Science.gov

Sample records for horizontal-typed mocvd chamber

  1. Safety-Enclosure System For MOCVD Process Chamber

    NASA Technical Reports Server (NTRS)

    Singletery, James, Jr.; Velasquez, Hugo; Warner, Joseph

    1995-01-01

    Safety-enclosure system filled with nitrogen surrounds reaction chamber in which metallo-organic chemical vapor deposition (MOCVD) performed. Designed to protect against explosions and/or escaping toxic gases and particulates. Gas-purification subsystem ensures during loading and unloading of process materials, interior of MOCVD chamber exposed to less than 1 ppm of oxygen and less than 5 ppm of water in nitrogen atmosphere. Toxic byproducts of MOCVD process collected within inert atmosphere. Enclosure strong enough to contain any fragments in unlikely event of explosion.

  2. Solid source MOCVD system

    DOEpatents

    Hubert, Brian N.; Wu, Xin Di

    1998-01-01

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metalorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition.

  3. Solid source MOCVD system

    DOEpatents

    Hubert, B.N.; Wu, X.D.

    1998-10-13

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metallorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition. 13 figs.

  4. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  5. In-situ thin films by MOCVD

    SciTech Connect

    Norris, P.E.; Orlando, G.W. )

    1990-01-01

    This paper reports on the growth of high quality yttrium barium copper oxide (YBCO) thin films by MOCVD. Three MOCVD processes have been studied: a two-step (growth/post anneal) process requiring O{sub 2} anneal at 950--980 C, an in-situ (one step, no post growth anneal) process at 800--850 C and a plasma-enhanced, in-situ process (PE-MOCVD), which is operable at still lower substrate temperatures. The in-situ PE-MOCVD process is of great interest since, to a substantial degree, the growth temperature determines the degree of compatibility of a process with substrate materials and existing device technologies, such as VLSI-SilicoVLSI-Silicon.

  6. MOCVD OF YSZ COATINGS USING ?-DIKETONATE PRECURSORS

    SciTech Connect

    Varanasi, Venu G; Besmann, Theodore M; Hyde, Robin L.; Payzant, E Andrew; Anderson, Timothy J

    2009-01-01

    Metallorganic chemical vapor deposition (MOCVD) was used to fabricate yttria-stabilized zirconia as a thermal barrier coating. The MOCVD precursors were Y(tmhd)3 and Zr(tmhd)4 (tmhd = 2, 2, 6, 6-tetramethyl-3, 5-heptanedianato) and delivered via aerosol assisted liquid delivery (AALD). The maximum tetragonal YSZ coating rate was 14.2 1.3 m h -1 (at 845oC) yielding a layered coating microstructure. The growth was first-order with temperature (T < 827oC) with an apparent activation energy (Ea) of 50.9 4.3 kJ mol -1. Coating efficiency was a maximum of approximately 10% at the highest growth rate.

  7. MOCVD deposition of YSZ on stainless steels

    NASA Astrophysics Data System (ADS)

    Chevalier, S.; Kilo, M.; Borchardt, G.; Larpin, J. P.

    2003-01-01

    Yttria stabilized zirconia was deposited on stainless steel using the metal-organic chemical vapor deposition (MOCVD) technique, from β-diketonate precursors. The variation of the evaporation temperatures of yttrium and zirconium precursor allowed to control the level of Y within the film. Over the temperature range 125-150 °C, the Y content increased from 2.5 to 17.6 at.%. X-ray diffraction (XRD) analyses evidenced tetragonal phase of zirconia when the Y content was below 8 at.%, and cubic phase for higher concentration. Sputtered neutral mass spectrometry (SNMS) profiles confirmed that the control and stability of Y precursor temperature were of major importance to guarantee the homogeneity of the deposited films.

  8. Flow chamber

    DOEpatents

    Morozov, Victor

    2011-01-18

    A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

  9. Transport phenomena and the effects of reactor geometry for epitaxial GaN growth in a vertical MOCVD reactor

    NASA Astrophysics Data System (ADS)

    Tseng, Chien-Fu; Tsai, Tsung-Yen; Huang, Yen-Hsiu; Lee, Ming-Tsang; Horng, Ray-Hua

    2015-12-01

    In this study a numerical simulation was carried out to analyze the transport phenomena in a vertical type metal organic chemical vapor deposition (MOCVD) reactor for Gallium Nitride (GaN) growth. The simulated results were compared and validated by experiment. The effects of showerhead design and chamber height are investigated and discussed. It was found that, by properly adjusting the height of the chamber, both the growth rate and film uniformity could be significantly improved. This is attributed to the suppression of the thermal and mass transfer boundary layers by the injection flow of reacting gas mixtures, as well as the confined vertical vortices caused by the geometry of the reduced space. However, inappropriate design of the distance between the showerhead and the susceptor can result in uneven distribution of the organic source in the vicinity of the substrate surface resulting in an uneven growth rate of the GaN film. Consequently, there exists an optimal chamber height that will give the best growth rate and uniformity to the GaN film as discussed in this study. This study provides comprehensive insight into the transport phenomena of GaN growth that includes coupled heat and mass transfer as well as chemical reactions. The results provide important information in a succinct format and enable decisions to be made about the showerhead and the geometrical design and size of a vertical MOCVD reactor.

  10. Radiative efficiency of MOCVD grown QD lasers

    NASA Astrophysics Data System (ADS)

    Mawst, Luke; Tsvid, Gene; Dudley, Peter; Kirch, Jeremy; Park, J. H.; Kim, N.

    2010-02-01

    The optical spectral gain characteristics and overall radiative efficiency of MOCVD grown InGaAs quantum dot lasers have been evaluated. Single-pass, multi-segmented amplified spontaneous emission measurements are used to obtain the gain, absorption, and spontaneous emission spectra in real units. Integration of the calibrated spontaneous emission spectra then allows for determining the overall radiative efficiency, which gives important insights into the role which nonradiative recombination plays in the active region under study. We use single pass, multi-segmented edge-emitting in which electrically isolated segments allow to vary the length of a pumped region. In this study we used 8 section devices (the size of a segment is 50x300 μm) with only the first 5 segments used for varying the pump length. The remaining unpumped segments and scribed back facet minimize round trip feedback. Measured gain spectra for different pump currents allow for extraction of the peak gain vs. current density, which is fitted to a logarithmic dependence and directly compared to conventional cavity length analysis, (CLA). The extracted spontaneous emission spectrum is calibrated and integrated over all frequencies and modes to obtain total spontaneous radiation current density and radiative efficiency, ηr. We find ηr values of approximately 17% at RT for 5 stack QD active regions. By contrast, high performance InGaAs QW lasers exhibit ηr ~50% at RT.

  11. Bakeout Chamber Within Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Taylor, Daniel M.; Soules, David M.; Barengoltz, Jack B.

    1995-01-01

    Vacuum-bakeout apparatus for decontaminating and measuring outgassing from pieces of equipment constructed by mounting bakeout chamber within conventional vacuum chamber. Upgrade cost effective: fabrication and installation of bakeout chamber simple, installation performed quickly and without major changes in older vacuum chamber, and provides quantitative data on outgassing from pieces of equipment placed in bakeout chamber.

  12. Exposure chamber

    DOEpatents

    Moss, Owen R.; Briant, James K.

    1983-01-01

    An exposure chamber includes an imperforate casing having a fluid inlet at the top and an outlet at the bottom. A single vertical series of imperforate trays is provided. Each tray is spaced on all sides from the chamber walls. Baffles adjacent some of the trays restrict and direct the flow to give partial flow back and forth across the chambers and downward flow past the lowermost pan adjacent a central plane of the chamber.

  13. In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P. E.; Kear, B.; Gallois, B.

    1991-01-01

    Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  14. In Situ deposition of YBCO high-T(sub c) superconducting thin films by MOCVD and PE-MOCVD

    NASA Technical Reports Server (NTRS)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P.; Gallois, B.; Kear, B.

    1990-01-01

    Metalorganic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T( sub c) greater than 90 K and Jc approx. 10 to the 4th power A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  15. A synergistic approach to environmental concerns in large scale MOCVD processes

    SciTech Connect

    Thompson, A.G.; Tompa, G.S.; Zawadzki, P.A.; McKee, M.; Beckham, C.; Powers, A.; Gurary, A.; Moy, K.; Schumaker, N.E.

    1994-12-31

    Processes used in the production of epitaxial III-V semiconducting materials employ a wide variety of materials that are environmentally hazardous. As production volumes increase, the need to manage these materials becomes a serious concern. As the leading supplier of production scale single and multi-wafer MOCVD systems, EMCORE has taken the approach of minimizing the generation of waste by designing a reactor for high reactant utilization efficiency, and then trapping the remainder so that the exhaust stream is clean. They have paid particular attention to both operational efficiency and operator safety. The trapped materials are reduced to an inert state for subsequent commercial disposal; this is particularly important for phosphorus, which can be highly flammable if improperly handled. The reactor chamber deposits occur below the wafer level and typically are cleaned only after several hundred deposition cycles. These factors contribute to a quick cycle time and high uptime, both of which increase throughput. These issues become more important as the reactor size is increased and when multiple shifts are utilized. These points are exemplified by the operational experience with the new Enterprise series, which holds four 100 mm wafers (or seventeen 50mm wafers) per run. The authors will discuss the progressive trapping of solid As and P compounds and those hydride gases which are not completely decomposed in the reaction chamber. The use of computer modeling to scale the process to larger dimensions and to optimize the deposition conditions will also be discussed.

  16. Surface Stoichiometry, Structure, and Kinetics of GaAs MOCVD

    SciTech Connect

    Baucom, K.C.; Creighton, J.R.; Moffat, H.K.

    1999-01-29

    We have used reflectance-difference spectroscopy (RDS) to examine the surface phases of GaAs(100) during metalorganic chemical vapor deposition (MOCVD). Since the identities of two important surface phases were unknown, we determined their structure and stoichiometry using a variety of surface science techniques. The Type III phase is a newly characterized As-rich (1 X 2)-CH{sub 3} reconstruction. The Type II phase is a metastable derivative of the Type I phase. RDS also indicates that the surface during MOCVD has a considerable degree of heterogeneity. Deposition rates were measured over a similar range of conditions and the kinetically-limited regime was found to correlate with the Type III phase. A simple kinetic model was found to quantitatively describe the deposition rates.

  17. From research to manufacture—The evolution of MOCVD

    NASA Astrophysics Data System (ADS)

    Grodzinski, Piotr; Denbaars, Steven P.; Lee, H. C.

    1995-12-01

    The article provides an overview of the manufacturing capabilities of metalorganic chemical vapor deposition (MOCVD) technology and describes its application to the growth and fabrication of devices in three different material groups: AlGaAs/GaAs, AlInGaP, and AlGaN/GaN. Discussed are GaN blue light-emitting diodes (LEDs), AlInGaP red and yellow LEDs, and AlGaAs/GaAs vertical cavity surface-emitting lasers and high-electron-mobility transistors. Based on these examples, the evolution of MOCVD technology from fundamental materials studies and advanced materials development through the early stages of pilot manufacturing and large-volume manufacturing capabilities is demonstrated.

  18. Study of high [Tc] superconducting thin films grown by MOCVD

    SciTech Connect

    Erbil, A.

    1990-01-01

    Work is described briefly, which was carried out on development of techniques to grow metal-semiconductor superlattices (artificially layered materials) and on the copper oxide based susperconductors (naturally layered materials). The current growth technique utilized is metalorganic chemical vapor deposition (MOCVD). CdTe, PbTe, La, LaTe, and Bi[sub 2]Te[sub 3] were deposited, mostly on GaAs. Several YBa[sub 2]Cu[sub 3]O[sub 7] compounds were obtained with possible superconductivity at temperatures up to 550 K (1 part in 10[sup 4]). YBa[sub 2]Cu[sub 3]O[sub 7[minus]x] and Tl[sub 2]CaBa[sub 2]Cu[sub 2]O[sub y] thin films were deposited by MOCVD on common substrates such as glass.

  19. Equilibrium composition in II?VI telluride MOCVD systems

    NASA Astrophysics Data System (ADS)

    Ben-Dor, L.; Greenberg, J. H.

    1999-03-01

    Thermodynamic calculations, or computer simulation of the equilibrium composition, offer an excellent possibility to reduce drastically the elaborate trial-and-error experimental efforts of finding the optimal preparation conditions for MOCVD processes (temperature T, pressure P, initial composition of the vapors X), to limit them only to the P- T- X field of existence of the solid to be prepared and an acceptable yield of the product. In this communication equilibrium composition was investigated for MOCVD processes of CdTe, ZnTe, HgTe and solid solutions Cd xZn 1- xTe and Hg xCd 1- xTe. A number of volatile organometallic compounds have been used as precursors for MOCVD growth. These are dimethylcadmium (CH 3) 2Cd, DMCd; diethylzinc (C 2H 5) 2Zn, DEZn; diisopropylzinc [CH(CH 3) 2] 2Zn, DiPZn; diethyltellurium (C 2H 5) 2Te, DETe; diisopropyltellurium [CH(CH 3) 2] 2Te, DiPTe; methylallyltellurium CH 3TeCH 2CHCH 2, MATe. A choice of the particular combination of the precursors largely depends on the desired composition of the film to be prepared, especially in cases of solid solutions Cd xZn 1- xTe and Hg xCd 1- xTe where the vapor pressure of the precursors is instrumental for the composition of the vapor in the reaction zone and, ultimately, for the composition x of the solid solution. Equilibrium composition for II-VI telluride MOCVD systems was investigated at temperatures up to 873 K in hydrogen and inert gas atmospheres at pressures up to 1 atm. P- T- X regions of existence were outlined for each of the five materials.

  20. Exposure chamber

    DOEpatents

    Moss, Owen R.

    1980-01-01

    A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.

  1. Wire chamber

    DOEpatents

    Atac, Muzaffer

    1989-01-01

    A wire chamber or proportional counter device, such as Geiger-Mueller tube or drift chamber, improved with a gas mixture providing a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor.

  2. IONIZATION CHAMBER

    DOEpatents

    Redman, W.C.; Shonka, F.R.

    1958-02-18

    This patent describes a novel ionization chamber which is well suited to measuring the radioactivity of the various portions of a wire as the wire is moved at a uniform speed, in order to produce the neutron flux traverse pattern of a reactor in which the wire was previously exposed to neutron radiation. The ionization chamber of the present invention is characterized by the construction wherein the wire is passed through a tubular, straight electrode and radiation shielding material is disposed along the wire except at an intermediate, narrow area where the second electrode of the chamber is located.

  3. MOCVD of multimetal and noble metal films

    NASA Astrophysics Data System (ADS)

    Endle, James Patrick

    2000-11-01

    Carbon content in TiN films produced with tetrakis(dimethylamino)titanium (TDMAT) and methylhydrazine or dimethylhydrazine can be controlled at or below 10% with a N/Ti ratio of ˜1.3 at growth temperatures between 573 and 723 K. Post-dosing either hydrazine on a CVD TiN film results in additional N-Ti bonds, indicating a surface reaction between the two precursors occurs. Co-dosing hydrazine-like compounds with larger alkyl ligands than methyl resulted in additional carbon incorporation in the TiN film. A growth system, consisting of a load lock and growth chamber, and a precursor pyrolysis system were designed and built to study metalorganic chemical vapor deposition. Addition of a bubbler and a direct liquid injection system allowed for the vaporization of solid and liquid precursors and solutions of multiple precursors. A precursor pyrolysis system was designed for high and low vapor pressure precursors and high carrier gas flow rates. The systems were used to study (Al,Ti)N and Ir film growth. (Al,Ti)N was used as a template to study the incorporation of elements into a multimetal chemical vapor deposited film using NH3 and a DLI solution of TDMAT and the tris(dimethylarnino)alane dimer (TDMAA) in toluene-NH 3 significantly decreases the decomposition temperature of both precursors. Carbon was reduced by increasing the NH3 partial pressure, and the Al incorporation was increased by increasing the TDMAA/TDMAT ratio in the DLI solution. Exposure to ambient resulted in significant oxygen incorporation and the removal of carbon and nitrogen from the (AI,Ti)N film. Conformal (AI,Ti)N films were produced at 450 K in the presence of NH3 and at 550 K without NH3. The role of O2 in Ir film growth was studied with the newly designed equipment. O2 significantly decreases the decomposition temperature of (MeCp)Ir(COD) below 425 K by preventing a carbonaceous build-up on the iridium film. By decreasing the oxygen partial pressure, the island nucleation and coalescence

  4. MOCVD growth of vertically aligned InGaN nanowires

    NASA Astrophysics Data System (ADS)

    Kuo, H. C.; Su Oh, Tae; Ku, P.-C.

    2013-05-01

    In this work, we report the growth of vertically aligned bulk InGaN nanowires (NWs) on r-plane sapphire substrate by metal organic chemical vapor deposition (MOCVD). Through the optimization process of growth conditions, such as growth temperature and pressure, we obtained high density InGaN NWs consisting of one (0001) polar- and two equivalent {1101} semi-polar planes. We have shown the highest InGaN NWs wire density of 8×108 cm-2,with an average diameter of 300 nm and a length of 2 μm. From results of photoluminescence (PL) at 30 K and 300 K, we observed the intense and broad emission peak from InGaN NWs at around 595 nm, and confirmed that the luminescence could be tuned from 580 nm to 660 nm by controlling the indium flow (TMIn) rate. Our results indicate that MOCVD-grown InGaN NWs can be effective absorbers of the blue-green range of solar spectrum and may be one of the good candidates for high efficiency photovoltaic devices targeting at blue-green photons.

  5. Real-time physico-neural solutions for MOCVD

    SciTech Connect

    Kelkar, A.S.; Mahajan, R.L.; Sani, R.L.

    1995-12-31

    This paper presents an integrated physical neural network approach for the modeling and optimization of a vertical MOCVD reactor. A first-principles physical model for the reactor was solved numerically using the Fluid Dynamics Analysis Package (FIDAP). This transient model included property variation and thermodiffusion effects. Artificial Neural Network (ANN) models were then trained to predict the growth rate profiles within the reactor. The data used to train the network was obtained from FIDAP simulations for combinations of process parameters determined by statistical Design of Experiments (DOE) methodology. It is shown that the trained ANN predicts the behavior of the reactor accurately. Optimum process conditions to obtain a uniform thickness of the deposited film were determined and tested using the ANN model. The results demonstrate the power and robustness of ANNs for obtaining fast on-line responses to changing input conditions. This capability of ANNs is particularly important for implementing run-to-run and on-line control of the MOCVD process.

  6. Ionization chamber

    DOEpatents

    Walenta, Albert H.

    1981-01-01

    An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

  7. Ionization chamber

    DOEpatents

    Walenta, A.H.

    An ionization chamber is described which has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionizes the gas.

  8. MOCVD growth of AlGaN UV LEDs

    SciTech Connect

    Han, J.; Crawford, M.H.

    1998-09-01

    Issues related to the MOCVD growth of AlGaN, specifically the gas-phase parasitic reactions among TMG, TMA, and NH{sub 3}, are studied using an in-situ optical reflectometer. It is observed that the presence of the well-known gas phase adduct (TMA: NH{sub 3}) could seriously hinder the incorporation behavior of TMGa. Relatively low reactor pressures (30--50 Torr) are employed to grow an AlGaN/GaN SCH QW p-n diode structure. The UV emission at 360 nm (FWHM {approximately} 10 nm) represents the first report of LED operation from an indium-free GaN QW diode.

  9. MOCVD manifold switching effects on growth and characterization

    NASA Astrophysics Data System (ADS)

    Clark, Ivan O.; Fripp, Archibald L.; Jesser, William A.

    1991-02-01

    A combined modeling and experimental approach is used to quantify the effects of various manifold components on the switching speed in metalorganic chemical vapor deposition (MOCVD). In particular, two alternative vent-run high-speed switching manifold designs suitable for either continuous or interrupted growth have been investigated. Both designs are incorporated in a common manifold, instrumented with a mass spectrometer. The experiments have been performed using nitrogen as the transport gas and argon as the simulated source gas. The advantages and limitations of two designs are discussed. It is found that while constant flow manifold switching systems may have fluid dynamic advantages, care must be taken to minimize sections of the supply manifold with low flow rates if rapid changes in alloy composition are required.

  10. Magma chambers

    NASA Technical Reports Server (NTRS)

    Marsh, Bruce D.

    1989-01-01

    Recent observational and theoretical investigations of terrestrial magma chambers (MCs) are reviewed. Consideration is given to the evidence for MCs with active convection and crystal sorting, problems of direct MC detection, theoretical models of MC cooling, the rheology and dynamics of solidification fronts, crystal capture and differentiation, convection with solidification, MC wall flows, and MC roof melting. Diagrams, graphs, and a list of problems requiring further research are provided.

  11. Effect of crystal orientation on anisotropic etching and MOCVD growth of grooves on GaAs

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.; Wilt, David M.

    1989-01-01

    Grooves can be formed on GaAs by wet-chemical anisotropic etching of surfaces masked by photoresist stripes. The effect of crystal orientation on the shape of the grooves etched and on subsequent epitaxial growth by MOCVD is presented. The polar lattice increases the complexity of the etching and growth processes. The slow-etch planes defined by anisotropic etching are not always the same as the growth facets produced during MOCVD deposition, especially for deposition on higher order planes.

  12. Study of TiO2 nanomembranes obtained by an induction heated MOCVD reactor

    NASA Astrophysics Data System (ADS)

    Crisbasan, A.; Chaumont, D.; Sacilotti, M.; Crisan, A.; Lazar, A. M.; Ciobanu, I.; Lacroute, Y.; Chassagnon, R.

    2015-12-01

    Nanostructures of TiO2 were grown using the metal oxide chemical vapor deposition (MOCVD) technique. The procedure used induction heating on a graphite susceptor. This specific feature and the use of cobalt and ferrocene catalysts resulted in nanomembranes never obtained by common MOCVD reactors. The present study discusses the preparation of TiO2 nanomembranes and the dependence of nanomembrane structure and morphology on growth parameters.

  13. MOCVD of very thin films of lead lanthanum titanate

    SciTech Connect

    Beach, D.B.; Vallet, C.E.

    1995-12-31

    Films of lead lanthanum titanate were deposited using metal-organic chemical vapor deposition (MOCVD) at temperatures between 500 and 550{degrees}C in a hot-wall reactor. The precursors used were Pb(THD){sub 2}, La(THD){sub 3}, and Ti(THD){sub 2}(I-OPr){sub 2} where THD = 2,2,6,6-tetramethyl-3,5-heptanedionate, O{sub 2}C{sub 11}H{sub 19}, and I-OPr = isopropoxide, OC{sub 3}H{sub 7}. The three precursors were delivered to the reactor using a single solution containing all three precursors dissolved in tetraglyme and the precursor solution was volatilized at 225{degrees}C. Films were deposited on Si and Si/Ti/Pt substrates, and characterized using Rutherford Backscattering Spectroscopy (RPS) and X-ray diffraction(XRD). Films deposited at 550{degrees}C had a composition which was close to that of the precursor solution while films deposited at 500{degrees}C were deficient in lanthanum. Even at 500{degrees}C, the desired perovskite phase showed an increase in the intensity of the X-ray lines, but did not change the width of these lines, implying the grain sizes had remained unchanged.

  14. MOCVD process technology for affordable, high-yield, high-performance MESFET structures. Phase 3: MIMIC

    NASA Astrophysics Data System (ADS)

    1993-01-01

    Under the MIMIC Program, Spire has pursued improvements in the manufacturing of low cost, high quality gallium arsenide MOCVD wafers for advanced MIMIC FET applications. As a demonstration of such improvements, Spire was tasked to supply MOCVD wafers for comparison to MBE wafers in the fabrication of millimeter and microwave integrated circuits. In this, the final technical report for Spire's two-year MIMIC contract, we report the results of our work. The main objectives of Spire's MIMIC Phase 3 Program, as outlined in the Statement of Work, were as follows: Optimize the MOCVD growth conditions for the best possible electrical and morphological gallium arsenide. Optimization should include substrate and source qualification as well as determination of the optimum reactor growth conditions; Perform all work on 75 millimeter diameter wafers, using a reactor capable of at least three wafers per run; and Evaluate epitaxial layers using electrical, optical, and morphological tests to obtain thickness, carrier concentration, and mobility data across wafers.

  15. Deposition studies and coordinated characterization of MOCVD YBCO films on IBAD-MgO templates.

    SciTech Connect

    Aytug, Tolga; Paranthaman, Mariappan Parans; Heatherly Jr, Lee; Zhang, Yifei; Kim, Kyunghoon; Goyal, Amit; Maroni, V. A.; List III, Frederick Alyious

    2009-01-01

    A recently installed research metal organic chemical vapor deposition (MOCVD) system at Oak Ridge National Laboratory, provided by SuperPower, Inc., has been used to investigate the processing variables of MOCVD YBCO precursors and trends in the resulting properties. Systematic studies of film growth were carried out by optimizing deposition temperature and oxygen flow rate. Structural and superconducting properties of the YBCO films were analyzed by extensive X-ray diffraction, scanning electron microspcopy and transport measurements. The identification of intermediate phase formations after the YBCO precursor transformation was investigated with coordinated reel-to-reel Raman microprobe analysis. With the combination of these characterization techniques, an improved understanding of the growth characteristics of MOCVD YBCO films was established. Finally, critical current densities greater than 2 MA/cm2 for film thicknesses of 0.8 m have been demonstrated.

  16. Influence of Natural Convection and Thermal Radiation Multi-Component Transport in MOCVD Reactors

    NASA Technical Reports Server (NTRS)

    Lowry, S.; Krishnan, A.; Clark, I.

    1999-01-01

    The influence of Grashof and Reynolds number in Metal Organic Chemical Vapor (MOCVD) reactors is being investigated under a combined empirical/numerical study. As part of that research, the deposition of Indium Phosphide in an MOCVD reactor is modeled using the computational code CFD-ACE. The model includes the effects of convection, conduction, and radiation as well as multi-component diffusion and multi-step surface/gas phase chemistry. The results of the prediction are compared with experimental data for a commercial reactor and analyzed with respect to the model accuracy.

  17. Synchrotron radiation assistant MOCVD deposition of ZnO films on Si substrate

    NASA Astrophysics Data System (ADS)

    Guangtao, Yang; Guobin, Zhang; Hongjun, Zhou; Zeming, Qi

    2009-06-01

    The growth of ZnO film on Si(1 0 0) substrate has been studied with synchrotron radiation (SR) assisted MOCVD method. The diethylzinc (DEZn) and CO 2 are used as source materials, while Nitrogen is employed as a carrier gas for DEZn. With the assistance of SR the ZnO film can be deposited even at room temperature. XRD, SEM and photoluminescence (PL) studies show that the crystal quality of ZnO films grown with the assistance of SR is higher than that of those without SR assistance. The growth mechanism of ZnO film with the SR assistant MOCVD system is primarily discussed.

  18. Method for Improving Mg Doping During Group-III Nitride MOCVD

    DOEpatents

    Creighton, J. Randall; Wang, George T.

    2008-11-11

    A method for improving Mg doping of Group III-N materials grown by MOCVD preventing condensation in the gas phase or on reactor surfaces of adducts of magnesocene and ammonia by suitably heating reactor surfaces between the location of mixing of the magnesocene and ammonia reactants and the Group III-nitride surface whereon growth is to occur.

  19. Photoluminescence of Nitrogen-Doped Zinc Selenide by Photo-Assisted Mocvd.

    NASA Astrophysics Data System (ADS)

    Gillespie, Paul Matthew

    Zinc selenide is a wide band-gap (2.67 eV) II -VI compound semiconductor with potential use as a blue electro-optic device material. Problems with obtaining suitable p-type conductivity have limited device development. Zinc selenide epitaxial films, doped with nitrogen from NH _3, have been grown on gallium arsenide substrates by laser-assisted metal organic chemical vapor deposition (MOCVD). The effect of nitrogen doping was investigated with and without direct surface irradiation incident on the surface from a broad-band light source. Low temperature (8 K) photoluminescence spectroscopy has confirmed the incorporation of nitrogen as a shallow acceptor by the presence of acceptor-bound-excitons and associated donor -acceptor-pair recombination emissions. The MOCVD growth parameters have been optimized based on the presence of characteristic features in the photoluminescence spectra. Growth rate mechanisms have been proposed for both laser-assisted MOCVD and direct-irradiation MOCVD. Simultaneous interaction of the two photo-assisted techniques show that direct irradiation of the surface does not enhance the growth rate under the laser-assisted condition. This confirms that direct surface irradiation growth mechanisms involve the interaction of photo-generated carriers with alkyl groups from the precursors.

  20. A novel MOCVD reactor for growth of high-quality GaN-related LED layers

    NASA Astrophysics Data System (ADS)

    Hu, Shaolin; Liu, Sheng; Zhang, Zhi; Yan, Han; Gan, Zhiyin; Fang, Haisheng

    2015-04-01

    Gallium nitride (GaN), a direct bandgap semiconductor widely used in bright light-emitting diodes (LEDs), is mostly grown by metal-organic chemical vapor deposition (MOCVD) method. A good reactor design is critical for the production of high-quality GaN thin films. In this paper, we presented a novel buffered distributed spray (BDS) MOCVD reactor with vertical gas sprayers and horizontal gas inlets. Experiments based on a 36×2″ BDS reactor were conducted to examine influence of the process parameters, such as the operating pressure and the gas flow rate, on the growth efficiency and on the layer thickness uniformity. Transmission electron microscopy (TEM) and photoluminescence (PL) are further conducted to evaluate quality of the epitaxial layers and to check performance of the reactor. Results show that the proposed novel reactor is of high performance in growing high-quality thin films, including InGaN/GaN multiquantum wells (MQWs) structures.

  1. Structural and optical characterization of MOCVD-grown ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pagni, O.; James, G. R.; Leitch, A. W. R.

    2004-03-01

    We report on the characterization of ZnO thin films grown by metal organic chemical vapor deposition (MOCVD) using diethyl zinc (DEZ) and tert-butanol (TBOH) as precursors. Substrate temperature proved to be a crucial factor in the crystallization process, as it vastly impacted the structural properties of the samples studied. Highly c-axis oriented films with large grain size (52 nm), low tensile strain (0.6%), uniform substrate coverage and a columnar structure devoid of hexagonal needles were successfully deposited on n-Si (100) substrates. The temperature-dependent luminescence spectra recorded confirmed the excellent quality of the material obtained in this work. Our results so far set TBOH apart as an outstanding oxygen source for the MOCVD growth of ZnO.

  2. RF plasma enhanced MOCVD of yttria stabilized zirconia thin films using octanedionate precursors and their characterization

    NASA Astrophysics Data System (ADS)

    Chopade, S. S.; Nayak, C.; Bhattacharyya, D.; Jha, S. N.; Tokas, R. B.; Sahoo, N. K.; Deo, M. N.; Biswas, A.; Rai, Sanjay; Thulasi Raman, K. H.; Rao, G. M.; Kumar, Niranjan; Patil, D. S.

    2015-11-01

    Yttria stabilized zirconia thin films have been deposited by RF plasma enhanced MOCVD technique on silicon substrates at substrate temperature of 400 °C. Plasma of precursor vapors of (2,7,7-trimethyl-3,5-octanedionate) yttrium (known as Y(tod)3), (2,7,7-trimethyl-3,5-octanedionate) zirconium (known as Zr(tod)4), oxygen and argon gases is used for deposition. To the best of our knowledge, plasma assisted MOCVD of YSZ films using octanediaonate precursors have not been reported in the literature so far. The deposited films have been characterized by GIXRD, FTIR, XPS, FESEM, AFM, XANES, EXAFS, EDAX and spectroscopic ellipsometry. Thickness of the films has been measured by stylus profilometer while tribological property measurement has been done to study mechanical behavior of the coatings. Characterization by different techniques indicates that properties of the films are dependent on the yttria content as well as on the structure of the films.

  3. Photoreflectance for in-situ characterization of MOCVD growth of semiconductors under micro-gravity conditions

    NASA Technical Reports Server (NTRS)

    Pollak, Fred H.

    1990-01-01

    A contactless electromodulation technique of photoreflectance (PR) was developed for in-situ monitoring of metal-organic chemical vapor deposition (MOCVD) semiconductor growth for micro-gravity applications. PR can be employed in a real MOCVD reactor including rotating substrate (approximately 500 rev/min) in flowing gases and through a diffuser plate. Measurements on GaAs and Ga(0.82)Al(0.18)As were made up to 690 C. The direct band gaps of In(x)Ga(1-x)As (x = 0.07 and 0.16) were evaluated up to 600 C. In order to address the question of real time measurement, the spectra of the direct gap of GaAs at 650 C was obtained in 30 seconds and 15 seconds seems feasible.

  4. Two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1998-05-05

    A vertical two chamber reaction furnace is described. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 C and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  5. Two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1998-05-05

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  6. Final report on LDRD project : outstanding challenges for AlGaInN MOCVD.

    SciTech Connect

    Mitchell, Christine Charlotte; Follstaedt, David Martin; Russell, Michael J.; Cross, Karen Charlene; Wang, George T.; Creighton, James Randall; Allerman, Andrew Alan; Koleske, Daniel David; Lee, Stephen Roger; Coltrin, Michael Elliott

    2005-03-01

    The AlGaInN material system is used for virtually all advanced solid state lighting and short wavelength optoelectronic devices. Although metal-organic chemical vapor deposition (MOCVD) has proven to be the workhorse deposition technique, several outstanding scientific and technical challenges remain, which hinder progress and keep RD&A costs high. The three most significant MOCVD challenges are: (1) Accurate temperature measurement; (2) Reliable and reproducible p-doping (Mg); and (3) Low dislocation density GaN material. To address challenge (1) we designed and tested (on reactor mockup) a multiwafer, dual wavelength, emissivity-correcting pyrometer (ECP) for AlGaInN MOCVD. This system simultaneously measures the reflectance (at 405 and 550 nm) and emissivity-corrected temperature for each individual wafer, with the platen signal entirely rejected. To address challenge (2) we measured the MgCp{sub 2} + NH{sub 3} adduct condensation phase diagram from 65-115 C, at typical MOCVD concentrations. Results indicate that it requires temperatures of 80-100 C in order to prevent MgCp{sub 2} + NH{sub 3} adduct condensation. Modification and testing of our research reactor will not be complete until FY2005. A new commercial Veeco reactor was installed in early FY2004, and after qualification growth experiments were conducted to improve the GaN quality using a delayed recovery technique, which addresses challenge (3). Using a delayed recovery technique, the dislocation densities determined from x-ray diffraction were reduced from 2 x 10{sup 9} cm{sup -2} to 4 x 10{sup 8} cm{sup -2}. We have also developed a model to simulate reflectance waveforms for GaN growth on sapphire.

  7. Characteristics of CoxTi1-xO2 thin films deposited by MOCVD

    SciTech Connect

    McClure, A.; Kayani, A.; Idzerda, Y.U.; Arenholz, E.; Cruz, E.

    2008-05-09

    This paper deals with the growth and characterization of ferromagnetic cobalt doped TiO{sub 2} thin films deposited by liquid precursor metal organic chemical vapor deposition (MOCVD) using a new combination of the source materials Co(TMHD){sub 3}, tetrahydrofuran (THF), and titanium isopropoxide (TIP). An array of experiments reveals the intrinsic ferromagnetic nature of the grown films, and suggests that the magnetism is not generated by oxygen vacancies.

  8. Radiation effects on p+n InP junctions grown by MOCVD

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Walters, Robert J.; Panunto, M. J.; Summers, Geoffrey P.

    1994-01-01

    The superior radiation resistance of InP over other solar cell materials such as Si or GaAs has prompted the development of InP cells for space applications. The early research on radiation effects in InP was performed by Yamaguchi and co-workers who showed that, in diffused p-InP junctions, radiation-induced defects were readily annealed both thermally and by injection, which was accompanied by significant cell recovery. More recent research efforts have been made using p-InP grown by metalorganic chemical vapor deposition (MOCVD). While similar deep level transient spectroscopy (DLTS) results were found for radiation induced defects in these cells and in diffused junctions, significant differences existed in the annealing characteristics. After injection annealing at room temperature, Yamaguchi noticed an almost complete recovery of the photovoltaic parameters, while the MOCVD samples showed only minimal annealing. In searching for an explanation of the different annealing behavior of diffused junctions and those grown by MOCVD, several possibilities have been considered. One possibility is the difference in the emitter structure. The diffused junctions have S-doped graded emitters with widths of approximately 0.3 micrometers, while the MOCVD emitters are often doped with Si and have widths of approximately 300A (0.03 micrometers). The difference in the emitter thickness can have important effects, e.g. a larger fraction of the total photocurrent is generated in the n-type material for thicker emitters. Therefore the properties of the n-InP material may explain the difference in the observed overall annealing behavior of the cells.

  9. MOCVD growth of gallium nitride with indium surfactant

    NASA Astrophysics Data System (ADS)

    Won, Dong Jin

    In this thesis research, the effect of indium surfactant on Ga-polar and N-polar GaN films grown at 950 °C by MOCVD on various substrates such as Si-face SiC, bulk GaN, Si(111), and C-face SiC was studied to investigate the stress relaxation mechanism, structural, and optical properties of GaN films which were modified by the indium surfactant. The effect of indium surfactant on GaN films grown on SiC was studied first. In the 1.8 microm thick Ga-polar GaN films grown on lattice-mismatched Si-face SiC substrates utilizing indium surfactant at 950 °C, inverted hexagonal pyramid surface defects, so-called V-defects which consist of six (1011) planes, formed at threading dislocations on the GaN surface, which gave rise to the relaxation of compressive misfit stress in an elastic way. Simultaneously, enhanced surface mobility of Ga and N adatoms with indium surfactant lead to improved 2D growth, which may be contradictory to the formation of surface defects like V-defects. In order to find the driving force for V-defect formation in the presence of indium, a nucleation and growth model was developed, taking into consideration the strain, surface, and dislocation energies modified by indium surfactant. This model found that the V-defect formation can be energetically preferred since indium reduces the surface energy of the (1011) plane, which gives rise to the V-defect formation and growth that can overcome the energy barrier at the critical radius of the V-defect. These Ga-polar GaN films were found to be unintentionally doped with Si. Thus, an investigation into the effect of intentional Si doping at a constant TMIn flow rate on GaN films was also performed. Si turned out to be another important factor in the generation of V-defects because Si may be captured at the threading dislocation cores by forming Si -- N bonds, acting as a mask to locally prevent GaN growth. This behavior appeared to assist the initiation of the V-defect which enables V-defects to easily

  10. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors

    NASA Astrophysics Data System (ADS)

    Kebłowski, A.; Gawron, W.; Martyniuk, P.; Stepień, D.; Kolwas, K.; Piotrowski, J.; Madejczyk, P.; Kopytko, M.; Piotrowski, A.; Rogalski, A.

    2016-05-01

    In this paper we present progress in MOCVD growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool in fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping and without post grown annealing. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for long wavelength infrared photoconductors operated in HOT conditions. The (100) HgCdTe photoconductor optimized for 13-μm attain detectivity equal to 6.5x109 Jones and therefore outperform its (111) counterpart. The paper also presents technological progress in fabrication of MOCVD-grown (111) HgCdTe barrier detectors. The barrier device performance is comparable with state-of-the-art of HgCdTe photodiodes. The detectivity of HgCdTe detectors is close to the value marked HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07".

  11. MOCVD for solar cells, a transition towards a chamberless inline process

    NASA Astrophysics Data System (ADS)

    Barrioz, V.; Monir, S.; Kartopu, G.; Lamb, D. A.; Brooks, W.; Siderfin, P.; Jones, S.; Clayton, A. J.; Irvine, S. J. C.

    2015-03-01

    MOCVD has been associated with batch processing of III-V opto-electronic devices for decades, with epitaxial structures deposited on up to 200 mm diameter wafers. Recent development in thin film PV has seen the gap in conversion efficiencies closing in on that of the commonly found multicrystalline Si wafer based PV. To further improve the conversion efficiency of thin film PV towards the theoretical limits of single junction solar cells requires a technique such as MOCVD with scalability potential. Preliminary results on the development of a chamberless inline process are reported for up to 15 cm wide float glass, progressively coating each layer in the CdTe solar cell as the heated substrate passes under each coating head in turn and entirely at atmospheric pressure. Emphasis is made on ensuring that the chamberless coating heads can be operated safely using a combination of nitrogen curtain flows and a balanced exhaust pressure system. Results are also presented on the exclusion of oxygen and moisture from the coating area, achieved using the same gas flow isolation process. This paper also reviews the achievements made to-date in the transfer of the high efficiency batch MOCVD produced CdTe solar cell to the chamberless inline process demonstrating device quality thin films deposition.

  12. Recent progress in MOCVD growth for thermoelectrically cooled HgCdTe medium wavelength infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Gawron, W.; Martyniuk, P.; Kębłowski, A.; Kolwas, K.; Stępień, D.; Piotrowski, J.; Madejczyk, P.; Pędzińska, M.; Rogalski, A.

    2016-04-01

    The authors report on advanced metalorganic chemical vapour deposition (MOCVD) of Hg1-xCdxTe (HgCdTe) structures for high operating temperature, medium wavelength infrared (MWIR) detector application. MOCVD technology with wide range of composition and donor/acceptor doping and without post grown annealing was proved to be an excellent tool for HgCdTe heterostructure epitaxial growth used for uncooled photodetector design. The interdiffused multilayer process (IMP) technique was applied for the HgCdTe deposition. HgCdTe epilayers were grown at 350 °C with Hg source kept at 210 °C. The II/VI mole ratio was assumed in the range from 1.5 to 3 during CdTe/HgTe cycles of the IMP process. The MWIR detectors grown by MOCVD exhibit detectivity ∼7.3 × 1011 Jones at λPEAK = 3.5 μm and T = 230 K being determined by background limited photodetector (BLIP) condition.

  13. Synthesis of (Hg,Pb)(Sr,Ba) 2Ca 2Cu 3O z superconducting films via MOCVD and PLD

    NASA Astrophysics Data System (ADS)

    Klimonsky, S. O.; Samoilenkov, S. V.; Gorbenko, O. Yu.; Emelianov, D. A.; Lyashenko, A. V.; Lee, S. R.; Kaul, A. R.; Tretyakov, Yu. D.; Andrianov, D. G.; Kalinov, A. V.; Voloshin, I. F.

    2002-12-01

    (0 0 1)-oriented Sr-containing (Hg,Pb)-1223 films have been synthesised for the first time using the two-step procedure. Hg-free precursor films with the thickness up to 1 μm have been deposited by metalorganic chemical vapor deposition (MOCVD) or pulsed infra-red laser ablation (PLD) and then the films were annealed in a mercury-containing atmosphere in sealed quartz ampoules. No post-annealing in oxygen was used. The phase composition of the PLD-derived films depended crucially on the deposition temperature of the precursor films. MOCVD-derived films contained only very small amounts of non-superconducting phases according to XRD. The Tc=118 K and j c(77 K,0.01 T)=2.5×10 6A/cm 2 have been measured for the MOCVD-derived samples.

  14. The Mobile Chamber

    NASA Technical Reports Server (NTRS)

    Scharfstein, Gregory; Cox, Russell

    2012-01-01

    A document discusses a simulation chamber that represents a shift from the thermal-vacuum chamber stereotype. This innovation, currently in development, combines the capabilities of space simulation chambers, the user-friendliness of modern-day electronics, and the modularity of plug-and-play computing. The Mobile Chamber is a customized test chamber that can be deployed with great ease, and is capable of bringing payloads at temperatures down to 20 K, in high vacuum, and with the desired metrology instruments integrated to the systems control. Flexure plans to lease Mobile Chambers, making them affordable for smaller budgets and available to a larger customer base. A key feature of this design will be an Apple iPad-like user interface that allows someone with minimal training to control the environment inside the chamber, and to simulate the required extreme environments. The feedback of thermal, pressure, and other measurements is delivered in a 3D CAD model of the chamber's payload and support hardware. This GUI will provide the user with a better understanding of the payload than any existing thermal-vacuum system.

  15. Target chambers for gammashpere

    SciTech Connect

    Carpenter, M.P.; Falout, J.W.; Nardi, B.G.

    1995-08-01

    One of our responsibilities for Gammasphere, was designing and constructing two target chambers and associated beamlines to be used with the spectrometer. The first chamber was used with the early implementation phase of Gammasphere, and consisted of two spun-Al hemispheres welded together giving a wall thickness of 0.063 inches and a diameter of 12 inches.

  16. High resolution drift chambers

    SciTech Connect

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 ..mu..m resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs.

  17. Static diffusion cloud chambers

    NASA Technical Reports Server (NTRS)

    Ayers, G.

    1981-01-01

    The chamber geometry and optical arrangement are described. The supersaturation range is given and consists of readings taken at five fixed points: 0.25%, 0.5%, 0.75%, 1.0%, and 1.25%. The detection system is described including light source, cameras, and photocell detectors. The temperature control and the calibration of the chamber are discussed.

  18. Significance of microstructure for a MOCVD-grown YSZ thin film gas sensor

    SciTech Connect

    Vetrone, J.; Foster, C.; Bai, G.

    1996-11-01

    The authors report the fabrication and characterization of a low temperature (200--400 C) thin film gas sensor constructed from a MOCVD-grown yttria-stabilized zirconia (YSZ) layer sandwiched between two platinum thin film electrodes. A reproducible gas-sensing response is produced by applying a cyclic voltage which generates voltammograms with gas-specific current peaks and shapes. Growth conditions are optimized for preparing YSZ films having dense microstructures, low leakage currents, and maximum ion conductivities. In particular, the effect of growth temperature on film morphology and texture is discussed and related to the electrical and gas-sensing properties of the thin film sensor device.

  19. Morphology of ZnO grown by MOCVD on sapphire substrates

    NASA Astrophysics Data System (ADS)

    Munuera, C.; Zúñiga-Pérez, J.; Rommeluere, J. F.; Sallet, V.; Triboulet, R.; Soria, F.; Muñoz-Sanjosé, V.; Ocal, C.

    2004-03-01

    A quantitative roughness and microstructural analysis of ZnO grown on sapphire by atmospheric metalorganic chemical vapor deposition (MOCVD) is presented. In order to investigate the influence of the substrate on the morphology, different sapphire orientations have been employed. Scanning force microscopy data have been analyzed for a variety of thicknesses to elucidate, if possible, the growth mechanisms involved in the growth process. Our study reveals significant differences between morphologies depending on whether the substrate surface exhibits steps (misoriented a-, c- and r-planes) or not ( m-plane); however, no major differences on the calculated roughness coefficients have been found.

  20. Investigation of GaP/Si Heteroepitaxy on MOCVD Prepared Si(100) Surfaces

    SciTech Connect

    Warren, Emily L.; Kibbler, Alan E.; France, Ryan M.; Norman, Andrew G.; Olson, Jerry M.; McMahon, William E.

    2015-06-14

    Antiphase-domain (APD) free growth of GaP on Si has been achieved on Si surfaces prepared in situ by etching with AsH3. The pre-nucleation AsH3 etching removes O and C contaminants at a relatively low temperature, and creates a single-domain arsenic-terminated Si surface. The As-As dimer rows are all parallel to the step edges, and subsequent GaP growth by MOCVD retains this dimerization orientation. Both LEED and TEM indicate that the resulting epilayer is APD-free, and could thereby serve as a template for III-V/Si multijunction solar cells.

  1. High quality GaN-based LED epitaxial layers grown in a homemade MOCVD system

    NASA Astrophysics Data System (ADS)

    Haibo, Yin; Xiaoliang, Wang; Junxue, Ran; Guoxin, Hu; Lu, Zhang; Hongling, Xiao; Jing, Li; Jinmin, Li

    2011-03-01

    A homemade 7 × 2 inch MOCVD system is presented. With this system, high quality GaN epitaxial layers, InGaN/GaN multi-quantum wells and blue LED structural epitaxial layers have been successfully grown. The non-uniformity of undoped GaN epitaxial layers is as low as 2.86%. Using the LED structural epitaxial layers, blue LED chips with area of 350 × 350 μm2 were fabricated. Under 20 mA injection current, the optical output power of the blue LED is 8.62 mW.

  2. 45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION DDD), VIEW LOOKING EAST. LEAD ENCLOSED PIPING IS DRAIN FROM BOILER CHAMBER No. 1 - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  3. Fabrication of GaN nanotubular material using MOCVD with aluminum oxide membrane

    NASA Astrophysics Data System (ADS)

    Jung, Woo-Gwang; Jung, Se-Hyuck; Kung, Patrick; Razeghi, Manijeh

    2006-02-01

    GaN nanotubular material is fabricated with aluminum oxide membrane in MOCVD. SEM, XRD, TEM and PL are employed to characterize the fabricated GaN nanotubular material. An aluminum oxide membrane with ordered nano holes is used as template. Gallium nitride is deposited at the inner wall of the nano holes in aluminum oxide template, and the nanotubular material with high aspect ratio is synthesized using the precursors of TMG and ammonia gas. Optimal synthesis condition in MOCVD is obtained successfully for the gallium nitride nanotubular material in this research. The diameter of GaN nanotube fabricated is approximately 200 ~ 250 nm and the wall thickness is about 40 ~ 50 nm. GaN nanotubular material consists of numerous fine GaN particulates with sizes ranging 15 to 30 nm. The composition of gallium nitride is confirmed to be stoichiometrically 1:1 for Ga and N by EDS. XRD and TEM analyses indicate that grains in GaN nanotubular material have nano-crystalline structure. No blue shift is found in the PL spectrum on the GaN nanotubular material fabricated in aluminum oxide template.

  4. Fabrication of GaN nanotubular material using MOCVD with an aluminium oxide membrane

    NASA Astrophysics Data System (ADS)

    Jung, Woo-Gwang; Jung, Se-Hyuck; Kung, Patrick; Razeghi, Manijeh

    2006-01-01

    GaN nanotubular material is fabricated with an aluminium oxide membrane in MOCVD. SEM, XRD, TEM and PL are employed to characterize the fabricated GaN nanotubular material. An aluminium oxide membrane with ordered nanoholes is used as a template. Gallium nitride is deposited at the inner wall of the nanoholes in the aluminium oxide template, and the nanotubular material with high aspect ratio is synthesized using the precursors of TMG and ammonia gas. Optimal synthesis conditions in MOCVD are obtained successfully for the gallium nitride nanotubular material in this research. The diameter of the GaN nanotube fabricated is approximately 200-250 nm and the wall thickness is about 40-50 nm. GaN nanotubular material consists of numerous fine GaN particulates with size range 15-30 nm. The composition of gallium nitride is confirmed to be stoichiometrically 1:1 for Ga and N by EDS. XRD and TEM analyses indicate that the grains in GaN nanotubular material have a nano-crystalline structure. No blue shift is found in the PL spectrum on the GaN nanotubular material fabricated in an aluminium oxide template.

  5. The Mars Chamber

    NASA Video Gallery

    The Mars chamber is a box about the size of a refrigerator that re-creates the temperatures, pressures, and atmosphere of the Martian surface, essentially creating a Mars environment on Earth! Scie...

  6. Sleeve reaction chamber system

    SciTech Connect

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  7. Improved Rhenium Thrust Chambers

    NASA Technical Reports Server (NTRS)

    O'Dell, John Scott

    2015-01-01

    Radiation-cooled bipropellant thrust chambers are being considered for ascent/ descent engines and reaction control systems on various NASA missions and spacecraft, such as the Mars Sample Return and Orion Multi-Purpose Crew Vehicle (MPCV). Currently, iridium (Ir)-lined rhenium (Re) combustion chambers are the state of the art for in-space engines. NASA's Advanced Materials Bipropellant Rocket (AMBR) engine, a 150-lbf Ir-Re chamber produced by Plasma Processes and Aerojet Rocketdyne, recently set a hydrazine specific impulse record of 333.5 seconds. To withstand the high loads during terrestrial launch, Re chambers with improved mechanical properties are needed. Recent electrochemical forming (EL-Form"TM") results have shown considerable promise for improving Re's mechanical properties by producing a multilayered deposit composed of a tailored microstructure (i.e., Engineered Re). The Engineered Re processing techniques were optimized, and detailed characterization and mechanical properties tests were performed. The most promising techniques were selected and used to produce an Engineered Re AMBR-sized combustion chamber for testing at Aerojet Rocketdyne.

  8. Automated Electrostatics Environmental Chamber

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Lewis, Dean C.; Buchanan, Randy K.; Buchanan, Aubri

    2005-01-01

    The Mars Electrostatics Chamber (MEC) is an environmental chamber designed primarily to create atmospheric conditions like those at the surface of Mars to support experiments on electrostatic effects in the Martian environment. The chamber is equipped with a vacuum system, a cryogenic cooling system, an atmospheric-gas replenishing and analysis system, and a computerized control system that can be programmed by the user and that provides both automation and options for manual control. The control system can be set to maintain steady Mars-like conditions or to impose temperature and pressure variations of a Mars diurnal cycle at any given season and latitude. In addition, the MEC can be used in other areas of research because it can create steady or varying atmospheric conditions anywhere within the wide temperature, pressure, and composition ranges between the extremes of Mars-like and Earth-like conditions.

  9. Filament wound rocket motor chambers

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The design, analysis, fabrication and testing of a Kevlar-49/HBRF-55A filament wound chamber is reported. The chamber was fabricated and successfully tested to 80% of the design burst pressure. Results of the data reduction and analysis from the hydrotest indicate that the chamber design and fabrication techniques used for the chamber were adequate and the chamber should perform adequately in a static test.

  10. Automated soil gas monitoring chamber

    DOEpatents

    Edwards, Nelson T.; Riggs, Jeffery S.

    2003-07-29

    A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

  11. Monitoring and Controlling of Strain During MOCVD of AlGaN for UV Optoelectronics

    SciTech Connect

    Han, J.; Crawford, M.H.; Shul, R.J.; Hearne, S.J.; Chason, E.; Figiel, J.J.; Banas, M.

    1999-01-14

    The grown-in tensile strain, due to a lattice mismatch between AlGaN and GaN, is responsible for the observed cracking that seriously limits the feasibility of nitride-based ultraviolet (UV) emitters. We report in-situ monitoring of strain/stress during MOCVD of AlGaN based on a wafer-curvature measurement technique. The strain/stress measurement confirms the presence of tensile strain during growth of AlGaN pseudomorphically on a thick GaN layer. Further growth leads to the onset of stress relief through crack generation. We find that the growth of AlGaN directly on low-temperature (LT) GaN or AlN buffer layers results in a reduced and possibly controllable strain.

  12. Low ohmic contact AlN/GaN HEMTs grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Guodong, Gu; Shaobo, Dun; Yuanjie, Lü; Tingting, Han; Peng, Xu; Jiayun, Yin; Zhihong, Feng

    2013-11-01

    AlN/GaN high-electron-mobility transistors (HEMTs) on SiC substrates were fabricated by metal-organic chemical vapor deposition (MOCVD) and then characterized. An Si/Ti/Al/Ni/Au stack was used to reduce ohmic contact resistance (0.33 Ω·mm) at a low annealing temperature. The fabricated devices exhibited a maximum drain current density of 1.07 A/mm (VGS = 1 V) and a maximum peak extrinsic transconductance of 340 mS/mm. The off-state breakdown voltage of the device was 64 V with a gate—drain distance of 1.9 μm. The current gain extrinsic cutoff frequency fT and the maximum oscillation frequency fmax were 36 and 80 GHz with a 0.25 μm gate length, respectively.

  13. Raman spectra of MOCVD-grown ferroelectric PbTiO{sub 3} thin films

    SciTech Connect

    Feng, Z.C.; Kwak, B.S. |; Erbil, A.; Boatner, L.A.

    1993-12-31

    Lead titanate (PbTiO{sub 3}) has been grown on a variety of substrates by using the metalorganic chemical vapor deposition (MOCVD) technique. The substrates employed included Si, GaAs, MgO, fused-quartz, sapphire, and KTaO{sub 3}. Raman spectra from these heterostructures are presented. All of the films exhibited the strong, narrow spectral features characteristic of PbTiO{sub 3} perovskite-oxide crystals and indicative of high crystalline quality. The temperature behavior of the Raman modes, including the so-called ``soft-mode,`` was studied. A ``difference-Raman`` technique was used to distinguish the contributions of the PbTiO{sub 3} film and the KTaO{sub 3} single-crystal substrate.

  14. Microstructure of GaN Grown on (111) Si by MOCVD

    SciTech Connect

    Fleming, J.G.; Follstaedt, D.M.; Han, J.; Provencio, P.

    1998-12-17

    Gallium nitride was grown on (111) Si by MOCVD by depositing an AIN buffer at 108O"C and then GaN at 1060 {degrees}C. The 2.2pm layer cracked along {1-100} planes upon cooling to room temperature, but remained adherent. We were able to examine the microstructure of material between cracks with TEM. The character and arrangement of dislocation are much like those of GaN grown on Al{sub 2}O{sub 3}: -2/3 pure edge and - 1/3 mixed (edge + screw), arranged in boundaries around domains of GaN that are slightly disoriented with respect to neighboring material. The 30 nm AIN buffer is continuous, indicating that AIN wets the Si, in contrast to GaN on Al{sub 2}O{sub 3}.

  15. The role of impurities in LP-MOCVD grown gallium nitride

    SciTech Connect

    Hwang, C.Y.; Li, Y.; Schurman, M.J.; Mayo, W.E.; Lu, Y.; Stall, R.A.

    1996-11-01

    The authors have investigated the relationship of the Hall electron mobility to the background carrier concentration in low pressure MOCVD grown GaN. The highest electron mobility (400 cm{sup 2}/V{center_dot}s) of the unintentionally doped GaN was obtained at a carrier concentration of 1 {times} 10{sup 17} cm{sup {minus}3} and samples with carrier concentrations lower than this exhibited lower mobilities. SIMS analysis shows C and O concentrations in the range of 2--3 {times} 10{sup 16} cm{sup {minus}3} and H in the 2--3 {times} 10{sup 17} cm{sup {minus}3} range. Structural defects, stoichiometry and impurities in the GaN films grown under different conditions are investigated to understand their relationship to the electron Hall mobilities. In particular, different growth temperatures and pressures were used to grow undoped GaN and modify the background doping effect of the impurities.

  16. Three-dimensional modelling of horizontal chemical vapor deposition. I - MOCVD at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Ouazzani, Jalil; Rosenberger, Franz

    1990-01-01

    A systematic numerical study of the MOCVD of GaAs from trimethylgallium and arsine in hydrogen or nitrogen carrier gas at atmospheric pressure is reported. Three-dimensional effects are explored for CVD reactors with large and small cross-sectional aspect ratios, and the effects on growth rate uniformity of tilting the susceptor are investigated for various input flow rates. It is found that, for light carrier gases, thermal diffusion must be included in the model. Buoyancy-driven three-dimensional flow effects can greatly influence the growth rate distribution through the reactor. The importance of the proper design of the lateral thermal boundary conditions for obtaining layers of uniform thickness is emphasized.

  17. Free-standing GaAs nanowires growth on ITO glass by MOCVD

    NASA Astrophysics Data System (ADS)

    Wu, D.; Tang, X. H.; Olivier, A.; Li, X. Q.

    2015-04-01

    GaAs nanowires (NWs) are directly grown on indium tin oxide (ITO) glass substrate by metalorganic chemical vapour deposition (MOCVD), using Au nanoparticles (NPs) as catalyst. By functionalization of the ITO glass and optimization of the Au NPs deposition time, the Au NPs area density deposited on the ITO glass reaches 92 NP μm-2. Uniform and free-standing GaAs NWs without kinking or worm-shape defects have been grown at 430 °C. More than 96% of the NWs have tilt angles larger than 45° with respect of the substrate. The effects of the growth temperature and the Au NPs size on the GaAs NWs growth rate, the NW diameter, and tapering effect are investigated. These results of GaAs NWs growth are the essential step for understanding III-V NWs integration on transparent conductive oxide coated low cost substrate and developing high efficiencyhybrid solar cells.

  18. Growth of AlN nanostructure on GaN using MOCVD

    SciTech Connect

    Loganathan, R.; Ramesh, R.; Jayasakthi, M.; Prabakaran, K.; Kuppulingam, B.; Sankaranarayanan, M.; Balaji, M.; Arivazhagan, P.; Singh, Subra; Baskar, K.

    2015-06-24

    Aluminum nitride (AlN) nanowalls have been epitaxially grown on dislocation assisted GaN/Al{sub 2}O{sub 3} template by metal organic chemical vapor deposition (MOCVD) without any help of metal catalysts. A large number of nanowalls with thicknesses of 1.5-2.0 µm and height 400 nm have been deposited. The AlN nanowalls were found to have a preferred c-axis oriented with a hexagonal crystal structure. The AlN nanowalls and GaN/Al{sub 2}O{sub 3} template have been characterize at room temperature photoluminescence (PL) and high resolution X-ray diffraction (HRXRD)

  19. Enhanced flux pinning in MOCVD-YBCO films through Zr-additions:Systematic feasibility studies

    SciTech Connect

    Aytug, Tolga; Paranthaman, Mariappan Parans; Specht, Eliot D; Kim, Kyunghoon; Zhang, Yifei; Cantoni, Claudia; Zuev, Yuri L; Goyal, Amit; Christen, David K; Maroni, Victor A.

    2009-01-01

    Systematic effects of Zr additions on the structural and flux pinning properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films deposited by metal-organic chemical vapor deposition (MOCVD) have been investigated. Detailed characterization, conducted by coordinated transport, x-ray diffraction, scanning and transmission electron microscopy analyses, and imaging Raman microscopy have revealed trends in the resulting property/performance correlations of these films with respect to varying mole percentages (mol%) of added Zr. For compositions {le} 7.5 mol%, Zr additions lead to improved in-field critical current density, as well as extra correlated pinning along the c-axis direction of the YBCO films via the formation of columnar, self-assembled stacks of BaZrO{sub 3} nanodots.

  20. Enhanced flux pinning in MOCVD-YBCO films through Zr additions : systematic feasibility studies.

    SciTech Connect

    Aytug, T.; Paranthaman, M.; Specht, E. D.; Zhang, Y.; Kim, K.; Zuev, Y. L.; Cantoni, C.; Goyal, A.; Christen, D. K.; Maroni, V. A.; Chen, Y.; Selvamanickam, V.; ORNL; SuperPower, Inc.

    2010-01-01

    Systematic effects of Zr additions on the structural and flux pinning properties of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) films deposited by metal-organic chemical vapor deposition (MOCVD) have been investigated. Detailed characterization, conducted by coordinated transport, x-ray diffraction, scanning and transmission electron microscopy analyses, and imaging Raman microscopy have revealed trends in the resulting property/performance correlations of these films with respect to varying mole percentages (mol%) of added Zr. For compositions {le} 7.5 mol%, Zr additions lead to improved in-field critical current density, as well as extra correlated pinning along the c-axis direction of the YBCO films via the formation of columnar, self-assembled stacks of BaZrO{sub 3} nanodots.

  1. A mathematical representation of a modified stagnation flow reactor for MOCVD applications

    NASA Astrophysics Data System (ADS)

    Dilawari, A. H.; Szekely, J.

    1991-02-01

    Computed results are presented describing the behavior of a modified stagnation point reactor for an MOCVD system, employing a showerhead type gas distributor. The principal findings of the work are the following: (a) By this arrangement, it is possible to obtain a very high spatial uniformity in the deposition rate, in cases better than 0.35% for a five inch diameter wafer. (b) Both the absolute values of the gas velocity and the standoff distance were found to play a critical role in affecting the uniformity of the deposition rate. Indeed a small standoff distance was found to be an essential ingredient in obtaining a good spatial uniformity of the deposit. (c) "An upside down" orientation was found to be helpful in minimizing thermal natural convection and a further refinement was found to be possible by imposing a desired radial distribution on the gas inlet velocity profile.

  2. MOCVD capacitors

    SciTech Connect

    Lanagan, M.T.; Foster, C.

    1997-09-01

    A significant effort within the Department of Energy`s Office of Transportation Technologies and the U.S. Navy`s Power Electronic Building Block (PEBB) project has focused on reducing the size and weight of power electronic devices for electric and hybrid vehicles. Power electronic circuits, which are composed of active switching elements and passive components such as capacitors and inductors, provide motor control, power distribution, and DC/AC conversion functions in electric vehicles. Progress has been made on reducing the size and weight of power electronic components such as MOS-controlled thristors and insulated-gate bipolar transistors. Additional effort on high-power capacitors will be needed for load leveling and filter functions. The objective of this work is to fabricate a new class of high-power capacitors with reduced size and weight. Capacitors will be integrated with semiconductor components of electric motor and actuator control subsystems.

  3. Study of GaP single crystal layers grown on GaN by MOCVD

    SciTech Connect

    Li, Shuti; Liu, Chao; Ye, Guoguang; Xiao, Guowei; Zhou, Yugang; Su, Jun; Fan, Guanghan; Zhang, Yong; Liang, Fubo; Zheng, Shuwen

    2011-11-15

    Highlights: {yields} We investigated the growth of GaP layers on GaN by MOCVD. {yields} A single crystal GaP layer could be grown on GaN. {yields} The V/III ratio played an important role to improve GaP layer quality. {yields} The GaP:Mg layer with hole concentration of 4.2 x 10{sup 18} cm{sup -3} was obtained. -- Abstract: The performance of GaN based devices could possibly be improved by utilizing the good p-type properties of GaP layer and it provides the possibility of the integration of InAlGaN and AlGaInP materials to produce new devices, if high quality GaP compounds can be grown on III-nitride compounds. In this paper, the growth of GaP layers on GaN by metalorganic chemical vapor deposition (MOCVD) has been investigated. The results show that the GaP low temperature buffer layer can provide a high density of nucleation sites for high temperature GaP growth. Using a 40 nm thick GaP buffer layer, a single crystal GaP layer, whose full-width at half-maximum of the (1 1 1) plane measured by double crystal X-ray diffraction is 580'', can be grown on GaN. The V/III ratio plays an important role in the GaP layer growth and an appropriate V/III ratio can improve the quality of GaP layer. The GaP:Mg layer with hole carrier concentration of 4.2 x 10{sup 18} cm{sup -3} has been obtained.

  4. Improved wire chamber

    DOEpatents

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  5. Ultrasonic Drying Processing Chamber

    NASA Astrophysics Data System (ADS)

    Acosta, V.; Bon, J.; Riera, E.; Pinto, A.

    The design of a high intensity ultrasonic chamber for drying process was investigated. The acoustic pressure distribution in the ultrasonic drying chamber was simulated solving linear elastic models with attenuation for the acoustic-structure interaction. Together with the government equations, the selection of appropriate boundary conditions, mesh refinement, and configuration parameters of the calculation methods, which is of great importance to simulate adequately the process, were considered. Numerical solution, applying the finite element method (FEM), of acoustic-structure interactions involves to couple structural and fluid elements (with different degrees of freedom), whose solution implies several problems of hardware requirements and software configuration, which were solved. To design the drying chamber, the influence of the directivity of the drying open camera and the staggered reflectors over the acoustic pressure distribution was analyzed. Furthermore, to optimize the influence of the acoustic energy on the drying process, the average value of the acoustic energy distribution in the drying chamber was studied. This would determine the adequate position of the food samples to be dried. For this purpose, the acoustic power absorbed by the samples will be analyzed in later studies.

  6. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  7. Comparison of the strain of GaN films grown on MOCVD-GaN/Al2O3 and MOCVD-GaN/SiC samples by HVPE growth

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Shao, Yongliang; Hao, Xiaopeng; Wu, Yongzhong; Qu, Shuang; Chen, Xiufang; Xu, Xiangang

    2011-11-01

    In this paper, GaN films were successfully grown on the samples of MOCVD-GaN/Al2O3 (MGA) and MOCVD-GaN/6H-SiC (MGS) by HVPE method. We compare the strain of GaN films grown on the two samples by employing various characterization techniques. The surface morphology of GaN films were characterized by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The variations of strain characteristic were also microscopically identified using the Z scan of Raman spectroscopy. The Raman peak (E2) shift indicates that the stress enhanced gradually as a function of increasing the measurement depth. The strain of GaN grown on MGA sample is compressive strain, while on MGS is tensile strain. The stress of GaN films grown on MGA and MGS sample are calculated. The difference in the value of stress between calculation and measurement was interpreted.

  8. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-10-17

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  9. Multi-chamber deposition system

    DOEpatents

    Jacobson, Richard L.; Jeffrey, Frank R.; Westerberg, Roger K.

    1989-06-27

    A system for the simultaneous deposition of different coatings onto a thin web within a large volume vacuum chamber is disclosed which chamber is provided with a plurality of deposition chambers in which the different layers are deposited onto the film as its moves from a supply roll to a finished take-up roll of coated web. The deposition chambers provided within the large vacuum chamber are provided with separate seals which minimize back diffusion of any dopant gas from adjacent deposition chambers.

  10. Combustor with fuel preparation chambers

    NASA Technical Reports Server (NTRS)

    Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)

    2001-01-01

    An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.

  11. 50. BOILER CHAMBER No. 1, LOOKING SOUTHEAST BETWEEN CHAMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. BOILER CHAMBER No. 1, LOOKING SOUTHEAST BETWEEN CHAMBER AND ENCLOSURE (LOCATION III) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  12. 61. BOILER CHAMBER No. 2, LOOKING SOUTHWEST BETWEEN CHAMBER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. BOILER CHAMBER No. 2, LOOKING SOUTHWEST BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION PPP) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  13. 44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. AUXILIARY CHAMBER BETWEEN CHAMBER AND CONCRETE ENCLOSURE (LOCATION CCC), LOOKING NORTHEAST SHOWING DRAIN PIPE FROM SUMP - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  14. 41. AUXILIARY CHAMBER, CONCRETE ENCLOSURE CHAMBER AIR LOCK (EXTERIOR), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. AUXILIARY CHAMBER, CONCRETE ENCLOSURE CHAMBER AIR LOCK (EXTERIOR), LOOKING NORTHEAST FROM SOUTHWEST CORNER (LOCATION AAA) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  15. 72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. VISITOR'S CENTER, MODEL OF BOILER CHAMBER, AUXILIARY CHAMBER, REACTOR AND CANAL (LOCATION T) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA

  16. Temperature coefficients and radiation induced DLTS spectra of MOCVD grown n(+)p InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Statler, Richard L.; Summers, Geoffrey P.

    1991-01-01

    The effects of temperature and radiation on n(+)p InP solar cells and mesa diodes grown by metallorganic chemical vapor deposition (MOCVD) were studied. It was shown that MOCVD is capable of consistently producing good quality InP solar cells with Eff greater than 19 percent which display excellent radiation resistance due to minority carrier injection and thermal annealing. It was also shown that universal predictions of InP device performance based on measurements of a small group of test samples can be expected to be quite accurate, and that the degradation of an InP device due to any incident particle spectrum should be predictable from a measurement following a single low energy proton irradiation.

  17. Study of high {Tc} superconducting thin films grown by MOCVD. Final report, July 1, 1986--April 30, 1990

    SciTech Connect

    Erbil, A.

    1990-12-31

    Work is described briefly, which was carried out on development of techniques to grow metal-semiconductor superlattices (artificially layered materials) and on the copper oxide based susperconductors (naturally layered materials). The current growth technique utilized is metalorganic chemical vapor deposition (MOCVD). CdTe, PbTe, La, LaTe, and Bi{sub 2}Te{sub 3} were deposited, mostly on GaAs. Several YBa{sub 2}Cu{sub 3}O{sub 7} compounds were obtained with possible superconductivity at temperatures up to 550 K (1 part in 10{sup 4}). YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} and Tl{sub 2}CaBa{sub 2}Cu{sub 2}O{sub y} thin films were deposited by MOCVD on common substrates such as glass.

  18. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  19. One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis

    NASA Astrophysics Data System (ADS)

    Xu, Chunbao; Zhu, Jesse

    2004-11-01

    A new technique of fluidized-bed metal-organic chemical vapour deposition (FB-MOCVD) is developed as a one-step method to prepare highly dispersed metal-supported catalysts for carbon nanotube synthesis. By using ultrafine powder of gamma-alumina (70 nm Sauter mean in size) as the support with Fe(CO)5 and Mo(CO)6 as the metal precursors, Fe/Al2O3, Mo/Al2O3 and Fe-Mo/Al2O3 catalysts have been prepared in an FB-MOCVD reactor. Compared with the conventional catalyst-preparation methods such as impregnation, ion exchange, co-precipitation and co-crystallization, the one-step FB-MOCVD technique is advantageous in many aspects. These include eliminating the solid-liquid separation and the subsequent operations of drying and high-temperature calcination/reduction, thus minimizing the aggregation or the crystalline size-growing problem for the supported metal particles caused by these operations. The metal-supported catalysts obtained by FB-MOCVD are characterized with various techniques including ICP-AES, SEM-EDX, XRD and nitrogen isothermal adsorption. Some catalysts are selected and used for carbon nanotube synthesis by CVD from acetylene (C2H2) in a fluidized bed at 650 or 850 °C. The formation of the entangled multi-walled carbon nanotubes (MWNTs), around 50 nm in outer diameter and 10 nm in inner diameter, and several to tens of microns in length, has been confirmed by the TEM and SEM analyses. High CNT selectivity ({\\ge }95{%} ) with the carbon yield ranging widely from about 10% to over 60%, depending on the type of catalyst used and the CNT deposition temperature, has been demonstrated with TGA tests.

  20. Multiwire proportional chamber development

    NASA Technical Reports Server (NTRS)

    Doolittle, R. F.; Pollvogt, U.; Eskovitz, A. J.

    1973-01-01

    The development of large area multiwire proportional chambers, to be used as high resolution spatial detectors in cosmic ray experiments is described. A readout system was developed which uses a directly coupled, lumped element delay-line whose characteristics are independent of the MWPC design. A complete analysis of the delay-line and the readout electronic system shows that a spatial resolution of about 0.1 mm can be reached with the MWPC operating in the strictly proportional region. This was confirmed by measurements with a small MWPC and Fe-55 X-rays. A simplified analysis was carried out to estimate the theoretical limit of spatial resolution due to delta-rays, spread of the discharge along the anode wire, and inclined trajectories. To calculate the gas gain of MWPC's of different geometrical configurations a method was developed which is based on the knowledge of the first Townsend coefficient of the chamber gas.

  1. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  2. Advanced thrust chamber designs

    NASA Technical Reports Server (NTRS)

    Dietrich, F. J.; Leach, A. E.

    1971-01-01

    A regeneratively cooled thrust chamber has been designed and fabricated, consisting of an inner TD nickel liner which was spin formed, welded, and machined and an outer shell of electroformed nickel. Coolant channels were produced in the outer surface of the inner liner by the electric discharge machining process before electroforming the shell. Accessory manifolds and piping were attached by welding. Manufacturing processes employed are described.

  3. Digital optical spark chambers

    NASA Technical Reports Server (NTRS)

    Evenson, Paul; Tuska, Evelyn

    1989-01-01

    The authors constructed and tested a prototype digital readout system for optical spark chambers using a linear, solid-state charge-coupled-device detector array. Position resolution of 0.013 mm (sigma) over a 25-cm field of view has been demonstrated. It is concluded that this technique should permit the construction of economical, lightweight and low-power trajectory hodoscopes for use in cosmic-ray instrumentation on balloons and in spacecraft.

  4. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, R.D.

    1999-03-16

    A vertical two chamber reaction furnace is disclosed. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700 and 800 C) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800 to 950 C to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product. 2 figs.

  5. Vertical two chamber reaction furnace

    DOEpatents

    Blaugher, Richard D.

    1999-03-16

    A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

  6. Multi-anode ionization chamber

    DOEpatents

    Bolotnikov, Aleksey E.; Smith, Graham; Mahler, George J.; Vanier, Peter E.

    2010-12-28

    The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

  7. Wire chambers revisited.

    PubMed

    Ott, R J

    1993-04-01

    Detectors used for radioisotope imaging have, historically, been based on scintillating crystal/photomultiplier combinations in various forms. From the rectilinear scanner through to modern gamma cameras and positron cameras, the basic technology has remained much the same. Efforts to overcome the limitations of this form of technology have foundered on the inability to reproduce the required sensitivity, spatial resolution and sensitive area at acceptable cost. Multiwire proportional chambers (MWPCs) have long been used as position-sensitive charged particle detectors in nuclear and high-energy physics. MWPCs are large-area gas-filled ionisation chambers in which large arrays of fine wires are used to measure the position of ionisation produced in the gas by the passage of charged particles. The important properties of MWPCs are high-spatial-resolution, large-area, high-count-rate performance at low cost. For research applications, detectors several metres square have been built and small-area detectors have a charged particle resolution of 0.4 mm at a count rate of several million per second. Modification is required to MWPCs for nuclear medicine imaging. As gamma rays or X-rays cannot be detected directly, they must be converted into photo- or Compton scatter electrons. Photon-electron conversion requires the use of high atomic number materials in the body of the chamber. Pressurised xenon is the most useful form of "gas only" photon-electron convertor and has been used successfully in a gamma camera for the detection of gamma rays at energies below 100 keV. This camera has been developed specifically for high-count-rate first-pass cardiac imaging. This high-pressure xenon gas MWPC is the key to a highly competitive system which can outperform scintillator-based systems. The count rate performance is close to a million counts per second and the intrinsic spatial resolution is better than the best scintillator-based camera. The MWPC camera produces quantitative

  8. Review of wire chamber aging

    SciTech Connect

    Va'Vra, J.

    1986-02-01

    This paper makes an overview of the wire chamber aging problems as a function of various chamber design parameters. It emphasizes the chemistry point of view and many examples are drawn from the plasma chemistry field as a guidance for a possible effort in the wire chamber field. The paper emphasizes the necessity of variable tuning, the importance of purity of the wire chamber environment, as well as it provides a practical list of presently known recommendations. In addition, several models of the wire chamber aging are qualitatively discussed. The paper is based on a summary talk given at the Wire Chamber Aging Workshop held at LBL, Berkeley on January 16-17, 1986. Presented also at Wire Chamber Conference, Vienna, February 25-28, 1986. 74 refs., 18 figs., 11 tabs.

  9. Effect of Deposition Temperature on the Properties of TIO2 Thin Films Deposited by Mocvd

    NASA Astrophysics Data System (ADS)

    Khalifa, Zaki S.

    2016-02-01

    Crystal structure, microstructure, and optical properties of TiO2 thin films deposited on quartz substrates by metal-organic chemical vapor deposition (MOCVD) in the temperature range from 250∘C to 450∘C have been studied. The crystal structure, thickness, microstructure, and optical properties have been carried out using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), atomic force microscope (AFM), and UV-visible transmittance spectroscopy, respectively. XRD patterns show that the obtained films are pure anatase. Simultaneously, the crystal size calculated using XRD peaks, and the grain size measured by AFM decrease with the increase in deposition temperature. Moreover, the texture of the films change and roughness decrease with the increase in deposition temperature. The spectrophotometric transmittance spectra have been used to calculate the refractive index, extinction coefficient, dielectric constant, optical energy gap, and porosity of the deposited films. While the refractive index and dielectric constant decrease with the increase of deposition temperature, the porosity shows the opposite.

  10. High Growth Rate YSZ Thermal Barrier Coatings Deposited by MOCVD Demonstrate High Thermal Cycling Lifetime

    SciTech Connect

    Varanasi, Venu G; Besmann, Theodore M; Payzant, E Andrew; Pint, Bruce A; Lothian, Janet L; Anderson, Timothy J

    2011-01-01

    Yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBC) were prepared by metalorganic chemical vapor deposition (MOCVD) using Y(OBut{sup n}){sub 3}, Zr(OBut{sup n}){sub 4} precursors and O{sub 2} carrier gas. A thermodynamic analysis guided experiments by optimizing elemental molar (n) stoichiometric ratios for the (Zr-Y-O-C-H system). This analysis showed single-phase YSZ was favored at 950 C, 1 kPa, n{sub O}/(n{sub Y} + n{sub Zr}) > 30, n{sub Y}/(n{sub Y} + n{sub Zr}) = 0.06-0.10 (fixed n{sub C}, n{sub H}). Experimental YSZ growth had multiple phases (fcc, monoclinic), had a relatively high growth rate (43 {micro}m/h, 1005 C), had an Arrhenius dependence (845-950 C, E{sub a} = 53.8 {+-} 7.9 kJ/mol), had columnar grains (SEM analysis), and had a coating through-thickness n{sub Y}/(n{sub Y} + n{sub Zr}) = 0.04 (EPMA analysis). Doubling the inlet yttrium precursor mole fraction resulted in fcc YSZ growth with a coating through-thickness n{sub Y}/(n{sub Y} + n{sub Zr}) = 0.07. Hot-insertion thermal cycling of YSZ coatings on FeCrAlY bond coats showed >1000 h lifetime, matching current standards for EB-PVD YSZ coatings.

  11. P-type Ge epitaxy on GaAs (100) substrate grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jin, Y. J.; Chia, C. K.; Liu, H. F.; Wong, L. M.; Chai, J. W.; Chi, D. Z.; Wang, S. J.

    2016-07-01

    In this work, Ga-doped Geranium (Ge) films have been grown on GaAs (100) substrates by metal-organic chemical vapor deposition (MOCVD). Undesired pillar structures have been observed on the epilayers prepared at relatively lower temperatures. Energy dispersive X-ray spectroscopy (EDX) indicated that the pillars are mainly consisted of Ga atoms, which is totally different from that of the Ge film. It was demonstrated that the pillar structures could be reduced by simply raising the growth temperature while keeping the other growth conditions unchanged. In this regard, the growth mechanism of the pillars was related to the Ge-Ga dimers formed during the growth of p-Ge films. By further studying the influence of a GaAs or Ge buffer layer on the growth of p-Ge layers, we found that the GaAs substrate with lower density of Ga or Ge dangling bonds was helpful in suppressing the formation of the undesired pillar structures.

  12. Wurtzite InP nanowire arrays grown by selective area MOCVD

    SciTech Connect

    Chu, Hyung-Joon; Yeh, Ting-Wei; Stewart, Lawrence; Dapkus, P. Daniel

    2010-06-22

    InP nanowires are a unique material phase because this normally zincblende material forms in the wurtzite crystal structure below a critical diameter owing to the contribution of sidewalls to the total formation energy. This may allow control of the carrier transport and optical properties of InP nanowires for applications such as nano scale transistors, lasers and detectors. In this work, we describe the fabrication of InP nanowire arrays by selective area growth using MOCVD in the diameter range where the wurtzite structure is formed. The spatial growth rate in selective area growth is modeled by a diffusion model for the precursors. The proposed model achieves an average error of 9%. Electron microscopy shows that the grown InP nanowires are in the wurtzite crystal phase with many stacking faults. The threshold diameter of the crystal phase transition of InP nanowires is larger than the thermodynamic estimation. In order to explain this tendency, we propose a surface kinetics model based on a 2×2 reconstruction. This model can explain the increased tendency for wurtzite nanowire formation on InP (111)A substrates and the preferred growth direction of binary III-V compound semiconductor nanowires.

  13. MOCVD synthesis of group III-nitride heterostructure nanowires for solid-state lighting.

    SciTech Connect

    Wang, George T.; Creighton, James Randall; Talin, Albert Alec

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  14. MOCVD growth and structure of PbTiO{sub 3} thin films

    SciTech Connect

    Gao, Y.; Bai, G.; Merkle, K.L.; Chang, H.L.M.; Lam, D.J.

    1993-08-01

    PbTiO{sub 3} thin films grown on (001)MgO and (110)MgO by MOCVD have been characterized by x-ray diffraction and transmission electron microscopy. The PbTiO{sub 3} films deposited on (001)MgO under the optimum conditions always show a bi-layer structure. The top layer of the films near the free surface is c-axis oriented with the orientation relationship (001)[100]PbTiO{sub 3}{parallel}(001)[100]MgO. The bottom layer of the films near the substrate is a-axis oriented with (100)[001]PbTiO{sub 3}{parallel}(001)[100]MgO. 90{degrees} domains were observed, but only in the c-axis oriented layers. The thickness of the a-axis oriented layers near the substrate decreases with decreasing the cooling rate. PbTiO{sub 3} films deposited on (110) MgO, however, are single-layer, epitaxial films with (101)[001]PbTiO{sub 3}{parallel}(110)[001]MgO.

  15. MOCVD growth of AlGaInP at atmospheric pressure using triethylmetals and phosphine

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Nakano, K.; Mori, Y.; Kaneko, K.; Watanabe, N.

    1986-09-01

    (Al xGa 1- x) 0.5In 0.5P quaternary alloy has been successfully grown by conventional atmospheric-pressure MOCVD using triethylaluminum, triethylgallium, triethylindium and phosphine as source materials. The relationship between photoluminescence (PL) line width and lattice mismatch ( {δa}/{a}) was examined. PL spectra at 4 K showed a line width narrower than 12 meV for layers with x less than 0.3 ( {δa}/{a ⩽ 1×10 -3}. Very narrow, down to 10 Å thick (A1 0.5Ga 0.50.5In 0.5P/Ga 0.5In 0.50.5Ga 0.5) 0.5In 0.5P quantum wells have been grown with no growth interruption at the heterojunction. 4 K PL spectra from 30 Å thick GaInP double quantum wells separated by 5, 10 and 20 Å thick A1GaInP barrier layers had a single peak, suggesting that no cluster on any significant size was formed in the A1GaInP alloy. An A1GaInP/GaInP double heterostructure laser operated continuously at room temperature with an emission wavelength from 670 to 680 nm.

  16. Microstructure Characteristics of High Lift Factor MOCVD REBCO Coated Conductors With High Zr Content

    SciTech Connect

    Galstyan, E; Gharahcheshmeh, MH; Delgado, L; Xu, AX; Majkic, G; Selvamanickam, V

    2015-06-01

    We report the microstructural characteristics of high levels of Zr-added REBa2Cu3O7-x (RE = Gd, Y rare earth) coated conductors fabricated by Metal Organic Chemical Vapor Deposition (MOCVD). The enhancements of the lift factor defined as a ratio of the in-field (3 T, B parallel to c-axis) critical current density (J(c)) at 30 K and self-field J(c) at 77 K have been achieved for Zr addition levels of 20 and 25 mol% via optimization of deposition parameters. The presence of strong flux pinning is attributed to the aligned nanocolumns of BaZrO3 and nanoprecipitates embedded in REBa2Cu3O7-x matrix with good crystal quality. A high density of BZO nanorods with a typical size 6-8 nm and spacing of 20 nm has been observed. Moreover, the high Zr content was found to induce a high density of intrinsic defects, including stacking faults and dislocations. The correlation between in-field performance along the c-axis and microstructure of (Gd, Y) BCO film with a high level of Zr addition is discussed.

  17. Process control of MOCVD growth for LEDs by in-situ photoluminescence

    NASA Astrophysics Data System (ADS)

    Prall, C.; Haberland, K.; Kaspari, C.; Brunner, F.; Weyers, M.; Rueter, D.

    2016-03-01

    Development and manufacturing of LED structures is still driven by production cost reduction and performance improvements. Therefore, in-situ monitoring during the epitaxial process plays a key role in view of further yield improvement and process optimization. With the continuing trend towards larger wafers, stronger bow and increased aspherical curvature are additional challenges the growers have to face, leading to non-uniform LED-emission. Compared to traditional in-situ metrology like curvature measurement and near UV pyrometry, in-situ photoluminescence measurements can provide a more direct access to the quantum well emission already during growth. In this paper we show how in-situ photoluminescence measurements can be used in a production type multi-wafer MOCVD system to characterize the quantum well emission already during growth. We also demonstrate how deviations from the desired wavelength can be detected and corrected in the same growth run. Since the method is providing spatially resolved line-scans across the wafer, also the uniformity of the emission wavelength can be characterized already during growth. Comparison of in-situ and ex-situ photoluminescence data show excellent agreement with respect to wavelength uniformity on 4 inch wafers.

  18. Effects of Au on the Growth of ZnO Nanostructures on Si by MOCVD

    NASA Astrophysics Data System (ADS)

    Cong, Chen; Fan, Lu Yang; Ping, He Hai; Wei, Wu Ke; Zhen, Ye Zhi

    2013-08-01

    The effects of Au on the growth of ZnO nanostructures on Si by metal organic chemical vapor deposition (MOCVD) at a relatively low temperature (450°C) were investigated. The experimental results showed that Au nanoparticles played a critical role during the growth of the ZnO nanostructures and affected their morphology and optical properties. It was found that Au nanoparticles particularly affected the nucleation of ZnO nanostructures during the growth process and the Au-assisted growth mechanism of ZnO nanostructures should be ascribed to the vapor-solid (VS) mechanism. The formation of a nanoneedle may be attributed to a more reactive interface between Au and ZnO, which leads to more zinc gaseous species absorbed near the interface. Different nucleation sites on ZnO nuclei resulted in the disorder of ZnO nanoneedles. Moreover, the crystalline quality of nano-ZnO was improved due to the presence of Au, according to the smaller full width at half maximum (FWHM) of the low-temperature exciton emission. We confirmed that ZnO nanoneedles showed better crystalline quality than ZnO nanorods through the HRTEM images and the SAED patterns. The reason for the improvement of the crystalline quality of nano-ZnO may be due to the less lattice mismatch.

  19. The annealing effects of V-doped GaN thin films grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Souissi, M.; Bouzidi, M.; El Jani, B.

    2012-02-01

    We have investigated the annealing effect of V-doped GaN (GaN:V) epitaxial layers grown on sapphire by metal organic chemical vapor deposition (MOCVD). The film was annealed at a temperature of 1075 °C for 30 min in N 2 ambient after growth. The structural, surface morphology and optical properties of GaN:V films were studied by high resolution X-ray diffraction (HRXRD), atomic force microscope (AFM) and photoluminescence (PL). The results show that the annealing makes for the destruction in the crystal quality and surface morphology. After thermal annealing, the photoluminescence (PL) measurement showed a reduction of the blue luminescence (BL) band observed in GaN:V at room temperature (RT). The phenomenon is attributed to vanadium diffusion or to the V-related complex dissociation. Near-band-edge (NBE) peak exhibited a red shift after 1075 °C anneal. This is due to the decrease in the level of strain. In the infrared region, we observed the emergence of the line 0.93 eV accompanied by a decrease in the intensity of the 0.82 eV emission. Their possible origins are discussed.

  20. Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD

    NASA Astrophysics Data System (ADS)

    Boschi, F.; Bosi, M.; Berzina, T.; Buffagni, E.; Ferrari, C.; Fornari, R.

    2016-06-01

    Growth of gallium oxide thin films was carried out by Metalorganic Chemical Vapor Deposition (MOCVD) at different temperatures. Pure ε-phase epilayers of Ga2O3, with good morphology and structural properties, were obtained, for the first time with this technique, on sapphire at the temperature of 650 °C. XRD analysis performed by high-resolution diffractometry confirmed the good crystallographic quality of the grown layers. At temperatures higher than 700 °C the usual stable β-Ga2O3 phase was obtained. The ε-films were successfully deposited also on (0001)-oriented GaN and (111)- and (001)-oriented 3C-SiC templates, provided that the appropriate temperature was chosen. This indicates that the temperature, rather than substrate structure, is the growth parameter which decides what phase actually forms. The growth proceeds via coalescence of hexagonal islands and is favored when a substrate with an in-plane hexagonal arrangement of the atoms is employed. By applying Atomic Layer Deposition (ALD), epitaxial growth of the ε-phase was achieved at lower temperature, while the overall uniformity resulted improved, even on large sapphire substrates.

  1. Diogene pictorial drift chamber

    SciTech Connect

    Gosset, J.

    1984-01-01

    A pictorial drift chamber, called DIOGENE, has been installed at Saturne in order to study central collisions of high energy heavy ions. It has been adapted from the JADE internal detector, with two major differences to be taken into account. First, the center-of-mass of these collisions is not identical to the laboratory reference frame. Second, the energy loss and the momentum ranges of the particles to be detected are different from the ones in JADE. It was also tried to keep the cost as small as possible, hence the choice of minimum size and minimum number of sensitive wires. Moreover the wire planes are shifted from the beam axis: this trick helps very much to quickly reject the bad tracks caused by the ambiguity of measuring drift distances (positive or negative) through times (always positive).

  2. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  3. HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF PLENUM WITH ATTACHED DRAFT REGULATOR. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  4. Optical properties of InGaN grown by MOCVD on sapphire and on bulk GaN

    NASA Astrophysics Data System (ADS)

    Osinski, Marek; Eliseev, Petr G.; Lee, Jinhyun; Smagley, Vladimir A.; Sugahara, Tamoya; Sakai, Shiro

    1999-11-01

    Experimental data on photoluminescence of various bulk and quantum-well epitaxial InGaN/GaN structures grown by MOCVD are interpreted in terms of a band-tail model of inhomogeneously broadened radiative recombination. The anomalous temperature-induced blue spectral is shown to result from band-tail recombination under non-degenerate conditions. Significant differences are observed between epilayers grown on sapphire substrates and on GaN substrates prepared by the sublimination method, with no apparent evidence of band tails in homoepitaxial structures, indicating their higher crystalline quality.

  5. Fabrication of low-density GaN/AlN quantum dots via GaN thermal decomposition in MOCVD

    PubMed Central

    2014-01-01

    With an appropriate high anneal temperature under H2 atmosphere, GaN quantum dots (QDs) have been fabricated via GaN thermal decomposition in metal organic chemical vapor deposition (MOCVD). Based on the characterization of atomic force microscopy (AFM), the obtained GaN QDs show good size distribution and have a low density of 2.4 × 108 cm-2. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the GaN QDs were formed without Ga droplets by thermal decomposition of GaN. PMID:25136276

  6. Characterization of high-purity arsine and gallium arsenide epilayers grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Feng, Jun; Clement, Ryan; Raynor, Mark

    2008-11-01

    Impurities present in the metal organic chemical vapor deposition (MOCVD) process gases and precursors can have a significant effect on the performance of III-V compound semiconductor devices. High-purity arsine purified using chemical, adsorption and distillation techniques, has been characterized for impurities by using high sensitivity gas analysis methods and low temperature photoluminescence (PL) of GaAs epilayers. Permanent gas, hydrocarbon and dopant impurities can all be removed using these purification methods to below the detection limit of instrumentation (low nmol mol -1-pmol mol -1, depending on method). Capability to remove water vapor to single digit nmol mol -1 levels is also demonstrated and cylinder depletion studies show that gas-phase arsine, with consistently low H 2O, can be delivered from the cylinder, even well after phase break. Low temperature PL measurements are made on 10 μm GaAs/GaAs grown with three different arsine sources. Well-resolved near-band emission characteristics of high-purity n-type GaAs is obtained with high-purity distilled arsine. PL of epilayers grown with less pure arsine show the presence of Ge as well as elevated levels of Mg and Zn, incorporated from the trimethylgallium. The incorporation of O from an arsine cylinder containing H 2O at 200 nmol mol -1 results in reduced full width at half maximum (FWHM) of the near-band emission and decreased ( D0, X) and ( F, X) intensity, highlighting the importance of minimizing H 2O impurity.

  7. Study of carrier recombination transient characteristics in MOCVD grown GaN dependent on layer thickness

    SciTech Connect

    Gaubas, E. Čeponis, T.; Jasiunas, A.; Jelmakas, E.; Juršėnas, S.; Kadys, A.; Malinauskas, T.; Tekorius, A.; Vitta, P.

    2013-11-15

    The MOCVD grown GaN epi-layers of different thickness have been examined in order to clarify a role of surface recombination, to separate an impact of radiative and non-radiative recombination and disorder factors. The microwave probed –photoconductivity (MW-PC) and spectrally resolved photo-luminescence (PL) transients were simultaneously recorded under ultraviolet (UV) light 354 nm pulsed 500 ps excitation. The MW-PC transients exhibited the carrier decay components associated with carrier decay within micro-crystals and the disordered structure on the periphery areas surrounding crystalline columns. Three PL bands were resolved within PL spectrum, namely, the exciton ascribed UV-PL band edge for hν>3.3 eV, blue B-PL band for 2.5 < hν < 3.0 eV and yellow Y-PL band with hν < 2.4 eV. It has been obtained that intensity of UV-PL band increases with excitation density, while intensity of B-PL band is nearly invariant. However, intensity of the Y-PL increases with reduction of the excitation density. The Y-PL can be associated with trapping centers. A reduction of UV excitation density leads to a decrease of the relative amplitude of the asymptotic component within the MW-PC transients and to an increase of the amplitude as well as duration of the yellow spectral band (Y-PL) asymptotic component. Fractional index α with values 0.5 < α < 0.8 was evaluated for the stretched-exponent component which fits the experimental transients determined by the disordered structure ascribed to the periphery areas surrounding the crystalline columns.

  8. Optoelectronic and structural properties of InGaN nanostructures grown by plasma-assisted MOCVD

    NASA Astrophysics Data System (ADS)

    Seidlitz, Daniel; Senevirathna, M. K. I.; Abate, Y.; Hoffmann, A.; Dietz, N.

    2015-09-01

    This paper presents optoelectronic and structural layer properties of InN and InGaN epilayers grown on sapphire templates by Migration-Enhanced Plasma Assisted Metal Organic Chemical Vapor Deposition (MEPA-MOCVD). Real-time characterization techniques have been applied during the growth process to gain insight of the plasma-assisted decomposition of the nitrogen precursor and associated growth surface processes. Analyzed Plasma Emission Spectroscopy (PES) and UV Absorption Spectroscopy (UVAS) provide detection and concentrations of plasma generated active species (N*/NH*/NHx*). Various precursors have been used to assess the nitrogen-active fragments that are directed from the hollow cathode plasma tube to the growth surface. The in-situ diagnostics results are supplemented with ex-situ materials structures investigation results of nanoscale structures using Scanning Near-field Optical Microscopy (SNOM). The structural properties have been analyzed by Raman spectroscopy and Fourier transform infrared (FTIR) reflectance. The Optoelectronic and optical properties were extracted by modeling the FTIR reflectance (e.g. free carrier concentration, high frequency dielectric constant, mobility) and optical absorption spectroscopy. The correlation and comparison between the in-situ metrology results with the ex-situ nano-structural and optoelectronic layer properties provides insides into the growth mechanism on how plasma-activated nitrogen-fragments can be utilized as nitrogen precursor for group III-nitride growth. The here assessed growth process parameter focus on the temporal precursor exposure of the growth surface, the reactor pressure, substrate temperature and their effects of the properties of the InN and InGaN epilayers.

  9. Beam Window for Pressure Chambers

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Austin, J. G., Jr.

    1985-01-01

    Window resists products of combustion experiments. Sodium chloride window seals over chamber pressures from 0.1 to 13.8 MPa while absorbing minimal energy from CO2 laser beam that passes through it into chamber. Window inexpensive and easily replacable.

  10. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  11. Chamber Music: Skills and Teamwork.

    ERIC Educational Resources Information Center

    Villarrubia, Charles

    2000-01-01

    Focuses on the benefits of participating in chamber music ensembles, such as the development of a heightened level of awareness, and considers the role of the music educator/conductor. Provides tools and exercises that teachers can introduce to chamber music players to improve their rehearsals and performances. (CMK)

  12. Small rocket flowfield diagnostic chambers

    NASA Technical Reports Server (NTRS)

    Morren, Sybil; Reed, Brian

    1993-01-01

    Instrumented and optically-accessible rocket chambers are being developed to be used for diagnostics of small rocket (less than 440 N thrust level) flowfields. These chambers are being tested to gather local fluid dynamic and thermodynamic flowfield data over a range of test conditions. This flowfield database is being used to better understand mixing and heat transfer phenomena in small rockets, influence the numerical modeling of small rocket flowfields, and characterize small rocket components. The diagnostic chamber designs include: a chamber design for gathering wall temperature profiles to be used as boundary conditions in a finite element heat flux model; a chamber design for gathering inner wall temperature and static pressure profiles; and optically-accessible chamber designs, to be used with a suite of laser-based diagnostics for gathering local species concentration, temperature, density, and velocity profiles. These chambers were run with gaseous hydrogen/gaseous oxygen (GH2/GO2) propellants, while subsequent versions will be run on liquid oxygen/hydrocarbon (LOX/HC) propellants. The purpose, design, and initial test results of these small rocket flowfield diagnostic chambers are summarized.

  13. Fast-response cloud chamber

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1977-01-01

    Wall structure keeps chambers at constant, uniform temperature, yet allows them to be cooled rapidly if necessary. Wall structure, used in fast-response cloud chamber, has surface heater and coolant shell separated by foam insulation. It is lightweight and requires relatively little power.

  14. National Ignition Facility Target Chamber

    SciTech Connect

    Wavrik, R W; Cox, J R; Fleming, P J

    2000-10-05

    On June 11, 1999 the Department of Energy dedicated the single largest piece of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. The ten (10) meter diameter aluminum target high vacuum chamber will serve as the working end of the largest laser in the world. The output of 192 laser beams will converge at the precise center of the chamber. The laser beams will enter the chamber in two by two arrays to illuminate 10 millimeter long gold cylinders called hohlraums enclosing 2 millimeter capsule containing deuterium, tritium and isotopes of hydrogen. The two isotopes will fuse, thereby creating temperatures and pressures resembling those found only inside stars and in detonated nuclear weapons, but on a minute scale. The NIF Project will serve as an essential facility to insure safety and reliability of our nation's nuclear arsenal as well as demonstrating inertial fusion's contribution to creating electrical power. The paper will discuss the requirements that had to be addressed during the design, fabrication and testing of the target chamber. A team from Sandia National Laboratories (SNL) and LLNL with input from industry performed the configuration and basic design of the target chamber. The method of fabrication and construction of the aluminum target chamber was devised by Pitt-Des Moines, Inc. (PDM). PDM also participated in the design of the chamber in areas such as the Target Chamber Realignment and Adjustment System, which would allow realignment of the sphere laser beams in the event of earth settlement or movement from a seismic event. During the fabrication of the target chamber the sphericity tolerances had to be addressed for the individual plates. Procedures were developed for forming, edge preparation and welding of individual plates. Construction plans were developed to allow the field construction of the target chamber to occur parallel to other NIF construction activities. This was

  15. Ion chamber based neutron detectors

    DOEpatents

    Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

    2014-12-16

    A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

  16. Proton beam monitor chamber calibration.

    PubMed

    Gomà, C; Lorentini, S; Meer, D; Safai, S

    2014-09-01

    The first goal of this paper is to clarify the reference conditions for the reference dosimetry of clinical proton beams. A clear distinction is made between proton beam delivery systems which should be calibrated with a spread-out Bragg peak field and those that should be calibrated with a (pseudo-)monoenergetic proton beam. For the latter, this paper also compares two independent dosimetry techniques to calibrate the beam monitor chambers: absolute dosimetry (of the number of protons exiting the nozzle) with a Faraday cup and reference dosimetry (i.e. determination of the absorbed dose to water under IAEA TRS-398 reference conditions) with an ionization chamber. To compare the two techniques, Monte Carlo simulations were performed to convert dose-to-water to proton fluence. A good agreement was found between the Faraday cup technique and the reference dosimetry with a plane-parallel ionization chamber. The differences-of the order of 3%-were found to be within the uncertainty of the comparison. For cylindrical ionization chambers, however, the agreement was only possible when positioning the effective point of measurement of the chamber at the reference measurement depth-i.e. not complying with IAEA TRS-398 recommendations. In conclusion, for cylindrical ionization chambers, IAEA TRS-398 reference conditions for monoenergetic proton beams led to a systematic error in the determination of the absorbed dose to water, especially relevant for low-energy proton beams. To overcome this problem, the effective point of measurement of cylindrical ionization chambers should be taken into account when positioning the reference point of the chamber. Within the current IAEA TRS-398 recommendations, it seems advisable to use plane-parallel ionization chambers-rather than cylindrical chambers-for the reference dosimetry of pseudo-monoenergetic proton beams. PMID:25109620

  17. The finite size effect on the metal-insulator transition of MOCVD grown VO{sub 2} films

    SciTech Connect

    Kim, Hyung Kook; Chiarello, R.P.; You, Hoydoo; Chang, M.H.L.; Zhang, T.J.; Lam, D.J.

    1991-11-01

    We studied the finite size effect on the metal-insulator phase transition and the accompanying tetragonal to monoclinic structural phase transition of VO{sub 2} films grown by MOCVD. X-ray diffraction measurements and electrical conductivity measurements were done as a function of temperature for VO{sub 2} films with out-of-plane particle size ranging from 60--310 {Angstrom}. Each Vo{sub 2} film was grown on a thin TiO{sub 2} buffer layer, which in turn was grown by MOCVD on a polished sapphire (112) substrate. The transition was found to be first order. As the out-of-plane particle size becomes larger, the transition temperature shifts and the transition width narrows. For the 60{Angstrom} film the transition was observed at {approximately}61{degrees}C with a transition width if {approximately}10{degrees}C, while for the 310{Angstrom} film the transition temperature was {approximately}59{degrees}C and the transition width {approximately} 2{degree}C. We also observed thermal hysteresis for each film, which became smaller with increasing particle size.

  18. The finite size effect on the metal-insulator transition of MOCVD grown VO sub 2 films

    SciTech Connect

    Kim, Hyung Kook; Chiarello, R.P.; You, Hoydoo; Chang, M.H.L.; Zhang, T.J.; Lam, D.J.

    1991-11-01

    We studied the finite size effect on the metal-insulator phase transition and the accompanying tetragonal to monoclinic structural phase transition of VO{sub 2} films grown by MOCVD. X-ray diffraction measurements and electrical conductivity measurements were done as a function of temperature for VO{sub 2} films with out-of-plane particle size ranging from 60--310 {Angstrom}. Each Vo{sub 2} film was grown on a thin TiO{sub 2} buffer layer, which in turn was grown by MOCVD on a polished sapphire (112) substrate. The transition was found to be first order. As the out-of-plane particle size becomes larger, the transition temperature shifts and the transition width narrows. For the 60{Angstrom} film the transition was observed at {approximately}61{degrees}C with a transition width if {approximately}10{degrees}C, while for the 310{Angstrom} film the transition temperature was {approximately}59{degrees}C and the transition width {approximately} 2{degree}C. We also observed thermal hysteresis for each film, which became smaller with increasing particle size.

  19. Influence of Mg and In on defect formation in GaN; bulk and MOCVD grown samples

    SciTech Connect

    Liliental-Weber, Z.; Benamara, M.; Jasinski, J.; Swider, W.; Washburn, J.; Grzegory, I.; Porowski, S.; Bak-Misiuk, J.; Domagala, J.; Bedair, S.; Eiting, C.J.; Dupuis, R.D.

    2000-11-22

    Transmission electron microscopy studies were applied to study GaN crystals doped with Mg. Both: bulk GaN:Mg crystals grown by a high pressure and high temperature process and those grown by metal-organic chemical-vapor deposition (MOCVD) have been studied. Structural dependence on growth polarity was observed in the bulk crystals. Spontaneous ordering (formation of polytypoids) was observed for growth in the N to Ga polar direction (N polarity). On the opposite site of the crystal (growth in the Ga to N polar direction) Mg-rich pyramidal defects with base on the basal planes and with walls inclined about 45O to these planes, empty inside (pinholes) were observed. A high concentration of these pyramidal defects was also observed in the MOCVD grown crystals. For samples grown with Mg delta doping planar defects were also observed especially at the early stages of growth followed by formation of pyramidal defects. TEM and x-ray studies of InxGa{sub 1{minus}x}N crystals for the range of 28-45% nominal In concentration shows formation of two sub-layers: strained and relaxed, with a much lower In concentration in the strained layer. Layers with the highest In concentration were fully relaxed.

  20. Fabrication of GdBa2Cu3O7-δ films by photo-assisted-MOCVD process

    NASA Astrophysics Data System (ADS)

    Li, Wei; Li, Guoxing; Zhang, Baolin; Chou, Penchu; Liu, Suping; Ma, Xiaoyu

    2014-06-01

    Pure GdBa2Cu3O7-δ (GdBCO) films were deposited on (1 0 0)-oriented LaAlO3 (LAO) substrates by photo-assisted metal organic chemical vapor deposition (PhA-MOCVD) technique. The effects of substrate temperature (Ts) and oxygen partial pressure (Po2) on microstructure, growth rate and superconducting critical current density (Jc) were investigated. A dense and no grain boundary visible, single-crystal-like cross-sectional morphology was observed. For the GdBCO film sample obtained at Ts of 810 °C and Po2 of 4 Torr, the full width at half-maximum were 0.08° and 0.41° for out-of-plane and in-plane orientations, respectively. Such low values were similar to that of single crystal GdBCO. Optimally processed GdBCO samples exhibited Jc of 2.5 MA/cm2 at 77 K in self-field. A relatively high growth rate of 0.104 μm/min for the GdBCO film is realized by the PhA-MOCVD technique.

  1. Electrical properties of ferroelectric-gate FETs with SrBi2Ta2O9 formed using MOCVD technique

    NASA Astrophysics Data System (ADS)

    Yan, Kang; Takahashi, Mitsue; Sakai, Shigeki

    2012-09-01

    Ferroelectric-gate field-effect transistors (FeFETs) with a Pt/SrBi2Ta2O9/Hf-Al-O/Si gate stack were fabricated using the metal-organic chemical vapor deposition (MOCVD) technique to prepare the SrBi2Ta2O9 (SBT) ferroelectric layer. A good threshold voltage ( V th) distribution was found for more than 90 n-channel FeFETs in one chip with a 170 nm SBT layer owing to the good film uniformity of the SBT layer deposited by MOCVD. The average memory window (Vw^{av}) and the standard deviations ( σ thl, σ thr) of the left- and right-side branches of the drain-gate voltage curves of the FeFETs yielded a Vw^{av}/(σ_{thl} + σ_{thr}) value of 5.45, indicating that the FeFETs can be adapted for large-scale-integration. The electric field, the energy band profile in the gate stack, and the gate leakage current were also investigated at high gate voltages. We found that the effect of Fowler-Nordheim tunneling appeared under these conditions. Because of the tunneling injection and trapping of electrons into the gate insulators, the operation voltage ranges of the FeFETs were limited by this tunneling.

  2. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-09-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  3. The domain structure features of epitaxial PbTiO{sub 3} thin films prepared by MOCVD

    SciTech Connect

    Bai, G.R.; Chang, H.L.M.; Foster, C.M.; Lam, D.J.

    1992-03-01

    Ferroelectric oxide thin films have attracted great interest in recent years because of their potential applications in numerous electro-optic, pyroelectric, acousto-optical, and nonvolatile memory devices, and a variety of methods such as sputtering, laser ablation, and MOCVD has been used for preparation of the films. Among these ferroelectric materials, the PbTiO{sub 3} thin film has been extensively studied because of its small dielectric constant, large spontaneous polarization, small coercive field, and high Curie temperature of {approximately}500{degrees}C. However, very little work has dealt with the detailed structural properties of the films. In this work, we have prepared epitaxial PbTiO{sub 3} thin films by MOCVD and performed some detailed studies on the structure of the films, particularly those related to the twin domain structure, using X-ray diffraction technique. Based on the comparison of the domain structure features of the films grown at above Curie temperature with those of the films grown at below Curie temperature as well as of bulk PbTiO{sub 3} single crystal, a model is proposed to explain our experimental results.

  4. The domain structure features of epitaxial PbTiO sub 3 thin films prepared by MOCVD

    SciTech Connect

    Bai, G.R.; Chang, H.L.M.; Foster, C.M.; Lam, D.J.

    1992-03-01

    Ferroelectric oxide thin films have attracted great interest in recent years because of their potential applications in numerous electro-optic, pyroelectric, acousto-optical, and nonvolatile memory devices, and a variety of methods such as sputtering, laser ablation, and MOCVD has been used for preparation of the films. Among these ferroelectric materials, the PbTiO{sub 3} thin film has been extensively studied because of its small dielectric constant, large spontaneous polarization, small coercive field, and high Curie temperature of {approximately}500{degrees}C. However, very little work has dealt with the detailed structural properties of the films. In this work, we have prepared epitaxial PbTiO{sub 3} thin films by MOCVD and performed some detailed studies on the structure of the films, particularly those related to the twin domain structure, using X-ray diffraction technique. Based on the comparison of the domain structure features of the films grown at above Curie temperature with those of the films grown at below Curie temperature as well as of bulk PbTiO{sub 3} single crystal, a model is proposed to explain our experimental results.

  5. Growth and conduction mechanism of As-doped p-type ZnO thin films deposited by MOCVD

    SciTech Connect

    Ma, Y.; Gao, Q.; Wu, G.G.; Li, W.C.; Gao, F.B.; Yin, J.Z.; Zhang, B.L.; Du, G.T.

    2013-03-15

    Highlight: ► P-type As-doped ZnO thin films was fabricated by MOCVD after post-growth annealing. ► The formation mechanism of p-ZnO with high hole concentration above 10{sup 19} cm{sup −3} was elucidated. ► Besides As{sub Zn}–2V{sub Zn} complex, C impurities also played an important role in realizing p-ZnO. ► The formations of As{sub O} and O-C-O complex were partially contributed to the p-type ZnO: As films. - Abstract: As-doped p-type ZnO thin films were fabricated by metal organic chemical vapor deposition (MOCVD) after in situ annealing in a vacuum. The p-type conduction mechanism was suggested by the analysis of X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy. It was found that most of the As dopants in p-ZnO thin films formed As{sub Zn}–2V{sub Zn} shallow acceptor complex, simultaneously, carbon impurities also played an important role in realizing p-type conductivity in ZnO. Substitutional carbon on oxygen site created passivated defect bands by combining with Ga atoms due to the donor-acceptor pair Coulomb binding, which shifted the valence-band maximum upwards for ZnO and thus increased the hole concentration.

  6. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-06-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor/acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  7. Starting a High School Chamber Music Group.

    ERIC Educational Resources Information Center

    Rutkowski, Joseph

    2000-01-01

    Presents ideas on how to begin a chamber music ensemble. Discusses how to find time to accomplish chamber music playing in and around the school day. Presents short descriptions of chamber music that can be used with ensembles. Includes chamber music resources and additional chamber works. (CMK)

  8. Neutron detection via bubble chambers.

    PubMed

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography. PMID:16005238

  9. Energy band engineering using polarization induced interface charges in MOCVD grown III-nitride heterojunction devices

    NASA Astrophysics Data System (ADS)

    Tripathi, Neeraj

    2011-12-01

    Characteristics of III-nitride based heterojunction devices are greatly influenced by the presence of high density of polarization induced interface charges. Research undertaken in the current doctoral thesis demonstrates the effect of presence of one, three and six sheets of polarization induced charges in three different III-nitride based devices, namely in a photocathode, a high electron mobility transistor (HEMT) and a hyperspectral detector structure. Through a systematic set of experiments and theoretical modeling an in-depth study of the interaction between multiple sheets of polarization induced charges and their impact on energy band profile was undertaken. Various device designs were studied and optimized using device simulations. Subsequently device structures were grown using metallorganic chemical vapor deposition (MOCVD). Growth conditions for III-nitride epilayers were optimized for pressure, temperature and V/III ratio. Devices were fabricated using photolithography and e-beam evaporation. Novel GaN and GaN/AlGaN photocathode structures were developed. First demonstration of effective negative electron affinity (ENEA) in a GaN photocathode without the use of Cs was made. Effect of polarization induced surface charges on photoemission characteristics was successfully explained using simulated energy band diagrams. AlGaN/GaN/AlGaN/SiO2 based back barrier HEMT structures were developed in which bandgap, thin film thicknesses and polarization induced charge density were engineered to demonstrate Normally OFF operation along with the ability to engineer turn ON voltage of the device. Further, AlGaN based tunable hyperspectral detector pixel with 6-heterojunctions, for application in wavelength spectrometry from UV to IR part of the spectrum, was developed. The novel device design used in the hyperspectral detector utilized voltage tunable internal photoemission (IPE) barriers to measure the energy of the incident photon. Detailed IPE measurements were

  10. High-efficiency solar cells fabricated by vacuum MO-CVD

    NASA Technical Reports Server (NTRS)

    Fraas, L. M.; Cape, J. A.; Partain, L. D.; Mcleod, P. S.

    1984-01-01

    High-efficiency, monolithic, two-color, three-terminal solar cells were fabricated by a novel growth technique, vacuum metal-organic chemical vapor deposition. The technique uses the expensive metal alkyls efficiently and toxic gases sparingly. The fact that the outer chamber is constructed of nonbreakable stainless steel is an attractive safety feature associated with this deposition system.

  11. The multigap resistive plate chamber

    SciTech Connect

    Zeballos, E. Cerron; Crotty, I.; Hatzifotiadou, D.; Valverde, J. Lamas; Neupane, S.; Williams, M. C. S.; Zichichi, A.

    2015-02-03

    The paper describes the multigap resistive plate chamber (RPC). This is a variant of the wide gap RPC. However it has much improved time resolution, while keeping all the other advantages of the wide gap RPC design.

  12. Perspectives on anechoic chamber qualification

    NASA Astrophysics Data System (ADS)

    Cunefare, Kenneth A.; Biesel, Van B.

    2002-11-01

    The qualification of a new anechoic chamber requires demonstration that the chamber produces a free-field environment within some tolerance bounds and over some acceptable volume. At the most basic level, qualification requires measurement of sound levels at increasing distances from a test source, and then comparing the levels to a theoretical free-field decay. While simple in concept, the actual performance of a qualification test is problematic in implementation, with troublesome issues relevant to the nature of the sound source, test signal (broadband or pure tone), spatial resolution of measurements (e.g., measurements at discrete locations or spatially continuous), and comparison of the data to a theoretical decay. This presentation will provide a brief historical perspective on chamber qualification and review current practice. It will demonstrate the inadequacy of broadband noise and widely spaced discrete measurements for qualification purposes. It will demonstrate that pure tone signals and spatially continuous measurements provide a rigorous test of a chambers performance.

  13. Drift and proportional tracking chambers

    NASA Astrophysics Data System (ADS)

    Jaros, J. A.

    1980-11-01

    The many techniques exploited in constructing tracking chambers, particle detectors which measure the trajectories and momenta of charged particles, are discussed. In high energy interactions, the final states are dominated by closely collimated jets of high multiplicity, requiring good track-pair resolution in the tracking chamber. High energy particles deflect very little in limited magnetic field volumes, necessitating good spatial resolution for accurate momentum measurements. The colliding beam technique requires a device easily adapted to full solid angle coverage, and the high event rates expected in some of these machines put a premium on good time resolution. Finally, the production and subsequent decays of the tau, charmed and beautiful mesons provide multiple vertex topologies. To reconstruct these vertices reliably requires improvements in spatial resolution and track pair resolution. The proportional counter and its descendant, the drift chamber, are considered as tracking chambers. The physics of this device are discussed in order to understand its performance limitations and promises.

  14. Cyclically controlled welding purge chamber

    NASA Technical Reports Server (NTRS)

    Gallagher, Robert L. (Inventor)

    1996-01-01

    An arrangement for butt-welding cylindrical sections of large, thin-wall tanks includes a rotatable mandrel with side-by-side sets of radial position adjusters. Each set of adjusters bears on one of the tank sections adjacent the seam, to prevent the sections from sagging out-of-round. The mandrel rotates relative to the welder, so that a continuous seam is formed. A purge chamber is fixed in position behind the seam at the weld head, and is flushed with inert gas. The purge chamber includes a two-sided structure which is contiguous with the cylindrical sections and a circumferential vane to form an open-ended tube-like structure, through which the radial position adjusters pass as the mandrel and cylindrical workpiece sections rotate. The tube-like structure is formed into a chamber by a plurality of movable gates which are controlled to maintain a seal while allowing adjusters to progress through the purge chamber.

  15. IRIS Leaves Thermal Vacuum Chamber

    NASA Video Gallery

    This video shows the transportation of the IRIS observatory from the thermal vacuum chamber back to the clean tent for final testing and preparations for delivery to the launch site at Vandenberg A...

  16. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  17. 63. Interior view, kitchen chamber, north elevation. The kitchen chamber ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Interior view, kitchen chamber, north elevation. The kitchen chamber was completed in the first stages of phase III construction. The paneled wall to the fireplace's right displays a phase III molding profile. The mark between the cabinet doors and on the large lower panel indicates the former position of a partition wall. The chimney-breast paneling bears a phase I profile and might have been moved to the room when the fireplace mass in the hall was reduced. - John Bartram House & Garden, House, 54th Street & Lindbergh Boulevard, Philadelphia, Philadelphia County, PA

  18. Heavy p-type carbon doping of MOCVD GaAsP using CBrCl3

    NASA Astrophysics Data System (ADS)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2016-07-01

    CBrCl3 is shown to be a useful precursor for heavy p-type carbon doping of GaAsxP1-x grown via metalorganic chemical vapor deposition (MOCVD) across a range of compositions. Structural and electrical properties of the GaAsP films were measured for various processing conditions. Use of CBrCl3 decreased the growth rate of GaAsP by up to 32% and decreases x by up to 0.025. The dependence of these effects on precursor inputs is investigated, allowing C-doped GaAsP films to be grown with good thickness and compositional control. Hole concentrations of greater than 2×1019 cm-3 were measured for values of x from 0.76 to 0.90.

  19. MOCVD of YBa 2Cu 3O 7-x thin films using a Ba fluorocarbon-based precursor

    NASA Astrophysics Data System (ADS)

    Fröhlich, K.; Šouc, J.; Chromik, S.; Machajdik, D.; Kliment, V.

    1992-11-01

    We have prepared superconducting YBa 2Cu 3O 7- x films by MOCVD using fluorocarbon based Ba(hfa) 2 precursor. The films were deposited at 500°C and annealed in low pressure ( pO2=10 -2Pa) dry oxygen atmosphere as well as in argon/oxygen mixture in the presence of water vapour. The samples on a MgO single crystal substrate had Tc( R=0)=79 K and Jc=10 4 A/cm 2 at T=30 K in zero magnetic field while the film on SrTiO 3, annealed under the same conditions had Tc( R=0)=86 K and Jc reached a value of 10 5 A/cm 2 at T=78 K.

  20. Initial stages of TiO 2 thin films MOCVD growth studied by in situ surface analyses

    NASA Astrophysics Data System (ADS)

    Brevet, A.; Peterlé, P. M.; Imhoff, L.; Marco de Lucas, M. C.; Bourgeois, S.

    2005-02-01

    In situ chemical surface analyses using X-ray photoelectron spectroscopy (XPS) were performed to understand the initial stages of TiO 2 thin-film MOCVD growth. Deposits on Si (1 0 0), a few nanometres thick, were obtained at a fixed temperature of 650 °C and for two different pressures, 2.9 and 0.05 mbar, using titanium tetraisopropoxide (TTIP) as precursor. Pressure lowering led to a higher deposit growth rate. Reduction of titanium with respect to stoichiometric titanium dioxide and oxidation of the wet-cleaned silicon substrate are observed from decomposition of the Ti 2p and Si 2p peaks. The formation of a TiSi xO y mixed oxide is also pointed out and confirmed by the presence of a characteristic component in the O 1 s peak.

  1. Multi-staged, InAsSb mid-infrared lasers and light-emitting diodes, grown by MOCVD

    SciTech Connect

    Kurtz, S.R.; Allerman, A.A.; Biefeld, R.M.; Baucom, K.C.

    1997-09-01

    Due to lower nonradiative rates, mid-infrared (2-6 micron) lasers with strained, narrow bandgap, Sb-based active regions have the potential to operate at lower current density and higher temperature than competing devices. Superior performance may be achieved through the {open_quotes}band structure engineered{close_quotes} reduction of Auger recombination and the implementation of multi-stage (or {open_quotes}cascaded{close_quotes}) active regions. We describe the first lasers and LEDs utilizing strained InAsSb, multi-stage active regions. An (n)InAs / (p)GaAsSb semimetal layer is incorporated into each stage as an internal electron-hole source. To date, 2-stage LEDs and 2-stage lasers have been demonstrated. Our multi-stage devices were grown by MOCVD.

  2. The anti-surfactant effect of silane on the facets-controlled growth of GaN nanorods by MOCVD

    NASA Astrophysics Data System (ADS)

    Li, J. Z.; Chen, Z. Z.; Li, S. F.; Jiao, Q. Q.; Feng, Y. L.; Jiang, S. X.; Chen, Y. F.; Yu, T. J.; Shen, B.; Zhang, G. Y.

    2016-08-01

    N-polar GaN nanorods were selective area grown by continuous mode metalorganic chemical vapor deposition (MOCVD) under a Ga-rich and high silane flow condition. The interruption comparing with continuous supply of silane flow was performed to study the role of silane flux. High resolution scanning electron microscopy (SEM), x-ray diffraction (XRD), cathodoluminescence (CL) and x-ray photoelectron spectroscopy (XPS) measurements were performed. The enhanced vertical growth rate was achieved as 42 μm/h and sharp smooth m-plane, r-plane and c-plane facets were obtained for the nanorods with high silane flux. Sisbnd N bonds were clarified to be formed on the surface of the nanorod by XPS spectra. The silane acting as anti-surfactant was suggested to explain the diffusion and incorporation of the species on the facets of GaN nanorods.

  3. Driving Down HB-LED Costs. Implementation of Process Simulation Tools and Temperature Control Methods of High Yield MOCVD Growth

    SciTech Connect

    Quinn, William

    2012-04-30

    The overall objective of this multi-faceted program is to develop epitaxial growth systems that meet a goal of 75% (4X) cost reduction in the epitaxy phase of HB-LED manufacture. A 75% reduction in yielded epitaxy cost is necessary in order to achieve the cost goals for widespread penetration of HB-LED's into back-lighting units (BLU) for LCD panels and ultimately for solid-state lighting (SSL). To do this, the program will address significant improvements in overall equipment Cost of Ownership, or CoO. CoO is a model that includes all costs associated with the epitaxy portion of production. These aspects include cost of yield, capital cost, operational costs, and maintenance costs. We divide the program into three phases where later phases will incorporate the gains of prior phases. Phase one activities are enabling technologies. In collaboration with Sandia National Laboratories we develop a Fluent-compatible chemistry predictive model and a set of mid-infrared and near-ultraviolet pyrometer monitoring tools. Where previously the modeling of the reactor dynamics were studied within FLUENT alone, here, FLUENT and Chemkin are integrated into a comprehensive model of fluid dynamics and the most advanced transport equations developed for Chemkin. Specifically, the Chemkin model offered the key reaction terms for gas-phase nucleation, a key consideration in the optimization of the MOCVD process. This new predictive model is used to design new MOCVD reactors with optimized growth conditions and the newly developed pyrometers are used monitor and control the MOCVD process temperature to within 0.5°C run-to-run and within each wafer. This portion of the grant is in collaboration with partners at Sandia National Laboratories. Phase two activities are continuous improvement projects which extend the current reactor platform along the lines of improved operational efficiency, improved systems control for throughput, and carrier modifications for increased yield

  4. Analysis of HgTe/CdTe MOCVD grown superlattice epitaxial structures on GaAs by ion beam techniques

    NASA Astrophysics Data System (ADS)

    Wielunski, L. S.; Kenny, M. J.; Pain, G. N.

    1992-02-01

    Heteroepitaxial MOCVD grown HgTe/CdTe superlattice structures have been examined by Rutherford backscattering spectrometry (RBS) to monitor Hg, Cd and Te concentrations as a function of depth. Individual sublayers thicknesses have been measured at the same time. Crystal quality has been assessed using ion channeling. In addition the nuclear reaction 12C(d,p) 13C was used to detect carbon impurities and proton induced X-ray emision (PIXE) analysis used to detect In and Sb introduced during growth. The results show that the as-grown HgTe/CdTe superlattice has good crystal quality and reasonable lateral uniformity. Mercury concentration is difficult to control during growth and variation between sub-layers is observed. Hg-Cd interdiffusion is observed in heat treated samples. Carbon concentration varies; in a good quality samples ⩽ 20 ppm is present.

  5. Plant growth chamber M design

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M.

    1986-01-01

    Crop production is just one of the many processes involved in establishing long term survival of man in space. The benefits of integrating higher plants into the overall plan was recognized early by NASA through the Closed Ecological Life Support System (CELSS) program. The first step is to design, construct, and operate a sealed (gas, liquid, and solid) plant growth chamber. A 3.6 m diameter by 6.7 m high closed cylinder (previously used as a hypobaric vessel during the Mercury program) is being modified for this purpose. The chamber is mounted on legs with the central axis vertical. Entrance to the chamber is through an airlock. This chamber will be devoted entirely to higher plant experimentation. Any waste treatment, food processing or product storage studies will be carried on outside of this chamber. Its primary purpose is to provide input and output data on solids, liquids, and gases for single crop species and multiple species production using different nutrient delivery systems.

  6. Emulsion Chamber Technology Experiment (ECT)

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Takahashi, Yoshiyuki

    1996-01-01

    The experimental objective of Emulsion Chamber Technology (ECT) was to develop space-borne emulsion chamber technology so that cosmic rays and nuclear interactions may subsequently be studied at extremely high energies with long exposures in space. A small emulsion chamber was built and flown on flight STS-62 of the Columbia in March 1994. Analysis of the several hundred layers of radiation-sensitive material has shown excellent post-flight condition and suitability for cosmic ray physics analysis at much longer exposures. Temperature control of the stack was 20 +/-1 C throughout the active control period and no significant deviations of temperature or pressure in the chamber were observed over the entire mission operations period. The unfortunate flight attitude of the orbiter (almost 90% Earth viewing) prevented any significant number of heavy particles (Z greater than or equal to 10) reaching the stack and the inverted flow of shower particles in the calorimeter has not allowed evaluation of absolute primary cosmic ray-detection efficiency nor of the practical time limits of useful exposure of these calorimeters in space to the level of detail originally planned. Nevertheless, analysis of the observed backgrounds and quality of the processed photographic and plastic materials after the flight show that productive exposures of emulsion chambers are feasible in low orbit for periods of up to one year or longer. The engineering approaches taken in the ECT program were proven effective and no major environmental obstacles to prolonged flight are evident.

  7. Neutron Detection via Bubble Chambers

    SciTech Connect

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  8. Plasma chemistry in wire chambers

    SciTech Connect

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

  9. MOCVD growth of magnesium zinc oxide films and nanostructures for photovoltaics

    NASA Astrophysics Data System (ADS)

    Duan, Ziqing

    MgxZn1-xO, which is formed by alloying ZnO with MgO, has been developed as a promising window layer in chalcopyrite thin film solar cells and hybrid polymer solar cells for enhanced open-circuit voltage and solar conversion efficiency because of its bandgap tunability. The surface morphology of MgxZn1-xO layers in those photovoltaic applications plays important roles on the performances of solar cells. Two-dimensional (2-D) dense and smooth film is preferred in the inorganic p-n junction solar cells while one-dimensional (1-D) nanostructures are favorable for the hybrid polymer solar cells. In this dissertation, metal-organic chemical vapor deposition (MOCVD) is used to grow both of MgxZn1-xO polycrystalline 2-D films and single crystalline 1-D nanostructures for solar cells. A low-temperature (~250°C) ZnO buffer layer, followed by the high-temperature (~500°C) growth of MgxZn1-xO, is found to be beneficial for the formation of a 2-D dense and smooth film. On the other hand, a high-temperature (~520°C) ZnO buffer layer followed by a high temperature (530°C-560°C) growth of MgxZn1-xO is needed to grow the 1-D Mg xZn1-xO (0≤x≤0.15) nanostructures on Si. For the first time, 1-D MgxZn1-xO nanostructures (0≤x≤0.1) are sequentially grown on a Ga-doped ZnO (GZO) 2-D film to form the 3-D photoelectrode, which is used to fabricate the P3HT-MgxZn1-xO hybride solar cells. The preliminary testing results of solar cells show that Mg xZn1-xO is promising to be used in hybrid polymer solar cells for the enhancement of open circuit voltage (VOC). MgxZn1-xO (0≤x≤0.1) polycrystalline films are used in Cu2O-MgxZn1-x O heterojunction solar cells. The current density-voltage (J-V) measurements of solar cells under illumination show that VOC, shunt resistance Rsh and the solar conversion efficiency η are improved with increasing of Mg% until 10%. A relatively high solar conversion efficiency, η AM1.5 = 0.71 % with a short circuit current JSC = 3.0 mA/cm 2 and VOC

  10. Heteroepitaxy of nitrogen-polar, nonpolar, and semipolar gallium nitride by MOCVD

    NASA Astrophysics Data System (ADS)

    Sun, Qian

    Since the early breakthroughs of two-step GaN growth and Mg-acceptor activation by Prof. Akasaki in the 1980s and Dr. Nakamura in the 1990s, nearly all the works related to GaN-based materials and devices were performed on Ga-polar (0001) c-plane. In spite of its popularity and technological dominance, Ga-polar c-plane orientation has fundamental limitations, including the well-known quantum confined Stark effect (QCSE) and the difficulty in micro-fabrication due to its chemical inertness. In the recent years, there has been increasing interest in exploring other crystallographic orientations for high brightness light-emitting diodes, enhancement mode transistors, and novel bio/chemical sensors, to name a few possibilities. This dissertation presents our investigations on the heteroepitaxy of N-polar c-plane (0001&barbelow;), nonpolar a-plane (112&barbelow;0) and m-plane (101&barbelow;0), as well as semipolar (112&barbelow;2) GaN by metalorganic chemical vapor deposition (MOCVD). To bypass the conventional knob-turning exercise for optimizing GaN heteroepitaxy process for each orientation, we constructed the first kinetic Wulff plots (growth rate polar plots) through differential selective area growth. Insights from the kinetic Wulff plots were used to explain complex phenomena in nonpolar GaN growth, including island formation, surface pits, and surface striations. Based on the kinetic Wulff plots, we designed and carried out a two-step growth of nonpolar a-plane (112&barbelow;0) GaN on r-plane sapphire. By correlating the morphological evolution with the microstructure of a-plane GaN, we proposed a model for the reduction of basal-plane stacking faults (BSFs) and associated partial dislocations (PDs). For the growth of nonpolar m-plane (101&barbelow;0) GaN on m-plane SiC, we demonstrated an effective way (Al composition graded AlGaN layers) for reducing the BSF density. The possible mechanisms for the formation of BSFs in nonpolar and semipolar GaN were

  11. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  12. Impedances of Laminated Vacuum Chambers

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2011-06-22

    First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].

  13. The CLAS drift chamber system

    SciTech Connect

    Mestayer, M.D.; Carman, D.S.; Asavaphibhop, B.

    1999-04-01

    Experimental Hall B at Jefferson Laboratory houses the CEBAF Large Acceptance Spectrometer, the magnetic field of which is produced by a superconducting toroid. The six coils of this toroid divide the detector azimuthally into six sectors, each of which contains three large multi-layer drift chambers for tracking charged particles produced from a fixed target on a toroidal axis. Within the 18 drift chambers are a total of 35,148 individually instrumented hexagonal drift cells. The novel geometry of these chambers provides for good tracking resolution and efficiency, along with large acceptance. The design and construction challenges posed by these large-scale detectors are described, and detailed results are presented from in-beam measurements.

  14. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam M.

    2011-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications, including the treatment of medical conditions. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy available in the developing world for the treatment of a variety of medical conditions. Specifically, hyperbaric oxygen therapy is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. Hyperbaric oxygen therapy is simply too expensive and too dangerous to implement in the developing world using standard equipment. The hydrostatic hyperbaric chamber technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system that will provide controlled pressurization of the system, and provide adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the

  15. CHAMBERS FERRY ROADLESS AREA, TEXAS.

    USGS Publications Warehouse

    Houser, B.B.; Ryan, George S.

    1984-01-01

    A geologic and geochemical investigation of the Chambers Ferry Roadless Area, Texas was conducted. The area has probable mineral-resource potential for oil and gas and for lignite. No metallic or additional energy resources were identified in the investigation. Detailed analyses of well logs from the vicinity of the Chambers Ferry Roadless Area, in conjunction with seismic data, are necessary to determine if the subsurface stratigraphy and structure are favorable for the accumulation of oil and gas. A shallow drilling program involving coring on a close-space grid is necessary for determination of the rank and continuity of seams of lignitic sediments in the area.

  16. Test chamber for alpha spectrometry

    DOEpatents

    Larsen, Robert P.

    1977-01-01

    Alpha emitters for low-level radiochemical analysis by measurement of alpha spectra are positioned precisely with respect to the location of a surface-barrier detector by means of a chamber having a removable threaded planchet holder. A pedestal on the planchet holder holds a specimen in fixed engagement close to the detector. Insertion of the planchet holder establishes an O-ring seal that permits the chamber to be pumped to a desired vacuum. The detector is protected against accidental contact and resulting damage.

  17. The Mark III vertex chamber

    SciTech Connect

    Adler, J.; Bolton, T.; Bunnell, K.; Cassell, R.; Cheu, E.; Freese, T.; Grab, C.; Mazaheri, G.; Mir, R.; Odian, A.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 ..mu..m at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 ..mu..m using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin.

  18. Laboratory Course on Drift Chambers

    NASA Astrophysics Data System (ADS)

    García-Ferreira, Ix-B.; García-Herrera, J.; Villaseñor, L.

    2006-09-01

    Drift chambers play an important role in particle physics experiments as tracking detectors. We started this laboratory course with a brief review of the theoretical background and then moved on to the the experimental setup which consisted of a single-sided, single-cell drift chamber. We also used a plastic scintillator paddle, standard P-10 gas mixture (90% Ar, 10% CH4) and a collimated 90Sr source. During the laboratory session the students performend measurements of the following quantities: a) drift velocities and their variations as function of the drift field; b) gas gains and c) diffusion of electrons as they drifted in the gas.

  19. Double window viewing chamber assembly

    NASA Technical Reports Server (NTRS)

    Keller, V. W. (Inventor); Owen, R. B. (Inventor); Elkins, B. R. (Inventor); White, W. T. (Inventor)

    1986-01-01

    A viewing chamber which permits observation of a sample retained therein includes a pair of double window assemblies mounted in opposed openings in the walls thereof so that a light beam can directly enter and exit from the chamber. A flexible mounting arrangement for the outer windows of the window assemblies enables the windows to be brought into proper alignment. An electrical heating arrangement prevents fogging of the outer windows whereas desiccated air in the volume between the outer and inner windows prevents fogging of the latter.

  20. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  1. Nondestructive test of regenerative chambers

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Stauffis, R.; Wood, R.

    1972-01-01

    Flat panels simulating internally cooled regenerative thrust chamber walls were fabricated by electroforming, brazing and diffusion bonding to evaluate the feasibility of nondestructive evaluation techniques to detect bonds of various strength integrities. Ultrasonics, holography, and acoustic emission were investigated and found to yield useful and informative data regarding the presence of bond defects in these structures.

  2. Simulation of Layered Magma Chambers.

    ERIC Educational Resources Information Center

    Cawthorn, Richard Grant

    1991-01-01

    The principles of magma addition and liquid layering in magma chambers can be demonstrated by dissolving colored crystals. The concepts of density stratification and apparent lack of mixing of miscible liquids is convincingly illustrated with hydrous solutions at room temperature. The behavior of interstitial liquids in "cumulus" piles can be…

  3. Chamber Music for Every Instrumentalist.

    ERIC Educational Resources Information Center

    Latten, James E.

    2001-01-01

    Discusses why students who play musical instruments should participate in a chamber music ensemble. Provides rationale for using small ensembles in the high school band curriculum. Focuses on the topic of scheduling, illustrating how to insert small ensembles into the lesson schedule, and how to set up a new schedule. (CMK)

  4. Chamber Music for Better Bands.

    ERIC Educational Resources Information Center

    Brown, Michael R.

    1998-01-01

    Considers why students should participate in a chamber music ensemble: (1) students develop a sense of collegiality and self-worth; (2) ensembles encourage practice time; and (3) ensembles provide flexible performance opportunities. Highlights the different aspects of creating an ensemble from the availability of faculty to selecting challenging…

  5. Chamber Clearing First Principles Modeling

    SciTech Connect

    Loosmore, G

    2009-06-09

    LIFE fusion is designed to generate 37.5 MJ of energy per shot, at 13.3 Hz, for a total average fusion power of 500 MW. The energy from each shot is partitioned among neutrons ({approx}78%), x-rays ({approx}12%), and ions ({approx}10%). First wall heating is dominated by x-rays and debris because the neutron mean free path is much longer than the wall thickness. Ion implantation in the first wall also causes damage such as blistering if not prevented. To moderate the peak-pulse heating, the LIFE fusion chamber is filled with a gas (such as xenon) to reduce the peak-pulse heat load. The debris ions and majority of the x-rays stop in the gas, which re-radiates this energy over a longer timescale (allowing time for heat conduction to cool the first wall sufficiently to avoid damage). After a shot, because of the x-ray and ion deposition, the chamber fill gas is hot and turbulent and contains debris ions. The debris needs to be removed. The ions increase the gas density, may cluster or form aerosols, and can interfere with the propagation of the laser beams to the target for the next shot. Moreover, the tritium and high-Z hohlraum debris needs to be recovered for reuse. Additionally, the cryogenic target needs to survive transport through the gas mixture to the chamber center. Hence, it will be necessary to clear the chamber of the hot contaminated gas mixture and refill it with a cool, clean gas between shots. The refilling process may create density gradients that could interfere with beam propagation, so the fluid dynamics must be studied carefully. This paper describes an analytic modeling effort to study the clearing and refilling process for the LIFE fusion chamber. The models used here are derived from first principles and balances of mass and energy, with the intent of providing a first estimate of clearing rates, clearing times, fractional removal of ions, equilibrated chamber temperatures, and equilibrated ion concentrations for the chamber. These can be used

  6. Comparative study of deep levels in HVPE and MOCVD GaN by combining O-DLTS and pulsed photo-ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Pavlov, J.; Čeponis, T.; Gaubas, E.; Meskauskaite, D.; Reklaitis, I.; Vaitkus, J.; Grigonis, R.; Sirutkaitis, V.

    2015-12-01

    Operational characteristics of sensors made of GaN significantly depend on technologically introduced defects acting as rapid traps of excess carriers which reduce charge collection efficiency of detectors. In order to reveal the prevailing defects in HVPE and MOCVD grown GaN, the carrier lifetime and photo-ionization spectra have been simultaneously measured by using microwave probed photo-conductivity transient technique. Several traps ascribed to impurities as well as vacancy and anti-site type defects have been identified in HVPE GaN material samples by combining photo-ionization and electron spin resonance spectroscopy. The optical deep level transient spectroscopy technique has been applied for spectroscopy of the parameters of thermal emission from the traps ascribed to technological defects in the Schottky barrier terrace structures fabricated on MOCVD GaN.

  7. Hydrostatic Hyperbaric Chamber Ventilation System

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam J.

    2012-01-01

    The hydrostatic hyperbaric chamber (HHC) represents the merger of several technologies in development for NASA aerospace applications, harnessed to directly benefit global health. NASA has significant experience developing composite hyperbaric chambers for a variety of applications. NASA also has researched the application of water-filled vessels to increase tolerance of acceleration forces. The combination of these two applications has resulted in the hydrostatic chamber, which has been conceived as a safe, affordable means of making hyperbaric oxygen therapy (HBOT) available in the developing world for the treatment of a variety of medical conditions. Specifically, HBOT is highly-desired as a possibly curative treatment for Buruli Ulcer, an infectious condition that afflicts children in sub-Saharan Africa. HBOT is simply too expensive and too dangerous to implement in the developing world using standard equipment. The HHC technology changes the paradigm. The HHC differs from standard hyperbaric chambers in that the majority of its volume is filled with water which is pressurized by oxygen being supplied in the portion of the chamber containing the patient s head. This greatly reduces the amount of oxygen required to sustain a hyperbaric atmosphere, thereby making the system more safe and economical to operate. An effort was taken to develop an HHC system to apply HBOT to children that is simple and robust enough to support transport, assembly, maintenance and operation in developing countries. This paper details the concept for an HHC ventilation and pressurization system to provide controlled pressurization and adequate washout of carbon dioxide while the subject is enclosed in the confined space during the administration of the medical treatment. The concept took into consideration operational complexity, safety to the patient and operating personnel, and physiological considerations. The simple schematic, comprised of easily acquired commercial hardware

  8. Anomalous current-voltage characteristics along the c-axis in YBaCuO thin films prepared by MOCVD and AFM lithography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shuu'ichirou; Kawaguchi, Atsushi; Oda, Shunri

    1997-12-01

    We have proposed a fabrication process of intrinsic Josephson junctions (IJJs) using AFM lithography and successfully obtained IJJs in YBaCuO thin films deposited by MOCVD. A sample shows clear hysteresis and 23 voltage steps related to IJJs in the I- V curve. The maximum width of a step is about 2 mV at 5 K. We discuss the I- V characteristics and estimate the order of the parameters for the IJJ.

  9. Multi-wafer growth of GaInAs photodetectors on 4" InP by MOCVD for SWIR imaging applications

    NASA Astrophysics Data System (ADS)

    Furlong, Mark J.; Mattingley, Mark; Lim, Sung Wook; Geen, Matthew; Jones, Wynne

    2013-12-01

    Photodiodes based on the GaInAs/InP material system responding in the 1.3-1.7 μm wavelength range are of interest in a wide range of applications, from optical power and channel monitors in telecommunication systems through to advanced night vision imaging using large format focal plane type detectors for defense and security applications. Here we report on our results of GaInAs PIN photo detector structures grown on 2", 3" and 4" InP substrates by low pressure Metalorganic Chemical Vapor Deposition (MOCVD) in both standard and new larger volume format reactor configurations. High quality, lattice matched InP/GaInAs epitaxial layers were grown and we demonstrate that when moving to larger platen configurations, high degree of thickness uniformity (<3%, FTIR), lattice mismatch (<0.1%, XRD) and compositional uniformity (<2 nm, PL) can be maintained. The surface quality of epitaxial wafers will be assessed by various surface analytical techniques. We also make comparisons with the performance of 2", 3" and 4" photodetector structures grown, this demonstrating that MOCVD production processes have been successfully scaled. We conclude by discussing the material requirements for large area infrared focal plane array photodetectors and describe how MOCVD growth technology will address industry's requirements for increasing device sizes with improved performance.

  10. Multi-wafer growth of GaInAs photodetectors on 4" InP by MOCVD for SWIR imaging applications

    NASA Astrophysics Data System (ADS)

    Furlong, Mark J.; Mattingley, Mark; Lim, Sung Wook; Geen, Matthew; Jones, Wynne

    2014-06-01

    Photodiodes based on the GaInAs/InP material system responding in the 1.3-1.7 μm wavelength range are of interest in a wide range of applications, from optical power and channel monitors in telecommunication systems through to advanced night vision imaging using large format focal plane type detectors for defense and security applications. Here we report on our results of GaInAs PIN photo detector structures grown on 2", 3" and 4" InP substrates by low pressure Metalorganic Chemical Vapor Deposition (MOCVD) in both standard and new larger volume format reactor configurations. High quality, lattice matched InP/GaInAs epitaxial layers were grown and we demonstrate that when moving to larger platen configurations, high degree of thickness uniformity (<3%, FTIR), lattice mismatch (<0.1%, XRD) and compositional uniformity (<2 nm, PL) can be maintained. The surface quality of epitaxial wafers will be assessed by various surface analytical techniques. We also make comparisons with the performance of 2", 3" and 4" photodetector structures grown, this demonstrating that MOCVD production processes have been successfully scaled. We conclude by discussing the material requirements for large area infrared focal plane array photodetectors and describe how MOCVD growth technology will address industry's requirements for increasing device sizes with improved performance.

  11. Growth mechanism of GaAs1-xSbx ternary alloy thin film on MOCVD reactor using TMGa, TDMAAs and TDMASb

    NASA Astrophysics Data System (ADS)

    Suhandi, A.; Tayubi, Y. R.; Arifin, P.

    2016-04-01

    Metal Organic Chemical Vapor Deposition (MOCVD) is a method for growing a solid material (in the form of thin films, especially for semiconductor materials) using vapor phase metal organic sources. Studies on the growth mechanism of GaAs1-xSbx ternary alloy thin solid film in the range of miscibility-gap using metal organic sources trimethylgallium (TMGa), trisdimethylaminoarsenic (TDMAAs), and trisdimethylaminoantimony (TDMASb) on MOCVD reactor has been done to understand the physical and chemical processes involved. Knowledge of the processes that occur during alloy formation is very important to determine the couple of growth condition and growth parameters are appropriate for yield high quality GaAs1-xSbx alloy. The mechanism has been studied include decomposition of metal organic sources and chemical reactions that may occur, the incorporation of the alloy elements forming and the contaminants element that are formed in the gown thin film. In this paper presented the results of experimental data on the growth of GaAs1-xSbx alloy using Vertical-MOCVD reactor to demonstrate its potential in growing GaAs1-xSbx alloy in the range of its miscibility gap.

  12. Chamber dynamic research with pulsed power

    SciTech Connect

    PETERSON,ROBERT R.; OLSON,CRAIG L.; RENK,TIMOTHY J.; ROCHAU,GARY E.; SWEENEY,MARY ANN

    2000-05-15

    In Inertial Fusion Energy (IFE), Target Chamber Dynamics (TCD) is an integral part of the target chamber design and performance. TCD includes target output deposition of target x-rays, ions and neutrons in target chamber gases and structures, vaporization and melting of target chamber materials, radiation-hydrodynamics in target chamber vapors and gases, and chamber conditions at the time of target and beam injections. Pulsed power provides a unique environment for IFE-TCD validation experiments in two important ways: they do not require the very clean conditions which lasers need and they currently provide large x-ray and ion energies.

  13. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael D. (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The phenolic in the tape is cured and the end of the wrap is machined. The remainder of the mandrel is wrapped with a third silica tape. The resin in the third tape is cured and the assembly is machined. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  14. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  15. MPS II drift chamber system

    SciTech Connect

    Platner, E.D.

    1982-01-01

    The MPS II detectors are narrow drift space chambers designed for high position resolution in a magnetic field and in a very high particle flux environment. Central to this implementation was the development of 3 multi-channel custom IC's and one multi-channel hybrid. The system is deadtimeless and requires no corrections on an anode-to-anode basis. Operational experience and relevance to ISABELLE detectors is discussed.

  16. Rocket Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Cornelius, Charles S. (Inventor); Counts, Richard H. (Inventor); Myers, W. Neill (Inventor); Lackey, Jeffrey D. (Inventor); Peters, Warren (Inventor); Shadoan, Michael (Inventor); Sparks, David L. (Inventor); Lawrence, Timothy W. (Inventor)

    2001-01-01

    A thrust chamber assembly for liquid fueled rocket engines and the method of making it wherein a two-piece mandrel having the configuration of an assembly having a combustion chamber portion connected to a nozzle portion through a throat portion is wrapped with a silica tape saturated with a phenolic resin, the tape extending along the mandrel and covering the combustion chamber portion of the mandrel to the throat portion. The width of the tape is positioned at an angle of 30 to 50 deg. to the axis of the mandrel such that one edge of the tape contacts the mandrel while the other edge is spaced from the mandrel. The phenolic in the tape is cured and the end of the wrap is machined to provide a frusto-conical surface extending at an angle of 15 to 30 deg. with respect to the axis of the mandrel for starting a second wrap on the mandrel to cover the throat portion. The remainder of the mandrel is wrapped with a third silica tape having its width positioned at a angle of 5 to 20 deg. from the axis of the mandrel. The resin in the third tape is cured and the assembly is machined to provide a smooth outer surface. The entire assembly is then wrapped with a tow of graphite fibers wetted with an epoxy resin and, after the epoxy resin is cured, the graphite is machined to final dimensions.

  17. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  18. SMOG CHAMBER VALIDATION USING LAGRANGIAN ATMOSPHERIC DATA

    EPA Science Inventory

    A method was developed for validating outdoor smog chamber experiments as a means of determining the relationships between oxidant concentrations and its precursors - hydrocarbons and nitrogen oxides. When chamber experiments were performed in a manner that simulated relevant met...

  19. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  20. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  1. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  2. 21 CFR 868.5470 - Hyperbaric chamber.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... than atmospheric pressure. This device does not include topical oxygen chambers for extremities (§ 878... hyperbaric chamber is a device that is intended to increase the environmental oxygen pressure to promote...

  3. EPA GAS PHASE CHEMISTRY CHAMBER STUDIES

    EPA Science Inventory

    Gas-phase smog chamber experiments are being performed at EPA in order to evaluate a number of current chemical mechanisms for inclusion in EPA regulatory and research models. The smog chambers are 9000 L in volume and constructed of 2-mil teflon film. One of the chambers is co...

  4. Making a fish tank cloud chamber

    NASA Astrophysics Data System (ADS)

    Green, Frances

    2012-05-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and construction are given.

  5. A Sensitive Cloud Chamber without Radioactive Sources

    ERIC Educational Resources Information Center

    Zeze, Syoji; Itoh, Akio; Oyama, Ayu; Takahashi, Haruka

    2012-01-01

    We present a sensitive diffusion cloud chamber which does not require any radioactive sources. A major difference from commonly used chambers is the use of a heat sink as its bottom plate. The result of a performance test of the chamber is given. (Contains 8 figures.)

  6. Simple Cloud Chambers Using Gel Ice Packs

    ERIC Educational Resources Information Center

    Kamata, Masahiro; Kubota, Miki

    2012-01-01

    Although cloud chambers are highly regarded as teaching aids for radiation education, school teachers have difficulty in using cloud chambers because they have to prepare dry ice or liquid nitrogen before the experiment. We developed a very simple and inexpensive cloud chamber that uses the contents of gel ice packs which can substitute for dry…

  7. Gas turbine combustion chamber with air scoops

    SciTech Connect

    Mumford, S.E.; Smed, J.P.

    1989-12-19

    This patent describes a gas turbine combustion chamber. It comprises: means for admission of fuel to the upstream end thereof and discharge of hot gases from the downstream end thereof, and a combustion chamber wall, having an outer surface, with apertures therethrough, and air scoops provided through the apertures to direct air into the combustion chamber.

  8. Making a Fish Tank Cloud Chamber

    ERIC Educational Resources Information Center

    Green, Frances

    2012-01-01

    The cloud chambers described here are large, made from readily available parts, simple to set up and always work. With no source in the chamber, background radiation can be observed. A large chamber means that a long rod containing a weakly radioactive material can be introduced, increasing the chance of seeing decays. Details of equipment and…

  9. Vacuum chamber for an undulator straight section

    SciTech Connect

    Kim, S.; Wehrle, R.; Genens, L.

    1987-01-01

    A prototype aluminum extruded vacuum chamber for an undulator straight section of the Advanced Photon Source is described. The 52.-m long vacuum system is designed so that the undulator gap variation does not interfere with it. The chamber is gripped in a stiff close toleranced mounting structure to insure dimensional tolerance of the chamber height.

  10. TSNIIMASH's U-22 gasdynamic vacuum chamber

    NASA Astrophysics Data System (ADS)

    Anfimov, N. A.; Prochukhaev, M. V.

    1993-06-01

    The description of operating principles of the TSNIIMASH's U-22 large-scale gasdynamic vacuum chamber is presented. The chamber's key systems and their performances are described. Examples of using the gasdynamic vacuum chamber for conducting experimental research and ground testing of rockets, launch vehicles and spacecraft are given.

  11. Fluidized wall for protecting fusion chamber walls

    SciTech Connect

    Maniscalco, J.A.; Meier, W.R.

    1982-08-17

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. Produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithiumceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  12. Uniform-Temperature Walls for Cloud Chambers

    NASA Technical Reports Server (NTRS)

    Fleischman, G.

    1985-01-01

    Flat heat pipes rapidly transfer heat to and from experimental volumes. Heat pipe vapor chamber carries heat to and from thermo electric modules. Critical surface acts as evaporator or condenser in cloud physics experiments. Used as walls of spaceborne atmospheric cloud chambers. On Earth, used as isothermal floors for environmental test chambers.

  13. Chamber B Thermal/Vacuum Chamber: User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Montz, Mike E.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of Chamber B. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  14. Normally-off metamorphic AlInAs/AlInAs HEMTs on Si substrates grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Li, Ming; Lau, Kei-May

    2015-07-01

    A combination of self-aligned fluoride-based plasma treatment and post-gate rapid thermal annealing was developed to fabricate a novel 120-nm T-shaped gate normally-off metamorphic Al0.49In0.51As/Ga0.47In0.53As HEMT device on a Si substrate grown by metal-organic chemical vapor deposition (MOCVD). A shift of the threshold voltage, from -0.42 V to 0.11 V was obtained and the shift can be effectively adjusted by the process parameter of CF4 plasma treatment. Furthermore, a side benefit of reducing the leakage current of the device up to two orders of magnitude was also observed. E-mode transistors with 120 nm gate length own fT up to 160 GHz and fmax of 140 GHz. These characteristics imply the potential of the fluoride-based plasma treatment technology for the fabrication of monolithic enhancement/depletion-mode mHEMTs, which also encourage the massive production with this low-cost technology. Project supported by the Young Scientists Fund of the National Natural Science Foundation, China (Grant No. 61401373), the Fundamental Research Funds for Central University, China (Grant No. XDJK2013B004 and 2362014XK13), and the Research Fund for the Doctoral Program of Southwest University, China (Grant No. SWU111030).

  15. GaAs nanowires and GaAs/AlGaAs core/shell nanowires synthesized by MOCVD

    NASA Astrophysics Data System (ADS)

    Peters, Brian; Minutillo, Nicholas; Carlin, John; Yang, Fengyuan

    2011-03-01

    Nanowires made by the ``bottom-up'' approach can be used in a variety of electrical and optoelectronic devices as well as in the study of low dimensional transport physics. We have grown GaAs nanowires using Au catalysts in a closed couple showerhead MOCVD system. A number of growth parameters, including the substrate temperature, growth rate, and Arsine/TMGa ratio, are explored to identify optimal conditions for growth of GaAs nanowires with large aspect ratio and minimal tapering. Higher substrate temperatures result in larger tapering and lower temperature leads to ``kinks.'' Meanwhile, large V/III source ratio gives large tapering as well. We have found that our optimal conditions are at a substrate temperature of 420°C and V/III ratio of ~ 25 , which gives a tapering of less than 1 nm increase in diameter per micron in length. In addition, GaAs/AlGaAs core/shell structured nanowires were also grown to minimize the surface states. Characterizations by SEM and photoluminescence will be presented. This work is supported by Department of Energy (DE-SC0001304).

  16. Growth parameters effect on the electric and thermoelectric characteristics of Bi 2Se 3 thin films grown by MOCVD system

    NASA Astrophysics Data System (ADS)

    Al Bayaz, A.; Giani, A.; Artaud, M. C.; Foucaran, A.; Pascal-Delannoy, F.; Boyer, A.

    2002-06-01

    Bi 2Se 3 thin films were grown by metal organic chemical vapour deposition (MOCVD) on pyrex substrate in an horizontal reactor using Trimethylbismuth (TMBi) and Diethylselinium (DESe) as metal-organic sources. The effect of the growth parameters such as substrate temperature, Tg, and TMBi partial pressure, PTMBi, on the structural, electrical and thermoelectrical properties of Bi 2Se 3 films, has been investigated. We noticed that a high growth temperature is very important for a good orientation of crystallites, which can be directly related to the best values of Hall mobility and Seebeck coefficient found. Therefore, a large stability of the reactions over the substrates with following growth conditions: 455°C⩽ Tg⩽485°C,0.5×10 -4⩽ PTMBi⩽1×10 -4 atm and a total hydrogen flow rate DT=3 slm, is achieved. In these optimal growth conditions, we found a better crystalline structure of Bi 2Se 3 thin films using X-ray diffraction. Thus, these layers always displayed n-type conduction using Hall effect, with carrier concentration close to 2×10 19 cm -3 and maximum values of Hall mobility and Seebeck coefficient of μ=247 cm 2/V s and | α|=120 μV/K respectively. Then, these films appear to be very promising for thermoelectric applications.

  17. Advanced light-scattering materials: Double-textured ZnO:B films grown by LP-MOCVD

    NASA Astrophysics Data System (ADS)

    Addonizio, M. L.; Spadoni, A.; Antonaia, A.

    2013-12-01

    Double-textured ZnO:B layers with enhanced optical scattering in both short and long wavelength regions have been successfully fabricated using MOCVD technique through a three step process. Growth of double-textured structures has been induced by wet etching on polycrystalline ZnO surface. Our double-layer structure consists of a first ZnO:B layer wet etched and subsequently used as substrate for a second ZnO:B layer deposition. Polycrystalline ZnO:B layers were etched by utilizing diluted solutions of fluoridic acid (HF), chloridric acid (HCl) and phosphoric acid (H3PO4) and their effect on surface morphology modification was systematically investigated. The morphology of the second deposited ZnO layer strongly depended on the surface properties of the etched ZnO first layer. Growth of cauliflower-like texture was induced by protrusions presence on the HCl etched surface. Optimized double-layer structure shows a cauliflower-like double texture with higher RMS roughness and increased spectral haze values in both short and long wavelength regions, compared to conventional pyramidal-like single texture. Furthermore, this highly scattering structure preserves excellent optical and electrical properties.

  18. Au-catalyzed synthesis and characterisation of phase change Ge-doped Sb-Te nanowires by MOCVD

    NASA Astrophysics Data System (ADS)

    Longo, M.; Stoycheva, T.; Fallica, R.; Wiemer, C.; Lazzarini, L.; Rotunno, E.

    2013-05-01

    The interest in the Ge doped Sb-Te chalcogenide alloy is mainly related to phase change memory applications. In view of phase change device scaling and reduction of programming energy, Sb-Te nanowires (NWs) become an attractive option. In this work, in order to investigate their potential transferability to industrial implementation, the self-assembly of Sb2Te3 NWs and Ge-Sb-Te NWs with Ge content in the range of 1-13% (Ge doping) was studied by coupling the advantages of MOCVD and the Vapour-Liquid-Solid (VLS) mechanism. The results show the structural and compositional gradual changes occurring from pure Sb2Te3 NWs to the previously reported, stoichiometric Ge1Sb2Te4 NWs [[12] M. Longo et al., Nano Lett., 12 (2012) 1509]. The typical diameter of the obtained NWs resulted to be 50 nm, with lengths up to 3 μm. The typology of Au catalyst nanoislands influenced both the NW morphology and the Ge incorporation during the VLS self-assembly; the Ge metalorganic precursor partial pressure affected the NW morphology and their structure. Finally, TEM observations revealed that defect-free, monocrystalline Sb2Te3 and Ge-doped Sb-Te phase change NWs could be obtained.

  19. Effects of oxygen pressure in preparation of insulating Sr 2AlTaO 6 thin films by MOCVD

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshihiro; Nakajima, Yuuichi; Morishita, Tadataka; Tanabe, Keiichi

    2002-10-01

    Approximately 300-nm-thick insulating Sr 2AlTaO 6 (SAT) films were prepared on 10-μm-thick YBa 2Cu 3O 7- δ (YBCO) films by metalorganic chemical vapor deposition (MOCVD) in the range of oxygen partial pressure from 13 Pa (0.1 Torr) to 667 Pa (5 Torr) for total deposition pressure of 13 hPa (10 Torr). Stoichiometric SAT films with good crystallinity and square-like grains originating from the cubic structure of SAT were obtained for all the oxygen partial pressure conditions. However, extraordinary areas were partially observed on the sample prepared in the low oxygen partial pressure below 67 Pa (0.5 Torr), which are supposed to be caused by unstableness of YBCO surface. Under the highest oxygen partial pressure condition of 667 Pa, the lower tetragonal YBCO film exhibited a Tc of 80 K, indicating a possibility of in situ oxygenation during cooling. It was also confirmed that the SAT film fabricated under this condition has good dielectric properties such as the dielectric constant of approximately 24 and the conductance below 10 -8 S.

  20. Investigation on structural, optical and electrical properties of Cp2Mg flow varied p-GaN grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Surender, S.; Pradeep, S.; Ramesh, R.; Baskar, K.

    2016-05-01

    In this work the effect of different concentration of Magnesium doped GaN (p-GaN) were systematically studied. The p-GaN epilayers were grown on c-plane sapphire substrate by horizontal flow Metal Organic Chemical Vapor Deposition (MOCVD) with various flow rates of 100 sccm to 300 sccm using bis-(cyclopentadienyl) - magnesium (Cp2Mg) precursor. The samples were subjected to structural, optical, morphological and electrical studies using High Resolution X-ray diffraction (HRXRD), room temperature photoluminescence (PL), Atomic Force Microscopy (AFM) and Hall measurement respectively. Results indicated that the Mg doped GaN of 200 sccm Cp2Mg has the root mean square (rms) roughness of about 0.3 nm for a scan area of 5×5 µm2 which has good two dimensional growth. Moreover, Hall measurements results shows that (200 sccm Cp2Mg) Mg-doped GaN possess the highest hole concentration of 5.4×1017cm-3 and resistivity of 1.7 Ωcm at room temperature.

  1. Effect of Ge on SiC film morphology in SiC/Si films grown by MOCVD

    SciTech Connect

    Sarney, W.L.; Salamanca-Riba, L.; Zhou, P.; Spencer, M.G.; Taylor, C.; Sharma, R.P.; Jones, K.A.

    1999-07-01

    SiC/Si films generally contain stacking faults and amorphous regions near the interface. High quality SiC/Si films are especially difficult to obtain since the temperatures usually required to grow high quality SiC are above the Si melting point. The authors added Ge in the form of GeH{sub 2} to the reactant gases to promote two-dimensional CVD growth of SiC films on (111) Si substrates at 1,000 C. The films grown with no Ge are essentially amorphous with very small crystalline regions, whereas those films grown with GeH{sub 2} flow rates of 10 and 15 sccm are polycrystalline with the 3C structure. Increasing the flow rate to 20 sccm improves the crystallinity and induces growth of 6H SiC over an initial 3C layer. This study presents the first observation of spontaneous polytype transformation in SiC grown on Si by MOCVD.

  2. Broad Temperature Pinning Study of 15 mol.% Zr-Added (Gd, Y)-Ba-Cu-O MOCVD Coated Conductors

    SciTech Connect

    Xu, AX; Khatri, N; Liu, YH; Majkic, G; Galstyan, E; Selvamanickam, V; Chen, YM; Lei, CH; Abraimov, D; Hu, XB; Jaroszynski, J; Larbalestier, D

    2015-06-01

    BaZrO3 (BZO) nanocolumns have long been shown to be very effective for raising the pinning force F-p of REBa2Cu3Ox (REBCO, where RE = rare earth) films at high temperatures and recently at low temperatures too. We have successfully incorporated a high density of BZO nanorods into metal organic chemical vapor deposited (MOCVD) REBCO coated conductors via Zr addition. We found that, compared to the 7.5% Zr-added coated conductor, dense BZO nanorod arrays in the 15% Zr-added conductor are effective over the whole temperature range from 77 K down to 4.2 K. We attribute the substantially enhanced J(c) at 30 K to the weak uncorrelated pinning as well as the strong correlated pinning. Meanwhile, by tripling the REBCO layer thickness to similar to 2.8 mu m, the engineering critical current density J(e) at 30 K exceeds J(e) of optimized Nb-Ti wires at 4.2 K.

  3. MOCVD of high quality YBa 2Cu 3O 7-δ thin films using a fluorinated barium precursor

    NASA Astrophysics Data System (ADS)

    Richards, B. C.; Cook, S. L.; Pinch, D. L.; Andrews, G. W.; Lengeling, G.; Schulte, B.; Jürgensen, H.; Shen, Y. Q.; Vase, P.; Freltoft, T.; Spee, C. I. M. A.; Linden, J. L.; Hitchman, M. L.; Shamlian, S. H.; Brown, A.

    1995-02-01

    MOCVD of superconducting YBa 2Cu 3O 7δ thin films using the novel fluorinated barium β-diketonate complex [Ba(TDFND) 2·tetraglyme] 1 in combination with [Y(TMHD) 3] 2 and [Cu(TMHD) 2] is reported. The Ba complex has a low melting point (72°C), is thermally stable to 200°C and allows reproducible and reliable film deposition even when maintained at 145°C for several weeks. Conversion of the fluoride to the oxide is achieved by in situ hydrolysis. Films deposited on SrTiO 3 (100) were characterised by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, rocking curve, ac susceptibility and secondary ion mass spectrometry. Homogeneous layers of YBa 2Cu 3O 7-δ, ≈ 0.25 μm thick, were grown at ≈ 0.13 μm h -1. The films are epitaxial with good c axis orientation. Critical temperatures Tc are typically 91 K and critical current densities c (at 77 K) of ≈ 5 MA cm -2 are reported. SIMS results showing levels of residual fluorine do not exceed 250 ppm.

  4. Oxygen ion irradiation on AlGaN/GaN heterostructure grown on silicon substrate by MOCVD method

    SciTech Connect

    Ramesh, R.; Arivazhagan, P.; Balaji, M.; Baskar, K.; Asokan, K.

    2015-06-24

    In the present work, we have reported 100 MeV O{sup 7+} ion irradiation with 1×10{sup 12} and 5×10{sup 12} ions/cm{sup 2} fluence on AlGaN/GaN heterostructures grown on silicon substrate by Metal Organic Chemical Vapour Deposition (MOCVD). The Irradiated samples were characterized by High Resolution X-Ray Diffraction (HRXRD), Atomic Force Microscope (AFM) and Photoluminescence (PL). Crystalline quality has been analysed before and after irradiation using HRXRD. Different kinds of morphology are attributed to specific type of dislocations using the existing models available in the literature. A sharp band-edge emission in the as grown samples was observed at ∼3.4 eV in GaN and 3.82 for AlGaN. The band-edge absorption intensity reduced due to irradiation and these results have been discussed in view of the damage created by the incident ions. In general the effect of irradiation induced-damages were analysed as a function of material properties. A possible mechanism responsible for the observations has been discussed.

  5. Liquid argon Time Projection Chamber

    SciTech Connect

    Doe, P.J.; Mahler, H.J.; Chen, H.H.

    1984-01-01

    The principal features of the liquid argon TPC are outlined and the status of development efforts, particularly at UCI, are discussed. Technical problems associated with liquid TPC's are: the liquid must be maintained at a high level of purity to enable long distance drifting of ionization electrons, and the signal size is small due to the absence of practical charge multiplication as found in gas chambers. These problems have been largely resolved in studies using small (1 to 100 l) detectors, thus allowing a realistic consideration of the physics potential of such devices.

  6. Portable Ethylene Oxide Sterilization Chamber

    PubMed Central

    Songer, J. R.; Mathis, R. G.

    1969-01-01

    A portable ethylene oxide sterilization chamber was designed, constructed, and tested for use in the sterilization of embolectomy catheters. The unit can accommodate catheters up to 40 inches (101.6 cm) in length and can be operated for less than 4 cents per cycle. A constant concentration of 500 mg of ethylene oxide per liter of space and holding periods of 4 and 6 hr at 43 and 22 C, respectively, were adequate when tested with B. subtilis spores. The estimated cost of construction was $165.00. If temperature control is unnecessary, the cost is approximately $80.00. Images PMID:4977644

  7. The DELPHI time projection chamber

    SciTech Connect

    Brand, C.; Cairanti, G.; Charpentier, P.; Clara, M.P.; Delikaris, D.; Foeth, H.; Heck, B.W.; Hilke, H.J.; Sulkowski, K.; Aubret, C.

    1989-02-01

    The central tracking device of the DELPHI Experiment at LEP is a Time Projection Chamber (TPC) with an active volume of 2 x 1.34m in length and 2.22m in diameter. Since spring 1988 the TPC has undergone extensive tests in a cosmic ray set-up. It will be installed in the LEP tunnel by early 1989. This report covers the construction, the read-out electronics and the contribution of the TPC to the DELPHI trigger. Emphasis is given to novelties which are not used in similar detectors.

  8. TRU waste characterization chamber gloveboxes.

    SciTech Connect

    Duncan, D. S.

    1998-07-02

    Argonne National Laboratory-West (ANL-W) is participating in the Department of Energy's (DOE) National Transuranic Waste Program in support of the Waste Isolation Pilot Plant (WIPP). The Laboratory's support currently consists of intrusive characterization of a selected population of drums containing transuranic waste. This characterization is performed in a complex of alpha containment gloveboxes termed the Waste Characterization Gloveboxes. Made up of the Waste Characterization Chamber, Sample Preparation Glovebox, and the Equipment Repair Glovebox, they were designed as a small production characterization facility for support of the Idaho National Engineering and Environmental Laboratory (INEEL). This paper presents salient features of these gloveboxes.

  9. Studies with the Arapahoe smoke chamber

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Samples of polymethyl methacrylate, polyvinyl chloride, polyester, and polystyrene were evaluated using the Arapahoe smoke chamber. These same materials had been previously evaluated using the National Bureau of Standards (NBS) smoke chamber. The percent smoke based on initial weight as determined using the Arapahoe smoke chamber appeared to correlate with the maximum specific optical density under flaming conditions as determined using the NBS smoke chamber. In addition, the percent smoke based on weight loss as determined using the Arapahoe smoke chamber appeared to correlate with the maximum specific optical density under nonflaming conditions as determined using the NBS smoke chamber. The Arapahoe smoke chamber also offers the advantage of high sample throughput and the possibility of related studies of smoke particulates.

  10. Thrust chamber material technology program

    NASA Technical Reports Server (NTRS)

    Andrus, J. S.; Bordeau, R. G.

    1989-01-01

    This report covers work performed at Pratt & Whitney on development of copper-based materials for long-life, reusable, regeneratively cooled rocket engine thrust chambers. The program approached the goal of enhanced cyclic life through the application of rapid solidification to alloy development, to introduce fine dispersions to strengthen and stabilize the alloys at elevated temperatures. After screening of alloy systems, copper-based alloys containing Cr, Co, Hf, Ag, Ti, and Zr were processed by rapid-solidification atomization in bulk quantities. Those bulk alloys showing the most promise were characterized by tensile testing, thermal conductivity testing, and elevated-temperature, low-cycle fatigue (LFC) testing. Characterization indicated that Cu- 1.1 percent Hf exhibited the greatest potential as an improved-life thrust chamber material, exhibiting LCF life about four times that of NASA-Z. Other alloys (Cu- 0.6 percent Zr, and Cu- 0.6 percent Zr- 1.0 percent Cr) exhibited promise for use in this application, but needed more development work to balance properties.

  11. Rocket thrust chamber thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Quentmeyer, R. J.

    1985-01-01

    Subscale rocket thrust chamber tests were conducted to evaluate the effectiveness and durability of thin yttria stabilized zirconium oxide coatings applied to the thrust chamber hot-gas side wall. The fabrication consisted of arc plasma spraying the ceramic coating and bond coat onto a mandrell and then electrodepositing the copper thrust chamber wall around the coating. Chambers were fabricated with coatings .008, and .005 and .003 inches thick. The chambers were thermally cycled at a chamber pressure of 600 psia using oxygen-hydrogen as propellants and liquid hydrogen as the coolant. The thicker coatings tended to delaminate, early in the cyclic testing, down to a uniform sublayer which remained well adhered during the remaining cycles. Two chambers with .003 inch coatings were subjected to 1500 thermal cycles with no coating loss in the throat region, which represents a tenfold increase in life over identical chambers having no coatings. An analysis is presented which shows that the heat lost to the coolant due to the coating, in a rocket thrust chamber design having a coating only in the throat region, can be recovered by adding only one inch to the combustion chamber length.

  12. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  13. Quantum cascade laser based on GaAs/Al0.45Ga0.55As heteropair grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Zasavitskii, I. I.; Zubov, A. N.; Andreev, A. Yu; Bagaev, T. A.; Gorlachuk, P. V.; Ladugin, M. A.; Padalitsa, A. A.; Lobintsov, A. V.; Sapozhnikov, S. M.; Marmalyuk, A. A.

    2016-05-01

    A pulsed quantum cascade laser emitting in the wavelength range 9.5–9.7 μm at 77.4 K is developed based on the GaAs/Al0.45Ga0.55As heteropair. The laser heterostructure was grown by MOCVD. The threshold current density was 1.8 kA cm-2. The maximum output power of the laser with dimensions of 30 μm × 3 mm and with cleaved mirrors exceeded 200 mW.

  14. Composite fermions in 2 {times} 10{sup 6} cm{sup 2}/Vs mobility AlGaAs/GaAs heterostructures grown by MOCVD

    SciTech Connect

    Simmons, J.A.; Chui, H.C.; Harff, N.E.; Hammons, B.E.; Du, R.R.; Zudov, M.A.

    1996-08-01

    The authors report on the recent growth by MOCVD of 2.0 {times} 106 cm2/Vs mobility heterostructures. These mobilities, the highest reported to date, are attributed to the use of tertiarybutylarsine as the arsenic precursor. Measurements in tilted magnetic fields of the fractional quantum Hall effect (FQHE) states near filling factor 3/2 are consistent with a spin-split composite fermion (CF) model proposed earlier. The extracted values of the product of the CF g-factor and CF effective mass agree with values previously obtained for MBE samples.

  15. Composite fermions in 2 x 10{sup 6} cm{sup 2}/Vs mobility A1GaAs/GaAs heterostructures grown by MOCVD

    SciTech Connect

    Simmons, J.A., Chui, H.C., Harff, N.E., Hammons, B.E.; Du, R.R., Zudov, M.A.

    1996-12-31

    Recent growth by MOCVD (metalorganic chemical vapor deposition) of 2.0x10{sup 6} cm{sup 2}/Vs mobility heterostructures are reported. These mobilities, the highest reported to date, are attributed to use of tertiarybutylarsine as the arsenic precursor. Measurements in tilted magnetic fields of the fractional quantum Hall effect states near filling factor 3/2 are consistent with a spin-split composite fermion (CF) model proposed earlier. Extracted values of the product of the CF g-factor and CF effective mass agree with values previously obtained for MBE samples.

  16. Influence of stress in GaN crystals grown by HVPE on MOCVD-GaN/6H-SiC substrate

    PubMed Central

    Zhang, Lei; Yu, Jiaoxian; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Shao, Yongliang; Zhang, Haodong; Tian, Yuan

    2014-01-01

    GaN crystals without cracks were successfully grown on a MOCVD-GaN/6H-SiC (MGS) substrate with a low V/III ratio of 20 at initial growth. With a high V/III ratio of 80 at initial growth, opaque GaN polycrystals were obtained. The structural analysis and optical characterization reveal that stress has a great influence on the growth of the epitaxial films. An atomic level model is used to explain these phenomena during crystal growth. It is found that atomic mobility is retarded by compressive stress and enhanced by tensile stress. PMID:24569601

  17. Growth and characterization of In{sub X}Ga{sub 1-X}N/GaN single quantum well prepared by MOCVD

    SciTech Connect

    Prabakaran, K.; Ramesh, R.; Jayasakthi, M.; Loganathan, R.; Arivazhagan, P.; Baskar, K.

    2015-06-24

    The InGaN/GaN SQW structures were grown on c-plane sapphire substrate using metal-organic chemical vapor deposition (MOCVD). The thickness and indium composition of the InGaN was determined by HRXRD. From simulation fit the composition of indium was found to be 10% and thickness was around 5nm and 10nm. The Photoluminescence emission was found to be shifited towards lower wavelength as 479nm, 440nm on increasing the thickness. The photoluminescence intensity was degrades with increases of InGaN thickness. Atomic force microscopy studies were also carried out and the results are discussed in detail.

  18. Influence of stress in GaN crystals grown by HVPE on MOCVD-GaN/6H-SiC substrate.

    PubMed

    Zhang, Lei; Yu, Jiaoxian; Hao, Xiaopeng; Wu, Yongzhong; Dai, Yuanbin; Shao, Yongliang; Zhang, Haodong; Tian, Yuan

    2014-01-01

    GaN crystals without cracks were successfully grown on a MOCVD-GaN/6H-SiC (MGS) substrate with a low V/III ratio of 20 at initial growth. With a high V/III ratio of 80 at initial growth, opaque GaN polycrystals were obtained. The structural analysis and optical characterization reveal that stress has a great influence on the growth of the epitaxial films. An atomic level model is used to explain these phenomena during crystal growth. It is found that atomic mobility is retarded by compressive stress and enhanced by tensile stress. PMID:24569601

  19. An airborne isothermal haze chamber

    NASA Technical Reports Server (NTRS)

    Hindman, E. E.

    1981-01-01

    Thermal gradient diffusion cloud chambers (TGDCC) are used to determine the concentrations of cloud condensation nuclei (CCN) with critical supersaturations greater than or equal to about 0.2%. The CCN concentrations measured with the airborne IHC were lower than theoretically predicted by factors ranging between 7.9 and 9.0. The CCN concentrations measured with the airborne IHC were lower than the concentrations measured with the larger laboratory IHC's by factors ranging between 3.9 and 7.5. The bounds of the supersaturation ranges of the airborne IHC and the CSU-Mee TGDCC do not overlap. Nevertheless, the slopes of the interpolated data between the bounds agree favorably with the theoretical slopes.

  20. Formation of crustal magma chambers in Iceland

    SciTech Connect

    Gudmundsson, A.

    1986-02-01

    Formation of crustal magma chambers in Iceland may be facilitated by the occurrence of stress barriers that lead to formation of thick sills. Such sills absorb the magma of all dikes that enter them and may evolve into magma chambers. Ideal sites for stress barriers, and hence for magma chambers, are rock formations where individual layers have different elastic properties. The rocks formed during the Pleistocene have notably different elastic properties, and when buried in the volcanic zones, they form more promising sites for magma chambers than the Tertiary rocks. This may explain why the number of magma chambers, indicated by the number of corresponding central volcanoes, during the late Pleistocene (i.e., during the past 0.7 m.y.) appears to be proportionally greater than the number of chambers (i.e., central volcanoes) active during Tertiary time.

  1. Sequential Notch activation regulates ventricular chamber development

    PubMed Central

    D'Amato, Gaetano; Luxán, Guillermo; del Monte-Nieto, Gonzalo; Martínez-Poveda, Beatriz; Torroja, Carlos; Walter, Wencke; Bochter, Matthew S.; Benedito, Rui; Cole, Susan; Martinez, Fernando; Hadjantonakis, Anna-Katerina; Uemura, Akiyoshi; Jiménez-Borreguero, Luis J.; de la Pompa, José Luis

    2016-01-01

    Ventricular chambers are essential for the rhythmic contraction and relaxation occurring in every heartbeat throughout life. Congenital abnormalities in ventricular chamber formation cause severe human heart defects. How the early trabecular meshwork of myocardial fibres forms and subsequently develops into mature chambers is poorly understood. We show that Notch signalling first connects chamber endocardium and myocardium to sustain trabeculation, and later coordinates ventricular patterning and compaction with coronary vessel development to generate the mature chamber, through a temporal sequence of ligand signalling determined by the glycosyltransferase manic fringe (MFng). Early endocardial expression of MFng promotes Dll4–Notch1 signalling, which induces trabeculation in the developing ventricle. Ventricular maturation and compaction require MFng and Dll4 downregulation in the endocardium, which allows myocardial Jag1 and Jag2 signalling to Notch1 in this tissue. Perturbation of this signalling equilibrium severely disrupts heart chamber formation. Our results open a new research avenue into the pathogenesis of cardiomyopathies. PMID:26641715

  2. High and low energy proton radiation damage in p/n InP MOCVD solar cells

    NASA Technical Reports Server (NTRS)

    Rybicki, George; Weinberg, Irving; Scheiman, Dave; Vargas-Aburto, Carlos

    1995-01-01

    InP p(+)nn(+) MOCVD solar cells were irradiated with 0.2 MeV and 10 MeV protons to a fluence of 10(exp 13)/sq cm. The degradation of power output, IV behavior, carrier concentration and defect concentration were observed at intermediate points throughout the irradiations. The 0.2 MeV proton irradiated solar cells suffered much greater and more rapid degradation in power output than those irradiated with 10 meV protons. The efficiency losses were accompanied by larger increases in the recombination currents in the 0.2 MeV proton irradiated solar cells. The low energy proton irradiations also had a larger impact on the series resistance of the solar cells. Despite the radiation induced damage, the carrier concentration in the base of the solar cells showed no reduction after 10 MeV or 0.2 MeV proton irradiations and even increased during irradiation with 0.2 MeV protons. In a DLTS study of the irradiated samples, the minority carrier defects H4 and H5 at E(v) + 0.33 and E(v) + 0.52 eV and the majority carrier defects E7 and E10 at E(c)- 0.39 and E(c)-0.74 eV, were observed. The defect introduction rates for the 0.2 MeV proton irradiations were about 20 times higher than for the 10 MeV proton irradiations. The defect E10, observed here after irradiation, has been shown to act as a donor in irradiated n-type InP and may be responsible for obscuring carrier removal. The results of this study are consistent with the much greater damage produced by low energy protons whose limited range causes them to stop in the active region of the solar cell.

  3. Vertically p-n-junctioned GaN nano-wire array diode fabricated on Si(111) using MOCVD.

    PubMed

    Park, Ji-Hyeon; Kim, Min-Hee; Kissinger, Suthan; Lee, Cheul-Ro

    2013-04-01

    We demonstrate the fabrication of n-GaN:Si/p-GaN:Mg nanowire arrays on (111) silicon substrate by metal organic chemical vapor deposition (MOCVD) method .The nanowires were grown by a newly developed two-step growth process. The diameter of as-grown nanowires ranges from 300-400 nm with a density of 6-7 × 10(7) cm(-2). The p- and n-type doping of the nanowires is achieved with Mg and Si dopant species. Structural characterization by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) indicates that the nanowires are relatively defect-free. The room-temperature photoluminescence emission with a strong peak at 370 nm indicates that the n-GaN:Si/p-GaN:Mg nanowire arrays have potential application in light-emitting nanodevices. The cathodoluminscence (CL) spectrum clearly shows a distinct optical transition of GaN nanodiodes. The nano-n-GaN:Si/p-GaN:Mg diodes were further completed using a sputter coating approach to deposit Au/Ni metal contacts. The polysilazane filler has been etched by a wet chemical etching process. The n-GaN:Si/p-GaN:Mg nanowire diode was fabricated for different Mg source flow rates. The current-voltage (I-V) measurements reveal excellent rectifying properties with an obvious turn-on voltage at 1.6 V for a Mg flow rate of 5 sccm (standard cubic centimeters per minute). PMID:23455517

  4. X-ray diffraction study of A- plane non-polar InN epilayer grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Moret, Matthieu; Briot, Olivier; Gil, Bernard

    2015-03-01

    Strong polarisation-induced electric fields in C-plane oriented nitrides semiconductor layers reduce the performance of devices. Eliminating the polarization fields can be achieved by growing nitrides along non polar direction. We have grown non polar A-plane oriented InN on R-plane (1‾102) nitridated sapphire substrate by MOCVD. We have studied the structural anisotropy observed in these layers by analyzing High Resolution XRay Diffraction rocking curve (RC) experiments as a function of the in-plane beam orientation. A-plane InN epilayer have a unique epitaxial relationship on R-Plane sapphire and show a strong structural anisotropy. Full width at half maximum (FWHM) of the InN(11‾20) XRD RC values are contained between 44 and 81 Arcmin. FWHM is smaller when the diffraction occurs along the [0001] and the largest FWHM values, of the (11‾20) RC, are obtained when the diffraction occurs along the [1‾100] in-plane direction. Atomic Force Microscopy imaging revealed morphologies with well organized crystallites. The grains are structured along a unique crystallographic orientation of InN, leading to larger domains in this direction. This structural anisotropy can be, in first approximation, attributed to the difference in the domain sizes observed. XRD reciprocal space mappings (RSM) were performed in asymmetrical configuration on (13‾40) and (2‾202) diffraction plane. RSM are measured with a beam orientation corresponding to a maximal and a minimal width of the (11‾20) Rocking curves, respectively. A simple theoretical model is exposed to interpret the RSM. We concluded that the dominant contribution to the anisotropy is due to the scattering coherence length anisotropy present in our samples.

  5. Effects of TMSb/TEGa ratios on epilayer properties of gallium antimonide grown by low-pressure MOCVD

    NASA Astrophysics Data System (ADS)

    Wu, Tong S.; Su, Yan-Kuin; Juang, Fuh S.; Li, N. Y.; Gan, K. J.

    1991-03-01

    Undoped GaSb epitaxial layers have been grown on (100) GaSb and GaAs substrates by low pressure MOCVD. It was found that the layer morphologies were strongly dependent on TMSb/TEGa (V/Ill) ratios. The mirrorlike surface can be easily obtained under V/Ill ratio in the range of 68 at growth temperature 600 C and growth pressure 100 torr. Beyond this range the surface deteriorated seriously. The epilayers were characterized by electron diffraction patterns and photoluminescent measurements. The boundexciton (BE) peaks and strong acceptor band peak in PL spectra were observed from the sample grown under V/Ill ratio of 6. 84 on GaSb substrates. PL peak intensity was found to be a function of the V/Ill ratios. When V/Ill ratios increased beyond the range of 68 the BE peaks disappeared and PL spectra became roughened. The full width at half maximum (FWHM) of acceptor-band peaks in PL spectra was dependent on V/Ill ratios ensuring that obtained from the analysis of surface morphology. IV characteristics of the pn diodes fabricated on the sample of undoped-GaSb/GaSb:Te was measured. The electrical properties of undoped GaSb were studied from the epilayers grown on GaAs semiinsulating substrates. The hole concentration increased and mobility decreased with growth temperature between 520 and 635C under V/1116. 84. For 550 C grown epilayers: as V/Ill ratio increased above 6. 64 or decreased below 6. 64 the hole concentration increased and hole mobility decreased. .

  6. Drift chamber tracking with neural networks

    SciTech Connect

    Lindsey, C.S.; Denby, B.; Haggerty, H.

    1992-10-01

    We discuss drift chamber tracking with a commercial log VLSI neural network chip. Voltages proportional to the drift times in a 4-layer drift chamber were presented to the Intel ETANN chip. The network was trained to provide the intercept and slope of straight tracks traversing the chamber. The outputs were recorded and later compared off line to conventional track fits. Two types of network architectures were studied. Applications of neural network tracking to high energy physics detector triggers is discussed.

  7. Fluidized wall for protecting fusion chamber walls

    SciTech Connect

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  8. IFE Chamber Technology - Status and Future Challenges

    SciTech Connect

    Meier, W R; Raffrary, A R; Abdel-Khalik, S; Kulcinski, G; Latkowski, J F; Najmabadi, F; Olson, C L; Peterson, P F; Ying, A; Yoda, M

    2002-11-15

    Significant progress has been made on addressing critical issues for inertial fusion energy (IFE) chambers for heavy-ion, laser and Z-pinch drivers. A variety of chamber concepts are being investigated including dry-wall (currently favored for laser IFE), wetted-wall (applicable to both laser and ion drivers), and thick-liquid-wall favored by heavy ion and z-pinch drivers. Recent progress and remaining challenges in developing IFE chambers are reviewed.

  9. Experimental investigation of a lightweight rocket chamber

    NASA Technical Reports Server (NTRS)

    Dalgleish, John E; Tischler, Adelbert O

    1953-01-01

    Experiments have been conducted with a jacketed rocket combustion chamber that was fabricated by hydraulic-forming from sheet metal. Rocket combustion chambers made by this method have been used successfully. Runs with these combustion chambers have been made at over-all heat-transfer rates 1.7 Btu per square inch per second with water cooling and also ammonia as a regenerative coolant.

  10. Engineering verification of the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M., III; Sager, J. C.; Jones, J. D.

    1992-01-01

    The requirements for life support systems, both biological and physical-chemical, for long-term human attended space missions are under serious study throughout NASA. The KSC 'breadboard' project has focused on biomass production using higher plants for atmospheric regeneration and food production in a special biomass production chamber. This chamber is designed to provide information on food crop growth rate, contaminants in the chamber that alter plant growth requirements for atmospheric regeneration, carbon dioxide consumption, oxygen production, and water utilization. The shape and size, mass, and energy requirements in relation to the overall integrity of the biomass production chamber are under constant study.