMID:25679711

  6. Rheology of simple shear flows of dense granular assemblies in different regimes

    NASA Astrophysics Data System (ADS)

    Chialvo, Sebastian; Sun, Jin; Sundaresan, Sankaran

    2010-11-01

    Using the discrete element method, simulations of simple shear flow of dense assemblies of frictional particles have been carried out over a range of shear rates and volume fractions in order to characterize the transition from quasistatic or inertial flow to intermediate flow. In agreement with previous results for frictionless spheres [1], the pressure and shear stress in the intermediate regime are found to approach asymptotic power law relations with shear rate; curiously, these asymptotes appear to be common to all intermediate flows regardless of the value of the particle friction coefficient. The scaling relations for stress for the inertial and quasistatic regimes are consistent with a recent extension of kinetic theory to dense inertial flows [2] and a simple model for quasistatic flows [3], respectively. For the case of steady, simple shear flow, the different regimes can be bridged readily: a harmonic weighting function blends the inertial regime to the intermediate asymptote, while a simple additive rule combines the quasistatic and intermediate regimes. [4pt] [1] T. Hatano, et al., J. Phys. Soc. Japan 76, 023001 (2007). [0pt] [2] J. Jenkins, and D. Berzi, Granular Matter 12, 151 (2010). [0pt] [3] J. Sun, and S. Sundaresan, J. Fluid Mech. (under review).

  7. Lava Fountaining Discharge Regime driven by Slug-to-Churn Flow Transition. (Invited)

    NASA Astrophysics Data System (ADS)

    Ripepe, M.; Pioli, L.; Marchetti, E.; Ulivieri, G.

    2013-12-01

    Lava fountaining episodes at Etna volcano appear characterized by the transition between Strombolian and Hawaiian end-member eruptive styles. There is no evidence for this transition in the seismic (i.e. seismic tremor) signal. However, infrasonic records provide unprecedented evidence on this flow transition. Each eruptive episode is characterized by distinctive common trend in the amplitude, waveform and frequency content of the infrasonic wavefield, which evidences the shift from discrete, and transient, strombolian to sustained, and oscillatory, lava fountain dynamics. Large scale experiments on the dynamics of two-phase flow of basaltic magmas show how the transition between different regimes mainly depends on gas volume flow, which in turn controls pressure distribution within the conduit and also magma vesicularity. In particular, while regular large bubble bursting is associated with slug flow regime, large amplitude and low frequency column oscillations are associated with churn flow. In large pipes, transition from slug to churn flow regime is independent on conduit diameter and it is reached at high superficial gas velocity. Lava fountaining episodes at Etna can be thus interpreted as induced by the transition from the slug (discrete strombolian) to churn flow (sustained lava fountain) regimes that is reflecting an increase in the gas discharge rate. Based on laboratory experiments, we calculate that transition between these two end-member explosive regimes at Etna occurs when gas superficial velocity is 76 m/s for near-the-vent stagnant magma conditions.

  8. Impurity flows and plateau-regime poloidal density variation in a tokamak pedestal

    SciTech Connect

    Landreman, M.; Fueloep, T.; Guszejnov, D.

    2011-09-15

    In the pedestal of a tokamak, the sharp radial gradients of density and temperature can give rise to poloidal variation in the density of impurities. At the same time, the flow of the impurity species is modified relative to the conventional neoclassical result. In this paper, these changes to the density and flow of a collisional impurity species are calculated for the case when the main ions are in the plateau regime. In this regime, it is found that the impurity density can be higher at either the inboard or outboard side. This finding differs from earlier results for banana- or Pfirsch-Schlueter-regime main ions, in which case the impurity density is always higher at the inboard side in the absence of rotation. Finally, the modifications to the impurity flow are also given for the other regimes of main-ion collisionality.

  9. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.

    PubMed

    Lashgari, Iman; Picano, Francesco; Breugem, Wim-Paul; Brandt, Luca

    2014-12-19

    The aim of this Letter is to characterize the flow regimes of suspensions of finite-size rigid particles in a viscous fluid at finite inertia. We explore the system behavior as a function of the particle volume fraction and the Reynolds number (the ratio of flow and particle inertia to viscous forces). Unlike single-phase flows, where a clear distinction exists between the laminar and the turbulent states, three different regimes can be identified in the presence of a particulate phase, with smooth transitions between them. At low volume fractions, the flow becomes turbulent when increasing the Reynolds number, transitioning from the laminar regime dominated by viscous forces to the turbulent regime characterized by enhanced momentum transport by turbulent eddies. At larger volume fractions, we identify a new regime characterized by an even larger increase of the wall friction. The wall friction increases with the Reynolds number (inertial effects) while the turbulent transport is weakly affected, as in a state of intense inertial shear thickening. This state may prevent the transition to a fully turbulent regime at arbitrary high speed of the flow. PMID:25554885

  10. Multiple Regimes of Flow, Stratification, and Turbulence in the Stable Boundary Layer

    NASA Astrophysics Data System (ADS)

    Monahan, A. H.; Rees, T.

    2014-12-01

    It is well established that the atmospheric Stable Boundary Layer (SBL) can display distinct regimes of flow. In the weakly stable boundary layer, turbulence is weak but continuous and the surface flow is coupled to that aloft. In the very stable boundary layer, turbulence collapses and the surface flow becomes decoupled from the flow above.This study demonstrates the clear presence of two distinct SBL regimes in a long record of observations from the 213m tower in Cabauw, Netherlands. These regimes are found in the joint distribution of near-surface stratification, shear, and vertically-averaged wind speed. Hidden Markov model (HMM) analysis is used to distinguish these regimes and objectively classify states as being in one regime or the other. This classification allows for a detailed diagnosis of the flow, stratification, and turbulence structures within each of the two regimes, as well as their relation to large-scale forcing through the geostrophic wind and cloud cover. Observational evidence is presented that the very stable boundary layer is produced by a previously-discussed positive feedback associated with a maximum sustainable turbulent heat flux.

  11. Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1977-01-01

    Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.

  12. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    NASA Astrophysics Data System (ADS)

    Jakubaszek, Anita; Wojciech, Magdalena

    2014-06-01

    The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow) construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  13. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    SciTech Connect

    Lorencez, C.; Kawaji, M.; Murao, Y.

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  14. Using regional flow classes as references to analyse flow regime anomalies across a set of regulated Canadian rivers

    NASA Astrophysics Data System (ADS)

    McLaughlin, Fraser; Lapointe, Michel; Bourque, Guillaume; Boisclair, Daniel

    2014-11-01

    It is well established that a river's natural flow regime is a key determinant of ecological integrity and that dam regulated-flow releases can be detrimental to biotic communities and even affect river ecosystem structure (e.g. Poff and Zimmerman, 2010). Regional flow classes, groups of rivers that share similar natural flow regimes (called ‘river types' by Poff and Zimmerman (2010)) and to which regional fish communities are ‘adapted', have been proposed as units of analysis to identify significant damming related flow alteration (e.g. Poff, 1996; Poff and Zimmerman, 2010; McManamay et al., 2012a). Specifically, the natural range of flow behaviour within regional classes can be used to identify clearly anomalous flow features in rivers regulated by dams. Through ordination analysis on 70 ecologically important flow indices, we isolated five distinctive regional groupings of natural flow regimes among the 96 unregulated rivers located in study regions of South Eastern and South Western Canada, selected based on watershed characteristics as possible references for the 13 hydro-regulated, NSERC-HydroNet study rivers in British Columbia, Alberta, Ontario, Quebec and New Brunswick. The distinguishing characteristics of natural flow regimes within each flow class are explored through visualization in principal component space. The 16 regulated HydroNet sites were assigned to appropriate regional flow classes through discriminant function analysis based on shared geographic location and watershed characteristics. Anomalous flow features in the regulated rivers are then characterized by type and strength, based on identification of flow indices that are significantly different from observed natural variability in the relevant regional class. The magnitude distributions and the main axes of variability in index anomalies are analysed, across regions and regulation types (storage, peaking and run-of-the-river (RoR)). We also discuss the potential biological

  15. Numerical Analysis of Cavitating Flow of Liquid Helium inHorizontal Converging-Diverging Channel

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Kamijo, Kenjiro

    The basic characteristics of the two-dimensional cavitating flow of liquid helium through a horizontal converging-diverging channel near the lambda point are numerically investigated to realize the further development and high performance of new multiphase superfluid cooling systems. First, the governing equations of the cavitating flow of liquid helium based on the unsteady thermal nonequilibrium multifluid model with generalized curvilinear coordinates system are presented, and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the cavitating flow of liquid helium though horizontal converging-diverging channel is shown in detail, and it is also found that the generation of superfluid counterflow against normal fluid flow based on the thermo mechanical effect is conspicuous in the large gas phase volume fraction region where the liquid- to gas-phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase.

  16. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface

    NASA Astrophysics Data System (ADS)

    Zhou, Qi; Diamessis, Peter J.

    2015-12-01

    In this paper sequel to Zhou and Diamessis ["Reflection of an internal gravity wave beam off a horizontal free-slip surface," Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes drift cancels each other out completely at the second order in wave steepness A, i.e., O(A2), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A2) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A2) and thus particle dispersion on O(A4). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.

  17. A new Spool Piece for horizontal two-phase flow measurement

    NASA Astrophysics Data System (ADS)

    Monni, G.; De Salve, M.; Panella, B.

    2014-04-01

    This works presents the characterization of a Spool Piece (SP), made up of a Classical Venturi and a Wire Mesh Sensor (WMS), that are installed in a horizontal test section, in which an air-water mixture flows. The test section consists of a horizontal Plexiglas pipe of internal diameter 19.5 mm and total length of about 7 m. The flow quality ranges from 0 to 0.73 and the superficial velocity ranges from 0.14 to 32 m/s for air and from 0.019 to 2.62 m/s for water; the pressure ranges from atmospheric pressure to 4 bar depending on the experimental conditions. The observed flow patterns are stratified-bubbly-slug/plug-annular. The instruments response is analyzed and discussed. From the signal analysis the mass flow rate of each phase is obtained. The developed model allows the evaluation of the mass flow rate with an accuracy higher than 20% in the 84% of the cases and with an accuracy higher than 10% in the 73.3% of the cases. Finally the introduction of the estimated parameters in the SP model is considered and discussed.

  18. Multi-metric calibration of hydrological model to capture overall flow regimes

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Shao, Quanxi; Zhang, Shifeng; Zhai, Xiaoyan; She, Dunxian

    2016-08-01

    Flow regimes (e.g., magnitude, frequency, variation, duration, timing and rating of change) play a critical role in water supply and flood control, environmental processes, as well as biodiversity and life history patterns in the aquatic ecosystem. The traditional flow magnitude-oriented calibration of hydrological model was usually inadequate to well capture all the characteristics of observed flow regimes. In this study, we simulated multiple flow regime metrics simultaneously by coupling a distributed hydrological model with an equally weighted multi-objective optimization algorithm. Two headwater watersheds in the arid Hexi Corridor were selected for the case study. Sixteen metrics were selected as optimization objectives, which could represent the major characteristics of flow regimes. Model performance was compared with that of the single objective calibration. Results showed that most metrics were better simulated by the multi-objective approach than those of the single objective calibration, especially the low and high flow magnitudes, frequency and variation, duration, maximum flow timing and rating. However, the model performance of middle flow magnitude was not significantly improved because this metric was usually well captured by single objective calibration. The timing of minimum flow was poorly predicted by both the multi-metric and single calibrations due to the uncertainties in model structure and input data. The sensitive parameter values of the hydrological model changed remarkably and the simulated hydrological processes by the multi-metric calibration became more reliable, because more flow characteristics were considered. The study is expected to provide more detailed flow information by hydrological simulation for the integrated water resources management, and to improve the simulation performances of overall flow regimes.

  19. Assessment of flow regime alterations over a spectrum of temporal scales using wavelet-based approaches

    NASA Astrophysics Data System (ADS)

    Wu, Fu-Chun; Chang, Ching-Fu; Shiau, Jenq-Tzong

    2015-05-01

    The full range of natural flow regime is essential for sustaining the riverine ecosystems and biodiversity, yet there are still limited tools available for assessment of flow regime alterations over a spectrum of temporal scales. Wavelet analysis has proven useful for detecting hydrologic alterations at multiple scales via the wavelet power spectrum (WPS) series. The existing approach based on the global WPS (GWPS) ratio tends to be dominated by the rare high-power flows so that alterations of the more frequent low-power flows are often underrepresented. We devise a new approach based on individual deviations between WPS (DWPS) that are root-mean-squared to yield the global DWPS (GDWPS). We test these two approaches on the three reaches of the Feitsui Reservoir system (Taiwan) that are subjected to different classes of anthropogenic interventions. The GDWPS reveal unique features that are not detected with the GWPS ratios. We also segregate the effects of individual subflow components on the overall flow regime alterations using the subflow GDWPS. The results show that the daily hydropeaking waves below the reservoir not only intensified the flow oscillations at daily scale but most significantly eliminated subweekly flow variability. Alterations of flow regime were most severe below the diversion weir, where the residual hydropeaking resulted in a maximum impact at daily scale while the postdiversion null flows led to large hydrologic alterations over submonthly scales. The smallest impacts below the confluence reveal that the hydrologic alterations at scales longer than 2 days were substantially mitigated with the joining of the unregulated tributary flows, whereas the daily-scale hydrologic alteration was retained because of the hydropeaking inherited from the reservoir releases. The proposed DWPS approach unravels for the first time the details of flow regime alterations at these intermediate scales that are overridden by the low-frequency high-power flows when

  20. The effect of evaporator operating parameters on the flow patterns inside horizontal pipes

    NASA Astrophysics Data System (ADS)

    Tong, Lige; Li, Haiyan; Wang, Li; Sun, Xinxing; Xie, Yunfei

    2011-08-01

    A general and simple model for simulating the steady state behaviors of air-to-refrigerant fin-and-tube evaporator is introduced with the focus on the detailed flow patterns inside the tubes. In order to simulate the heat transfer between air and the working fluid, the evaporator is divided into a number of control volumes. Empirical correlations from literature were also adopted to estimate the void fraction, the internal and external heat transfer coefficients, and the pressure drops. Simulations were performed to study the effects of varying inlet air temperature, refrigerant mass flow rate and evaporation pressure on the flow patterns inside the horizontal pipe of the evaporator. The simulation results indicate that the proposed model can be used to predict flow patterns well. The predicted results of the model agree well with experimental results, the difference is within ±3% for the cooling capacity, and is within ±0.2% for refrigerant evaporation temperature.

  1. Effects of inclination and vorticity on interfacial flow dynamics in horizontal and inclined pipes

    NASA Astrophysics Data System (ADS)

    Kiara, Areti; Hendrickson, Kelli; Liu, Yuming

    2015-11-01

    The transport of oil and gas in long horizontal pipelines can be significantly affected by the development of violent roll waves and slugs, but the mechanics causing such transitions have not been well understood. To enable the improvement of the prediction of flow transition criteria in long pipelines we perform theoretical analysis and direct numerical simulations of multiphase pipe flows to quantify the roles of inclination and vorticity in the flow dynamics. We find that backflow or flooding may occur even in the absence of disturbances due to inclination effects and obtain criteria on the maximum pipe length for steady flows. We identify and compare the effects of inclination and vorticity on the stability of interfacial wave disturbances. We discuss the mechanisms of non-linear energy transfer between stable and unstable wave disturbances and present results from direct numerical simulations for the predictions of spectrum evolutions for broad-banded interfacial disturbances in inclined pipes.

  2. Ontogenetic propulsive transitions from viscous to inertial flow regimes in the medusae Sarsia tubulosa

    NASA Astrophysics Data System (ADS)

    Katija, Kakani; Jiang, Houshuo; Colin, Sean; Costello, John

    2012-11-01

    Among marine organisms, the influences of flow regimes on swimming strategies are largely unknown. As an approach to examine this issue, we quantified how transitions from viscous to inertially dominated flow regimes, which commonly occur during the development of marine animals, relate to changes in swimming strategies. We used the hydromedusae Sarsia tubulosa as a model organism for this investigation because its morphology and propulsive actuation mechanism are radially symmetric. This feature allows for determination of three-dimensional fluid quantities from two-dimensional flow measurement techniques. Digital particle image velocimetry was used to quantify the flow fields created by free-swimming hydromedusae and calculate the impulse generated by their swimming pulses at different life stages. Swimming strategies were evaluated by quantifying the relationship between impulse production and hydrodynamic swimming efficiency. Utilizing these metrics enable us to generalize our findings to the swimming strategies of other aquatic animals that swim in similar fluid regimes.

  3. Infrared imaging and tufts studies of boundary layer flow regimes on a NACA 0012 airfoil

    NASA Technical Reports Server (NTRS)

    Gartenberg, Ehud; Roberts, A. Sidney, Jr.; Mcree, Griffith J.

    1989-01-01

    A study of boundary-layer flow regimes on a NACA 0012 airfoil from zero angle of attack up to separation is presented. The boundary-layer transition from the laminar to the turbulent regime and the onset of the separation were detected by surface thermography of the airfoil performed with an infrared imaging system. The findings were compared with observations of aluminum-foil tufts visible with the infrared imaging system. This arrangement allows the infrared imaging system to assume the dual role of flow regime detection through surface thermography and flow visualization through the observation of the aluminum-foil tufts. Ultimately the temperature history on an uncontaminated surface could provide an interpretation of the state of boundary-layer flow. Separation studies performed on the NACA 0012 airfoil showed that aluminum foil tufts can be observed with infrared imaging systems.

  4. Reconstruction of a constructed wetland with horizontal subsurface flow after 18 years of operation.

    PubMed

    Hudcová, Tereza; Vymazal, Jan; Dunajský, Michal Kriška

    2013-01-01

    The constructed wetland (CW) for 326 PE with horizontal subsurface flow at Kotenčice, Central Bohemia, Czech Republic, was built in 1994. Despite the relatively high efficiency of the CW, the filtration beds suffered from clogging, and therefore it was decided in 2011 to rebuild the whole system. The new treatment system was built as an experimental system consisting of four different combinations of horizontal and vertical beds. The major aim of the design was to determine the best hybrid combination which then could be used in the future for refurbishment of older horizontal flow CWs or for the new systems. The mechanical pretreatment consists of mechanical bar screens, a new Imhoff tank, and the original settling tank which has been converted into the accumulation tank from where the wastewater is pumped into the wetlands. The filters are planted with Phragmites australis, Phalaris arundinacea, Iris pseudacorus, Iris sibirica, Glyceria maxima and Lythrum salicaria in order to evaluate and compare various plant species' effect on the treatment process. The new technology includes a tertiary treatment which consists of a greenhouse with a photo-reactor for the cultivation of algae and hydroponic systems (residual nutrients removal), sludge reed-beds and a composting field. PMID:24037174

  5. DETECTION OF THE HORIZONTAL DIVERGENT FLOW PRIOR TO THE SOLAR FLUX EMERGENCE

    SciTech Connect

    Toriumi, S.; Yokoyama, T.; Hayashi, K.

    2012-06-01

    It is widely accepted that solar active regions including sunspots are formed by the emerging magnetic flux from the deep convection zone. In previous numerical simulations, we found that the horizontal divergent flow (HDF) occurs before the flux emergence at the photospheric height. This paper reports the HDF detection prior to the flux emergence of NOAA AR 11081, which is located away from the disk center. We use SDO/HMI data to study the temporal changes of the Doppler and magnetic patterns from those of the reference quiet Sun. As a result, the HDF appearance is found to come before the flux emergence by about 100 minutes. Also, the horizontal speed of the HDF during this time gap is estimated to be 0.6-1.5 km s{sup -1}, up to 2.3 km s{sup -1}. The HDF is caused by the plasma escaping horizontally from the rising magnetic flux. And the interval between the HDF and the flux emergence may reflect the latency during which the magnetic flux beneath the solar surface is waiting for the instability onset to the further emergence. Moreover, SMART H{alpha} images show that the chromospheric plages appear about 14 minutes later, located cospatial with the photospheric pores. This indicates that the plages are caused by plasma flowing down along the magnetic fields that connect the pores at their footpoints. One important result of observing the HDF may be the possibility of predicting the sunspot appearances that occur in several hours.

  6. Determination of flow-regime boundaries for cohesive particles

    NASA Astrophysics Data System (ADS)

    Knowlton, T. M.; Findlay, J. G.; Arastoopour, H.; Gidaspow, D.

    1992-10-01

    Cohesive particles (Geldart Group C powders) are fine particles generally less than 30 microns in size. Interparticle forces are large relative to inertial forces in these particles, and cause clumping, sticking, and channeling when attempts are made to fluidize them. These solids do not flow easily through pipes, and bridge extremely easily. The objectives of the work in this program were (1) to develop a hydrodynamic model which can be applied to cohesive solids, and (2) to obtain data in a large-scale (30-cm-diameter) riser to test the model. The work was divided into six tasks: Task 1. Preparation of a Project Work Plan; Task 2. Hydrodynamic Model Development; Task 3. Determination of Rheological Properties for Incorporation into the Model; Task 4. Small-Scale Flow Tests; Task 5. Large-Scale Flow Tests; and Task 6. Comparison of Model With Data. The work was conducted by the Institute of Gas Technology (IGT) in collaboration with the Illinois Institute of Technology (IIT). This work combined the expertise of IIT in model development, with the large-scale experimental capabilities of IGT. IIT researchers developed the hydrodynamic model in the program, while the large-scale data were generated by IGT. Following the preparation of the Project Work Plan in Task 1, work was started on the development of a two-dimensional hydrodynamic model to enable the behavior of cohesive solids in a dilute-phase riser to be simulated. In Task 2, two hydrodynamic models were developed based on the kinetic theory model of granular flow. The models were used to predict data presented in the literature, as well as data generated in Task 5 of this study. In Task 3, rheological data on cohesive oil shale with an average particle size of approximately 12 microns was obtained using a unique device called a cohetester.

  7. Effect of Drag Reducing Polymers on Stratified and Stratified/Annular Flow in a Horizontal Duct

    NASA Astrophysics Data System (ADS)

    Pernica, Patricia; Fleck, Brian; Heidrick, Ted

    2006-11-01

    An investigation was carried out to determine the effects of a drag reducing additive (DRA) on two phase flow in horizontal stratified and stratified/annular flow patterns. Experiments were conducted in an air-water flow in a transparent rectangular channel of cross-section 25.4 mm x 50.8 mm and 2.5 m in length. Pressure drop measurements, wave characteristics and observations of entrainment with and without DRA are presented. A non-contact measurement technique using laser induced fluorescence and high speed videography was used to measure span-wise liquid wave heights and to characterize the air-water interface. Pressure drop was measured at the centerline of the duct over a one meter distance. The onset of entrainment was observed visually. Effects of DRA were observed even at a low concentration of 5ppm. This concentration yielded pressure drop reductions of 10-15% which correlate with previous experiments done in horizontal pipelines. Observations also show dampening of roll waves and the suppression of atomization. Al-Sarkhi, A., Hanratty, T.J., Int J. Multiphase Flow, 27, 1151 (2001)

  8. Modelling the effects of horizontal and vertical shear in stratified turbulent flows

    NASA Astrophysics Data System (ADS)

    Umlauf, Lars

    2005-05-01

    Direct numerical simulations (DNS) and model results from a number of one-point turbulence models are compared for homogeneous, stably stratified flows. Because of their wide spread use in numerical ocean modelling, only explicit algebraic second-moment models are investigated. Considered are two types of shear flows with either purely vertical or purely horizontal shear. The dissipation rate is evaluated from the observation that the shear-number becomes independent of stratification for low to moderate Richardson numbers as soon as the flow approaches self-similarity. For the cases with vertical shear, it is found that all statistical models essentially reproduced the DNS results, though with different accuracy. In contrast, only the most recent model was able to predict the salient features of horizontally sheared flows, i.e. a steady-state Richardson number that is about an order of magnitude larger and a vertical mixing efficiency that is about twice as large compared to the case with vertical shear. This model also reproduced other key parameters like the turbulent Froude number and the turbulent Prandtl number with good accuracy, but it failed to predict quantitatively the reduction of the shear anisotropy with increasing stratification. For strong stratification, none of the models was able to describe the rapid decrease of the mixing efficiency associated with the collapse and fossilisation of turbulence.

  9. Characterization of horizontal flows around solar pores from high-resolution time series of images

    NASA Astrophysics Data System (ADS)

    Vargas Domínguez, S.; de Vicente, A.; Bonet, J. A.; Martínez Pillet, V.

    2010-06-01

    Context. Though there is increasing evidence linking the moat flow and the Evershed flow along the penumbral filaments, there is not a clear consensus regarding the existence of a moat flow around umbral cores and pores, and the debate is still open. Solar pores appear to be a suitable scenario to test the moat-penumbra relation as they correspond to a direct interaction between the umbra and the convective plasma in the surrounding photosphere without any intermediate structure in between. Aims: We study solar pores based on high-resolution ground-based and satellite observations. Methods: Local correlation tracking techniques were applied to different-duration time series to analyze the horizontal flows around several solar pores. Results: Our results establish that the flows calculated from different solar pore observations are coherent among each other and show the determining and overall influence of exploding events in the granulation around the pores. We do not find any sign of moat-like flows surrounding solar pores, but a clearly defined region of inflows surrounding them. Conclusions: The connection between moat flows and flows associated to penumbral filaments is hereby reinforced.

  10. Characterization of Horizontal Gas-Liquid Two-Phase Flow Using Markov Model-Based Complex Network

    NASA Astrophysics Data System (ADS)

    Hu, Li-Dan; Jin, Ning-De; Gao, Zhong-Ke

    2013-05-01

    Horizontal gas-liquid two-phase flow widely exists in many physical systems and chemical engineering processes. Compared with vertical upward gas-liquid two-phase flow, investigations on dynamic behavior underlying horizontal gas-liquid flows are quite limited. Complex network provides a powerful framework for time series analysis of complex dynamical systems. We use a network generation method based on Markov transition probability to infer directed weighted complex networks from signals measured from horizontal gas-liquid two-phase flow experiment and find that the networks corresponding to different flow patterns exhibit different network structure. To investigate the dynamic characteristics of horizontal gas-liquid flows, we construct a number of complex networks under different flow conditions, and explore the network indices for each constructed network. In addition, we investigate the sample entropy of different flow patterns. Our results suggest that the network statistic can well represent the complexity in the transition among different flow patterns and further allows characterizing the interface fluctuation behavior in horizontal gas-liquid two-phase flow.

  11. Flow regimes of adiabatic gas-liquid two-phase under rolling conditions

    NASA Astrophysics Data System (ADS)

    Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui

    2013-07-01

    Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.

  12. Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant

    SciTech Connect

    Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.

    2008-01-15

    Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, the bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)

  13. Hydrodynamic flow regimes, gas holdup, and liquid circulation in airlift reactors

    SciTech Connect

    Abashar, M.E.; Narsingh, U.; Rouillard, A.E.; Judd, R.

    1998-04-01

    This study reports an experimental investigation into the hydrodynamic behavior of an external-loop airlift reactor (ALR) for the air-water system. Three distinct flow regimes are identified--namely homogeneous, transition, and heterogeneous regimes. The transition between homogeneous and heterogeneous flow is observed to occur over a wide range rather than being merely a single point as has been previously reported in the literature. A gas holdup correlation is developed for each flow regime. The correlations fit the experimental gas holdup data with very good accuracy (within {+-}5%). It would appear, therefore, that a deterministic equation to describe each flow regime is likely to exist in ALRs. This equation is a function of the reactor geometry and the system`s physical properties. New data concerning the axial variation of gas holdup is reported in which a minimum value is observed. This phenomenon is discussed and an explanation offered. Discrimination between two sound theoretical models--namely model 1 (Chisti et al., 1988) and model 2 (Garcia Calvo, 1989)--shows that model 1 predicts satisfactorily the liquid circulation velocity with an error of less than {+-} 10%. The good predictive features of model 1 may be due to the fact that it allows for a significant energy dissipation by wakes behind bubbles. Model 1 is now further improved by the new gas holdup correlations which are derived for the three different flow regimes.

  14. Laboratory Validation of Passive Flow Focusing of Horizontal Wells for in Situ Groundwater Remediation

    NASA Astrophysics Data System (ADS)

    DiMarco, A.; Crimi, M.; Holsen, T.; Bellona, C.; Kumarage, P.; Divine, C.; O'Fallon, T.

    2014-12-01

    A new concept for in situgroundwater remediation was recently developed where drilled horizontal wells filled with granular treatment media are installed in the direction of groundwater flow. Due to the differences in hydraulic conductivity (K) of the media in the well and the surrounding aquifer, groundwater is "focused" into the well and treated (Figure 1). Initial computer simulations demonstrate that the horizontal well will have a substantial capture zone making this a viable and appealing remediation strategy. In this work, a laboratory scale model was constructed to validate the computer simulations and determine the expected capture zone of a horizontal well under a range of hydraulic conductivity differentials. We have built a physical model to replicate a horizontal well in a confined aquifer. The model is constructed inside a 55-gallon drum packed with sand and water is pumped into the bottom of the drum and flows upward through the system. Within the aquifer, we installed a 1" screened well packed with lime-soda beads. To define the capture zone, we placed manometers in the aquifer. Finally, a constant head is applied to the system (Figure 2 and 3). Initial tests have shown that the 1" well with a hydraulic conductivity 65 times greater than the surrounding aquifer (kwell= 1.3 cm/sec vs. kaquifer= 0.02cm/sec) will capture a significant percentage (over 80% in some configurations) of the water applied to the system. A tracer test has shown that the water velocity in the well is substantially higher than the aquifer. Manometer readings confirm the flowfield effects of the well and these data are being used to calibrate numerical models. The presentation will focus on the observed behavior of the physical model under varying applied head and hydraulic conductivities and discuss the potential design implications for full-scale application.

  15. Economic interpretation of environmental flow regime downstream diverted river reaches.

    NASA Astrophysics Data System (ADS)

    Gorla, Lorenzo; Perona, Paolo

    2013-04-01

    Water demand for hydropower production is increasing together with the consciousness of the importance of riparian ecosystems and biodiversity. Some Cantons in Switzerland and other alpine regions in Austria and in Sud Tirol (Italy) started replacing the inadequate concept of Minimum Flow Requirement (MFR) with a dynamic one, by releasing a fix percentage of the total inflow (e.g. 25 %) to the environment. In the same direction Perona et al. (in revision) mathematically formulated a method particularly suitable for small hydropower plants, handling the environment as a non-traditional water use, which competes with exploitators. This model uses the Principle of Equal Marginal Utility (PEMU) as optimal water allocation rule for generating like-natural flow releases while maximizing the aggregate economic benefit of all uses (Gorla and Perona, in revision). In this paper we show how redistribution policies can be interpreted in terms of PEMU, particularly we focus at traditional water repartition rules, such as the MFR, but also to dynamic ones like proportional redistribution. For the first case we show both ecological and economical arguments suggesting its inappropriateness; in the second case we highlight explicit points of strength and weakness, and suggest ways of improvement. For example the flow release allocation rule can be changed from inflow-independent ones (e.g., proportional redistribution), to inflow-dependent ones (e.g., non-proportional). The latters, having fewer constraints, can generally lead to better both ecological and economical performances. A class of simple functions, based on the PEMU, is then proposed as a suitable solution in run-of-river or small hydropower plants. Each water repartition policy underlies an ecosystem monetization. We explicit the value of the ecosystem health underlying each policy by means of the PEMU under a few assumptions, and discuss how the theoretic efficient redistribution law obtained by our approach is

  16. Assessment of land use and water management induced changes in flow regime of the Upper Narew

    NASA Astrophysics Data System (ADS)

    Romanowicz, Renata J.; Osuch, Marzena

    Previous studies have shown that it is very difficult to distinguish human-induced changes from those caused by natural forcing. In this paper we try to quantify the influence of land use and water management on flows of the Upper Narew River in north-east Poland. Apart from climatic and land use changes, the Upper Narew catchment was changed by the construction of a storage reservoir at Siemianówka, near Bondary, on the upstream reach of the river. We apply four different approaches to analysing the changes in flow regime and catchment response for the periods before and after reservoir construction. First we estimate the cumulative distribution functions for low and high flow events. The second approach is a time series analysis of flow variation over the whole length of available data and the derivation of cumulative distribution functions for the flows and 0.25-0.75 quantiles followed by a statistical analysis of the number of events below and above the thresholds and their duration. The third approach consists of the application of the Wittenberg baseflow separation method and tests for changes in baseflow indices. In the fourth approach an analysis of changes in flow regime is performed by studying the changes in transfer function-based flow model parameters. Long-term changes in land use are assessed using previous studies of the catchment and the analysis of Corine land cover data and government yearbooks. The results show that different methods explain different aspects of changes in the catchment and flow regime due to climatic changes and changes in land use and water management practices. The analysis of cumulative distribution functions gave evidence of the influence of Siemianówka reservoir on low flows which was also confirmed by the low flow analysis using the Wittenberg approach. The STF analysis of flows indicates the existence of changes in flow regime that can be attributed to the roughness changes in the channel.

  17. Flow regimes for fluid injection into a confined porous medium

    SciTech Connect

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.

  18. Flow regimes for fluid injection into a confined porous medium

    DOE PAGESBeta

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  19. Obseration of flow regime transition in CFB riser using an LDV

    SciTech Connect

    Yue, Paul C.; Mei, Joseph S.; Shadle, Lawrence J.

    2011-01-01

    The solids flow in a circulating fluidized bed (CFB) riser is often described to have a core-annular structure. For a given superficial gas velocity, at the initial introduction of solids into a riser a flow structure of dilute upflow regime exists. Continuing to increase the solids flow in the riser transitions the flow structure to the core-annular flow regime. However, with further increase of solids flow a condition is reached, depending on the superficial gas velocity, where all the solids across the riser cross section flow upwards, even those at the wall. When the solids flux, solids fraction and gas velocity are relatively high, such a condition is described as the dense phase suspense upflow (DSU) regime. In this paper we report our observations of these flow regime transitions by using a laser Doppler velocimeter (LDV) to monitor the upward and downward particle flow velocities at and near the riser wall of the National Energy Technology Laboratory’s 30.4 centimeters diameter CFB cold flow model. The particles were high density polyethylene (PPE) spheres with a Sauter mean diameter of 861 micron and a density of 800 kg/m3. Three superficial gas velocities of 6.55 m/s, 10.67 m/s and 13.72 m/s were used in this study. For the case of superficial gas velocity 6.55 m/s, the experimental data show that the transition from dilute upflow to core-annular flow occurred when the solids flux was about 7 kg/m{sup 2}-s and the transition from core-annular flow to dense suspension upflow was about 147 kg/m{sup 2}-s. As the superficial gas velocity was increased to 10.67 m/s the corresponding flow regime transitions were at 34 kg/m{sup 2}-s and 205 kg/m{sup 2}-s, respectively. For the case of superficial gas velocity of 13.72 m/s the data showed no distinct transition of flow regimes. The particles were all upflow for the range of solids fluxes from 10 kg/m{sup 2}-s to 286 kg/m{sup 2}-s.

  20. Simulation of Flow Regimes to Reduce Habitat for T. tubifex

    USGS Publications Warehouse

    Milhous, Robert T.

    2008-01-01

    Whirling disease has had a significant impact on trout fisheries of the American west by reducing the numbers and quality of rainbow trout in infected streams. A critical factor in the life cycle of the whirling disease parasite is the fine sediment that provides the optimum habitat for Tubifex tubifex, an oligochaete worm that acts as an intermediate host for the disease. This report presents a model for the simulation of flushing flows required to remove undesirable fines and sand from a pool. Undesirable fines may also need to be flushed from runs, the surface layer, and backwater areas. Well-defined links of specific particle sizes to oligochaete worm abundance is needed to justify the use of flushing flows to move sediment. An analytical method for estimating the streamflows needed to remove the fine sediment is demonstrated herein. The overall steps to follow in removing fines from a stream are: Step 1. Determine size of the sediment that is the habitat for oligochaete worms. Step 2. Determine location of the sediment that is the habitat for oligochaete worms. Step 3. Determine streamflows needed to flush (remove) the sediment that is the habitat for oligochaete worms. The case study approach is used to present the method and to demonstrate its application. The case is derived from the sediment and oligochaete worm habitat of Willow Creek, a tributary of the Upper Colorado River located in Grand County, Colo. Willow Creek Reservoir (an element of the Colorado-Big Thompson Project) controls the streamflows of the creek and is just above the study site.

  1. A nonlinear flow-transition criterion for the onset of slugging in horizontal channels and pipes

    NASA Astrophysics Data System (ADS)

    Campbell, Bryce K.; Liu, Yuming

    2016-08-01

    In this work, the interfacial instability and transition of a two-fluid flow from a stratified state to large amplitude waves or slugs is considered. By combining an asymptotic approximation of the linear Orr-Sommerfeld analysis with nonlinear resonant wave interaction theory, a novel nonlinear slug-transition criterion is derived. This criterion corresponds to a bounding condition on the upper fluid's velocity in order to limit the amount of energy (provided by the linear instability) which is transferred to long waves through resonant wave interactions. It is proposed that such a condition can predict the formation of large-amplitude long waves and/or slugs. Quantitative comparisons of the onset of slugging are made between the prediction by the nonlinear transition criterion and the experimental measurements carried out in a horizontal square channel. Good agreement is observed. An additional heuristic model is developed which generalizes the transition criterion to flow through horizontal pipes. Comparisons are made for flows through different pipe diameters and over a wide range of fluid properties. Good agreement between the present theoretical predictions and the experimental measurements is also observed.

  2. Flow Regimes of Air-Water Counterflow Through Cross Corrugated Parallel Plates

    SciTech Connect

    de Almeida, V.F.

    2000-06-07

    Heretofore unknown flow regimes of air-water counterflow through a pair of transparent vertical parallel cross corrugated plates were observed via high-speed video. Air flows upward driven by pressure gradient and water, downward driven by gravity. The crimp geometry of the corrugations was drawn from typical corrugated sheets used as filling material in modern structured packed towers. Four regimes were featured, namely, rivulet, bicontinuous, flooding fronts, and flooding waves. It is conceivable that the regimes observed might constitute the basis for understanding how gas and liquid phases contend for available space in the interstices of structured packings in packed towers. Flow regime transitions were expressed in terms of liquid load (liquid superficial velocity) and gas flow factor parameters commonly used in pressure drop and capacity curves. We have carefully examined the range of parameters equivalent to the ill-understood high-liquid-flow operation in packed towers. More importantly, our findings should prove valuable in validating improved first-principles modeling of gas-liquid flows in these industrially important devices.

  3. Flow regime patterns and their controlling factors in the Ebro basin (Spain)

    NASA Astrophysics Data System (ADS)

    Bejarano, M. Dolores; Marchamalo, Miguel; García de Jalón, Diego; González del Tánago, Marta

    2010-05-01

    SummaryNatural intra-annual flow fluctuations vary between rivers, being a determining factor for aquatic insects, fish and riparian communities which are adapted to the habitat conditions and different flows throughout the seasons. Moreover, restoration of seasonal flow patterns plays an important role in achieving good ecological status of rivers, through the preservation and/or recovery of components and processes of natural river ecosystems. In this work we: (a) classify fluvial segments in the Ebro basin (North-Eastern Spain) according to the intra-annual variability of flows under natural conditions using statistical cluster analysis of monthly mean flow data; (b) characterise the resulting flow typologies according to several ecologically important hydrological variables; (c) analyse the relationships between flow regimes of fluvial segments and physical variables from their catchments; and finally (d) predict the most probable natural flow regime using logistic models based on the most determinant physical characteristics. Fifteen natural flow typologies were described in the Ebro basin, which were characterised in terms of flow fluctuation through the year as well as timing, flow ratio and duration of the maximum and minimum flows. Precipitation, biogeography and geology of catchments showed the highest correlations with flow regimes. Basin size, mean elevation and slope were also correlated. The logistic model we developed had a prediction success of 72% in the Ebro basin. The definition of the natural hydrological conditions (to which the biological communities are tailored), even when flow data are not available, is an important support in the management of river ecosystems. It is especially suitable for setting goals in aquatic ecosystem conservation or restoration projects.

  4. Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.

    2015-12-01

    Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ << 1, M <1; (2) Γ << 1, M =1; (3) Γ << 1, M >1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low

  5. Flow of a binary mixture of linearly incompressible viscous fluids between two horizontal parallel plates

    SciTech Connect

    Massoudi, M.

    2008-01-01

    In this paper, we use the classical Mixture Theory and present exact solutions to the equations of motion for the steady flow of two linearly viscous fluids between two horizontal plates. We show that for a saturated mixture and under very special conditions, namely when the body forces are assumed negligible, the only interaction force is due to relative velocity (drag force), and if the two velocities are assumed to be related to each other in a linear fashion, then it is possible to integrate the coupled ordinary differential equations and obtain analytical expressions for the velocities and the volume fraction.

  6. Flow of a binary mixture of linearly incompressible viscous fluids between two horizontal parallel plates

    SciTech Connect

    Massoudi, Mehrdad

    2008-12-01

    In this paper, we use the classical Mixture Theory and present exact solutions to the equations of motion for the steady flow of two linearly viscous fluids between two horizontal plates. We show that for a saturated mixture and under very special conditions, namely when the body forces are assumed negligible, the only interaction force is due to relative velocity (drag force), and if the two velocities are assumed to be related to each other in a linear fashion, then it is possible to integrate the coupled ordinary differential equations and obtain analytical expressions for the velocities and the volume fraction.

  7. Melting of ice stuck on cylinders placed horizontally in a water flowing duct

    NASA Astrophysics Data System (ADS)

    Sugawara, M.; Komatsu, Y.; Beer, H.

    2016-04-01

    Melting of ice stuck on seven in-lined cooling cylinders placed horizontally in a water flowing duct is investigated by means of a numerical analysis on the PHOENICS Code. The numerical results are validated compared with the experiment of an ice sphere melting. Parameters for calculations are inlet temperature, inlet velocity and clearance between the cylinders. The most concern of the melting is a finding of a curious behavior that is the melting in small inlet velocity on the long clearance between the cylinders.

  8. Modeling flow into horizontal wells in a Dupuit-Forchheimer model.

    PubMed

    Haitjema, Henk; Kuzin, Sergey; Kelson, Vic; Abrams, Daniel

    2010-01-01

    Horizontal wells or radial collector wells are used in shallow aquifers to enhance water withdrawal rates. Groundwater flow patterns near these wells are three-dimensional (3D), but difficult to represent in a 3D numerical model because of the high degree of grid refinement needed. However, for the purpose of designing water withdrawal systems, it is sufficient to obtain the correct production rate of these wells for a given drawdown. We developed a Cauchy boundary condition along a horizontal well in a Dupuit-Forchheimer model. Such a steady-state 2D model is not only useful for predicting groundwater withdrawal rates but also for capture zone delineation in the context of source water protection. A comparison of our Dupuit-Forchheimer model for a radial collector well with a 3D model yields a nearly exact production rate. Particular attention is given to horizontal wells that extend underneath a river. A comparison of our approach with a 3D solution for this case yields satisfactory results, at least for moderate-to-large river bottom resistances. PMID:20331744

  9. Stokes flow between eccentric rotating spheres with slip regime

    NASA Astrophysics Data System (ADS)

    Faltas, M. S.; Saad, E. I.

    2012-10-01

    The steady axisymmetric flow problem of a viscous fluid contained between two eccentric spheres that rotate about an axis joining their centers with different angular velocities is considered. A linear slip of Basset-type boundary condition at both surfaces of the spherical particle and the container is used. Under the Stokesian assumption, a general solution is constructed from the superposition of basic solutions in the spherical coordinate systems based on the inner solid particle and the spherical container. The boundary conditions on the particle's surface and spherical container are satisfied by a collocation technique. Numerical results for the coupling coefficient acting on the particle are obtained with good convergence for various values of the ratio of particle-to-container radii, the relative distance between the centers of the particle and container, the slip coefficients and the relative angular velocity. In the limiting cases, the numerical values of the coupling coefficient for the solid sphere in concentric position with the container and when the particle is near the inner surface of the container are obtained, and the results are in good agreement with the available values in the literature. The variation of the coupling coefficient with respect the parameters considered are tabulated and displayed graphically.

  10. EFFECT OF HORIZONTALLY INHOMOGENEOUS HEATING ON FLOW AND MAGNETIC FIELD IN THE CHROMOSPHERE OF THE SUN

    SciTech Connect

    Song, P.; Vasyliūnas, V. M.

    2014-12-01

    The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.

  11. Effect of Horizontally Inhomogeneous Heating on Flow and Magnetic Field in the Chromosphere of the Sun

    NASA Astrophysics Data System (ADS)

    Song, P.; Vasyliūnas, V. M.

    2014-12-01

    The solar chromosphere is heated by damped Alfvén waves propagating upward from the photosphere at a rate that depends on magnetic field strength, producing enhanced heating at low altitudes in the extended weak-field regions (where the additional heating accounts for the radiative losses) between the boundaries of the chromospheric network as well as enhanced heating per particle at higher altitudes in strong magnetic field regions of the network. The resulting inhomogeneous radiation and temperature distribution produces bulk flows, which in turn affect the configuration of the magnetic field. The basic flow pattern is circulation on the spatial scale of a supergranule, with upward flow in the strong-field region; this is a mirror image in the upper chromosphere of photospheric/subphotospheric convection widely associated with the formation of the strong network field. There are significant differences between the neutral and the ionized components of the weakly ionized medium: neutral flow streamlines can form closed cells, whereas plasma is largely constrained to flow along the magnetic field. Stresses associated with this differential flow may explain why the canopy/funnel structures of the network magnetic field have a greater horizontal extent and are relatively more homogeneous at high altitudes than is expected from simple current-free models.

  12. Lattice-Boltzmann simulation for pressure driven microscale gas flows in transition regime

    NASA Astrophysics Data System (ADS)

    Yue, Xiang-Ji; Wu, Ze-Huan; Ba, Yao-Shuai; Lu, Yan-Jun; Zhu, Zhi-Peng; Ba, De-Chun

    2015-09-01

    This paper carries out numerical simulation for pressure driven microscale gas flows in transition flow regime. The relaxation time of LBM model was modified with the application of near wall effective mean free path combined with a combination of Bounce-back and Specular Reflection (BSR) boundary condition. The results in this paper are more close to those of DSCM and IP-DSCM compared with the results obtained by other LBM models. The calculation results show that in transition regime, with the increase of Knudsen number, the dimensionless slip velocity at the wall significantly increases, but the maximum linear deviation of nonlinear pressure distribution gradually decreases.

  13. Prediction of gas-liquid two-phase flow regime in microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Jinho; Platt, Jonathan A.

    1993-01-01

    An attempt is made to predict gas-liquid two-phase flow regime in a pipe in a microgravity environment through scaling analysis based on dominant physical mechanisms. Simple inlet geometry is adopted in the analysis to see the effect of inlet configuration on flow regime transitions. Comparison of the prediction with the existing experimental data shows good agreement, though more work is required to better define some physical parameters. The analysis clarifies much of the physics involved in this problem and can be applied to other configurations.

  14. Altered stream-flow regimes and invasive plant species: The Tamarix case

    USGS Publications Warehouse

    Stromberg, J.C.; Lite, S.J.; Marler, R.; Paradzick, C.; Shafroth, P.B.; Shorrock, D.; White, J.M.; White, M.S.

    2007-01-01

    Aim: To test the hypothesis that anthropogenic alteration of stream-flow regimes is a key driver of compositional shifts from native to introduced riparian plant species. Location: The arid south-western United States; 24 river reaches in the Gila and Lower Colorado drainage basins of Arizona. Methods: We compared the abundance of three dominant woody riparian taxa (native Populus fremontii and Salix gooddingii, and introduced Tamarix) between river reaches that varied in stream-flow permanence (perennial vs. intermittent), presence or absence of an upstream flow-regulating dam, and presence or absence of municipal effluent as a stream water source. Results: Populus and Salix were the dominant pioneer trees along the reaches with perennial flow and a natural flood regime. In contrast, Tamarix had high abundance (patch area and basal area) along reaches with intermittent stream flows (caused by natural and cultural factors), as well as those with dam-regulated flows. Main conclusions: Stream-flow regimes are strong determinants of riparian vegetation structure, and hydrological alterations can drive dominance shifts to introduced species that have an adaptive suite of traits. Deep alluvial groundwater on intermittent rivers favours the deep-rooted, stress-adapted Tamarix over the shallower-rooted and more competitive Populus and Salix. On flow-regulated rivers, shifts in flood timing favour the reproductively opportunistic Tamarix over Populus and Salix, both of which have narrow germination windows. The prevailing hydrological conditions thus favour a new dominant pioneer species in the riparian corridors of the American Southwest. These results reaffirm the importance of reinstating stream-flow regimes (inclusive of groundwater flows) for re-establishing the native pioneer trees as the dominant forest type. ?? 2007 The Authors Journal compilation ?? 2007 Blackwell Publishing Ltd.

  15. Analysis of basic flow regimes in a human airway model by stereo-scanning PIV

    NASA Astrophysics Data System (ADS)

    Soodt, Thomas; Pott, Desirée; Klaas, Michael; Schröder, Wolfgang

    2013-06-01

    The detailed understanding of the human lung flow is of high relevance for the optimization of mechanical ventilation. Therefore, the spatial and temporal development of the flow field in a realistic human lung model is investigated for several oscillatory flow regimes using stereo-scanning particle-image velocimetry (PIV). The flow in the right primary bronchus is always measured for a complete sinusoidal ventilation cycle. Three Reynolds and Womersley number sets describing viscous ( Re = 10; α = 1.5), unsteady ( Re = 40; α = 5), and convective ( Re = 150; α = 1.5) regimes are defined to cover various dominating fluid mechanical effects. In addition, multi-plane PIV measurements are performed to analyze steady laminar ( Re = 150) and turbulent ( Re = 2,650) flow at inspiration and expiration. The steady results show that the maximum velocity is shifted to the outer wall at inspiration and toward the inner wall of the bronchial bend at expiration. At inhalation, a U-shaped high-speed velocity profile develops only inside the left primary bronchus, whereas both primary bronchi contain one vortex pair. During expiration, the vortex pairs from each main bronchus merge into a two-vortex-pair system inside the trachea. From the oscillatory findings, it is evident that an undersupply for the right upper lobe is noticed at low ventilatory frequencies, whereas high-frequency flow leads to a more homogeneous ventilation. The analysis of the temporal development of the absolute velocity in the center plane shows a variable phase lag. Unlike the flow in the unsteady regime, the flow of the viscous flow domain ( α = 1.5) is in phase with the applied pressure gradient. Additionally, a premature outflow of the upper right lung lobe can be observed in the unsteady flow regime.

  16. Lagrangian flows within reflecting internal waves at a horizontal free-slip surface

    SciTech Connect

    Zhou, Qi; Diamessis, Peter J.

    2015-12-15

    In this paper sequel to Zhou and Diamessis [“Reflection of an internal gravity wave beam off a horizontal free-slip surface,” Phys. Fluids 25, 036601 (2013)], we consider Lagrangian flows within nonlinear internal waves (IWs) reflecting off a horizontal free-slip rigid lid, the latter being a model of the ocean surface. The problem is approached both analytically using small-amplitude approximations and numerically by tracking Lagrangian fluid particles in direct numerical simulation (DNS) datasets of the Eulerian flow. Inviscid small-amplitude analyses for both plane IWs and IW beams (IWBs) show that Eulerian mean flow due to wave-wave interaction and wave-induced Stokes drift cancels each other out completely at the second order in wave steepness A, i.e., O(A{sup 2}), implying zero Lagrangian mean flow up to that order. However, high-accuracy particle tracking in finite-Reynolds-number fully nonlinear DNS datasets from the work of Zhou and Diamessis suggests that the Euler-Stokes cancelation on O(A{sup 2}) is not complete. This partial cancelation significantly weakens the mean Lagrangian flows but does not entirely eliminate them. As a result, reflecting nonlinear IWBs produce mean Lagrangian drifts on O(A{sup 2}) and thus particle dispersion on O(A{sup 4}). The above findings can be relevant to predicting IW-driven mass transport in the oceanic surface and subsurface region which bears important observational and environmental implications, under circumstances where the effect of Earth rotation can be ignored.

  17. Accuracy of flowmeters measuring horizontal groundwater flow in an unconsolidated aquifer simulator.

    USGS Publications Warehouse

    Bayless, E.R.; Mandell, Wayne A.; Ursic, James R.

    2011-01-01

    Borehole flowmeters that measure horizontal flow velocity and direction of groundwater flow are being increasingly applied to a wide variety of environmental problems. This study was carried out to evaluate the measurement accuracy of several types of flowmeters in an unconsolidated aquifer simulator. Flowmeter response to hydraulic gradient, aquifer properties, and well-screen construction was measured during 2003 and 2005 at the U.S. Geological Survey Hydrologic Instrumentation Facility in Bay St. Louis, Mississippi. The flowmeters tested included a commercially available heat-pulse flowmeter, an acoustic Doppler flowmeter, a scanning colloidal borescope flowmeter, and a fluid-conductivity logging system. Results of the study indicated that at least one flowmeter was capable of measuring borehole flow velocity and direction in most simulated conditions. The mean error in direction measurements ranged from 15.1 degrees to 23.5 degrees and the directional accuracy of all tested flowmeters improved with increasing hydraulic gradient. The range of Darcy velocities examined in this study ranged 4.3 to 155 ft/d. For many plots comparing the simulated and measured Darcy velocity, the squared correlation coefficient (r2) exceeded 0.92. The accuracy of velocity measurements varied with well construction and velocity magnitude. The use of horizontal flowmeters in environmental studies appears promising but applications may require more than one type of flowmeter to span the range of conditions encountered in the field. Interpreting flowmeter data from field settings may be complicated by geologic heterogeneity, preferential flow, vertical flow, constricted screen openings, and nonoptimal screen orientation.

  18. Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system

    USGS Publications Warehouse

    Lane, S.J.; Chouet, B.A.; Phillips, J.C.; Dawson, P.; Ryan, G.A.; Hurst, E.

    2001-01-01

    Gas-liquid flows, designed to be analogous to those in volcanic conduits, are generated in the laboratory using organic gas-gum rosin mixtures expanding in a vertically mounted tube. The expanding fluid shows a range of both flow and pressure oscillation behaviors. Weakly supersaturated source liquids produce a low Reynolds number flow with foam expanding from the top surface of a liquid that exhibits zero fluid velocity at the tube wall; i.e., the conventional "no-slip" boundary condition. Pressure oscillations, often with strong long-period characteristics and consistent with longitudinal and radial resonant oscillation modes, are detected in these fluids. Strongly supersaturated source liquids generate more energetic flows that display a number of flow regimes. These regimes include a static liquid source, viscous flow, detached flow (comprising gas-pockets-at-wall and foam-in-gas annular flow, therefore demonstrating strong radial heterogeneity), and a fully turbulent transonic fragmented or mist flow. Each of these flow regimes displays characteristic pressure oscillations that can be related to resonance of flow features or wall impact phenomena. The pressure oscillations are produced by the degassing processes without the need of elastic coupling to the confining medium or flow restrictors and valvelike features. The oscillatory behavior of the experimental flows is compared to seismoacoustic data from a range of volcanoes where resonant oscillation of the fluid within the conduit is also often invoked as controlling the observed oscillation frequencies. On the basis of the experimental data we postulate on the nature of seismic signals that may be measured during large-scale explosive activity. Copyright 2001 by the American Geophysical Union.

  19. An investigation of flow regimes affecting the Mexico City region

    SciTech Connect

    Bossert, J.E.

    1995-05-01

    The Mexico City region is well-known to the meteorological community for its overwhelming air pollution problem. Several factors contribute to this predicament, namely, the 20 million people and vast amount of industry within the city. The unique geographical setting of the basin encompassing Mexico City also plays an important role. This basin covers approximately 5000 km{sup 2} of the Mexican Plateau at an average elevation of 2250 m above sea level (asl) and is surrounded on three sides by mountains averaging over 3500 m asl, with peaks over 5000 m asl. Only to the north is their a significant opening in the mountainous terrain. Mexico City sprawls over 1000 km{sup 2} in the southwestern portion of the basin. In recent years, several major research programs have been undertaken to investigate the air quality problem within Mexico City. One of these, the Mexico City Air Quality Research Initiative (MARI), conducted in 1990--1993, was a cooperative study between researchers at Los Alamos National Laboratory and the Mexican Petroleum Institute. As part of this study, a field campaign was initiated in February 1991 during which numerous surface, upper air, aircraft, and LIDAR measurements were taken. Much of the work to date has focused upon defining and simulating the local meteorological conditions that are important for understanding the complex photochemistry occurring within the confines of the city. It seems reasonable to postulate, however, that flow systems originating outside of the Mexico City basin will influence conditions within the city much of the time.

  20. Influence of flow velocity on the removal of faecal coliforms in horizontal subsurface flow constructed wetland.

    PubMed

    Lohay, W S; Lyimo, T J; Njau, K N

    2012-01-01

    In order to determine the influence of flow velocity on the removal of faecal coliforms (FC) in constructed wetlands (CWs), removal rate constants of FC (k(FC)) were studied at various flow velocities (u). Membrane filtration technique was used during analysis. Values of k(FC) were determined using Reed's equation of pathogen removal; the results were compared with the plug flow equation. According to Reed's equation, k(FC) values ranged from 1.6 day⁻¹ at a velocity of 4 m/day to 34.5 day⁻¹ at a velocity of 42.9 m/day. The removal rates correlated positively with flow velocity (r = 0.84, p < 0.05). On assuming a plug flow equation, removal rates constants ranged from 0.77 to 11.69 day⁻¹; a more positive correlation (r = 0.93, p < 0.05) was observed. Optimum removal rate constants were observed for the velocity ranging 36 to 43 m/day. Generally, the increase of flow velocity improved FC removal rate constants: implying that pathogen removals are influenced by diffusion of the microorganisms into the biofilms on CW media. The velocity dependent approach together with the plug flow equation is therefore proposed for incorporation in the design of CW in a tropical climate where temperature variations are minor. PMID:23109602

  1. Weathering of plagioclase across variable flow and solute transport regimes

    NASA Astrophysics Data System (ADS)

    Pacheco, Fernando A. L.; Van der Weijden, Cornelis H.

    2012-02-01

    SummaryThe study area is situated in a fault zone with fractured granites and metasediments. In a conceptual model, infiltrating water first passes the bedrock cover of soil and saprolite and then partly enters the fractures. Weathering reactions of minerals occur in small pores and fissures in the bedrock cover zone to continue in the larger fractures. Pumping tests were carried out in a number of boreholes to measure the drawdown as a function of pumping time. From the results, values of transmissivity ( T) could be derived. In combination with the storage coefficient ( S) for similar fault zones, the hydraulic diffusivity ( D = T/ S) could be computed. Water samples, collected from the boreholes, represent fluid packets with a history of weathering reactions in the bedrock cover and in the larger fractures. The major element composition of these samples was used by means of the SiB mass balance algorithm ( Pacheco and Van der Weijden, 1996) to calculate the moles L -1 of dissolved plagioclase (oligoclase with An ≈ 0.20) and the moles L -1 of secondary phases (gibbsite, halloysite, smectite) precipitated along the flow paths of the samples. These results were then used to calculate the net dissolved silica concentrations ( [HSiO40]) related to dissolution of plagioclase followed by precipitation of each of the secondary phases. An interpretation of a plot of each of these [HSiO40] 's versusD is that at D < 0.7 m 2 s -1, dissolution of plagioclase is followed by precipitation of halloysite in the large fractures of the fault zone (open system), whereas at D ⩾ 0.7 m 2 s -1 precipitation of both halloysite and smectite occurs in the rock matrix with small fissures and pores (semi-open system). Before being pumped, the percolating fluids travelled 0.01-13.7 years. During these periods, plagioclase weathered at rates ( W Pl) of 10 -(12.9±1.1) moles m -2 s -1, which are approximately 2.2 orders of magnitude higher than solid-state weathering rates reported in

  2. General slip regime permeability model for gas flow through porous media

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Jiang, Peixue; Xu, Ruina; Ouyang, Xiaolong

    2016-07-01

    A theoretical effective gas permeability model was developed for rarefied gas flow in porous media, which holds over the entire slip regime with the permeability derived as a function of the Knudsen number. This general slip regime model (GSR model) is derived from the pore-scale Navier-Stokes equations subject to the first-order wall slip boundary condition using the volume-averaging method. The local closure problem for the volume-averaged equations is studied analytically and numerically using a periodic sphere array geometry. The GSR model includes a rational fraction function of the Knudsen number which leads to a limit effective permeability as the Knudsen number increases. The mechanism for this behavior is the viscous fluid inner friction caused by converging-diverging flow channels in porous media. A linearization of the GSR model leads to the Klinkenberg equation for slightly rarefied gas flows. Finite element simulations show that the Klinkenberg model overestimates the effective permeability by as much as 33% when a flow approaches the transition regime. The GSR model reduces to the unified permeability model [F. Civan, "Effective correlation of apparent gas permeability in tight porous media," Transp. Porous Media 82, 375 (2010)] for the flow in the slip regime and clarifies the physical significance of the empirical parameter b in the unified model.

  3. Operation of the ISL transonic shock tube in a high subsonic flow regime

    NASA Astrophysics Data System (ADS)

    Seiler, F.; Havermann, M.; Boller, F.; Mangold, P.; Takayama, K.

    The transonic flow regime plays an important role in experimental aerodynamic research. Modern civil aircraft fly up to a Mach number of M ≈ 0.9 in the high subsonic speed regime, as, for example, the Boeing or Airbus passenger aircraft. Nearly sonic Mach numbers are foreseen for innovative airplane concepts like the sonic cruiser by Boeing. In the military domain, guided missiles like the cruise missile also fly in the high subsonic flow regime. For testing purposes, transonic wind tunnels are mainly used for sub- as well as supersonic design applications. These wind tunnels have normally very large dimensions, which makes their operation quite expensive. If only small scale tests are required, a cheap working facility turns out to be more beneficial. For this purpose, a conventional shock tube operated at transonic flow conditions has been put into operation at the ISL. In the transonic flow regime, however, the reduction of the tube cross section by the model can produce severe distortions followed by a choking of the shock tube flow in the test section. Extensive experimental investigations were performed to determine the subsonic choking Mach number as a function of the model size. These results are compared with theoretical estimations and, more in detail, with CFD calculations.

  4. Revisiting Maxwell’s accommodation coefficient: A study of nitrogen flow in a silica microtube across all flow regimes

    SciTech Connect

    Lei, Wenwen McKenzie, David R.

    2014-12-15

    Gas flows have been studied quantitatively for more than a hundred years and have relevance in modern fields such as the control of gas inputs to processes, the measurement of leak rates and the separation of gaseous species. Cha and McCoy have derived a convenient formula for the flow of an ideal gas applicable across a wide range of Knudsen numbers (Kn) that approaches the Navier–Stokes equations at small Kn and the Smoluchowski extension of the Knudsen flow equation at large Kn. Smoluchowski’s result relies on the Maxwell definition of the tangential momentum accommodation coefficient α, recently challenged by Arya et al. We measure the flow rate of nitrogen gas in a smooth walled silica tube across a wide range of Knudsen numbers from 0.0048 to 12.4583. We find that the nitrogen flow obeys the Cha and McCoy equation with a large value of α, unlike carbon nanotubes which show flows consistent with a small value of α. Silica capillaries are therefore not atomically smooth. The flow at small Kn has α=0.91 and at large Kn has α close to one, consistent with the redefinition of accommodation coefficient by Arya et al., which also resolves a problem in the literature where there are many observations of α of less than one at small Kn and many equal to one at large Kn. Silica capillaries are an excellent choice for an accurate flow control system. - Highlights: • First experimental study on flow rate across all flow regimes in a well-defined microtube. • Extend Cha and McCoy theory for molecular flow regime. • Demonstrate the Maxwell accommodation coefficient is different in the slip and molecular flow regimes.

  5. Vertical two-phase flow regimes and pressure gradients: Effect of viscosity

    SciTech Connect

    Da Hlaing, Nan; Sirivat, Anuvat; Siemanond, Kitipat; Wilkes, James O.

    2007-05-15

    The effect of liquid viscosity on the flow regimes and the corresponding pressure gradients along the vertical two-phase flow was investigated. Experiment was carried out in a vertical transparent tube of 0.019 m in diameter and 3 m in length and the pressure gradients were measured by a U-tube manometer. Water and a 50 vol.% glycerol solution were used as the working fluids whose kinematic viscosities were 0.85 x 10{sup -6} and 4.0 x 10{sup -6} m{sup 2}/s, respectively. In our air-liquid annular two-phase flow, the liquid film of various thicknesses flowed adjacent to the wall and the gas phase flowed at the center of the tube. The superficial air velocity, j{sub air}, was varied between 0.0021 and 58.7 m/s and the superficial liquid velocity, j{sub liquid}, was varied between 0 and 0.1053 m/s. In the bubble, the slug and the slug-churn flow regimes, the pressure gradients decreased with increasing Reynolds number. But in the annular and the mist flow regimes, pressure gradients increased with increasing Reynolds number. Finally, the experimentally measured pressure gradient values were compared and are in good agreement with the theoretical values. (author)

  6. Functional architecture of an optic flow-responsive area that drives horizontal eye movements in zebrafish.

    PubMed

    Kubo, Fumi; Hablitzel, Bastian; Dal Maschio, Marco; Driever, Wolfgang; Baier, Herwig; Arrenberg, Aristides B

    2014-03-19

    Animals respond to whole-field visual motion with compensatory eye and body movements in order to stabilize both their gaze and position with respect to their surroundings. In zebrafish, rotational stimuli need to be distinguished from translational stimuli to drive the optokinetic and the optomotor responses, respectively. Here, we systematically characterize the neural circuits responsible for these operations using a combination of optogenetic manipulation and in vivo calcium imaging during optic flow stimulation. By recording the activity of thousands of neurons within the area pretectalis (APT), we find four bilateral pairs of clusters that process horizontal whole-field motion and functionally classify eleven prominent neuron types with highly selective response profiles. APT neurons are prevalently direction selective, either monocularly or binocularly driven, and hierarchically organized to distinguish between rotational and translational optic flow. Our data predict a wiring diagram of a neural circuit tailored to drive behavior that compensates for self-motion. PMID:24656253

  7. Theoretical and pragmatic modeling of governing equations for two-phase flow in bubbly and annular flow regimes

    SciTech Connect

    Bottoni, M.; Ajuha, S.; Sengpiel, W.

    1994-12-31

    Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy derived for a two-phase flow by volume-averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration; bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities makes the rigorously formulated terms useless for computational purposes, modeling of these terms is discussed.

  8. Theoretical and pragmatic modelling of governing equations for a two-phase flow in bubbly and annular flow regimes

    SciTech Connect

    Bottoni, M.; Sengpiel, W.

    1992-12-01

    Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy, derived for a two-phase flow by volume averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration, bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities make the rigorously formulated terms useless for computational purposes, modelling of these terms is discussed. 3 figs., 15 refs.

  9. Theoretical and pragmatic modelling of governing equations for a two-phase flow in bubbly and annular flow regimes

    SciTech Connect

    Bottoni, M. . Materials and Components Technology Div.); Sengpiel, W. . Inst. fuer Reaktorsicherheit)

    1992-01-01

    Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy, derived for a two-phase flow by volume averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration, bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities make the rigorously formulated terms useless for computational purposes, modelling of these terms is discussed. 3 figs., 15 refs.

  10. Removing heavy metals from Isfahan composting leachate by horizontal subsurface flow constructed wetland.

    PubMed

    Bakhshoodeh, Reza; Alavi, Nadali; Soltani Mohammadi, Amir; Ghanavati, Hossein

    2016-06-01

    Composting facility leachate usually contains high concentrations of pollutants including heavy metals that are seriously harmful to the environment and public health. The main purpose of this study was to evaluate heavy metals removal from Isfahan composting facility (ICF) leachate by a horizontal flow constructed wetland (HFCWs) system. Two horizontal systems were constructed, one planted with vetiver and the other without plant as a control. They both operated at a flow rate of 24 L/day with a 5-day hydraulic retention time (HRT). The average removal efficiencies for Cr (53 %), Cd (40 %), Ni (35 %), Pb (30 %), Zn (35 %), and Cu (40 %) in vetiver constructed wetland were significantly higher than those of the control (P < 0.05). Accumulations of heavy metals in roots were higher than shoots. Cd and Zn showed the highest and the lowest bioconcentration factor (BCF), respectively. Vetiver tolerates the extreme condition in leachate including high total dissolved solids. PMID:26983810

  11. Anaerobic treatment of cassava starch extraction wastewater using a horizontal flow filter with bamboo as support.

    PubMed

    Colin, X; Farinet, J-L; Rojas, O; Alazard, D

    2007-05-01

    Small-scale sour starch agroindustry in Colombia suffer from absence of water treatment. Although starch processing plants produce diluted wastewater, it is a source of pollution and cause environmental problems to the nearby rural population. A laboratory scale anaerobic horizontal flow filter packed with bamboo pieces was evaluated for the treatment of cassava starch extraction wastewater. The wastewater used in the experimentation was the draining water of the starch sedimentation basin. The reactor was operated for 6 months. It was inoculated with a semi-granular sludge from an anaerobic UASB reactor of a slaughterhouse. Maximum organic loading rate (OLR) applied was 11.8g COD/L d without dilution of the wastewater. At steady state and maximum OLR applied, 87% of the COD was removed and a gas productivity of 3.7L/L d was achieved. The average biogas yield was 0.36L/g COD removed. Methane content in the biogas was in the range of 69-81%. The total suspended solids (TSS) removed were 67%. The relative high lactic acid content did not negatively influence the performance of the reactor. No perturbation due to cyanide (3-5mg/L) was observed during the reactor operation. The results obtained indicated that the anaerobic horizontal flow filter could be used efficiently for the treatment of wastewater from Colombian starch processing small-scale agroindustry. PMID:16973355

  12. Experimental investigation of fluid flow in horizontal pipes system of various cross-section geometries

    NASA Astrophysics Data System (ADS)

    Farsirotou, E.; Kasiteropoulou, D.; Stamatopoulou, D.

    2014-03-01

    The current research work presents experiments of an essentially incompressible fluid flow in pipes. The experimental equipment consists of a horizontal pipe including a gate valve, a Venturi meter, a wide angle diffuser, an orifice plate, a 90-degree elbow and pressure tappings. An elbow connects the pipe to arotameter with further pressure tappings. All pressure tappings connected to manometers held on a vertical panel behind the pipe work and show pressure at various points. The effect of the pipe geometry in the flow pattern is presented. Furthermore head losses are estimated, at specific stream-wise cross-sections, for mass flow rate numbered from 0.056 to 0.411 l/s. The manometers measure and clearly show pressure distribution against a calibrated scale. The diagrams of mass flow rate and head losses are presented in specific crosssections, where geometry changes. All measurements were calibrated and validated in a maximum standard deviation difference of 5%. The head losses decrease as the mass flow rate decreases, for all pipe geometries. In the future the experimental results can be used to verify numerical simulation results.

  13. The path to COVIS: A review of acoustic imaging of hydrothermal flow regimes

    NASA Astrophysics Data System (ADS)

    Bemis, Karen G.; Silver, Deborah; Xu, Guangyu; Light, Russ; Jackson, Darrell; Jones, Christopher; Ozer, Sedat; Liu, Li

    2015-11-01

    Acoustic imaging of hydrothermal flow regimes started with the incidental recognition of a plume on a routine sonar scan for obstacles in the path of the human-occupied submersible ALVIN. Developments in sonar engineering, acoustic data processing and scientific visualization have been combined to develop technology which can effectively capture the behavior of focused and diffuse hydrothermal discharge. This paper traces the development of these acoustic imaging techniques for hydrothermal flow regimes from their conception through to the development of the Cabled Observatory Vent Imaging Sonar (COVIS). COVIS has monitored such flow eight times a day for several years. Successful acoustic techniques for estimating plume entrainment, bending, vertical rise, volume flux, and heat flux are presented as is the state-of-the-art in diffuse flow detection.

  14. A Regional Hydrologic Classification of Unregulated Rivers: Towards the Development of Natural Flow Regime Characterization and Environmental Flows in California

    NASA Astrophysics Data System (ADS)

    Lane, B.; Sandoval Solis, S.

    2014-12-01

    Alterations to flow regimes from regulation and climate change affect the biophysical functioning of rivers. Re-operating reservoirs to provide environmental flows - the quantity, quality, and timing of water to sustain natural river functions and species - is now widely applied in multi-objective water resources management. However, the absence of a quantitative, transferable framework for evaluating the relationships between hydrologic inputs, geomorphic functions, and ecological responses, remains a major limitation to setting environmental flows standards. This research addresses this gap by developing a hydrologic classification framework for the State of California that balances operational practicality with scientific defensibility. The framework organizes river reaches into: (1) natural flow classes based on (a) a classification model that clusters hydrologic indices calculated directly from unimpaired streamflow data, and (b) a regression model using a set of climatic, landscape, and local geomorphic controls over the flow regime, and (2) functional zones constrained by temporal (seasonal) ranges and hydrologic (average flow percentile-based) thresholds (e.g. summer low flows). The framework is then used to (1) identify major climatic, landscape, and local geomorphic controls over prototypical flow regime signatures, and (2) characterize key natural functions and processes expected of reaches of each flow class and functional zone during wet, dry, and normal water year types. Organizing hydrologic data in this manner provides a means of comparison and transferability of ecologically-significant hydrologic and geomorphic information across reaches of all major flow classes seen in California, both regulated and unregulated. Through this framework, transferable relationships between hydrologic and physiographic conditions, flow alteration, and ecological metrics can be developed and tested on the basis of data obtained from a limited set of study sites.

  15. Validating alternative methodologies to estimate the regime of temporary rivers when flow data are unavailable.

    PubMed

    Gallart, F; Llorens, P; Latron, J; Cid, N; Rieradevall, M; Prat, N

    2016-09-15

    Hydrological data for assessing the regime of temporary rivers are often non-existent or scarce. The scarcity of flow data makes impossible to characterize the hydrological regime of temporary streams and, in consequence, to select the correct periods and methods to determine their ecological status. This is why the TREHS software is being developed, in the framework of the LIFE Trivers project. It will help managers to implement adequately the European Water Framework Directive in this kind of water body. TREHS, using the methodology described in Gallart et al. (2012), defines six transient 'aquatic states', based on hydrological conditions representing different mesohabitats, for a given reach at a particular moment. Because of its qualitative nature, this approach allows using alternative methodologies to assess the regime of temporary rivers when there are no observed flow data. These methods, based on interviews and high-resolution aerial photographs, were tested for estimating the aquatic regime of temporary rivers. All the gauging stations (13) belonging to the Catalan Internal Catchments (NE Spain) with recurrent zero-flow periods were selected to validate this methodology. On the one hand, non-structured interviews were conducted with inhabitants of villages near the gauging stations. On the other hand, the historical series of available orthophotographs were examined. Flow records measured at the gauging stations were used to validate the alternative methods. Flow permanence in the reaches was estimated reasonably by the interviews and adequately by aerial photographs, when compared with the values estimated using daily flows. The degree of seasonality was assessed only roughly by the interviews. The recurrence of disconnected pools was not detected by flow records but was estimated with some divergences by the two methods. The combination of the two alternative methods allows substituting or complementing flow records, to be updated in the future through

  16. Influence of electrolyte concentration on holdup, flow regime transition and local flow properties in a large scale bubble column

    NASA Astrophysics Data System (ADS)

    Besagni, Giorgio; Inzoli, Fabio

    2015-11-01

    We experimentally investigate the influence of the electrolyte concentration on holdup, flow regime transition and local flow properties in a large scale bubble column, with air and water as working fluids. The column is 0.24 m inner diameter, 5.3 m height and the air is introduced by a spider sparger up to a superficial gas velocity of 0.2 m/s. The influence of five NaCl concentrations are investigated by using gas holdup and optical probe measurements. The gas holdup measurements are used for analysing the flow regime transition between the homogeneous and the transition regime and the optical probe is used for studying the local flow characteristics at different radial positions. The presence of NaCl - up to a critical concentration - increases the gas holdup. The increase in the gas holdup is due to the inhibition of the coalescence between the bubbles and, thus, the extension of the homogeneous regime. The results are in agreement with the previous literature on smaller bubble columns.

  17. Analysis of regimes of magnetogasdynamic interaction between a current layer and an argon flow

    NASA Astrophysics Data System (ADS)

    Vasil'ev, E. N.; Nesterov, D. A.

    2015-03-01

    A nonstationary three-dimensional magnetogasdynamics (MGD) model is used to study the dynamics of a current layer interacting with a transverse magnetic field in a supersonic argon flow through a channel of constant cross section. The MGD interaction regimes and the features of the current layer formation for various external resistances and channel widths are analyzed as based on numerical results.

  18. Flow regimes in a T-mixer operating with a binary mixture

    NASA Astrophysics Data System (ADS)

    Camarri, Simone; Siconolfi, Lorenzo; Galletti, Chiara; Salvetti, Maria Vittoria

    2015-11-01

    Efficient mixing in small volumes is a key target in many processes. Among the most common micro-devices, passive T-shaped micro-mixers are widely used. For this reason, T-mixers have been studied in the literature and its working flow regimes have been identified. However, in most of the available theoretical studies it is assumed that only one working fluid is used, i.e. that the same fluid at the same thermodynamic conditions is entering the two inlet conduits of the mixer. Conversely, the practical use of micro-devices often involves the mixing of two different fluids or of the same fluid at different thermodynamic conditions. In this case flow regimes significantly different than those observed for a single working fluid may occur. The present work aims at investigating the flow regimes in a T-mixers when water at two different temperatures, i.e. having different viscosity and density, is entering the mixer. The effect of the temperature difference on the flow regimes in a 3D T-mixer is investigated by DNS and stability analysis and the results are compared to the case in which a single working fluid is employed.

  19. FLOW REGIME, JUVENILE ABUNDANCE, AND THE ASSEMBLAGE STRUCTURE OF STREAM FISHES

    EPA Science Inventory

    The assemblage of fishes in a second-order stream in east-central Illinois was compared through seine sampling for two years with distinctly different flow regimes. In both years adult (age 0) fish were most abundant in late spring and early summer while juvenile (age 0) abundanc...

  20. Design configurations affecting flow pattern and solids accumulation in horizontal free water and subsurface flow constructed wetlands.

    PubMed

    Pedescoll, A; Sidrach-Cardona, R; Sánchez, J C; Carretero, J; Garfi, M; Bécares, E

    2013-03-01

    The aim of this study was to evaluate the effect of different horizontal constructed wetland (CW) design parameters on solids distribution, loss of hydraulic conductivity over time and hydraulic behaviour, in order to assess clogging processes in wetlands. For this purpose, an experimental plant with eight CWs was built at mesocosm scale. Each CW presented a different design characteristic, and the most common CW configurations were all represented: free water surface flow (FWS) with different effluent pipe locations, FWS with floating macrophytes and subsurface flow (SSF), and the presence of plants and specific species (Typha angustifolia and Phragmites australis) was also considered. The loss of the hydraulic conductivity of gravel was greatly influenced by the presence of plants and organic load (representing a loss of 20% and c.a. 10% in planted wetlands and an overloaded system, respectively). Cattail seems to have a greater effect on the development of clogging since its below-ground biomass weighed twice as much as that of common reed. Hydraulic behaviour was greatly influenced by the presence of a gravel matrix and the outlet pipe position. In strict SSF CW, the water was forced to cross the gravel and tended to flow diagonally from the top inlet to the bottom outlet (where the inlet and outlet pipes were located). However, when FWS was considered, water preferentially flowed above the gravel, thus losing half the effective volume of the system. Only the presence of plants seemed to help the water flow partially within the gravel matrix. PMID:23286990

  1. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems

    USGS Publications Warehouse

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.

    2005-01-01

    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability

  2. Flow in horizontally anisotropic multilayered aquifer systems with leaky wells and aquitards

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Zhou, Quanlin; Birkholzer, Jens T.; Kraemer, Stephen R.

    2014-01-01

    Flow problems in an anisotropic domain can be transformed into ones in an equivalent isotropic domain by coordinate transformations. Once analytical solutions are obtained for the equivalent isotropic domain, they can be back transformed to the original anisotropic domain. The existing solutions presented by Cihan et al. (2011) for isotropic multilayered aquifer systems with alternating aquitards and multiple injection/pumping wells and leaky wells were modified to account for horizontal anisotropy in aquifers. The modified solutions for pressure buildup distribution and leakage rates through leaky wells can be used when the anisotropy direction and ratio (Kx/Ky) are assumed to be identical for all aquifers alternating with aquitards. However, for multilayered aquifers alternating with aquicludes, both the principal direction of the anisotropic horizontal conductivity and the anisotropy ratio can be different in each aquifer. With coordinate transformation, a circular well with finite radius becomes an ellipse, and thus in the transformed domain the head contours in the immediate vicinity of the well have elliptical shapes. Through a radial flow approximation around the finite radius wells, the elliptical well boundaries in the transformed domain are approximated by an effective well radius expression. The analytical solutions with the effective radius approximations were compared with exact solutions as well as a numerical solution for elliptic flow. The effective well radius approximation is sufficiently accurate to predict the head buildup at the well bore of the injection/pumping wells for moderately anisotropic systems (Kx/Ky≤25). The effective radius approximation gives satisfactory results for predicting head buildup at observation points and leakage through leaky wells away from the injection/pumping wells even for highly anisotropic aquifer systems >(Kx/Ky≤1000>).

  3. European river flow regimes: assessing space-time dynamics and links to large-scale climate

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Kingston, D. G.; Laize, C.; Lavers, D. A.; Wilson, D.

    2011-12-01

    Given heightened concerns about climate change/ variability and human impacts on hydrology, there is a pressing need for research to quantify temporal variability and spatial structure in river flow regimes, and to establish hydroclimatological (climate-flow) associations as a basis for predicting future water stress. This paper draws together findings from studies undertaken at the UK and pan-European scale (using datasets of >100 stations with time series >25 years) and aims: (1) to demonstrate the utility of classification schemes for identifying space-time patterns in river flow regimes and (2) to explore the hydroclimatological relationships between large-scale atmospheric circulation and river flow response. Often, classification is undertaken prior to detailed analysis of large-scale patterns in river flow. In this paper, a suite of novel cluster analysis based methods are presented that identify hydrological regions as well as inter-annual river flow regime variation within regions. Statistical characteristics of the emergent classifications are analysed including geographical expression, teleconnections and presence of time-series trends. Results show that classification provides a useful general organising framework for large-scale hydrological research and facilitates systematic testing of hypotheses about drivers of hydrological variation across wide spatial domains. To investigate climate controls on space-time river flow variation, three methods for characterising atmospheric influences are considered: air-mass types, large-scale climate indices and gridded re-analyses (ECMWF ERA-40). A new air-mass classification for Europe (Spatial Synoptic Classification 2) is presented that classifies daily air-masses. Data are pooled by long-term flow regime regions to assess air-mass - flow regime (shape and magnitude) class associations across Europe; and multiple discriminant function analysis (MDFA) is used to model links between the categorical data. The

  4. Prediction of the multicellular flow regime of natural convection in fenestration glazing cavities

    SciTech Connect

    Zhao, Y.; Goss, W.P.; Curcija, D.

    1997-12-31

    In this work, gas-filled tall rectangular cavities, typically found in insulating glazing units (IGUs) of fenestration systems, with constant temperatures at the side walls and zero heat flux at the top and bottom, were investigated. Critical Rayleigh numbers, Ra{sub c}, at which multicellular flow begins to form were determined for aspect ratios from 10.7 to 80. Using a general-purpose fluid flow and heat transfer finite-element analysis computer program (FDI 1993), numerical calculations were performed over the range of aspect ratios, A, from 10 to 80 with Rayleigh numbers, Ra, varying within the laminar flow regime. The calculations revealed that for aspect ratios between 10.7 and 30, the multicellular flow pattern dies out before the flow enters the turbulent flow regime. In addition, the lowest aspect ratio at which multicellular flow patterns existed was 10.7, which is lower than the lowest limit (A = 12) published by other researchers. The resulting critical Rayleigh numbers are plotted on a graph as a function of the aspect ratio and the Rayleigh numbers. The overall heat transfer results in terms of the average, or integrated, Nusselt numbers, Nu, are compared with available numerical and experimental data on multicellular flow in rectangular cavities, and good agreement was found. Also, streamline contour plots and temperature profiles are plotted for selected cases.

  5. Evaluating the Effects of Horizontal Spatial Discretization on Interflow in the Soil Zone Using the Richards and Groundwater Flow Equations

    NASA Astrophysics Data System (ADS)

    Henson, W.; Niswonger, R. G.

    2011-12-01

    In many mountainous regions, a large proportion of streamflow originates as shallow subsurface storm flow (interflow) within the shallow soils of hillslopes. Infiltration can accumulate to form perched groundwater within the upper few meters of the soil horizon that drains to streams through both macropores and soil-matrix. Richards Equation has become a commonly used governing equation for simulating interflow in regional-scale models. Recent research has shown that optimal vertical discretization for Richards Equation near land surface and the water table is much smaller than the discretization typically used in basin-scale hydrologic models, yet little is known about optimal horizontal discretization or potential effects of horizontal discretization on interflow solutions. Most of the work related to the effects of discretization on the solution of Richards Equation has focused on the vertical infiltration problem. This study evaluates horizontal spatial discretization effects on interflow predictions using 1) a modified version of GSFLOW and 2) VS2DT. The modified GSFLOW couples Smith-Parlange 1-D infiltration equations with 3-D unconfined groundwater flow equation, whereas VS2DT uses Richards Equation to represent infiltration and variably saturated flow. Interflow solutions and breakthrough at the stream were compared using a model domain similar to Vauclin and others (1979) with horizontal grid resolutions ranging from 0.05-5m and vertical resolutions ranging between 0.05-1m, with horizontal flow path lengths of 25m to the stream. Variable horizontal spatial resolutions affected VS2DT interflow solutions (RMSE up to 0.12) and interflow breakthrough at the stream, whereas GSFLOW solutions were well correlated (RMSE <0.052). Interflow breakthrough was delayed by up to 10 days with increasing resolution in VS2DT, whereas GSFLOW breakthrough was consistently the same day. Results indicate that the solution of Richards Equation for soil-zone interflow is much

  6. Effect of intermolecular potential on compressible Couette flow in slip and transitional regimes

    NASA Astrophysics Data System (ADS)

    Weaver, Andrew B.; Venkattraman, A.; Alexeenko, Alina A.

    2014-10-01

    The effect of intermolecular potentials on compressible, planar flow in slip and transitional regimes is investigated using the direct simulation Monte Carlo method. Two intermolecular interaction models, the variable hard sphere (VHS) and the Lennard-Jones (LJ) models, are first compared for subsonic and supersonic Couette flows of argon at temperatures of 40, 273, and 1,000 K, and then for Couette flows in the transitional regime ranging from Knudsen numbers (Kn) of 0.0051 to 1. The binary scattering model for elastic scattering using the Lennard-Jones (LJ) intermolecular potential proposed recently [A. Venkattraman and A. Alexeenko, "Binary scattering model for Lennard-Jones potential: Transport coefficients and collision integrals for non-equilibrium gas flow simulations," Phys. Fluids 24, 027101 (2012)] is shown to accurately reproduce both the theoretical collision frequency in an equilibrium gas as well as the theoretical viscosity variation with temperature. The use of a repulsive-attractive instead of a purely repulsive potential is found to be most important in the continuum and slip regimes as well as in flows with large temperature variations. Differences in shear stress of up to 28% between the VHS and LJ models is observed at Kn=0.0051 and is attributed to differences in collision frequencies, ultimately affecting velocity gradients at the wall. For Kn=1 where the Knudsen layer expands the entire domain, the effect of the larger collision frequency in the LJ model relative to VHS diminishes, and a 7% difference in shear stress is observed.

  7. Effects of flow regime on stream turbidity and suspended solids after wildfire, Colorado Front Range

    USGS Publications Warehouse

    Murphy, Sheila F.; McCleskey, R. Blaine; Writer, Jeffrey H.

    2012-01-01

    Wildfires occur frequently in the Colorado Front Range and can alter the hydrological response of watersheds, yet little information exists on the impact of flow regime and storm events on post-wildfire water quality. The flow regime in the region is characterized by base-flow conditions during much of the year and increased runoff during spring snowmelt and summer convective storms. The impact of snowmelt and storm events on stream discharge and water quality was evaluated for about a year after a wildfire near Boulder, Colorado, USA. During spring snowmelt and low-intensity storms, differences in discharge and turbidity at sites upstream and downstream from the burned areas were minimal. However, high-intensity convective storms resulted in dramatic increases in discharge and turbidity at sites downstream from the burned area. This study highlights the importance of using high-frequency sampling to assess accurately wildfire impacts on water quality downstream.

  8. Zero-G experiments in two-phase fluids flow regimes

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; King, C. D.; Littles, J. W.

    1975-01-01

    The two-phase flows studied were liquid and gas mixtures in a straight flow channel of circular cross-section. Boundaries between flow regimes have been defined for normogravity on coordinates of gas quality and total mass velocity; and, when combined with boundary expressions having a Froude number term, an analytical model was derived predicting boundary shifts with changes in gravity level. Experiments with air and water were performed, first in the normogravity environment of a ground laboratory and then in 'zero gravity' aboard a KC-135 aircraft flying parabolic trajectories. Data reduction confirmed regime boundary shifts in the direction predicted, although the magnitude was a little less than predicted. Pressure drop measurements showed significant increases for the low gravity condition.

  9. Granular flow regimes in rotating drums from depth-integrated theory

    NASA Astrophysics Data System (ADS)

    Hung, C.-Y.; Stark, C. P.; Capart, H.

    2016-03-01

    Granular flows in rotating drums transition between two regimes characterized by straight and curved free surfaces. Here we predict this behavior using a depth-integrated theory applicable to general eroding flows. Closure is achieved by a local μ (I ) rheology and an equation for kinetic energy. Spanning the transition, the theory yields relations for all flow properties in terms of a single dimensionless rotation rate. In accord with experiments, distinct scaling laws are obtained for slow and fast rates, dominated respectively by local energy dissipation and longitudinal energy transfer.

  10. Characterising temporary streams' regimes using qualitative "aquatic states" instead of quantitative flow measures.

    NASA Astrophysics Data System (ADS)

    Gallart, F.; Prat, N.

    2012-04-01

    The analysis of the biological communities found in stream reaches is currently used for the assessment of the quality of stream waters. Nevertheless, in temporary streams, these communities are largely varying in time, strongly depending on the occurrence of the sets of aquatic mesohabitats determined by the hydrological conditions (hereafter called Aquatic States). Particularly, the interruption of the flow in a stream, or even its total desiccation, plays a determinant role in their ecological communities so much so that temporary streams should be considered a distinct class of ecosystems instead of simply hydrologically challenged permanent streams. Within the EU MIRAGE project (grant FP7 n° 211732), two complementary tools have been developed to analyse and characterise the regime of temporary streams: the Aquatic States Frequency Graph (ASFG) that shows the monthly frequency of occurrence of the diverse Aquatic States throughout the year, and the Temporary Stream Regime Plot (TSRP) that maps the value of two metrics that describe respectively the relative number of months with flow per year (Mf) and the seasonal predictability of the zero-flow periods (Sd6). The ASFG allows a rapid appraisal of the stream regime relevant for the development of the aquatic life and is useful for anticipating the sampling calendars but is somewhat dependent of the subjective criteria of the observer. On the contrary, the TSRP manages much less information but allows the comparison and classification of the regimes and is based on the more objective criterion of the presence-absence of flow. In the case of lack of observations, rainfall-runoff models may be used to develop these analyses, although a threshold value for zero flow must be assessed as models usually do not simulate the absence of flow.

  11. Numerical and Experimental Studies of the Natural Convection Flow Within a Horizontal Cylinder Subjected to a Uniformly Cold Wall Boundary Condition. Ph.D. Thesis - Va. Poly. Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Stewart, R. B.

    1972-01-01

    Numberical solutions are obtained for the quasi-compressible Navier-Stokes equations governing the time dependent natural convection flow within a horizontal cylinder. The early time flow development and wall heat transfer is obtained after imposing a uniformly cold wall boundary condition on the cylinder. Solutions are also obtained for the case of a time varying cold wall boundary condition. Windware explicit differ-encing is used for the numerical solutions. The viscous truncation error associated with this scheme is controlled so that first order accuracy is maintained in time and space. The results encompass a range of Grashof numbers from 8.34 times 10,000 to 7 times 10 to the 7th power which is within the laminar flow regime for gravitationally driven fluid flows. Experiments within a small scale instrumented horizontal cylinder revealed the time development of the temperature distribution across the boundary layer and also the decay of wall heat transfer with time.

  12. Zonal flow regimes in rotating anelastic spherical shells: An application to giant planets

    NASA Astrophysics Data System (ADS)

    Gastine, T.; Wicht, J.; Aurnou, J. M.

    2013-07-01

    The surface zonal winds observed in the giant planets form a complex jet pattern with alternating prograde and retrograde direction. While the main equatorial band is prograde on the gas giants, both ice giants have a pronounced retrograde equatorial jet. We use three-dimensional numerical models of compressible convection in rotating spherical shells to explore the properties of zonal flows in different regimes where either rotation or buoyancy dominates the force balance. We conduct a systematic parameter study to quantify the dependence of zonal flows on the background density stratification and the driving of convection. In our numerical models, we find that the direction of the equatorial zonal wind is controlled by the ratio of the global-scale buoyancy force and the Coriolis force. The prograde equatorial band maintained by Reynolds stresses is found in the rotation-dominated regime. In cases where buoyancy dominates Coriolis force, the angular momentum per unit mass is homogenized and the equatorial band is retrograde, reminiscent to those observed in the ice giants. In this regime, the amplitude of the zonal jets depends on the background density contrast with strongly stratified models producing stronger jets than comparable weakly stratified cases. Furthermore, our results can help to explain the transition between solar-like (i.e. prograde at the equator) and the "anti-solar" differential rotations (i.e. retrograde at the equator) found in anelastic models of stellar convection zones. In the strongly stratified cases, we find that the leading order force balance can significantly vary with depth. While the flow in the deep interior is dominated by rotation, buoyancy can indeed become larger than Coriolis force in a thin region close to the surface. This so-called "transitional regime" has a visible signature in the main equatorial jet which shows a pronounced dimple where flow amplitudes notably decay towards the equator. A similar dimple is observed on

  13. Horizontal annular flow modelling using a compositional based interface capturing approach

    NASA Astrophysics Data System (ADS)

    Pavlidis, Dimitrios; Xie, Zhizhua; Percival, James; Gomes, Jefferson; Pain, Chris; Matar, Omar

    2014-11-01

    Progress on a consistent approach for interface-capturing in which each component represents a different phase/fluid is described. The aim is to develop a general multi-phase modelling approach based on fully-unstructured meshes that can exploit the latest mesh adaptivity methods, and in which each fluid phase may have a number of components. The method is compared against experimental results for a collapsing water column test case and a convergence study is performed. A number of numerical test cases are undertaken to demonstrate the method's ability to model arbitrary numbers of phases with arbitrary equations of state. The method is then used to simulate horizontal annular flows. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  14. Design and monitoring of horizontal subsurface-flow constructed wetlands for treating nursery leachates.

    PubMed

    Narváez, Lola; Cunill, Conrad; Cáceres, Rafaela; Marfà, Oriol

    2011-06-01

    Nursery leachates usually contain high concentrations of nitrates, phosphorus and potassium, so discharging them into the environment often causes pollution. Single-stage or two-stage horizontal subsurface flow constructed wetlands (HSSCW) filled with different substrates were designed to evaluate the effect and evolution over time of the removal of nitrogen and other nutrients contained in nursery leachates. The addition of sodium acetate to achieve a C:NO(3)(-)-N ratio of 3:1 was sufficient to reach complete denitrification in all HSSCW. The removal rate of nitrate was high throughout the operation period (over 98%). Nevertheless, the removal rate of ammonium decreased about halfway through the operation. Removal of the COD was enhanced by the use of two-stage HSSCW. In general, the substrates and the number of stages of the wetlands did not affect the removal of nitrogen, total phosphorus and potassium. PMID:21489781

  15. Mixed convection boundary layer flow over a horizontal elliptic cylinder with constant heat flux

    NASA Astrophysics Data System (ADS)

    Javed, Tariq; Ahmad, Hussain; Ghaffari, Abuzar

    2015-12-01

    Mixed convection boundary layer flow of a viscous fluid over a horizontal elliptic cylinder with a constant heat flux is investigated numerically. The governing partial differential equations are transformed to non-dimensional form and then are solved by an efficient implicit finite different scheme known as Keller-box method. The solutions are expressed in the form of skin friction and Nusselt number, which are plotted against the eccentric angle. The effect of pertinent parameters such as mixed convection parameter, aspect ratio (ratio of lengths of minor axis to major axis), and Prandtl number on skin friction and Nusselt number are illustrated through graphs for both blunt and slender orientations. The increase in the value of mixed convection parameter results in increase in skin friction coefficient and Nusselt number for blunt as well as slender orientations.

  16. Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes

    NASA Astrophysics Data System (ADS)

    Zhu, Yajun; Zhong, Chengwen; Xu, Kun

    2016-06-01

    This paper presents an implicit unified gas-kinetic scheme (UGKS) for non-equilibrium steady state flow computation. The UGKS is a direct modeling method for flow simulation in all regimes with the updates of both macroscopic flow variables and microscopic gas distribution function. By solving the macroscopic equations implicitly, a predicted equilibrium state can be obtained first through iterations. With the newly predicted equilibrium state, the evolution equation of the gas distribution function and the corresponding collision term can be discretized in a fully implicit way for fast convergence through iterations as well. The lower-upper symmetric Gauss-Seidel (LU-SGS) factorization method is implemented to solve both macroscopic and microscopic equations, which improves the efficiency of the scheme. Since the UGKS is a direct modeling method and its physical solution depends on the mesh resolution and the local time step, a physical time step needs to be fixed before using an implicit iterative technique with a pseudo-time marching step. Therefore, the physical time step in the current implicit scheme is determined by the same way as that in the explicit UGKS for capturing the physical solution in all flow regimes, but the convergence to a steady state speeds up through the adoption of a numerical time step with large CFL number. Many numerical test cases in different flow regimes from low speed to hypersonic ones, such as the Couette flow, cavity flow, and the flow passing over a cylinder, are computed to validate the current implicit method. The overall efficiency of the implicit UGKS can be improved by one or two orders of magnitude in comparison with the explicit one.

  17. Using Historic Models of Cn2 to predict r0 and regimes affected by atmospheric turbulence for horizontal, slant and topological paths

    SciTech Connect

    Lawson, J K; Carrano, C J

    2006-06-20

    Image data collected near the ground, in the boundary layer, or from low altitude planes must contend with the detrimental effects of atmospheric turbulence on the image quality. So it is useful to predict operating regimes (wavelength, height of target, height of detector, total path distance, day vs. night viewing, etc.) where atmospheric turbulence is expected to play a significant role in image degradation. In these regimes, image enhancement techniques such as speckle processing, deconvolution and Wiener filtering methods can be utilized to recover near instrument-limited resolution in degraded images. We conducted a literature survey of various boundary layer and lower troposphere models for the structure coefficient of the index of refraction (C{sub n}{sup 2}). Using these models, we constructed a spreadsheet tool to estimate the Fried parameter (r{sub 0}) for different scenarios, including slant and horizontal path trajectories. We also created a tool for scenarios where the height along the path crudely accounted for the topology of the path. This would be of particular interest in mountain-based viewing platforms surveying ground targets. The tools that we developed utilized Visual Basic{reg_sign} programming in an Excel{reg_sign} spreadsheet environment for accessibility and ease of use. In this paper, we will discuss the C{sub n}{sup 2} profile models used, describe the tools developed and compare the results obtained for the Fried parameter with those estimated from experimental data.

  18. Horizontal flow fields observed in Hinode G-band images. II. Flow fields in the final stages of sunspot decay

    NASA Astrophysics Data System (ADS)

    Verma, M.; Balthasar, H.; Deng, N.; Liu, C.; Shimizu, T.; Wang, H.; Denker, C.

    2012-02-01

    Context. Generation and dissipation of magnetic fields is a fundamental physical process on the Sun. In comparison to flux emergence and the initial stages of sunspot formation, the demise of sunspots still lacks a comprehensive description. Aims: The evolution of sunspots is most commonly discussed in terms of their intensity and magnetic field. Here, we present additional information about the three-dimensional flow field in the vicinity of sunspots towards the end of their existence. Methods: We present a subset of multi-wavelengths observations obtained with the Japanese Hinode mission, the Solar Dynamics Observatory (SDO), and the Vacuum Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain during the time period 2010 November 18-23. Horizontal proper motions were derived from G-band and Ca ii H images, whereas line-of-sight velocities were extracted from VTT echelle Hα λ656.28 nm spectra and Fe i λ630.25 nm spectral data of the Hinode/Spectro-Polarimeter, which also provided three-dimensional magnetic field information. The Helioseismic and Magnetic Imager on board SDO provided continuum images and line-of-sight magnetograms, in addition to the high-resolution observations for the entire disk passage of the active region. Results: We perform a quantitative study of photospheric and chromospheric flow fields in and around decaying sunspots. In one of the trailing sunspots of active region NOAA 11126, we observe moat flow and moving magnetic features (MMFs), even after its penumbra had decayed. We also detect a superpenumbral structure around this pore. We find that MMFs follow well-defined, radial paths from the spot all the way to the border of a supergranular cell surrounding the spot. In contrast, flux emergence near the other sunspot prevents the establishment of similar well ordered flow patterns, which could be discerned around a tiny pore of merely 2 Mm diameter. After the disappearance of the sunspots/pores, a coherent patch of abnormal

  19. Orbiter Aerodynamic Acceleration Flight Measurements in the Rarefied-Flow Transition Regime

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Wilmoth, Richard G.; LeBeau, Gerald J.

    1996-01-01

    Acceleration data taken from the Orbital Acceleration Research Experiment (OARE) during reentry on STS-62 have been analyzed using calibration factors taken on orbit. This is the first Orbiter mission which collected OARE data during the Orbiter reentry phase. The data examined include the flight regime from orbital altitudes down to about 90 km which covers the free-molecule-flow regime and the upper altitude fringes of the rarefied-flow transition into the hypersonic continuum. Ancillary flight data on Orbiter position, orientation, velocity, and rotation rates have been used in models to transform the measured accelerations to the Orbiter center-of-gravity, from which aerodynamic accelerations along the Orbiter body axes have been calculated. Residual offsets introduced in the measurements by unmodeled Orbiter forces are identified and discussed. Direct comparisons are made between the OARE flight data and an independent micro-gravity accelerometer experiment, the High Resolution Accelerometer Package (HiRAP), which also obtained flight data on reentry during the mission down to about 95 km. The resulting OARE aerodynamic acceleration measurements along the Orbiter's body axis, aid the normal to axial acceleration ratio in the free-molecule-flow and transition-flow regimes are presented and compared with numerical simulations from three direct simulation Monte Carlo codes.

  20. Impacts of water resources development on flow regimes in the Brazos River.

    PubMed

    Vogl, Adrian L; Lopes, Vicente L

    2009-10-01

    The Brazos River, the second largest basin in Texas, represents one of the most highly developed river systems in the state. Thirty-nine reservoirs with capacities greater than 5,000 acre-feet are currently in operation in the basin. Impacts on stream ecosystems are evidenced by changes in flow regimes and resulting changes in fish assemblages over the past 50 years. These changes have been widely attributed to human impacts, through the construction of dams, diversion of water supplies for agricultural and municipal uses, and land use change. However, streamflow regimes result from a complex mix of drivers that include climate, topography, land cover, land use practices, reservoir management practices, dam releases, and water consumption patterns, making determination of anthropogenic impacts problematic. This study quantifies changes in flow regime and probable historical drivers including precipitation, dam construction, population growth, and changing water demand in the Brazos River basin over the past 100 years. Results indicate that the climate of the basin has been relatively stable over the study period, while large-scale changes in human population densities and intense water resources development are correlated with impacts on flow regimes, decreasing the frequency and magnitude of high flow events and stabilizing low flows. These changes have resulted in an increase of habitat generalist fish species, a decrease of native obligate riverine fishes, and an overall homogenization of species assemblages. The results of this study indicate the importance of combining ecological data with an assessment of social drivers for a greater understanding of the dynamics of river basin systems. PMID:18819012

  1. Thermal and dynamical regimes of single- and two-phase magmatic flow in dikes

    NASA Technical Reports Server (NTRS)

    Carrigan, Charles R.; Schubert, Gerald; Eichelberger, John C.

    1992-01-01

    The coupling between thermal and dynamical regimes of single- and two-phase magmatic flow in dikes, due to temperature-dependent viscosity and dissipation, was investigated using finite element calculations of magma flow in dikelike channels with length-to-width ratios of 1000:1 or more. Solutions of the steady state equations governing magma flow are obtained for a variety of conditions ranging from idealized plane-parallel models to cases involving nonparallel geometry and two-phase flows. The implications of the numerical simulations for the dynamics of flow in a dike-reservoir system and the consequences of dike entrance conditions on magmatic storage are discussed. Consideration is also given to an unmixing/self-lubrication mechanism which may be important for the lubrication of silicic magmas rising to the earth's surface in mixed magma ascent scenarios, which naturally segregates magma mixtures of two components with differing viscosities to minimize the driving pressure gradient.

  2. Thermal and dynamical regimes of single- and two-phase magmatic flow in dikes

    SciTech Connect

    Carrigan, C. .; Schubert, G.; Eichelberger, J.C. California Univ., Los Angeles Alaska Univ., Fairbanks )

    1992-11-01

    The coupling between thermal and dynamical regimes of single- and two-phase magmatic flow in dikes, due to temperature-dependent viscosity and dissipation, was investigated using finite element calculations of magma flow in dikelike channels with length-to-width ratios of 1000:1 or more. Solutions of the steady state equations governing magma flow are obtained for a variety of conditions ranging from idealized plane-parallel models to cases involving nonparallel geometry and two-phase flows. The implications of the numerical simulations for the dynamics of flow in a dike-reservoir system and the consequences of dike entrance conditions on magmatic storage are discussed. Consideration is also given to an unmixing/self-lubrication mechanism which may be important for the lubrication of silicic magmas rising to the earth's surface in mixed magma ascent scenarios, which naturally segregates magma mixtures of two components with differing viscosities to minimize the driving pressure gradient. 56 refs.

  3. Horizontal plasma flow velocities in the ionosphere of Mars - A test case for the solar wind interaction

    NASA Technical Reports Server (NTRS)

    Singhal, R. P.; Whitten, R. C.

    1988-01-01

    On the apparently nonmagnetic planets Mars and Venus, ionospheric plasma can be driven from the day to the nightside by two different mechanisms: (1) the pressure gradient force across the terminator, and (2) a solar wind-induced force via a viscous boundary layer interaction. Calculations of the horizontal flow velocities in the ionosphere of Mars using the two mechanisms produce results differing by an order of magnitude. It is pointed out that the detailed observations of the horizontal flow velocity in the ionosphere of Mars may provide a test case for the resolution of some problems relating to the interaction of the solar wind with the planets Mars and Venus.

  4. Flow Regime Based Climatologies of Lightning Probabilities for Spaceports and Airports

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Sharp, David; Spratt, Scott; Lafosse, Richard A.

    2008-01-01

    The objective of this work was to provide forecasters with a tool to indicate the warm season climatological probability of one or more lightning strikes within a circle at a site within a specified time interval. This paper described the AMU work conducted in developing flow regime based climatologies of lightning probabilities for the SLF and seven airports in the NWS MLB CWA in east-central Florida. The paper also described the GUI developed by the AMU that is used to display the data for the operational forecasters. There were challenges working with gridded lightning data as well as the code that accompanied the gridded data. The AMU modified the provided code to be able to produce the climatologies of lightning probabilities based on eight flow regimes for 5-, 10-, 20-, and 30-n mi circles centered on eight sites in 1-, 3-, and 6-hour increments.

  5. The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.

    PubMed

    Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao

    2016-01-01

    Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results. PMID:27563907

  6. Treatment of municipal wastewater using horizontal flow constructed wetlands in Egypt.

    PubMed

    Abou-Elela, Sohair I; Golinelli, G; Saad El-Tabl, Abdou; Hellal, Mohammed S

    2014-01-01

    The aim of this study was to evaluate the performance of two pilot horizontal flow constructed wetlands (HFCWs) with and without vegetation. Three types of plants namely Canna, Phragmites australis and Cyprus papyrus were used. The surface area of each plant was 654 m(2). The flow rate was 20 m(3) d(-1) and the organic loading rate range was 1.7-3.4 kg BOD d(-1) with a detention time of 11 days. The results obtained showed that planted HFCW produced high quality effluent in terms of reduction of chemical oxygen demand (COD; 88%), biochemical oxygen demand (BOD; 91%) and total suspended solids (TSS; 92%) as well as nutrient removal. In addition, 4 logs of total coliform were removed from the planted unit compared with only 3 logs in the unplanted one. The phosphate uptake by the plants reached 29, 30.91 and 38.9 g P m(-2) for Canna, Phragmites and Cyprus, respectively, with 60% removal rate in the treated effluent. The nitrogen uptake by the same plants reached 63.1, 49.46 and 82.33 g N m(-2). Although, the unplanted unit proved to be efficient in the removal of COD, BOD and TSS, it lacks efficiency in pathogen and nutrient removal. The reclaimed wastewater, after disinfection, could be reused for non-restricted irrigation purposes. PMID:24434966

  7. Nitrogen transforming community in a horizontal subsurface-flow constructed wetland.

    PubMed

    Coban, Oksana; Kuschk, Peter; Kappelmeyer, Uwe; Spott, Oliver; Martienssen, Marion; Jetten, Mike S M; Knoeller, Kay

    2015-05-01

    Constructed wetlands are important ecosystems with respect to nitrogen cycling. Here we studied the activity and abundance of nitrogen transforming bacteria as well as the spatial distribution of nitrification, anaerobic ammonium oxidation (anammox), and denitrification processes in a horizontal subsurface-flow constructed wetland. The functional genes of the nitrogen cycle were evenly distributed in a linear way along the flow path with prevalence at the superficial points. The same trend was observed for the nitrification and denitrification turnover rates using isotope labeling techniques. It was also shown that only short-term incubations should be used to measure denitrification turnover rates. Significant nitrate consumption under aerobic conditions diminishes nitrification rates and should therefore be taken into account when estimating nitrification turnover rates. This nitrate consumption was due to aerobic denitrification, the rate of which was comparable to that for anaerobic denitrification. Consequently, denitrification should not be considered as an exclusively anaerobic process. Phylogenetic analysis of hydrazine synthase (hzsA) gene clones indicated the presence of Brocadia and Kuenenia anammox species in the constructed wetland. Although anammox bacteria were detected by molecular methods, anammox activity could not be measured and hence this process appears to be of low importance in nitrogen transformations in these freshwater ecosystems. PMID:25744184

  8. Numerical simulation of droplets deposition in a horizontal turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Shwaish, Ibraheem K.

    1999-11-01

    In this dissertation, a two-phase, air-droplets, dilute, turbulent, and steady state flow in a horizontal rectangular channel, is modeled and numerically simulated using a modified KIVA-3V code. The deposition of different sizes of droplets on the walls of the channel is also studied. In this model, the interaction effects between the phases (two-way coupling) are considered by source terms in the momentum and energy equations for the continuous phase and by the instantaneous local velocity of the air in the droplet equation of motion, which includes the aerodynamic and gravitational forces. The turbulence is modeled by a k-ɛ model. The interaction effects between the turbulence and the dispersed droplets are also taken into account. The effects of the turbulence on the droplets are modeled by a fluctuating component added to the local air velocity in the droplet equation of motion. The effects of the droplets on the turbulence are modeled by two extra terms in the equation of motion for k and for ɛ. A stochastic model, which includes the spray equation, the droplet equation of motion, and a computational particle technique, is utilized. The flow variables in this simulation are consistent with theory and with experimental correlations. The large droplet behaviors are consistent with theory and experiments. The small droplet behavior agrees with some studies and contradicts others.

  9. Phase splitting of wet steam in annular flow through a horizontal impacting tee

    SciTech Connect

    Chien, S.F.; Rubel, M.T. )

    1992-11-01

    Phase splitting occurs during gas/liquid two-phase flow through pipe junctions and causes a gas/liquid mass ratio in the outlet legs of the junction that is different form that at the inlet. In steamflood distribution networks, this results in different steam qualities at the outlets of a junction than at the inlet. This, in turn, results in a heat distribution not in accordance with the mass distribution in the outlets of the tee. Because heat management of a steamflood project is important for both economic incentives and ultimate recovery, phase splitting must be understood and controlled. This paper presents the results of an experimental investigation conducted on phase splitting of wet steam during annular flow through a horizontal 2-in. impacting tee. The experimental operating range included inlet pressures of 400 and 600 psig, inlet mass fluxes form 1,180 to 10,150 lbm/(in[sup 2]-hr), inlet steam qualities form 0.2 to 0.8, and outlet vapor extraction ratios for one outlet leg from 0.2 to 0.5.

  10. Sensitivity of atmospheric flow regimes to anthropogenic forcing: Insights from an intermediate atmospheric model

    NASA Astrophysics Data System (ADS)

    Khatiwala, S.

    2003-04-01

    Changes in the frequency of extreme events are of great societal importance. Recent work suggests that these changes can be surprisingly large for variables with ``fat-tailed'' probability density functions (PDFs) even for small mean changes in climate. Fat-tailed, and in particular exponential, PDFs imply a greater likelihood of occurrence of large fluctuations (``extreme events''). The exponentially distributed persistence time of anomalous atmospheric flow patterns known as weather regimes is a climatically important example. The notion of atmospheric weather regimes as persistent, quasi-stationary flow patterns controlled by intermittently attracting fixed points in the atmosphere's phase space led Palmer (1999) to explore the behavior of low-dimensional chaotic systems. Based on insight from these simpler systems, Palmer hypothesized that the response of climate to a small imposed forcing (such as the anthropogenic emission of greenhouse gases) would manifest itself primarily in terms of the PDFs associated with regimes, while the spatial patterns of these regimes would be relatively unchanged. Palmer focused on changes in the average frequency of occurrence of regimes. However, recent experiments (Khatiwala et al, 2001) with simple dynamical and stochastic systems suggest that a potentially more damaging way in which the atmosphere can respond to small perturbations is through changes in the frequency of occurrence of extremely persistent events. In common with the atmosphere, these systems too are characterized by both regime behavior and exponential PDFs of persistence time. Consequently, small perturbations in external parameters can change the probability of occurrence of persistent events by many orders of magnitude. This extreme sensitivity is directly related to the stability properties of the system. An immediate question then is whether more complex geophysical systems with multiple regimes such as the atmosphere, are similarly sensitive to small