Science.gov

Sample records for hormone receptor deficiency

  1. Facial morphometry of Ecuadorian patients with growth hormone receptor deficiency/Laron syndrome.

    PubMed Central

    Schaefer, G B; Rosenbloom, A L; Guevara-Aguirre, J; Campbell, E A; Ullrich, F; Patil, K; Frias, J L

    1994-01-01

    Facial morphometry using computerised image analysis was performed on patients with growth hormone receptor deficiency (Laron syndrome) from an inbred population of southern Ecuador. Morphometrics were compared for 49 patients, 70 unaffected relatives, and 14 unrelated persons. Patients with growth hormone receptor deficiency showed significant decreases in measures of vertical facial growth as compared to unaffected relatives and unrelated persons with short stature from other causes. This report validates and quantifies the clinical impression of foreshortened facies in growth hormone receptor deficiency. Images PMID:7815422

  2. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    SciTech Connect

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  3. Growth hormone deficiency - children

    MedlinePlus

    ... the same age. The child will have normal intelligence in most cases. In older children, puberty may ... hormones cause the body to make. Tests can measure these growth factors. Accurate growth hormone deficiency testing ...

  4. Increased insulin receptor binding in erythrocytes from growth hormone-deficient children.

    PubMed

    Dávila, N; Barceló, B; Carranza, M C; Calle, C

    1991-08-01

    Erythrocytes from growth hormone-deficient children (GHd-children) (n = 10) showed a statistically significant increase in insulin binding at low unlabeled insulin concentrations, together with a threefold decrease in apparent receptor affinity, as compared to control children (C) (n = 11). Scatchard analysis of the binding data using the two-site model revealed that both the receptor concentration R1 [GHd-children 0.10 +/- 0.01 ng/ml and C 0.03 +/- 0.002 ng/ml] and the dissociation constant KD1 [GHd-children (0.48 +/- 0.05) x 10(-9) M and C (0.19 +/- 0.01) x 10(-9) M] for high affinity-low capacity sites were significantly increased in erythrocytes from GHd-children, while neither receptor concentrations (R2) nor the dissociation constant (KD2) for low affinity-high capacity sites proved to be altered. These events were accompanied by a normal sensitivity to insulin as well as glucose tolerance in the GHd-group. The meaning of the increased insulin binding with normal insulin sensitivity in GH-deficiency is discussed. PMID:1760528

  5. Growth hormone secretagogue receptor deficiency in mice protects against obesity‐induced hypertension

    PubMed Central

    Harris, Louise E.; Morgan, David G.; Balthasar, Nina

    2014-01-01

    Abstract Growth hormone secretagogue receptor (GHS‐R) signaling has been associated with growth hormone release, increases in food intake and pleiotropic cardiovascular effects. Recent data demonstrated that acute GHS‐R antagonism leads to increases in mean arterial pressure mediated by the sympathetic nervous system in rats; a highly undesirable effect if GHS‐R antagonism was to be used as a therapeutic approach to reducing food intake in an already obese, hypertensive patient population. However, our data in conscious, freely moving GHS‐R deficient mice demonstrate that chronic absence of GHS‐R signaling is protective against obesity‐induced hypertension. GHS‐R deficiency leads to reduced systolic blood pressure variability (SBPV); in response to acute high‐fat diet (HFD)‐feeding, increases in the sympathetic control of SBPV are suppressed in GHS‐R KO mice. Our data further suggest that GHS‐R signaling dampens the immediate HFD‐mediated increase in spontaneous baroreflex sensitivity. In diet‐induced obesity, absence of GHS‐R signaling leads to reductions in obesity‐mediated hypertension and tachycardia. Collectively, our findings thus suggest that chronic blockade of GHS‐R signaling may not result in adverse cardiovascular effects in obesity. PMID:24760503

  6. Obesity, diabetes and cancer: insight into the relationship from a cohort with growth hormone receptor deficiency.

    PubMed

    Guevara-Aguirre, Jaime; Rosenbloom, Arlan L

    2015-01-01

    Obesity with insulin-resistant diabetes and increased cancer risk is a global problem. We consider the alterations of metabolism attendant on the underlying pathogenic overnutrition and the role of the growth hormone (GH)-IGF-1 axis in this interaction. Obesity-induced insulin resistance is a determinant of diabetes. Excess glucose, and an elevated concentration of insulin acting through its own receptors along with complex interactions with the IGF-1 system, will add extra fuel and fuel signalling for malignant growth and induce anti-apoptotic activities, permitting proliferation of forbidden clones. In Ecuador there are ~100 living adults with lifelong IGF-1 deficiency caused by a GH receptor (GHR) mutation who, despite a high percentage of body fat, have markedly increased insulin sensitivity compared with age- and BMI-matched control relatives, and no instances of diabetes, which is present in 6% of unaffected relatives. Only 1 of 20 deceased individuals with GHR deficiency died of cancer vs 20% of ~1,500 relatives. Fewer DNA breaks and increased apoptosis occurred in cell cultures exposed to oxidant agents following addition of serum from GHR-deficient individuals vs serum from control relatives. These changes were reversible by adding IGF-1 to the serum from the GHR-deficient individuals. The reduction in central regulators of pro-ageing signalling thus appears to be the result of an absence of GHR function. The complex inter-relationship of obesity, diabetes and cancer risk is related to excess insulin and fuel supply, in the presence of heightened anti-apoptosis and uninhibited DNA damage when GHR function is normal. PMID:25316432

  7. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency.

    PubMed

    He, Jinshui; Fang, Yanling; Lin, Xinfu; Zhou, Huowang; Zhu, Shaobo; Zhang, Yugui; Yang, Huicong; Ye, Xiaoling

    2016-01-01

    BACKGROUND Growth hormone deficiency (GHD) is a major cause of congenital short stature. GHD patients have significantly decreased serum leptin levels, which are regulated by gene polymorphism of leptin and leptin receptor. This study thus investigated the relationship between gene polymorphism and susceptibility to GHD. MATERIAL AND METHODS A case-control study was performed using 180 GHD children in addition to 160 healthy controls. After the extraction of whole genomic DNA, the genotypes of leptin and leptin receptor gene loci were analyzed by sequencing for single-nucleotide polymorphism. RESULTS The frequency distribution of all alleles identified in leptin gene (loci rs7799039) and leptin receptor gene (loci rs1137100 and rs1137101) fit Hardy-Weinberg equilibrium. There was a significant difference in allele frequency at loci rs7799039 or rs1137101, as individuals with heterozygous GA allele had lower (rs7799039) or higher (rs1137101) GHD risk. No significant difference in allele frequency was discovered at loci rs1137100 (p>0.05), which was unrelated to GHD susceptibility. CONCLUSIONS Gene polymorphism of leptin (loci rs7799039) and leptin receptor (loci rs1137101) are correlated with GHD susceptibility. PMID:26915772

  8. The Relationship Between Gene Polymorphism of Leptin and Leptin Receptor and Growth Hormone Deficiency

    PubMed Central

    He, Jinshui; Fang, Yanling; Lin, Xinfu; Zhou, Huowang; Zhu, Shaobo; Zhang, Yugui; Yang, Huicong; Ye, Xiaoling

    2016-01-01

    Backgrounds Growth hormone deficiency (GHD) is a major cause of congenital short stature. GHD patients have significantly decreased serum leptin levels, which are regulated by gene polymorphism of leptin and leptin receptor. This study thus investigated the relationship between gene polymorphism and susceptibility to GHD. Material/Methods A case-control study was performed using 180 GHD children in addition to 160 healthy controls. After the extraction of whole genomic DNA, the genotypes of leptin and leptin receptor gene loci were analyzed by sequencing for single-nucleotide polymorphism. Results The frequency distribution of all alleles identified in leptin gene (loci rs7799039) and leptin receptor gene (loci rs1137100 and rs1137101) fit Hardy-Weinberg equilibrium. There was a significant difference in allele frequency at loci rs7799039 or rs1137101, as individuals with heterozygous GA allele had lower (rs7799039) or higher (rs1137101) GHD risk. No significant difference in allele frequency was discovered at loci rs1137100 (p>0.05), which was unrelated to GHD susceptibility. Conclusions Gene polymorphism of leptin (loci rs7799039) and leptin receptor (loci rs1137101) are correlated with GHD susceptibility. PMID:26915772

  9. Genetics Home Reference: isolated growth hormone deficiency

    MedlinePlus

    ... Health Conditions isolated growth hormone deficiency isolated growth hormone deficiency Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Isolated growth hormone deficiency is a condition caused by a severe ...

  10. Novel hormone "receptors".

    PubMed

    Nemere, Ilka; Hintze, Korry

    2008-02-01

    Our concepts of hormone receptors have, until recently, been narrowly defined. In the last few years, an increasing number of reports identify novel proteins, such as enzymes, acting as receptors. In this review we cover the novel receptors for the hormones atrial naturetic hormone, enterostatin, hepcidin, thyroid hormones, estradiol, progesterone, and the vitamin D metabolites 1,25(OH)(2)D(3) and 24,25(OH)(2)D(3). PMID:17546587

  11. Fibroblast Growth Factor Receptor 3 Deficiency Does Not Impair the Osteoanabolic Action of Parathyroid Hormone on Mice

    PubMed Central

    Xie, Yangli; Yi, Lingxian; Weng, Tujun; Huang, Junlan; Luo, Fengtao; Jiang, Wanling; Xian, Cory J; Du, Xiaolan; Chen, Lin

    2016-01-01

    Summary: PTH stimulates bone formation in Fgfr3 knockout mice through promotion of proliferation and differentiation in osteoblasts. Introduction: Previous studies showed that endogenous fibroblast growth factor 2 (FGF-2) is required for parathyroid hormone (PTH)-stimulated bone anabolic effects, however, the exact mechanisms by which PTH stimulate bone formation and the function of FGF receptors in mediating these actions are not fully defined. FGF receptor 3 (FGFR3) has been characterized as an important regulator of bone metabolism and is confirmed to cross-talk with PTH/PTHrP signal in cartilage and bone development. Methods: Fgfr3 knockout and wild-type mice at 2-month-old and 4-month-old were intraperitoneally injected with PTH intermittently for 4 weeks and then the skeletal responses to PTH were assessed by dual energy X-ray absorptiometry (DEXA), micro-computed tomography (μCT) and bone histomorphometry. Results: Intermittent PTH treatment improved bone mineral density (BMD) and femoral mechanical properties in both Fgfr3-/- and wild-type mice. Histomorphometric analysis showed that bone formation and bone resorption were increased in both genotypes following PTH treatment. PTH treatment increased trabecular bone volume (BV/TV) in WT and Fgfr3-deficient mice. The anabolic response in Fgfr3-deficient and wild-type bone is characterized by an increase of both bone formation and resorption-related genes following PTH treatment. In addition, we found that Fgfr3 null osteoblasts (compared to wild-type controls) maintained normal abilities to response to PTH-stimulated increase of proliferation, differentiation, expression of osteoblastic marker genes (Cbfa1, Osteopontin and Osteocalcin), and phosphorylation of Erk1/2. Conclusions: Bone anabolic effects of PTH were not impaired by the absence of FGFR3, suggesting that the FGFR3 signaling may not be required for osteoanabolic effects of PTH activities. PMID:27489502

  12. Genetics of growth hormone deficiency.

    PubMed

    Mullis, Primus E

    2007-03-01

    When a child is not following the normal, predicted growth curve, an evaluation for underlying illness and central nervous system abnormalities is required and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency. This article focuses on the GH gene, the various gene alterations, and their possible impact on the pituitary gland. Transcription factors regulating pituitary gland development may cause multiple pituitary hormone deficiency but may present initially as GH deficiency. The role of two most important transcription factors, POU1F1 (Pit-1) and PROP 1, is discussed. PMID:17336732

  13. Receptor mutations and haplotypes in growth hormone receptor deficiency: a global survey and identification of the Ecuadorean E180splice mutation in an oriental Jewish patient.

    PubMed

    Berg, M A; Peoples, R; Pérez-Jurado, L; Guevara-Aguirre, J; Rosenbloom, A L; Laron, Z; Milner, R D; Francke, U

    1994-04-01

    Eight different mutations were detected in the growth hormone (GH) receptor gene of patients with inherited GH receptor deficiency (GHRD; Laron syndrome) from five continents. All the mutations are located in the extracellular domain of the receptor and are predicted to cause gross structural abnormalities and non-functional receptor molecules. They include three nucleotide changes in the coding region causing translational stop signals, including the newly identified E183X mutation; two nucleotide changes in introns that affect splice junctions; two dinucleotide deletions that result in stop codons downstream; and one single nucleotide change that activates a donor splice site within an exon and results in a transcript missing 24 nucleotides. This latter mutation (E180splice) was first identified in a cohort of patients with GHRD from southern Ecuador. Based on the fact that the E180splice mutation generates a new cleavage site for the restriction enzyme MnlI, a simple diagnostic test has been developed that can be carried out on dried blood spots collected on filter paper. A total of 55 affected individuals from Ecuador has been found to be homozygous for this mutation. Asymptomatic carriers can also be detected, and 104 of 150 individuals screened were found to be carriers. Using this test, the E180splice mutation has recently been detected in one of two oriental Jewish patients from Israel. PMID:7949594

  14. A polymorphism in the leptin receptor gene at position 223 is associated with growth hormone replacement therapy responsiveness in idiopathic short stature and growth hormone deficiency patients.

    PubMed

    Su, Pen-Hua; Yang, Shun-Fa; Yu, Ju-Shan; Chen, Suh-Jen; Chen, Jia-Yuh

    2012-12-01

    We hypothesized that responses to growth hormone (GH) therapy by idiopathic short stature (ISS) and growth hormone deficiency (GHD) patients were associated with single nucleotide polymorphisms (SNPs) in the leptin (LEP) and leptin receptor (LEPR) genes. We retrospectively enrolled ISS (n = 32) and GHD (n = 38) patients and forty healthy age-and gender-matched children. They were genotyped for the LEP promoter at nt.-2548, and LEPR K109R and LEPR Q223R polymorphisms. Clinical and laboratory variables were determined before and after 2 years of GH treatment. ISS patients with G/A or A/A genotypes of the LEPR Q223R SNP had a significantly higher height velocity (cm/y) than ISS patients with the G/G genotype at 2 years after GH treatment. For GHD patients, G/A or A/A genotype of the LEPR K109R SNP was associated with higher body weight, higher BMI, and higher weight velocity than patients with the G/G genotype before GH treatment, but not after GH treatment. G/A or A/A genotype of the LEPR Q223R SNP was associated with a significantly higher body weight, higher height velocity before treatment, but not after GH treatment. G/A or A/A genotype of the LEPR Q223R SNP was associated with a significantly higher weight velocity before treatment, but a significantly lower weight velocity was found at 2 years after GH treatment. These results suggest LEPR Q223R SNP (rs1137101) is associated with outcomes of GH replacement therapy in ISS and GHD patients. PMID:23009903

  15. Growth hormone deficiency: an update.

    PubMed

    Audí, L; Fernández-Cancio, M; Camats, N; Carrascosa, A

    2013-03-01

    Growth hormone (GH) deficiency (GHD) in humans manifests differently according to the individual developmental stage (early after birth, during childhood, at puberty or in adulthood), the cause or mechanism (genetic, acquired or idiopathic), deficiency intensity and whether it is the only pituitary-affected hormone or is combined with that of other pituitary hormones or forms part of a complex syndrome. Growing knowledge of the genetic basis of GH deficiency continues to provide us with useful information to further characterise mutation types and mechanisms for previously described and new candidate genes. Despite these advances, a high proportion of GH deficiencies with no recognisable acquired basis continue to be labelled as idiopathic, although less frequently when they are congenital and/or familial. The clinical and biochemical diagnoses continue to be a conundrum despite efforts to harmonise biochemical assays for GH and IGF-1 analysis, probably because the diagnosis based on the so-called GH secretion stimulation tests will prove to be of limited usefulness for predicting therapy indications. PMID:23435439

  16. The growth hormone receptor.

    PubMed

    Waters, Michael J

    2016-06-01

    Once thought to be present only in liver, muscle and adipose tissue, the GH receptor is now known to be ubiquitously distributed, in accord with the many pleiotropic actions of GH. These include the regulation of metabolism, postnatal growth, cognition, immune, cardiac and renal systems and gut function. GH exerts these actions primarily through alterations in gene expression, initiated by activation of its membrane receptor and the resultant activation of the associated JAK2 (Janus kinase 2) and Src family kinases. Receptor activation involves hormone initiated movements within a receptor homodimer, rather than simple receptor dimerization. We have shown that binding of the hormone realigns the orientation of the two receptors both by relative rotation and by closer apposition just above the cell membrane. This is a consequence of the asymmetric placement of the binding sites on the hormone. Binding results in a conversion of parallel receptor transmembrane domains into a rotated crossover orientation, which produces separation of the lower part of the transmembrane helices. Because the JAK2 is bound to the Box1 motif proximal to the inner membrane, receptor activation results in separation of the two associated JAK2s, and in particular the removal of the inhibitory pseudokinase domain from the kinase domain of the other JAK2 (and vice versa). This brings the two kinase domains into position for trans-activation and initiates tyrosine phosphorylation of the receptor cytoplasmic domain and other substrates such as STAT5, the key transcription factor mediating most genomic actions of GH. There are a limited number of genomic actions initiated by the Src kinase family member which also associates with the upper cytoplasmic domain of the receptor, including important immune regulatory actions to dampen exuberant innate immune activation of cells involved in transplant rejection. These findings offer insights for developing specific receptor antagonists which may be

  17. Climacteric in untreated isolated growth hormone deficiency

    PubMed Central

    Menezes, Menilson; Salvatori, Roberto; Oliveira, Carla R.P.; Pereira, Rossana M.C.; Souza, Anita H.O.; Nobrega, Luciana M.A.; Cruz, Edla do A.C.; Menezes, Marcos; Alves, Érica O.; Aguiar-Oliveira, Manuel H.

    2008-01-01

    Objective To study the time, intensity of symptoms, hormonal profile, and related morbidity of climacteric in women with untreated isolated growth hormone (GH) deficiency (IGHD). Design Women belonging to a large Brazilian kindred with IGHD due to a homozygous mutation in the GH-releasing hormone receptor gene were studied. None of them had ever received GH replacement therapy. A two-step protocol was performed. In the first case-control experiment, aimed to determine the age at climacteric, we compared eight women with IGHD and 32 normal women between 37 and 55 years of age. In the second cross-sectional experiment, aimed to determine the severity of climacteric symptoms, seven women with IGHD (aged 47-65 y) were compared with 13 controls (aged 44-65 y). The Kupperman Index scores, serum follicle-stimulating hormone, luteinizing hormone, prolactin, and estradiol levels were determined, and pelvic and mammary ultrasonography, mammography, and colpocytology were performed. Results The number of women with follicle-stimulating hormone above 20 mIU/mL was higher in women with IGHD than controls. Kupperman’s Index was not different between the two groups. Menarche had been delayed and parity was lower in women with IGHD. Hormonal profile was similar, but prolactin was lower in women with IGHD. Uterine volume was smaller in women with IGHD, and endometrial thickness and ovarian volume were similar in the two groups. No difference in breast images or in colpocytology was observed between the two groups. Conclusions Menarche was delayed and the beginning of climacteric is anticipated in untreated lifetime IGHD, but menopausal symptoms and hormonal profile resemble the normal climacteric. PMID:18223507

  18. Transient partial growth hormone deficiency due to zinc deficiency.

    PubMed

    Nishi, Y; Hatano, S; Aihara, K; Fujie, A; Kihara, M

    1989-04-01

    We present here a 13-year-old boy with partial growth hormone deficiency due to chronic mild zinc deficiency. When zinc administration was started, his growth rate, growth hormone levels, and plasma zinc concentrations increased significantly. His poor dietary intake resulted in chronic mild zinc deficiency, which in turn could be the cause of a further loss of appetite and growth retardation. There was also a possibility of renal zinc wasting which may have contributed to zinc deficiency. Zinc deficiency should be carefully ruled out in patients with growth retardation. PMID:2708733

  19. Genetics Home Reference: combined pituitary hormone deficiency

    MedlinePlus

    ... People with combined pituitary hormone deficiency may have hypothyroidism, which is underactivity of the butterfly-shaped thyroid gland in the lower neck. Hypothyroidism can cause many symptoms, including weight gain and ...

  20. Growth Hormone Deficiency, Brain Development, and Intelligence

    ERIC Educational Resources Information Center

    Meyer-Bahlburg, Heino F. L.; And Others

    1978-01-01

    Available from: American Medical Association, 535 N. Dearborn Street, Chicago, Illinois 60610. In order to determine what effect, if any, growth hormone (GH) has on human brain development, 29 patients (mean age 11.7 years) with GH deficiency were selected according to the following criteria: no evidence of reversible GH deficiency, onset of…

  1. Netherton syndrome associated with growth hormone deficiency.

    PubMed

    Aydın, Banu Küçükemre; Baş, Firdevs; Tamay, Zeynep; Kılıç, Gürkan; Süleyman, Ayşe; Bundak, Rüveyde; Saka, Nurçin; Özkaya, Esen; Güler, Nermin; Darendeliler, Feyza

    2014-01-01

    Netherton syndrome (NS) is a rare autosomal recessive disorder characterized by ichthyosiform scaling, hair abnormalities, and variable atopic features. Mutations in the serine protease inhibitor Kazal type 5 (SPINK5) gene leading to lymphoepithelial Kazal-type-related inhibitor (LEKTI) deficiency cause NS. Growth retardation is a classic feature of NS, but growth hormone (GH) deficiency with subsequent response to GH therapy is not documented in the literature. It is proposed that a lack of inhibition of proteases due to a deficiency of LEKTI in the pituitary gland leads to the overprocessing of human GH in NS. Herein we report three patients with NS who had growth retardation associated with GH deficiency and responded well to GH therapy. PMID:24015757

  2. Growth hormone deficiency and cerebral palsy

    PubMed Central

    Devesa, Jesús; Casteleiro, Nerea; Rodicio, Cristina; López, Natalia; Reimunde, Pedro

    2010-01-01

    Cerebral palsy (CP) is a catastrophic acquired disease, occurring during development of the fetal or infant brain. It mainly affects the motor control centres of the developing brain, but can also affect cognitive functions, and is usually accompanied by a cohort of symptoms including lack of communication, epilepsy, and alterations in behavior. Most children with cerebral palsy exhibit a short stature, progressively declining from birth to puberty. We tested here whether this lack of normal growth might be due to an impaired or deficient growth hormone (GH) secretion. Our study sample comprised 46 CP children, of which 28 were male and 18 were female, aged between 3 and 11 years. Data obtained show that 70% of these children lack normal GH secretion. We conclude that GH replacement therapy should be implemented early for CP children, not only to allow them to achieve a normal height, but also because of the known neurotrophic effects of the hormone, perhaps allowing for the correction of some of the common disabilities experienced by CP children. PMID:20856687

  3. Mutations in Prokineticin 2 and Prokineticin receptor 2genes in Human Gonadotrophin-Releasing Hormone Deficiency: Molecular Genetics and Clinical Spectrum

    PubMed Central

    Cole, Lindsay W.; Sidis, Yisrael; Zhang, ChengKang; Quinton, Richard; Plummer, Lacey; Pignatelli, Duarte; Hughes, Virginia A.; Dwyer, Andrew A.; Raivio, Taneli; Hayes, Frances J.; Seminara, Stephanie B.; Huot, Celine; Alos, Nathalie; Speiser, Phyllis; Takeshita, Akira; VanVliet, Guy; Pearce, Simon; Crowley, William F.; Zhou, Qun-Yong; Pitteloud, Nelly

    2008-01-01

    Context: Mice deficient in prokineticin 2(PROK2) and prokineticin receptor2 (PROKR2) exhibit variable olfactory bulb dysgenesis and GnRH neuronal migration defects reminiscent of human GnRH deficiency. Objectives: We aimed to screen a large cohort of patients with Kallmann syndrome (KS) and normosmic idiopathic hypogonadotropic hypogonadism (IHH) for mutations in PROK2/PROKR2, evaluate their prevalence, define the genotype/phenotype relationship, and assess the functionality of these mutant alleles in vitro. Design: Sequencing of the PROK2 and PROKR2 genes was performed in 170 KS patients and 154 nIHH. Mutations were examined using early growth response 1-luciferase assays in HEK 293 cells and aequorin assays in Chinese hamster ovary cells. Results: Four heterozygous and one homozygous PROK2 mutation (p.A24P, p.C34Y, p.I50M, p.R73C, and p.I55fsX1) were identified in five probands. Four probands had KS and one nIHH, and all had absent puberty. Each mutant peptide impaired receptor signaling in vitro except the I50M. There were 11 patients who carried a heterozygous PROKR2 mutation (p.R85C, p.Y113H, p.V115M, p.R164Q, p.L173R, p.W178S, p.S188L, p.R248Q, p.V331M, and p.R357W). Among them, six had KS, four nIHH, and one KS proband carried both a PROKR2 (p.V115M) and PROK2 (p.A24P) mutation. Reproductive phenotypes ranged from absent to partial puberty to complete reversal of GnRH deficiency after discontinuation of therapy. All mutant alleles appear to decrease intracellular calcium mobilization; seven exhibited decreased MAPK signaling, and six displayed decreased receptor expression. Nonreproductive phenotypes included fibrous dysplasia, sleep disorder, synkinesia, and epilepsy. Finally, considerable variability was evident in family members with the same mutation, including asymptomatic carriers. Conclusion: Loss-of-function mutations in PROK2 and PROKR2 underlie both KS and nIHH. PMID:18559922

  4. Borjeson-Forssman-Lehmann syndrome and multiple pituitary hormone deficiency.

    PubMed

    Birrell, G; Lampe, A; Richmond, S; Bruce, S N; Gécz, J; Lower, K; Wright, M; Cheetham, T D

    2003-12-01

    We describe two brothers with Borjeson-Forssman-Lehmann syndrome and the 22A-->T (Lys8X) PHF6 mutation, who presented with the symptoms and signs of multiple pituitary hormone deficiency. Biochemical investigations and radiology confirmed growth hormone (GH), thyroid stimulating hormone (TSH) and adrenocorticotrophic hormone (ACTH) as well as gonadotrophin deficiency. They were also found to have optic nerve hypoplasia. This family suggests that the BFL gene product may play an important role in midline neuro-development including the hypothalamo-pituitary axis. PMID:14714754

  5. [Pathologic manifestations of hormonal receptor mutations].

    PubMed

    Milgrom, E

    2000-01-01

    Mutations of receptor genes are involved in various aspects of thyroid and gonadal pathology. Activating mutations of TSH and LH receptors are associated with hyperthyroidism and premature puberty. These mutations are dominant and lead to the synthesis of a constitutive receptor, i.e. a receptor active even in the absence of hormone. Inactivating mutations of TSH, gonadotropin and GnRH receptors are recessive. They determine either a hypothyroidism or a hypogonadism. In the case of alterations of gonadotropin receptors the hypogonadism is hypergonadotrophic. It is hypogonadotrophic in the case of mutations of the GnRH receptor. PMID:10989556

  6. Hormonal deficiencies during and after Puumala hantavirus infection.

    PubMed

    Mäkelä, S; Jaatinen, P; Miettinen, M; Salmi, J; Ala-Houhala, I; Huhtala, H; Hurme, M; Pörsti, I; Vaheri, A; Mustonen, J

    2010-06-01

    Previous reports have described panhypopituitarism associated with severe cases of hemorrhagic fever with renal syndrome (HFRS), but the prevalence of hormonal deficiencies after nephropathia epidemica (NE), a milder form of HFRS, has not been studied. This study was conducted in order to determine the prevalence of hormonal defects in patients with acute NE and during long-term follow-up. Fifty-four patients with serologically confirmed acute NE were examined by serum hormonal measurements during the acute NE, after 3 months, and after 1 to 10 (median 5) years. Thirty out of 54 (56%) patients had abnormalities of the gonadal and/or thyroid axis during the acute NE. After a median follow-up of 5 years, 9 (17%) patients were diagnosed with a chronic, overt hormonal deficit: hypopituitarism was found in five patients and primary hypothyroidism in five patients. In addition, chronic subclinical testicular failure was found in five men. High creatinine levels and inflammatory markers during NE were associated with the acute central hormone deficiencies, but not with the chronic deficiencies. Hormonal defects are common during acute NE and, surprisingly, many patients develop chronic hormonal deficiencies after NE. The occurrence of long-term hormonal defects cannot be predicted by the severity of acute NE. PMID:20397036

  7. Sex Differences in Somatotrope Dependency on Leptin Receptors in Young Mice: Ablation of LEPR Causes Severe Growth Hormone Deficiency and Abdominal Obesity in Males.

    PubMed

    Allensworth-James, Melody L; Odle, Angela; Haney, Anessa; Childs, Gwen

    2015-09-01

    Leptin receptor (LEPR) signaling controls appetite and energy expenditure. Somatotrope-specific deletion of the LEPRb signaling isoform causes GH deficiency and obesity. The present study selectively ablated Lepr exon 1 in somatotropes, which removes the signal peptide, causing the loss of all isoforms of LEPR. Excision of Lepr exon 1 was restricted to the pituitary, and mutant somatotropes failed to respond to leptin. Young (2-3 mo) males showed a severe 84% reduction in serum GH levels and more than 60% reduction in immunolabeled GH cells compared with 41%-42% reductions in GH and GH cells in mutant females. Mutant males (35 d) and females (45 d) weighed less than controls and males had lower lean body mass. Image analysis of adipose tissue by magnetic resonance imaging showed that young males had a 2-fold increase in abdominal fat mass and increased adipose tissue density. Young females had only an overall increase in adipose tissue. Both males and females showed lower energy expenditure and higher respiratory quotient, indicating preferential carbohydrate burning. Young mutant males slept less and were more restless during the dark phase, whereas the opposite was true of females. The effects of a Cre-bearing sire on his non-Cre-recombinase bearing progeny are seen by increased respiratory quotient and reduced litter sizes. These studies elucidate clear sex differences in the extent to which somatotropes are dependent on all isoforms of LEPR. These results, which were not seen with the ablation of Lepr exon 17, highlight the severe consequences of ablation of LEPR in male somatotropes. PMID:26168341

  8. Growth hormone deficiency in 18q deletion syndrome

    SciTech Connect

    Ghidoni, P.D.; Cody, J.; Danney, J.

    1994-09-01

    The 18q- syndrome is one of the most common chromosomal deletion syndromes. Clinical characteristics are variable but may include: hypotonia, cleft palate, mental retardation and hearing impairment. Growth failure (GF) (<3% weight/height) is present in 80% of affected individuals. We evaluated growth hormone (GH) sufficiency in 15 patients with 18q- syndrome. Of these 15 patients, 10 have growth failure (<3% weight/height); of the remaining 5, 3 had normal growth parameters and 2 had growth along the 5%. Twelve patients failed to produce adequate GH following standard stimulation testing. Of these 12 patients with inadequate GH production, 2 had normal growth (above 3%). Of the 15, only 1 has normal GH production and normal growth parameters. Bone age was obtained on 1 patient with both GH deficiency and GF, and revealed significant delays. GH levels in response to GH releasing factor were normal in 3 out of 4 patients. MRI studies of GH-deficient patients indicated normal midline structures. Myelination in the few studied GH-deficient patients appeared delayed. The gene for myelin basic protein (MBP) is known to be located on the terminal portion of the long arm of chromosome 18. Neither the gene for GH, GH releasing factor nor GH releasing factor receptor is on chromosome 18. These genes are located on chromosomes 17, chromosome 20 and chromosome 7, respectively. Findings to date suggest that GH deficiency is common in individuals with 18q- syndrome. The etiology of this finding is unknown. We postulate that a gene(s) on chromosome 18q is involved in GH expression.

  9. Thyroid hormone receptor can modulate retinoic acid-mediated axis formation in frog embryogenesis.

    PubMed Central

    Banker, D E; Eisenman, R N

    1993-01-01

    Thyroid hormone receptor acts as a hormone-dependent transcriptional transactivator and as a transcriptional repressor in the absence of thyroid hormone. Specifically, thyroid hormone receptor can repress retinoic acid-induced gene expression through interactions with retinoic acid receptor. (Retinoic acid is a potent teratogen in the frog Xenopus laevis, acting at early embryonic stages to interfere with the formation of anterior structures. Endogenous retinoic acid is thought to act in normal anterior-posterior axis formation.) We have previously shown that thyroid hormone receptor RNA (alpha isotype) is expressed and polysome-associated during Xenopus embryogenesis preceding thyroid gland maturation and endogenous thyroid hormone production (D. E. Banker, J. Bigler, and R. N. Eisenman, Mol. Cell. Biol. 11:5079-5089, 1991). To determine whether thyroid hormone receptor might influence the effects of retinoic acid in early frog development, we have examined the results of ectopic thyroid hormone receptor expression on retinoic acid teratogenesis. We demonstrate that microinjections of full-length thyroid hormone receptor RNA protect injected embryos from retinoic acid teratogenesis. DNA binding is apparently essential to this protective function, as truncated thyroid hormone receptors, lacking DNA-binding domains but including hormone-binding and dimerization domains, do not protect from retinoic acid. We have shown that microinjections of these dominant-interfering thyroid hormone receptors, as well as anti-thyroid hormone receptor antibodies, increase retinoic acid teratogenesis in injected embryos, presumably by inactivating endogenous thyroid hormone receptor. This finding suggests that endogenous thyroid hormone receptors may act to limit retinoic acid sensitivity. On the other hand, after thyroid hormone treatment, ectopic thyroid hormone receptor mediates teratogenesis that is indistinguishable from the dorsoanterior deficiencies produced in retinoic acid

  10. Rapid steroid hormone actions via membrane receptors.

    PubMed

    Schwartz, Nofrat; Verma, Anjali; Bivens, Caroline B; Schwartz, Zvi; Boyan, Barbara D

    2016-09-01

    Steroid hormones regulate a wide variety of physiological and developmental functions. Traditional steroid hormone signaling acts through nuclear and cytosolic receptors, altering gene transcription and subsequently regulating cellular activity. This is particularly important in hormonally-responsive cancers, where therapies that target classical steroid hormone receptors have become clinical staples in the treatment and management of disease. Much progress has been made in the last decade in detecting novel receptors and elucidating their mechanisms, particularly their rapid signaling effects and subsequent impact on tumorigenesis. Many of these receptors are membrane-bound and lack DNA-binding sites, functionally separating them from their classical cytosolic receptor counterparts. Membrane-bound receptors have been implicated in a number of pathways that disrupt the cell cycle and impact tumorigenesis. Among these are pathways that involve phospholipase D, phospholipase C, and phosphoinositide-3 kinase. The crosstalk between these pathways has been shown to affect apoptosis and proliferation in cardiac cells, osteoblasts, and chondrocytes as well as cancer cells. This review focuses on rapid signaling by 17β-estradiol and 1α,25-dihydroxy vitamin D3 to examine the integrated actions of classical and rapid steroid signaling pathways both in contrast to each other and in concert with other rapid signaling pathways. This new approach lends insight into rapid signaling by steroid hormones and its potential for use in targeted drug therapies that maximize the benefits of traditional steroid hormone-directed therapies while mitigating their less desirable effects. PMID:27288742

  11. Hormone activation of baculovirus expressed progesterone receptors.

    PubMed

    Elliston, J F; Beekman, J M; Tsai, S Y; O'Malley, B W; Tsai, M J

    1992-03-15

    Human and chicken progesterone receptors (A form) were overproduced in a baculovirus expression system. These recombinant progesterone receptors were full-length bound progesterone specifically and were recognized by monoclonal antibodies, AB52 and PR22, specific for human and chicken progesterone receptor, respectively. In gel retardation studies, binding of recombinant human and chicken progesterone receptors to their progesterone response element (PRE) was specific and was enhanced in the presence of progesterone. Binding of human progesterone receptor to the PRE was also enhanced in the presence of the antiprogestin, RU486, but very little effect was observed in the presence of estradiol, dexamethasone, testosterone, and vitamin D. In our cell-free transcription system, human progesterone receptor induced transcription in a receptor-dependent and hormone-activable manner. Receptor-stimulated transcription required the presence of the PRE in the test template and could be specifically inhibited by excess PRE oligonucleotides. Furthermore, chicken progesterone receptor also induced in vitro transcription in a hormone-activable manner. These results demonstrate that steroid receptors overexpressed in a baculovirus expression system are functional and exhibit steroid-responsive binding and transcription. These observations support our present understanding of the mechanism of steroid receptor-regulated gene expression and provide a technological format for studies of the role of hormone and antihormone in altering gene expression. PMID:1544902

  12. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  13. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  14. Krüppel-Like Factor 13 Deficiency in Uterine Endometrial Cells Contributes to Defective Steroid Hormone Receptor Signaling but Not Lesion Establishment in a Mouse Model of Endometriosis.

    PubMed

    Heard, Melissa E; Velarde, Michael C; Giudice, Linda C; Simmen, Frank A; Simmen, Rosalia C M

    2015-06-01

    Krüppel-like Factor (KLF) 13 and the closely related KLF9 are members of the Sp/KLF family of transcription factors that have collectively emerged as essential regulators of tissue development, differentiation, proliferation, and programmed cell death. Steroid hormone-responsive tissues express multiple KLFs that are linked to progesterone receptor (PGR) and estrogen receptor (ESR) actions either as integrators or as coregulators. Endometriosis is a chronic disease characterized by progesterone resistance and dysregulated estradiol signaling; nevertheless, distinct KLF members' contributions to endometriosis remain largely undefined. We previously demonstrated promotion of ectopic lesion establishment by Klf9 null endometrium in a mouse model of endometriosis. Here we evaluated whether KLF13 loss of expression in endometrial cells may equally contribute to lesion formation. KLF13 transcript levels were lower in the eutopic endometria of women with versus women without endometriosis at menstrual midsecretory phase. In wild-type (WT) mouse recipients intraperitoneally administered WT or Klf13 null endometrial fragments, lesion incidence did not differ with donor genotype. No differences were noted for lesion volume, number, proliferation status, and apoptotic index as well. Klf13 null lesions displayed reduced total PGR and ESR1 (RNA and immunoreactive protein) and altered expression of several PGR and ESR1 target genes, relative to WT lesions. Unlike for Klf9 null lesions, changes in transcript levels for PGR-A, ESR1, and Notch/Hedgehog-associated pathway components were not observed for Klf13 null lesions. Results demonstrate lack of a causative relationship between endometrial KLF13 deficiency and lesion establishment in mice, and they support the broader participation of multiple signaling pathways, besides those mediated by steroid receptors, in the pathology of endometriosis. PMID:25904015

  15. Multiple aberrant hormone receptors in Cushing's syndrome.

    PubMed

    El Ghorayeb, Nada; Bourdeau, Isabelle; Lacroix, André

    2015-10-01

    The mechanisms regulating cortisol production when ACTH of pituitary origin is suppressed in primary adrenal causes of Cushing's syndrome (CS) include diverse genetic and molecular mechanisms. These can lead either to constitutive activation of the cAMP system and steroidogenesis or to its regulation exerted by the aberrant adrenal expression of several hormone receptors, particularly G-protein coupled hormone receptors (GPCR) and their ligands. Screening for aberrant expression of GPCR in bilateral macronodular adrenal hyperplasia (BMAH) and unilateral adrenal tumors of patients with overt or subclinical CS demonstrates the frequent co-expression of several receptors. Aberrant hormone receptors can also exert their activity by regulating the paracrine secretion of ACTH or other ligands for those receptors in BMAH or unilateral tumors. The aberrant expression of hormone receptors is not limited to adrenal CS but can be implicated in other endocrine tumors including primary aldosteronism and Cushing's disease. Targeted therapies to block the aberrant receptors or their ligands could become useful in the future. PMID:25971648

  16. Sex Hormone Receptor Repertoire in Breast Cancer

    PubMed Central

    Higa, Gerald M.; Fell, Ryan G.

    2013-01-01

    Classification of breast cancer as endocrine sensitive, hormone dependent, or estrogen receptor (ER) positive refers singularly to ERα. One of the oldest recognized tumor targets, disruption of ERα-mediated signaling, is believed to be the mechanistic mode of action for all hormonal interventions used in treating this disease. Whereas ERα is widely accepted as the single most important predictive factor (for response to endocrine therapy), the presence of the receptor in tumor cells is also of prognostic value. Even though the clinical relevance of the two other sex hormone receptors, namely, ERβ and the androgen receptor remains unclear, two discordant phenomena observed in hormone-dependent breast cancers could be causally related to ERβ-mediated effects and androgenic actions. Nonetheless, our understanding of regulatory molecules and resistance mechanisms remains incomplete, further compromising our ability to develop novel therapeutic strategies that could improve disease outcomes. This review focuses on the receptor-mediated actions of the sex hormones in breast cancer. PMID:24324894

  17. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    ERIC Educational Resources Information Center

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  18. Cardiovascular Risk in Growth Hormone Deficiency: Beneficial Effects of Growth Hormone Replacement Therapy.

    PubMed

    Lanes, Roberto

    2016-06-01

    Growth hormone deficiency (GHD) in adulthood is associated with an increased risk of developing adverse cardiovascular events and with reduced life expectancy. Cardiovascular and metabolic abnormalities have so far been evaluated only in a small number of children with GHD and adolescents. In this article we review these abnormalities and their underlying mechanisms and discuss the beneficial effect of growth hormone treatment in subjects with GHD. PMID:27241971

  19. [Growth hormone deficiency in the adult: only an endocrinologic problem?].

    PubMed

    Martini, Chiara; Maffei, Pietro; De Carlo, Eugenio; Mioni, Roberto; Sicolo, Nicola; Scandellari, Cesare

    2002-01-01

    In the literature published during the last decade an increased risk of death due to cerebrovascular and cardiovascular events in growth hormone deficient adults has been reported. A partial reversibility of the syndrome following recombinant growth hormone treatment has also been described. Both these factors have contributed to the proposal of growth hormone therapy not only for children but also for adults. Following the initial enthusiasm, the scientific community is now evaluating various clinical experiences held over recent years and weighing up the results. Present day medicine has to take the economic impact of prescribed therapeutic regimens into consideration; in other words the ratio between cost and benefits must be calculated. The relatively recent issuance of the license for the treatment of growth hormone deficiency in adults using recombinant growth hormone does not allow us to evaluate a possible reduction in the risk of death due to cerebrovascular and cardiovascular events in treated subjects. A much longer observational period will be required. Besides the partial reversibility of the syndrome as a consequence of treatment, it is necessary to single out the selection criteria for the choice of treatment. These could also be useful as indicators of the efficacy of the same treatment. PMID:12402662

  20. Immunoprecipitation of the parathyroid hormone receptor

    SciTech Connect

    Wright, B.S.; Tyler, G.A.; O'Brien, R.; Caporale, L.H.; Rosenblatt, M.

    1987-01-01

    An /sup 125/I-labeled synthetic analog of bovine parathyroid hormone, (8-norleucine,18-norleucine,34-tyrosine)PTH-(1-34) amide ((Nle)PTH-(1-34)-NH/sub 2/), purified by high-pressure liquid chromatography (HPLC), was employed to label the parathyroid hormone (PTH) receptor in cell lines derived from PTH target tissues: the ROS 17/2.8 rat osteosarcoma of bone and the CV1 and COS monkey kidney lines. After incubation of the radioligand with intact cultured cells, the hormone was covalently attached to receptors by using either a photoaffinity technique or chemical (affinity) crosslinking. In each case, covalent labeling was specific, as evidenced by a reduction of labeling when excess competing nonradioactive ligand was present. After covalent attachment of radioligand, membranes were prepared form the cells and solubilized in the nonionic detergent Nonidet P-40 or octyl glucoside. Analysis of the immunoprecipitate on NaDod-SO/sub 4//polyacrylamide gel electrophoresis followed by autoradiography revealed the presence of a doublet of apparent molecular mass 69-70 kDa. Specifically labeled bands of approximate molecular mass 95 and 28 kDa were also observed. The anti-PTH IgG was affinity purified by passage over a PTH-Sepharose column and used to made an immunoaffinity column. These studies suggest that the use of an anti-PTH antiserum that binds receptor-bound hormone is likely to be a useful step in the further physicochemical characterization and purification of the PTH receptor.

  1. Nuclear hormone receptors put immunity on sterols.

    PubMed

    Santori, Fabio R

    2015-10-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system. PMID:26222181

  2. Dimerization of the thyrotropin-releasing hormone receptor potentiates hormone-dependent receptor phosphorylation.

    PubMed

    Song, Gyun Jee; Jones, Brian W; Hinkle, Patricia M

    2007-11-13

    The G protein-coupled thyrotropin (TSH)-releasing hormone (TRH) receptor forms homodimers. Regulated receptor dimerization increases TRH-induced receptor endocytosis. These studies test whether dimerization increases receptor phosphorylation, which could potentiate internalization. Phosphorylation at residues 355-365, which is critical for internalization, was measured with a highly selective phospho-site-specific antibody. Two strategies were used to drive receptor dimerization. Dimerization of a TRH receptor-FK506-binding protein (FKBP) fusion protein was stimulated by a dimeric FKBP ligand. The chemical dimerizer caused a large increase in TRH-dependent phosphorylation within 1 min, whereas a monomeric FKBP ligand had no effect. The dimerizer did not alter phoshorylation of receptors lacking the FKBP domain. Dimerization of receptors containing an N-terminal HA epitope also was induced with anti-HA antibody. Anti-HA IgG strongly increased TRH-induced phosphorylation, whereas monomeric Fab fragments had no effect. Anti-HA antibody did not alter phosphorylation in receptors lacking an HA tag. Furthermore, two phosphorylation-defective TRH receptors functionally complemented one another and permitted phosphorylation. Receptors with a D71A mutation in the second transmembrane domain do not signal, whereas receptors with four Ala mutations in the 355-365 region signal normally but lack phosphorylation sites. When D71A- and 4Ala-TRH receptors were expressed alone, neither underwent TRH-dependent phosphorylation. When they were expressed together, D71A receptor was phosphorylated by G protein-coupled receptor kinases in response to TRH. These results suggest that the TRH receptor is phosphorylated preferentially when it is in dimers or when preexisting receptor dimers are driven into microaggregates. Increased receptor phosphorylation may amplify desensitization. PMID:17989235

  3. Parathyroid hormone and parathyroid hormone type-1 receptor accelerate myocyte differentiation

    PubMed Central

    Kimura, Shigemi; Yoshioka, Kowasi

    2014-01-01

    The ZHTc6-MyoD embryonic stem cell line expresses the myogenic transcriptional factor MyoD under the control of a tetracycline-inducible promoter. Following induction, most of the ZHTc6-MyoD cells differentiate to myotubes. However, a small fraction does not differentiate, instead forming colonies that retain the potential for myocyte differentiation. In our current study, we found that parathyroid hormone type 1 receptor (PTH1R) expression in colony-forming cells at 13 days after differentiation was higher than that in the undifferentiated ZHTc6-MyoD cells. We also found that PTH1R expression was required for myocyte differentiation, and that parathyroid hormone accelerated the differentiation. Our analysis of human and mouse skeletal muscle tissues showed that most cells expressing PTH1R also expressed Pax7 and CD34, which are biomarkers of satellite cells. Furthermore, we found that parathyroid hormone treatment significantly improved muscle weakness in dystrophin-deficient mdx mice. This is the first report indicating that PTH1R and PTH accelerate myocyte differentiation. PMID:24919035

  4. Signal transduction by the growth hormone receptor

    SciTech Connect

    Waters, M.J.; Rowlinson, S.W.; Clarkson, R.W.

    1994-12-31

    It has been proposed that dimerization of identical receptor subunits by growth hormone (GH) is the mechanism of signal transduction across the cell membrane. We present here data with analogs of porcine GH (pGH), with GH receptors (GHR) mutated in the dimerization domain and with monoclonal antibodies to the GHR which indicate that dimerization is necessary but not sufficient for transduction. We also report nuclear uptake of GH both in vivo and in vitro, along with nuclear localization of the receptor and GH-binding protein (GHBP). This suggests that GH acts directly at the nucleus, and one possible target for this action is a rapid increase in transcription of C/EBP delta seen in 3T3-F442A cells in response to GH. This tyrosine kinase-dependent event may be an archetype for induction of other immediate early gene transcription factors which then interact to determine the programming of the subsequent transcriptional response to GH. 29 refs., 1 fig., 1 tab.

  5. Exceptional Association Between Klinefelter Syndrome and Growth Hormone Deficiency

    PubMed Central

    Doubi, Sana; Amrani, Zoubida; Ouahabi, Hanan El; Boujraf, Saïd; Ajdi, Farida

    2015-01-01

    Klinefelter syndrome (KS) is characterized in adults by the combination of a tall stature, small testes, gynecomastia, and azoospermia. This case is described in a North African population of the Mediterranean region of North Africa. We report the case of a male 16 years old, of Arab ethnic origin, and diagnosed with this syndrome, who had a small height in relation to a growth hormone (GH) deficiency and a history of absence seizures (generalized myoclonic epilepsy). The patient's size was <−2.8 standard deviation (SD) with weight <−3 SD. GH deficiency was isolated and confirmed by two dynamic tests (insulin — hypoglycemia tolerance test and clonidine) with normal hypothalamic magnetic resonance imaging (MRI). GH supplementation using recombinant GH was advocated, while gonadotropin treatment was deferred. Small size in children or adolescents should not eliminate the diagnosis of Klinefelter syndrome — on the contrary, the presence of any associated sign (brain maturation, delay in puberty, aggressiveness) should encourage one to request a karyotype for the diagnosis and appropriate care of any case of KS that can be associated with GH deficiency, or which is in a variant form (isochromosome Xq, 49,XXXXY).

  6. Proopiomelanocortin Deficiency Treated with a Melanocortin-4 Receptor Agonist.

    PubMed

    Kühnen, Peter; Clément, Karine; Wiegand, Susanna; Blankenstein, Oliver; Gottesdiener, Keith; Martini, Lea L; Mai, Knut; Blume-Peytavi, Ulrike; Grüters, Annette; Krude, Heiko

    2016-07-21

    Patients with rare defects in the gene encoding proopiomelanocortin (POMC) have extreme early-onset obesity, hyperphagia, hypopigmentation, and hypocortisolism, resulting from the lack of the proopiomelanocortin-derived peptides melanocyte-stimulating hormone and corticotropin. In such patients, adrenal insufficiency must be treated with hydrocortisone early in life. No effective pharmacologic treatments have been available for the hyperphagia and obesity that characterize the condition. In this investigator-initiated, open-label study, two patients with proopiomelanocortin deficiency were treated with setmelanotide, a new melanocortin-4 receptor agonist. The patients had a sustainable reduction in hunger and substantial weight loss (51.0 kg after 42 weeks in Patient 1 and 20.5 kg after 12 weeks in Patient 2). PMID:27468060

  7. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland. PMID:27052215

  8. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    SciTech Connect

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-08-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation.

  9. Association of Turner Syndrome and Growth Hormone Deficiency: A Review.

    PubMed

    Marques, Jorge Sales; Aires, Sónia

    2015-09-01

    Turner syndrome (TS) is an important cause of short stature in girls. Patients with TS most often do not have growth hormone deficiency (GHD). Testing GH secretion is not indicated despite the presence of short stature. In the last 20 years only three cases were reported with this association in Pubmed. We describe a case of an 11 year old girl with short stature and karyotype confirmed TS: 45,X(16)46,X,i(X)(ql0)(13). Because her growth velocity was low (-3 SD), we evaluated the GH response with stimulating tests and the results were under the normal range. These findings were compatible with GHD. It is important to check for GHD in patients with TS whenever the growth velocity is low for age and sex. PMID:26540761

  10. Rasch Measurement in the Assessment of Growth Hormone Deficiency in Adult Patients.

    ERIC Educational Resources Information Center

    Prieto, Luis; Roset, Montse; Badia, Xavier

    2001-01-01

    Tested the metric properties of a Spanish version of the Assessment of Growth Hormone Deficiency in Adults (AGHDA) questionnaire through Rasch analysis with a sample of 356 adult patients in Spain. Results suggest that the Spanish AGHDA could be a useful complement of the clinical evaluation of growth hormone deficiency patients at group and…

  11. Adult Growth Hormone Deficiency – Benefits, Side Effects, and Risks of Growth Hormone Replacement

    PubMed Central

    Reed, Mary L.; Merriam, George R.; Kargi, Atil Y.

    2013-01-01

    Deficiency of growth hormone (GH) in adults results in a syndrome characterized by decreased muscle mass and exercise capacity, increased visceral fat, impaired quality of life, unfavorable alterations in lipid profile and markers of cardiovascular risk, decrease in bone mass and integrity, and increased mortality. When dosed appropriately, GH replacement therapy (GHRT) is well tolerated, with a low incidence of side effects, and improves most of the alterations observed in GH deficiency (GHD); beneficial effects on mortality, cardiovascular events, and fracture rates, however, remain to be conclusively demonstrated. The potential of GH to act as a mitogen has resulted in concern over the possibility of increased de novo tumors or recurrence of pre-existing malignancies in individuals treated with GH. Though studies of adults who received GHRT in childhood have produced conflicting reports in this regard, long-term surveillance of adult GHRT has not demonstrated increased cancer risk or mortality. PMID:23761782

  12. Prader-Willi Syndrome and Growth Hormone Deficiency

    PubMed Central

    Aycan, Zehra; Baş, Veysel Nijat

    2014-01-01

    Prader-Willi syndrome (PWS) is a rare multisystem genetic disorder demonstrating great variability with changing clinical features during patient’s life. It is characterized by severe hypotonia with poor sucking and feeding difficulties in early infancy, followed by excessive eating and gradual development of morbid obesity in later infancy or early childhood. The phenotype is most probably due to hypothalamic dysfunction which is also responsible for growth hormone (GH) and thyroid-stimulating hormone (TSH) deficiencies, central adrenal insufficiency and hypogonadism. The multidimensional problems of patients with PWS can be managed with multidisciplinary approach. Reduced GH secretion, low peak GH response to stimulation, decreased spontaneous GH secretion and low serum IGF-1 levels in PWS patients have been documented in many studies. GH therapy has multiple beneficial effects on growth and body composition, motor and mental development in PWS patients. The recommended dosage for GH is 0.5-1 mg/m2/day. GH therapy should not be started in the presence of obstructive sleep apnea syndrome, adenotonsillar hypertrophy, severe obesity and diabetes mellitus. GH treatment should be considered for patients with genetically confirmed PWS in conjunction with dietary, environmental and life-style measures. PMID:24932597

  13. Sleep disturbance in children with growth hormone deficiency.

    PubMed

    Hayashi, M; Shimohira, M; Saisho, S; Shimozawa, K; Iwakawa, Y

    1992-05-01

    We examined the effects of growth hormone (GH) deficiency on sleep development by performing all-night polysomnography in three female children with GH deficiency (GHD). The percentage of REM sleep seemed to be reduced before the treatment in 2 cases, and human GH (hGH) compensation slightly increased it. Submental twitch movements (mTMs), i.e., body movements during sleep localized in the submental muscle and lasting less than 0.5 seconds, were commonly disturbed in the three patients. Rapid eye movements in REM sleep (REMs) were reduced before the therapy in one case, this decrease being reversed on hGH compensation. REMs also seemed to increase after hGH treatment in the other two cases. Dopamines and cholinergic muscarinic agonists can cause GH release, while mTMs and REMs might be related to dopaminergic and cholinergic systems in the human brain. It is intriguing that GHD, and the disturbance of mTMs and REMs coexisted in children with GHD. Since a relatively poor social outcome in patients with GHD has been reported, even after hGH compensation, it is important to monitor their neurological development by means of evaluation of their sleep disturbance. PMID:1445594

  14. Growth hormone treatment in non-growth hormone-deficient children.

    PubMed

    Loche, Sandro; Carta, Luisanna; Ibba, Anastasia; Guzzetti, Chiara

    2014-03-01

    Until 1985 growth hormone (GH) was obtained from pituitary extracts, and was available in limited amounts only to treat severe growth hormone deficiency (GHD). With the availability of unlimited quantities of GH obtained from recombinant DNA technology, researchers started to explore new modalities to treat GHD children, as well as to treat a number of other non-GHD conditions. Although with some differences between different countries, GH treatment is indicated in children with Turner syndrome, chronic renal insufficiency, Prader-Willi syndrome, deletions/mutations of the SHOX gene, as well as in short children born small for gestational age and with idiopathic short stature. Available data from controlled trials indicate that GH treatment increases adult height in patients with Turner syndrome, in patients with chronic renal insufficiency, and in short children born small for gestational age. Patients with SHOX deficiency seem to respond to treatment similarly to Turner syndrome. GH treatment in children with idiopathic short stature produces a modest mean increase in adult height but the response in the individual patient is unpredictable. Uncontrolled studies indicate that GH treatment may be beneficial also in children with Noonan syndrome. In patients with Prader-Willi syndrome GH treatment normalizes growth and improves body composition and cognitive function. In any indication the response to GH seems correlated to the dose and the duration of treatment. GH treatment is generally safe with no major adverse effects being recorded in any condition. PMID:24926456

  15. Growth hormone deficiency during young adulthood and the benefits of growth hormone replacement

    PubMed Central

    Ahmid, M; Perry, C G; Ahmed, S F

    2016-01-01

    Until quite recently, the management of children with growth hormone deficiency (GHD) had focussed on the use of recombinant human GH (rhGH) therapy to normalise final adult height. However, research over the past two decades that has demonstrated deficits in bone health and cardiac function, as well as impaired quality of life in adults with childhood-onset GHD (CO-GHD), has questioned this practice. Some of these studies suggested that there may be short-term benefits of rhGH in certain group of adolescents with GHD during transition, although the impact of GHD and replacement during the transition period has not been adequately investigated and its long-term benefits remain unclear. GH therapy remains expensive and well-designed long-term studies are needed to determine the cost effectiveness and clinical benefit of ongoing rhGH during transition and further into adulthood. In the absence of compelling data to justify widespread continuation of rhGH into adult life, there are several questions related to its use that remain unanswered. This paper reviews the effects of growth hormone deficiency on bone health, cardiovascular function, metabolic profile and quality of life during transition and young adulthood. PMID:27129699

  16. Current status of hormone therapy in patients with hormone receptor positive (HR+) advanced breast cancer.

    PubMed

    Dalmau, Elsa; Armengol-Alonso, Alejandra; Muñoz, Montserrat; Seguí-Palmer, Miguel Ángel

    2014-12-01

    The natural history of HR+ breast cancer tends to be different from hormone receptor-negative disease in terms of time to recurrence, site of recurrence and overall aggressiveness of the disease. The developmental strategies of hormone therapy for the treatment of breast cancer have led to the classes of selective estrogen receptor modulators, selective estrogen receptor downregulators, and aromatase inhibitors. These therapeutic options have improved breast cancer outcomes in the metastatic setting, thereby delaying the need for chemotherapy. However, a subset of hormone receptor-positive breast cancers do not benefit from endocrine therapy (intrinsic resistance), and all HR+ metastatic breast cancers ultimately develop resistance to hormonal therapies (acquired resistance). Considering the multiple pathways involved in the HR network, targeting other components of pathologically activated intracellular signaling in breast cancer may prove to be a new direction in clinical research. This review focuses on current and emerging treatments for HR+ metastatic breast cancer. PMID:25311296

  17. Activation of the chicken gonadotropin-inhibitory hormone receptor reduces gonadotropin releasing hormone receptor signaling.

    PubMed

    Shimizu, Mamiko; Bédécarrats, Grégoy Y

    2010-06-01

    Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic peptide from the RFamide peptide family that has been identified in multiple avian species. Although GnIH has clearly been shown to reduce LH release from the anterior pituitary gland, its mechanism of action remains to be determined. The overall objectives of this study were (1) to characterize the GnIH receptor (GnIH-R) signaling pathway, (2) to evaluate potential interactions with gonadotropin releasing hormone type III receptor (GnRH-R-III) signaling, and (3) to determine the molecular mechanisms by which GnIH and GnRH regulate pituitary gonadotrope function during a reproductive cycle in the chicken. Using real-time PCR, we showed that in the chicken pituitary gland, GnIH-R mRNA levels fluctuate in an opposite manner to GnRH-R-III, with higher and lower levels observed during inactive and active reproductive stages, respectively. We demonstrated that the chicken GnIH-R signals by inhibiting adenylyl cyclase cAMP production, most likely by coupling to G(alphai). We also showed that this inhibition is sufficient to significantly reduce GnRH-induced cAMP responsive element (CRE) activation in a dose-dependent manner, and that the ratio of GnRH/GnIH receptors is a significant factor. We propose that in avian species, sexual maturation is characterized by a change in GnIH/GnRH receptor ratio, resulting in a switch in pituitary sensitivity from inhibitory (involving GnIH) to stimulatory (involving GnRH). In turn, decreasing GnIH-R signaling, combined with increasing GnRH-R-III signaling, results in significant increases in CRE activation, possibly initiating gonadotropin synthesis. PMID:20350548

  18. Thyroid hormone resistance: a novel mutation in thyroid hormone receptor beta (THRB) gene - case report.

    PubMed

    Işık, Emregül; Beck Peccoz, Paolo; Campi, Irene; Özön, Alev; Alikaşifoğlu, Ayfer; Gönç, Nazlı; Kandemir, Nurgün

    2013-01-01

    Thyroid hormone resistance (THR) is a dominantly inherited syndrome characterized by reduced sensitivity to thyroid hormones. It is usually caused by mutations in the thyroid hormone receptor beta (THRB) gene. In the present report, we describe the clinical and laboratory characteristics and genetic analysis of patients with a novel THRB gene mutation. The index patient had been misdiagnosed as hyperthyroidism and treated with antithyroid drugs since eight days of age. Thyroid hormone results showed that thyrotropin (thyroid-stimulating hormone, TSH) was never suppressed despite elevated thyroid hormone levels, and there was no symptom suggesting hyperthyroidism. A heterozygous mutation at codon 350 located in exon 9 of the THRB gene was detected in all the affected members of the family. It is important to consider thyroid hormone levels in association with TSH levels to prevent inappropriate treatment and the potential complications, such as clinical hypothyroidism or an increase in goiter size. PMID:24217081

  19. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor

    SciTech Connect

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Ho, Patricia W.M.; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, T. John; Parker, Michael W.

    2009-08-18

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1-108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an {alpha}-helical structure extending from residues 14-29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor.

  20. Structural Basis for Antibody Discrimination between Two Hormones That Recognize the Parathyroid Hormone Receptor*

    PubMed Central

    McKinstry, William J.; Polekhina, Galina; Diefenbach-Jagger, Hannelore; Ho, Patricia W. M.; Sato, Koh; Onuma, Etsuro; Gillespie, Matthew T.; Martin, T. John; Parker, Michael W.

    2009-01-01

    Parathyroid hormone-related protein (PTHrP) plays a vital role in the embryonic development of the skeleton and other tissues. When it is produced in excess by cancers it can cause hypercalcemia, and its local production by breast cancer cells has been implicated in the pathogenesis of bone metastasis formation in that disease. Antibodies have been developed that neutralize the action of PTHrP through its receptor, parathyroid hormone receptor 1, without influencing parathyroid hormone action through the same receptor. Such neutralizing antibodies against PTHrP are therapeutically effective in animal models of the humoral hypercalcemia of malignancy and of bone metastasis formation. We have determined the crystal structure of the complex between PTHrP (residues 1–108) and a neutralizing monoclonal anti-PTHrP antibody that reveals the only point of contact is an α-helical structure extending from residues 14–29. Another striking feature is that the same residues that interact with the antibody also interact with parathyroid hormone receptor 1, showing that the antibody and the receptor binding site on the hormone closely overlap. The structure explains how the antibody discriminates between the two hormones and provides information that could be used in the development of novel agonists and antagonists of their common receptor. PMID:19346515

  1. Palbociclib in Combination With Tamoxifen as First Line Therapy for Metastatic Hormone Receptor Positive Breast Cancer

    ClinicalTrials.gov

    2016-07-05

    Hormone Receptor Positive Malignant Neoplasm of Breast; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Estrogen Receptor Positive Breast Cancer; Progesterone Receptor Positive Tumor; Metastatic Breast Cancer

  2. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  3. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    SciTech Connect

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-12-28

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen.

  4. Physiological roles revealed by ghrelin and ghrelin receptor deficient mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is a hormone made in the stomach and known primarily for its growth hormone releasing and orexigenic properties. Nevertheless, ghrelin through its receptor, the GHS-R1a, has been shown to exert many roles including regulation of glucose homeostasis, memory & learning, food addiction and neur...

  5. Efficacy and Safety of Sustained-Release Recombinant Human Growth Hormone in Korean Adults with Growth Hormone Deficiency

    PubMed Central

    Kim, Youngsook; Hong, Jae Won; Chung, Yoon-Sok; Kim, Sung-Woon; Cho, Yong-Wook; Kim, Jin Hwa; Kim, Byung-Joon

    2014-01-01

    Purpose The administration of recombinant human growth hormone in adults with growth hormone deficiency has been known to improve metabolic impairment and quality of life. Patients, however, have to tolerate daily injections of growth hormone. The efficacy, safety, and compliance of weekly administered sustained-release recombinant human growth hormone (SR-rhGH, Declage™) supplement in patients with growth hormone deficiency were evaluated. Materials and Methods This trial is 12-week prospective, single-arm, open-label trial. Men and women aged ≥20 years with diagnosed growth hormone deficiency (caused by pituitary tumor, trauma and other pituitary diseases) were eligible for this study. Each subject was given 2 mg (6 IU) of SR-rhGH once a week, subcutaneously for 12 weeks. Efficacy and safety at baseline and within 30 days after the 12th injection were assessed and compared. Score of Assessment of Growth Hormone Deficiency in Adults (AGHDA score) for quality of life and serum IGF-1 level. Results The IGF-1 level of 108.67±74.03 ng/mL was increased to 129.01±68.37 ng/mL (p=0.0111) and the AGHDA QoL score was decreased from 9.80±6.51 to 7.55±5.76 (p<0.0001) at week 12 compared with those at baseline. Adverse events included pain, swelling, erythema, and warmth sensation at the administration site, but many adverse events gradually disappeared during the investigation. Conclusion Weekly administered SR-rhGH for 12 weeks effectively increased IGF-1 level and improved the quality of life in patients with GH deficiency without serious adverse events. PMID:24954335

  6. Development of ovine chorionic somatomammotropin hormone-deficient pregnancies.

    PubMed

    Baker, Callie M; Goetzmann, Lindsey N; Cantlon, Jeremy D; Jeckel, Kimberly M; Winger, Quinton A; Anthony, Russell V

    2016-05-01

    Intrauterine growth restriction (IUGR) is a leading cause of neonatal mortality and morbidity. Chorionic somatomammotropin hormone (CSH), a placenta-specific secretory product found at high concentrations in maternal and fetal circulation throughout gestation, is significantly reduced in human and sheep IUGR pregnancies. The objective of this study was to knock down ovine CSH (oCSH) expression in vivo using lentiviral-mediated short-hairpin RNA to test the hypothesis that oCSH deficiency would result in IUGR of near-term fetal lambs. Three different lentiviral oCSH-targeting constructs were used and compared with pregnancies (n = 8) generated with a scrambled control (SC) lentiviral construct. Pregnancies were harvested at 135 days of gestation. The most effective targeting sequence, "target 6" (tg6; n = 8), yielded pregnancies with significant reductions (P ≤ 0.05) in oCSH mRNA (50%) and protein (38%) concentrations, as well as significant reductions (P ≤ 0.05) in placental (52%) and fetal (32%) weights compared with the SC pregnancies. Fetal liver weights were reduced 41% (P ≤ 0.05), yet fetal liver insulin-like growth factor-I (oIGF1) and -II mRNA concentrations were reduced (P ≤ 0.05) 82 and 71%, respectively, and umbilical artery oIGF1 concentrations were reduced 62% (P ≤ 0.05) in tg6 pregnancies. Additionally, fetal liver oIGF-binding protein (oIGFBP) 2 and oIGFBP3 mRNA concentrations were reduced (P ≤ 0.05), whereas fetal liver oIGFBP1 mRNA concentration was not impacted nor was maternal liver oIGF and oIGFBP mRNA concentrations or uterine artery oIGF1 concentrations (P ≥ 0.10). Based on our results, it appears that oCSH deficiency does result in IUGR, by impacting placental development as well as fetal liver development and function. PMID:26887431

  7. Type-2 Iodothyronine 5′Deiodinase (D2) in Skeletal Muscle of C57Bl/6 Mice. II. Evidence for a Role of D2 in the Hypermetabolism of Thyroid Hormone Receptor α-Deficient Mice

    PubMed Central

    Ramadan, W.; Marsili, A.; Larsen, P. R.; Zavacki, A. M.

    2011-01-01

    Mice with ablation of the Thra gene have cold intolerance due to an as yet undefined defect in the activation of brown adipose tissue (BAT) uncoupling protein (UCP). They develop an alternate form of facultative thermogenesis, activated at temperatures below thermoneutrality and associated with hypermetabolism and reduced sensitivity to diet-induced obesity. A consistent finding in Thra-0/0 mice is increased type-2 iodothyronine deiodinase (D2) mRNA in skeletal muscle and other tissues. With an improved assay to measure D2 activity, we show here that this enzyme activity is increased in proportion to the mRNA and as a function of the ambient cold. The activation is mediated by the sympathetic nervous system in Thra-0/0, as it is in wild-type genotype mice, but the sympathetic nervous system effect is greater in Thra-0/0 mice. Using D2-ablated mice (Dio2−/−), we reported elsewhere and show here that, in spite of sharing a severe deficiency in BAT thermogenesis with Thra-0/0 and UCP1-knockout mice, they do not have an increase in oxygen consumption, and they gain more weight than wild-type controls when fed a high-fat diet. UCP3 mRNA is highly responsive to thyroid hormone, and it is increased in Thra-0/0 mice, particularly when fed high-fat diets. We show here that muscle UCP3 mRNA in hypothyroid Thra-0/0 mice is responsive to small dose-short regimens of T4, indicating a role for locally, D2-generated T3. Lastly, we show that bile acids stimulate not only BAT but also muscle D2 activity, and this is associated with stimulation of muscle UCP3 mRNA expression provided T4 is present. These observations strongly support the concept that enhanced D2 activity in Thra-0/0 plays a critical role in their alternate form of facultative thermogenesis, stimulating increased fat oxidation by increasing local T3 generation in skeletal muscle. PMID:21652727

  8. Endogenous Androgen Deficiency Enhances Diet-Induced Hypercholesterolemia and Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice

    PubMed Central

    Hatch, Nicholas W.; Srodulski, Sarah J.; Chan, Huei-Wei; Zhang, Xuan; Tannock, Lisa R.; King, Victoria L.

    2012-01-01

    Background Despite numerous clinical and animal studies, the role of sex steroid hormones on lipoprotein metabolism and atherosclerosis remain controversial. Objective We sought to determine the effects of endogenous estrogen and testosterone on lipoprotein levels and atherosclerosis using mice fed a low-fat diet with no added cholesterol. Methods Male and female low-density lipoprotein receptor-deficient mice were fed an open stock low-fat diet (10% of kcals from fat) for 2, 4, or 17 weeks. Ovariectomy, orchidectomy, or sham surgeries were performed to evaluate the effects of the presence or absence of endogenous hormones on lipid levels, lipoprotein distribution, and atherosclerosis development. Results Female mice fed the study diet for 17 weeks had a marked increase in levels of total cholesterol, triglycerides, apolipoprotein-B containing lipoproteins, and atherosclerosis compared with male mice. Surprisingly, ovariectomy in female mice had no effect on any of these parameters. In contrast, castration of male mice markedly increased total cholesterol concentrations, triglycerides, apolipoprotein B-containing lipoproteins, and atherosclerotic lesion formation compared with male and female mice. Conclusions These data suggest that endogenous androgens protect against diet-induced increases in cholesterol concentrations, formation of proatherogenic lipoproteins, and atherosclerotic lesions formation. Conversely orchidectomy, which decreases androgen concentrations, promotes increases in cholesterol concentrations, proatherogenic lipoprotein formation, and atherosclerotic lesion formation in lowdensity lipoprotein receptor-deficient mice in response to a low-fat diet. PMID:22981166

  9. [Benefits and risks of growth hormone in adults with growth hormone deficiency].

    PubMed

    Díez, Juan J; Cordido, Fernando

    2014-10-21

    Adult growth hormone (GH) deficiency is a well-recognized clinical syndrome with adverse health consequences. Many of these may improve after replacement therapy with recombinant GH. This treatment induces an increase in lean body mass and a decrease in fat mass. In long-term studies, bone mineral density increases and muscle strength improves. Health-related quality of life tends to increase after treatment with GH. Lipid profile and markers of cardiovascular risk also improve with therapy. Nevertheless, GH replacement therapy is not without risk. According to some studies, GH increases blood glucose, body mass index and waist circumference and may promote long-term development of diabetes and metabolic syndrome. Risk of neoplasia does not appear to be increased in adults treated with GH, but there are some high-risk subgroups. Methodological shortcomings and difficulties inherent to long-term studies prevent definitive conclusions about the relationship between GH and survival. Therefore, research in this field should remain active. PMID:24485161

  10. Ectopic and abnormal hormone receptors in adrenal Cushing's syndrome.

    PubMed

    Lacroix, A; Ndiaye, N; Tremblay, J; Hamet, P

    2001-02-01

    The mechanism by which cortisol is produced in adrenal Cushing's syndrome, when ACTH is suppressed, was previously unknown and was referred to as being "autonomous." More recently, several investigators have shown that some cortisol and other steroid-producing adrenal tumors or hyperplasias are under the control of ectopic (or aberrant, illicit, inappropriate) membrane hormone receptors. These include ectopic receptors for gastric inhibitory polypeptide (GIP), beta-adrenergic agonists, or LH/hCG; a similar outcome can result from altered activity of eutopic receptors, such as those for vasopressin (V1-AVPR), serotonin (5-HT4), or possibly leptin. The presence of aberrant receptors places adrenal cells under stimulation by a trophic factor not negatively regulated by glucocorticoids, leading to increased steroidogenesis and possibly to the proliferative phenotype. The molecular mechanisms responsible for the abnormal expression and function of membrane hormone receptors are still largely unknown. Identification of the presence of these illicit receptors can eventually lead to new pharmacological therapies as alternatives to adrenalectomy, now demonstrated by the long-term control of ectopic P-AR- and LH/hCGR-dependent Cushing's syndrome by propanolol and leuprolide acetate. Further studies will potentially identify a larger diversity of hormone receptors capable of coupling to G proteins, adenylyl cyclase, and steroidogenesis in functional adrenal tumors and probably in other endocrine and nonendocrine tumors. PMID:11159817

  11. Thyroid Hormone Receptor Binds to a Site in the Rat Growth Hormone Promoter Required for Induction by Thyroid Hormone

    NASA Astrophysics Data System (ADS)

    Koenig, Ronald J.; Brent, Gregory A.; Warne, Robert L.; Reed Larsen, P.; Moore, David D.

    1987-08-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. We have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. We show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor.

  12. Rational discovery of novel nuclear hormone receptor antagonists

    NASA Astrophysics Data System (ADS)

    Schapira, Matthieu; Raaka, Bruce M.; Samuels, Herbert H.; Abagyan, Ruben

    2000-02-01

    Nuclear hormone receptors (NRs) are potential targets for therapeutic approaches to many clinical conditions, including cancer, diabetes, and neurological diseases. The crystal structure of the ligand binding domain of agonist-bound NRs enables the design of compounds with agonist activity. However, with the exception of the human estrogen receptor-, the lack of antagonist-bound "inactive" receptor structures hinders the rational design of receptor antagonists. In this study, we present a strategy for designing such antagonists. We constructed a model of the inactive conformation of human retinoic acid receptor- by using information derived from antagonist-bound estrogen receptor-α and applied a computer-based virtual screening algorithm to identify retinoic acid receptor antagonists. Thus, the currently available crystal structures of NRs may be used for the rational design of antagonists, which could lead to the development of novel drugs for a variety of diseases.

  13. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    SciTech Connect

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J.

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  14. GPR101 Mutations are not a Frequent Cause of Congenital Isolated Growth Hormone Deficiency.

    PubMed

    Castinetti, F; Daly, A F; Stratakis, C A; Caberg, J-H; Castermans, E; Trivellin, G; Rostomyan, L; Saveanu, A; Jullien, N; Reynaud, R; Barlier, A; Bours, V; Brue, T; Beckers, A

    2016-06-01

    Patients with Xq26.3 microduplication present with X-linked acrogigantism (X-LAG) syndrome, an early-childhood form of gigantism due to marked growth hormone (GH) hypersecretion from mixed GH-PRL adenomas and hyperplasia. The microduplication includes GPR101, which is upregulated in patients' tumor tissue. The GPR101 gene codes for an orphan G protein coupled receptor that is normally highly expressed in the hypothalamus. Our aim was to determine whether GPR101 loss of function mutations or deletions could be involved in patients with congenital isolated GH deficiency (GHD). Taking advantage of the cohort of patients from the GENHYPOPIT network, we studied 41 patients with unexplained isolated GHD. All patients had Sanger sequencing of the GPR101 gene and array comparative genome hybridization (aCGH) to look for deletions. Functional studies (cell culture with GH secretion measurements, cAMP response) were performed. One novel GPR101 variant, c.589 G>T (p.V197L), was seen in the heterozygous state in a patient with isolated GHD. In silico analysis suggested that this variant could be deleterious. Functional studies did not show any significant difference in comparison with wild type for GH secretion and cAMP response. No truncating, frameshift, or small insertion-deletion (indel) GPR101 mutations were seen in the 41 patients. No deletion or other copy number variation at chromosome Xq26.3 was found on aCGH. We found a novel GPR101 variant of unknown significance, in a patient with isolated GH deficiency. Our study did not identify GPR101 abnormalities as a frequent cause of GH deficiency. PMID:26797872

  15. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors

    PubMed Central

    Lu, Changxue; Cheng, Sheue-Yann

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis. PMID:19741045

  16. TAM receptor deficiency affects adult hippocampal neurogenesis

    PubMed Central

    Ji, Rui; Meng, Lingbin; Li, Qiutang; Lu, Qingxian

    2014-01-01

    The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus. PMID:25487541

  17. TAM receptor deficiency affects adult hippocampal neurogenesis.

    PubMed

    Ji, Rui; Meng, Lingbin; Li, Qiutang; Lu, Qingxian

    2015-06-01

    The Tyro3, Axl and Mertk (TAM) subfamily of receptor protein tyrosine kinases functions in cell growth, differentiation, survival, and most recently found, in the regulation of immune responses and phagocytosis. All three receptors and their ligands, Gas6 (growth arrest-specific gene 6) and protein S, are expressed in the central nervous system (CNS). TAM receptors play pivotal roles in adult hippocampal neurogenesis. Loss of these receptors causes a comprised neurogenesis in the dentate gyrus of adult hippocampus. TAM receptors have a negative regulatory effect on microglia and peripheral antigen-presenting cells, and play a critical role in preventing overproduction of pro-inflammatory cytokines detrimental to the proliferation, differentiation, and survival of adult neuronal stem cells (NSCs). Besides, these receptors also play an intrinsic trophic function in supporting NSC survival, proliferation, and differentiation into immature neurons. All these events collectively ensure a sustained neurogenesis in adult hippocampus. PMID:25487541

  18. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency

    PubMed Central

    Argente, Jesús; Flores, Raquel; Gutiérrez-Arumí, Armand; Verma, Bhupendra; Martos-Moreno, Gabriel Á; Cuscó, Ivon; Oghabian, Ali; Chowen, Julie A; Frilander, Mikko J; Pérez-Jurado, Luis A

    2014-01-01

    The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences. Subject Categories Genetics, Gene Therapy ' Genetic Disease; Metabolism PMID:24480542

  19. Molecular characterization of human thyroid hormone receptor β isoform 4.

    PubMed

    Moriyama, Kenji; Yamamoto, Hiroyuki; Futawaka, Kumi; Atake, Asami; Kasahara, Masato; Tagami, Tetsuya

    2016-01-01

    Thyroid hormone exerts a pleiotropic effect on development, differentiation, and metabolism through thyroid hormone receptor (TR). A novel thyroid hormone receptor β isoform (TRβ4) was cloned using PCR from a human pituitary cDNA library as a template. We report here the characterization of TRβ4 from a molecular basis. Temporal expression of TRβ4 during the fetal period is abundant in the brain and kidney, comparable with the adult pattern. Western blot analysis revealed that TRs are ubiquitination labile proteins, while TRβ1 is potentially stable. TRβ1, peroxisome proliferator-activated receptors (PPAR), and vitamin D receptor (VDR), which belong to class II transcription factors that function via the formation of heterodimeric complexes with retinoid X receptor (RXR), were suppressed by TRβ4 in a dose-dependent manner. Thus, TRβ4 exhibits ligand-independent transcriptional silencing, possibly as a substitute for dimerized RXR. In this study, TRβ1 and TRβ4 transcripts were detected in several cell lines. Quantitative RT-PCR assay showed that the expression of TRβ4 in human embryonic carcinoma cells of the testis was suppressed by sex hormone in a reciprocal manner to TRβ1. In contrast, TRβ4 was expressed under a high dose of triiodothyronine (T3) in a reciprocal manner to TRβ1. Finally, in transiently transfected NIH-3T3 cells, green fluorescence protein (GFP)-tagged TRβ4 was mostly nuclear in both the absence and the presence of T3. By mutating defined regions of both TRβs, we found that both TRβ1 and TRβ4 had altered nuclear/cytoplasmic distribution as compared with wild-type, and different to T3 and the nuclear receptor corepressor (NCoR). Thus, site-specific DNA binding is not essential for maintaining TRβs within the nucleus. PMID:26513165

  20. α5GABAA receptor deficiency causes autism-like behaviors.

    PubMed

    Zurek, Agnieszka A; Kemp, Stephen W P; Aga, Zeenia; Walker, Susan; Milenkovic, Marija; Ramsey, Amy J; Sibille, Etienne; Scherer, Stephen W; Orser, Beverley A

    2016-05-01

    The prevalence of autism spectrum disorders (ASDs), which affect over 1% of the population, has increased twofold in recent years. Reduced expression of GABAA receptors has been observed in postmortem brain tissue and neuroimaging of individuals with ASDs. We found that deletion of the gene for the α5 subunit of the GABAA receptor caused robust autism-like behaviors in mice, including reduced social contacts and vocalizations. Screening of human exome sequencing data from 396 ASD subjects revealed potential missense mutations in GABRA5 and in RDX, the gene for the α5GABAA receptor-anchoring protein radixin, further supporting a α5GABAA receptor deficiency in ASDs. PMID:27231709

  1. Ammonium sulfate fractionation and assay of hormone receptors.

    PubMed

    Chen, Y M; Vaughn, C B

    1989-01-01

    Ammonium sulfate (AS) precipitation by consecutive steps at 10% to 50% saturation has been utilized for fractionation of cytoplasmic estrogen receptor (ER) and progesterone receptor (PgR). The highest percentage of both receptor activities are confined mainly in two fractions at AS saturation from 20% to 30% and 30% to 40%. The total percentages of activity of the cytoplasmic ER and PgR salted out at 50% saturation are 77% and 53%, respectively. Precipitation of hormone-receptor complexes at 50% saturation for assay of ER and PgR can be achieved, but needs improvement for efficient salting out of the receptors. ER and PgR salted out in the AS pellet are much more stable for storage than in the cytosol. PMID:2790540

  2. Prediction of nuclear hormone receptor response elements.

    PubMed

    Sandelin, Albin; Wasserman, Wyeth W

    2005-03-01

    The nuclear receptor (NR) class of transcription factors controls critical regulatory events in key developmental processes, homeostasis maintenance, and medically important diseases and conditions. Identification of the members of a regulon controlled by a NR could provide an accelerated understanding of development and disease. New bioinformatics methods for the analysis of regulatory sequences are required to address the complex properties associated with known regulatory elements targeted by the receptors because the standard methods for binding site prediction fail to reflect the diverse target site configurations. We have constructed a flexible Hidden Markov Model framework capable of predicting NHR binding sites. The model allows for variable spacing and orientation of half-sites. In a genome-scale analysis enabled by the model, we show that NRs in Fugu rubripes have a significant cross-regulatory potential. The model is implemented in a web interface, freely available for academic researchers, available at http://mordor.cgb.ki.se/NHR-scan. PMID:15563547

  3. Genetics Home Reference: leptin receptor deficiency

    MedlinePlus

    ... leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998 Mar 26;392(6674):398-401. Citation ... and human weight regulation: lessons from experiments of nature. Ann Acad Med Singapore. 2009 Jan;38(1): ...

  4. Multiglandular Hormone Deficiency in a Patient with Systemic Capillary Leak Syndrome

    PubMed Central

    Then, Cornelia; Ritzel, Katrin; Seibold, Christa; Mann, Johannes F. E.; Reincke, Martin

    2015-01-01

    Systemic capillary leak syndrome (SCLS) is a rare but potentially fatal disorder characterized by a loss of fluid and proteins into the interstitial space leading to intravascular hypovolemia up to the point of hypovolemic shock. We report the case of a 64-year-old man with SCLS and multiple hormone abnormalities (primary hypothyroidism, hypoadrenalism, and hypogonadism), deficiency of hormone binding globulins, and hypogammaglobulinemia. The patient was successfully treated with intravenous immunoglobulins, theophylline, and terbutaline. Strikingly, with the dissolution of peripheral edema, hormone levels improved. To our knowledge, this is the first reported case of SCLS associated with polyglandular abnormalities. PMID:25685157

  5. Evolutionary aspects of growth hormones and prolactins and their receptors

    SciTech Connect

    Tarpey, J.F.

    1986-01-01

    The interactions of GH's, PRL's and PL's with receptors for GH and PRL were examined from a comparative and evolutionary viewpoint. The binding of /sup 125/I-bGH to membrane preparations from liver of representatives of the major classes of non-mammalian vertebrates was also studied. Only hepatic membranes from sturgeon and Gillichthys had significant bGH binding and were further characterized and compared with male rabbit liver membranes in terms of time, temperature, pH, and membrane concentration to optimize binding conditions. The binding of several members of the GH, PRL, PL family of hormones to GH receptors from liver of sturgeon, Gillichthys, rabbit, mouse and rat was investigated. in terms of hormonal specificity, the mammalian receptors and the sturgeon binding sites were similar, while Gillichthys receptors had a different pattern of hormonal specificity. The binding of /sup 125/I-oPRL to renal membranes of the turtle, Pseudemys scripta elegans, was characterized and compared to PRL binding sites of kidney membranes of the bullfrog, Rana catesbeiana, and the tiger salamander, Ambystoma tigrinum.

  6. Substantial expression of luteinizing hormone-releasing hormone (LHRH) receptor type I in human uveal melanoma

    PubMed Central

    Schally, Andrew V.; Block, Norman L; Dezso, Balazs; Olah, Gabor; Rozsa, Bernadett; Fodor, Klara; Buglyo, Armin; Gardi, Janos; Berta, Andras; Halmos, Gabor

    2013-01-01

    Uveal melanoma is the most common primary intraocular malignancy in adults, with a very high mortality rate due to frequent liver metastases. Consequently, the therapy of uveal melanoma remains a major clinical challenge and new treatment approaches are needed. For improving diagnosis and designing a rational and effective therapy, it is essential to elucidate molecular characteristics of this malignancy. The aim of this study therefore was to evaluate as a potential therapeutic target the expression of luteinizing hormone-releasing hormone (LHRH) receptor in human uveal melanoma. The expression of LHRH ligand and LHRH receptor transcript forms was studied in 39 human uveal melanoma specimens by RT-PCR using gene specific primers. The binding charachteristics of receptors for LHRH on 10 samples were determined by ligand competition assays. The presence of LHRH receptor protein was further evaluated by immunohistochemistry. The expression of mRNA for type I LHRH receptor was detected in 18 of 39 (46%) of tissue specimens. mRNA for LHRH-I ligand could be detected in 27 of 39 (69%) of the samples. Seven of 10 samples investigated showed high affinity LHRH-I receptors. The specific presence of full length LHRH receptor protein was further confirmed by immunohistochemistry. A high percentage of uveal melanomas express mRNA and protein for type-I LHRH receptors. Our results support the merit of further investigation of LHRH receptors in human ophthalmological tumors. Since diverse analogs of LHRH are in clinical trials or are already used for the treatment of various cancers, these analogs could be considered for the LHRH receptor-based treatment of uveal melanoma. PMID:24077773

  7. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    PubMed Central

    Shen, Minqian; Shi, Haifei

    2015-01-01

    The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis. PMID:26491440

  8. Identification of intracellular domains in the growth hormone receptor involved in signal transduction

    SciTech Connect

    Billestrup, N.; Allevato, G.; Moldrup, A.

    1994-12-31

    The growth hormone (GH) receptor belongs to the GH/prolactin/cytokine super-family of receptors. The signal transduction mechanism utilized by this class of receptors remains largely unknown. In order to identify functional domains in the intracellular region of the GH receptor we generated a number of GH receptor mutants and analyzed their function after transfection into various cell lines. A truncated GH receptor missing 184 amino acids at the C-terminus was unable to medite GH effects on transcription of the Spi 2.1 and insulin genes. However, this mutant was fully active in mediating GH-stimulated metabolic effects such as protein synthesis and lipolysis. Furthermore, this mutant GH receptor internalized rapidly following GH binding. Another truncated GH receptor lacking all but five amino acids of the cytoplasmic domain could not mediate any effects of GH nor did it internalize. Deletion of the proline-rich region or changing the four prolines to alanines also resulted in a GH receptor deficient in signaling. Mutation of phenylalanine 346 to alanine resulted in a GH receptor which did not internalize rapidly; however, this mutant GH receptor was capable of mediating GH-stimulated transcription as well as metabolic effects. These results indicate that the intracellular part of the GH receptor can be divided into at least three functional domains: (1) for transcriptional activity, two domains are involved, one located in the C-terminal 184 amino acids and the other in the proline-rich domain; (2) for metabolic effects, a domain located in or near the proline-rich region is of importance; and (3) for internalization, phenylalanine 346 is necessary. 28 refs., 1 fig.

  9. Homozygosity for a dominant negative thyroid hormone receptor gene responsible for generalized resistance to thyroid hormone.

    PubMed

    Ono, S; Schwartz, I D; Mueller, O T; Root, A W; Usala, S J; Bercu, B B

    1991-11-01

    Generalized resistance to thyroid hormones (GRTH) commonly results from mutations in the T3-binding domain of the c-erbA beta thyroid hormone receptor gene. We have reported on a novel deletion mutation in c-erbA beta in a kindred, S, with GRTH. One patient from this kindred was the product of a consanguineous union from two affected members and was homozygous for the beta-receptor defect. This patient at 3.5 weeks of age had unprecedented elevations of TSH, free T4, and free T3 (TSH, 389 mU/L; free T4, 330.8 pmol/L; free T3, 82,719 fmol/L). He displayed a complex mixture of tissue-specific hyperthyroidism and hypothyroidism. He had delayed growth (height age, 1 3/12 yr at chronological age 2 9/12 yr) and skeletal maturation (bone age, 4 months), and developmental delay (developmental age, 8 months), but he was quite tachycardic. The homozygous patient of kindred S is markedly different from a recently reported patient with no c-erbA beta-receptor. This difference indicates that a dominant negative form of c-erbA beta in man can inhibit at least some thyroid hormone action mediated by the c-erbA alpha-receptors. PMID:1682340

  10. MECHANISMS IN ENDOCRINOLOGY: An update in the genetic aetiologies of combined pituitary hormone deficiency.

    PubMed

    Castinetti, Frederic; Reynaud, Rachel; Saveanu, Alexandru; Jullien, Nicolas; Quentien, Marie Helene; Rochette, Claire; Barlier, Anne; Enjalbert, Alain; Brue, Thierry

    2016-06-01

    Over the last 5 years, new actors involved in the pathogenesis of combined pituitary hormone deficiency in humans have been reported: they included a member of the immunoglobulin superfamily glycoprotein and ciliary G protein-coupled receptors, as well as new transcription factors and signalling molecules. New modes of inheritance for alterations of genes encoding transcription factors have also been described. Finally, actors known to be involved in a very specific phenotype (hypogonadotroph hypogonadism for instance) have been identified in a wider range of phenotypes. These data thus suggest that new mechanisms could explain the low rate of aetiological identification in this heterogeneous group of diseases. Taking into account the fact that several reviews have been published in recent years on classical aetiologies of CPHD such as mutations of POU1F1 or PROP1, we focused the present overview on the data published in the last 5 years, to provide the reader with an updated review on this rapidly evolving field of knowledge. PMID:26733480

  11. Deficiency of interleukin-1 receptor antagonist responsive to anakinra.

    PubMed

    Schnellbacher, Charlotte; Ciocca, Giovanna; Menendez, Roxanna; Aksentijevich, Ivona; Goldbach-Mansky, Raphaela; Duarte, Ana M; Rivas-Chacon, Rafael

    2013-01-01

    We describe a 3-month-old infant who presented to our institution with interleukin (IL)-1 receptor antagonist deficiency (DIRA), which consists of neutrophilic pustular dermatosis, periostitis, aseptic multifocal osteomyelitis, and persistently high acute-phase reactants. Skin findings promptly improved upon initiation of treatment with anakinra (recombinant human IL-1 receptor antagonist), and the bony lesions and systemic inflammation resolved with continued therapy. PMID:22471702

  12. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism.

    PubMed

    Roques, Béatrice B; Leghait, Julien; Lacroix, Marlène Z; Lasserre, Frédéric; Pineau, Thierry; Viguié, Catherine; Martin, Pascal G P

    2013-10-01

    Fipronil is described as a thyroid disruptor in rat. Based on the hypothesis that this results from a perturbation of hepatic thyroid hormone metabolism, our goal was to investigate the pathways involved in fipronil-induced liver gene expression regulations. First, we performed a microarray screening in the liver of rats treated with fipronil or vehicle. Fipronil treatment led to the upregulation of several genes involved in the metabolism of xenobiotics, including the cytochrome P450 Cyp2b1, Cyp2b2 and Cyp3a1, the carboxylesterases Ces2 and Ces6, the phase II enzymes Ugt1a1, Sult1b1 and Gsta2, and the membrane transporters Abcc2, Abcc3, Abcg5, Abcg8, Slco1a1 and Slco1a4. Based on a large overlap with the target genes of constitutive androstane receptor (CAR) and pregnane X receptor (PXR), we postulated that these two nuclear receptors are involved in mediating the effects of fipronil on liver gene expression in rodents. We controlled that liver gene expression changes induced by fipronil were generally reproduced in mice, and then studied the effects of fipronil in wild-type, CAR- and PXR-deficient mice. For most of the genes studied, the gene expression modulations were abolished in the liver of PXR-deficient mice and were reduced in the liver of CAR-deficient mice. However, CAR and PXR activation in mouse liver was not associated with a marked increase of thyroid hormone clearance, as observed in rat. Nevertheless, our data clearly indicate that PXR and CAR are key modulators of the hepatic gene expression profile following fipronil treatment which, in rats, may contribute to increase thyroid hormone clearance. PMID:23962444

  13. Nuclear receptor coactivators: Essential players in steroid hormone action in brain and behavior

    PubMed Central

    Tetel, Marc J.

    2009-01-01

    Steroid hormones act in brain and throughout the body to influence behavior and physiology. Many of these effects of steroid hormones are elicited by transcriptional events mediated by their respective receptors. A variety of cell culture studies reveal that nuclear receptor coactivators are critical in modulating steroid receptor-dependent transcription. Thus, in addition to the availability of the hormone and the expression of its receptor, nuclear receptor coactivators are essential for steroid-dependent transactivation of genes. This review will discuss the mounting evidence that nuclear receptor coactivators are critical in modulating steroid hormone action in brain and the regulation of behavior. PMID:19207820

  14. Luteinizing hormone/human chorionic gonadotropin receptors in breast cancer.

    PubMed

    Meduri, G; Charnaux, N; Loosfelt, H; Jolivet, A; Spyratos, F; Brailly, S; Milgrom, E

    1997-03-01

    Recent studies have suggested that human choriogonadotropin (hCG), in addition to its function in regulating steroidogenesis, may also play a role as a growth factor. Immunocytochemistry using two different monoclonal antibodies (LHR29 and LHR1055) raised against the human luteinizing hormone/human chorionic gonadotropin (LH/hCG) receptor allowed us to detect this receptor in breast cancer cell lines (T47D, MCF7, and ZR75) in individual cancer biopsies and in benign breast lesions. The receptor was also present in epithelial cells of normal human and sow breast. In the latter, its concentration increased after ovulation. The presence of LH/hCG receptor mRNA was confirmed by reverse transcription-PCR using primers extending over exons 2-4, 5-11, and 9-11. The proportion of LH/hCG-receptor positive cells and the intensity of the immunolabeling varied in individual biopsies, but there was no obvious correlation with the histological type of the cancer. These results are compatible with previous studies suggesting that during pregnancy, hCG is involved in the differentiation of breast glandular epithelium and that this hormone may play an inhibitory role in mammary carcinogenesis and in the growth of breast tumors. PMID:9041186

  15. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    PubMed Central

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  16. Burden of Growth Hormone Deficiency and Excess in Children.

    PubMed

    Fideleff, Hugo L; Boquete, Hugo R; Suárez, Martha G; Azaretzky, Miriam

    2016-01-01

    Longitudinal growth results from multifactorial and complex processes that take place in the context of different genetic traits and environmental influences. Thus, in view of the difficulties in comprehension of the physiological mechanisms involved in the achievement of normal height, our ability to make a definitive diagnosis of GH impairment still remains limited. There is a myriad of controversial aspects in relation to GH deficiency, mainly related to diagnostic controversies and advances in molecular biology. This might explain the diversity in therapeutic responses and may also serve as a rationale for new "nonclassical" treatment indications for GH. It is necessary to acquire more effective tools to reach an adequate evaluation, particularly while considering the long-term implications of a correct diagnosis, the cost, and safety of treatments. On the other hand, overgrowth constitutes a heterogeneous group of different pathophysiological situations including excessive somatic and visceral growth. There are overlaps in clinical and molecular features among overgrowth syndromes, which constitute the real burden for an accurate diagnosis. In conclusion, both GH deficiency and overgrowth are a great dilemma, still not completely solved. In this chapter, we review the most burdensome aspects related to short stature, GH deficiency, and excess in children, avoiding any details about well-known issues that have been extensively discussed in the literature. PMID:26940390

  17. Pharmacological Chaperones for Misfolded Gonadotropin-Releasing Hormone Receptors

    PubMed Central

    Conn, P. Michael; Ulloa-Aguirre, Alfredo

    2011-01-01

    Structural alterations provoked by mutations or genetic variations in the gene sequence of G protein-coupled receptors may lead to abnormal function of the receptor molecule and, ultimately, to disease. While some mutations lead to changes in domains involved in agonist binding, receptor activation or coupling to effectors, others may cause misfolding and lead to retention/degradation of the protein molecule by the quality control system of the cell. Several strategies, including genetic, chemical and pharmacological approaches have been shown to rescue function of trafficking-defective misfolded G protein-coupled receptors. Among these, pharmacological strategies offer the most promising therapeutic tool to promote proper trafficking of misfolded proteins to the plasma membrane. Pharmacological chaperones or “pharmacoperones,” are small compounds that permeate the plasma membrane, enter cells, and bind selectively to misfolded proteins and correct folding allowing routing of the target protein to the plasma membrane, where the receptor may bind and respond to agonist stimulation. In this review we describe new therapeutic opportunities based on misfolding of otherwise functional human gonadotropin-releasing hormone receptors. This particular receptor is highly sensitive to single changes in chemical charge and its intracellular traffic is delicately balanced between expression at the plasma membrane or retention/degradation in the endoplasmic reticulum; it is, therefore, a particularly instructive model to understand both protein routing and the molecular mechanisms whereby pharmacoperones rescue misfolded intermediates or conformationally defective receptors. PMID:21907908

  18. Aberrant expression of hormone receptors in adrenal Cushing's syndrome.

    PubMed

    Christopoulos, Stavroula; Bourdeau, Isabelle; Lacroix, André

    2004-01-01

    In recent years, a novel understanding of the pathophysiology of adrenal Cushing's syndrome has emerged. The ectopic or aberrant expression of G-protein-coupled hormone receptors in the adrenal cortex was found to play a central role in the regulation of cortisol secretion in ACTH-independent macronodular adrenal hyperplasia (AIMAH) and in some unilateral adrenal adenomas. Various aberrant receptors, functionally coupled to steroidogenesis, have been reported: GIP, vasopressin, beta-adrenergic, LH/hCG, and serotonin receptors have been best characterized, but angiotensin, leptin, glucagon, IL-1 and TSH receptors have also been described. The molecular mechanisms responsible for the aberrant expression of these receptors are currently unknown. One or many of these aberrant receptors are present in most cases of AIMAH and in some cases of adrenal adenomas with overt or sub-clinical secretion of cortisol. Clinical protocols to screen for such aberrant receptors have been developed and should be performed in all patients with AIMAH. The identification of such aberrant regulation of steroidogenesis in AIMAH provides the novel opportunity to treat some of these patients with pharmacological agents that either suppress the endogenous ligand or block the aberrant receptor, thus avoiding bilateral adrenalectomy. PMID:16010457

  19. Striatal dopamine receptor plasticity in neurotensin deficient mice

    PubMed Central

    Chastain, Lucy G.; Qu, Hongyan; Bourke, Chase H.; Iuvone, P. Michael; Dobner, Paul R.; Nemeroff, Charles B.; Kinkead, Becky

    2015-01-01

    Schizophrenia is thought to be caused, at least in part, by dysfunction in striatal dopamine neurotransmission. Both clinical studies and animal research have implicated the dopamine neuromodulator neurotensin (NT) in the pathophysiology of schizophrenia. Utilizing male mice lacking the NT gene (NT−/−), these studies examined the consequences of NT deficiency on dopaminergic tone and function, investigating (1) dopamine concentrations and dopamine receptor and transporter expression and binding in dopaminergic terminal regions, and (2) the behavioral effects of selective dopamine receptor agonists on locomotion and sensorimotor gating in adult NT−/− mice compared to wildtype (NT+/+) mice. NT−/− mice did not differ from NT+/+ mice in concentrations of dopamine or its metabolite DOPAC in any brain region examined. However, NT−/− mice showed significantly increased D1 receptor, D2 receptor, and dopamine transporter (DAT) mRNA in the caudate putamen compared to NT+/+ controls. NT−/− mice also showed elevated D2 receptor binding densities in both the caudate putamen and nucleus accumbens shell compared to NT+/+ mice. In addition, some of the behavioral effects of the D1-type receptor agonist SKF-82958 and the D2-type receptor agonist quinpirole on locomotion, startle amplitude, and prepulse inhibition were dose-dependently altered in NT−/− mice, showing altered D1-type and D2-type receptor sensitivity to stimulation by agonists in the absence of NT. The results indicate that NT deficiency alters striatal dopamine receptor expression, binding, and function. This suggests a critical role for the NT system in the maintenance of striatal DA system homeostasis and implicates NT deficiency in the etiology of dopamine-associated disorders such as schizophrenia. PMID:25449842

  20. Endogenous retinoid X receptors can function as hormone receptors in pituitary cells.

    PubMed Central

    Davis, K D; Berrodin, T J; Stelmach, J E; Winkler, J D; Lazar, M A

    1994-01-01

    Retinoids regulate gene transcription by interacting with both retinoic acid (RA) receptors (RARs) and retinoid X receptors (RXRs). Since unliganded RXRs can act as heterodimerization partners for RARs and other nuclear hormone receptors, it is unclear whether ligand binding by RXRs actually regulates the expression of naturally occurring genes. To address this issue, we synthesized the RXR-selective retinoid SR11237 and confirmed its specificity in transient transfection and proteolytic susceptibility assays before using it to assess the contribution of ligand-activated RXRs to retinoid action. Unlike RAR ligands, SR11237 did not increase endogenous RAR beta mRNA levels in F9 embryonal carcinoma cells, even though it activated transcription of an RXR-responsive reporter gene in these cells. Thus, it is likely that RARs mediate the induction of RAR beta gene expression by RA. In contrast, the RXR-specific ligand induced rat growth hormone mRNA in GH3 pituitary cells, indicating that the effects of RA on growth hormone gene expression at least in part involve ligand binding to endogenous RXRs in vivo. Our results indicate that in addition to serving as cofactors for other nuclear hormone receptors, endogenous RXRs can function as ligand-dependent regulators of gene expression, i.e., classical nuclear hormone receptors. Images PMID:7935425

  1. Genetic Models for the Study of Luteinizing Hormone Receptor Function

    PubMed Central

    Narayan, Prema

    2015-01-01

    The luteinizing hormone/chorionic gonadotropin receptor (LHCGR) is essential for fertility in men and women. LHCGR binds luteinizing hormone (LH) as well as the highly homologous chorionic gonadotropin. Signaling from LHCGR is required for steroidogenesis and gametogenesis in males and females and for sexual differentiation in the male. The importance of LHCGR in reproductive physiology is underscored by the large number of naturally occurring inactivating and activating mutations in the receptor that result in reproductive disorders. Consequently, several genetically modified mouse models have been developed for the study of LHCGR function. They include targeted deletion of LH and LHCGR that mimic inactivating mutations in hormone and receptor, expression of a constitutively active mutant in LHCGR that mimics activating mutations associated with familial male-limited precocious puberty and transgenic models of LH and hCG overexpression. This review summarizes the salient findings from these models and their utility in understanding the physiological and pathological consequences of loss and gain of function in LHCGR signaling. PMID:26483755

  2. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand. PMID:25916672

  3. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency

    SciTech Connect

    Kikuchi, M.; Ishii, S. )

    1989-12-01

    By improving the currently used lactoperoxidase method, we were able to obtain radioiodinated chicken luteinizing hormone (LH) that shows high specific binding and low nonspecific binding to a crude plasma membrane fraction of testicular cells of the domestic fowl and the Japanese quail, and to the ovarian granulosa cells of the Japanese quail. The change we made from the original method consisted of (1) using chicken LH for radioiodination that was not only highly purified but also retained a high receptor binding potency; (2) controlling the level of incorporation of radioiodine into chicken LH molecules by employing a short reaction time and low temperature; and (3) fractionating radioiodinated chicken LH further by gel filtration using high-performance liquid chromatography. Specific radioactivity of the final {sup 125}I-labeled chicken LH preparation was 14 microCi/micrograms. When specific binding was 12-16%, nonspecific binding was as low as 2-4% in the gonadal receptors. {sup 125}I-Labeled chicken LH was displaced by chicken LH and ovine LH but not by chicken follicle-stimulating hormone. The equilibrium association constant of quail testicular receptor was 3.6 x 10(9) M-1. We concluded that chicken LH radioiodinated by the present method is useful for studies of avian LH receptors.

  4. Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids.

    PubMed

    Gil-Ibáñez, Pilar; Bernal, Juan; Morte, Beatriz

    2014-01-01

    The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3'-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development. PMID:24618783

  5. Thyroid Hormone Regulation of Gene Expression in Primary Cerebrocortical Cells: Role of Thyroid Hormone Receptor Subtypes and Interactions with Retinoic Acid and Glucocorticoids

    PubMed Central

    Gil-Ibáñez, Pilar; Bernal, Juan; Morte, Beatriz

    2014-01-01

    The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3′-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development. PMID:24618783

  6. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats.

    PubMed

    Liu, Changjiang; Zhao, Letian; Wei, Li; Li, Lianbing

    2015-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) is used extensively in many personal care and consumer products, resulting in widespread nonoccupational human exposure through multiple routes and media. Limited studies suggest that exposure to DEHP may be associated with altered thyroid function, but detailed mechanisms are unclear. In order to elucidate potential mechanisms by which DEHP disturbs thyroid hormone homeostasis, Sprague-Dawley (SD) rats were dosed with DEHP by gavage at 0, 250, 500, and 750 mg/kg/day for 30 days and sacrificed within 24 h after the last dose. Gene expressions of thyroid hormone receptors, deiodinases, transthyretin, and hepatic enzymes were measured by RT-PCR; protein levels of transthyretin were also analyzed by Western blot. Results showed that DEHP caused histological changes in the thyroid and follicular epithelial cell hypertrophy and hyperplasia were observed. DEHP significantly reduced thyroid hormones (T3, T4) and thyrotropin releasing hormone (TRH) levels, whereas thyroid stimulating hormone (TSH) was not affected. After exposure to DEHP, biosynthesis of thyroid hormones was suppressed, and sodium iodide symporter (NIS) and thyroid peroxidase (TPO) levels were significantly reduced. Additionally, levels of deiodinases and transthyretin were also affected. TSH receptor (TSHr) level was downregulated, while TRH receptor (TRHr) level was upregulated. Metabolism of thyroid hormones was accelerated due to elevated gene expression of hepatic enzymes (UDPGTs and CYP2B1) by DEHP. Taken together, observed findings indicate that DEHP could reduce thyroid hormones through influencing biosynthesis, biotransformation, biotransport, receptor levels, and metabolism of thyroid hormones. PMID:25913319

  7. Evolution of gonadotropin-inhibitory hormone receptor and its ligand.

    PubMed

    Ubuka, Takayoshi; Tsutsui, Kazuyoshi

    2014-12-01

    Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide inhibitor of gonadotropin secretion, which was first identified in the Japanese quail hypothalamus. GnIH peptides share a C-terminal LPXRFamide (X=L or Q) motif in most vertebrates. The receptor for GnIH (GnIHR) is the seven-transmembrane G protein-coupled receptor 147 (GPR147) that inhibits cAMP production. GPR147 is also named neuropeptide FF (NPFF) receptor 1 (NPFFR1), because it also binds NPFF that has a C-terminal PQRFamide motif. To understand the evolutionary history of the GnIH system in the animal kingdom, we searched for receptors structurally similar to GnIHR in the genome of six mammals (human, mouse, rat, cattle, cat, and rabbit), five birds (pigeon, chicken, turkey, budgerigar, and zebra finch), one reptile (green anole), one amphibian (Western clawed flog), six fishes (zebrafish, Nile tilapia, Fugu, coelacanth, spotted gar, and lamprey), one hemichordate (acorn worm), one echinoderm (purple sea urchin), one mollusk (California sea hare), seven insects (pea aphid, African malaria mosquito, honey bee, buff-tailed bumblebee, fruit fly, jewel wasp, and red flour beetle), one cnidarian (hydra), and constructed phylogenetic trees by neighbor joining (NJ) and maximum likelihood (ML) methods. A multiple sequence alignment of the receptors showed highly conserved seven-transmembrane domains as well as disulfide bridge sites between the first and second extracellular loops, including the receptor of hydra. Both NJ and ML analyses grouped the receptors of vertebrates into NPFFR1 and NPFFR2 (GPR74), and the receptors of insects into the receptor for SIFamide peptides that share a C-terminal YRKPPFNGSIFamide motif. Although human, quail and zebrafish GnIHR (NPFFR1) were most structurally similar to SIFamide receptor of fruit fly in the Famide peptide (FMRFamide, neuropeptide F, short neuropeptide F, drosulfakinin, myosuppressin, SIFamide) receptor families, the amino acid sequences and the peptide coding

  8. Isolated Adrenocorticotropic Hormone or Thyrotropin Deficiency Following Mild Traumatic Brain Injury: Three Cases with Long-Term Follow-Up

    PubMed Central

    Baek, Cho-Ok; Kim, Yu Ji; Kim, Ji Hye

    2015-01-01

    Few studies have examined the clinical features and long-term outcomes of isolated pituitary hormone deficiencies after traumatic brain injury (TBI). Such deficiencies typically present at time intervals after TBI, especially after mild injuries such as concussions, which makes their diagnosis difficult without careful history taking. It is necessary to improve diagnosis and prevent life threatening or morbid conditions such as those that may occur in deficiencies of adrenocorticotropic hormone (ACTH) or thyroid-stimulating hormone (as known as thyrotropin, TSH), the two most important pituitary hormones in hypopituitarism treatment. Here, we report two cases of isolated ACTH deficiency and one case of isolated TSH deficiency. These patients presented at different time points after concussion and underwent long-term follow-ups. PMID:27169080

  9. Discovery of growth hormone-releasing hormones and receptors in nonmammalian vertebrates

    PubMed Central

    Lee, Leo T. O.; Siu, Francis K. Y.; Tam, Janice K. V.; Lau, Ivy T. Y.; Wong, Anderson O. L.; Lin, Marie C. M.; Vaudry, Hubert; Chow, Billy K. C.

    2007-01-01

    In mammals, growth hormone-releasing hormone (GHRH) is the most important neuroendocrine factor that stimulates the release of growth hormone (GH) from the anterior pituitary. In nonmammalian vertebrates, however, the previously named GHRH-like peptides were unable to demonstrate robust GH-releasing activities. In this article, we provide evidence that these GHRH-like peptides are homologues of mammalian PACAP-related peptides (PRP). Instead, GHRH peptides encoded in cDNAs isolated from goldfish, zebrafish, and African clawed frog were identified. Moreover, receptors specific for these GHRHs were characterized from goldfish and zebrafish. These GHRHs and GHRH receptors (GHRH-Rs) are phylogenetically and structurally more similar to their mammalian counterparts than the previously named GHRH-like peptides and GHRH-like receptors. Information regarding their chromosomal locations and organization of neighboring genes confirmed that they share the same origins as the mammalian genes. Functionally, the goldfish GHRH dose-dependently activates cAMP production in receptor-transfected CHO cells as well as GH release from goldfish pituitary cells. Tissue distribution studies showed that the goldfish GHRH is expressed almost exclusively in the brain, whereas the goldfish GHRH-R is actively expressed in brain and pituitary. Taken together, these results provide evidence for a previously uncharacterized GHRH-GHRH-R axis in nonmammalian vertebrates. Based on these data, a comprehensive evolutionary scheme for GHRH, PRP-PACAP, and PHI-VIP genes in relation to three rounds of genome duplication early on in vertebrate evolution is proposed. These GHRHs, also found in flounder, Fugu, medaka, stickleback, Tetraodon, and rainbow trout, provide research directions regarding the neuroendocrine control of growth in vertebrates. PMID:17283332

  10. Discovery and Development of Small Molecule Allosteric Modulators of Glycoprotein Hormone Receptors

    PubMed Central

    Nataraja, Selvaraj G.; Yu, Henry N.; Palmer, Stephen S.

    2015-01-01

    Glycoprotein hormones, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and thyroid-stimulating hormone (TSH) are heterodimeric proteins with a common α-subunit and hormone-specific β-subunit. These hormones are dominant regulators of reproduction and metabolic processes. Receptors for the glycoprotein hormones belong to the family of G protein-coupled receptors. FSH receptor (FSHR) and LH receptor are primarily expressed in somatic cells in ovary and testis to promote egg and sperm production in women and men, respectively. TSH receptor is expressed in thyroid cells and regulates the secretion of T3 and T4. Glycoprotein hormones bind to the large extracellular domain of the receptor and cause a conformational change in the receptor that leads to activation of more than one intracellular signaling pathway. Several small molecules have been described to activate/inhibit glycoprotein hormone receptors through allosteric sites of the receptor. Small molecule allosteric modulators have the potential to be administered orally to patients, thus improving the convenience of treatment. It has been a challenge to develop a small molecule allosteric agonist for glycoprotein hormones that can mimic the agonistic effects of the large natural ligand to activate similar signaling pathways. However, in the past few years, there have been several promising reports describing distinct chemical series with improved potency in preclinical models. In parallel, proposal of new structural model for FSHR and in silico docking studies of small molecule ligands to glycoprotein hormone receptors provide a giant leap on the understanding of the mechanism of action of the natural ligands and new chemical entities on the receptors. This review will focus on the current status of small molecule allosteric modulators of glycoprotein hormone receptors, their effects on common signaling pathways in cells, their utility for clinical application as demonstrated in preclinical models

  11. An examination of the effects of different doses of recombinant human growth hormone on children with growth hormone deficiency

    PubMed Central

    XUE, YING; GAO, YIQING; WANG, SHUQIN; WANG, PEI

    2016-01-01

    The aim of the present study was to examine the effects of different doses of recombinant human growth hormone (rhGH) on children with growth hormone deficiency (GHD) and on thyroid and glucose metabolism to identify more reasonable therapeutic doses of growth hormone (GH) for the treatment of this condition. In total, 60 prepubertal patients with GHD were randomly divided into the high-dose and low-dose groups (n=30 per group). The groups were treated with 0.1 or 0.05 U/kg for 6 months, respectively. The follow-up study focused on changes to the serum levels of insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein (IGFBP)-3, blood glucose, thyroid hormone [triiodothyronine (T3) and its prohormone, thyroxine (T4), and thyroid stimulating hormone (TSH)] and the analysis of variance of the repeated data. Changes in the height, body weight and bone age of the high-dose group were greater than those of the low-dose group. After 6 months of treatment, the difference in height between the two groups was statistically significant (P<0.05). Glucose metabolism in the two groups was consistent, but there was a statistically significant difference in the fasting blood glucose (FBG) levels of the two groups after 6 months of treatment (P<0.05). Prior to treatment, the T3, T4 and TSH values (the thyroid function tests) in the two groups, especially for the value of T3 in high-dose group were varied. However, 6 months after treatment, statistically significant differences between the two groups (P<0.05) were identified. In conclusion, 0.1 U/kg of GH is beneficial to children with GHD in attaining a satisfactory height, but it leads to insulin resistance. Thus, glucose metabolism and thyroid function should be monitored on a regular basis in a clinical setting. PMID:27168784

  12. Receptor guanylyl cyclases in Inka cells targeted by eclosion hormone.

    PubMed

    Chang, Jer-Cherng; Yang, Ruey-Bing; Adams, Michael E; Lu, Kuang-Hui

    2009-08-11

    A signature of eclosion hormone (EH) action in insect ecdysis is elevation of cGMP in Inka cells, leading to massive release of ecdysis triggering hormone (ETH) and ecdysis initiation. Although this aspect of EH-induced signal transduction is well known, the receptor mediating this process has not been identified. Here, we describe a receptor guanylyl cyclase BdmGC-1 and its isoform BdmGC-1B in the Oriental fruit fly Bactrocera dorsalis that are activated by EH. The B form exhibits the conserved domains and putative N-glycosylation sites found in BdmGC-1, but possesses an additional 46-amino acid insertion in the extracellular domain and lacks the C-terminal tail of BdmGC-1. Combined immunolabeling and in situ hybridization reveal that BdmGC-1 is expressed in Inka cells. Heterologous expression of BdmGC-1 in HEK cells leads to robust increases in cGMP following exposure to low picomolar concentrations of EH. The B-isoform responds only to higher EH concentrations, suggesting different physiological roles of these cyclases. We propose that BdmGC-1 and BdmGC-1B are high- and low-affinity EH receptors, respectively. PMID:19666575

  13. Aromatic Anchor at an Invariant Hormone-Receptor Interface

    PubMed Central

    Pandyarajan, Vijay; Smith, Brian J.; Phillips, Nelson B.; Whittaker, Linda; Cox, Gabriella P.; Wickramasinghe, Nalinda; Menting, John G.; Wan, Zhu-li; Whittaker, Jonathan; Ismail-Beigi, Faramarz; Lawrence, Michael C.; Weiss, Michael A.

    2014-01-01

    Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of PheB24, an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, MetB24 was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of PheB24 by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [ChaB24]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the ChaB24 analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of PheB24 at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility. PMID:25305014

  14. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  15. Identification of Growth Hormone Receptor in Plexiform Neurofibromas of Patients with Neurofibromatosis Type 1

    PubMed Central

    Cunha, Karin Soares Gonçalves; Barboza, Eliane Porto; da Fonseca, Eliene Carvalho

    2008-01-01

    OBJECTIVE The aim of this study was to investigate the presence of growth hormone receptor in plexiform neurofibromas of neurofibromatosis type 1 patients. INTRODUCTION The development of multiple neurofibromas is one of the major features of neurofibromatosis type 1. Since neurofibromas commonly grow during periods of hormonal change, especially during puberty and pregnancy, it has been suggested that hormones may influence neurofibromatosis type 1 neurofibromas. A recent study showed that the majority of localized neurofibromas from neurofibromatosis type 1 patients have growth hormone receptor. METHODS Growth hormone receptor expression was investigated in 5 plexiform neurofibromas using immunohistochemistry. RESULTS Four of the 5 plexiform neurofibromas were immunopositive for growth hormone receptor. CONCLUSION This study suggests that growth hormone may influence the development of plexiform neurofibromas in patients with neurofibromatosis type 1. PMID:18297205

  16. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  17. A novel mutation in HESX1 causes combined pituitary hormone deficiency without septo optic dysplasia phenotypes.

    PubMed

    Takagi, Masaki; Takahashi, Mai; Ohtsu, Yoshiaki; Sato, Takeshi; Narumi, Satoshi; Arakawa, Hirokazu; Hasegawa, Tomonobu

    2016-04-25

    Heterozygous and/or homozygous HESX1 mutations have been reported to cause isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD), in association with septo optic dysplasia (SOD). We report a novel heterozygous HESX1 mutation in a CPHD patient without SOD phenotypes. The propositus was a one-year-old Japanese girl. Shortly after birth, she was found to be hypoglycemic. She was diagnosed with central adrenal insufficiency based on low cortisol and ACTH at a time of severe hypoglycemia. Further endocrine studies indicated that the patient also had central hypothyroidism and growth hormone deficiency. Using a next-generation sequencing strategy, we identified a novel heterozygous HESX1 mutation, c.326G>A (p.Arg109Gln). Western blotting and subcellular localization revealed no significant difference between wild type and mutant HESX1. Electrophoretic mobility shift assays showed that the mutant HESX1 abrogated DNA-binding ability. Mutant HESX1 was unable to repress PROP1-mediated activation. In conclusion, this study identified Arg109 as a critical residue in the HESX1 protein and extends our understanding of the phenotypic features, molecular mechanism, and developmental course associated with mutations in HESX1. When multiple genes need to be analyzed for mutations simultaneously, targeted sequence analysis of interesting genomic regions is an attractive approach. PMID:26781211

  18. Educating children and families about growth hormone deficiency and its management: part 1.

    PubMed

    Collin, Jacqueline; Whitehead, Amanda; Walker, Jenny

    2016-02-01

    The management of growth hormone deficiency is long term. Children may be diagnosed at pre-school age meaning relationships with the paediatric endocrine team may last more than 15 years. The education role of the paediatric endocrine nurse specialist is essential in working in partnership with families over a long period of time. Children and young people have changing needs for information to help them understand their condition and growth hormone deficiency treatment as they grow up. Developing positive working relationships with parents, children and young people enables their developmental needs and the context in which they live their lives to be central to any educational planning for them. Addressing developmental needs when providing information on growth hormone deficiency to children and young people reinforces the need for education to be an ongoing process and not a one-off event. This is part one of a two-part article. The second part will be published in the March issue of Nursing Children and Young People and it focuses on educating children, young people and their parents about the condition, and includes case studies. PMID:26856576

  19. Frequency of mutations in PROP-1 gene in Turkish children with combined pituitary hormone deficiency.

    PubMed

    Kandemir, Nurgün; Vurallı, Doğuş; Taşkıran, Ekim; Gönç, Nazlı; Özön, Alev; Alikaşifoğlu, Ayfer; Yılmaz, Engin

    2012-01-01

    Mutations in the prophet of Pit-1 (PROP-1) gene are responsible for most of the cases of combined pituitary hormone deficiencies (CPHD). We performed this study to determine the prevalence of PROP-1 mutations in a group of Turkish children with CPHD. Fifty-three children with the diagnosis of CPHD were included in this study. Clinical data were obtained from medical files, and hormonal evaluation and genetic screening for PROP-1 mutations were performed. A homozygous S109X mutation was found in the second exon in two brothers, and they had growth hormone (GH) and thyroid-stimulating hormone (TSH) deficiencies and normal prolactin levels. In the third exon of the PROP-1 gene, a heterozygous A142T polymorphism was found in 14 patients and a homozygous A142T polymorphism was found in 3 patients. In the first exon, a homozygous A9A polymorphism was found in 7 patients and a heterozygous A9A polymorphism was found in 31 patients. We assumed that mutations in the PROP-1 gene in cases with CPHD were expected to be more prevalent in our population due to consanguinity, but it was found that these mutations were far less than expected and that it was rare in non-familial cases. PMID:23692781

  20. Dose-Response Analysis of Developmental Iodide Deficiency: Reductions in Thyroid Hormones and Impaired Hippocampal Synaptic Transmission

    EPA Science Inventory

    Iodide is an essential nutrient for thyroid hormone synthesis and severe iodide deficiency (ID) during early development is associated with neurological impairments. Several environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under cond...

  1. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    PubMed Central

    Dobolyi, Arpád; Dimitrov, Eugene; Palkovits, Miklós; Usdin, Ted B.

    2012-01-01

    The G-protein coupled parathyroid hormone 2 receptor (PTH2R) is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand, tuberoinfundibular peptide of 39 residues (TIP39), is synthesized in only two brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine-vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control neuroendocrine disorders

  2. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice

    PubMed Central

    Mavalli, Mahendra D.; DiGirolamo, Douglas J.; Fan, Yong; Riddle, Ryan C.; Campbell, Kenneth S.; van Groen, Thomas; Frank, Stuart J.; Sperling, Mark A.; Esser, Karyn A.; Bamman, Marcas M.; Clemens, Thomas L.

    2010-01-01

    Skeletal muscle development, nutrient uptake, and nutrient utilization is largely coordinated by growth hormone (GH) and its downstream effectors, in particular, IGF-1. However, it is not clear which effects of GH on skeletal muscle are direct and which are secondary to GH-induced IGF-1 expression. Thus, we generated mice lacking either GH receptor (GHR) or IGF-1 receptor (IGF-1R) specifically in skeletal muscle. Both exhibited impaired skeletal muscle development characterized by reductions in myofiber number and area as well as accompanying deficiencies in functional performance. Defective skeletal muscle development, in both GHR and IGF-1R mutants, was attributable to diminished myoblast fusion and associated with compromised nuclear factor of activated T cells import and activity. Strikingly, mice lacking GHR developed metabolic features that were not observed in the IGF-1R mutants, including marked peripheral adiposity, insulin resistance, and glucose intolerance. Insulin resistance in GHR-deficient myotubes derived from reduced IR protein abundance and increased inhibitory phosphorylation of IRS-1 on Ser 1101. These results identify distinct signaling pathways through which GHR regulates skeletal muscle development and modulates nutrient metabolism. PMID:20921627

  3. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation

    PubMed Central

    Ono, Wanida; Sakagami, Naoko; Nishimori, Shigeki; Ono, Noriaki; Kronenberg, Henry M.

    2016-01-01

    Dental root formation is a dynamic process in which mesenchymal cells migrate toward the site of the future root, differentiate and secrete dentin and cementum. However, the identities of dental mesenchymal progenitors are largely unknown. Here we show that cells expressing osterix are mesenchymal progenitors contributing to all relevant cell types during morphogenesis. The majority of cells expressing parathyroid hormone-related peptide (PTHrP) are in the dental follicle and on the root surface, and deletion of its receptor (PPR) in these progenitors leads to failure of eruption and significantly truncated roots lacking periodontal ligaments. The PPR-deficient progenitors exhibit accelerated cementoblast differentiation with upregulation of nuclear factor I/C (Nfic). Deletion of histone deacetylase-4 (HDAC4) partially recapitulates the PPR deletion root phenotype. These findings indicate that PPR signalling in dental mesenchymal progenitors is essential for tooth root formation, underscoring importance of the PTHrP–PPR system during root morphogenesis and tooth eruption. PMID:27068606

  4. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation.

    PubMed

    Ono, Wanida; Sakagami, Naoko; Nishimori, Shigeki; Ono, Noriaki; Kronenberg, Henry M

    2016-01-01

    Dental root formation is a dynamic process in which mesenchymal cells migrate toward the site of the future root, differentiate and secrete dentin and cementum. However, the identities of dental mesenchymal progenitors are largely unknown. Here we show that cells expressing osterix are mesenchymal progenitors contributing to all relevant cell types during morphogenesis. The majority of cells expressing parathyroid hormone-related peptide (PTHrP) are in the dental follicle and on the root surface, and deletion of its receptor (PPR) in these progenitors leads to failure of eruption and significantly truncated roots lacking periodontal ligaments. The PPR-deficient progenitors exhibit accelerated cementoblast differentiation with upregulation of nuclear factor I/C (Nfic). Deletion of histone deacetylase-4 (HDAC4) partially recapitulates the PPR deletion root phenotype. These findings indicate that PPR signalling in dental mesenchymal progenitors is essential for tooth root formation, underscoring importance of the PTHrP-PPR system during root morphogenesis and tooth eruption. PMID:27068606

  5. Hepatic receptors for homologous growth hormone in the eel

    SciTech Connect

    Hirano, T. )

    1991-03-01

    The specific binding of 125I-labeled eel growth hormone (eGH) to liver membranes of the eel was examined. The specific binding to the 10,000g pellet was greater than that to the 600g pellet. The specific binding was linear up to about 100 mg fresh tissue, and was saturable with increasing amounts of membrane. The specific binding was pH-, temperature-, and time-dependent, with the optimum pH at 7.4, and greater specific binding was obtained at 15 and 25 degrees than at 35 degrees. Scatchard analysis of liver binding gave an association constant of 1.1 x 10(9) M-1 and a capacity of 105 fmol/mg protein. The receptor preparation was highly specific for GHs. Natural and recombinant eel GHs as well as recombinant salmon GH competed equally with 125I-eGH for the receptor sites of the 10,000g liver membrane. Ovine GH was more potent in displacing the labeled eGH than the homologous eel hormone. Tilapia GH and ovine prolactin (PRL) were needed in greater amounts (40 times) than eGH to displace the labeled eGH. Salmon and tilapia PRLs were still less potent (500 times) than eGH. There was no displacement with eel PRL. No significant change in the specific binding was seen 1 week after hypophysectomy, whereas injection of eGH into the hypophysectomized eel caused a significant reduction after 24 hr. The binding to the membrane fractions from gills, kidney, muscle, intestine, and brain was low and exclusively nonspecific, indicating the presence of specific GH receptors predominantly in the liver.

  6. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor. beta

    SciTech Connect

    Sakurai, A.; Takeda, K.; Ain, K.; Ceccarelli, P.; Nakai, A.; Seino, S.; Bell, G.I.; Refetoff, S.; DeGroot, L.J. )

    1989-11-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. The authors have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine {yields} cytosine replacement in the codon for amino acid 340 resulted in a glycine {yields} arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor {beta} gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor {beta} gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule.

  7. Targeting Thyroid Hormone Receptor Beta in Triple Negative Breast Cancer

    PubMed Central

    Gu, Guowei; Gelsomino, Luca; Covington, Kyle R.; Beyer, Amanda R.; Wang, John; Rechoum, Yassine; Huffman, Kenneth; Carstens, Ryan; Ando, Sebastiano; Fuqua, Suzanne A.W.

    2015-01-01

    Purpose Discover novel nuclear receptor targets in triple negative breast cancer Methods Expression microarray, western blot, qRT-PCR, MTT growth assay, soft agar anchorage-independent growth assay, TRE reporter transactivation assay, statistical analysis. Results We performed microarray analysis using 227 triple negative breast tumors, and clustered the tumors into five groups according to their nuclear receptor expression. Thyroid hormone receptor beta (TRβ) was one of the most differentially expressed nuclear receptors in group 5 compared to other groups. TRβ low expressing patients were associated with poor outcome. We evaluated the role of TRβ in triple negative breast cancer cell lines representing group 5 tumors. Knockdown of TRβ increased soft agar colony and reduced sensitivity to docetaxel and doxorubicin treatment. Docetaxel or doxorubicin long-term cultured cell lines also expressed decreased TRβ protein. Microarray analysis revealed cAMP/PKA signaling was the only KEGG pathways upregulated in TRβ knockdown cells. Inhibitors of cAMP or PKA, in combination with doxorubicin further enhanced cell apoptosis and restored sensitivity to chemotherapy. TRβ-specific agonists enhanced TRβ expression, and further sensitized cells to both docetaxel and doxorubicin. Sensitization was mediated by increased apoptosis with elevated cleaved PARP and caspase 3. Conclusions TRβ represents a novel nuclear receptor target in triple negative breast cancer; low TRβ levels were associated with enhanced resistance to both docetaxel and doxorubicin treatment. TRβ-specific agonists enhance chemosensitivity to these two agents. Mechanistically enhanced cAMP/PKA signaling was associated with TRβ’s effects on response to chemotherapy. PMID:25820519

  8. Effects of aerobic exercise on ectopic lipids in patients with growth hormone deficiency before and after growth hormone replacement therapy

    PubMed Central

    Christ, Emanuel R.; Egger, Andrea; Allemann, Sabin; Buehler, Tania; Kreis, Roland; Boesch, Chris

    2016-01-01

    Growth hormone replacement therapy (GHRT) increases exercise capacity and insulin resistance while it decreases fat mass in growth hormone-deficient patients (GHD). Ectopic lipids (intramyocellular (IMCL) and intrahepatocellular lipids (IHCL) are related to insulin resistance. The effect of GHRT on ectopic lipids is unknown. It is hypothesized that exercise-induced utilization of ectopic lipids is significantly decreased in GHD patients and normalized by GHRT. GHD (4 females, 6 males) and age/gender/waist-matched control subjects (CS) were studied. VO2max was assessed on a treadmill and insulin sensitivity determined by a two-step hyperinsulinaemic-euglycaemic clamp. Visceral (VAT) and subcutaneous (SAT) fat were quantified by MR-imaging. IHCL and IMCL were measured before and after a 2 h exercise at 50–60% of VO2max using MR-spectroscopy (∆IMCL, ∆IHCL). Identical investigations were performed after 6 months of GHRT. VO2max was similar in GHD and CS and significantly increased after GHRT; GHRT significantly decreased SAT and VAT. 2 h-exercise resulted in a decrease in IMCL (significant in CS and GHRT) and a significant increase in IHCL in CS and GHD pre and post GHRT. GHRT didn’t significantly impact on ∆IMCL and ∆IHCL. We conclude that aerobic exercise affects ectopic lipids in patients and controls. GHRT increases exercise capacity without influencing ectopic lipids. PMID:26792091

  9. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    NASA Astrophysics Data System (ADS)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  10. Comparative pharmacokinetics and pharmacodynamics of a PEGylated recombinant human growth hormone and daily recombinant human growth hormone in growth hormone-deficient children

    PubMed Central

    Hou, Ling; Chen, Zhi-hang; Liu, Dong; Cheng, Yuan-guo; Luo, Xiao-ping

    2016-01-01

    Objective Recombinant human growth hormone (rhGH) replacement therapy in children generally requires daily subcutaneous (sc) injections, which may be inconvenient for patients. Jintrolong® is a PEGylated rhGH with the purpose of weekly sc injections. The aim of the current study was to examine the pharmacokinetics, pharmacodynamics, safety, and tolerability of multiple sc doses of Jintrolong® vs daily doses of rhGH. Design and methods Twelve children with growth hormone deficiency participated in this single-center, open-label, crossover Phase I trial. All subjects received daily sc injections of rhGH at 0.0286 mg/kg/d for 7 days, followed by a 4-week washout period and six weekly doses of Jintrolong® at 0.2 mg/kg/w. Results In comparison with rhGH, sc injection of Jintrolong® produced a noticeably higher Cmax, significantly longer half-life (t1/2), and slower plasma clearance, signifying a profile suitable for long-term treatment. The ratio of the area under the concentration vs time curve (AUC) after the seventh and first injections (AUC(0–∞)7th/AUC(0–∞)1st) of rhGH was 1.02, while the AUC(0–∞)6th/AUC(0–∞)1st of Jintrolong ® was 1.03, indicating no accumulation of circulating growth hormone. There was no significant difference in the change in insulin-like growth factor-1 expression produced by 7 days of sc rhGH and weekly Jintrolong® injections. There were no severe adverse events during the trial. Conclusion The elimination rate of Jintrolong® was slower than that of sc rhGH. No progressive serum accumulation of Jintrolong® was found. The changes in insulin-like growth factor-1 expression produced by rhGH and Jintrolong® were comparable, indicating similar pharmacodynamics. Our results demonstrate that Jintrolong® is suitable for long-term growth hormone treatment in children with growth hormone deficiency. PMID:26719670

  11. Lymphocyte subset distribution and natural killer activity in growth hormone deficiency before and during short-term treatment with growth hormone releasing hormone.

    PubMed

    Kiess, W; Malozowski, S; Gelato, M; Butenand, O; Doerr, H; Crisp, B; Eisl, E; Maluish, A; Belohradsky, B H

    1988-07-01

    Natural killer (NK) cell activity was assessed in the peripheral blood of 20 patients with growth hormone (GH) deficiency due to a hypothalamic deficit of GH-releasing hormone (GHRH). All patients failed to respond to at least two provocative tests of GH secretion (GH below 7 ng/ml) but responded to a single GHRH iv bolus injection (1 microgram/kg body wt). In 14 of the 20 patients (20 determinations), lymphocyte subsets were also measured; in all patients the distribution of lymphocyte subsets was within the normal range. More importantly, NK cell activity in the 20 patients was significantly lower than in controls (P less than 0.01). To assess the in vivo effect of GH and GHRH on NK activity and lymphocyte subset distribution, immunologic tests were performed (i) before and after a single iv bolus injection of GHRH (1 microgram/kg body wt) in six patients; (ii) before and after 3 weeks of GHRH treatment (3-9 micrograms/kg body wt, one to four times daily) in five patients; and (iii) after 6 weeks of GH treatment (5 IU sc every alternate day) in one patient. Neither NK activity nor the distribution of lymphocyte subsets was altered during short-term GHRH administration. In conclusion, low NK activity is found in GH-deficient patients, and short-term administration of GH or GHRH fails to restore this immunological abnormality. This result suggests that the hypothalamus may be a regulator of NK activity in the human and that patients with hypothalamic deficiencies should be monitored for the development of discrete immunodeficiencies. PMID:3133146

  12. Resistance to thyroid hormone due to defective thyroid receptor alpha

    PubMed Central

    Moran, Carla; Chatterjee, Krishna

    2015-01-01

    Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, skeletal dysplasia (macrocephaly, epiphyseal dysgenesis), growth retardation, constipation, dyspraxia and intellectual deficit. Biochemical abnormalities include low/low-normal T4 and high/high-normal T3 concentrations, a subnormal T4/T3 ratio, variably reduced reverse T3, raised muscle creatine kinase and mild anaemia. The disorder is mediated by heterozygous, loss-of-function, mutations involving either TRα1 alone or both TRα1 and α2, with no discernible phenotype attributable to defective α2. Whole exome sequencing and diagnostic biomarkers may enable greater ascertainment of RTHα, which is important as thyroxine therapy reverses some metabolic abnormalities and improves growth, constipation, dyspraxia and wellbeing. The genetic and phenotypic heterogeneity of RTHα and its optimal management remain to be elucidated. PMID:26303090

  13. Resistance to thyroid hormone due to defective thyroid receptor alpha.

    PubMed

    Moran, Carla; Chatterjee, Krishna

    2015-08-01

    Thyroid hormones act via nuclear receptors (TRα1, TRβ1, TRβ2) with differing tissue distribution; the role of α2 protein, derived from the same gene locus as TRα1, is unclear. Resistance to thyroid hormone alpha (RTHα) is characterised by tissue-specific hypothyroidism associated with near-normal thyroid function tests. Clinical features include dysmorphic facies, skeletal dysplasia (macrocephaly, epiphyseal dysgenesis), growth retardation, constipation, dyspraxia and intellectual deficit. Biochemical abnormalities include low/low-normal T4 and high/high-normal T3 concentrations, a subnormal T4/T3 ratio, variably reduced reverse T3, raised muscle creatine kinase and mild anaemia. The disorder is mediated by heterozygous, loss-of-function, mutations involving either TRα1 alone or both TRα1 and α2, with no discernible phenotype attributable to defective α2. Whole exome sequencing and diagnostic biomarkers may enable greater ascertainment of RTHα, which is important as thyroxine therapy reverses some metabolic abnormalities and improves growth, constipation, dyspraxia and wellbeing. The genetic and phenotypic heterogeneity of RTHα and its optimal management remain to be elucidated. PMID:26303090

  14. Diverse growth hormone receptor gene mutations in Laron syndrome

    SciTech Connect

    Berg, M.A.; Francke, U. ); Gracia, R.; Rosenbloom, A.; Toledo, S.P.A. ); Chernausek, S. ); Guevara-Aguirre, J. ); Hopp, M. ); Rosenbloom, A.; Argente, J. ); Toledo, S.P.A. )

    1993-05-01

    To better understand the molecular genetic basis and genetic epidemiology of Laron syndrome (growth-hormone insensitivity syndrome), the authors analysed the growth-hormone receptor (GHR) genes of seven unrelated affected individuals from the United States, South America, Europe, and Africa. They amplified all nine GHR gene exons and splice junctions from these individuals by PCR and screened the products for mutations by using denaturing gradient gel electrophoresis (DGGE). They identified a single GHR gene fragment with abnormal DGGE results for each affected individual, sequenced this fragment, and, in each case, identified a mutation likely to cause Laron syndrome, including two nonsense mutations (R43X and R217X), two splice-junction mutations, (189-1 G to T and 71+1 G to A), and two frameshift mutations (46 del TT and 230 del TA or AT). Only one of these mutations, R43X, has been previously reported. Using haplotype analysis, they determined that this mutation, which involves a CpG dinucleotide hot spot, likely arose as a separate event in this case, relative to the two prior reports of R43X. Aside from R43X, the mutations identified are unique to patients from particular geographic regions. Ten GHR gene mutations have now been described in this disorder. The authors conclude that Laron syndrome is caused by diverse GHR gene mutations, including deletions, RNA processing defects, translational stop codons, and missense codons. All the identified mutations involve the extracellular domain of the receptor, and most are unique to particular families or geographic areas. 35 refs., 3 figs., 1 tab.

  15. Deficiency of antidiuretic hormone: a rare cause of massive polyuria after kidney transplantation

    PubMed Central

    Jang, Kyung Mi; Sohn, Young Soo; Hwang, Young Ju; Choi, Bong Seok

    2016-01-01

    A 15-year-old boy, who was diagnosed with Alport syndrome and end-stage renal disease, received a renal transplant from a living-related donor. On postoperative day 1, his daily urine output was 10,000 mL despite normal graft function. His laboratory findings including urine, serum osmolality, and antidiuretic hormone levels showed signs similar to central diabetes insipidus, so he was administered desmopressin acetate nasal spray. After administering the desmopressin, urine specific gravity and osmolality increased abruptly, and daily urine output declined to the normal range. The desmopressin acetate was tapered gradually and discontinued 3 months later. Graft function was good, and urine output was maintained within the normal range without desmopressin 20 months after the transplantation. We present a case of a massive polyuria due to transient deficiency of antidiuretic hormone with the necessity of desmopressin therapy immediately after kidney transplantation in a pediatric patient. PMID:27186232

  16. Growth Hormone Deficiency in a Child with Neurofibromatosis-Noonan Syndrome.

    PubMed

    Vurallı, Doğuş; Gönç, Nazlı; Vidaud, Dominique; Özön, Alev; Alikaşifoğlu, Ayfer; Kandemir, Nurgün

    2016-03-01

    Neurofibromatosis-Noonan syndrome (NFNS) is a distinct entity which shows the features of both NF1 (neurofibromatosis 1) and Noonan syndrome (NS). While growth hormone deficiency (GHD) has been relatively frequently identified in NF1 and NS patients, there is limited experience in NFNS cases. The literature includes only one case report of a NFNS patient having GHD and that report primarily focuses on the dermatological lesions that accompany the syndrome and not on growth hormone (GH) treatment. Here, we present a 13-year-old girl who had clinical features of NFNS with a mutation in the NF1 gene. The case is the first NFNS patient reported in the literature who was diagnosed to have GHD and who received GH treatment until reaching final height. The findings in this patient show that short stature is a feature of NFNS and can be caused by GHD. Patients with NFNS who show poor growth should be evaluated for GHD. PMID:26758488

  17. Growth Hormone Deficiency in a Child with Neurofibromatosis-Noonan Syndrome

    PubMed Central

    Vurallı, Doğuş; Gönç, Nazlı; Vidaud, Dominique; Özön, Alev; Alikaşifoğlu, Ayfer; Kandemir, Nurgün

    2016-01-01

    Neurofibromatosis-Noonan syndrome (NFNS) is a distinct entity which shows the features of both NF1 (neurofibromatosis 1) and Noonan syndrome (NS). While growth hormone deficiency (GHD) has been relatively frequently identified in NF1 and NS patients, there is limited experience in NFNS cases. The literature includes only one case report of a NFNS patient having GHD and that report primarily focuses on the dermatological lesions that accompany the syndrome and not on growth hormone (GH) treatment. Here, we present a 13-year-old girl who had clinical features of NFNS with a mutation in the NF1 gene. The case is the first NFNS patient reported in the literature who was diagnosed to have GHD and who received GH treatment until reaching final height. The findings in this patient show that short stature is a feature of NFNS and can be caused by GHD. Patients with NFNS who show poor growth should be evaluated for GHD. PMID:26758488

  18. Deficiency of antidiuretic hormone: a rare cause of massive polyuria after kidney transplantation.

    PubMed

    Jang, Kyung Mi; Sohn, Young Soo; Hwang, Young Ju; Choi, Bong Seok; Cho, Min Hyun

    2016-04-01

    A 15-year-old boy, who was diagnosed with Alport syndrome and end-stage renal disease, received a renal transplant from a living-related donor. On postoperative day 1, his daily urine output was 10,000 mL despite normal graft function. His laboratory findings including urine, serum osmolality, and antidiuretic hormone levels showed signs similar to central diabetes insipidus, so he was administered desmopressin acetate nasal spray. After administering the desmopressin, urine specific gravity and osmolality increased abruptly, and daily urine output declined to the normal range. The desmopressin acetate was tapered gradually and discontinued 3 months later. Graft function was good, and urine output was maintained within the normal range without desmopressin 20 months after the transplantation. We present a case of a massive polyuria due to transient deficiency of antidiuretic hormone with the necessity of desmopressin therapy immediately after kidney transplantation in a pediatric patient. PMID:27186232

  19. Platelets deficient in glycoprotein I have normal Fc receptor expression.

    PubMed

    Pfueller, S L; de Rosbo, N K; Bilston, R A

    1984-04-01

    Platelet glycoprotein I (GPI) is known to be required for the interaction of platelets with ristocetin and factor VIII:von Willebrand factor (VIII:vWf). However, its role as Fc receptor is not clear. Some studies have shown that enzymatic removal of GPI destroys the ability of platelets to react with VIII:vWf but not their ability to bind Ig G (IgG). Others have shown that IgG immune complexes which block the Fc receptor also inhibit VIII:vWf interaction with platelets. This subject has been re-examined by testing the ability of platelets with reduced amounts of GPI to aggregate and undergo the release reaction in response to stimuli which act at the platelet Fc receptor. Platelets from two patients with Bernard-Soulier syndrome, congenitally deficient in GPI, both aggregated and released 14C-serotonin normally when exposed to latex particles coated with IgG. Levels of GPI were decreased experimentally in normal platelets by treating them with chymotrypsin. Platelets treated in this manner did not aggregate or release [14C]serotonin in response to ristocetin-VIII:vWf. They did, however, both aggregate and release when incubated with heat-aggregated IgG, antigen-antibody complexes or latex particles coated with IgG. Thus the presence of GPI is not a prerequisite for platelet stimulation via the Fc receptor. PMID:6231945

  20. Characterization of soluble and particulate parathyroid hormone receptors using a biotinylated bioactive hormone analog.

    PubMed

    Brennan, D P; Levine, M A

    1987-10-25

    A bioactive biotin-containing derivative of the synthetic bovine parathyroid hormone analog [Nle8,Nle18,Tyr34]bovine parathyroid hormone-(1-34) (bPTH-(1-34] amide was prepared by reacting the peptide with N-biotinyl-epsilon-aminocaproic acid N-hydroxysuccinimide ester. The derivative was incubated with particulate renal plasma membranes or with detergent [3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) extracts of renal cortical membranes, and two membrane components were identified. Labeling of these components was competitively inhibited by underivatized bPTH-(1-34) or bPTH-(3-34) but not by insulin, adrenocorticotropin, or oxidized rat PTH-(1-34). PTH-binding components that were immobilized on nitrocellulose could be detected by incubating the membrane with biotinyl-bPTH-(1-34). Binding components of apparent molecular mass 68, 70, and 150 kDa were specifically labeled in plasma membranes derived from canine, human, and porcine renal cortex, rat liver, and human fibroblasts. The 68-kDa binding protein was found to be consistently more acidic than the 70-kDa binding protein in human, porcine, and canine renal membranes analyzed by two-dimensional electrophoresis. The 68-70-kDa receptor doublet could be specifically isolated by streptavidin-agarose chromatography of solubilized membrane extracts that had first been incubated with biotinyl-BPTH-(1-34). Biotinyl-bPTH-(1-34) should be useful as a tool for further characterization and purification of the PTH receptor. PMID:2822699

  1. Toll-like receptor signaling in primary immune deficiencies.

    PubMed

    Maglione, Paul J; Simchoni, Noa; Cunningham-Rundles, Charlotte

    2015-11-01

    Toll-like receptors (TLRs) recognize common microbial or host-derived macromolecules and have important roles in early activation of the immune system. Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins to the human immune system. Defects in interleukin-1 receptor-associated kinase-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are specific for susceptibility to herpes simplex virus type 1 encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell defects enhance defective responses of B cells to shared TLR agonists. Dampening of TLR responses is seen for TLRs 2 and 4 in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome, and for most TLRs in adenosine deaminase deficiency. PMID:25930993

  2. Characterization of a thyroid hormone receptor expressed in human kidney and other tissues

    SciTech Connect

    Nakai, A.; Seino, S.; Sakurai, A.; Szilak, I.; Bell, G.I.; DeGroot, L.J.

    1988-04-01

    A cDNA encoding a specific form of thyroid hormone receptor expressed in human liver, kidney, placenta, and brain was isolated from a human kidney library. Identical clones were found in human placenta and HepG2 cDNA libraries. The cDNA encodes a 490-amino acid protein. When expressed and translated in vitro, the protein products binds triiodothyronine with K/sub a/ of 2.3 /times/ 10/sup 9/ M/sup /minus/1/. This protein, designated human thyroid hormone receptor type ..cap alpha..2 (hTR..cap alpha..2), has the same domain structure as other members of the v-erbA-related superfamily of receptor genes. It is similar to thyroid hormone receptor type ..cap alpha.. described in chicken and rat and less similar to human thyroid hormone receptor type ..beta.. (formerly referred to as c-erbA..beta..) from placenta. However, it is distinguished from these receptors by an extension of the C-terminal hormone binding domain making it 80 amino acids longer than rat thyroid hormone receptor type ..cap alpha..1. Different sizes of mRNA found in liver and kidney suggest that there may be tissue-specific processing of the primary transcript of this gene. Identification of human thyroid hormone receptor type ..cap alpha..2 indicates that two or more forms of thyroid hormone receptor exist in human tissues and may explain the normal variation in thyroid hormone responsiveness of various organs and the selective tissue abnormalities found in the thyroid hormone resistance syndromes.

  3. Netherton Syndrome in a Neonate with Possible Growth Hormone Deficiency and Transient Hyperaldosteronism.

    PubMed

    Ilias, Chatziioannidis; Evgenia, Babatseva; Aikaterini, Patsatsi; Asimina, Galli-Tsinopoulou; Constantina, Sarri; Maria, Lithoxopoulou; George, Mitsiakos; Paraskevi, Karagianni; Christos, Tsakalidis; Zissis, Mamuris; Nikolaos, Nikolaidis

    2015-01-01

    Netherton syndrome, a rare autosomal recessive genetic disorder, is classified as an ichthyosiform syndrome. In this report we present the case of a neonate with erythroderma shortly after birth, accompanied by severe hypernatremia, recurrent infections, transient hyperaldosteronism, and signs of growth hormone (GH) deficiency. DNA molecular analysis in the SPINK5 gene revealed heterozygosity in our index patient for 238insG and 2468delA frameshift mutations in exons 4 and 26, respectively, in the maternal allele and 1431-12G>A splice-site mutation in intron 15 in the paternal allele as well as the missense variation E420K in homozygous state. Combination of the identified mutations along with transient hyperaldosteronism and possible GH deficiency have not been described before. Accordingly, the importance of early multidisciplinary approach is highlighted, in order to reach accurate diagnosis, initiate prompt treatment, and ensure survival with fewer disease complications. PMID:26229701

  4. Netherton Syndrome in a Neonate with Possible Growth Hormone Deficiency and Transient Hyperaldosteronism

    PubMed Central

    Ilias, Chatziioannidis; Evgenia, Babatseva; Aikaterini, Patsatsi; Asimina, Galli-Tsinopoulou; Constantina, Sarri; Maria, Lithoxopoulou; George, Mitsiakos; Paraskevi, Karagianni; Christos, Tsakalidis; Zissis, Mamuris; Nikolaos, Nikolaidis

    2015-01-01

    Netherton syndrome, a rare autosomal recessive genetic disorder, is classified as an ichthyosiform syndrome. In this report we present the case of a neonate with erythroderma shortly after birth, accompanied by severe hypernatremia, recurrent infections, transient hyperaldosteronism, and signs of growth hormone (GH) deficiency. DNA molecular analysis in the SPINK5 gene revealed heterozygosity in our index patient for 238insG and 2468delA frameshift mutations in exons 4 and 26, respectively, in the maternal allele and 1431-12G>A splice-site mutation in intron 15 in the paternal allele as well as the missense variation E420K in homozygous state. Combination of the identified mutations along with transient hyperaldosteronism and possible GH deficiency have not been described before. Accordingly, the importance of early multidisciplinary approach is highlighted, in order to reach accurate diagnosis, initiate prompt treatment, and ensure survival with fewer disease complications. PMID:26229701

  5. Oestradiol stimulates tyrosine phosphorylation and hormone binding activity of its own receptor in a cell-free system.

    PubMed Central

    Auricchio, F; Migliaccio, A; Di Domenico, M; Nola, E

    1987-01-01

    Recent experiments have shown that calf uterus oestrogen receptor exists in a tyrosine-phosphorylated hormone binding form and in non-phosphorylated, non-hormone binding form. We report here that physiological concentrations of oestradiol in complex with the receptor stimulate the calf uterus receptor kinase that converts the non-hormone binding receptor into hormone binding receptor through phosphorylation of the receptor on tyrosine. The activity of this enzyme has been followed by reactivation of hormone binding sites and phosphorylation on tyrosine of calf uterus phosphatase-inactivated receptor. Phosphorylation of the receptor has been demonstrated by interaction of kinase 32P-phosphorylated proteins with anti-receptor antibody followed either by sucrose gradient centrifugation or SDS-PAGE of the immunoprecipitated proteins. Hormone stimulation of the kinase is inhibited by receptor occupancy of the anti-oestrogen tamoxifen. Oestradiol-receptor complex increases the affinity of the kinase for the dephosphorylated receptor. Findings of this report are consistent with the observation that several protein tyrosine kinases that are associated with peptide hormone receptors are stimulated by the binding of the hormone to the receptor. This is the first report on the activation of a tyrosine kinase by a steroid hormone. The finding that hormones can regulate their own receptor binding activity through a tyrosine kinase is also new. Images Fig. 2. Fig. 4. Fig. 5. PMID:3691476

  6. The role of nuclear hormone receptors in cutaneous wound repair

    PubMed Central

    Rieger, Sandra; Zhao, Hengguang; Martin, Paige; Abe, Koichiro; Lisse, Thomas S.

    2015-01-01

    The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non-healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross-talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd. PMID:25529612

  7. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis

    PubMed Central

    Ferrandon, Sébastien; Feinstein, Timothy N; Castro, Marian; Wang, Bin; Bouley, Richard; Potts, John T; Gardella, Thomas J; Vilardaga, Jean-Pierre

    2011-01-01

    Cell signaling mediated by the G protein-coupled parathyroid hormone receptor type 1 (PTHR) is fundamental to bone and kidney physiology. It has been unclear how the two ligand systems—PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine—can effectively operate with only one receptor and trigger different durations of the cAMP responses. Here we analyze the ligand response by measuring the kinetics of activation and deactivation for each individual reaction step along the PTHR signaling cascade. We found that during the time frame of G protein coupling and cAMP production, PTHrP1–36 action was restricted to the cell surface, whereas PTH1–34 had moved to internalized compartments where it remained associated with the PTHR and Gαs, potentially as a persistent and active ternary complex. Such marked differences suggest a mechanism by which PTH and PTHrP induce differential responses, and these results indicate that the central tenet that cAMP production originates exclusively at the cell membrane must be revised. PMID:19701185

  8. Effect of perinatal thyroid hormone deficiency on expression of rat hippocampal conventional protein kinase C isozymes.

    PubMed

    Zhang, Hong-Mei; Lin, Ning; Dong, Yan; Su, Qing; Luo, Min

    2011-07-01

    Thyroid hormone (TH) is essential for the proper development of mammalian central nervous system. TH deficiency during critical period of brain development results in permanent cognitive and neurological impairments. Hippocampus is a structure involved in various memory processes that are essential for creating new memories, and lesions to hippocampus result in impaired learning and memory. Protein kinase C (PKC) isoforms play an important role in many types of learning and memory, and deletion of specific PKC genes results in deficits in learning. In the present study, we used real-time PCR and Western blot to investigate the conventional PKC expression in developing rat hippocampus with different thyroid status, trying to establish a correlation between TH deficiency and conventional PKC expression in developing rat hippocampus. We found that PKCβI and PKCγ expression decreased significantly both in mRNA and protein levels in hypothyroid group compared with the normal controls, and thyroxine replacement could restore it. As for PKCα, we did not find any difference between different thyroid status. Though the expression of PKCβII also decreased in the TH deficiency group, the change was not significant. Taken together, our data indicate TH deficiency can cause hippocampal PKCβ1 and PKCγ downregulation during rat brain development. Since there are other PKC isoforms in the rat brain, whether these change is related to impaired learning and memory of perinatal hypothyroid rats requires further researches. PMID:21424759

  9. Flow cytometric monitoring of hormone receptor expression in human solid tumors

    NASA Astrophysics Data System (ADS)

    Krishan, Awtar

    2002-05-01

    Hormone receptor expression in human breast and prostate tumors is of diagnostic and therapeutic importance. With the availability of anti-estrogen, androgen and progesterone antibodies, immunohistochemistry has become a standard tool for determination of receptor expression in human tumor biopsies. However, this method is dependent on examination of a small number of cells under a microscope and the data obtained in most cases is not quantitative. As most of the commercially used anti-hormone antibodies have nuclear specificity, we have developed methods for isolation and antigen unmasking of nuclei from formalin fixed/paraffin embedded archival human tumors. After immunostaining with the antibodies and propidium iodide (for DNA content and cell cycle analysis), nuclei are analyzed by multiparametric laser flow cytometry for hormone receptor expression, DNA content, aneuploidy and cell cycle determination. These multiparametric methods are especially important for retrospective studies seeking to correlate hormone receptor expression with clinical response to anti-hormonal therapy of human breast and prostate tumors.

  10. CHHBP: a newly identified receptor of crustacean hyperglycemic hormone.

    PubMed

    Li, Ran; Tian, Jin-Ze; Zhuang, Cui-Heng; Zhang, Yi-Chen; Geng, Xu-Yun; Zhu, Li-Na; Sun, Jin-Sheng

    2016-04-15

    Crustacean hyperglycemic hormone (CHH) is a neurohormone found only in arthropods that plays a pivotal role in the regulation of hemolymph glucose levels, molting and stress responses. Although it was determined that a membrane guanylyl cyclase (GC) acts as the CHH receptor in the Y-organ during ecdysteroidogenesis, the identity of the CHH receptor in the hepatopancreas has not been established. In this study, we identified CHH binding protein (CHHBP), as a potential receptor by screening the annotated unigenes from the transcriptome of ITALIC! Eriocheir sinensis, after removal of the eyestalk. Analysis of the binding affinity between CHH and CHHBP provided direct evidence that CHH interacts with CHHBP in a specific binding mode. Subsequent analysis showed that CHHBP is expressed primarily in the hepatopancreas where it localizes to the cell membrane. In addition, real-time PCR analysis showed that ITALIC! CHHBPtranscript levels gradually increase in the hepatopancreas following eyestalk ablation. RNAi-mediated suppression of ITALIC! CHHBPexpression resulted in decreased glucose levels. Furthermore, the reduction of blood glucose induced by ITALIC! CHHBPRNAi reached the same level as that observed in the eyestalk ablation group, suggesting that CHHBP is involved in glucose metabolism regulated by CHH. In addition, compared with the control group, injection of CHH was unable to rescue the decreased glucose levels in ITALIC! CHHBPRNAi crabs. CHH induced transport of 2-NBDG to the outside of cells, with indispensable assistance from CHHBP. Taken together, these findings suggest that CHHBP acts as one type of the primary signal processor of CHH-mediated regulation of cellular glucose metabolism. PMID:26896539

  11. Sex Steroid Hormone Receptor Expression Affects Ovarian Cancer Survival12

    PubMed Central

    Jönsson, Jenny-Maria; Skovbjerg Arildsen, Nicolai; Malander, Susanne; Måsbäck, Anna; Hartman, Linda; Nilbert, Mef; Hedenfalk, Ingrid

    2015-01-01

    Background and Aims: Although most ovarian cancers express estrogen (ER), progesterone (PR), and androgen (AR) receptors, they are currently not applied in clinical decision making. We explored the prognostic impact of sex steroid hormone receptor protein and mRNA expression on survival in epithelial ovarian cancer. Methods: Immunohistochemical stainings for ERα, ERβ, PR, and AR were assessed in relation to survival in 118 serous and endometrioid ovarian cancers. Expression of the genes encoding the four receptors was studied in relation to prognosis in the molecular subtypes of ovarian cancer in an independent data set, hypothesizing that the expression levels and prognostic impact may differ between the subtypes. Results: Expression of PR or AR protein was associated with improved 5-year progression-free (P = .001 for both) and overall survival (P < .001 for both, log-rank test). ERα and ERβ did not provide prognostic information. Patients whose tumors coexpressed PR and AR had the most favorable prognosis, and this effect was retained in multivariable analyses. Analyses of the corresponding genes using an independent data set revealed differences among the molecular subtypes, but no clear relationship between high coexpression of PGR and AR and prognosis. Conclusions: A favorable outcome was seen for patients whose tumors coexpressed PR and AR. Gene expression data suggested variable effects in the different molecular subtypes. These findings demonstrate a prognostic role for PR and AR in ovarian cancer and support that tumors should be stratified based on molecular as well as histological subtypes in future studies investigating the role of endocrine treatment in ovarian cancer. PMID:26500033

  12. The Influence of Alcohol Consumption in Conjunction with Sex Hormone Deficiency on Ca/P Ratio in Rats

    PubMed Central

    Lodi, Karina Bortolin; Marchini, Adriana Mathias Pereira da Silva; Santo, Ana Maria do Espírito; Rode, Sigmar de Mello; Marchini, Leonardo; da Rocha, Rosilene Fernandes

    2016-01-01

    Deficiency of sex hormones and excessive alcohol consumption are factors that have been related to alterations in the pattern of bone mineralization and osteoporosis. The aim of this study was to evaluate possible alterations in the calcium/phosphorus (Ca/P) ratio in the femur of rats subjected to sex hormone deficiency and/or alcohol consumption. Methods. Female and male Wistar rats (n = 108) were divided into ovariectomized (Ovx), orchiectomized (Orx), or sham-operated groups and subdivided according to diet: alcoholic diet (20% alcohol solution), isocaloric diet, and ad libitum diet. The diets were administered for 8 weeks. The Ca/P ratio in the femur was analyzed by energy dispersive micro-X-ray spectrometer (μEDX). Results. Consumption of alcohol reduced the Ca/P ratio in both females and males. The isocaloric diet reduced the Ca/P ratio in females. In groups with the ad libitum diet, the deficiency of sex hormones did not change the Ca/P ratio in females or males. However, the combination of sex hormone deficiency and alcoholic diet presented the lowest values for the Ca/P ratio in both females and males. Conclusions. There was a reduced Ca/P ratio in the femur of rats that consumed alcohol, which was exacerbated when combined with a deficiency of sex hormones. PMID:27073396

  13. Impact of AT2 Receptor Deficiency on Postnatal Cardiovascular Development

    PubMed Central

    Biermann, Daniel; Heilmann, Andreas; Didié, Michael; Schlossarek, Saskia; Wahab, Azadeh; Grimm, Michael; Römer, Maria; Reichenspurner, Hermann; Sultan, Karim R.; Steenpass, Anna; Ergün, Süleyman; Donzelli, Sonia; Carrier, Lucie; Ehmke, Heimo; Zimmermann, Wolfram H.; Hein, Lutz; Böger, Rainer H.; Benndorf, Ralf A.

    2012-01-01

    Background The angiotensin II receptor subtype 2 (AT2 receptor) is ubiquitously and highly expressed in early postnatal life. However, its role in postnatal cardiac development remained unclear. Methodology/Principal Findings Hearts from 1, 7, 14 and 56 days old wild-type (WT) and AT2 receptor-deficient (KO) mice were extracted for histomorphometrical analysis as well as analysis of cardiac signaling and gene expression. Furthermore, heart and body weights of examined animals were recorded and echocardiographic analysis of cardiac function as well as telemetric blood pressure measurements were performed. Moreover, gene expression, sarcomere shortening and calcium transients were examined in ventricular cardiomyocytes isolated from both genotypes. KO mice exhibited an accelerated body weight gain and a reduced heart to body weight ratio as compared to WT mice in the postnatal period. However, in adult KO mice the heart to body weight ratio was significantly increased most likely due to elevated systemic blood pressure. At postnatal day 7 ventricular capillarization index and the density of α-smooth muscle cell actin-positive blood vessels were higher in KO mice as compared to WT mice but normalized during adolescence. Echocardiographic assessment of cardiac systolic function at postnatal day 7 revealed decreased contractility of KO hearts in response to beta-adrenergic stimulation. Moreover, cardiomyocytes from KO mice showed a decreased sarcomere shortening and an increased peak Ca2+ transient in response to isoprenaline when stimulated concomitantly with angiotensin II. Conclusion The AT2 receptor affects postnatal cardiac growth possibly via reducing body weight gain and systemic blood pressure. Moreover, it moderately attenuates postnatal vascularization of the heart and modulates the beta adrenergic response of the neonatal heart. These AT2 receptor-mediated effects may be implicated in the physiological maturation process of the heart. PMID:23144713

  14. Deficiency of female sex hormones augments PGE2 and CGRP levels within midbrain periaqueductal gray.

    PubMed

    Wang, Dan; Zhao, Jiuhan; Wang, Jian; Li, Jingqing; Yu, Shengyuan; Guo, Xinjin

    2014-11-15

    The midbrain periaqueductal gray (PAG) is a substantial component of the descending modulatory network to control on nociceptive transmission and autonomic functions. Also, accumulated evidence has suggested that the PAG plays a crucial role in regulating migraine headache, a neurovascular disorder. The purpose of this study was to employ ELISA methods to examine the levels of prostaglandin E2 (PGE2) and calcitonin-gene related peptide (CGRP) in the PAG of rats who received ovariectomy and subsequent hormone replacement with 17β-estradiol, progesterone, or the combination of 17β-estradiol and progesterone. In addition, using Western blot analysis we examined expression of subtypes of PGE2 receptor in the PAG of rats with different conditions of female sex hormones. Results of our study demonstrated that lack of female sex hormones significantly increased the levels of PGE2 and CGRP in the dorsolateral PAG (P < 0.05) as well as expression of PGE2 EP3 receptors (P < 0.05). Furthermore, a liner relationship was observed between PGE2 and CGRP in the PAG (r = 092, P < 0.01). Also, inhibiting EP3 receptors by chronic administration of L-798106 (EP3 antagonist) into the lateral ventricles significantly attenuated expression of CGRP in the PAG of ovariectomized animals (P < 0.05 vs. vehicle control). Overall, our findings for the first time show that (1) circulating 17β-estradiol and/or progesterone influences the levels of PGE2 and CGRP in the PAG; (2) a lower level of 17β-estradiol and/or progesterone augments PGE2 and its EP3 receptor; and (3) PGE2 plays a role in regulating expression of CGRP in the PAG. PMID:25175853

  15. Dopamine-deficient mice are hypersensitive to dopamine receptor agonists.

    PubMed

    Kim, D S; Szczypka, M S; Palmiter, R D

    2000-06-15

    Dopamine-deficient (DA-/-) mice were created by targeted inactivation of the tyrosine hydroxylase gene in dopaminergic neurons. The locomotor activity response of these mutants to dopamine D1 or D2 receptor agonists and l-3,4-dihydroxyphenylalanine (l-DOPA) was 3- to 13-fold greater than the response elicited from wild-type mice. The enhanced sensitivity of DA-/- mice to agonists was independent of changes in steady-state levels of dopamine receptors and the presynaptic dopamine transporter as measured by ligand binding. The acute behavioral response of DA-/- mice to a dopamine D1 receptor agonist was correlated with c-fos induction in the striatum, a brain nucleus that receives dense dopaminergic input. Chronic replacement of dopamine to DA-/- mice by repeated l-DOPA administration over 4 d relieved the hypersensitivity of DA-/- mutants in terms of induction of both locomotion and striatal c-fos expression. The results suggest that the chronic presence of dopaminergic neurotransmission is required to dampen the intracellular signaling response of striatal neurons. PMID:10844009

  16. Microarchitecture, but Not Bone Mechanical Properties, Is Rescued with Growth Hormone Treatment in a Mouse Model of Growth Hormone Deficiency

    PubMed Central

    Kristensen, Erika; Hallgrímsson, Benedikt; Morck, Douglas W.; Boyd, Steven K.

    2012-01-01

    Growth hormone (GH) deficiency is related to an increased fracture risk although it is not clear if this is due to compromised bone quality or a small bone size. We investigated the relationship between bone macrostructure, microarchitecture and mechanical properties in a GH-deficient (GHD) mouse model undergoing GH treatment commencing at an early (prepubertal) or late (postpubertal) time point. Microcomputed tomography images of the femur and L4 vertebra were obtained to quantify macrostructure and vertebral trabecular microarchitecture, and mechanical properties were determined using finite element analyses. In the GHD animals, bone macrostructure was 25 to 43% smaller as compared to the GH-sufficient (GHS) controls (P < 0.001). GHD animals had 20% and 19% reductions in bone volume ratio (BV/TV) and trabecular thickness (Tb.Th), respectively. Whole bone mechanical properties of the GHD mice were lower at the femur and vertebra (67% and 45% resp.) than the GHS controls (P < 0.001). Both early and late GH treatment partially recovered the bone macrostructure (15 to 32 % smaller than GHS controls) and the whole bone mechanical properties (24 to 43% larger than GHD animals) although there remained a sustained 27–52% net deficit compared to normal mice (P < 0.05). Importantly, early treatment with GH led to a recovery of BV/TV and Tb.Th with a concomitant improvement of trabecular mechanical properties. Therefore, the results suggest that GH treatment should start early, and that measurements of microarchitecture should be considered in the management of GHD. PMID:22505889

  17. Scavenger receptor class B, type I (Scarb1) deficiency promotes osteoblastogenesis but stunts terminal osteocyte differentiation

    PubMed Central

    Martineau, Corine; Kevorkova, Olha; Brissette, Louise; Moreau, Robert

    2014-01-01

    Abstract Scavenger receptor class B type I (SR‐BI), the Scarb1 gene product, is a high‐density lipoprotein (HDL) receptor which was shown to influence bone metabolism. Its absence in mice is associated with alterations of the glucocorticoid/adrenocorticotropic hormone axis, and translated in high bone mass and enhanced bone formation. Since the cellular alterations underlying the enhanced bone formation remain unknown, we investigated Scarb1‐deficient marrow stromal cells (MSC) behavior in vitro. No difference in HDL3, cholesteryl ester (CE) or estradiol (E) association/binding was measured between Scarb1‐null and wild‐type (WT) cells. Scarb1 genic expression was down‐regulated twofold following osteogenic treatment. Neither WT nor null cell proliferation was influenced by HDL3 exposure whereas this condition decreased genic expression of osteoblastic marker osterix (Sp7), and osteocyte markers sclerostin (Sost) and dentin matrix protein 1 (Dmp1) independently of genotype. Sost and Dmp1 basal expression in null cells was 40% and 50% that of WT cells; accordingly, osteocyte density was 20% lower in vertebrae from Scarb1‐null mice. Genic expression of co‐receptors for Wnt signaling, namely LDL‐related protein (Lrp) 5 and Lrp8, was increased, respectively, by two‐ and threefold, and of transcription target‐genes axis inhibition protein 2 (Axin2) and lymphoid enhancer‐binding factor 1 (Lef1) over threefold. Gene expression of Wnt signaling agonist Wnt5a and of the antagonist dickkopfs‐related protein 1 (Dkk1) were found to be increased 10‐ to 20‐fold in null MSC. These data suggest alterations of Wnt pathways in Scarb1‐deficient MSC potentially explaining their enhanced function, hence contributing to the high bone mass observed in these mice. PMID:25281615

  18. The Thyroid Hormone Analog DITPA Ameliorates Metabolic Parameters of Male Mice With Mct8 Deficiency.

    PubMed

    Ferrara, Alfonso Massimiliano; Liao, Xiao-Hui; Ye, Honggang; Weiss, Roy E; Dumitrescu, Alexandra M; Refetoff, Samuel

    2015-11-01

    Mutations in the gene encoding the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), cause mental retardation in humans associated with a specific thyroid hormone phenotype manifesting high serum T3 and low T4 and rT3 levels. Moreover, these patients have failure to thrive, and physiological changes compatible with thyrotoxicosis. Recent studies in Mct8-deficient (Mct8KO) mice revealed that the high serum T3 causes increased energy expenditure. The TH analog, diiodothyropropionic acid (DITPA), enters cells independently of Mct8 transport and shows thyromimetic action but with a lower metabolic activity than TH. In this study DITPA was given daily ip to adult Mct8KO mice to determine its effect on thyroid tests in serum and metabolism (total energy expenditure, respiratory exchange rate, and food and water intake). In addition, we measured the expression of TH-responsive genes in the brain, liver, and muscles to assess the thyromimetic effects of DITPA. Administration of 0.3 mg DITPA per 100 g body weight to Mct8KO mice brought serum T3 levels and the metabolic parameters studied to levels observed in untreated Wt animals. Analysis of TH target genes revealed amelioration of the thyrotoxic state in liver, somewhat in the soleus, but there was no amelioration of the brain hypothyroidism. In conclusion, at the dose used, DITPA mainly ameliorated the hypermetabolism of Mct8KO mice. This thyroid hormone analog is suitable for the treatment of the hypermetabolism in patients with MCT8 deficiency, as suggested in limited preliminary human trials. PMID:26322373

  19. Growth hormone receptor polymorphism and growth hormone therapy response in children: a Bayesian meta-analysis.

    PubMed

    Renehan, Andrew G; Solomon, Mattea; Zwahlen, Marcel; Morjaria, Reena; Whatmore, Andrew; Audí, Laura; Binder, Gerhard; Blum, Werner; Bougnères, Pierre; Santos, Christine Dos; Carrascosa, Antonio; Hokken-Koelega, Anita; Jorge, Alexander; Mullis, Primus E; Tauber, Maïthé; Patel, Leena; Clayton, Peter E

    2012-05-01

    Recombinant human growth hormone (rhGH) therapy is used in the long-term treatment of children with growth disorders, but there is considerable treatment response variability. The exon 3-deleted growth hormone receptor polymorphism (GHR(d3)) may account for some of this variability. The authors performed a systematic review (to April 2011), including investigator-only data, to quantify the effects of the GHR(fl-d3) and GHR(d3-d3) genotypes on rhGH therapy response and used a recently established Bayesian inheritance model-free approach to meta-analyze the data. The primary outcome was the 1-year change-in-height standard-deviation score for the 2 genotypes. Eighteen data sets from 12 studies (1,527 children) were included. After several prior assumptions were tested, the most appropriate inheritance model was codominant (posterior probability = 0.93). Compared with noncarriers, carriers had median differences in 1-year change-in-height standard-deviation score of 0.09 (95% credible interval (CrI): 0.01, 0.17) for GHR(fl-d3) and of 0.14 (95% CrI: 0.02, 0.26) for GHR(d3-d3). However, the between-study standard deviation of 0.18 (95% CrI: 0.10, 0.33) was considerable. The authors tested by meta-regression for potential modifiers and found no substantial influence. They conclude that 1) the GHR(d3) polymorphism inheritance is codominant, contrasting with previous reports; 2) GHR(d3) genotypes account for modest increases in rhGH effects in children; and 3) considerable unexplained variability in responsiveness remains. PMID:22494952

  20. Evaluating Serum Markers for Hormone Receptor-Negative Breast Cancer

    PubMed Central

    Schummer, Michèl; Thorpe, Jason; Giraldez, Maria; Bergan, Lindsay; Tewari, Muneesh; Urban, Nicole

    2015-01-01

    Introduction Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females worldwide. Death rates have been declining, largely as a result of early detection through mammography and improved treatment, but mammographic screening is controversial because of over-diagnosis of breast disease that might not require treatment, and under-diagnosis of cancer in women with dense breasts. Breast cancer screening could be improved by pairing mammography with a tumor circulating marker, of which there are currently none. Given genomic similarities between the basal breast cancer subtype and serous ovarian cancer, and given our success in identifying circulating markers for ovarian cancer, we investigated the performance in hormone receptor-negative breast cancer detection of both previously identified ovarian serum markers and circulating markers associated with transcripts that were differentially expressed in breast cancer tissue compared to healthy breast tissue from reduction mammaplasties. Methods We evaluated a total of 15 analytes (13 proteins, 1 miRNA, 1 autoantibody) in sera drawn at or before breast cancer surgery from 43 breast cancer cases (28 triple-negative—TN—and 15 hormone receptor-negative—HRN—/ HER2-positive) and 87 matched controls. Results In the analysis of our whole cohort of breast cancer cases, autoantibodies to TP53 performed significantly better than the other selected 14 analytes showing 25.6% and 34.9% sensitivity at 95% and 90% specificity respectively with AUC: 0.7 (p<0.001). The subset of 28 TN cancers showed very similar results. We observed no correlation between anti-TP53 and the 14 other markers; however, anti-TP53 expression correlated with Body-Mass-Index. It did not correlate with tumor size, positive lymph nodes, tumor stage, the presence of metastases or recurrence. Conclusion None of the 13 serum proteins nor miRNA 135b identified women with HRN or TN breast cancer. TP53 autoantibodies

  1. Augmented glucoregulatory hormone concentrations during exhausting exercise in mildly iron-deficient rats.

    PubMed

    Zinker, B A; Dallman, P R; Brooks, G A

    1993-10-01

    We hypothesized that augmented responses of glucoregulatory hormones in iron deficiency would enhance liver and muscle glycogenolysis, leading to increased gluconeogenic precursor (lactate) supply and upregulation of hepatic gluconeogenesis. Female weanling rats were randomly placed on either a mildly iron-deficient (-Fe; 15 mg Fe/kg diet) or an iron-sufficient (+Fe; 50 mg Fe/kg diet) diet for 4 wk and studied at rest and during exhaustive treadmill running. Hemoglobin was 9.0 +/- 0.2 and 13.1 +/- 0.3 g/dl in -Fe and +Fe, respectively, after 3.5 wk of dietary iron deficiency. Arterial plasma epinephrine (Epi), norepinephrine (NE), adrenocorticotropic hormone (ACTH), corticosterone, insulin, and glucagon levels were similar at rest in both groups, as were liver, gastrocnemius, and superficial and deep vastus medialis glycogen levels. Liver and kidney phosphoenolpyruvate carboxykinase (PEPCK) activities were similar in both groups. Maximum O2 consumption was decreased (22%) in -Fe. Respiratory exchange ratio (CO2 production/O2 consumption) was unaffected at rest but increased at maximum O2 consumption in -Fe. Time to exhaustion during a standardized running test (13.4 m/min, 0% grade) was decreased 45% in -Fe (63 +/- 5 vs. 116 +/- 10 min). During exercise, euglycemia was maintained in both groups, but blood lactate was elevated in -Fe. The mean net glycogen utilization during exercise was increased in liver (43%), soleus (33%), and superficial vastus medialis (106%) and decreased in the gastrocnemius (36%) in -Fe. Liver and kidney PEPCK activities were increased similarly at exhaustion in both groups.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8238458

  2. Role of the Extracellular and Intracellular Loops of Follicle-Stimulating Hormone Receptor in Its Function

    PubMed Central

    Banerjee, Antara A.; Mahale, Smita D.

    2015-01-01

    Follicle-stimulating hormone receptor (FSHR) is a leucine-rich repeat containing class A G-protein coupled receptor belonging to the subfamily of glycoprotein hormone receptors (GPHRs), which includes luteinizing hormone/choriogonadotropin receptor (LH/CGR) and thyroid-stimulating hormone receptor. Its cognate ligand, follicle-stimulating hormone binds to, and activates FSHR expressed on the surface of granulosa cells of the ovary, in females, and Sertoli cells of the testis, in males, to bring about folliculogenesis and spermatogenesis, respectively. FSHR contains a large extracellular domain (ECD) consisting of leucine-rich repeats at the N-terminal end and a hinge region at the C-terminus that connects the ECD to the membrane spanning transmembrane domain (TMD). The TMD consists of seven α-helices that are connected to each other by means of three extracellular loops (ELs) and three intracellular loops (ILs) and ends in a short-cytoplasmic tail. It is well established that the ECD is the primary hormone binding domain, whereas the TMD is the signal transducing domain. However, several studies on the ELs and ILs employing site directed mutagenesis, generation of chimeric receptors and in vitro characterization of naturally occurring mutations have proven their indispensable role in FSHR function. Their role in every phase of the life cycle of the receptor like post translational modifications, cell surface trafficking, hormone binding, activation of downstream signaling, receptor phosphorylation, hormone–receptor internalization, and recycling of hormone–receptor complex have been documented. Mutations in the loops causing dysregulation of these processes lead to pathophysiological conditions. In other GPHRs as well, the loops have been convincingly shown to contribute to various aspects of receptor function. This review article attempts to summarize the extensive contributions of FSHR loops and C-terminal tail to its function. PMID:26236283

  3. Vitamin D receptor deficiency impairs inner ear development in zebrafish.

    PubMed

    Kwon, Hye-Joo

    2016-09-16

    The biological actions of vitamin D are largely mediated through binding to the vitamin D receptor (VDR), a member of the nuclear hormone receptor family, which regulates gene expression in a wide variety of tissues and cells. Mutations in VDR gene have been implicated in ear disorders (hearing loss and balance disorder) but the mechanisms are not well established. In this study, to investigate the role of VDR in inner ear development, morpholino-mediated gene knockdown approaches were used in zebrafish model system. Two paralogs for VDR, vdra and vdrb, have been identified in zebrafish. Knockdown of vdra had no effect on ear development, whereas knockdown of vdrb displayed morphological ear defects including smaller otic vesicles with malformed semicircular canals and abnormal otoliths. Loss-of-vdrb resulted in down-regulation of pre-otic markers, pax8 and pax2a, indicating impairment of otic induction. Furthermore, zebrafish embryos lacking vdrb produced fewer sensory hair cells in the ears and showed disruption of balance and motor coordination. These data reveal that VDR signaling plays an important role in ear development. PMID:27526995

  4. Molecular characterization and quantification of the follicle-stimulating hormone receptor in turbot (Scophthalmus maximus).

    PubMed

    Jia, Yudong; Sun, Ai; Meng, Zhen; Liu, Baoliang; Lei, Jilin

    2016-02-01

    Molecular cloning, characterization, and functional analysis of follicle-stimulating hormone receptor (FSHR) in female turbot (Scophthalmus maximus) were evaluated. Results showed that the full-length FSHR cDNA was 3824 bp long and contained a 2202 bp open reading frame that encoded a mature protein of 733 amino acids (aa) and a signal peptide of 18 aa. Multiple sequence analyses showed that turbot FSHR has high homology with the corresponding genes of other teleosts and significant homology with that of Hippoglossus hippoglossus. Turbot FSHR has the typical structural architecture of glycoprotein hormone receptors consisting of a large N-terminal extracellular domain, seven transmembrane domains and short C-terminal intracellular domain. FSHR mRNA was found to be abundant in the ovaries, but deficient in eyes, intestine, brain, muscle, gills, spleen, stomach, heart and kidney. Furthermore, FSHR mRNA was found to increase gradually from pre-vitellogenesis to migratory nucleus stages, with the highest values observed during the late vitellogenesis stage of the reproductive cycle. However, FSHR mRNA was found to decrease dramatically during the atresia stage. Meanwhile, functional analysis with HEK293T cells continual expressing FSHR demonstrated that FSHR was specifically stimulated by ovine FSH, but not ovine LH. These results indicate that turbot FSHR is mainly involved in the stimulation of vitellogenesis, regulation of oocyte maturation as well as promotion of ovarian development via specific ligand binding. These findings open doors to further investigation of physiological functions of FSHR, which will be valuable for fish reproduction and broodstock management. PMID:26358315

  5. Toll-Like Receptor 4 Deficiency Impairs Motor Coordination

    PubMed Central

    Zhu, Jian-Wei; Li, Yi-Fei; Wang, Zhao-Tao; Jia, Wei-Qiang; Xu, Ru-Xiang

    2016-01-01

    The cerebellum plays an essential role in balance and motor coordination. Purkinje cells (PCs) are the sole output neurons of the cerebellar cortex and are critical for the execution of its functions, including motor coordination. Toll-like receptor (TLR) 4 is involved in the innate immune response and is abundantly expressed in the central nervous system; however, little is known about its role in cerebellum-related motor functions. To address this question, we evaluated motor behavior in TLR4 deficient mice. We found that TLR4−∕− mice showed impaired motor coordination. Morphological analyses revealed that TLR4 deficiency was associated with a reduction in the thickness of the molecular layer of the cerebellum. TLR4 was highly expressed in PCs but not in Bergmann glia or cerebellar granule cells; however, loss of TLR4 decreased the number of PCs. These findings suggest a novel role for TLR4 in cerebellum-related motor coordination through maintenance of the PC population. PMID:26909014

  6. Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator.

    PubMed

    Takeshita, A; Yen, P M; Misiti, S; Cardona, G R; Liu, Y; Chin, W W

    1996-08-01

    Thyroid hormone receptors (TRs) are ligand-dependent transcription factors that regulate target gene transcription. The conserved carboxy-terminal region of the ligand-binding domain (AF-2) has been thought to play a critical role in mediating ligand-dependent transactivation by the interaction with coactivator(s). Using bacterially-expressed TR as a probe, far-Western-based expression cDNA library screening identified cDNAs that encode, in part, the recently reported partial steroid receptor coactivator-1 (SRC-1) sequence. Additional work, including 5' RACE, has characterized a full-length cDNA that encodes a approximately 160 kD protein as a putative thyroid hormone receptor coactivator (F-SRC-1). In vitro binding studies show that F-SRC-1 binds to a variety of nuclear hormone receptors in a ligand-dependent manner, along with TBP and TFIIB, suggesting that F-SRC-1 may play a role as a bridging molecule between nuclear hormone receptors and general transcription factors. Interestingly, AF-2 mutants also retain ligand-dependent interaction with F-SRC-1. Although F-SRC-1 recognizes the ligand-induced conformational changes of nuclear hormone receptors, our observations suggest that F-SRC-1 may bind directly with subregion(s) in nuclear hormone receptors other than the AF-2 region. PMID:8754792

  7. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex.

    PubMed Central

    Fondell, J D; Ge, H; Roeder, R G

    1996-01-01

    Transcriptional regulation by nuclear hormone receptors is thought to involve interactions with putative cofactors that may potentiate receptor function. Here we show that human thyroid hormone receptor alpha purified from HeLa cells grown in the presence of thyroid hormone (T3) is associated with a group of distinct nuclear proteins termed thyroid hormone receptor-associated proteins (TRAPs). In an in vitro system reconstituted with general initiation factors and cofactors (and in the absence of added T3), the "liganded" thyroid hormone receptor (TR)/TRAP complex markedly activates transcription from a promoter template containing T3-response elements. Moreover, whereas the retinoid X receptor is not detected in the TR/TRAP complex, its presence is required for the function of the complex. In contrast, human thyroid hormone receptor alpha purified from cells grown in the absence of T3 lacks the TRAPs and effects only a low level of activation that is dependent on added ligand. These findings demonstrate the ligand-dependent in vivo formation of a transcriptionally active TR-multisubunit protein complex and suggest a role for TRAPs as positive coactivators for gene-specific transcriptional activation. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8710870

  8. Fluoride Exposure, Follicle Stimulating Hormone Receptor Gene Polymorphism and Hypothalamus-pituitary-ovarian Axis Hormones in Chinese Women.

    PubMed

    Zhao, Ming Xu; Zhou, Guo Yu; Zhu, Jing Yuan; Gong, Biao; Hou, Jia Xiang; Zhou, Tong; Duan, Li Ju; Ding, Zhong; Cui, Liu Xin; Ba, Yue

    2015-09-01

    The effects of fluoride exposure on the functions of reproductive and endocrine systems have attracted widespread attention in academic circle nowadays. However, it is unclear whether the gene-environment interaction may modify the secretion and activity of hypothalamus-pituitary- ovarian (HPO) axis hormones. Thus, the aim of this study was to explore the influence of fluoride exposure and follicle stimulating hormone receptor (FSHR) gene polymorphism on reproductive hormones in Chinese women. A cross sectional study was conducted in seven villages of Henan Province, China during 2010-2011. A total of 679 women aged 18-48 years were recruited through cluster sampling and divided into three groups, i.e. endemic fluorosis group (EFG), defluoridation project group (DFPG), and control group (CG) based on the local fluoride concentration in drinking water. The serum levels of gonadotropin releasing hormone (GnRH), follicle stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) were determined respectively and the FSHR polymorphism was detected by real time PCR assay. The results provided the preliminary evidence indicating the gene-environment interaction on HPO axis hormones in women. PMID:26464260

  9. Growth hormone receptor/binding protein: Physiology and function

    SciTech Connect

    Herington, A.C.; Ymer, S.I.; Stevenson, J.L.; Roupas, P.

    1994-12-31

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular forms(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and a membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR. 43 refs.

  10. A1 adenosine receptor deficiency or inhibition reduces atherosclerotic lesions in apolipoprotein E deficient mice

    PubMed Central

    Teng, Bunyen; Smith, Jonathan D.; Rosenfeld, Michael E.; Robinet, Peggy; Davis, Mary E.; Morrison, R. Ray; Mustafa, S. Jamal

    2014-01-01

    Aims The goal of this study was to determine whether the A1 adenosine receptor (AR) plays a role in atherosclerosis development and to explore its potential mechanisms. Methods and results Double knockout (DKO) mice, deficient in the genes encoding A1 AR and apolipoprotein E (apoE), demonstrated reduced atherosclerotic lesions in aortic arch (en face), aortic root, and innominate arteries when compared with apoE-deficient mice (APOE-KO) of the same age. Treating APOE-KO with an A1 AR antagonist (DPCPX) also led to a concentration-dependent reduction in lesions. The total plasma cholesterol and triglyceride levels were not different between DKO and APOE-KO; however, higher triglyceride was observed in DKO fed a high-fat diet. DKO also had higher body weights than APOE-KO. Plasma cytokine concentrations (IL-5, IL-6, and IL-13) were significantly lower in DKO. Proliferating cell nuclear antigen expression was also significantly reduced in the aorta from DKO. Despite smaller lesions in DKO, the composition of the innominate artery lesion and cholesterol loading and efflux from bone marrow-derived macrophages of DKO were not different from APOE-KO. Conclusion The A1 AR may play a role in the development of atherosclerosis, possibly due to its pro-inflammatory and mitogenic properties. PMID:24525840

  11. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    SciTech Connect

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark . E-mail: dan@bc.georgetown.edu

    2005-08-15

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids.

  12. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested ...

  13. (-) Arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β.

    PubMed

    Ogungbe, Ifedayo Victor; Crouch, Rebecca A; Demeritte, Teresa

    2014-11-24

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (-) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  14. (−) Arctigenin and (+) Pinoresinol Are Antagonists of the Human Thyroid Hormone Receptor β

    PubMed Central

    2015-01-01

    Lignans are important biologically active dietary polyphenolic compounds. Consumption of foods that are rich in lignans is associated with positive health effects. Using modeling tools to probe the ligand-binding pockets of molecular receptors, we found that lignans have high docking affinity for the human thyroid hormone receptor β. Follow-up experimental results show that lignans (−) arctigenin and (+) pinoresinol are antagonists of the human thyroid hormone receptor β. The modeled complexes show key plausible interactions between the two ligands and important amino acid residues of the receptor. PMID:25383984

  15. Production and characterization of antibodies to gonadotropin-releasing hormone receptor.

    PubMed

    Hazum, E; Schvartz, I; Popliker, M

    1987-01-15

    Antibodies to the gonadotropin-releasing hormone (GnRH) receptor of bovine pituitary membranes have been raised in rabbits by immunization with affinity-purified receptor preparations. These antibodies did not compete with 125I-labeled GnRH analog (Buserelin) for binding to the receptors but did precipitate rat and bovine solubilized receptors labeled with 125I-Buserelin. Binding of the antibodies to the receptors was also demonstrated by immunoprecipitation of 125I-labeled purified receptors and photoaffinity-labeled receptors. The antibodies did not have a GnRH-like activity but rather inhibited, in a dose-dependent manner, GnRH-stimulated luteinizing hormone release from cultured rat pituitary cells. In addition, the antibodies did not inhibit luteinizing hormone release stimulated by high K+ concentration. This suggests that the antibodies recognize domains of the receptor other than the binding site of the hormone and thereby inhibit the biological response. These GnRH receptor antibodies provide a useful tool for studying GnRH receptor structure, function, localization, and biosynthesis. PMID:3027055

  16. Novel bioluminescent receptor-binding assays for peptide hormones: using ghrelin as a model.

    PubMed

    Liu, Yu; Shao, Xiao-Xia; Zhang, Lei; Song, Ge; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2015-10-01

    Peptide hormones perform important biological functions by binding specific cell membrane receptors. For hormone-receptor interaction studies, receptor-binding assays are widely used. However, conventional receptor-binding assays rely on radioactive tracers that have drawbacks. In recent studies, we established novel non-radioactive receptor-binding assays for some recombinant protein hormones based on the ultrasensitive bioluminescence of a newly developed nanoluciferase (NanoLuc) reporter. In the present work, we extended the novel bioluminescent receptor-binding assay to peptide hormones that have small size and can be conveniently prepared by chemical synthesis. Human ghrelin, a 28-amino acid peptide hormone carrying a special O-fatty acid modification, was used as a model. To prepare a bioluminescent ghrelin tracer, a chemically synthesized ghrelin analog with a unique cysteine residue at the C-terminus was site-specifically conjugated with an engineered NanoLuc with a unique exposed cysteine residue at the C-terminus via a reversible disulfide linkage. The NanoLuc-conjugated ghrelin retained high binding affinity with the ghrelin receptor GHSR1a (K d = 1.14 ± 0.13 nM, n = 3) and was able to sensitively monitor the receptor-binding of various GHSR1a ligands. The novel bioluminescent receptor-binding assay will facilitate the interaction studies of ghrelin with its receptor. We also proposed general procedures for convenient conjugation of other peptide hormones with NanoLuc for novel bioluminescent receptor-binding assays. PMID:26002812

  17. Comorbid Medical Conditions in Friedreich Ataxia: Association With Inflammatory Bowel Disease and Growth Hormone Deficiency.

    PubMed

    Shinnick, Julianna E; Schadt, Kimberly; Strawser, Cassandra; Wilcox, Nicholas; Perlman, Susan L; Wilmot, George R; Gomez, Christopher M; Mathews, Katherine D; Yoon, Grace; Zesiewicz, Theresa; Hoyle, Chad; Subramony, S H; Yiu, Eppie M; Delatycki, Martin B; Brocht, Alicia F; Farmer, Jennifer M; Lynch, David R

    2016-08-01

    Friedreich ataxia is a progressive degenerative disease with neurologic and cardiac involvement. This study characterizes comorbid medical conditions in a large cohort of patients with Friedreich ataxia. Patient diagnoses were collected in a large natural history study of 641 subjects. Prevalence of diagnoses in the cohort with Friedreich ataxia was compared with prevalence in the population without Friedreich ataxia. Ten patients (1.6%) had inflammatory bowel disease, 3.5 times more common in this cohort of individuals with Friedreich ataxia than in the general population. Four subjects were growth hormone deficient, reflecting a prevalence in Friedreich ataxia that is 28 times greater than the general population. The present study identifies specific diagnoses not traditionally associated with Friedreich ataxia that are found at higher frequency in this disease. These associations could represent coincidence, shared genetic background, or potentially interactive disease mechanisms with Friedreich ataxia. PMID:27071470

  18. Familial X-linked mental retardation and isolated growth hormone deficiency: Clinical and molecular findings

    SciTech Connect

    Hamel, B.C.J.; Smits, A.P.T.; Helm, B. van den

    1996-07-12

    We report on several members of a family with varying degrees of X-linked mental retardation (XLMR), isolated growth hormone deficiency (IGHD), and infantile behavior but without other consistent phenotypic abnormalities. Male patients continued to grow until well into their twenties and reached a height ranging from 135 to 159 cm. Except one, all female carriers were mentally normal; their adult height ranged from 159 to 168 cm. By linkage studies we have assigned the underlying genetic defect to the Xq24-q27.3 region, with a maximum lod score of Z = 3.26 at {theta} = 0.0 for the DXS294 locus. The XLMR-IGHD phenotype in these patients may be due to pleiotropic effects of a single gene or it may represent a contiguous gene syndrome. 18 refs., 6 figs., 3 tabs.

  19. Evaluation of Permanent Growth Hormone Deficiency (GHD) in Young Adults with Childhood Onset GHD: A multicenter study

    PubMed Central

    Berberoğlu, Merih; Darendeliler, Feyza; Poyrazoğlu, Şükran; Darcan, Şükran; İşgüven, Pınar; Bideci, Aysun; Öcal, Gönül; Bundak, Rüveyde; Yüksel, Bilgin; Arslanoğlu, İlknur

    2008-01-01

    Background: Reconfirming the diagnosis of childhood onset growth hormone deficiency (GHD) in young adults is necessary to demonstrate the need for continuation of GH therapy. Objective: This nationally−based study was planned to establish GH status during adulthood in childhood−onset GH deficient patients and to evaluate factors that would predict persistency of the GHD. Methods: In this multicenter study, 70 GH deficient patients who had reached final height were evaluated after completion of GH treatment. Fifty−two patients (74%) had isolated GHD and 18 patients (26%) had multiple pituitary hormone deficiency (MPHD). Patients who had reached final height and the pubertal Tanner stage 5 were reevaluated for GH status. After at least 6 weeks of cessation of GH treatment, patients were retested with insulin induced hypoglycemia. Results: GHD was found to be transient in 64.3% of all patients. Of the isolated GH deficient patients 82.7% had transient GHD, whereas 88.9% of the MPHD patients showed persistent GHD. Comparison of isolated GH deficient and multiple hormone deficient patients indicated higher peak GH, IGF−I and IGFBP−3 levels in isolated GH deficient patients. No parameter was significantly different in the transiently and persistently GH deficient patients with respect to gender. Although specificity of IGF−I value of less than −2 SD showing persistency of GHD was lower than the specificity of IGFBP−3 value of less than −2 SD (65.7% vs 84%), negative predictive values were similar for the two parameters (85.2% and 84%, respectively). Conclusion: Most of the cases of childhood onset GHD are idiopathic and the GHD is transient. In patients with MPHD, GHD is generally permanent. Low IGF−I and IGFBP−3 levels are supporting findings to show persistency of the GHD. Conflict of interest:None declared. PMID:21318062

  20. Bioluminescent Ligand-Receptor Binding Assays for Protein or Peptide Hormones.

    PubMed

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    Bioluminescence has been widely used in biomedical research due to its high sensitivity, low background, and broad linear range. In recent studies, we applied bioluminescence to ligand-receptor binding assays for some protein or peptide hormones based on a newly developed small monomeric Nanoluciferase (NanoLuc) reporter that has the so far brightest bioluminescence. The conventional ligand-receptor binding assays rely on radioligands that have drawbacks, such as radioactive hazards and short shelf lives. In contrast, the novel bioluminescent binding assays use the NanoLuc-based protein or peptide tracers that are safe, stable, and ultrasensitive. Thus, the novel bioluminescent ligand-receptor binding assay would be applied to more and more protein or peptide hormones for ligand-receptor interaction studies in future. In the present article, we provided detailed protocols for setting up the novel bioluminescent ligand-receptor binding assays using two representative protein hormones as examples. PMID:27424896

  1. Detection of Growth Hormone Deficiency in Adults with Chronic Traumatic Brain Injury.

    PubMed

    Kreber, Lisa A; Griesbach, Grace S; Ashley, Mark J

    2016-09-01

    This study examined the prevalence of growth hormone deficiency (GHD) in patients with traumatic brain injury (TBI) during the post-acute phase of recovery and whether GHD was associated with increased disability, decreased independence, and depression. A secondary objective was to determine the accuracy of insulin-like growth factor-1 (IGF-1) levels in predicting GHD in patients with TBI. Anterior pituitary function was assessed in 235 adult patients with TBI through evaluation of fasting morning hormone levels. GH levels were assessed through provocative testing, specifically the glucagon stimulation test. GHD was diagnosed in a significant number of patients, with 45% falling into the severe GHD (≤3 μg/L) category. IGF-1 levels were not predictive of GHD. Patients with GHD were more disabled and less independent compared with those patients who were not GHD. Those patients with more severe GHD also showed decreased levels of cortisol and testosterone. Symptoms of depression were also more prevalent in this group. In addition, patients with severe GHD had delayed admission to post-acute rehabilitation. This study confirms the high prevalence of GHD in patients with TBI and the necessity to monitor clinical symptoms and perform provocative testing to definitively diagnose GHD. PMID:26414093

  2. Molecular genetic analysis of X-linked hypogammaglobulinemia and isolated growth hormone deficiency

    SciTech Connect

    Stewart, D.M.; Kurman, C.C.; Staudt, L.M.

    1995-09-01

    In 1980 the clinical syndrome of X-linked hypogammaglobulinemia and isolated growth hormone deficiency (XLA/GHD) was described. XLA/GHD patients have reduced serum levels of Ig and normal cell-mediated immunity, and thus resemble patients with Bruton`s X-linked agammaglobulinemia (XLA). However, XLA/GHD patients also have isolated GHD. Mutations and deletions in the Bruton`s tyrosine kinase gene (BTK) are responsible for Bruton`s XLA. We investigated BTK gene expression in an XLA/GHD patient from the family originally described by Northern analysis, cDNA sequencing, and Western analysis of protein production using mAb to BTK. BTK mRNA was normal in size and abundance, and the mRNA sequence was normal over the coding region, except for a single silent mutation. BTK protein was present in normal amounts in PBMC of this patient. Thus, at the molecular level, XLA/GHD is a different disease entity from Bruton`s XLA. These results suggest that undescribed genes critical for B cell development and growth hormone production exist on the X chromosome. 17 refs., 4 figs.

  3. Controversies in the diagnosis and management of growth hormone deficiency in childhood and adolescence.

    PubMed

    Murray, P G; Dattani, M T; Clayton, P E

    2016-01-01

    Growth hormone deficiency (GHD) is a rare but important cause of short stature in childhood with a prevalence of 1 in 4000. The diagnosis is currently based on an assessment of auxology along with supporting evidence from biochemical and neuroradiological studies. There are significant controversies in the diagnosis and management of GHD. Growth hormone (GH) stimulation tests continue to play a key role in GHD diagnosis but the measured GH concentration can vary significantly with stimulation test and GH assay used, creating difficulties for diagnostic accuracy. Such issues along with the use of adjunct biochemical markers such as IGF-I and IGFBP-3 for the diagnosis of GHD, will be discussed in this review. Additionally, the treatment of GHD remains a source of much debate; there is no consensus on the best mechanism for determining the starting dose of GH in patients with GHD. Weight and prediction based models will be discussed along with different mechanisms for dose adjustment during treatment (auxology or IGF-I targeting approaches). At the end of growth and childhood treatment, many subjects diagnosed with isolated GHD re-test normal. It is not clear if this represents a form of transient GHD or a false positive diagnosis during childhood. Given the difficulties inherent in the diagnosis of GHD, an early reassessment of the diagnosis in those who respond poorly to GH is to be recommended. PMID:26153506

  4. Detection of Growth Hormone Deficiency in Adults with Chronic Traumatic Brain Injury

    PubMed Central

    Griesbach, Grace S.; Ashley, Mark J.

    2016-01-01

    Abstract This study examined the prevalence of growth hormone deficiency (GHD) in patients with traumatic brain injury (TBI) during the post-acute phase of recovery and whether GHD was associated with increased disability, decreased independence, and depression. A secondary objective was to determine the accuracy of insulin-like growth factor-1 (IGF-1) levels in predicting GHD in patients with TBI. Anterior pituitary function was assessed in 235 adult patients with TBI through evaluation of fasting morning hormone levels. GH levels were assessed through provocative testing, specifically the glucagon stimulation test. GHD was diagnosed in a significant number of patients, with 45% falling into the severe GHD (≤3 μg/L) category. IGF-1 levels were not predictive of GHD. Patients with GHD were more disabled and less independent compared with those patients who were not GHD. Those patients with more severe GHD also showed decreased levels of cortisol and testosterone. Symptoms of depression were also more prevalent in this group. In addition, patients with severe GHD had delayed admission to post-acute rehabilitation. This study confirms the high prevalence of GHD in patients with TBI and the necessity to monitor clinical symptoms and perform provocative testing to definitively diagnose GHD. PMID:26414093

  5. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function.

    PubMed Central

    Forrest, D; Hanebuth, E; Smeyne, R J; Everds, N; Stewart, C L; Wehner, J M; Curran, T

    1996-01-01

    The diverse functions of thyroid hormone (T3) are presumed to be mediated by two genes encoding the related receptors, TRalpha and TRbeta. However, the in vivo functions of TRalpha and TRbeta are undefined. Here, we report that targeted inactivation of the mouse TRbeta gene results in goitre and elevated levels of thyroid hormone. Also, thyroid-stimulating hormone (TSH), which is released by pituitary thyrotropes and which is normally suppressed by increased levels of thyroid hormone, was present at elevated levels in homozygous mutant (Thrb-/-) mice. These findings suggest a unique role for TRbeta that cannot be substituted by TRalpha in the T3-dependent feedback regulation of TSH transcription. Thrb-/- mice provide a recessive model for the human syndrome of resistance to thyroid hormone (RTH) that exhibits a similar endocrine disorder but which is typically caused by dominant TRbeta mutants that are transcriptional inhibitors. It is unknown whether TRalpha, TRbeta or other receptors are targets for inhibition in dominant RTH; however, the analysis of Thrb-/- mice suggests that antagonism of TRbeta-mediated pathways underlies the disorder of the pituitary-thyroid axis. Interestingly, in the brain, the absence of TRbeta may not mimic the defects often associated with dominant RTH, since no overt behavioural or neuroanatomical abnormalities were detected in Thrb-/- mice. These data define in vivo functions for TRbeta and indicate that specificity in T3 signalling is conferred by distinct receptor genes. Images PMID:8670802

  6. Precocious metamorphosis in the juvenile hormone-deficient mutant of the silkworm, Bombyx mori.

    PubMed

    Daimon, Takaaki; Kozaki, Toshinori; Niwa, Ryusuke; Kobayashi, Isao; Furuta, Kenjiro; Namiki, Toshiki; Uchino, Keiro; Banno, Yutaka; Katsuma, Susumu; Tamura, Toshiki; Mita, Kazuei; Sezutsu, Hideki; Nakayama, Masayoshi; Itoyama, Kyo; Shimada, Toru; Shinoda, Tetsuro

    2012-01-01

    Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis. PMID:22412378

  7. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    SciTech Connect

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin; Xue, Ruyi; Ji, Lingling; Shen, Xizhong; Chen, She; Gu, Jianxin; Zhang, Si

    2014-05-23

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−}) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.

  8. Turnover of growth hormone receptors in rat adipocytes

    SciTech Connect

    Gorin, E.; Goodman, H.M.

    1985-05-01

    Adipocytes isolated from the epididymal fat pads of normal rats specifically bound (/sup 125/I)human GH (( /sup 125/I)hGH). Preincubation of cells with 20 micrograms/ml cycloheximide, an inhibitor of protein synthesis, produced a progressive loss of ability to bind (/sup 125/I)hGH specifically. Loss of binding sites with time followed first order kinetics and had a half-time of about 45 min regardless of whether GH was present or absent during treatment with cycloheximide. Nonspecific binding of labeled hormone was unchanged by cycloheximide. Similar results were obtained when adipocytes were incubated with 200 micrograms/ml puromycin, another inhibitor of translation, but incubation with 5 micrograms/ml actinomycin D, an inhibitor of transcription, for 2.5 h had no effect on the binding of (/sup 125/I)hGH by adipocytes. The findings are not attributable to cell death, since oxidation of (U-/sup 14/C) glucose to /sup 14/CO/sub 2/ and binding of (/sup 125/I)insulin were unaffected in replicate cell populations exposed to the same treatments. Diminished binding could not be attributed to an effect of cycloheximide to hasten the degradation of receptor-bound hGH. Treatment of adipocytes with 0.1 mg/ml trypsin for 10 min virtually abolished their ability to bind (/sup 125/I)hGH specifically, but binding capability gradually returned after removal of trypsin and was nearly restored to pretrypsin levels by 2 h. Addition of cycloheximide to the incubation medium after removal of trypsin completely prevented recovery of binding capability.

  9. Effects of growth hormone therapeutic supplementation on hematopoietic stem/progenitor cells in children with growth hormone deficiency: focus on proliferation and differentiation capabilities.

    PubMed

    Kawa, M P; Stecewicz, I; Piecyk, K; Pius-Sadowska, E; Paczkowska, E; Rogińska, D; Sobuś, A; Łuczkowska, K; Gawrych, E; Petriczko, E; Walczak, M; Machaliński, B

    2015-09-01

    We investigated the direct effects of growth hormone (GH) replacement therapy (GH-RT) on hematopoiesis in children with GH deficiency (GHD) with the special emphasis on proliferation and cell cycle regulation. Peripheral blood (PB) was collected from sixty control individuals and forty GHD children before GH-RT and in 3rd and 6th month of GH-RT to measure hematological parameters and isolate CD34(+)-enriched hematopoietic progenitor cells (HPCs). Selected parameters of PB were analyzed by hematological analyzer. Moreover, collected HPCs were used to analyze GH receptor (GHR) and IGF1 expression, clonogenicity, and cell cycle activity. Finally, global gene expression profile of collected HPCs was analyzed using genome-wide RNA microarrays. GHD resulted in a decrease in several hematological parameters related to RBCs and significantly diminished clonogenicity of erythroid progenies. In contrast, GH-RT stimulated increases in clonogenic growth of erythroid lineage and RBC counts as well as significant up-regulation of cell cycle-propagating genes, including MAP2K1, cyclins D1/E1, PCNA, and IGF1. Likewise, GH-RT significantly modified GHR expression in isolated HPCs and augmented systemic IGF1 levels. Global gene expression analysis revealed significantly higher expression of genes associated with cell cycle, proliferation, and differentiation in HPCs from GH-treated subjects. (i) GH-RT significantly augments cell cycle progression in HPCs and increases clonogenicity of erythroid progenitors; (ii) GHR expression in HPCs is modulated by GH status; (iii) molecular mechanisms by which GH influences hematopoiesis might provide a basis for designing therapeutic interventions for hematological complications related to GHD. PMID:25920498

  10. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2014-01-01

    BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon. PMID:25415472

  11. Hormone Receptors in Serous Ovarian Carcinoma: Prognosis, Pathogenesis, and Treatment Considerations

    PubMed Central

    Voutsadakis, Ioannis A.

    2016-01-01

    A few breakthroughs have been accomplished for the treatment of ovarian cancer, the most deadly gynecologic carcinoma, in the current era of targeted oncologic treatment. The estrogen receptor was the first target of such treatments with the introduction of tamoxifen four decades ago in breast cancer therapeutics. Attempts to duplicate the success of hormonal therapies in ovarian cancer met with mixed results, which may be due to an inferior degree of hormone dependency in this cancer. Alternatively, this may be due to the failure to clearly identify the subsets of ovarian cancer with hormone sensitivity. This article reviews the expression of hormone receptors by ovarian cancer cells, the prognostic value of these expressions, and their predictive capacity for response to hormonal agents. The possible ways ahead are briefly discussed. PMID:27053923

  12. Should Patients with Trichorhinophalangeal Syndrome be Tested for Growth Hormone Deficiency?

    PubMed

    Marques, Jorge Sales; Maia, Catarina; Almeida, Raquel; Isidoro, Lara; Dias, Catarina

    2015-09-01

    Type 1 Trichorhinophalangeal syndrome (TRPS) is characterized by typical facial and skeletal abnormalities. These patients frequently exhibit short stature; however, only one case with growth hormone (GH) deficiency can be found in the literature. Our patient is a 10-year-old girl with two novel nonsense pathogenic mutations in the TRPS1 gene, both in heterozygosity: c. 1198C>T (p. Gln400X) and c.2086C>T (p. Arg696X). She has an additional GH deficiency. The patient is short in stature, with a growth velocity of 1.5 cm per year (SDS - 4.07), a bone age of 4.5 years, and she shows no response to the GH stimulation tests. According to a previous report of an identical case, catch-up growth will occur after beginning GH treatment. We believe that GH stimulation tests should be performed on patients with TRPS1 exhibiting a growth velocity below the normal range expected for their age and sex. If the result is subnormal, then GH therapy should be attempted. PMID:26540763

  13. A natural kinase-deficient variant of fibroblast growth factor receptor 1.

    PubMed

    Wang, L Y; Edenson, S P; Yu, Y L; Senderowicz, L; Turck, C W

    1996-08-01

    A fibroblast growth factor receptor 1 variant missing 37 amino acids from the carboxy-terminal tyrosine kinase catalytic domain was discovered in human lung fibroblasts and several other human cell lines. The receptor variant binds specifically to acidic fibroblast growth factor but has no tyrosine kinase activity. It was found that cellular transfectants expressing the fibroblast growth factor receptor 1 variant are mitogenically inactive and ligand binding to the receptor causes neither receptor autophosphorylation nor phospholipase C-gamma transphosphorylation. The fibroblast growth factor receptor 1 variant therefore represents an inactive receptor for acidic fibroblast growth factor. Since both kinase and kinase-deficient receptor forms are expressed in cells, it is conceivable that the kinase-deficient receptor plays an important role in regulating cellular responses elicited by acidic fibroblast growth factor stimulation. PMID:8756477

  14. Molecular recognition of parathyroid hormone by its G protein-coupled receptor

    SciTech Connect

    Pioszak, Augen A.; Xu, H. Eric

    2008-08-07

    Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineered as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-{angstrom} structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer {alpha}-{beta}-{beta}{alpha} fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.

  15. Deficiency of prohormone convertase dPC2 (AMONTILLADO) results in impaired production of bioactive neuropeptide hormones in Drosophila.

    PubMed

    Wegener, Christian; Herbert, Henrik; Kahnt, Jörg; Bender, Michael; Rhea, Jeanne M

    2011-08-01

    Peptide hormones synthesized by secretory neurons in the CNS are important regulators of physiology, behavior, and development. Like other neuropeptides, they are synthesized from larger precursor molecules by a specific set of enzymes. Using a combination of neurogenetics, immunostainings, and direct mass spectrometric profiling, we show that the presence of Drosophila prohormone convertase 2 encoded by the gene amontillado (amon) is a prerequisite for the proper processing of neuropeptide hormones from the major neurohemal organs of the CNS. A loss of amon correlates with a loss of neuropeptide hormone signals from the larval ring gland and perisympathetic organs. Neuropeptide hormone signals were still detectable in the adult corpora cardiaca of older amon-deficient flies which were amon heat-shock-rescued until eclosion. A semiquantification by direct peptide profiling using stable isotopic standards showed, however, that their neuropeptide hormone levels are strongly reduced. Targeted expression of GFP under the control of amon regulatory regions revealed a co-localization with the investigated peptide hormones in secretory neurons of the brain and ventral nerve cord. The lack of AMON activity resulted in a deficiency of L3 larva to enter the wandering phase. In conclusion, our findings provide the first direct evidence that AMON is a key enzyme in the production of neuropeptides in the fruitfly. PMID:21138435

  16. Histological and sex steroid hormone receptor changes in testes of immature, mature, and aged chickens.

    PubMed

    González-Morán, María Genoveva; Guerra-Araiza, Christian; Campos, María G; Camacho-Arroyo, Ignacio

    2008-11-01

    Sex steroid hormone receptors play a central role in the regulation of reproduction in male chickens. In this work, we evaluated by histomorphometric methods and Western blot analysis changes in the number of the different cell populations and in the content of sex steroid hormone receptors in testes from immature (1.5-month-old), mature (12-month-old), and aged (48-month-old) chickens. The number of Sertoli cells, germ cells, and Leydig cells per area of testicular tissue markedly changed according to chicken age. The highest number of Sertoli and Leydig cells was found in testes of immature chickens, with a dramatic decrease in those of mature chickens; however, the number of germ cells was the highest in mature chickens in comparison with other ages. The content of androgen receptor diminished in testes of mature and aged animals in comparison with that of immature chickens. In contrast, the content of estrogen receptor alpha and progesterone receptor was higher in testes of mature animals than in other ages. Both progesterone receptor isoforms were expressed in a similar proportion in testes of immature and mature animals. Interestingly, progesterone receptor isoform A was the predominant isoform in aged animals. These results suggest that there are marked age-dependent changes in chicken testes histology and in sex steroid hormone receptors content that should contribute to sex steroid hormone actions, in this tissue throughout the lifespan of chickens. PMID:18815005

  17. The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. .

    PubMed

    Wüster, C; Abs, R; Bengtsson, B A; Bennmarker, H; Feldt-Rasmussen, U; Hernberg-Ståhl, E; Monson, J P; Westberg, B; Wilton, P

    2001-02-01

    To assess the influence of factors affecting fracture risk and bone density in adult hypopituitary patients with growth hormone deficiency (GHD), data from a large-scale pharmacoepidemiological survey (the Pharmacia & Upjohn International Metabolic Database [KIMS]) were analyzed and compared with data from a control population (the European Vertebral Osteoporosis Study [EVOS]). The KIMS group consisted of 2084 patients (1112 men and 972 women) with various types of pituitary disease and EVOS consisted of 1176 individuals (581 men and 595 women). Fracture and bone mineral density (BMD) data were available from 2024 patients from the KIMS group and 392 patients from EVOS. The prevalence of fractures in patients with hypopituitarism was 2.66 times that in the non-GH-deficient EVOS population. Adult-onset hypopituitarism with GHD was associated with a higher fracture risk than childhood-onset disease, and patients with isolated GHD had a similar prevalence of fractures to those with multiple pituitary hormone deficiencies. Hormonal replacement therapy with L-thyroxine, glucocorticoids, and sex steroids did not affect the risk of fracture in KIMS patients. In addition, fracture rates in KIMS were independent of body mass index (BMI) and the country of origin. However, smoking was associated with a higher fracture rate in this group. In summary, this is the first large-scale analysis to support the hypothesis of an increased fracture risk in adult patients with hypopituitarism and GHD. This increased risk appears to be attributable to GHD alone, rather than to other pituitary hormone deficiencies or to their replacement therapy. PMID:11204440

  18. Cathepsin H regulated by the thyroid hormone receptors associate with tumor invasion in human hepatoma cells.

    PubMed

    Wu, S-M; Huang, Y-H; Yeh, C-T; Tsai, M-M; Liao, C-H; Cheng, W-L; Chen, W-J; Lin, K-H

    2011-04-28

    Thyroid hormone, 3, 3', 5-triiodo-L-thyronine (T(3)), mediates cell growth, development and differentiation by binding to its nuclear receptors (TRs). The role of TRs in cancer is still undefined. Notably, hyperthyroxinemia has been reported to influence the rate of colon cancer in an experimental model of carcinogenesis in rats. Previous microarray analysis revealed that cathepsin H (CTSH) is upregulated by T(3) in HepG2-TR cells. We verified that mRNA and protein expression of CTSH are induced by T(3) in HepG2-TR cells and in thyroidectomized rats following administration of T(3). The possible thyroid hormone-responsive elements of the CTSH promoter localized to the nucleotides -2038 to -1966 and -1565 to -1501 regions. An in vitro functional assay showed that CTSH can increase metastasis. J7 cells overexpressing CTSH were inoculated into severe combined immune-deficient mice and these J7-CTSH mice displayed a greater metastatic potential than did J7-control mice. The clinicopathologic significance of CTSH expression in hepatocellular carcinoma (HCC) was also investigated. The CTSH overexpressing in HCC was associated with the presence of microvascular invasion (P=0.037). The microvascular invasion characteristic is closely related to our in vitro characterization of CTSH function. Our results show that T(3)-mediated upregulation of CTSH led to matrix metallopeptidase or extracellular signal-regulated kinase activation and increased cell migration. This study demonstrated that CTSH overexpression in a subset hepatoma may be TR dependent and suggests that this overexpression has an important role in hepatoma progression. PMID:21217776

  19. Steroid hormone receptors in prostatic hyperplasia and prostatic carcinoma.

    PubMed

    Khalid, B A; Nurshireen, A; Rashidah, M; Zainal, B Y; Roslan, B A; Mahamooth, Z

    1990-06-01

    One hundred and six prostatic tissue samples obtained from transurethral resection were analysed for androgen and estrogen receptors. In 62 of these, progesterone and glucocorticoid receptors were also assayed. Steroid receptors were assayed using single saturation dose 3H-labelled ligand assays. Ninety percent of the 97 prostatic hyperplasia tissues and six of the nine prostatic carcinoma tissues were positive for androgen receptors. Estrogen receptors were only present in 19% and 33% respectively. Progesterone receptors were present in 70% of the tissues, but glucocorticoid receptors were present in only 16% of prostatic hyperplasia and none in prostatic carcinoma. PMID:1725553

  20. Synergistic effect of 5-HT1A and σ1 receptor activation on prefrontal dopaminergic transmission under circulating steroid deficiency.

    PubMed

    Hiramatsu, Naoki; Ago, Yukio; Hasebe, Shigeru; Nishimura, Akira; Mori, Kazuya; Takuma, Kazuhiro; Matsuda, Toshio

    2013-12-01

    Serotonin (5-HT)1A and σ1 receptors have been implicated in psychiatric disorders. We previously found that combined 5-HT reuptake inhibition and σ1 receptor activation has a synergistic effect on prefrontal dopaminergic transmission in adrenalectomized/castrated mice lacking circulating steroid hormones. In the present study, we examined the mechanisms underlying this neurochemical synergism. Systemic administration of fluvoxamine, a selective 5-HT reuptake inhibitor with agonistic activity towards the σ1 receptor, increased prefrontal dopamine (DA) levels, and adrenalectomy/castration potentiated this fluvoxamine-induced increase in DA. This enhancement of DA release was blocked by WAY100635 (a 5-HT1A receptor antagonist), but not by ritanserin (a 5-HT2 receptor antagonist), azasetron (a 5-HT3 receptor antagonist) or SB269970 (a 5-HT7 receptor antagonist). Individually, osemozotan (a 5-HT1A receptor agonist) and (+)-SKF-10,047 (a σ1 receptor agonist) did not alter prefrontal monoamine levels in adrenalectomized/castrated and sham-operated mice differentially. In contrast, co-administration of these drugs increased prefrontal DA levels to a greater extent in adrenalectomized/castrated mice than in sham-operated animals. Furthermore, co-administration of osemozotan and (+)-SKF-10,047 increased expression of the neuronal activity marker c-Fos in the ventral tegmental area of adrenalectomized/castrated mice, but not in sham-operated animals. These findings suggest that combined activation of 5-HT1A and σ1 receptors has a synergistic effect on prefrontal dopaminergic transmission under circulating steroid deficiency, and that this interaction may play an important role in the regulation of the prefrontal DA system. PMID:23851260

  1. Pharmacokinetics and pharmacodynamics of recombinant human growth hormone by subcutaneous jet- or needle-injection in patients with growth hormone deficiency.

    PubMed

    Houdijk, E C; Herdes, E; Delemarre-Van de Waal, H A

    1997-12-01

    Eighteen growth hormone (GH) deficient children and adolescents (11 6/12-20 9/12 y) participated in a randomized open, two-period (4 weeks) cross-over study to evaluate the pharmacokinetics and pharmacodynamics of recombinant human growth hormone (rhGH) administered daily, either by subcutaneous jet-injection or conventional needle-injection. Plasma growth hormone (GH), insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3), glucose, insulin, HbAlc and serum-free fatty acids (FFA) levels were analysed repeatedly. GH absorption characteristics, expressed as AUC(0-infinity), Cmax and Tmax ratio (%) jet-injected over needle-injected were similar in both groups. IGF-I and IGFBP-3 plasma levels were identical in both groups. Serum FFA concentrations were comparable after GH administration with either injection device. Surprisingly nocturnal blood glucose decreased to asymptomatic hypoglycaemic levels in all patients. The results of this study showed equal responses concerning absorption and bioavailability of growth hormone administered daily for 4 weeks by either a jet- or a needle-injection device in GH-deficient children and adolescents. PMID:9475305

  2. Growth hormone receptors in the atherinid Odontesthes bonariensis: characterization and expression profile after fasting-refeeding and growth hormone administration.

    PubMed

    Botta, P E; Simó, I; Sciara, A A; Arranz, S E

    2016-05-01

    In order to improve the understanding of pejerrey Odontesthes bonariensis, growth hormone (Gh)-insulin-like growth factor-1(Igf1) axis, O. bonariensis growth hormone receptor type 1 (ghr1) and type 2 (ghr2) mRNA sequences were obtained. Both transcripts were ubiquitously expressed except in kidney, encephalon and anterior intestine. Alternative transcripts of both receptors were found in muscle. Interestingly, two different ghr2 transcripts with alternative polyadenylation (APA) sites located in the long 3' untranslated region (UTR-APA) were also found in liver. Hepatic ghr1, ghr2 and insulin-like growth factor type 1 (igf1) transcript levels were examined under two different metabolic conditions. In the first experimental condition, fish were fasted for 2 weeks and then re-fed for another 2 weeks. Despite igf1 mRNA relative expression did not show significant differences under the experimental period of time examined, both ghr transcripts decreased their expression levels after the fasting period and returned to their control levels after re-feeding. In the second treatment, recombinant O. bonariensis growth hormone (r-pjGh) was orally administered once a week. After 4 weeks of treatment, liver igf1, ghr1 and ghr2 mRNA relative expression increased (13, 4·5 and 2·1 fold, P < 0·05) compared to control values. These results add novel information to the growth hormone-insulin-like growth factor system in teleosts. PMID:27097742

  3. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors.

    PubMed

    Rühl, R; Landrier, J F

    2016-01-01

    Adiponectin is an adipokine mainly secreted by adipocytes that presents antidiabetic, anti-inflammatory, and antiatherogenic functions. Therefore, modulation of adiponectin expression represents a promising target for prevention or treatment of several diseases including insulin resistance and type II diabetes. Pharmacological agents such as the nuclear hormone receptor synthetic agonists like peroxisome proliferator activated receptor γ agonists are of particular interest in therapeutic strategies due to their ability to increase the plasma adiponectin concentration. Nutritional approaches are also of particular interest, especially in primary prevention, since some active compounds of our diet (notably vitamins, carotenoids, or other essential nutrients) are direct or indirect lipid-activators of nuclear hormone receptors and are modifiers of adiponectin expression and secretion. The aim of the present review is to summarize current knowledge about the nutritional regulation of adiponectin by derivatives of active compounds naturally present in the diet acting as indirect or direct activators of nuclear hormone receptors. PMID:26610729

  4. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    SciTech Connect

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  5. Growth hormone promoted tyrosyl phosphorylation of growth hormone receptors in murine 3T3-F442A fibroblasts and adipocytes

    SciTech Connect

    Foster, C.M.; Shafer, J.A.; Rozsa, F.W.; Wang, X.; Lewis, S.D.; Renken, D.A.; Natale, J.E.; Schwartz, J.; Carter-Su, C.

    1988-01-12

    Because many growth factor receptors are ligand-activated tyrosine protein kinases, the possibility that growth hormone (GH), a hormone implicated in human growth, promotes tyrosyl phosphorylation of its receptor was investigated. /sup 125/I-Labeled human GH was covalently cross-linked to receptors in intact 3T3-F442A fibroblasts, a cell line which differentiates into adipocytes in response to GH. The cross-linked cells were solubilized and passed over a column of phosphotyrosyl binding antibody immobilized on protein A-Sepharose. Immunoadsorbed proteins were eluted with a hapten (p-nitrophenyl phosphate) and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The eluate from the antibody column contained in M/sub r/ 134,000 /sup 125/I-GH-receptor complex. A similar result was obtained when the adipocyte form of 3T3-F442A cells was used in place of fibroblast form. O-Phosphotyrosine prevented /sup 125/I-GH-receptor complexes from binding to the antibody column, whereas O-phosphoserine and O-phosphothreonine did not. In studies of GH-promoted phosphorylation in 3T3-F442A fibroblasts labeled metabolically with (/sup 32/P)P/sub i/, GH was shown to stimulate formation of a /sup 32/P-labeled protein which bound to immobilized phosphotyrosyl binding antibodies. The molecular weight of 114,000 obtained for this protein is similar to that expected for non-cross-linked GH receptor. These observations provide strong evidence that binding of GH to its receptor stimulates phosphorylation of tyrosyl residues in the GH receptor.

  6. Parathyroid hormone increases bone formation and improves mineral balance in vitamin D-deficient female rats.

    PubMed

    Toromanoff, A; Ammann, P; Mosekilde, L; Thomsen, J S; Riond, J L

    1997-06-01

    The present study was designed to investigate whether enhanced bone formation due to intermittent PTH administration is dependent on vitamin D metabolites. Forty-eight female Sprague-Dawley rats were randomized into four groups: 1) vitamin D-sufficient, saline-injected (+D Sal); 2) vitamin D-sufficient, human (h) PTH-(1-38)-treated (+D PTH); 3) vitamin D-deficient, saline-injected (-D Sal); and 4) vitamin D-deficient, hPTH-(1-38)-treated (-D PTH) animals. The -D diet contained 2% calcium (Ca), 1.25% phosphorus (P), and 20% lactose to maintain normocalcemia and normophosphatemia despite vitamin D deficiency. The +D diet contained 0.8% Ca, 0.5% P, 20% lactose, and 1000 IU/kg vitamin D. After 45 days of either diet, the rats were injected with 50 microg/kg BW PTH or saline, s.c., daily for 2 weeks. Serum Ca, Mg, P, albumin, and creatinine were similar in all groups. PTH administration decreased endogenous PTH concentrations in the -D PTH compared with those in the - D Sal group. Serum alkaline phosphatase activity, bone mass measurements, dual energy x-ray absortiometric analysis of mineral density, and mechanical testing values in vertebrae and femora of the -D Sal animals did not significantly differ from those in +D Sal animals. Moreover, in both diet groups, PTH improved bone biochemical activity (as assessed by serum alkaline phosphatase), bone mass, mineral density, and biomechanical properties. These results indicate that mineral supply, more than vitamin D itself, may be important for normal bone mineralization and to enable PTH to enhance bone formation. A balance study performed during the last 3 days of the experiment revealed that PTH increased apparent intestinal magnesium absorption in the +D group only. Ca and P retention, however, were augmented in both diet groups after PTH treatment. In conclusion, in normocalcemic and normophosphatemic -D rats, PTH treatment reduced the increased endogenous hormone concentration and improved Ca and P retention

  7. A lophotrochozoan-specific nuclear hormone receptor is required for reproductive system development in the planarian

    PubMed Central

    Tharp, Marla E.; Collins, James J.; Newmark, Phillip A.

    2014-01-01

    Germ cells of sexually reproducing organisms receive an array of cues from somatic tissues that instruct developmental processes. Although the nature of these signals differs amongst organisms, the importance of germline-soma interactions is a common theme. Recently, peptide hormones from the nervous system have been shown to regulate germ cell development in the planarian Schmidtea mediterranea; thus, we sought to investigate a second class of hormones with a conserved role in reproduction, the lipophilic hormones. In order to study these signals, we identified a set of putative lipophilic hormone receptors, known as nuclear hormone receptors, and analyzed their functions in reproductive development. We found one gene, nhr-1, belonging to a small class of functionally uncharacterized lophotrochozoan-specific receptors, to be essential for the development of differentiated germ cells. Upon nhr-1 knockdown, germ cells in the testes and ovaries fail to mature, and remain as undifferentiated germline stem cells. Further analysis revealed that nhr-1 mRNA is expressed in the accessory reproductive organs and is required for their development, suggesting that this transcription factor functions cell non-autonomously in regulating germ cell development. Our studies identify a role for nuclear hormone receptors in planarian reproductive maturation and reinforce the significance of germline-soma interactions in sexual reproduction across metazoans. PMID:25278423

  8. Effects of ovarian hormones on beta-adrenergic and muscarinic receptors in rat heart

    SciTech Connect

    Klangkalya, B.; Chan, A.

    1988-01-01

    The in vitro and in vivo effects of estrogen and progesterone on muscarinic and ..beta..-adrenergic receptors of cardiac tissue were studied in ovariectomized (OVX) rats. The binding assay for muscarinic receptors was performed under a nonequilibrium condition; whereas the binding assay for ..beta..-adrenergic receptors, under an equilibrium condition. Estrogenic compounds and progesterone were found to have no effect on the binding of the radioligand, (/sup 3/H)-dihydroalprenolol, to ..beta..-adrenergic receptors in vitro. However, progestins but not estrogenic compounds inhibited the binding of the radioligand, (/sup 3/H)-quinuclidinyl benzilate, to muscarinic receptors in vitro, with progesterone as the most potent inhibitor. Progesterone was found to decrease the apparent affinity of muscarinic receptors for (/sup 3/H)(-)QNB in vitro. Daily treatment of OVX rats with estradiol benzoate or progesterone for 4 days had no effect on the muscarinic or ..beta..-adrenergic receptors with respect to the binding affinity and receptor density. However, administrations of these hormones together for 4 days caused an increase in the receptor density of muscarinic receptors without a significant effect on their apparent binding affinity; also these hormones induced a decrease in the binding affinity and an increase in the receptor density of ..beta..-adrenergic receptors.

  9. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth ...

  10. Adiposity, hormone replacement therapy use and breast cancer risk by age and hormone receptor status: a large prospective cohort study

    PubMed Central

    2012-01-01

    Introduction Associations of hormone-receptor positive breast cancer with excess adiposity are reasonably well characterized; however, uncertainty remains regarding the association of body mass index (BMI) with hormone-receptor negative malignancies, and possible interactions by hormone replacement therapy (HRT) use. Methods Within the European EPIC cohort, Cox proportional hazards models were used to describe the relationship of BMI, waist and hip circumferences with risk of estrogen-receptor (ER) negative and progesterone-receptor (PR) negative (n = 1,021) and ER+PR+ (n = 3,586) breast tumors within five-year age bands. Among postmenopausal women, the joint effects of BMI and HRT use were analyzed. Results For risk of ER-PR- tumors, there was no association of BMI across the age bands. However, when analyses were restricted to postmenopausal HRT never users, a positive risk association with BMI (third versus first tertile HR = 1.47 (1.01 to 2.15)) was observed. BMI was inversely associated with ER+PR+ tumors among women aged ≤49 years (per 5 kg/m2 increase, HR = 0.79 (95%CI 0.68 to 0.91)), and positively associated with risk among women ≥65 years (HR = 1.25 (1.16 to 1.34)). Adjusting for BMI, waist and hip circumferences showed no further associations with risks of breast cancer subtypes. Current use of HRT was significantly associated with an increased risk of receptor-negative (HRT current use compared to HRT never use HR: 1.30 (1.05 to 1.62)) and positive tumors (HR: 1.74 (1.56 to 1.95)), although this risk increase was weaker for ER-PR- disease (Phet = 0.035). The association of HRT was significantly stronger in the leaner women (BMI ≤22.5 kg/m2) than for more overweight women (BMI ≥25.9 kg/m2) for, both, ER-PR- (HR: 1.74 (1.15 to 2.63)) and ER+PR+ (HR: 2.33 (1.84 to 2.92)) breast cancer and was not restricted to any particular HRT regime. Conclusions An elevated BMI may be positively associated with risk of ER-PR- tumors among postmenopausal women

  11. Therapeutic Targeting of the FKBP52 Co-Chaperone in Steroid Hormone Receptor-Regulated Physiology and Disease.

    PubMed

    Guy, Naihsuan C; Garcia, Yenni A; Cox, Marc B

    2015-01-01

    Steroid hormone receptors are ligand-dependent transcription factors that require the dynamic, ordered assembly of multimeric chaperone complexes to reach a functional conformation. Heat shock protein (Hsp) 70 and Hsp90 serve as the central chaperones that mediate this process in conjunction with a variety of co-chaperones. Many of these cochaperones represent potential therapeutic targets for the disruption of Hsp90 client protein function. FKBP52 is an Hsp90-associated co-chaperone that has emerged as a promising therapeutic candidate due to its functional specificity for a small subset of Hsp90 client proteins including androgen (AR), glucocorticoid (GR), and progesterone (PR) receptors. Given its Hsp90-client protein specificity, the targeting of FKBP52 should be more specific and less toxic than the Hsp90- targeting drugs. Additionally, the fkbp52-deficient mice display specific phenotypes related to androgen, progesterone, and glucocorticoid insensitivity suggesting minimal off-target effects. Finally, the fact that FKBP52 is already a validated target of the clinically approved immunosuppressive drug, FK506 (Tacrolimus), indicates that FKBP52 is a "druggable" protein. Thus, the development of FKBP52-specific small molecule inhibitors is predicted to be a highly targeted strategy with potential for the treatment of any disease that is dependent on a functional AR, GR, and/or PR signaling pathway. Much progress has been made in understanding the residues and domains critical for FKBP52 function. The proline-rich loop overhanging the FKBP52 FK1 catalytic domain is functionally important and likely represents an interaction surface within the receptor-chaperone complex. Thus, the targeting of FKBP52 proline-rich loop interactions is the most attractive therapeutic approach to disrupt FKBP52 regulation of receptor activity in steroid hormone receptor-dependent physiology and disease. PMID:25986565

  12. Novel bioluminescent binding assays for interaction studies of protein/peptide hormones with their receptors.

    PubMed

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-05-01

    Protein/peptide hormones are the largest group of endogenous signaling molecules and exert various biological functions by binding to specific cell membrane receptors. To study the interactions between these hormones and their receptors, quantitative ligand-receptor binding assays have been widely used for decades. However, the assays conventionally relied on the use of radioligands, which have some major drawbacks and can only be used in laboratories with a radioactive material license. We recently developed novel bioluminescent binding assays for several protein/peptide hormones using the brightest bioluminescent reporter known to date, nanoluciferase (NanoLuc). The NanoLuc reporter can be either chemically conjugated to an appropriate position, or genetically fused at one terminus, of protein/peptide hormones. Compared to conventional radioligands, these bioluminescent ligands have higher sensitivity, better safety, and longer shelf lives, and thus, represent a novel class of non-radioactive tracers for quantitative receptor binding assays. In the present review, we provide some general considerations and specific examples for setting up the bioluminescent binding assays. Such techniques can be applied to other protein/peptide hormones in future to facilitate their interaction studies with their receptors. PMID:27020777

  13. IL-12 receptordeficiency with features of autoimmunity and photosensitivity.

    PubMed

    Ling, Galina; Ling, Eduard; Broides, Arnon; Poran Feldman, Hagit; Levy, Jacov; Garty, Ben-Zion; Nahum, Amit

    2016-05-01

    Primary immunodeficiences are often accompanied by autoimmune phenomena. IL-12 receptor deficiency is a well characterized primary immunodeficiency that leads to propensity to intracellular infections mainly with mycobacteria and Salmonella. We report on two patients with IL-12 receptor β1 deficiency that presented with autoimmune manifestations and photosensitivity dermatitis and describe possible pathogenetic mechanisms leading to development of clinically significant autoimmune phenomena. PMID:26761636

  14. Growth hormone deficiency due to traumatic brain injury in a patient with X-linked congenital adrenal hypoplasia.

    PubMed

    Engiz, Ozlem; Ozön, Alev; Riepe, Felix; Alikaşifoğlu, Ayfer; Gönç, Nazli; Kandemir, Nurgün

    2010-01-01

    X-linked adrenal hypoplasia congenita (AHC) is characterized by primary adrenal insufficiency and is frequently associated with hypogonadotropic hypogonadism (HH). The production of other pituitary hormones (adrenocorticotropic hormone [ACTH], growth hormone [GH], thyroid-stimulating hormone [TSH], and prolactin [PRL]) is usually normal. Mutations of the DAX-1 gene have been reported in patients with AHC and HH. We present a 13-year-old male patient with AHC caused by a nonsense mutation in the DAX-1 gene who developed GH deficiency following head trauma. He showed signs of adrenal insufficiency at the age of 23 months, and glucocorticoid and mineralocorticoid treatment was started. His parents reported head trauma due to a traffic accident at the age of 21 months. Adrenal computed tomography revealed hypoplasia of the left and agenesis of the right adrenal gland. Decreased growth rate was noted at the age of 12.5 years while receiving hydrocortisone 15 mg/m2/day. His height was 139.9 cm (-1.46 SD), body weight was 54.9 kg, pubic hair was Tanner stage 1, and testis size was 3 ml. His bone age was 7 years. His gonadotropin (follicle-stimulating hormone [FSH], luteinizing hormone [LH]) and testosterone levels were prepubertal. The evaluation of GH/insulin-like growth factor-1 (IGF-1) secretion at the age of 13 years revealed GH deficiency. Pituitary magnetic resonance imaging demonstrated a hypoplastic hypophysis (< 2.5 mm) and a normal infundibulum. GH treatment (0.73 IU/kg/week) was started. This paper reports a patient with genetically confirmed AHC demonstrating GH deficiency possibly due to a previous head trauma. Complete pituitary evaluation should be performed in any child who has survived severe traumatic brain injury. PMID:20718192

  15. Toxicity of teriflunomide in aryl hydrocarbon receptor deficient mice.

    PubMed

    Redaelli, Chiara; Gaffarogullari, Ece Cazibe; Brune, Maik; Pilz, Caroline; Becker, Simon; Sonner, Jana; Jäschke, Andres; Gröne, Hermann-Josef; Wick, Wolfgang; Platten, Michael; Lanz, Tobias Volker

    2015-12-01

    The intracellular transcription factor aryl hydrocarbon receptor (AHR) is bound and activated by xenobiotics, thereby promoting their catabolism by inducing expression of cytochrome P450 oxidase (CYP) genes through binding xenobiotic response elements (XRE) in their promoter region. In addition, it is involved in several cellular pathways like cell proliferation, differentiation, regeneration, tumor invasiveness and immune responses. Several pharmaceutical compounds like benzimidazoles activate the AHR and induce their own metabolic degradation. Using newly generated XRE-reporter mice, which allow in vivo bioluminescence imaging of AHR activation, we show here that the AHR is activated in vivo by teriflunomide (TER), which has recently been approved for the treatment of multiple sclerosis. While we did not find any evidence that the AHR mediates the immunomodulatory effects of TER, AHR activation led to metabolism and detoxification of teriflunomide, most likely via CYP. Mice deficient for the AHR show higher blood levels of teriflunomide, suffer from enhanced thrombo- and leukopenia and elevated liver enzymes as well as from severe gastrointestinal ulcers and bleeding which are lethal after 8-11 days of treatment. Leukopenia, acute liver damage and diarrhea have also been described as common side effects in human trials with TER. These data suggest that the AHR is relevant for detoxification not only of environmental toxins but also of drugs in clinical use, with potential implications for the application of AHR-modifying therapies in conjunction to TER in humans. The XRE-reporter mouse is a useful novel tool for monitoring AHR activation using in vivo imaging. PMID:26341389

  16. Structural and Functional Divergence of Growth Hormone-Releasing Hormone Receptors in Early Sarcopterygians: Lungfish and Xenopus

    PubMed Central

    Tam, Janice K. V.; Chow, Billy K. C.; Lee, Leo T. O.

    2013-01-01

    The evolutionary trajectories of growth hormone-releasing hormone (GHRH) receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR) in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR2 in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP) receptor (PRPR). In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi) and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR2 in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR2 was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR2 had the highest expression in brain, and interestingly, X. laevis GHRHR2 also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR2, which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP. PMID:23308232

  17. Structural and functional divergence of growth hormone-releasing hormone receptors in early sarcopterygians: lungfish and Xenopus.

    PubMed

    Tam, Janice K V; Chow, Billy K C; Lee, Leo T O

    2013-01-01

    The evolutionary trajectories of growth hormone-releasing hormone (GHRH) receptor remain enigmatic since the discovery of physiologically functional GHRH-GHRH receptor (GHRHR) in non-mammalian vertebrates in 2007. Interestingly, subsequent studies have described the identification of a GHRHR(2) in chicken in addition to the GHRHR and the closely related paralogous receptor, PACAP-related peptide (PRP) receptor (PRPR). In this article, we provide information, for the first time, on the GHRHR in sarcopterygian fish and amphibians by the cloning and characterization of GHRHRs from lungfish (P. dolloi) and X. laevis. Sequence alignment and phylogenetic analyses demonstrated structural resemblance of lungfish GHRHR to their mammalian orthologs, while the X. laevis GHRHR showed the highest homology to GHRHR(2) in zebrafish and chicken. Functionally, lungfish GHRHR displayed high affinity towards GHRH in triggering intracellular cAMP and calcium accumulation, while X. laevis GHRHR(2) was able to react with both endogenous GHRH and PRP. Tissue distribution analyses showed that both lungfish GHRHR and X. laevis GHRHR(2) had the highest expression in brain, and interestingly, X. laevis(GHRHR2) also had high abundance in the reproductive organs. These findings, together with previous reports, suggest that early in the Sarcopterygii lineage, GHRHR and PRPR have already established diverged and specific affinities towards their cognate ligands. GHRHR(2), which has only been found in xenopus, zebrafish and chicken hitherto, accommodates both GHRH and PRP. PMID:23308232

  18. Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors

    PubMed Central

    Shaak, Thomas L.; Wijesinghe, Dayanjan S.; Chalfant, Charles E.; Diegelmann, Robert F.; Ward, Kevin R.; Loria, Roger M.

    2013-01-01

    DHEA, 17α-AED, 17β-AED, and 17β-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17β-AED, and 17β-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERβ may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects. PMID:24729874

  19. TRα receptor mutations extend the spectrum of syndromes of reduced sensitivity to thyroid hormone.

    PubMed

    Vlaeminck-Guillem, Virginie; Espiard, Stéphanie; Flamant, Frédéric; Wémeau, Jean-Louis

    2015-11-01

    Since 2012, eight different abnormalities have been described in the THRA gene (encoding the TRα1 thyroid hormone receptor) of 14 patients from 9 families. These mutations induce a clinical phenotype (resistance to thyroid hormone type α) associating symptoms of untreated mild congenital hypothyroidism and a near-normal range of free and total thyroid hormones and TSH (the T4/T3 ratio is nevertheless usually low). The phenotype can diversely include short stature (due to growth retardation), dysmorphic syndrome (face and limb extremities), psychoneuromotor disorders, constipation and bradycardia. The identified genetic abnormalities are located within the ligand-binding domain and result in defective T3 binding, an abnormally strong interaction with corepressors and a dominant negative activity against still functional receptors. The identification of patients with consistent phenotypes and the underlying mutations are warranted to better delineate the spectrum of the syndromes of reduced sensitivity to thyroid hormone. PMID:26585273

  20. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    SciTech Connect

    Billestrup, N.; Moeldrup, A.; Serup, P.; Nielsen, J.H. ); Mathews, L.S.; Norstedt, G. )

    1990-09-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, the authors have transfected a GH receptor cDNA under the transcriptional control of the human metallothionein promoter into RIN5-AH cells. The transfected cells were found to exhibit an increased expression of GH receptors and to contain a specific GH receptor mRNA that was not expressed in the parent cell line. The expression of GH receptors in one clone (1.24) selected for detailed analysis was increased 2.6-fold compared to untransfected cells. The increased GH receptor expression was accompanied by an increased responsiveness to GH. Thus, the maximal GH-stimulated increase of insulin biosynthesis was 4.1-fold in 1.24 cells compared to 1.9-fold in the nontransfected RIN5-AH cells. The expression of the transfected receptor was stimulated 1.6- and 2.3-fold when cells were cultured in the presence of 25 or 50 {mu}M Zn{sup 2+} was associated with an increased magnitude of GH-stimulated insulin biosynthesis. A close stoichiometric relationship between the level of receptor expression and the level of GH-stimulated insulin biosynthesis was observed. They conclude from these results that the hepatic GH receptor is able to mediate the effect of GH on insulin biosynthesis in RIN5-AH cells.

  1. Effects of thyroid hormone deficiency on electrocardiogram findings of congenitally hypothyroid neonates.

    PubMed

    Asami, T; Suzuki, H; Yazaki, S; Sato, S; Uchiyama, M

    2001-08-01

    and log (TSH). From these results we conclude that the deficiency of thyroid hormones does not affect ECG findings of congenitally hypothyroid neonates. This may be consistent with the unexpectedly mild signs and symptoms of screen-detected hypothyroid neonates. PMID:11525269

  2. Identification of Androgen Receptor Splice Variants in the Pten Deficient Murine Prostate Cancer Model.

    PubMed

    Liang, Mengmeng; Adisetiyo, Helty; Li, Xiuqing; Liu, Xiuqing; Liu, Ren; Gill, Parkash; Roy-Burman, Pradip; Jones, Jeremy O; Mulholland, David J

    2015-01-01

    Androgen receptor (AR) variants are associated with resistance to anti androgen therapy both in human prostate cancer cell lines and clinical samples. These observations support the hypothesis that AR isoform accumulation is a consequence of selective therapeutic pressure on the full length AR. The Pten deficient prostate cancer model proceeds with well-defined kinetics including progression to castration resistant prostate cancer (CRPC). While surgical castration and enzalutamide treatments yield an initial therapeutic response, Pten-/-epithelia continue to proliferate yielding locally invasive primary tumor pathology. That most epithelium remains AR positive, but ligand independent, suggests the presence of oncogenic AR variants. To address this hypothesis, we have used a panel of recently described Pten-/- tumor cell lines derived from both from hormone intact (E4, E8) and castrated Pten mutants (cE1, cE2) followed by RACE PCR to identify and characterize three novel truncated, amino terminus containing AR variants (mAR-Va, b, c). Variants appear not only conserved throughout progression but are correlated with nearly complete loss of full length AR (AR-FL) at castrate androgen levels. The overexpression of variants leads to enhanced transcriptional activity of AR while knock down studies show reduced transcriptional output. Collectively, the identification of truncated AR variants in the conditional PTEN deletion model supports a role for maintaining the CRPC phenotype and provides further therapeutic applications of this preclinical model. PMID:26196517

  3. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity

    PubMed Central

    Taschler, U; Eichmann, T O; Radner, F P W; Grabner, G F; Wolinski, H; Storr, M; Lass, A; Schicho, R; Zimmermann, R

    2015-01-01

    Background and Purpose Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects μ-opioid receptorreceptor) signalling, a parallel pathway regulating gut motility. Experimental Approach Gut motility was investigated by monitoring Evans Blue transit and colonic bead propulsion in response to MGL inhibition and CB1 receptor or μ receptor stimulation. Ileal contractility was investigated by electrical field stimulation. CB1 receptor expression in ileum and colon was assessed by immunohistochemical analyses. Key Results Pharmacological inhibition of MGL slowed down whole gut transit in a CB1 receptor-dependent manner. Conversely, genetic deletion of MGL did not affect gut transit despite increased 2-AG levels. Notably, MGL deficiency caused complete insensitivity to CB1 receptor agonist-mediated inhibition of whole gut transit and ileal contractility suggesting local desensitization of CB1 receptors. Accordingly, immunohistochemical analyses of myenteric ganglia of MGL-deficient mice revealed that CB1 receptors were trapped in endocytic vesicles. Finally, MGL-deficient mice displayed accelerated colonic propulsion and were hypersensitive to μ receptor agonist-mediated inhibition of colonic motility. This phenotype was reproduced by chronic pharmacological inhibition of MGL. Conclusion and Implications Constantly elevated 2-AG levels induce severe desensitization of intestinal CB1 receptors and increased sensitivity to μ receptor-mediated inhibition of colonic motility. These changes should be considered when cannabinoid-based drugs are used in the therapy of gastrointestinal diseases. PMID:26075589

  4. Receptor domains involved in signal transduction of prolactin and growth hormone

    SciTech Connect

    Kelly, P.A.; Edery, M.; Finidori, J.

    1994-12-31

    Prolactin (PRL) and growth hormone (GH) receptors are members of a superfamily that include receptors for a number of cytokines. GH and its receptor form an unusual homodimer consisting of one molecule of GH and two molecules of receptor. A similar homodimer of the PRL receptor is probably required for biological effects to be seen. Using specific assays to measure the functional activity of PRL and GH receptors, a 25 amino acid juxtamembrane region has been identified as essential but not sufficient for normal action. More detailed studies have limited the region to eight amino acids, rich in prolines, that is highly conserved in many members of the receptor superfamily. Finally, GH and PRL have been shown to induce the rapid tyrosine phosphorylation of an associated kinase, Janus kinase 2, and of the receptor itself. 28 refs., 1 fig.

  5. Hormones

    MedlinePlus

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  6. Expression and regulation of neuromedin B in pituitary corticotrophs of male melanocortin 2 receptor-deficient mice.

    PubMed

    Kameda, Hiraku; Miyoshi, Hideaki; Shimizu, Chikara; Nagai, So; Nakamura, Akinobu; Kondo, Takuma; Chida, Dai; Atsumi, Tatsuya

    2014-07-01

    The hypothalamic-pituitary-adrenal (HPA) axis is a major part of the neuroendocrine system that controls responses to stress, and has an important function in the regulation of various body processes. We previously created a mouse line deficient in the melanocortin 2 receptor (MC2R). MC2R-deficient mice (MC2R(-/-) mice) have high adrenocorticotropic hormone (ACTH) levels because of undetectable corticosterone levels. Increased neuromedin B (NMB) expression was recently reported in the pituitary gland of adrenalectomized mice, a model for acute adrenal insufficiency. To investigate gene expression in the pituitary gland under chronic adrenal deficiency, we examined the pituitary gland of MC2R(-/-) mice, a model of chronic adrenal insufficiency. To understand the molecular background of pituitary cells under chronic adrenal deficiency, we first performed DNA microarray analyses using the pituitary glands of the MC2R(-/-) mice. The DNA microarray analysis and real-time polymerase chain reaction showed that NMB expression was higher in the MC2R(-/-) than in the wild-type (WT) mice. We detected NMB expression in the MC2R(-/-) pituitary corticotrophs by immunohistochemistry using the specific antibodies for ACTH and NMB. In addition, the plasma NMB concentration was significantly higher in the MC2R(-/-) mice than in the WT mice. Subcutaneous implantation of a sustained-release corticosterone pellet decreased the expression of NMB mRNA as well as pituitary proopiomelanocortin mRNA. In isolated anterior pituitary cells, NMB mRNA expression was increased by the administration of corticotropin-releasing hormone (CRH) and was suppressed by dexamethasone treatment. In this study, we first demonstrate NMB expression in corticotrophs and its regulation by CRH and glucocorticoids. Furthermore, corticotrophs seemed to secrete NMB into the systemic circulation. PMID:24742195

  7. Steroid hormones, steroid receptors, and breast cancer stem cells.

    PubMed

    Finlay-Schultz, Jessica; Sartorius, Carol A

    2015-06-01

    The ovarian hormones progesterone and estrogen play important roles in breast cancer etiology, proliferation, and treatment. Androgens may also contribute to breast cancer risk and progression. In recent years, significant advances have been made in defining the roles of these steroid hormones in stem cell homeostasis in the breast. Stem cells are potential origins of breast cancer and may dictate tumor phenotype. At least a portion of breast cancers are proposed to be driven by cancer stem cells (CSCs), cells that mimic the self-renewing and repopulating properties of normal stem cells, and can confer drug resistance. Progesterone has been identified as the critical hormone regulating normal murine mammary stem cell (MaSC) populations and normal human breast stem cells. Synthetic progestins increase human breast cancer risk; one theory speculates that this occurs through increased stem cells. Progesterone treatment also increases breast CSCs in established breast cancer cell lines. This is mediated in part through progesterone regulation of transcription factors, signal transduction pathways, and microRNAs. There is also emerging evidence that estrogens and androgens can regulate breast CSC numbers. The evolving concept that a breast CSC phenotype is dynamic and can be influenced by cell signaling and external cues emphasizes that steroid hormones could be crucial players in controlling CSC number and function. Here we review recent studies on steroid hormone regulation of breast CSCs, and discuss mechanisms by which this occurs. PMID:26265122

  8. Analysis of Paired Primary-Metastatic Hormone-Receptor Positive Breast Tumors (HRPBC) Uncovers Potential Novel Drivers of Hormonal Resistance

    PubMed Central

    Manso, Luis; Mourón, Silvana; Tress, Michael; Gómez-López, Gonzalo; Morente, Manuel; Ciruelos, Eva; Rubio-Camarillo, Miriam; Rodriguez-Peralto, Jose Luis; Pujana, Miguel A.; Pisano, David G.; Quintela-Fandino, Miguel

    2016-01-01

    We sought to identify genetic variants associated with disease relapse and failure to hormonal treatment in hormone-receptor positive breast cancer (HRPBC). We analyzed a series of HRPBC with distant relapse, by sequencing pairs (n = 11) of tumors (primary and metastases) at >800X. Comparative genomic hybridization was performed as well. Top hits, based on the frequency of alteration and severity of the changes, were tested in the TCGA series. Genes determining the most parsimonious prognostic signature were studied for their functional role in vitro, by performing cell growth assays in hormonal-deprivation conditions, a setting that mimics treatment with aromatase inhibitors. Severe alterations were recurrently found in 18 genes in the pairs. However, only MYC, DNAH5, CSFR1, EPHA7, ARID1B, and KMT2C preserved an independent prognosis impact and/or showed a significantly different incidence of alterations between relapsed and non-relapsed cases in the TCGA series. The signature composed of MYC, KMT2C, and EPHA7 best discriminated the clinical course, (overall survival 90,7 vs. 144,5 months; p = 0.0001). Having an alteration in any of the genes of the signature implied a hazard ratio of death of 3.25 (p<0.0001), and early relapse during the adjuvant hormonal treatment. The presence of the D348N mutation in KMT2C and/or the T666I mutation in the kinase domain of EPHA7 conferred hormonal resistance in vitro. Novel inactivating mutations in KMT2C and EPHA7, which confer hormonal resistance, are linked to adverse clinical course in HRPBC. PMID:27195705

  9. Analysis of Paired Primary-Metastatic Hormone-Receptor Positive Breast Tumors (HRPBC) Uncovers Potential Novel Drivers of Hormonal Resistance.

    PubMed

    Manso, Luis; Mourón, Silvana; Tress, Michael; Gómez-López, Gonzalo; Morente, Manuel; Ciruelos, Eva; Rubio-Camarillo, Miriam; Rodriguez-Peralto, Jose Luis; Pujana, Miguel A; Pisano, David G; Quintela-Fandino, Miguel

    2016-01-01

    We sought to identify genetic variants associated with disease relapse and failure to hormonal treatment in hormone-receptor positive breast cancer (HRPBC). We analyzed a series of HRPBC with distant relapse, by sequencing pairs (n = 11) of tumors (primary and metastases) at >800X. Comparative genomic hybridization was performed as well. Top hits, based on the frequency of alteration and severity of the changes, were tested in the TCGA series. Genes determining the most parsimonious prognostic signature were studied for their functional role in vitro, by performing cell growth assays in hormonal-deprivation conditions, a setting that mimics treatment with aromatase inhibitors. Severe alterations were recurrently found in 18 genes in the pairs. However, only MYC, DNAH5, CSFR1, EPHA7, ARID1B, and KMT2C preserved an independent prognosis impact and/or showed a significantly different incidence of alterations between relapsed and non-relapsed cases in the TCGA series. The signature composed of MYC, KMT2C, and EPHA7 best discriminated the clinical course, (overall survival 90,7 vs. 144,5 months; p = 0.0001). Having an alteration in any of the genes of the signature implied a hazard ratio of death of 3.25 (p<0.0001), and early relapse during the adjuvant hormonal treatment. The presence of the D348N mutation in KMT2C and/or the T666I mutation in the kinase domain of EPHA7 conferred hormonal resistance in vitro. Novel inactivating mutations in KMT2C and EPHA7, which confer hormonal resistance, are linked to adverse clinical course in HRPBC. PMID:27195705

  10. International Union of Basic and Clinical Pharmacology. XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors.

    PubMed

    Gardella, Thomas J; Vilardaga, Jean-Pierre

    2015-01-01

    The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein-coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic "two-site" mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gα(s)/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors. PMID:25713287

  11. Presence of a putative steroidal allosteric site on glycoprotein hormone receptors.

    PubMed

    Rossi, Mario; Dimida, Antonio; Ferrarini, Eleonora; Silvano, Elena; De Marco, Giuseppina; Agretti, Patrizia; Aloisi, Gabriella; Simoncini, Tommaso; Di Bari, Lorenzo; Tonacchera, Massimo; Giorgi, Franco; Maggio, Roberto

    2009-11-25

    In a previous work we found that the insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), inhibits the accumulation of cAMP as induced by the bovine thyroid stimulating hormone (bTSH) in cells transfected with the TSH receptor. In this work, we demonstrate that the DDT molecular analogues, diethylstilbestrol and quercetine, are more potent inhibitors of the TSH receptor activity than DDT itself. The notion that all these compounds interfere with nuclear estrogen receptors, as either agonists (DDT and diethylstilbestrol) or antagonists (quercetin), prompted us to test the ability of the steroid hormone 17-beta-estradiol to inhibit the TSH receptor activity. We found that estrogen exposure causes a modest but significant inhibition of the bTSH induced cAMP accumulation both in transfected CHO-TSH receptor and Fischer Rat Thyroid Low Serum 5% (FRTL-5) cells. When applied to CHO cells transfected with the luteinizing hormone receptor, 17-beta-estradiol proved capable of inhibiting the hCG induced cAMP accumulation at a concentration as low as 10nM, though the effect was not greater than 35%. The effect of 17-beta-estradiol was not estrogen receptors mediated, as co-transfection of the estrogen receptor alpha and beta subunits with LH receptor caused cAMP to increase above the level attained by the sole hCG stimulation, and not to decrease it as expected. These data suggest the presence of a steroidal-like allosteric binding site on glycoprotein hormone receptors. PMID:19766106

  12. Identification and optimization of small-molecule agonists of the human relaxin hormone receptor RXFP1.

    PubMed

    Xiao, Jingbo; Huang, Zaohua; Chen, Catherine Z; Agoulnik, Irina U; Southall, Noel; Hu, Xin; Jones, Raisa E; Ferrer, Marc; Zheng, Wei; Agoulnik, Alexander I; Marugan, Juan J

    2013-01-01

    The anti-fibrotic, vasodilatory and pro-angiogenic therapeutic properties of recombinant relaxin peptide hormone have been investigated in several diseases, and recent clinical trial data has shown benefit in treating acute heart failure. However, the remodelling capacity of these peptide hormones is difficult to study in chronic settings because of their short half-life and the need for intravenous administration. Here we present the first small-molecule series of human relaxin/insulin-like family peptide receptor 1 agonists. These molecules display similar efficacy as the natural hormone in several functional assays. Mutagenesis studies indicate that the small molecules activate relaxin receptor through an allosteric site. These compounds have excellent physical and in vivo pharmacokinetic properties to support further investigation of relaxin biology and animal efficacy studies of the therapeutic benefits of relaxin/insulin-like family peptide receptor 1 activation. PMID:23764525

  13. Proteolytic activity of the purified hormone-binding subunit in the estrogen receptor.

    PubMed Central

    Molinari, A M; Abbondanza, C; Armetta, I; Medici, N; Minucci, S; Moncharmont, B; Nigro, V; Puca, G A

    1991-01-01

    The hormone-binding subunit of the calf uterus estradiol receptor was purified as a hormone-free molecule. Immunoaffinity chromatography with a specific monoclonal antibody was used as the final step. The purified subunit was specifically labeled by radioactive diisopropyl fluorophosphate. The diisopropyl fluorophosphate-labeled amino acid was serine. The purified receptor was able to release the fluorogenic or chromogenic group from synthetic peptides containing phenylalanine at the carboxyl terminus. This occurred only in the presence of estradiol and was hampered by aprotinin and diisopropyl fluorophosphate. Estradiol-dependent hydrolytic activity was also found in the eluate from gel slices after SDS/PAGE of purified receptor. This activity comigrated with the renaturable estradiol-binding activity. The estradiol antagonists 4-hydroxytamoxifen and ICI 164,384 as well as other steroid hormones were unable to activate this hydrolytic activity. Images PMID:1709742

  14. Proteolytic activity of the purified hormone-binding subunit in the estrogen receptor.

    PubMed

    Molinari, A M; Abbondanza, C; Armetta, I; Medici, N; Minucci, S; Moncharmont, B; Nigro, V; Puca, G A

    1991-05-15

    The hormone-binding subunit of the calf uterus estradiol receptor was purified as a hormone-free molecule. Immunoaffinity chromatography with a specific monoclonal antibody was used as the final step. The purified subunit was specifically labeled by radioactive diisopropyl fluorophosphate. The diisopropyl fluorophosphate-labeled amino acid was serine. The purified receptor was able to release the fluorogenic or chromogenic group from synthetic peptides containing phenylalanine at the carboxyl terminus. This occurred only in the presence of estradiol and was hampered by aprotinin and diisopropyl fluorophosphate. Estradiol-dependent hydrolytic activity was also found in the eluate from gel slices after SDS/PAGE of purified receptor. This activity comigrated with the renaturable estradiol-binding activity. The estradiol antagonists 4-hydroxytamoxifen and ICI 164,384 as well as other steroid hormones were unable to activate this hydrolytic activity. PMID:1709742

  15. In silico modelling of prostacyclin and other lipid mediators to nuclear receptors reveal novel thyroid hormone receptor antagonist properties.

    PubMed

    Perez Diaz, Noelia; Zloh, Mire; Patel, Pryank; Mackenzie, Louise S

    2016-01-01

    Prostacyclin (PGI2) is a key mediator involved in cardiovascular homeostasis, acting predominantly on two receptor types; cell surface IP receptor and cytosolic peroxisome proliferator activated receptor (PPAR) β/δ. Having a very short half-life, direct methods to determine its long term effects on cells is difficult, and little is known of its interactions with nuclear receptors. Here we used computational chemistry methods to investigate the potential for PGI2, beraprost (IP receptor agonist), and GW0742 (PPARβ/δ agonist), to bind to nuclear receptors, confirmed with pharmacological methods. In silico screening predicted that PGI2, beraprost, and GW0742 have the potential to bind to different nuclear receptors, in particular thyroid hormone β receptor (TRβ) and thyroid hormone α receptor (TRα). Docking analysis predicts a binding profile to residues thought to have allosteric control on the TR ligand binding site. Luciferase reporter assays confirmed that beraprost and GW0742 display TRβ and TRα antagonistic properties; beraprost IC50 6.3×10(-5)mol/L and GW0742 IC50 4.9×10(-6)mol/L. Changes to triiodothyronine (T3) induced vasodilation of rat mesenteric arteries measured on the wire myograph were measured in the presence of the TR antagonist MLS000389544 (10(-5)mol/L), beraprost (10(-5)mol/L) and GW0742 (10(-5)mol/L); all significantly inhibited T3 induced vasodilation compared to controls. We have shown that both beraprost and GW0742 exhibit TRβ and TRα antagonist behaviour, and suggests that PGI2 has the ability to affect the long term function of cells through binding to and inactivating thyroid hormone receptors. PMID:26686607

  16. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation

    PubMed Central

    Okazaki, Makoto; Ferrandon, Sebastien; Vilardaga, Jean-Pierre; Bouxsein, Mary L.; Potts, John T.; Gardella, Thomas J.

    2008-01-01

    The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor that plays critical roles in bone and mineral ion metabolism. Ligand binding to the PTHR involves interactions to both the amino-terminal extracellular (N) domain, and transmembrane/extracellular loop, or juxtamembrane (J) regions of the receptor. Recently, we found that PTH(1–34), but not PTH-related protein, PTHrP(1–36), or M-PTH(1–14) (M = Ala/Aib1,Aib3,Gln10,Har11,Ala12,Trp14,Arg19), binds to the PTHR in a largely GTPγS-resistant fashion, suggesting selective binding to a novel, high-affinity conformation (R0), distinct from the GTPγS-sensitive conformation (RG). We examined the effects in vitro and in vivo of introducing the M substitutions, which enhance interaction to the J domain, into PTH analogs extended C-terminally to incorporate residues involved in the N domain interaction. As compared with PTH(1–34), M-PTH(1–28) and M-PTH(1–34) bound to R0 with higher affinity, produced more sustained cAMP responses in cells, formed more stable complexes with the PTHR in FRET and subcellular localization assays, and induced more prolonged calcemic and phosphate responses in mice. Moreover, after 2 weeks of daily injection in mice, M-PTH(1–34) induced larger increases in trabecular bone volume and greater increases in cortical bone turnover, than did PTH(1–34). Thus, the putative R0 PTHR conformation can form highly stable complexes with certain PTH ligand analogs and thereby mediate surprisingly prolonged signaling responses in bone and/or kidney PTH target cells. Controlling, via ligand analog design, the selectivity with which a PTH ligand binds to R0, versus RG, may be a strategy for optimizing signaling duration time, and hence therapeutic efficacy, of PTHR agonist ligands. PMID:18946036

  17. Localization and synthesis of the hormone-binding regions of the human thyrotropin receptor

    SciTech Connect

    Atassi, M.Z.; Manshouri, T. ); Sakata, Shigeki )

    1991-05-01

    Two regions of human thyrotropin (thyroid-stimulating hormone, TSH) receptor (TSHR) were selected on the basis that they exhibit no sequence resemblance to luteinizing hormone/chorionic gonadotropin receptor. Five synthetic overlapping peptides (12-30, 24-44, 308-328, 324-344, and 339-364) were studied for their ability to bind {sup 125}I-labeled human TSH (hTSH), its isolated {alpha} and {beta} subunits, bovine TSH, ovine TSH, human luteinizing hormone, and human follicle-stimulating hormone. The human TSHR peptides 12-30 and 324-344 exhibited remarkable binding activity to human, bovine, and ovine TSH and to the {beta} chain of hTSH. Lower binding activity resided in the adjacent overlapping peptides, probably due to the contribution of the shared overlap to the binding. The specificity of TSH binding to these peptides was confirmed by their inability to bind human luteinizing hormone, human follicle-stimulating hormone, and the {alpha} chain of hTSH. Thyrotropins did not bind to bovine serum albumin or to peptide controls unrelated to the TSHR system. It is concluded that the binding of TSH to its receptor involves extensive contacts and that the TSHR peptides 12-30 and 324-344 contain specific binding regions for TSH that might be either independent sites or two faces (subsites) within a large binding site.

  18. Regulation of insulin-like growth factor II receptors by growth hormone and insulin in rat adipocytes.

    PubMed Central

    Lönnroth, P; Assmundsson, K; Edén, S; Enberg, G; Gause, I; Hall, K; Smith, U

    1987-01-01

    The acute and long-term effects of growth hormone (GH) on the binding of insulin-like growth factor II (IGF-II) were evaluated in adipose cells from hypophysectomized rats given replacement therapy with thyroxine and hydrocortisone and in cells from their sham-operated littermates. After the cells were incubated with insulin and/or GH, the recycling of IGF-II receptors was metabolically inhibited by treating the cells with KCN. IGF-II binding was 100 +/- 20% higher in cells from GH-deficient animals when compared with sham-operated controls. These GH-deficient cells also showed an increased sensitivity for insulin as compared with control cells (the EC50 for insulin was 0.06 ng/ml in GH-deficient cells and 0.3 ng/ml in control cells). However, the maximal incremental effect of insulin on IGF-II binding was reduced approximately 27% by hypophysectomy. GH added to the incubation medium increased the number of IGF-II binding sites by 100 +/- 18% in cells from hypophysectomized animals. This increase was rapidly induced (t1/2, approximately 10 min), but the time course was slower than that for the stimulatory effect of insulin. Half-maximal effect of GH on IGF-II binding was obtained at approximately equal to 10 ng/ml. Thus, GH added in vitro exerted a rapid insulin-like effect on the number of IGF-II receptors. GH also appears to play a regulating role for maintaining the cellular number of IGF-II receptors and, in addition, modulates the stimulatory effect of insulin on IGF-II binding. PMID:2954159

  19. Dose dependency of time of onset of radiation-induced growth hormone deficiency

    SciTech Connect

    Clayton, P.E.; Shalet, S.M. )

    1991-02-01

    Growth hormone (GH) secretion during insulin-induced hypoglycemia was assessed on 133 occasions in 82 survivors of childhood malignant disease. All had received cranial irradiation with a dose range to the hypothalamic-pituitary axis of 27 to 47.5 Gy (estimated by a schedule of 16 fractions over 3 weeks) and had been tested on one or more occasions between 0.2 and 18.9 years after treatment. Results of one third of the GH tests were defined as normal (GH peak response, greater than 15 mU/L) within the first 5 years, in comparison with 16% after 5 years. Stepwise multiple linear regression analysis showed that dose (p = 0.007) and time from irradiation (p = 0.03), but not age at therapy, had a significant influence on peak GH responses. The late incidence of GH deficiency was similar over the whole dose range (4 of 26 GH test results normal for less than 30 Gy and 4 of 25 normal for greater than or equal to 30 Gy after 5 years), but the speed of onset over the first years was dependent on dose. We conclude that the requirement for GH replacement therapy and the timing of its introduction will be influenced by the dose of irradiation received by the hypothalamic-pituitary axis.

  20. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency.

    PubMed

    Laumonnier, Frédéric; Ronce, Nathalie; Hamel, Ben C J; Thomas, Paul; Lespinasse, James; Raynaud, Martine; Paringaux, Christine; Van Bokhoven, Hans; Kalscheuer, Vera; Fryns, Jean-Pierre; Chelly, Jamel; Moraine, Claude; Briault, Sylvain

    2002-12-01

    Physical mapping of the breakpoints of a pericentric inversion of the X chromosome (46,X,inv[X][p21q27]) in a female patient with mild mental retardation revealed localization of the Xp breakpoint in the IL1RAPL gene at Xp21.3 and the Xq breakpoint near the SOX3 gene (SRY [sex determining region Y]-box 3) (GenBank accession number NM_005634) at Xq26.3. Because carrier females with microdeletion in the IL1RAPL gene do not present any abnormal phenotype, we focused on the Xq breakpoint. However, we were unable to confirm the involvement of SOX3 in the mental retardation in this female patient. To validate SOX3 as an X-linked mental retardation (XLMR) gene, we performed mutation analyses in families with XLMR whose causative gene mapped to Xq26-q27. We show here that the SOX3 gene is involved in a large family in which affected individuals have mental retardation and growth hormone deficiency. The mutation results in an in-frame duplication of 33 bp encoding for 11 alanines in a polyalanine tract of the SOX3 gene. The expression pattern during neural and pituitary development suggests that dysfunction of the SOX3 protein caused by the polyalanine expansion might disturb transcription pathways and the regulation of genes involved in cellular processes and functions required for cognitive and pituitary development. PMID:12428212

  1. Transcription Factor SOX3 Is Involved in X-Linked Mental Retardation with Growth Hormone Deficiency

    PubMed Central

    Laumonnier, Frédéric; Ronce, Nathalie; Hamel, Ben C. J.; Thomas, Paul; Lespinasse, James; Raynaud, Martine; Paringaux, Christine; van Bokhoven, Hans; Kalscheuer, Vera; Fryns, Jean-Pierre; Chelly, Jamel; Moraine, Claude; Briault, Sylvain

    2002-01-01

    Physical mapping of the breakpoints of a pericentric inversion of the X chromosome (46,X,inv[X][p21q27]) in a female patient with mild mental retardation revealed localization of the Xp breakpoint in the IL1RAPL gene at Xp21.3 and the Xq breakpoint near the SOX3 gene (SRY [sex determining region Y]–box 3) (GenBank accession number NM_005634) at Xq26.3. Because carrier females with microdeletion in the IL1RAPL gene do not present any abnormal phenotype, we focused on the Xq breakpoint. However, we were unable to confirm the involvement of SOX3 in the mental retardation in this female patient. To validate SOX3 as an X-linked mental retardation (XLMR) gene, we performed mutation analyses in families with XLMR whose causative gene mapped to Xq26-q27. We show here that the SOX3 gene is involved in a large family in which affected individuals have mental retardation and growth hormone deficiency. The mutation results in an in-frame duplication of 33 bp encoding for 11 alanines in a polyalanine tract of the SOX3 gene. The expression pattern during neural and pituitary development suggests that dysfunction of the SOX3 protein caused by the polyalanine expansion might disturb transcription pathways and the regulation of genes involved in cellular processes and functions required for cognitive and pituitary development. PMID:12428212

  2. [Effect of second somatonorm treatment in idiopathic growth hormone deficiency dwarfism].

    PubMed

    Bao, X

    1991-12-01

    Nine previously treated idiopathic growth hormone deficiency children were treated again with recombinant hGH for one year. The dosage and route of administration were the same as those in the previous treatment. The height velocity increased from 1.5 +/- 1.0 cm/year (mean +/- SD) to 9.2 +/- 1.2 cm/year. Compared with the height velocity (10.7 +/- 0.5 cm/a) in the first year treatment, it decreased in the second year (P less than 0.05). The results also showed that the effect was better with a dosage of 0.7 IU/kg/wk divided into 7 s.c. doses than with 0.5 IU/kg/wk divided into 3 i.m. doses. Eight of the 9 cases had low serum T4 after treatment, but no symptoms of hypothyroidism were seen. Anti-hGH antibody was observed in 2 cases, though it did not affect the height velocity. No other side effects were noticed during treatment. PMID:1838961

  3. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells.

    PubMed

    Ziegler, C G; Ullrich, M; Schally, A V; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, S R

    2013-05-22

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. PMID:23267837

  4. Profile of follitropin alpha/lutropin alpha combination for the stimulation of follicular development in women with severe luteinizing hormone and follicle-stimulating hormone deficiency

    PubMed Central

    Rinaldi, Leonardo; Selman, Helmy

    2016-01-01

    A severe gonadotropin deficiency together with chronic estradiol deficiency leading to amenorrhea characterizes patients suffering from hypogonadotropic hypogonadism. Administration of both follicle-stimulating hormone (FSH) and luteinizing hormone (LH) to these patients has been shown to be essential in achieving successful stimulation of follicular development, ovulation, and rescue of fertility. In recent years, the availability of both recombinant FSH (rFSH) and recombinant LH (rLH) has provided a new therapeutic option for the stimulation of follicular growth in hypopituitary–hypogonadotropic women (World Health Organization Group I). In this article, we review the data reported in the literature to highlight the role and the efficacy of using recombinant gonadotropins, rFSH and rLH, in the treatment of women with severe LH/FSH deficiency. Although the studies on this issue are limited and the experiences available in the literature are few due to the small number of such patients, it is clearly evident that the recombinant gonadotropins rFSH and rLH are efficient in treating patients affected by hypogonadotropic hypogonadism. The results observed in the studies reported in this review suggest that recombinant gonadotropins are able to induce proper follicular growth, oocyte maturation, and eventually pregnancy in this group of women. Moreover, the clinical use of recombinant gonadotropins in this type of patients has given more insight into some endocrinological aspects of ovarian function that have not yet been fully understood. PMID:27307766

  5. The Role of Steroid Receptor Coactivators in Hormone Dependent Cancers and Their Potential as Therapeutic Targets.

    PubMed

    Wang, Lei; Lonard, David M; O'Malley, Bert W

    2016-08-01

    Steroid receptor coactivator (SRC) family members (SRC-1, SRC-2, SRC-3) interact with nuclear receptors (NRs) and many transcription factors to enhance target gene transcription. Deregulation of SRCs is widely implicated in NR mediated diseases, especially hormone dependent cancers. By integrating steroid hormone signaling and growth factor pathways, SRC proteins exert multiple modes of oncogenic regulation in cancers and represent emerging targets for cancer therapeutics. Recent work has identified SRC-targeting agents that show promise in blocking tumor growth in vitro and in vivo, and have the potential to function as powerful and broadly encompassing treatments for different cancers. PMID:27125199

  6. CORAL: prediction of binding affinity and efficacy of thyroid hormone receptor ligands.

    PubMed

    Toropova, A P; Toropov, A A; Benfenati, E

    2015-08-28

    Quantitative structure - activity relationships (QSARs) for binding affinity of thyroid hormone receptors based on attributes of molecular structure extracted from simplified molecular input-line entry systems (SMILES) are established using the CORAL software (http://www.insilico.eu/coral). The half maximal inhibitory concentration (IC50) is used as the measure of the binding affinity of thyroid hormone receptors. Molecular features which are statistically reliable promoters of increase and decrease for IC50 are suggested. The examples of modifications of molecular structure which lead to the increase or to the decrease of the endpoint are represented. PMID:26188619

  7. Minireview: Regulation of Gap Junction Dynamics by Nuclear Hormone Receptors and Their Ligands

    PubMed Central

    Kapadia, Bhumika J.

    2012-01-01

    Gap junctions are plasma membrane channels comprising connexin proteins that mediate intercellular permeability and communication. The presence, composition, and function of gap junctions can be regulated by diverse sets of physiological signals. Evidence from many hormone-responsive tissues has shown that connexin expression, modification, stability, and localization can be targeted by nuclear hormone receptors and their ligands through both transcriptional and nontranscriptional mechanisms. The focus of this review is to discuss molecular, cellular, and physiological studies that directly link receptor- and ligand-triggered signaling pathways to the regulation of gap junction dynamics. PMID:22935924

  8. Molecular analysis of the koala reproductive hormones and their receptors: gonadotrophin-releasing hormone (GnRH), follicle-stimulating hormone β and luteinising hormone β with localisation of GnRH.

    PubMed

    Busby, E R; Soeta, S; Sherwood, N M; Johnston, S D

    2014-12-01

    During evolution, reproductive hormones and their receptors in the brain-pituitary-gonadal axis have been altered by genetic mechanisms. To understand how the neuroendocrine control of reproduction evolved in mammals, it is important to examine marsupials, the closest group to placental mammals. We hypothesised that at least some of the hormones and receptors found in placental mammals would be present in koala, a marsupial. We examined the expression of koala mRNA for the reproductive molecules. Koala cDNAs were cloned from brain for gonadotrophin-releasing hormones (GnRH1 and GnRH2) or from pituitary for GnRH receptors, types I and II, follicle-stimulating hormone (FSH)β and luteinising hormone (LH)β, and from gonads for FSH and LH receptors. Deduced proteins were compared by sequence alignment and phylogenetic analysis with those of other vertebrates. In conclusion, the koala expressed mRNA for these eight putative reproductive molecules, whereas at least one of these molecules is missing in some species in the amniote lineage, including humans. In addition, GnRH1 and 2 are shown by immunohistochemistry to be expressed as proteins in the brain. PMID:25200132

  9. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis

    PubMed Central

    Hyter, Stephen; Indra, Arup K

    2013-01-01

    Skin homeostasis is maintained, in part, through regulation of gene expression orchestrated by type II nuclear hormone receptors in a cell and context specific manner. This group of transcriptional regulators is implicated in various cellular processes including epidermal proliferation, differentiation, permeability barrier formation, follicular cycling and inflammatory responses. Endogenous ligands for the receptors regulate actions during skin development and maintenance of tissue homeostasis. Type II nuclear receptor signaling is also important for cellular crosstalk between multiple cell types in the skin. Overall, these nuclear receptors are critical players in keratinocyte and melanocyte biology and present targets for cutaneous disease management. PMID:23395795

  10. Receptors bound to antiprogestin from abortive complexes with hormone responsive elements.

    PubMed

    Guiochon-Mantel, A; Loosfelt, H; Ragot, T; Bailly, A; Atger, M; Misrahi, M; Perricaudet, M; Milgrom, E

    1988-12-15

    The mechanism of action of antisteroids is not understood and explanations of their antagonistic activity have been sought at all levels of hormone action. It has been proposed that antisteroids, after binding to receptor, trap it into a non-activated (non DNA-binding) form possibly through interaction with a heat-shock protein of relative molecular mass (Mr) 90,000 (90 K), or that the antisteroids provoke binding of receptor to nonspecific DNA sites but not to hormone responsive elements (HREs), or that the antisteroid-receptor complexes can bind to HREs but form abortive complexes that fail to regulate transcription. We have constructed a deleted cDNA encoding a mutant form of rabbit progesterone receptor which exhibits constitutive activity, that is, binds to HREs in the absence of hormone and thus bypasses the first two steps discussed above. Co-transfection experiments allowed the expression of both constitutive and wild-type receptors in the same recipient cells. Antiprogestin RU486-wild-type receptor complexes completely suppressed the activity of the constitutive receptor on a reporter gene, showing that the inhibition is at the level of their common responsive elements. PMID:3200320

  11. Estrogen receptor isoforms and progestin hormone dependence in a mouse mammary tumor model.

    PubMed

    Actis, A M; Caruso, S P; Levin, E

    1994-09-01

    The close interaction between receptors and other transcription factors suggests that their corresponding transducing signals can trigger functional and structural changes in other related molecules. The effect of a progestinic agent, medroxyprogesterone acetate (MPA), on some of the estrogen-receptor (ER) parameters was studied in 2 murine mammary tumor sublines with different progestin hormone dependence for their respective growth. The relative binding affinity of estradiol and tamoxifen for the ER, the receptor content and the ER isoforms studied by HPLC were determined in the hormone-autonomous (HA) and the hormone-dependent (HD) tumor sublines. In the HA subline administration of MPA did not modify the tumor growth rate, whereas this was accelerated in the HD subline. The ER content was clearly increased in the HD tumor subline, but not in the HA subline, compared with the untreated controls. In contrast, the E2 and tamoxifen relative binding affinity for the ER and the isoform profiles were affected by MPA treatment in the HA, but not in the HD tumor subline. The functional change (decrease in relative binding affinity) can be attributed to the appearance of a lower-molecular-size ER isoform under the progestinic treatment. Modifications in one receptor molecule by the action of ligands corresponding to another type of receptor show the interconection between transcription factors and the necessity of broadening conventional concepts regarding hormone dependence in mammary tumorigenesis. PMID:8077051

  12. Immunolocalization of steroid hormone receptors in normal and tumour cells: mechanisms of their cellular traffic.

    PubMed

    Perrot-Applanat, M; Guiochon-Mantel, A; Milgrom, E

    1992-01-01

    Experimental conditions are described for the detection of steroid receptors in tissue sections or cells at the light microscope level. Current knowledge about the ultrastructural distribution of these receptors is summarized; the mechanisms of their nuclear localization are described. Karyophilic signals involved in nuclear translocation are characterized by means of in vitro mutagenesis of steroid receptor cDNAs. Studies analysing the subcellular distribution of various transfected receptor mutants in energy depleted cells together with fusion experiments provide evidence for nucleoplasmic shuttling of progesterone receptors. We conclude that the "nuclear" location of the wild type progesterone receptor reflects a dynamic equilibrium between active nuclear import and outward diffusion. We also describe the use of immunocytochemistry in pathology, especially for the detection of steroid receptors in hormone dependent tumours. PMID:1423330

  13. Identification of thyroid hormone response elements in vivo using mice expressing a tagged thyroid hormone receptor α1

    PubMed Central

    Dudazy-Gralla, Susi; Nordström, Kristina; Hofmann, Peter Josef; Meseh, Dina Abdul; Schomburg, Lutz; Vennström, Björn; Mittag, Jens

    2013-01-01

    TRα1 (thyroid hormone receptor α1) is well recognized for its importance in brain development. However, due to the difficulties in predicting TREs (thyroid hormone response elements) in silico and the lack of suitable antibodies against TRα1 for ChIP (chromatin immunoprecipitation), only a few direct TRα1 target genes have been identified in the brain. Here we demonstrate that mice expressing a TRα1–GFP (green fluorescent protein) fusion protein from the endogenous TRα locus provide a valuable animal model to identify TRα1 target genes. To this end, we analysed DNA–TRα1 interactions in vivo using ChIP with an anti-GFP antibody. We validated our system using established TREs from neurogranin and hairless, and by verifying additional TREs from known TRα1 target genes in brain and heart. Moreover, our model system enabled the identification of novel TRα1 target genes such as RNF166 (ring finger protein 166). Our results demonstrate that transgenic mice expressing a tagged nuclear receptor constitute a feasible approach to study receptor–DNA interactions in vivo, circumventing the need for specific antibodies. Models like the TRα1–GFP mice may thus pave the way for genome-wide mapping of nuclear receptor-binding sites, and advance the identification of novel target genes in vivo. PMID:23398480

  14. Ability of luteinizing hormone releasing hormone-Pseudomonas aeruginosa exotoxin 40 binding to LHRH receptor on human liver cancer cells

    PubMed Central

    Gong, Shou-Liang; Zhao, Gang; Zhao, Hong-Guang; Lü, Wen-Tian; Liu, Guang-Wei; Zhu, Ping

    2004-01-01

    AIM: To explore the ability of recombinant toxin luteinizing hormone releasing hormone-Pseudomonas aeruginosa exotoxin 40 (LHRH-PE40) and LHRH binding to LHRH receptor (LHRHR) on the membrane surface of human liver cancer HEPG cells. METHODS: LHRH was labeled by using 125I with enzymatic reaction. The affinity and receptor volume of LHRH-PE40 and LHRH binding to LHRHR on the membrane surface of human liver cancer cells were measured with radioligand receptor assay. RESULTS: The specific activity of LHRH labeled with 125I was 2.7 × 104 kBq/μL, and its radiochemical purity reached to 99.2%-99.7%. The binding of 125I to LHRH was maximal for 240 min in the warm cultivation, and this binding was stabilized. The inhibiting rates of 125I-LHRH and LHRH on the proliferation of human liver cancer HEPG cells were not significantly different. On the basis of the saturation curve of 125I-LHRH binding to the membrane LHRHR of HEPG cells, 125I-LHRH of 1 × 105 cpm was selected for radioligand receptor assay. The affinity constants (Kd) of LHRH-PE40 and LHRH binding to the membrane LHRHR of HEPG cells were 0.43 ± 0.12 nmol/L and 4.86 ± 1.47 nmol/L, respectively, and their receptor volumes were 0.37 ± 0.15 μmol/g and 0.42 ± 0.13 μmol/g, respectively. The binding of LHRH-PE40 to the membrane protein of normal liver cells was not observed. CONCLUSION: The recombinant toxin LHRH-PE40 binding to the membrane surface of LHRHR of human liver cancer HEPG cells was very strong, while the specific binding of it to normal liver cells was not observed. The results provide an important experimental basis for the clinical application of LHRH-PE. PMID:15334689

  15. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice

    PubMed Central

    Otten, Jeroen J. T.; de Jager, Saskia C. A.; Kavelaars, Annemieke; Seijkens, Tom; Bot, Ilze; Wijnands, Erwin; Beckers, Linda; Westra, Marijke M.; Bot, Martine; Busch, Matthias; Bermudez, Beatriz; van Berkel, Theo J. C.; Heijnen, Cobi J.; Biessen, Erik A. L.

    2013-01-01

    Leukocyte chemotaxis is deemed instrumental in initiation and progression of atherosclerosis. It is mediated by G-protein-coupled receptors (e.g., CCR2 and CCR5), the activity of which is controlled by G-protein-coupled receptor kinases (GRKs). In this study, we analyzed the effect of hematopoietic deficiency of a potent regulator kinase of chemotaxis (GRK2) on atherogenesis. LDL receptor-deficient (LDLr−/−) mice with heterozygous hematopoietic GRK2 deficiency, generated by bone marrow transplantation (n=15), displayed a dramatic attenuation of plaque development, with 79% reduction in necrotic core and increased macrophage content. Circulating monocytes decreased and granulocytes increased in GRK2+/− chimeras, which could be attributed to diminished granulocyte colony-forming units in bone marrow. Collectively, these data pointed to myeloid cells as major mediators of the impaired atherogenic response in GRK2+/− chimeras. LDLr−/− mice with macrophage/granulocyte-specific GRK2 deficiency (LysM-Cre GRK2flox/flox; n=8) failed to mimic the aforementioned phenotype, acquitting these cells as major responsible subsets for GRK2 deficiency-associated atheroprotection. To conclude, even partial hematopoietic GRK2 deficiency prevents atherosclerotic lesion progression beyond the fatty streak stage, identifying hematopoietic GRK2 as a potential target for intervention in atherosclerosis.—Otten, J. J. T., de Jager, S. C. A., Kavelaars, A., Seijkens, T., Bot, I., Wijnands, E., Beckers, L., Westra, M. M., Bot, M., Busch, M., Bermudez, B., van Berkel, T. J. C., Heijnen, C. J., Biessen, E. A. L. Hematopoietic G-protein-coupled receptor kinase 2 deficiency decreases atherosclerotic lesion formation in LDL receptor-knockout mice. PMID:23047899

  16. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome.

    PubMed Central

    Blum, K; Sheridan, P J; Wood, R C; Braverman, E R; Chen, T J; Cull, J G; Comings, D E

    1996-01-01

    The dopaminergic system, and in particular the dopamine D2 receptor, has been profoundly implicated in reward mechanisms in the brain. Dysfunction of the D2 dopamine receptors leads to aberrant substance seeking behaviour (alcohol, drug, tobacco, and food) and other related behaviours (pathological gambling, Tourette's syndrome, and attention deficit hyperactivity disorder). We propose that variants of the D2 dopamine receptor gene are important common genetic determinants of the 'reward deficiency syndrome'. PMID:8774539

  17. Sexual Experience Changes Sex Hormones But Not Hypothalamic Steroid Hormone Receptor Expression in Young and Middle-aged Male Rats

    PubMed Central

    Wu, Di; Gore, Andrea C.

    2009-01-01

    Testosterone is well known to regulate sexual behavior in males, but this is dependent upon prior sexual experience. Aging is associated with decreased libido and changes in testosterone, but the role of experience in these age-related processes has not been systematically studied. We examined effects of age and sexual experience on serum hormones (total testosterone, free testosterone, estradiol, LH) and on numbers of androgen receptor (AR) and estrogen receptor α (ERα) immunoreactive cells in the hypothalamus. Extensive sexual experience was given to male rats at 4 months of age. Rats were euthanized at either 4 months (young) or 12 months (middle-aged (MA)). Comparable sexually naïve male rats were handled and placed into the testing arena but did not receive any sexual experience. Thus, we had four groups: young-naïve, young-experienced, MA-naïve and MA-experienced. Serum hormone levels were assayed, and numbers of AR and ERα cells were quantified stereologically in the medial preoptic nucleus (MPN) and the anteroventral periventricular nucleus (AVPV). Sexually experienced males had significantly elevated serum testosterone and free testosterone in both age groups. Both total and free testosterone were higher, and estradiol lower, in middle-aged than young rats. Experience did not alter either AR or ERα expression in the preoptic brain regions studied. Aging was associated with increased expression of AR, but no change in ERα. These results show that sexual experience can induce short-term and long-term alterations in serum hormones but these effects are not manifested upon their receptors in the hypothalamus. PMID:19559704

  18. Effect of Dietary Selenium Deficiency on the Cell Apoptosis and the Level of Thyroid Hormones in Chicken.

    PubMed

    Huang, Yunmao; Li, Wanyan; Xu, Danning; Li, Bingxin; Tian, Yunbo; Zan, Linsen

    2016-06-01

    This study assessed the effect of dietary selenium (Se) deficiency on male reproductive function in chicken. A total of 180 Hy-line laying cocks (1 day old; Weiwei) were randomly divided into 2 groups (n = 90) of Se-deficient chickens and control chickens. The control group was fed a basic diet (containing 0.15 mg of Se/kg). The Se-deficient group was fed a Se-deficient corn-soy basal diet (containing 0.033 mg of Se/kg). Fifteen chickens were killed in each group on days 30, 60, and 90, respectively. Then, serum and testes were collected and used in the detection of experimental index. Results indicated that GSH-Px activity and Bcl-2 mRNA level in the testes and thyroidal triiodothyronine (T3) and free triiodothyronine (FT3) levels in serum by dietary Se deficiency were significantly decreased compared to the corresponding control groups. Se deficiency-treated group showed a significant increase in MDA concent, TUNEL-positive cells, and mRNA level of Bax, Caspase3, and p53 in the testes and thyroidal thyroxine (T4), free thyroxine (FT4), and thyroid-stimulating hormone (TSH) levels in serum. Histopathologically, Se deficiency caused impairments in the testes. These results suggested that dietary Se deficiency exerts significant harmful effects on male reproductive organ and that the intrinsic and extrinsic pathways and the upstream regulators such as p53, Bax, and Bcl-2 were all involved in Se deficiency-induced testicular apoptosis. PMID:26507440

  19. Characterization of the adipokinetic hormone receptor of the anautogenous flesh fly, Sarcophaga crassipalpis.

    PubMed

    Bil, Magdalena; Timmermans, Iris; Verlinden, Heleen; Huybrechts, Roger

    2016-06-01

    Adipokinetic hormone (AKH) is an insect neuropeptide mainly involved in fat body energy mobilization. In flies (Phormia regina, Sarcophaga crassipalpis), bugs (Pyrrhocoris apterus) and cockroaches (Periplaneta americana) AKH was also demonstrated to be involved in the regulation of digestion. This makes AKH an important peptide for anautogenous female flies that need to feed on a supplementary protein meal to initiate vitellogenesis, the large scale synthesis of yolk proteins and their uptake by the developing oocytes. Flesh fly AKH, originally identified as Phormia terraenovae hypertrehalosemic hormone (PhoteHrTH), functions through activation of the AKH receptor (AKHR). This is a G protein-coupled receptor that is the orthologue of the human gonadotropin-releasing hormone receptor. Pharmacological characterization indicated that the receptor can be activated by two related dipteran AKH ligands with an EC50 value in the low nanomolar range, whereas micromolar concentrations of the Tribolium castaneum AKH were needed. Consistent with the energy mobilizing function of AKH, the receptor transcript levels were most abundant in the fat body tissue. Nonetheless, Sarcophaga crassipalpis AKHR transcript levels were also high in the brain, the foregut and the hindgut. Interestingly, the receptor transcript numbers were reduced in almost all measured tissues after protein feeding. These changes may enforce the use of ingested energy carrying molecules prior to stored energy mobilization. PMID:27063262

  20. Human rhabdomyosarcoma cells express functional pituitary and gonadal sex hormone receptors: Therapeutic implications.

    PubMed

    Poniewierska-Baran, Agata; Schneider, Gabriela; Sun, Wenyue; Abdelbaset-Ismail, Ahmed; Barr, Frederic G; Ratajczak, Mariusz Z

    2016-05-01

    Evidence has accumulated that sex hormones play an important role in several types of cancer. Because they are also involved in skeletal muscle development and regeneration, we were therefore interested in their potential involvement in the pathogenesis of human rhabdomyosarcoma (RMS), a skeletal muscle tumor. In the present study, we employed eight RMS cell lines (three fusion positive and five fusion negative RMS cell lines) and mRNA samples obtained from RMS patients. The expression of sex hormone receptors was evaluated by RT-PCR and their functionality by chemotaxis, adhesion and direct cell proliferation assays. We report here for the first time that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) receptors are expressed in established human RMS cell lines as well as in primary tumor samples isolated from RMS patients. We also report that human RMS cell lines responded both to pituitary and gonadal sex hormone stimulation by enhanced proliferation, chemotaxis, cell adhesion and phosphorylation of MAPKp42/44 and AKT. In summary, our results indicate that sex hormones are involved in the pathogenesis and progression of RMS, and therefore, their therapeutic application should be avoided in patients that have been diagnosed with RMS. PMID:26983595

  1. Human rhabdomyosarcoma cells express functional pituitary and gonadal sex hormone receptors: Therapeutic implications

    PubMed Central

    PONIEWIERSKA-BARAN, AGATA; SCHNEIDER, GABRIELA; SUN, WENYUE; ABDELBASET-ISMAIL, AHMED; BARR, FREDERIC G.; RATAJCZAK, MARIUSZ Z.

    2016-01-01

    Evidence has accumulated that sex hormones play an important role in several types of cancer. Because they are also involved in skeletal muscle development and regeneration, we were therefore interested in their potential involvement in the pathogenesis of human rhabdomyosarcoma (RMS), a skeletal muscle tumor. In the present study, we employed eight RMS cell lines (three fusion positive and five fusion negative RMS cell lines) and mRNA samples obtained from RMS patients. The expression of sex hormone receptors was evaluated by RT-PCR and their functionality by chemotaxis, adhesion and direct cell proliferation assays. We report here for the first time that follicle-stimulating hormone (FSH) and luteinizing hormone (LH) receptors are expressed in established human RMS cell lines as well as in primary tumor samples isolated from RMS patients. We also report that human RMS cell lines responded both to pituitary and gonadal sex hormone stimulation by enhanced proliferation, chemotaxis, cell adhesion and phosphorylation of MAPKp42/44 and AKT. In summary, our results indicate that sex hormones are involved in the pathogenesis and progression of RMS, and therefore, their therapeutic application should be avoided in patients that have been diagnosed with RMS. PMID:26983595

  2. Anti-Müllerian Hormone Deficiency in Females With Fanconi Anemia

    PubMed Central

    Sklavos, Martha M.; Giri, Neelam; Stratton, Pamela; Alter, Blanche P.

    2014-01-01

    Context: In females with Fanconi anemia (FA), infertility is often accompanied by diminished ovarian reserve and hypergonadotropic amenorrhea before the age of 30 years, suggesting primary ovarian insufficiency (POI). POI is typically diagnosed only after perimenopausal symptoms are observed. Objective: The objective of the study was to assess whether serum anti-Müllerian hormone (AMH) levels can serve as a cycle-independent marker for the diagnosis of POI in patients with FA. Design and Setting: This observational study used the National Cancer Institute's inherited bone marrow failure syndrome cohort at the National Institutes of Health Clinical Center. Participants: The study included 22 females with FA, 20 unaffected female relatives of patients with FA, and 21 unrelated healthy females under 41 years of age. Main Outcome Measure: Serum AMH, a marker of ovarian reserve, was measured in all participants. Results: Females with FA had very low AMH levels (median 0.05 ng/mL; range 0–2.32 ng/mL; P < .001) when compared with unaffected relatives (median 2.10 ng/mL; range 0.04–4.73 ng/mL) and unrelated healthy females (median 1.92 ng/mL; range 0.31–6.64 ng/mL). All patients with FA older than 25 years of age were diagnosed with POI and had undetectable AMH levels. Conclusions: AMH deficiency appears to be a shared trait across this heterogeneous FA cohort. Substantially reduced AMH levels in females with FA suggest a primary ovarian defect associated with reduced fertility. Measurement of AMH at the time of FA diagnosis and subsequent monitoring of AMH levels at regular intervals may be useful for the timely management of complications related to POI such as subfertility/infertility, osteoporosis, and menopausal symptoms. PMID:24438373

  3. Identification and optimization of small-molecule agonists of the human relaxin hormone receptor RXFP1

    PubMed Central

    Xiao, Jingbo; Huang, Zaohua; Chen, Catherine Z.; Agoulnik, Irina U.; Southall, Noel; Hu, Xin; Jones, Raisa E.; Ferrer, Marc; Zheng, Wei; Agoulnik, Alexander I.; Marugan, Juan J.

    2016-01-01

    The anti-fibrotic, vasodilatory, and pro-angiogenic therapeutic properties of recombinant relaxin peptide hormone have been investigated in several diseases and recent clinical trial data has shown benefit in treating acute heart failure. However, the remodeling capacity of these peptide hormones is difficult to study in chronic settings due to their short half-life and the need for intravenous administration. Here we present the first small-molecule series of human relaxin receptor 1 (RXFP1) agonists. These molecules display similar efficacy as the natural hormone in several functional assays. Mutagenesis studies indicate that the small molecules activate relaxin receptor through an allosteric site. These compounds have excellent physical and in vivo pharmacokinetic properties to support further investigation of relaxin biology and animal efficacy studies of the therapeutic benefits of RXFP1 activation. PMID:23764525

  4. Hormonally-mediated Epigenetic Changes to Steroid Receptors in the Developing Brain: Implications for Sexual Differentiation

    PubMed Central

    Nugent, Bridget M.; Schwarz, Jaclyn M.; McCarthy, Margaret M.

    2010-01-01

    The establishment of sex-specific neural morphology, which underlies sex-specific behaviors, occurs during a perinatal sensitive window in which brief exposure to gonadal steroid hormones produces permanent masculinization of the brain. In the rodent, estradiol derived from testicular androgens is a principle organizational hormone. The mechanism by which transient estradiol exposure induces permanent differences in neuronal anatomy has been widely investigated, but remains elusive. Epigenetic changes, such as DNA methylation, allow environmental influences to alter long-term gene expression patterns and therefore may be a potential mediator of estradiol-induced organization of the neonatal brain. Here we review data that demonstrate sex and estradiol-induced differences in DNA methylation on the estrogen receptor α (ERα), estrogen receptor β (ERβ), and progesterone receptor (PR) promoters in sexually dimorphic brain regions across development. Contrary to the overarching view of DNA methylation as a permanent modification directly tied to gene expression, these data demonstrate that methylation patterns on steroid hormone receptors change across the life span and do not necessarily predict expression. Although further exploration into the mechanism and significance of estradiol-induced alterations in DNA methylation patterns in the neonatal brain is necessary, these results provide preliminary evidence that epigenetic alterations can occur in response to early hormone exposure and may mediate estradiol-induced organization of sex differences in the neonatal brain. PMID:20800064

  5. NEW DEVELOPMENTS IN A HAZARD IDENTIFICATION ALGORITHM FOR HORMONE RECEPTOR LIGANDS

    EPA Science Inventory

    Recently we described the COmmon REactivity PAttern (COREPA) techniques to screen data sets of diverse structures for their ability to serve as ligands for steroid hormone receptors (Environ. Sci. Technol. 31:3702-3711). The approach identifies and quantifies similar global and l...

  6. INHIBIN INCREASES AND PROGESTERONE DECREASES RECEPTORS FOR GONADOTROPIN-RELEASING HORMONE IN OVINE PITUITARY CULTURE

    EPA Science Inventory

    The effects of progesterone (P4) and inhibin on gonadotropin-releasing hormone receptor number (GnRH-R) and binding affinity were investigated using ovine pituitary cells in culture. ollowing treatment with P4 or porcine inhibin, GnRH binding was analyzed using a radioligand-rece...

  7. Difference in growth hormone response to growth hormone-releasing hormone (GHRH) testing following GHRH subacute treatment in normal aging and growth hormone-deficient adults: possible perspectives for therapeutic use of GHRH or its analogs in elderly subjects?

    PubMed

    Iovino, M; Triggiani, V; Giagulli, V A; Iovine, N; Licchelli, B; Resta, F; Sabbà, C; Tafaro, E; Solimando, A; Tommasicchio, A; Guastamacchia, E

    2011-06-01

    The somatotroph axis function shows a decline in the elderly (somatopause). In particular growth hormone (GH) response to GH-releasing hormone (GHRH) is reduced in aged man but less than that observed in GH-deficient adults (GHDAs). Plasma GH response to GHRH (1 µg/kg BW) was significantly lower in four GHDAs than in seven healthy aged men 30, 60, and 90 min after acute GHRH administration. To verify whether a priming regimen might be able to increase the reduced GH response to GHRH, both healthy aged men and GHDA patients underwent repetitive administration of GHRH (100 µg GHRH intravenously as a single morning dose, every 2 days for 12 days). After the GHRH-priming regimen, plasma GH values 30, 60, and 90 min after the acute GHRH test were significantly higher than values at the corresponding time points before priming regimen in healthy aged men but not in GHDA patients. These findings confirmed that somatotroph cells become less sensitive to GHRH with normal aging and demonstrate that repetitive administration of GHRH restores the attenuated response only in healthy aged men but not in GHDA patients. This could support the possible use of GHRH or its analogs instead of recombinant human GH in elderly patients with the advantage of preserving the endogenous pulses of GH with the secretion of the different isoforms of GH. However, concerns arise about the possible role of these molecules in tumorigenesis and tumor growth promotion. PMID:20843274

  8. Optimal management of hormone receptor positive metastatic breast cancer in 2016

    PubMed Central

    Reinert, Tomas; Barrios, Carlos H.

    2015-01-01

    Hormone receptor positive tumors represent the most common form of breast cancer and account for most of the deaths from the disease. Endocrine therapy represents the main initial therapeutic strategy for these patients and has been associated with significant clinical benefits in a majority of patients. While in early stages endocrine therapy is administered as part of a curative approach once clinical metastases develop, the disease is considered incurable and the main management objectives are tumor control and quality of life. The two major clinical paradigms of always indicating endocrine therapy in the absence of visceral crises and sequencing endocrine treatments have been guiding our therapeutic approach to these patients. However, for many decades, we have delivered endocrine therapy with a ‘one size fits all’ approach by applying agents that interfere with hormone receptor signaling equally in every clinical patient scenario. We have been unable to incorporate the well-known biologic principle of different degrees of hormone receptor dependency in our therapeutic recommendations. Recent developments in the understanding of molecular interactions of hormone signaling with other important growth factor, metabolic and cell division pathways have opened the possibility of improving results by modulating hormone signaling and interfering with resistance mechanisms yet to be fully understood. Unfortunately, limitations in the design of trials conducted in this area have made it difficult to develop predictive biomarkers and most of the new combinations with targeted agents, even though showing improvements in clinical endpoints, have been directed to an unselected population of patients. In this review we explore some of the current and most relevant literature in the management of hormone receptor positive advance breast cancer. PMID:26557899

  9. Binding properties of solubilized gonadotropin-releasing hormone receptor: role of carboxylic groups

    SciTech Connect

    Hazum, E.

    1987-11-03

    The interaction of /sup 125/I-buserelin, a superactive agonist of gonadotropin-releasing hormone (GnRH), with solubilized GnRH receptor was studied. The highest specific binding of /sup 125/I-buserelin to solubilized GnRH receptor is evident at 4/sup 0/C, and equilibrium is reached after 2 h of incubation. The soluble receptor retained 100% of the original binding activity when kept at 4 or 22/sup 0/C for 60 min. Mono- and divalent cations inhibited, in a concentration-dependent manner, the binding of /sup 125/I-buserelin to solubilized GnRH receptor. Monovalent cations require higher concentrations than divalent cations to inhibit the binding. Since the order of potency with the divalent cations was identical with that of their association constants to dicarboxylic compounds, it is suggested that there are at least two carboxylic groups of the receptor that participate in the binding of the hormone. The carboxyl groups of sialic acid residues are not absolutely required for GnRH binding since the binding of /sup 125/I-buserelin to solubilized GnRH receptor was only slightly affected by pretreatment with neuraminidase and wheat germ agglutinin. The finding that polylysines stimulate luteinizing hormone (LH) release from pituitary cell cultures with the same efficacy as GnRH suggest that simple charge interactions can induce LH release. According to these results, the authors propose that the driving force for the formation of the hormone-receptor complex is an ionic interaction between the positively charged amino acid arginine in position 8 and the carboxyl groups in the binding site.

  10. Arsenic impacted the development, thyroid hormone and gene transcription of thyroid hormone receptors in bighead carp larvae (Hypophthalmichthys nobilis).

    PubMed

    Sun, Hong-Jie; Xiang, Ping; Tang, Ming-Hu; Sun, Li; Ma, Lena Q

    2016-02-13

    Arsenic (As) contamination in aquatic environment adversely impacts aquatic organisms. The present study assessed the toxicity of different As species and concentrations on bighead carp (Hypophthalmichthys nobilis) at early life stage, a major fish in Yangtze River, China. We measured the changes in embryo and larvae survival rate, larvae aberration, concentrations of thyroid hormone thyroxine, and transcription levels of thyroid hormone receptors (TRs) in fish larvae after exposing to arsenite (AsIII) or arsenate (AsV) at 0, 10, 30, 50, 100, or 150 μg L(-1) for 78 h. As concentrations ≤ 150 μg L(-1) had limited effect on embryo survival rate (6-8% inhibition), but larvae survival rate decreased to 53-57% and larvae aberration rate increased to 20-24% after As exposure. Moreover, thyroxine levels elevated by 23% and 50% at 100 μg L(-1) AsIII and 150 μg L(-1) AsV. Besides, AsIII and AsV decreased the transcriptional levels of TRα by 72 and 53%, and TRβ by 91 and 81% at 150 μg L(-1) As. Our data showed that AsIII and AsV had limited effect on carp embryo survival, but they were both toxic to carp larvae, with AsIII showing more effect than AsV. As concentrations <150μg L(-1) adversely influenced the development of bighead carp larvae and disturbed their thyroid hormone homeostasis. PMID:26513566

  11. Growth hormone deficiency predicts cardiovascular risk in young adults treated for acute lymphoblastic leukemia in childhood.

    PubMed

    Link, Katarina; Moëll, Christian; Garwicz, Stanislaw; Cavallin-Ståhl, Eva; Björk, Jonas; Thilén, Ulf; Ahrén, Bo; Erfurth, Eva Marie

    2004-10-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy, and until recently prophylactic cranial radiotherapy (CRT) was important for achieving long-term survival. Hypothalamic-pituitary hormone insufficiency is a well-recognized consequence of CRT for childhood cancer. Another problem is increased cardiovascular risk, which has been shown in long-term survivors of other childhood cancers. In the only previously reported study on cardiovascular risk after childhood ALL, obesity and dyslipidemia were recorded in a small subgroup treated with CRT, compared with patients treated with chemotherapy. The mechanisms behind the increase in cardiovascular risk in survivors of childhood cancer are not clarified. The aim of the present study was to elucidate mechanisms of increased cardiovascular risk in former childhood ALL patients. A group of 44 ALL survivors (23 males, median age 25 yr, range 19-32 yr at the time of study) treated with CRT (median 24 Gy, 18-30 Gy) at a median age of 5 yr (1-18 yr) and chemotherapy were investigated for prevalence of GH deficiency and cardiovascular risk factors. Comparison was made with controls randomly selected from the general population and individually matched for sex, age, smoking habits, and residence. All patients and controls underwent a GHRH-arginine test, and patients with a peak GH 3.9 microg/liter or greater were further investigated with an additional insulin tolerance test. Significantly higher plasma levels of insulin (P = 0.002), blood glucose (P = 0.01), and serum levels of low-density lipoprotein cholesterol, apolipoprotein (Apo) B, triglycerides, fibrinogen, and leptin (all P

  12. A novel method for visualizing nuclear hormone receptor networks relevant to drug metabolism.

    PubMed

    Ekins, Sean; Kirillov, Eugene; Rakhmatulin, Eugene A; Nikolskaya, Tatiana

    2005-03-01

    The increasing generation of biological data represents a challenge to understanding the complexity of systems, resulting in scientists increasingly focused on a relatively narrow area of study, thereby limiting insight that can be gained from a broader perspective. In the field of drug metabolism and toxicology we are witnessing the characterization of many proteins. Most of the key enzymes and transporters are recognized as transcriptionally regulated by the nuclear hormone receptors such as pregnane X receptor, constitutive androstane receptor, vitamin D receptor, glucocorticoid receptor, and others. There is apparent cross talk in regulation, since multiple receptors may modulate expression of a single enzyme or transporter, representing one of many areas of active research interest. We have used published data on nuclear hormone receptors, enzymes, ligands, and other biological information to manually annotate an Oracle database, forming the basis of a platform for querying (MetaDrug). Using algorithms, we have demonstrated how nuclear hormone receptors alone can form a network of direct interactions, and when expanded, this network increases in complexity to describe the interactions with target genes as well as small molecules known to bind a receptor, enzyme, or transporter. We have also described how the database can be used for visualizing high-throughput microarray data derived from a published study of MCF-7 cells treated with 4-hydroxytamoxifen, to highlight potential downstream effects of molecule treatment. The database represents a novel knowledge mining and analytical tool that, to be relevant, requires continual updating to evolve alongside other key storage systems and sources of biological knowledge. PMID:15608136

  13. Severe short stature and Wolf-Hirschhorn syndrome: response to growth hormone in two cases without growth hormone deficiency.

    PubMed

    Austin, Devon E; Gunn, Alistair J; Jefferies, Craig A

    2015-02-01

    Wolf-Hirschhorn syndrome (WHS) is a rare congenital disorder occurring in approximately 1/50 000 births, with marked pre- and postnatal growth failure. WHS results from the hemizygous deletion encompassing the 4p16.3 region. This report of two children with WHS shows that growth hormone treatment in selected children with WHS and severe short stature may have a substantial effect on long-term growth. PMID:25988083

  14. Model of pediatric pituitary hormone deficiency separates the endocrine and neural functions of the LHX3 transcription factor in vivo.

    PubMed

    Colvin, Stephanie C; Malik, Raleigh E; Showalter, Aaron D; Sloop, Kyle W; Rhodes, Simon J

    2011-01-01

    The etiology of most pediatric hormone deficiency diseases is poorly understood. Children with combined pituitary hormone deficiency (CPHD) have insufficient levels of multiple anterior pituitary hormones causing short stature, metabolic disease, pubertal failure, and often have associated nervous system symptoms. Mutations in developmental regulatory genes required for the specification of the hormone-secreting cell types of the pituitary gland underlie severe forms of CPHD. To better understand these diseases, we have created a unique mouse model of CPHD with a targeted knockin mutation (Lhx3 W227ter), which is a model for the human LHX3 W224ter disease. The LHX3 gene encodes a LIM-homeodomain transcription factor, which has essential roles in pituitary and nervous system development in mammals. The introduced premature termination codon results in deletion of the carboxyl terminal region of the LHX3 protein, which is critical for pituitary gene activation. Mice that lack all LHX3 function do not survive beyond birth. By contrast, the homozygous Lhx3 W227ter mice survive, but display marked dwarfism, thyroid disease, and female infertility. Importantly, the Lhx3 W227ter mice have no apparent nervous system deficits. The Lhx3 W227ter mouse model provides a unique array of hormone deficits and facilitates experimental approaches that are not feasible with human patients. These experiments demonstrate that the carboxyl terminus of the LHX3 transcription factor is not required for viability. More broadly, this study reveals that the in vivo actions of a transcription factor in different tissues are molecularly separable. PMID:21149718

  15. Retinoic acid affects the expression of nuclear retinoic acid receptors in tissues of retinol-deficient rats.

    PubMed Central

    Haq, R; Pfahl, M; Chytil, F

    1991-01-01

    The multitude of biological effects of the vitamin A metabolite, retinoic acid, are mediated by nuclear retinoic acid receptors (RARs), which are members of the steroid/thyroid hormone receptor superfamily. RAR-alpha, -beta, and -gamma are encoded by three genes from which multiple isoforms can be generated. Recent studies suggest that the expression of at least some RAR isoforms can be regulated by retinoic acid in certain cell lines. Here we examined regulation of RAR expression in the adult animal. RARs were analyzed by Northern blots from lung, liver, and testes of retinol-deficient rats. Retinol deficiency caused a 65-70% decrease in the mRNA levels of lung and liver RAR-beta, whereas no change was observed in RAR-alpha and -gamma mRNA levels in these organs. In the testes of retinol-deficient animals, two transcripts, RAR-alpha 1 (3.7 kb) and RAR-alpha 2 (2.8 kb), were detected as compared with one RAR-alpha 1 (3.7 kb) transcript in retinol-sufficient testes. When retinol-deficient rats were orally administered 1 dose of retinoic acid (100 micrograms per rat), lung RAR-beta mRNA levels started to increase after 1 hr and reached a 16-fold higher level after 4 hr; after 4 hr these retinoic acid-fed rats also showed a 7-fold increase in liver RAR-beta mRNA levels as compared with levels in the retinol-deficient rats. In contrast, liver, lung, and testes RAR-alpha transcripts remained either unchanged or showed only a slight increase in response to retinoic acid. RAR-gamma was constitutively expressed in lung, and its mRNA levels were induced 2-fold by retinoic acid. These results show tissue diversity in the rapid induction of RAR-beta and RAR-gamma by retinoic acid in the adult animal and suggest distinct roles for the various receptor isoforms in the control of the retinoid response. Images PMID:1654565

  16. Abnormal Vascular Function and Hypertension in Mice Deficient in Estrogen Receptor β

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Bian, Zhao; Lu, Ping; Karas, Richard H.; Bao, Lin; Cox, Daniel; Hodgin, Jeffrey; Shaul, Philip W.; Thorén, Peter; Smithies, Oliver; Gustafsson, Jan-Åke; Mendelsohn, Michael E.

    2002-01-01

    Blood vessels express estrogen receptors, but their role in cardiovascular physiology is not well understood. We show that vascular smooth muscle cells and blood vessels from estrogen receptor β (ERβ)-deficient mice exhibit multiple functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates vasoconstriction by an ERβ-mediated increase in inducible nitric oxide synthase expression. In contrast, estrogen augments vasoconstriction in blood vessels from ERβ-deficient mice. Vascular smooth muscle cells isolated from ERβ-deficient mice show multiple abnormalities of ion channel function. Furthermore, ERβ-deficient mice develop sustained systolic and diastolic hypertension as they age. These data support an essential role for ERβ in the regulation of vascular function and blood pressure.

  17. Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation

    SciTech Connect

    Pioszak, Augen A.; Harikumar, Kaleeckal G.; Parker, Naomi R.; Miller, Laurence J.; Xu, H. Eric

    2010-06-25

    The parathyroid hormone receptor (PTH1R) is a class B G protein-coupled receptor that is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Little is known about the oligomeric state of the receptor and its regulation by hormone. The crystal structure of the ligand-free PTH1R extracellular domain (ECD) reveals an unexpected dimer in which the C-terminal segment of both ECD protomers forms an {alpha}-helix that mimics PTH/PTHrP by occupying the peptide binding groove of the opposing protomer. ECD-mediated oligomerization of intact PTH1R was confirmed in living cells by bioluminescence and fluorescence resonance energy transfer experiments. As predicted by the structure, PTH binding disrupted receptor oligomerization. A receptor rendered monomeric by mutations in the ECD retained wild-type PTH binding and cAMP signaling ability. Our results are consistent with the hypothesis that PTH1R forms constitutive dimers that are dissociated by ligand binding and that monomeric PTH1R is capable of activating G protein.

  18. Fetal and neonatal iron deficiency exacerbates mild thyroid hormone insufficiency effects on male thyroid hormone levels and brain thyroid hormone-responsive gene expression.

    PubMed

    Bastian, Thomas W; Prohaska, Joseph R; Georgieff, Michael K; Anderson, Grant W

    2014-03-01

    Fetal/neonatal iron (Fe) and iodine/TH deficiencies lead to similar brain developmental abnormalities and often coexist in developing countries. We recently demonstrated that fetal/neonatal Fe deficiency results in a mild neonatal thyroidal impairment, suggesting that TH insufficiency contributes to the neurodevelopmental abnormalities associated with Fe deficiency. We hypothesized that combining Fe deficiency with an additional mild thyroidal perturbation (6-propyl-2-thiouracil [PTU]) during development would more severely impair neonatal thyroidal status and brain TH-responsive gene expression than either deficiency alone. Early gestation pregnant rats were assigned to 7 different treatment groups: control, Fe deficient (FeD), mild TH deficient (1 ppm PTU), moderate TH deficient (3 ppm PTU), severe TH deficient (10 ppm PTU), FeD/1 ppm PTU, or FeD/3 ppm PTU. FeD or 1 ppm PTU treatment alone reduced postnatal day 15 serum total T4 concentrations by 64% and 74%, respectively, without significantly altering serum total T3 concentrations. Neither treatment alone significantly altered postnatal day 16 cortical or hippocampal T3 concentrations. FeD combined with 1 ppm PTU treatment produced a more severe effect, reducing serum total T4 by 95%, and lowering hippocampal and cortical T3 concentrations by 24% and 31%, respectively. Combined FeD/PTU had a more severe effect on brain TH-responsive gene expression than either treatment alone, significantly altering Pvalb, Dio2, Mbp, and Hairless hippocampal and/or cortical mRNA levels. FeD/PTU treatment more severely impacted cortical and hippocampal parvalbumin protein expression compared with either individual treatment. These data suggest that combining 2 mild thyroidal insults during development significantly disrupts thyroid function and impairs TH-regulated brain gene expression. PMID:24424046

  19. Changes in parathyroid hormone receptor binding affinity during egg laying: implications for calcium homeostasis in chicken.

    PubMed

    Yasuoka, T; Kawashima, M; Takahashi, T; Iwata, A; Oka, N; Tanaka, K

    1996-12-01

    Parathyroid hormone (PTH) receptor bindings were examined in the membrane fraction of the calvaria and the kidney of the hen by the use of [125I]PTH-related protein (PTHrP) binding assays. The binding specificity, reversibility, and saturation of the receptor were demonstrated. The equilibrium dissociation constant (Kd) and the maximum binding capacity (Bmax) were obtained by Scatchard analyses. In both calvaria and kidney, Kd and Bmax values decreased at 3 h before oviposition in egg-laying hens, but not in nonlaying hens. Administration of 17 beta-estradiol or progesterone in vivo caused a decrease in the Kd and Bmax values. Ionized calcium concentrations in the blood plasma showed a decrease at 13 h before oviposition. The results suggest that the PTH receptor binding in the calvaria and the kidney is affected by ovarian steroid hormones and may play a role in maintaining the calcium homeostasis in the egg-laying hen. PMID:8970893

  20. Normal Morphology and Hormone Receptor Expression in the Male California sea lion (Zalophus californianus) Genital Tract

    PubMed Central

    Colegrove, Kathleen M.; Gulland, Frances M. D.; Naydan, Diane K.; Lowenstine, Linda J.

    2010-01-01

    Histomorphology and estrogen α (ER α), and progesterone receptor (PR) expression were evaluated in free-ranging stranded male California sea lions (Zalophus californianus). Hormone receptor expression was evaluated using an immunohistochemical technique with monoclonal antibodies. Estrogen and progesterone receptors were identified in the efferent ductules, prostate gland, corpus cavernosa, corpus spongiosium, penile urethra, and in the epithelium and stroma of both the penis and prepuce. In the some tissues, ER α expression was more intense in the stroma, emphasizing the importance of the stroma in hormone – mediated growth and differentiation of reproductive organs. To our knowledge, this is the first study to localize ER α and PR to the epithelium of the glans penis. The results of this investigation add to the general knowledge of male California sea lion reproduction and suggest that estrogens could have a role in the function of the male reproductive tract. PMID:19768750

  1. Epidermal dexamethasone receptors in dogs with confirmed hyperadrenocorticalism, hypothyroidism or undiagnosed hormonal alopecia.

    PubMed

    van den Broek, A H; Stafford, W L

    1991-11-01

    Low capacity, high affinity [3H] dexamethasone binding receptors were identified in cytosolic preparations of the skin (mean number 42.0 +/- 25.2 fmol mg-1 protein, apparent dissociation constant (1 nM +/- 0.23) of clinically normal dogs. No [3H] dexamethasone binding was observed in the skin of nine out of 10 dogs with confirmed spontaneous hyperadrenocorticism or in the skin of three out of six dogs with undiagnosed hormonal alopecia. A reduction was detected in the number of [3H] dexamethasone binding receptors in the skin of one dog with confirmed hypothyroidism. This study provides evidence for the susceptibility of canine glucocorticoid receptors to down regulation by imbalances of endogenous hormones, particularly increased glucocorticoid concentrations. PMID:1780592

  2. Allosteric receptor activation by the plant peptide hormone phytosulfokine.

    PubMed

    Wang, Jizong; Li, Hongju; Han, Zhifu; Zhang, Heqiao; Wang, Tong; Lin, Guangzhong; Chang, Junbiao; Yang, Weicai; Chai, Jijie

    2015-09-10

    Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules. PMID:26308901

  3. Lessons learned from studies with the growth hormone receptor.

    PubMed

    Kopchick, John J

    2016-06-01

    Findings related to GH's biological activities have continued to be a fascinating topic over the past decade. Below, I will review several items related to the actions of GH including the GH/GHR interaction, pegvisomant (a GH receptor antagonist), GHR gene disruptions in mice, and clinical consequences of human GHR gene mutations. PMID:26216709

  4. Skeletal phenotype of the leptin receptor-deficient db/db mouse.

    PubMed

    Williams, Garry A; Callon, Karen E; Watson, Maureen; Costa, Jessica L; Ding, Yaoyao; Dickinson, Michelle; Wang, Yu; Naot, Dorit; Reid, Ian R; Cornish, Jillian

    2011-08-01

    Leptin, a major hormonal product of the adipocyte, regulates appetite and reproductive function through its hypothalamic receptors. The leptin receptor is present in osteoblasts and chondrocytes, and previously we have shown leptin to be an anabolic bone factor in vitro, stimulating osteoblast proliferation and inhibiting osteoclastogenesis. Leptin increases bone mass and reduces bone fragility when administered peripherally but also can indirectly reduce bone mass when administered into the central nervous system. However, data from animal models deficient in either leptin (ob/ob) or its receptor (db/db) remain contradictory. We compared the bone phenotype of leptin receptor-deficient (db/db) and wild-type mice using micro-computed tomographic (µCT) analysis of the proximal tibias and vertebrae. In the tibia, db/db mice had reduced percent trabecular bone volume (13.0 ± 1.62% in wild-type versus 6.01 ± 0.601% in db/db mice, p = .002) and cortical bone volume (411 ± 21.5 µm(3) versus 316 ± 3.53 µm(3), p = .0014), trabecular thickness (48.4 ± 001.07 µm versus 45.1 ± 0.929 µm, p = .041) and trabecular number (2.68 ± 0.319 mm(-1) versus 1.34 ± 0.148 mm(-1), p = .0034). In the fifth lumbar vertebral body, the trabecular thickness and cortical thickness were decreased in the db/db versus wild-type mice (0.053 ± 0.0011 mm versus 0.047 ± 0.0013 mm, p = .0002 and 0.062 ± 0.00054 mm versus 0.056 ± 0.0009 mm, p = .0001), respectively, whereas the trabecular and cortical percent bone volume and trabecular number did not reach significance. The total (endosteal and periosteal) cortical perimeter (12.2 ± 0.19 mm versus 13.2 ± 0.30 mm, p = .01) was increased. The serum osteocalcin levels were reduced in the db/db mice, suggesting that bone formation rates are decreased. The material properties of db/db femurs were determined by three-point bending and nanoindentation, showing decreased bone strength (13.3 ± 0.280 N versus 7.99 ± 0.984 N, p =

  5. Targeting the diuretic hormone receptor to control the cotton leafworm, Spodoptera littoralis.

    PubMed

    Apone, Fabio; Ruggiero, Alessandra; Tortora, Assunta; Tito, Annalisa; Grimaldi, Maria Rosaria; Arciello, Stefania; Andrenacci, Davide; Di Lelio, Ilaria; Colucci, Gabriella

    2014-01-01

    The cotton leafworm, Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae), is one of the most devastating pests of crops worldwide. Several types of treatments have been used against this pest, but many of them failed because of the rapid development of genetic resistance in the different insect populations. G protein coupled receptors have vital functions in most organisms, including insects; thus, they are appealing targets for species-specific pest control strategies. Among the insect G protein coupled receptors, the diuretic hormone receptors have several key roles in development and metabolism, but their importance in vivo and their potential role as targets of novel pest control strategies are largely unexplored. With the goal of using DHR genes as targets to control S. littoralis, we cloned a corticotropin-releasing factor-like binding receptor in this species and expressed the corresponding dsRNA in tobacco plants to knock down the receptor activity in vivo through RNA interference. We also expressed the receptor in mammalian cells to study its signaling pathways. The results indicate that this diuretic hormone receptor gene has vital roles in S. littoralis and represents an excellent molecular target to protect agriculturally-important plants from this pest. PMID:25368043

  6. Properties of follicle-stimulating-hormone receptor in cell membranes of bovine testis.

    PubMed Central

    Cheng, K W

    1975-01-01

    A simple method for preparing plasma membranes from bovine testes is described. Bovine testicular receptor has a high affinity and specificity for 125I-labelled human FSH (follicle-stimulating hormone). The specific binding of 125I-labelled human FSH to the plasma membranes is a saturable process with respect to the amounts of receptor protein and FSH added. The association and dissociation of 125I-labelled human FSH are time- and temperature-dependent, and the binding of labelled human FSH to bovine testicular receptor is strong and not readily reversible. Scatchard [Ann. N.Y. Acad. Sci. (1949) 51, 660-672] analysis indicates a dissociation constant, Kd, of 9.8 X10(-11)M, and 5.9 X 10(-14)mol of binding sites/mg of membrane protein. The testicular membrane receptor is heat-labile. Preheating at 40 degrees C for 15 min destroyed 30% of the binding activity. Specific binding is pH-dependent, with an optimum between pH 7.0 and 7.5. Brief exposure to extremes of pH caused irreversible damage to the receptors. The ionic strength of the incubation medium markedly affects the association of 125I-labelled human FSH with its testicular receptor. Various cations at concentrations of 0.1M inhibit almost completely the binding of 125I-labelled human FSH. Nuclectides and steroid hormones at concentrations of 1mM and 5mu/ml respectively have no effect on the binding of FSH to its receptor. Incubation of membranes with and chymotrypsin resulted in an almost complete loss of binding activity, suggesting that protein moieties are essential for the binding of 125I-labelled human FSH. Binding of 125I-labelled human FSH to bovine testicular receptor does not result in destruction or degradation of the hormone. PMID:242318

  7. Disruption of parathyroid hormone and parathyroid hormone-related peptide receptor phosphorylation prolongs ERK1/2 MAPK activation and enhances c-fos expression

    PubMed Central

    Abou-Samra, Abdul B.

    2012-01-01

    Previous studies have demonstrated that parathyroid hormone (PTH) binding to the PTH/PTH-related peptide receptor (PPR) stimulates G protein coupling, receptor phosphorylation, β-arrestin translocation, and internalization of the ligand/receptor complex. The extracellular signal-regulated mitogen-activated protein kinases 1/2 (ERK1/2 MAPK) are downstream effectors of PPR. In the current study, we investigated the role of PPR phosphorylation in the PTH regulation of the ERK1/2 MAPK pathway. Short treatment with PTH (0–40 min) of LLCP-K1 cells stably expressing a wild-type (WT) or a phosphorylation-deficient (PD) PPR (WT-PPR or PD-PPR cells, respectively) results in similar activation of ERK1/2. Interestingly, PTH stimulation of ERK1/2 in the WT-PPR cells then decreases as a result of longer PTH (60 min) treatment, and inhibition of ERK1/2 by PTH is observed at 90 min. Strikingly, the PD-PPR cells exhibit prolonged ERK1/2 activation up to 90 min of PTH treatment. An ERK1/2-dependent increase in c-fos expression is observed in the PD-PPR cells. Subsequently, c-fos expression in the WT-PPR and PD-PPR cells was markedly attenuated by a specific ERK1/2 pathway inhibitor. Further investigations revealed that PTH treatment causes a robust recruitment of a green fluorescent protein-tagged β-arrestin2 (β-arrestin2-GFP) in the WT-PPR cells. In contrast, β-arrestin2 recruitment was reduced in the PD-PPR cells. Importantly, expression of a receptor phosphorylation-independent β-arrestin2 (R169E) in the PD-PPR cells restored the biphasic effect of PTH on ERK1/2 as in the WT-PPR cells. The study reports a novel role for receptor phosphorylation and β-arrestin2 in the subsequent inhibition of the ERK1/2 pathway and in control of gene expression. PMID:22414806

  8. A 67 kDa non-hormone binding estradiol receptor is present in human mammary cancers.

    PubMed

    Castoria, G; Migliaccio, A; Bilancio, A; Pagano, M; Abbondanza, C; Auricchio, F

    1996-03-01

    The presence of large amounts of a 67 kDa estradiol receptor that does not bind hormone was observed in 8 to 37 human mammary tumors (34 malignant and 3 benign). This form of receptor was detected by its conversion to hormone binding receptor by an endogenous tyrosine kinase in vitro. All 8 tumors were malignant. In these, the incubation of cytosol with ATP was seen to cause a 1- to 5-fold increase in estradiol-specific binding sites. These sites bound estradiol with physiological affinity, and their appearance was associated with tyrosine phosphorylation of estradiol receptor. The enzyme converting the non-hormone binding receptor into the hormone binding receptor is largely present in cytosol and scarce in membranes. It has been extensively purified. It is a 67 kDa protein under denaturating conditions, binds calmodulin-Sepharose in a Ca2+-dependent manner, is stimulated by Ca2+ and calmodulin, phosphorylates exogenous actin, is activated by the estradiol-receptor complex. The enzyme interacts with antibodies directed against the carboxy-terminal and catalytic domains of c-src. Therefore, it is a putative new member of the large c-src-related kinase family. Human mammary cancers with significant amounts of 67 kDa non-hormone binding receptor show relatively low levels of hormone binding estradiol receptor. The presence of non-hormone binding receptor that can be activated by in vitro tyrosine phosphorylation suggests that functional interaction of estradiol receptor with tyrosine kinases is altered in malignant tumors and has bearing on loss of hormone dependence and progression of the mammary cancer malignancy. PMID:8598306

  9. Rational Design of Potent Antagonists to the Human Growth Hormone Receptor

    NASA Astrophysics Data System (ADS)

    Fuh, Germaine; Cunningham, Brian C.; Fukunaga, Rikiro; Nagata, Shigekazu; Goeddel, David V.; Wells, James A.

    1992-06-01

    A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially-a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.

  10. Rapid detection of a point mutation in thyroid-stimulating hormone beta-subunit gene causing congenital isolated thyroid-stimulating hormone deficiency.

    PubMed

    Mori, R; Sawai, T; Kinoshita, E; Baba, T; Matsumoto, T; Yoshimoto, M; Tsuji, Y; Satake, Y; Sawada, K

    1991-12-01

    Previous study showed that congenital isolated TSH deficiency in Japan is resulted exclusively from a G-A transition at nucleotide 145 in exon 2 of the TSH beta-subunit gene. All reported cases were from the inbred in Shikoku Island. We describe here a 10-year-old boy with hereditary TSH deficiency in the same area. The patient was born with a weight of 3,225 g to non-consanguineous parents. Evaluation at age 2 months revealed typical manifestations of cretinism without goiter. Serum T4, T3, and TSH values were 2.53 micrograms/dl, 107 ng/dl, and 0.5 microU/ml, respectively. A TRH stimulation test showed no increment of serum TSH value. Other anterior pituitary hormone levels were all within the normal range. Two oligonucleotide primers T1a and T1b were synthesized according to the sequence data. Amplified 169 bp nucleotides in exon 2 of the TSH beta gene with this primer set were digested with MaeI. Both the phenotypically normal brother and normal controls showed only the 169 bp fragment, whereas the proband showed 140 and 29 bp fragments and both parents showed three fragments; 169, 140, and 29 bp. These results were consistent with the point mutation of TSH beta gene in Japanese patients with congenital isolated TSH deficiency. Our PCR method with MaeI digestion contributes to the rapid detection of the homozygous patient and the heterozygous carrier. PMID:1811097

  11. Hormones

    MedlinePlus

    ... the foods you eat Sexual function Reproduction Mood Endocrine glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, thymus, thyroid, adrenal ...

  12. Metabolic Characteristics in Obese Patients Complicated by Mild Thyroid Hormone Deficiency.

    PubMed

    Wang, X; Liu, H; Chen, J; Huang, Y; Li, L; Rampersad, S; Qu, S

    2016-05-01

    The prevalence of subclinical hypothyroidism (SH) is increasing, especially in obese people. The purpose of this study was to evaluate the difference in metabolic profiles between obese patients with mild increased thyrotropin (TSH) or with normal TSH. A total of 219 obese patients were recruited in this cross-sectional study. They were divided into 2 groups: obese patients with normal TSH (0.35-2.5 mU/l) and age-, and body mass index (BMI)-matched obese patients with higher-normal TSH (2.5-5.5 mU/l). We have named it compensatory hypothyroidism or mild thyroid hormone deficiency. Anthropometric data, glucose-lipid metabolism, markers of inflammation, body composition, and thyroid function parameters were measured. Results showed that: 1) The levels of fasting plasma glucose (FPG), high density lipoprotein cholesterol (HDL-C), and 25-hydroxyvitamin D levels were significantly lower in obese patients complicated by mild increased TSH than in obese patients with normal TSH (p<0.05). The fasting insulin (FINS) and C reactive protein (CRP) levels were significantly higher in obese patients complicated by mild increased TSH when compared to the obese patients with normal TSH (p<0.01). Jostel's TSH index (TSHI) and standard TSH index (sTSHI) were significantly higher in obesity with mild increased TSH when compared to obesity with normal TSH (both p<0.001). Thyroid's secretory capacity (GT) was significantly lower in obesity with mild increased TSH when compared to obesity with normal TSH (p<0.001). 2) In the obese patients complicated by mild increased TSH group, serum TSH was significantly positively correlated with ALT, AST and CP (p<0.05). In the obese patients with normal TSH group, serum TSH was significantly positively correlated with UA (p<0.05). In all subjects, serum TSH was significantly positively correlated with ALT, AST, FINS, CP, CRP, and UA (p<0.05), but negatively with DBP, FPG, and HDL-C (p<0.05). 3) There was significant difference of the

  13. Gastrointestinal hormones stimulate growth of Foregut Neuroendocrine Tumors by transactivating the EGF receptor

    PubMed Central

    Di Florio, Alessia; Sancho, Veronica; Moreno, Paola; Fave, Gianfranco Delle; Jensen, Robert T.

    2012-01-01

    Foregut Neuroendocrine Tumors[NETs] usually pursuit a benign course, but some show aggressive behavior. The treatment of patients with advanced NETs is marginally effective and new approaches are needed. In other tumors, transactivation of the EGF receptor(EGFR) by growth factors, gastrointestinal(GI) hormones and lipids can stimulate growth, which has led to new treatments. Recent studies show a direct correlation between NET malignancy and EGFR expression, EGFR inhibition decreases basal NET growth and an autocrine growth effect exerted by GI hormones, for some NETs. To determine if GI hormones can stimulate NET growth by inducing transactivation of EGFR, we examined the ability of EGF, TGFα and various GI hormones to stimulate growth of the human foregut carcinoid, BON, the somatostatinoma QGP-1 and the rat islet tumor, Rin-14B-cell lines. The EGFR tyrosine-kinase inhibitor, AG1478 strongly inhibited EGF and the GI hormones stimulated cell growth, both in BON and QGP-1 cells. In all the three neuroendocrine cell lines studied, we found EGF, TGFα and the other growth-stimulating GI hormones increased Tyr1068 EGFR phosphorylation. In BON cells, both the GI hormones neurotensin and a bombesin analogue caused a time- and dose-dependent increase in EGFR phosphorylation, which was strongly inhibited by AG1478. Moreover, we found this stimulated phosphorylation was dependent on Src kinases, PKCs, matrix metalloproteinase activation and the generation of reactive oxygen species. These results raise the possibility that disruption of this signaling cascade by either EGFR inhibition alone or combined with receptor antagonists may be a novel therapeutic approach for treatment of foregut NETs/PETs. PMID:23220008

  14. Both alpha and beta subunits of human choriogonadotropin photoaffinity label the hormone receptor.

    PubMed Central

    Ji, I; Ji, T H

    1981-01-01

    It has been shown that a photoactivable derivative of human choriogonadotropin (hCG) labels the lutropin receptor on porcine granulosa cells [Ji, I. & Ji, T. H. (1980) Proc. Natl. Acad. Sci. USA 77, 7167-7170]. In an attempt to identify which of the hCG subunits labeled the receptor, three sets of different hCG derivatives were prepared. In the first set, hCG was coupled to the N-hydroxysuccinimide ester of 4-azidobenzoylglycine and radioiodinated. In the second set, only one of the subunits was radioiodinated, but both subunits were allowed to react with the reagent. In the third set, both the reagent and [125I]iodine were coupled to only one of the subunits. The binding activity of each hormone derivative was comparable to that of 125I-labeled hCG. After binding of these hormone derivatives to the granulosa cell surface, they were photolyzed. After solubilization, autoradiographs of sodium dodecyl sulfate/polyacrylamide gels of each sample revealed a number of labeled bands; the hCG derivatives containing 125I-labeled alpha subunit produced four bands (molecular weights 120,000 +/- 6,000, 96,000 +/- 5,000, 76,000 +/- 4,000, and 73,000 +/- 4,000) and those containing 125I-labeled beta subunit produced three bands (molecular weights 106,000 +/- 6,000, 88,000 +/- 5,000, and 83,000 +/- 4,000). Results were the same when the hormone-receptor complexes were solubilized in 0.5% Triton X-100 and then photolyzed or when the hormone was derivatized with a family of reagents having arms of various lengths. We conclude that both the alpha subunit and the beta subunit of hCG photoaffinity labeled certain membrane polypeptides and that these polypeptides are related to the hormone receptor. Images PMID:6272303

  15. Gonadotropin-inhibitory hormone receptor signaling and its impact on reproduction in chickens.

    PubMed

    Bédécarrats, Grégoy Y; McFarlane, Heather; Maddineni, Sreenivasa R; Ramachandran, Ramesh

    2009-09-01

    In birds, as in other vertebrates, reproduction is controlled by the hypothalamo-pituitary-gonadal axis with each component secreting specific neuropeptides or hormones. Until recently, it was believed this axis is exclusively under the stimulatory control of hypothalamic gonadotropin-releasing hormone I (GnRH-I) which in turn, stimulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion from the pituitary gland. However, the discovery of a novel inhibitory hypothalamic peptide able to reduce LH secretion (gonadotropin-inhibitory hormone: GnIH) challenged this dogma. Furthermore, with the characterization of its specific receptor (GnIHR), progress has been made to clarify the physiological relevance of GnIH in birds. This short review discusses the recent advances in GnIHR signaling at the level of the pituitary gland and the gonads. GnIHR is a member of the G-protein coupled receptor (GPCR) family which couples to G(alphai) and, upon activation inhibits adenylyl cyclase (AC) activity, thus reducing intracellular cAMP levels. This implies that GnIH interferes with signaling of any GPCR coupled to G(alphas), including GnRH, LH and FSH receptors. In the chicken pituitary gland, the GnRHR-II/GnIHR ratio changes during sexual maturation in favor of GnRHR-II that appears to result in hypothalamic control of gonadotropin secretion shifting from inhibitory to stimulatory, with corresponding changes in GnRH-induced cAMP levels. Within the gonads, GnIH and its receptor may act in an autocrine/paracrine manner and may interfere with LH and FSH signaling to influence ovarian follicular maturation and recruitment, as well as spermatogenesis. PMID:19332068

  16. Extracellular Water and Blood Pressure in Adults with Growth Hormone (GH) Deficiency: A Genotype-Phenotype Association Study

    PubMed Central

    Nilsson, Anna G.; Bosaeus, Niklas; Nyström, Helena Filipsson; Svensson, Per-Arne; Bengtsson, Bengt-Åke; Nilsson, Staffan; Bosaeus, Ingvar; Boguszewski, Cesar Luiz; Johannsson, Gudmundur

    2014-01-01

    Objectives Growth hormone deficiency (GHD) in adults is associated with decreased extracellular water volume (ECW). In response to GH replacement therapy (GHRT), ECW increases and blood pressure (BP) reduces or remains unchanged. Our primary aim was to study the association between polymorphisms in genes related to renal tubular function with ECW and BP before and 1 year after GHRT. The ECW measures using bioimpedance analysis (BIA) and bioimpedance spectroscopy (BIS) were validated against a reference method, the sodium bromide dilution method (Br−). Design and Methods Using a candidate gene approach, fifteen single-nucleotide polymorphisms (SNPs) in nine genes with known impact on renal tubular function (AGT, SCNN1A, SCNN1G, SLC12A1, SLC12A3, KCNJ1, STK39, WNK1 and CASR) were genotyped and analyzed for associations with ECW and BP at baseline and with their changes after 1 year of GHRT in 311 adult GHD patients. ECW was measured with the Br−, BIA, and BIS. Results Both BIA and BIS measurements demonstrated similar ECW results as the reference method. At baseline, after adjustment for sex and BMI, SNP rs2291340 in the SLC12A1 gene was associated with ECW volume in GHD patients (p = 0.039). None of the SNPs influenced the ECW response to GHRT. One SNP in the SLC12A3 gene (rs11643718; p = 0.024) and three SNPs in the SCNN1G gene [rs5723 (p = 0.02), rs5729 (p = 0.016) and rs13331086 (p = 0.035)] were associated with the inter-individual differences in BP levels at baseline. A polymorphism in the calcium-sensing receptor (CASR) gene (rs1965357) was associated with changes in systolic BP after GHRT (p = 0.036). None of these associations remained statistically significant when corrected for multiple testing. Conclusion The BIA and BIS are as accurate as Br− to measure ECW in GHD adults before and during GHRT. Our study provides the first evidence that individual polymorphisms may have clinically relevant effects on ECW and BP in GHD adults

  17. Familial idiopathic gonadotropin deficiency not linked to gene for gonadotropin-releasing hormone (GnRH) in Brazilian kindred

    SciTech Connect

    Faraco, J.; Francke, U.; Toledo, S.

    1994-09-01

    Familial idiopathic gonadotropin deficiency (FIGD) is an autosomal recessive disorder which results in failure to develop secondary sexual characteristics. The origin is a hypothalamic defect resulting in insufficient secretion of gonadotropin-releasing hormone GnRH (also called LHRH, luteinizing hormone releasing hormone) and follicle-stimuating hormone (FSH). FIGD has been determined to be a separate entity from Kallmann syndrome which presents with hypogonadism as well as anosmia. The FIGD phenotype appears to be analogous to the phenotype of the hpg (hypogonadal) mouse. Because the hpg phenotype is the result of a structurally abnormal GnRH gene, we have studied the GnRH gene in individuals from a previously reported Brazilian FIGD family. An informative dimorphic marker in the signal peptide sequence of the GnRH gene allowed assessment of linkage between the disease gene and the GnRH locus in this pedigree. We have concluded that the GnRH locus is not linked to the disease-causing mutation in these hypogonadal individuals. Recent evidence suggests that neuropeptide Y (NPY) may play a role in the initiation of puberty. We hypothesize that mutations in NPY may result in failure to secrete GnRH. We have characterized three diallelic frequent-cutter restriction fragment length polymorphisms within the human NPY locus, and are currently using these markers to determine if the NPY gene is linked to, and possibly the site of the disease mutation in this kindred.

  18. Isolated adrenocorticotropic hormone deficiency associated with Hashimoto's disease and thyroid crisis triggered by head trauma. Case report.

    PubMed

    Tanei, Takafumi; Eguchi, Youko; Yamamoto, Yuka; Hirano, Masaki; Takebayashi, Shigenori; Nakahara, Norimoto

    2012-01-01

    A 47-year-old man presented to our hospital after suffering transient loss of consciousness and falling to the floor. On admission, his Glasgow Coma Scale score was 11 (E3V3M5), and he exhibited restlessness. Blood examination revealed hyperthyroidism. Computed tomography showed slight traumatic subarachnoid hemorrhage. He developed fever and tachycardia, and was diagnosed with thyroid crisis. Magnetic resonance imaging showed a brain contusion in the right frontal lobe, and encephalopathy signs in the right frontal and insular cortex. Immunocytochemical examinations suggested Hashimoto's disease, and hormone examinations revealed plasma levels were undetectably low of adrenocorticotropic hormone (ACTH) and low of cortisol. Pituitary stimulation tests showed inadequate plasma ACTH and cortisol response, consistent with isolated ACTH deficiency (IAD). The final diagnosis was IAD associated with Hashimoto's disease. Hydrocortisone replacement therapy was continued, and the patient was nearly free from neurological deficits after 18 months. The neuroimaging abnormalities gradually improved with time. PMID:22278027

  19. Expression of neuropeptide hormone receptors in human adrenal tumors and cell lines: antiproliferative effects of peptide analogues.

    PubMed

    Ziegler, C G; Brown, J W; Schally, A V; Erler, A; Gebauer, L; Treszl, A; Young, L; Fishman, L M; Engel, J B; Willenberg, H S; Petersenn, S; Eisenhofer, G; Ehrhart-Bornstein, M; Bornstein, S R

    2009-09-15

    Peptide analogues targeting various neuropeptide receptors have been used effectively in cancer therapy. A hallmark of adrenocortical tumor formation is the aberrant expression of peptide receptors relating to uncontrolled cell proliferation and hormone overproduction. Our microarray results have also demonstrated a differential expression of neuropeptide hormone receptors in tumor subtypes of human pheochromocytoma. In light of these findings, we performed a comprehensive analysis of relevant receptors in both human adrenomedullary and adrenocortical tumors and tested the antiproliferative effects of peptide analogues targeting these receptors. Specifically, we examined the receptor expression of somatostatin-type-2 receptor, growth hormone-releasing hormone (GHRH) receptor or GHRH receptor splice variant-1 (SV-1) and luteinizing hormone-releasing hormone (LHRH) receptor at the mRNA and protein levels in normal human adrenal tissues, adrenocortical and adrenomedullary tumors, and cell lines. Cytotoxic derivatives of somatostatin AN-238 and, to a lesser extent, AN-162, reduced cell numbers of uninduced and NGF-induced adrenomedullary pheochromocytoma cells and adrenocortical cancer cells. Both the splice variant of GHRH receptor SV-1 and the LHRH receptor were also expressed in adrenocortical cancer cell lines but not in the pheochromocytoma cell line. The GHRH receptor antagonist MZ-4-71 and LHRH antagonist Cetrorelix both significantly reduced cell growth in the adrenocortical cancer cell line. In conclusion, the expression of receptors for somatostatin, GHRH, and LHRH in the normal human adrenal and in adrenal tumors, combined with the growth-inhibitory effects of the antitumor peptide analogues, may make possible improved treatment approaches to adrenal tumors. PMID:19717419

  20. Site-specific basicities regulate molecular recognition in receptor binding: in silico docking of thyroid hormones.

    PubMed

    Tóth, Gergő; Baska, Ferenc; Schretner, András; Rácz, Akos; Noszál, Béla

    2013-09-01

    Interactions between thyroid hormone α and β receptors and the eight protonation microspecies of each of the main thyroid hormones (thyroxine, liothyronine, and reverse liothyronine) were investigated and quantitated by molecular modeling. Flexible docking of the various protonation forms of thyroid hormones and high-affinity thyromimetics to the two thyroid receptors was carried out. In this method the role of the ionization state of each basic site could be studied in the composite process of molecular recognition. Our results quantitate at the molecular level how the ionization state and the charge distribution influence the protein binding. The anionic form of the carboxyl group (i.e., carboxylate site) is essential for protein binding, whereas the protonated form of amino group worsens the binding. The protonation state of the phenolate plays a less important role in the receptor affinity; its protonation, however, alters the electron density and the concomitant stacking propensity of the aromatic rings, resulting in a different binding score. The combined results of docking and microspeciation studies show that microspecies with the highest concentration at the pH of blood are not the strongest binding ones. The calculated binding free energy values can be well interpreted in terms of the interactions between the actual sites of the microspecies and the receptor amino acids. Our docking results were validated and compared with biological data from the literature. Since the thyroid hormone receptors influence several physiologic functions, such as metabolic rate, cholesterol and triglyceride levels, and heart frequency, our binding results provide a molecular basis for drug design and development in related therapeutic indications. PMID:23907234

  1. Analysis of photoaffinity label derivatives to probe thyroid hormone receptor in human fibroblasts, GH1 cells, and soluble receptor preparations

    SciTech Connect

    Horowitz, Z.D.; Sahnoun, H.; Pascual, A.; Casanova, J.; Samuels, H.H.

    1988-05-15

    The regulation of growth hormone gene expression by thyroid hormone in cultured GH1 cells is mediated by a chromatin-associated receptor. We have previously described a photoaffinity label derivative of 3,5,3'-triiodo-L-thyronine (L-T3) in which the alanine side chain was modified to form N-2-diazo-3,3,3-trifluoropropionyl-L-T3 (L-(125I)T3-PAL). On exposure to 254 nm UV light, L-(125I)T3-PAL generates a carbene which covalently modifies two thyroid hormone receptor forms in intact GH1 cells; an abundant 47,000 Mr species and a less abundant 57,000 Mr form. We have now synthesized similar photoaffinity label derivatives of 3,5,3',5'-tetraiodo-L-thyronine (L-T4) and 3,3',5'-triiodo-L-thyronine (L-rT3). Both compounds identify the same receptor forms in intact cells and in nuclear extracts in vitro as L-(125I)T3-PAL. Labeling by L-(125I)rT3-PAL was low and consistent with the very low occupancy of receptor by L-rT3. Underivatized L-(125I)T3 and L-(125I)T4 labeled the same receptor forms at 254 nm but at a markedly lower efficiency than their PAL derivatives. In contrast, N-bromoacetyl-L-(125I)T3, a chemical affinity labeling agent, did not derivatize either receptor form in vitro. The relative efficiency of coupling to receptor at 254 nm was L-(125I)T4-PAL greater than L-(125I)T3-PAL greater than L-(125I)T4 greater than L-(125I)T3. Although L-(125I)T4-PAL has a lower affinity for receptor than L-(125I)T3-PAL, its coupling efficiency was 5-10-fold higher. This suggests that the alanine side chain of L-(125I)T4-PAL is positioned in the ligand binding region near a residue which is efficiently modified by photoactivation. With L-(125I)T4-PAL we were able to identify three different molecular weight receptor species in human fibroblast nuclei.

  2. Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors.

    PubMed

    Baker, Michael E; Funder, John W; Kattoula, Stephanie R

    2013-09-01

    Mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) are descended from an ancestral corticoid receptor (CR). To date, the earliest CR have been found in lamprey and hagfish, two jawless fish (cyclostomes) that evolved at the base of the vertebrate line. Lamprey CR has both MR and GR activity. Distinct orthologs of the GR and MR first appear in skates and sharks, which are cartilaginous fishes (Chondrichthyes). Aldosterone, the physiological mineralocorticoid in terrestrial vertebrates, first appears in lobe-finned fish, such as lungfish and coelacanth, forerunners of terrestrial vertebrates, but not in sharks, skates or ray-finned fish. Skate MR are transcriptionally activated by glucocorticoids, such as corticosterone and cortisol, as well as by mineralocorticoids such as deoxycorticosterone and (experimentally) aldosterone; skate GR have low affinity for all human corticosteroids and 1α-OH-corticosterone, which has been proposed to be biologically active glucocorticoid. In fish, cortisol is both physiological mineralocorticoid and glucocorticoid; in terrestrial vertebrates, cortisol or corticosterone are the physiological glucocorticoids acting through GR, and aldosterone via MR as the physiologic mineralocorticoid. MR have equally high affinity for cortisol, corticosterone and progesterone. We review this evolutionary process through an analysis of changes in sequence and structure of vertebrate GR and MR, identifying changes in these receptors in skates and lobe-fined fish important in allowing aldosterone to act as an agonist at epithelial MR and glucocorticoid specificity for GR. hMR and hGR have lost a key contact between helix 3 and helix 5 that was present in their common ancestor. A serine that is diagnostic for vertebrate MR, and absent in terrestrial and fish GR, is present in lamprey CR, skate MR and GR, but not in coelacanth GR, marking the transition of the GR from MR ancestor. Based on the response of the CR and skate MR and GR to

  3. Identification of Neuropeptide Receptors Expressed by Melanin-Concentrating Hormone Neurons

    PubMed Central

    Parks, Gregory S.; Wang, Lien; Wang, Zhiwei; Civelli, Olivier

    2014-01-01

    Melanin-concentrating Hormone (MCH) is a 19 amino acid cyclic neuropeptide that acts in rodents via the MCH receptor 1 (MCHR1) to regulate a wide variety of physiological functions. MCH is produced by a distinct population of neurons located in the lateral hypothalamus (LH) and zona incerta (ZI) but MCHR1 mRNA is widely expressed throughout the brain. The physiological responses and behaviors regulated by the MCH system have been investigated, but less is known about how MCH neurons are regulated. The effects of most classical neurotransmitters on MCH neurons have been studied, but those of neuropeptides are poorly understood. In order to gain insight into how neuropeptides regulate the MCH system, we investigated which neuropeptide receptors are expressed by MCH neurons using double in situ hybridization. In all, twenty receptors, selected based upon either a suspected interaction with the MCH system or demonstrated high expression levels in the LH and ZI, were tested to determine whether they are expressed by MCH neurons. Overall, eleven neuropeptide receptors were found to exhibit significant colocalization with MCH neurons: Nociceptin / Orphanin FQ Opioid receptor (NOP), MCHR1, both Orexin receptors (ORX), Somatostatin receptor 1 and 2 (SSTR1, SSTR2), the Kisspeptin receotor (KissR1), Neurotensin receptor 1 (NTSR1), Neuropeptide S receptor (NPSR), Cholecystokinin receptor A (CCKAR) and the κ-opioid receptor (KOR). Of these receptors, six have never before been linked to the MCH system. Surprisingly, several receptors thought to regulate MCH neurons displayed minimal colocalization with MCH, suggesting that they may not directly regulate the MCH system. PMID:24978951

  4. Inactivating mutations of luteinizing hormone beta-subunit or luteinizing hormone receptor cause oligo-amenorrhea and infertility in women.

    PubMed

    Arnhold, Ivo Jorge; Lofrano-Porto, Adriana; Latronico, Ana Claudia

    2009-01-01

    Women harbouring inactivating mutations in luteinizing hormone (LH) beta subunit (LHB) or LH receptor (LHCGR) genes have similar clinical manifestations characterized by female external genitalia, spontaneous breast and pubic hair development at puberty, and normal or late menarche followed by oligo-amenorrhea and infertility. Oestradiol and progesterone levels are normal for the early to midfollicular phase, but do not reach ovulatory or luteal phase levels, confirming lack of ovulation. Notably, serum LH levels are low in patients with LHB mutations and high in those with LHCGR mutations, whereas follicle-stimulating hormone levels are normal or only slightly increased. Pelvic ultrasound has demonstrated a small or normal uterus and normal or enlarged ovaries with cysts. Women with LHB mutations may be treated with hCG (human chorionic gonadotropin) or LH, whereas those with mutations in LHCGR are resistant. Lhb and Lhcgr knockout female mice are close phenocopies of the respective human mutations, and confirm that early follicular development, low levels of oestrogen production and theca cell development are independent of LH action, which is necessary for ovulation. Although inactivating mutations in LHB and LHCGR are rare in comparison to other genetic and non-genetic causes of hypogonadism, they should be considered in the differential diagnosis of oligo-amenorrhea and infertility. PMID:19129711

  5. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  6. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  7. A Milk-Free Diet Downregulates Folate Receptor Autoimmunity in Cerebral Folate Deficiency Syndrome

    ERIC Educational Resources Information Center

    Ramaekers, Vincent T.; Sequeira, Jeffrey M.; Blau, Nenad; Quadros, Edward V.

    2008-01-01

    In cerebral folate deficiency syndrome, the presence of autoantibodies against the folate receptor (FR) explains decreased folate transport to the central nervous system and the clinical response to folinic acid. Autoantibody crossreactivity with milk FR from different species prompted us to test the effect of a milk-free diet. Intervention with a…

  8. Cutaneous leukocytoclastic vasculitis in a child with interleukin-12 receptor beta-1 deficiency.

    PubMed

    Kutukculer, Necil; Genel, Ferah; Aksu, Guzide; Karapinar, Bulent; Ozturk, Can; Cavusoglu, Cengiz; Casanova, Jean-Laurent; Fieschi, Claire

    2006-03-01

    We report a patient with complete interleukin-12 receptor beta-1 deficiency associated with cutaneous leukocytoclastic vasculitis. The patient experienced Bacille Calmette Guérin, Mycobacterium chelonae, and Salmonella enteritidis infection. Vasculitis affecting both small arteries and postcapillary venules due to deposition of immune complexes was probably caused by S. enteritidis and/or M. chelonae infection. PMID:16615980

  9. Spino-Cerebellar Degeneration, Hormonal Disorder, Hypogonadism, Deaf Mutism and Mental Deficiency

    ERIC Educational Resources Information Center

    Sylvester, P. E.

    1972-01-01

    Post mortem examinations were done on two adult siblings (one female and one male) who had been clinically described as suffering from mental handicap, deaf mutism, ataxia, hypogonadism, and hormonal disorders. (DB)

  10. Antagonistic actions of analogs related to growth hormone-releasing hormone (GHRH) on receptors for GHRH and vasoactive intestinal peptide on rat pituitary and pineal cells in vitro

    PubMed Central

    Rekasi, Zoltan; Varga, Jozsef L.; Schally, Andrew V.; Halmos, Gabor; Groot, Kate; Czompoly, Tamas

    2000-01-01

    Peptide analogs of growth hormone-releasing hormone (GHRH) can potentially interact with vasoactive intestinal peptide (VIP) receptors (VPAC1-R and VPAC2-R) because of the structural similarities of these two hormones and their receptors. We synthesized four new analogs related to GHRH (JV-1–50, JV-1–51, JV-1–52, and JV-1–53) with decreased GHRH antagonistic activity and increased VIP antagonistic potency. To characterize various peptide analogs for their antagonistic activity on receptors for GHRH and VIP, we developed assay systems based on superfusion of rat pituitary and pineal cells. Receptor-binding affinities of peptides to the membranes of these cells were also evaluated by radioligand competition assays. Previously reported GHRH antagonists JV-1–36, JV-1–38, and JV-1–42 proved to be selective for GHRH receptors, because they did not influence VIP-stimulated VPAC2 receptor-dependent prolactin release from pituitary cells or VPAC1 receptor-dependent cAMP efflux from pinealocytes but strongly inhibited GHRH-stimulated growth hormone (GH) release. Analogs JV-1–50, JV-1–51, and JV-1–52 showed various degrees of VPAC1-R and VPAC2-R antagonistic potency, although also preserving a substantial GHRH antagonistic effect. Analog JV-1–53 proved to be a highly potent VPAC1 and VPAC2 receptor antagonist, devoid of inhibitory effects on GHRH-evoked GH release. The antagonistic activity of these peptide analogs on processes mediated by receptors for GHRH and VIP was consistent with the binding affinity. The analogs with antagonistic effects on different types of receptors expressed on tumor cells could be utilized for the development of new approaches to treatment of various human cancers. PMID:10655511

  11. The Splice Isoforms of the Drosophila Ecdysis Triggering Hormone Receptor Have Developmentally Distinct Roles.

    PubMed

    Diao, Feici; Mena, Wilson; Shi, Jonathan; Park, Dongkook; Diao, Fengqiu; Taghert, Paul; Ewer, John; White, Benjamin H

    2016-01-01

    To grow, insects must periodically shed their exoskeletons. This process, called ecdysis, is initiated by the endocrine release of Ecdysis Trigger Hormone (ETH) and has been extensively studied as a model for understanding the hormonal control of behavior. Understanding how ETH regulates ecdysis behavior, however, has been impeded by limited knowledge of the hormone's neuronal targets. An alternatively spliced gene encoding a G-protein-coupled receptor (ETHR) that is activated by ETH has been identified, and several lines of evidence support a role in ecdysis for its A-isoform. The function of a second ETHR isoform (ETHRB) remains unknown. Here we use the recently introduced "Trojan exon" technique to simultaneously mutate the ETHR gene and gain genetic access to the neurons that express its two isoforms. We show that ETHRA and ETHRB are expressed in largely distinct subsets of neurons and that ETHRA- but not ETHRB-expressing neurons are required for ecdysis at all developmental stages. However, both genetic and neuronal manipulations indicate an essential role for ETHRB at pupal and adult, but not larval, ecdysis. We also identify several functionally important subsets of ETHR-expressing neurons including one that coexpresses the peptide Leucokinin and regulates fluid balance to facilitate ecdysis at the pupal stage. The general strategy presented here of using a receptor gene as an entry point for genetic and neuronal manipulations should be useful in establishing patterns of functional connectivity in other hormonally regulated networks. PMID:26534952

  12. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    SciTech Connect

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward; Soon, Fen-Fen; Xu, Yong; Suino-Powell, Kelly M; Park, Sang-Youl; Weiner, Joshua J; Fujii, Hiroaki; Chinnusamy, Viswanathan; Kovach, Amanda; Li, Jun; Wang, Yonghong; Li, Jiayang; Peterson, Francis C; Jensen, Davin R; Yong, Eu-Leong; Volkman, Brian F; Cutler, Sean R; Zhu, Jian-Kang; Xu, H Eric

    2010-01-12

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.

  13. DWARF14 is a non-canonical hormone receptor for strigolactone.

    PubMed

    Yao, Ruifeng; Ming, Zhenhua; Yan, Liming; Li, Suhua; Wang, Fei; Ma, Sui; Yu, Caiting; Yang, Mai; Chen, Li; Chen, Linhai; Li, Yuwen; Yan, Chun; Miao, Di; Sun, Zhongyuan; Yan, Jianbin; Sun, Yuna; Wang, Lei; Chu, Jinfang; Fan, Shilong; He, Wei; Deng, Haiteng; Nan, Fajun; Li, Jiayang; Rao, Zihe; Lou, Zhiyong; Xie, Daoxin

    2016-08-25

    Classical hormone receptors reversibly and non-covalently bind active hormone molecules, which are generated by biosynthetic enzymes, to trigger signal transduction. The α/β hydrolase DWARF14 (D14), which hydrolyses the plant branching hormone strigolactone and interacts with the F-box protein D3/MAX2, is probably involved in strigolactone detection. However, the active form of strigolactone has yet to be identified and it is unclear which protein directly binds the active form of strigolactone, and in which manner, to act as the genuine strigolactone receptor. Here we report the crystal structure of the strigolactone-induced AtD14-D3-ASK1 complex, reveal that Arabidopsis thaliana (At)D14 undergoes an open-to-closed state transition to trigger strigolactone signalling, and demonstrate that strigolactone is hydrolysed into a covalently linked intermediate molecule (CLIM) to initiate a conformational change of AtD14 to facilitate interaction with D3. Notably, analyses of a highly branched Arabidopsis mutant d14-5 show that the AtD14(G158E) mutant maintains enzyme activity to hydrolyse strigolactone, but fails to efficiently interact with D3/MAX2 and loses the ability to act as a receptor that triggers strigolactone signalling in planta. These findings uncover a mechanism underlying the allosteric activation of AtD14 by strigolactone hydrolysis into CLIM, and define AtD14 as a non-canonical hormone receptor with dual functions to generate and sense the active form of strigolactone. PMID:27479325

  14. UV filters induce transcriptional changes of different hormonal receptors in Chironomus riparius embryos and larvae.

    PubMed

    Ozáez, Irene; Aquilino, Mónica; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Organic ultraviolet (UV) filters are emerging contaminants that are ubiquitous in fresh and marine aquatic systems due to their extensive use in cosmetics, plastics, paints, textiles, and many other industrial products. The estrogenic effects of organic UV filters have been long demonstrated in vertebrates, and other hormonal activities may be altered, according to more recent reports. The impact of UV filters on the endocrine system of invertebrates is largely unknown. We have previously reported that some UV filters may affect ecdysone-related genes in the aquatic insect Chironomus riparius, an ecotoxicologically important model organism. To further analyze other possible effects on endocrine pathways, we first characterized four pivotal genes related with hormonal pathways in insects; thereafter, these genes were assessed for alterations in transcriptional activity after exposure to 4-methylbenzylidene camphor (4MBC) or benzophenone-3 (BP-3), two extensively used sunscreens. We found that both chemicals disturbed the expression of all four genes analyzed: hormonal receptor 38 (HR38), methoprene-tolerant (Met), membrane-associate progesterone receptor (MAPR) and insulin-like receptor (INSR), measured by changes in mRNA levels by real-time PCR. An upregulatory effect at the genomic level was detected in different developmental stages. Interestingly, embryos appeared to be more sensitive to the action of the UV filters than larvae. Our results suggest that the risk of disruption through different endocrine routes is not negligible, considering the significant effects of UV filters on key hormonal receptor and regulatory genes. Further effort is needed to develop environmental risk assessment studies on these pollutants, particularly for aquatic invertebrate model organisms. PMID:27089421

  15. Influence of thyroid hormone and thyroid hormone receptors in the generation of cerebellar gamma-aminobutyric acid-ergic interneurons from precursor cells.

    PubMed

    Manzano, Jimena; Cuadrado, Maria; Morte, Beatriz; Bernal, Juan

    2007-12-01

    Thyroid hormones have important actions in the developing central nervous system. We describe here a novel action of thyroid hormone and its nuclear receptors on maturation of cerebellar gamma-aminobutyric acid (GABA)-ergic interneurons from their precursor cells. In rats, the density of GABAergic terminals in the cerebellum was decreased by hypothyroidism, as shown by immunohistochemistry for the GABA transporter GAT-1. This was due, at least partially, to a decreased number of GABAergic cells, because the number of Golgi II cells in the internal granular layer was decreased. GABAergic interneurons in the cerebellum differentiate from precursors expressing the Pax-2 transcription factor, generated in the subventricular zone of the embryonic fourth ventricle from where they migrate to the cerebellum. Hypothyroidism caused both decreased proliferation and delayed differentiation of precursors, with the net effect being an accumulation of immature cells during the neonatal period. The contribution of thyroid hormone receptors was studied by treating hypothyroid rats with T(3) or with the thyroid hormone receptor (TR) beta-selective agonist GC-1. Whereas treatment with T(3) reduced the number of precursors to control levels, GC-1 had only a partial effect, indicating that both TRalpha1 and TRbeta mediate the actions of T(3). Deletion of TRalpha1 in mice decreased cerebellar GAT-1 expression and Pax-2 precursor cell proliferation. It is concluded that thyroid hormone, acting through the nuclear receptors, has a major role in the proliferation and further differentiation of the Pax-2 precursors of cerebellar GABAergic cells. PMID:17761765

  16. Association of estrogen receptor-α and progesterone receptor A expression with hormonal mammary carcinogenesis: role of the host microenvironment

    PubMed Central

    Montero Girard, Guadalupe; Vanzulli, Silvia I; Cerliani, Juan Pablo; Bottino, María Cecilia; Bolado, Julieta; Vela, Jorge; Becu-Villalobos, Damasia; Benavides, Fernando; Gutkind, Silvio; Patel, Vyomesh; Molinolo, Alfredo; Lanari, Claudia

    2007-01-01

    Introduction Medroxyprogesterone acetate (MPA) induces estrogen receptor (ER)-positive and progesterone receptor (PR)-positive ductal invasive mammary carcinomas in BALB/c mice. We sought to reproduce this MPA cancer model in C57BL/6 mice because of their widespread use in genetic engineering. Within this experimental setting, we studied the carcinogenic effects of MPA, the morphologic changes in mammary glands that are induced by MPA and progesterone, and the levels of ER and PR expression in MPA-treated and progesterone-treated mammary glands. Finally, we evaluated whether the differences found between BALB/c and C57BL/6 mouse strains were due to intrinsic differences in epithelial cells. Methods The carcinogenic effect of MPA was evaluated in C57BL/6 mice using protocols proven to be carcinogenic in BALB/c mice. In addition, BALB/c and C57BL/6 females were treated with progesterone or MPA for 1 or 2 months, and mammary glands were excised for histologic studies and for immunohistochemical and Western blot evaluation of ER and PR. Hormone levels were determined by radioimmunoassay. Isolated mammary epithelial cells were transplanted into cleared fat pads of 21-day-old female Swiss nu/nu mice or control congenic animals. Results MPA failed to induce mammary carcinomas or significant morphologic changes in the mammary glands of C57BL/6 mice. The expression of ER-α and PR isoform A in virgin mice was surprisingly much higher in BALB/c than in C57BL/6 mammary glands, and both receptors were downregulated in progestin-treated BALB/c mice (P < 0.05). PR isoform B levels were low in virgin control mice and increased after progestin treatment in both strains. ER-β expression followed a similar trend. No differences in hormone levels were found between strains. Surprisingly, the transplantation of the epithelial mammary gland cells of both strains into the cleared fat pads of Swiss (nu/nu) mice abolished the mammary gland morphologic differences and the ER and PR

  17. Identification of SRC3/AIB1 as a Preferred Coactivator for Hormone-activated Androgen Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Li, Jun; He, Yuanzheng; MacKeigan, Jeffrey P.; Melcher, Karsten; Yong, Eu-Leong; Xu, H.Eric

    2010-09-17

    Transcription activation by androgen receptor (AR), which depends on recruitment of coactivators, is required for the initiation and progression of prostate cancer, yet the mechanisms of how hormone-activated AR interacts with coactivators remain unclear. This is because AR, unlike any other nuclear receptor, prefers its own N-terminal FXXLF motif to the canonical LXXLL motifs of coactivators. Through biochemical and crystallographic studies, we identify that steroid receptor coactivator-3 (SRC3) (also named as amplified in breast cancer-1 or AIB1) interacts strongly with AR via synergistic binding of its first and third LXXLL motifs. Mutagenesis and functional studies confirm that SRC3 is a preferred coactivator for hormone-activated AR. Importantly, AR mutations found in prostate cancer patients correlate with their binding potency to SRC3, corroborating with the emerging role of SRC3 as a prostate cancer oncogene. These results provide a molecular mechanism for the selective utilization of SRC3 by hormone-activated AR, and they link the functional relationship between AR and SRC3 to the development and growth of prostate cancer.

  18. Structure-based approach for the study of thyroid hormone receptor binding affinity and subtype selectivity.

    PubMed

    Wang, Fang-Fang; Yang, Wei; Shi, Yong-Hui; Cheng, Xiang-Rong; Le, Guo-Wei

    2016-10-01

    Thyroid hormone (TH) possesses the ability to lower cholesterol and improve cardiac performance, which have prompted the efforts to design analogs that can utilize the cholesterol-lowering property without adversely affecting heart function. In order to gain insights into the interaction mechanism for agonists at the active site of thyroid hormone receptor β (TRβ), quantitative structure-activity relationship (QSAR) models have been developed on TRβ agonists, significant statistical coefficients were obtained (CoMFA, R(2)cv, .732), (CoMSIA, R(2)cv, .853), indicating the internal consistency of the models, the obtained models were further validated using the test set, the acquired R(2)pred values .7054 and .7129 were in good agreement with the experimental results. The key amino acids affecting ligand binding were identified by molecular docking, and the detailed binding modes of the compounds with different activities were also determined. Furthermore, molecular dynamics (MD) simulations were conducted to assess the reliability of the derived models and the docking results. Moreover, TH exerts significant physiological effects through modulation of the two human thyroid hormone receptor subtypes. Because TRβ and TRα locate in different target cells, selective TR ligands would target specific tissues regulated by one receptor without affecting the other. Thus, the 3D information was analyzed to reveal the most relevant structural features involved in selectivity. The findings serve as the basis for further investigation into selective TRβ/TRα agonists. PMID:26510472

  19. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia

    PubMed Central

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-01-01

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections. PMID:27484112

  20. The Thyroid Hormone Receptors Inhibit Hepatic Interleukin-6 Signaling During Endotoxemia.

    PubMed

    Contreras-Jurado, Constanza; Alonso-Merino, Elvira; Saiz-Ladera, Cristina; Valiño, Arturo José; Regadera, Javier; Alemany, Susana; Aranda, Ana

    2016-01-01

    Decreased thyroidal hormone production is found during lipopolysaccharide (LPS)-induced endotoxic shock in animals as well as in critically ill patients. Here we studied the role of the thyroid hormone receptors (TRs) in activation of STAT3, NF-κB and ERK, which play a key role in the response to inflammatory cytokines during sepsis. TR knockout mice showed down-regulation of hepatic inflammatory mediators, including interleukin 6 (IL-6) in response to LPS. Paradoxically, STAT3 and ERK activity were higher, suggesting that TRs could act as endogenous repressors of these pathways. Furthermore, hyperthyroidism increased cytokine production and mortality in response to LPS, despite decreasing hepatic STAT3 and ERK activity. This suggested that TRs could directly repress the response of the cells to inflammatory mediators. Indeed, we found that the thyroid hormone T3 suppresses IL-6 signalling in macrophages and hepatocarcinoma cells, inhibiting STAT3 activation. Consequently, the hormone strongly antagonizes IL-6-stimulated gene transcription, reducing STAT3 recruitment and histone acetylation at IL-6 target promoters. In conclusion, TRs are potent regulators of inflammatory responses and immune homeostasis during sepsis. Reduced responses to IL-6 should serve as a negative feedback mechanism for preventing deleterious effects of excessive hormone signaling during infections. PMID:27484112

  1. Thyrotropin-luteinizing hormone/chorionic gonadotropin receptor extracellular domain chimeras as probes for thyrotropin receptor function

    SciTech Connect

    Nagayama, Yuji; Wadsworth, H.L.; Chazenbalk, G.D.; Russo, D.; Seto, Pui; Rapoport, B. Univ. of California, San Francisco )

    1991-02-01

    To define the sites in the extracellular domain of the human thyrotropin (TSH) receptor that are involved in TSH binding and signal transduction the authors constructed chimeric thyrotropin-luteinizing hormone/chorionic gonadotropin (TSH-LH/CG) receptors. The extracellular domain of the human TSH receptor was divided into five regions that were replaced, either singly or in various combinations, with homologous regions of the rat LH/CG receptor. The chimeric receptors were stably expressed in Chinese hamster ovary cells. The data obtained suggest that the carboxyl region of the extracellular domain (amino acid residues 261-418) and particularly the middle region (residues 171-260) play a role in signal transduction. The possibility is also raised of an interaction between the amino and carboxyl regions of the extracellular domain in the process of signal transduction. In summary, these studies suggest that the middle region and carboxyl half of the extracellular domain of the TSH receptor are involved in signal transduction and that the TSH-binding region is likely to span the entire extracellular domain, with multiple discontinuous contact sites.

  2. The expression of several reproductive hormone receptors can be modified by perfluorooctane sulfonate (PFOS) in adult male rats.

    PubMed

    López-Doval, S; Salgado, R; Lafuente, A

    2016-07-01

    This study was undertaken to evaluate the possible role of several reproductive hormone receptors on the disruption of the hypothalamic-pituitary-testis (HPT) axis activity induced by perfluorooctane sulfonate (PFOS). The studied receptors are the gonadotropin-releasing hormone receptor (GnRHr), luteinizing hormone receptor (LHr), follicle-stimulating hormone receptor (FSHr), and the androgen receptor (Ar). Adult male rats were orally treated with 1.0; 3.0 and 6.0 mg of PFOS kg(-1) d(-1) for 28 days. In general terms, PFOS can modify the relative gene and protein expressions of these receptors in several tissues of the reproductive axis. At the testicular level, apart from the expected inhibition of both gene and protein expressions of FSHr and Ar, PFOS also stimulates the GnRHr protein and the LHr gene expression. The receptors of the main hormones involved in the HPT axis may have an important role in the disruption exerted by PFOS on this axis. PMID:27151425

  3. Placenta Passage of the Thyroid Hormone Analog DITPA to Male Wild-Type and Mct8-Deficient Mice

    PubMed Central

    Ferrara, Alfonso Massimiliano; Liao, Xiao-Hui; Gil-Ibáñez, Pilar; Bernal, Juan; Weiss, Roy E.; Dumitrescu, Alexandra M.

    2014-01-01

    Monocarboxylate transporter 8 (MCT8) deficiency causes severe X-linked intellectual and neuropsychological impairment associated with abnormal thyroid function tests (TFTs) producing thyroid hormone (TH) deprivation in brain and excess in peripheral tissues. The TH analog diiodothyropropionic acid (DITPA) corrected the TFTs abnormalities and hypermetabolism of MCT8-deficient children but did not improve the neurological phenotype. The latter result was attributed to the late initiation of treatment. Therefore, we gave DITPA to pregnant mice carrying Mct8-deficient embryos to determine whether DITPA, when given prenatally, crosses the placenta and affects the serum TFTs and cerebral cortex of embryos. After depletion of the endogenous TH, Mct8-heterozygous pregnant dams carrying both wild-type (Wt) and Mct8-deficient (Mct8KO) male embryos were given DITPA. Effects were compared with those treated with levothyroxine (L-T4). With DITPA treatment, serum DITPA concentration was not different in the two genotypes, which produced equal effect on serum TSH levels in both groups of pups. In contrast, with L-T4 treatment, TSH did not normalize in Mct8KO pups whereas it did in the Wt littermates and dams despite higher concentration of serum T4. Finally, both treatments similarly modulated the expression of the TH-dependent genes Shh, Klf9, and Aldh1a3 in brain. Thus, the ability of DITPA to cross the placenta, its thyromimetic action on the expression of TH-dependent genes in brain, and its better accessibility to the pituitary than L-T4, as assessed by serum TSH, make DITPA a candidate for the prenatal treatment of MCT8 deficiency. PMID:25051435

  4. Luteinizing hormone/human chorionic gonadotrophin receptors in various epidermal structures.

    PubMed

    Venencie, P Y; Méduri, G; Pissard, S; Jolivet, A; Loosfelt, H; Milgrom, E; Misrahi, M

    1999-09-01

    Two different monoclonal antibodies recognizing different epitopes were used to study the localization of luteinizing hormone/human chorionic gonadotrophin (LH/hCG) receptors in human skin. Immunolabelling was observed only in the epidermis and derived structures but not in the dermis. The basal, spinal and granular layers were stained, whereas no receptors were detected in the non-nucleated horny cells. In the growing (anagen) hair, immunostaining was found in the inner root sheath below the level of the sebaceous glands and in the outer root sheath above this level. In the resting (telogen) hair, only the latter staining was observed. In the sebaceous glands, only the thin cells close to the walls of the ducts were immunolabelled. In the eccrine sweat glands, the external clear cells were stained in the secretory portion of the gland, whereas only the cells close to the lumen were labelled in the ducts. The distribution of LH/hCG receptors was compared with that of steroidogenic enzymes (side chain cleavage cytochrome P450, adrenodoxin, 3-beta-hydroxy-5-ene steroid dehydrogenase Delta5-Delta4 isomerase, 17-hydroxylase cytochrome P450 and cytochrome P450 aromatase). Only partial overlaps were observed. The presence of LH receptor mRNA in the skin was confirmed by reverse transcription-polymerase chain reaction. Monoclonal antibodies raised against the human follicle-stimulating hormone receptor failed to detect the latter in the epidermal structures and in the dermis. The role of LH and hCG in skin modifications occurring during pregnancy and after the menopause is unknown. These hormones may possibly act by regulating steroidogenic enzymes or by modulating cell growth and differentiation. PMID:10583046

  5. Growth Hormone Secretagogue Receptor Dimers: A New Pharmacological Target1,2,3

    PubMed Central

    Abizaid, Alfonso

    2015-01-01

    Abstract The growth hormone secretagogue receptor (GHSR1a), the target of the ghrelin peptide, is widely distributed throughout the brain, and, while studies have often reported very low or absent levels of central ghrelin, it is now known that GHSR1a, even in the absence of a natural ligand, has physiological roles. Not only do these roles originate from the receptor’s constitutive activity, but recent data indicate that GHSR1a dimerizes with a wide array of other receptors. These include the dopamine 1 receptor (D1R), the dopamine 2 receptor (D2R), the melanocortin-3 receptor (MC3R), the serotonin 2C receptor (5-HT2C), and possibly the cannabinoid type 1 receptor (CB1). Within these dimers, signaling of the protomers involved are modified through facilitation, inhibition, and even modification of signaling pathways resulting in physiological consequences not seen in the absence of these dimers. While in some cases the ghrelin peptide is not required for these modifications to occur, in others, the presence is necessary for these changes to take effect. These heterodimers demonstrate the broad array of roles and complexity of the ghrelin system. By better understanding how these dimers work, it is hoped that improved treatments for a variety of disorders, including Parkinson’s disease, schizophrenia, addiction, obesity, diabetes, and more, can be devised. In this review, we examine the current state of knowledge surrounding GHSR heterodimers, and how we can apply this knowledge to various pharmacological treatments. PMID:26464979

  6. The role of receptor dimerization domain residues in growth hormone signaling.

    PubMed

    Chen, C; Brinkworth, R; Waters, M J

    1997-02-21

    While there is a considerable amount of evidence that signal transduction by the growth hormone (GH) receptor requires receptor homodimerization, there has been no systematic study of the role of receptor dimerization domain residues in this process. In conjunction with the distances derived from the crystal structure of the hGH-hGH receptor (extracellular domain) complex, we have used a luciferase-based c-fos promoter reporter assay in transiently transfected Chinese hamster ovary (CHO) cells, and stable receptor expressing CHO cell populations to define the dimerization domain residues needed for effective signaling. In addition to alanine substitution, we have used both aspartate and lysine substitutions to allow us to provide evidence for proximity relations through charge complementation. Introduced cysteine substitutions were also used, but unlike the erythropoietin receptor, these were unable to generate constitutively active receptor. We conclude that serine 145, histidine 150, aspartate 152, tyrosine 200, and serine 201, but not leucine 146 or threonine 147 are required for effective signal transduction through the dimerization domain. This information may be valuable in designing small molecule antagonists of GH and other cytokines that block dimerization by binding to the dimerization domain. PMID:9030580

  7. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lep{sup ob/ob} mice

    SciTech Connect

    Sekiya, Motohiro; Yahagi, Naoya; Tamura, Yoshiaki; Okazaki, Hiroaki; Igarashi, Masaki; Ohta, Keisuke; Takanashi, Mikio; Kumagai, Masayoshi; Takase, Satoru; Nishi, Makiko; Takeuchi, Yoshinori; Izumida, Yoshihiko; Kubota, Midori; Ohashi, Ken; Iizuka, Yoko; Yagyu, Hiroaki; Gotoda, Takanari; Nagai, Ryozo; Shimano, Hitoshi; Yamada, Nobuhiro; and others

    2009-09-25

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic {beta}-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep{sup ob/ob}/HSL{sup -/-}) and explored the role of HSL in pancreatic {beta}-cells in the setting of obesity. Lep{sup ob/ob}/HSL{sup -/-} developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep{sup ob/ob}/HSL{sup +/+} in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep{sup +/+} background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep{sup ob/ob} islets, leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep{sup ob/ob} mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.

  8. A selective thyroid hormone β receptor agonist enhances human and rodent oligodendrocyte differentiation.

    PubMed

    Baxi, Emily G; Schott, Jason T; Fairchild, Amanda N; Kirby, Leslie A; Karani, Rabia; Uapinyoying, Prech; Pardo-Villamizar, Carlos; Rothstein, Jeffrey R; Bergles, Dwight E; Calabresi, Peter A

    2014-09-01

    Nerve conduction within the mammalian central nervous system is made efficient by oligodendrocyte-derived myelin. Historically, thyroid hormones have a well described role in regulating oligodendrocyte differentiation and myelination during development; however, it remains unclear which thyroid hormone receptors are required to drive these effects. This is a question with clinical relevance since nonspecific thyroid receptor stimulation can produce deleterious side-effects. Here we report that GC-1, a thyromimetic with selective thyroid receptor β action and a potentially limited side-effect profile, promotes in vitro oligodendrogenesis from both rodent and human oligodendrocyte progenitor cells. In addition, we used in vivo genetic fate tracing of oligodendrocyte progenitor cells via PDGFαR-CreER;Rosa26-eYFP double-transgenic mice to examine the effect of GC-1 on cellular fate and find that treatment with GC-1 during developmental myelination promotes oligodendrogenesis within the corpus callosum, occipital cortex and optic nerve. GC-1 was also observed to enhance the expression of the myelin proteins MBP, CNP and MAG within the same regions. These results indicate that a β receptor selective thyromimetic can enhance oligodendrocyte differentiation in vitro and during developmental myelination in vivo and warrants further study as a therapeutic agent for demyelinating models. PMID:24863526

  9. Nuclear Receptor DHR4 Controls the Timing of Steroid Hormone Pulses During Drosophila Development

    PubMed Central

    Ou, Qiuxiang; Magico, Adam; King-Jones, Kirst

    2011-01-01

    In insects, precisely timed periodic pulses of the molting hormone ecdysone control major developmental transitions such as molts and metamorphosis. The synthesis and release of ecdysone, a steroid hormone, is itself controlled by PTTH (prothoracicotopic hormone). PTTH transcript levels oscillate with an 8 h rhythm, but its significance regarding the timing of ecdysone pulses is unclear. PTTH acts on its target tissue, the prothoracic gland (PG), by activating the Ras/Raf/ERK pathway through its receptor Torso, however direct targets of this pathway have yet to be identified. Here, we demonstrate that Drosophila Hormone Receptor 4 (DHR4), a nuclear receptor, is a key target of the PTTH pathway and establishes temporal boundaries by terminating ecdysone pulses. Specifically, we show that DHR4 oscillates between the nucleus and cytoplasm of PG cells, and that the protein is absent from PG nuclei at developmental times when low titer ecdysone pulses occur. This oscillatory behavior is blocked when PTTH or torso function is abolished, resulting in nuclear accumulation of DHR4, while hyperactivating the PTTH pathway results in cytoplasmic retention of the protein. Increasing DHR4 levels in the PG can delay or arrest development. In contrast, reducing DHR4 function in the PG triggers accelerated development, which is caused by precocious ecdysone signaling due to a failure to repress ecdysone pulses. Finally, we show that DHR4 negatively regulates the expression of a hitherto uncharacterized cytochrome P450 gene, Cyp6t3. Disruption of Cyp6t3 function causes low ecdysteroid titers and results in heterochronic phenotypes and molting defects, indicating a novel role in the ecdysone biosynthesis pathway. We propose a model whereby nuclear DHR4 controls the duration of ecdysone pulses by negatively regulating ecdysone biosynthesis through repression of Cyp6t3, and that this repressive function is temporarily overturned via the PTTH pathway by removing DHR4 from the nuclear

  10. Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis.

    PubMed

    Handa, R J; Burgess, L H; Kerr, J E; O'Keefe, J A

    1994-12-01

    The rapid activation of stress-responsive neuroendocrine systems is a basic reaction of animals to perturbations in their environment. One well-established response is that of the hypothalamo-pituitary-adrenal (HPA) axis. In rats, corticosterone is the major adrenal steroid secreted and is released in direct response to adrenocorticotropin (ACTH) secreted from the anterior pituitary gland. ACTH in turn is regulated by the hypothalamic factor, corticotropin-releasing hormone. A sex difference exists in the response of the HPA axis to stress, with females reacting more robustly than males. It has been demonstrated that in both sexes, products of the HPA axis inhibit reproductive function. Conversely, the sex differences in HPA function are in part due to differences in the circulating gonadal steroid hormone milieu. It appears that testosterone can act to inhibit HPA function, whereas estrogen can enhance HPA function. One mechanism by which androgens and estrogens modulate stress responses is through the binding to their cognate receptors in the central nervous system. The distribution and regulation of androgen and estrogen receptors within the CNS suggest possible sites and mechanisms by which gonadal steroid hormones can influence stress responses. In the case of androgens, data suggest that the control of the hypothalamic paraventricular nucleus is mediated trans-synaptically. For estrogen, modulation of the HPA axis may be due to changes in glucocorticoid receptor-mediated negative feedback mechanisms. The results of a variety of studies suggest that gonadal steroid hormones, particularly testosterone, modulate HPA activity in an attempt to prevent the deleterious effects of HPA activation on reproductive function. PMID:7729815

  11. Evaluation of serum transferrin receptor for iron deficiency in women of child-bearing age.

    PubMed

    Lin, Xiao-Ming; Zhang, Juan; Zou, Zhi-Yong; Long, Zhu; Tian, Wei

    2008-11-01

    The objective was to study the evaluation of serum transferrin receptor (sTfR) for Fe deficiency in women of child-bearing age. Primary screening was performed in 942 women ranging in child-bearing age. Serum ferritin (SF), Zn protoporphyrin (ZPP) and Hb were determined. Then the subjects were divided into four groups: normal, Fe store depletion (IDs), Fe-deficiency erythropoiesis and Fe-deficiency anaemia. sTfR was determined and sTfR/SF (sTfR/logSF and log(sTfR/SF)) was calculated. Changes of sTfR in women of different Fe status were observed. A receiver-operating characteristic (ROC) curve was used to evaluate whether sTfR had proper diagnostic efficacy for functional Fe deficiency. The levels of sTfR increased significantly along with the aggravation of Fe deficiency. Increase of STfR/SF along with the aggravation of Fe deficiency was more significant than that of sTfR. STfR had a significant negative correlation with SF and Hb, while it had a significant positive correlation with ZPP. The ROC curve showed that the diagnostic effective rate of sTfR for Fe deficiency could reach 83 %. At this point, the sensitivity was 79 % and the specificity was 63 %. Log(sTfR/SF) could be considered to have the highest effective ratio in detecting IDs, since it reached 99 %. STfR and sTfR/SF could both reflect body Fe-deficiency status specifically. They could be used as reliable indicators for evaluating Fe status and diagnosing Fe deficiency in women of child-bearing age. PMID:18377683

  12. Characterization of nuclear corticosteroid receptors in rat adipocytes. Regional variations and modulatory effects of hormones.

    PubMed

    Pedersen, S B; Børglum, J D; Møller-Pedersen, T; Richelsen, B

    1992-04-01

    The corticosteroid receptor was investigated in isolated rat adipocytes with a new technique which characterizes the corticosteroid receptors that can be activated and tightly bound to the nucleus. The binding reaction with [3H]triamcinolone was performed with intact isolated adipocytes and the radioactivity associated with nucleus was subsequently determined after cell lysis. Scatchard analysis revealed a homogeneous class of nuclear corticosteroid receptors in rat epididymal adipocytes with an apparent Kd of 4.93 +/- 1.5 nM and a Bmax of 21.8 +/- 6.6 fmol/10(6) cells corresponding to about 13,000 receptors per nucleus. The corticosteroid binding exhibited regional variations in isolated adipocytes. The highest receptor number was found in epididymal adipocytes (Bmax 25.8 +/- 3.9 fmol/10(6) cells) whereas there were significantly lower nuclear binding sites in perirenal adipocytes (16.5 +/- 5.5 fmol/10(6) cells) (P less than 0.05) and subcutaneous adipocytes (4.8 +/- 1.5 fmol/10(6) cells) (P less than 0.01). The apparent affinity in the three fat depots were similar with Kd values about 4 nM. The nuclear corticosteroid receptor in adipocytes was steroid specific, as neither unlabelled estradiol nor testosterone were able to displace the [3H]triamcinolone binding at concentrations up to 100 microM. However, unlabelled progesterone and promegestrone (R5020) were able to compete with triamcinolone-binding (by 50-80%). In order to investigate whether the nuclear corticosteroid binding in adipocytes were under influence of other hormones we examined the effects of lipolytic and antilipolytic compounds on the binding. Preincubation with isoproterenol and dibutryl-cAMP for 1 h was able to decrease the corticosteroid binding by 30-50%. However, the antilipolytic hormone insulin had no effect in preincubations performed for up to 2 h. In conclusion, high affinity nuclear corticosteroid receptors were found in rat adipocytes. These receptors exhibited regional variations

  13. Management of a transcranial abscess secondary to interleukin-1 receptor associated kinase 4 deficiency.

    PubMed

    Pidgeon, Thomas Edward; Ahmad, Fateh; Hackett, Scott; Rodrigues, Desiderio; Nishikawa, Hiroshi

    2015-01-01

    Interleukin-1 receptor associated kinase 4 (IRAK-4) deficiency is a primary immunodeficiency that predisposes to opportunistic pyogenic infections in affected patients. The presentation can be variable, and the microbiological and immunologic management of this condition has been documented; however, the atypical nature of its presentation calls for a different approach in its surgical management. This is the first reported case of transcranial progression of a soft tissue abscess in a patient with IRAK-4 deficiency, with an emphasis on a multidisciplinary approach to treat infection at an extremely vulnerable anatomic site. PMID:25569407

  14. Structure and chromosomal localization of the human antidiuretic hormone receptor gene

    SciTech Connect

    Seibold, A.; Brabet, P.; Rosenthal, W.; Birnbaumer, M. )

    1992-11-01

    Applying a genomic DNA-expression approach, the authors cloned the gene and cDNA coding for the human antidiuretic hormone receptor, also called vasopressin V2 receptor' (V2R). The nucleotide sequence of both cloned DNAs provided the information to elucidate the structure of the isolated transcriptional unit. The structure of this gene is unusual in that it is the first G protein-coupled receptor gene that contains two very small intervening sequences, the second of which separates the region encoding the seventh transmembrane region from the rest of the open reading frame. The sequence information was used to synthesize appropriate oligonucleotides to be used as primers in the PCR. The V2R gene was localized by PCR using DNA from hybrid cells as template. The gene was found to reside in the q28-qter portion of the human X chromosome, a region identified as the locus for congential nephrogenic diabetes insipidus. 27 refs., 4 figs.

  15. The Content of Thyroid Hormone Receptor α in Ewe Kisspeptin Neurones is not Season-Dependent.

    PubMed

    Dufourny, L; Gennetay, D; Martinet, S; Lomet, D; Caraty, A

    2016-02-01

    Seasonal reproduction is grounded in several mechanisms, among which are plasticity in both hormone synthesis and neuronal networks. Increased daylength on long days (LD) translates into local tri-iodothyronin (T3) production in the mediobasal hypothalamus that will enable the transition to the anoestrus season in sheep. The photoperiod also strongly affects the content of kisspeptin (Kiss), a hypothalamic neuropeptide exerting a potent stimulatory effect on gonadotrophin-releasing hormone release. Our hypothesis was that T3 directly inhibits Kiss release during LD. Using double immunocytochemistry, we first searched for coexpression of thyroid hormone receptor (THR)α in Kiss neurones in ewes with an active or inactive gonadotrophic axis. In both the preoptic area and the arcuate nucleus, most Kiss neurones were labelled by THR antibody under both physiological/photoperiodic conditions. These results suggest thyroid hormones may affect Kiss synthesis and release all through the year. We then attempted to assess the influence of T3 on Kiss content in hypothalamic explants sampled from ewes with an active gonadotrophic axis. Kiss produced by hypothalamic explants cultured with different doses of T3 (300 or 600 pg) and subjected to different times of incubation (2 or 24 h) was measured. No significant effects of T3 on Kiss tissular content were observed for the two doses of T3 and for the two incubation times. In light of these findings, potential reasons for the divergent effects of thyroid hormones on Kiss content are discussed. Our data emphasise that the effects of thyroid hormone on Kiss synthesis are not one-sided and may affect a wide range of functions. PMID:26644229

  16. Induction of chronic growth hormone deficiency by anti-GH serum

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Smith, A. T.; Ellis, S.; Evans, E. S.

    1974-01-01

    The observations reported indicate that the growth rate of neonatal rats can be specifically inhibited for at least 78 days following the administration of antisera against growth hormone (GH) for only four days after birth. The inhibition can be correlated with a marked deficit of tibial growth promoting activity in the pituitary but not with the plasma concentrations of immuno-reactive GH.

  17. Use of different postmenopausal hormone therapies and risk of histology- and hormone receptor-defined invasive breast cancer

    PubMed Central

    Fournier, Agnès; Fabre, Alban; Mesrine, Sylvie; Boutron-Ruault, Marie-Christine; Berrino, Franco; Clavel-Chapelon, Françoise

    2008-01-01

    Purpose We previously found that the risk of invasive breast cancer varied according to the progestagen component of combined postmenopausal hormone therapy (CHT): progesterone, dydrogesterone, or other progestagens. We conducted the present study to assess how these CHTs were associated with histology- and hormone receptor-defined breast cancer. Patients and Methods We used data from the French E3N cohort study, with 80,391 postmenopausal women followed for a mean duration of 8.1 years; 2,265 histologically confirmed invasive breast cancers were identified through biennial self-administered questionnaires completed from 1990 to 2002. The relative risks (RRs) were estimated using Cox proportional hazards models. Results Compared with postmenopausal hormone therapy (HT) never-use, ever-use of estrogen+progesterone was not significantly associated with the risk of any breast cancer subtype, but increasing duration of estrogen+progesterone was associated with increasing risks of lobular (P=.06) and estrogen receptor–positive/progesterone receptor–negative (ER+/PR−; P=.02). Estrogen+dydrogesterone was associated with a significant increase in risk of lobular carcinoma (RR, 1.7; 95% CI, 1.1 to 2.6). Estrogen+other progestagens was associated with significant increases in risk of ductal and lobular carcinomas (RR, 1.6; 95% CI, 1.3 to 1.8; and 2.0; 95% CI, 1.5 to 2.7, respectively), of ER+/PR+ and ER+/PR− carcinomas (RR, 1.8; 95% CI, 1.5 to 2.1; and 2.6; 95% CI, 1.9 to 3.5, respectively), but not of ER−/PR+ or ER−/PR− carcinomas (RR, 1.0; 95% CI, 0.5 to 2.1; and 1.4; 95% CI, 0.9 to 2.0, respectively). Conclusion The increase in risk of breast cancer observed with the use of CHTs other than estrogen+progesterone and estrogen+dydrogesterone seems to apply preferentially to ER+ carcinomas, especially those ER+/PR−, and to affect both ductal and lobular carcinomas. PMID:18323549

  18. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System

    PubMed Central

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3′,5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks

  19. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System.

    PubMed

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3',5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute

  20. Sex hormone receptors in the hypothalamus and their role in sexual differentiation of the male rat brain

    SciTech Connect

    Shishkina, I.V.; Babichev, V.N.; Ozol', L.Yu.

    1986-09-01

    In this investigation, changes in the level of receptors for sex hormones in the hypothalamus and cerebral cortex of male rats were studied on the first through fifth days of postnatal life, and the results obtained were compared with the levels of luteinizing hormone and sex hormones in the peripheral blood in order to discover any correlation between these parameters. 2,4,6,7,-/sup 3/H-estradiol-17..beta.. and 1,2,6,7-/sup 3/H-testosterone were used as labeled hormones. The values of the association constant and concentration of specific binding sites for estradiol and testosterone in hypothalamus and cerebral cortex of male rats during neonatal development is shown. It is found that in male rats on the first day after birth, receptors for estradiol and testosterone are present and they enable the action both of the testicular hormone and that of estradiol to be realized.

  1. Antimullerian Hormone and Its Receptor Gene Expression in Prenatally Androgenized Female Rats

    PubMed Central

    Daneshian, Zahra; Ramezani Tehrani, Fahimeh; Zarkesh, Maryam; Norooz Zadeh, Mahsa; Mahdian, Reza; Zadeh Vakili, Azita

    2015-01-01

    Background: Anti-mullerian hormone (AMH) levels reflect the number of small antral follicles in ovaries and expression changes of AMH and its receptor are suspected to be involved in the pathogenesis of polycystic ovary syndrome (PCOS). Objectives: The aim of this study was to evaluate gene expression of AMH and its receptor in immature and adult rats prenatally exposed to androgen excess. Materials and Methods: Six pregnant Wistar rats in the experimental group were treated by subcutaneous injection of 5 mg free testosterone on day 20 of pregnancy, while controls (n = 6) received only 500 mL of solvent. Female pups of each mother were randomly divided into three groups as day 0 (newborn), 10-day old and days 75-85 (adult). RNAs were extracted from ovarian tissues and relative expression levels for AMH and its receptor genes were measured using TaqMan Real-Time PCR. Serum AMH and testosterone levels were measured using ELISA method. Results: Relative AMH expression decreased in newborns, 10-day olds and adults (0.806, 0.443 and 0.809 fold, respectively). AMHR expression was higher in newborns and adults (1.432 and 1.057 fold, respectively), while it decreased by 0.263 fold in 10-day olds, although none of them were significant (P > 0.05). In addition, AMH levels were consistent with the results of gene expression. Testosterone hormone levels from 10 day-olds to adults were significantly increased in both study groups (P = 0.016). Conclusions: While AMH receptor expression was higher in experimental rats, their serum concentrations of AMH were decreased. Further researches with greater sample sizes and measurement of bioactive forms of hormones are recommended to confirm the findings of this study. PMID:25745494

  2. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    PubMed Central

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a, cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  3. Characterization of pituitary growth hormone and its receptor in the green iguana (Iguana iguana).

    PubMed

    Ávila-Mendoza, José; Carranza, Martha; Pérez-Rueda, Ernesto; Luna, Maricela; Arámburo, Carlos

    2014-07-01

    Pituitary growth hormone (GH) has been studied in most vertebrate groups; however, only a few studies have been carried out in reptiles. Little is known about pituitary hormones in the order Squamata, to which the green iguana (gi) belongs. In this work, we characterized the hypophysis of Iguana iguana morphologically. The somatotrophs (round cells of 7.6-10 μm containing 250- to 300-nm secretory granules where the giGH is stored) were found, by immunohistochemistry and in situ hybridization, exclusively in the caudal lobe of the pars distalis, whereas the lactotrophs were distributed only in the rostral lobe. A pituitary giGH-like protein was obtained by immuno-affinity chromatography employing a heterologous antibody against chicken GH. giGH showed molecular heterogeneity (22, 44, and 88 kDa by SDS-PAGE/Western blot under non-reducing conditions and at least four charge variants (pIs 6.2, 6.5, 6.9, 7.4) by isoelectric focusing. The pituitary giGH cDNA (1016 bp), amplified by PCR and RACE, encodes a pre-hormone of 218 aa, of which 190 aa correspond to the mature protein and 28 aa to the signal peptide. The giGH receptor cDNA was also partially sequenced. Phylogenetic analyses of the amino acid sequences of giGH and giGHR homologs in vertebrates suggest a parallel evolution and functional relationship between the GH and its receptor. PMID:24769041

  4. The structure and regulation of expression of the mouse growth hormone receptor and binding protein

    SciTech Connect

    Talamantes, F.

    1994-12-31

    The mouse growth hormone receptor (mGHR) and the mouse growth hormone-binding protein (mGHBP) are products of a single gene which are generated alternative splicing. The factors that regulate the expression of mGHR and mGHBP mRNA and protein during pregnancy in the mouse are incompletely understood. During pregnancy in the mouse, there are parallel increases in circulating mouse growth hormone (mGH), liver mGHR, and serum mGHBP. The increase in both hepatic mGHR and serum mGHBP begins on Day 9 of gestation and by late gestation the hepatic mGHR content has increased 8-fold and serum mGHBP has increased 30-fold compared with values in nonpregnant controls. A parallel increase occurs in the steady state levels of liver GHR and GHBP encoding mRNAs. The increase in both messages begins on Day 9 of gestation; however, the GHR mRNA reaches maximum levels by Day 13, while the GHBP mRNA continues to increase until the end of pregnancy. The magnitude of the increase in the GHR-encoding message is 15- to 20-fold between nonpregnant and late pregnant mice, and the magnitude of the increase in the GHBP-encoding message is 30- to 50-fold. Both pituitary mGH and the number of conceptuses influence the receptors and binding protein for mGH during pregnancy. 22 refs.

  5. Autoradiographic localization of thyrotropin releasing hormone (TRH) receptors in the central nervous system

    SciTech Connect

    Manaker, S.

    1985-01-01

    Quantitative autoradiography was used to examine the distribution of thyrotropin-releasing hormone (TRH) receptors in the rat and human central nervous system (CNS). The binding of (/sup 3/H)-3-methyl-histidine/sup 2/-TRH ((/sup 3/H)-MeTRH) to TRH receptors was saturable, of a high affinity (K/sub d/ = 5 nM), and specific for TRH analogs. Studies with neurotoxins ibotenic acid and 6-hydroxydopamine (6-OHDA) suggest that TRH receptors within the amygdala are predominantly located on cell bodies, and not nerve terminals. Finally, an examination was made of the concentrations of TRH receptors in spinal cords of patients with amyotrophic lateral sclerosis (ALS), a degenerative disease of the motor neurons located in Lamina IX. Large decreases in TRH receptors were noted in ALS spinal cords, when compared to non-neurological controls, probably reflecting the loss of motor neurons. In addition, decreases in the TRH receptor concentration of Lamina II were observed. This finding may reflect the sensitivity of neurons throughout the CNS to the pathophysiologic mechanisms of neuronal degeneration which cause ALS.

  6. Canine renal parathyroid hormone receptor is a glycoprotein: characterization and partial purification

    SciTech Connect

    Karpf, D.B.; Arnaud, C.D.; King, K.; Bambino, T.; Winer, J.; Nyiredy, K.; Nissenson, R.A.

    1987-12-01

    Covalent labeling of the canine renal parathyroid hormone receptor with (/sup 125/I)bPTH(1-34) reveals several major binding components that display characteristic consistent with a physiologically relevant adenylate cyclase linked receptor. Through the use of the specific glycosidases neuraminidase and endoglycosidase F and affinity chromatography on lectin-agarose gels, we show here that the receptor is a glycoprotein that contains several complex N-linked carbohydrate chains consisting of terminal sialic acid and penultimate galactose in a ..beta..1,4 linkage to N-acetyl-D-glucosamine. No high mannose chains or O-linked glycans appear to be present. The peptide molecular weight of the deglycosylated labeled receptor is 62,000 (or 58,000 if the mass of bPTH(1-34) is excluded). The binding of (/sup 125/I)bPTH(1-34) to the receptor is inhibited in a dose-dependent fashion by wheat-germ agglutinin, but not by either succinylated wheat-germ agglutinin or Ricinus communis lectin, suggesting that terminal sialic acid may be involved in agonist binding. A combination of lectin affinity chromatography and immunoaffinity chromatography affords a 200-fold purification of the covalently labeled receptor.

  7. G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling

    PubMed Central

    Zhao, Wen-Li; Wang, Di; Liu, Chun-Yan; Zhao, Xiao-Fan

    2016-01-01

    G-protein-coupled receptors (GPCRs) transmit extracellular signals across the cell membrane. GPCR kinases (GRKs) desensitize GPCR signals in the cell membrane. However, the role and mechanism of GRKs in the desensitization of steroid hormone signaling are unclear. In this study, we propose that GRK2 is phosphorylated by protein kinase C (PKC) in response to induction by the steroid hormone 20-hydroxyecdysone (20E), which determines its translocation to the cell membrane of the lepidopteran Helicoverpa armigera. GRK2 protein expression is increased during the metamorphic stage because of induction by 20E. Knockdown of GRK2 in larvae causes accelerated pupation, an increase in 20E-response gene expression, and advanced apoptosis and metamorphosis. 20E induces translocation of GRK2 from the cytoplasm to the cell membrane via steroid hormone ecdysone-responsive GPCR (ErGPCR-2). GRK2 is phosphorylated by PKC on serine 680 after induction by 20E, which leads to the translocation of GRK2 to the cell membrane. GRK2 interacts with ErGPCR-2. These data indicate that GRK2 terminates the ErGPCR-2 function in 20E signaling in the cell membrane by a negative feedback mechanism. PMID:27412951

  8. G-protein-coupled receptor kinase 2 terminates G-protein-coupled receptor function in steroid hormone 20-hydroxyecdysone signaling.

    PubMed

    Zhao, Wen-Li; Wang, Di; Liu, Chun-Yan; Zhao, Xiao-Fan

    2016-01-01

    G-protein-coupled receptors (GPCRs) transmit extracellular signals across the cell membrane. GPCR kinases (GRKs) desensitize GPCR signals in the cell membrane. However, the role and mechanism of GRKs in the desensitization of steroid hormone signaling are unclear. In this study, we propose that GRK2 is phosphorylated by protein kinase C (PKC) in response to induction by the steroid hormone 20-hydroxyecdysone (20E), which determines its translocation to the cell membrane of the lepidopteran Helicoverpa armigera. GRK2 protein expression is increased during the metamorphic stage because of induction by 20E. Knockdown of GRK2 in larvae causes accelerated pupation, an increase in 20E-response gene expression, and advanced apoptosis and metamorphosis. 20E induces translocation of GRK2 from the cytoplasm to the cell membrane via steroid hormone ecdysone-responsive GPCR (ErGPCR-2). GRK2 is phosphorylated by PKC on serine 680 after induction by 20E, which leads to the translocation of GRK2 to the cell membrane. GRK2 interacts with ErGPCR-2. These data indicate that GRK2 terminates the ErGPCR-2 function in 20E signaling in the cell membrane by a negative feedback mechanism. PMID:27412951

  9. Multiple endocrinopathies (growth hormone deficiency, autoimmune hypothyroidism and diabetes mellitus) in Kearns-Sayre syndrome.

    PubMed

    Berio, A; Piazzi, A

    2013-01-01

    Kearns-Sayre syndrome is characterized by onset before 20 years, chronic progressive external opthalmoplegia, pigmentary retinal degeneration, and ataxia (and/or hearth block, and/or high protein content in the cerebrospinal fluid) in the presence of mtDNA rearrangements. Multiple endocrine dysfunction associated with this syndrome was rarely reported. In this paper, the Authors report on a female patient with Kearns-Sayre syndrome with large heteroplasmic mtDNA deletion, absence of cytochrome c oxidase in many muscle fibers, partial GH deficiency, hypothyroidism and subsequently insulin dependent diabetes mellitus (IDDM). Anti-thyroid peroxidase and antithyreoglobulin antibodies were present in high titer in serum while anti-islet cell antibodies were absent. The patient developed thyroiditis with Hashimoto encephalopathy. The presence of GH deficiency, autoimmune thyroiditis with hypothyroidism and IDDM distinguishes this case from others and confirms the association of Kearns-Sayre syndrome with multiple endocrine dysfunction. Hashimoto encephalopathy and anti-thyroideal antibodies suggest that in this patient, predisposed by a genetic factor (a mitochondrial deletion) anti-thyroideal antibodies may have contributed to the hypothyroidism and, by interfering with cerebral mitochondrial function, may have caused the encephalopathy. GH deficiency and IDDM can be attributed to oxidative phosphorylation deficiency but the autoimmunity may also have played a role in the production of glandular insufficiencies. It seems important to search for endocrine autoimmunity in every case of KSS. PMID:23947115

  10. Urethral Dysfunction in Female Mice with Estrogen Receptor β Deficiency

    PubMed Central

    Chen, Yung-Hsiang; Chen, Chao-Jung; Yeh, Shuyuan; Lin, Yu-Ning; Wu, Yang-Chang; Hsieh, Wen-Tsong; Wu, Bor-Tsang; Ma, Wen-Lung; Chen, Wen-Chi; Chang, Chawnshang; Chen, Huey-Yi

    2014-01-01

    Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI). Wild-type (ERβ+/+) and knockout (ERβ−/−) female mice were generated (aged 6–8 weeks, n = 6) and urethral function and protein expression were measured. Leak point pressures (LPP) and maximum urethral closure pressure (MUCP) were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography–mass spectrometry (LC-MS/MS) analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ+/+ group, the LPP and MUCP values of the ERβ−/− group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ−/− female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ−/− mice. This study is the first study to estimate protein expression changes in urethras from ERβ−/− female mice. These changes could be related to the molecular mechanism of ERβ in SUI. PMID:25275480

  11. Prognostic Value of Tumor-Associated Macrophages According to Histologic Locations and Hormone Receptor Status in Breast Cancer

    PubMed Central

    Gwak, Jae Moon; Jang, Min Hye; Kim, Dong Il; Seo, An Na; Park, So Yeon

    2015-01-01

    Tumor-associated macrophages (TAMs) are involved in tumor progression by promoting epithelial-mesenchymal transition (EMT), tumor cell invasion, migration and angiogenesis. However, in breast cancer, the clinical relevance of the TAM infiltration according to distinct histologic locations (intratumoral vs. stromal) and hormone receptor status is unclear. We investigated the significance of the levels of TAM infiltration in distinct histologic locations in invasive breast cancer. We also examined the relationship of the TAM levels with the clinicopathologic features of tumors, expression of EMT markers, and clinical outcomes. Finally, we analyzed the prognostic value of TAM levels according to hormone receptor status. High levels of infiltration of intratumoral, stromal and total TAMs were associated with high histologic grade, p53 overexpression, high Ki-67 proliferation index and negative hormone receptor status. Infiltration of TAMs was also correlated with overexpression of vimentin, smooth muscle actin and alteration of β-catenin. Overall, a high level of infiltration of intratumoral TAMs was associated with poor disease-free survival, and was found to be an independent prognostic factor. In subgroup analyses by hormone receptor status, a high level of infiltration of intratumoral TAM was an independent prognostic factor in the hormone receptor-positive subgroup, but not in the hormone-receptor negative subgroup. Our findings suggest that intratumoral TAMs play an important role in tumor progression in breast cancer, especially in the hormone receptor-positive group, and the level of TAM infiltration may be used as a prognostic factor and even a therapeutic target in breast cancer. PMID:25884955

  12. Anabolic and Catabolic Regimens of Human Parathyroid Hormone 1–34 Elicit Bone- and Envelope-Specific Attenuation of Skeletal Effects in Sost-Deficient Mice

    PubMed Central

    Kedlaya, Rajendra; Ellis, Shana N.; Childress, Paul J.; Bidwell, Joseph P.; Bellido, Teresita; Turner, Charles H.

    2011-01-01

    PTH is a potent calcium-regulating factor that has skeletal anabolic effects when administered intermittently or catabolic effects when maintained at consistently high levels. Bone cells express PTH receptors, but the cellular responses to PTH in bone are incompletely understood. Wnt signaling has recently been implicated in the osteo-anabolic response to the hormone. Specifically, the Sost gene, a major antagonist of Wnt signaling, is down-regulated by PTH exposure. We investigated this mechanism by treating Sost-deficient mice and their wild-type littermates with anabolic and catabolic regimens of PTH and measuring the skeletal responses. Male Sost+/+ and Sost−/− mice were injected daily with human PTH 1–34 (0, 30, or 90 μg/kg) for 6 wk. Female Sost+/+ and Sost−/− mice were continuously infused with vehicle or high-dose PTH (40 μg/kg · d) for 3 wk. Dual energy x-ray absorptiometry-derived measures of intermittent PTH (iPTH)-induced bone gain were impaired in Sost−/− mice. Further probing revealed normal or enhanced iPTH-induced cortical bone formation rates but concomitant increases in cortical porosity among Sost−/− mice. Distal femur trabecular bone was highly responsive to iPTH in Sost−/− mice. Continuous PTH (cPTH) infusion resulted in equal bone loss in Sost+/+ and Sost−/− mice as measured by dual energy x-ray absorptiometry. However, distal femur trabecular bone, but not lumbar spine trabecular bone, was spared the bone-wasting effects of cPTH in Sost−/− mice. These results suggest that changes in Sost expression are not required for iPTH-induced anabolism. iPTH-induced resorption of cortical bone might be overstimulated in Sost-deficient environments. Furthermore, Sost deletion protects some trabecular compartments, but not cortical compartments, from bone loss induced by high-dose PTH infusion. PMID:21652726

  13. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies

    PubMed Central

    Davies, Terry F; Latif, Rauf

    2015-01-01

    Introduction The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves’ disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. Areas covered We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. Expert opinion Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues. PMID:25768836

  14. Human oocytes and preimplantation embryos express mRNA for growth hormone receptor.

    PubMed

    Ménézo, Y J; el Mouatassim, S; Chavrier, M; Servy, E J; Nicolet, B

    2003-11-01

    Human genetic expression of growth hormone receptor (GHR) gene was qualitatively analysed using reverse transcription polymerase chain reaction (RT-PCR) in cumulus cells, immature germinal vesicle (GV) and mature metaphase II (MII) stage oocytes and preimplantation human embryos. The transcripts encoding GHR were detected in cumulus cells and also in naked oocytes, either mature or not. In this case, a nested PCR is needed, as for early embryo preimplantation stages, before genomic activation. The GHR gene is highly expressed from the 4-day morula onwards. This suggests that GHR transcription follows a classical scheme associated with genomic activation. It is probable that, in human, growth hormone plays a role in the final stages of oocyte maturation and early embryogenesis as it does for several other mammalian species. PMID:15085728

  15. Fit-for-Purpose Radio Receptor Assay for the Determination of Growth Hormone Secretagogues in Urine.

    PubMed

    Ferro, P; Gutiérrez-Gallego, R; Bosch, J; Farré, M; Segura, J

    2015-12-01

    The everlasting pharmacological development is continuously producing new substances with potential doping abuse. Among these, secretagogues are very prone to misuse by athletes for their properties to release growth hormone (GH) and some limitations in the actual analytical methods to detect them. In this paper, an in-depth study on the key variables of the radio receptor method previously developed by our group is performed and a fit-for-purpose protocol is established. Thus, this sensitive and robust screening method is proposed as an intelligent and preventive antidoping method to detect new growth hormone secretagogues (GHSs) in exceptional suspicious urine samples obtained from athletes and will support the current detection methods based on liquid chromatography-mass spectrometry (LC-MS). PMID:26160832

  16. Response to long-term growth hormone therapy in patients affected by RASopathies and growth hormone deficiency: Patterns of growth, puberty and final height data.

    PubMed

    Tamburrino, Federica; Gibertoni, Dino; Rossi, Cesare; Scarano, Emanuela; Perri, Annamaria; Montanari, Francesca; Fantini, Maria Pia; Pession, Andrea; Tartaglia, Marco; Mazzanti, Laura

    2015-11-01

    RASopathies are developmental disorders caused by heterozygous germline mutations in genes encoding proteins in the RAS-MAPK signaling pathway. Reduced growth is a common feature. Several studies generated data on growth, final height (FH), and height velocity (HV) after growth hormone (GH) treatment in patients with these disorders, particularly in Noonan syndrome, the most common RASopathy. These studies, however, refer to heterogeneous cohorts in terms of molecular information, GH status, age at start and length of therapy, and GH dosage. This work reports growth data in 88 patients affected by RASopathies with molecularly confirmed diagnosis, together with statistics on body proportions, pubertal pattern, and FH in 33, including 16 treated with GH therapy for proven GH deficiency. Thirty-three patients showed GH deficiency after pharmacological tests, and were GH-treated for an average period of 6.8 ± 4.8 years. Before starting therapy, HV was -2.6 ± 1.3 SDS, and mean basal IGF1 levels were -2.0 ± 1.1 SDS. Long-term GH therapy, starting early during childhood, resulted in a positive height response compared with untreated patients (1.3 SDS in terms of height-gain), normalizing FH for Ranke standards but not for general population and Target Height. Pubertal timing negatively affected pubertal growth spurt and FH, with IGF1 standardized score increased from -2.43 to -0.27 SDS. During GH treatment, no significant change in bone age velocity, body proportions, or cardiovascular function was observed. PMID:26227443

  17. Patterns of thyroid hormone receptor expression in zebrafish and generation of a novel model of resistance to thyroid hormone action.

    PubMed

    Marelli, Federica; Carra, Silvia; Agostini, Maura; Cotelli, Franco; Peeters, Robin; Chatterjee, Krishna; Persani, Luca

    2016-03-15

    Resistance to thyroid hormone can be due to heterozygous, dominant negative (DN) THRA (RTHα) or THRB (RTHβ) mutations, but the underlying mechanisms are incompletely understood. Here, we delineate the spatiotemporal expression of TH receptors (TRs) in zebrafish and generated morphants expressing equivalent amounts of wild-type and DN TRαs (thraa_MOs) and TRβs (thrb_MOs) in vivo. Both morphants show severe developmental abnormalities. The phenotype of thraa_MOs includes brain and cardiac defects, but normal thyroid volume and tshba expression. A combined modification of dio2 and dio3 expression can explain the high T3/T4 ratio seen in thraa_MOs, as in RTHα. Thrb_MOs show abnormal eyes and otoliths, with a typical RTHβ pattern of thyroid axis. The coexpression of wild-type, but not mutant, human TRs can rescue the phenotype in both morphants. High T3 doses can partially revert the dominant negative action of mutant TRs in morphant fish. Therefore, our morphants recapitulate the RTHα and RTHβ key manifestations representing new models in which the functional consequences of human TR mutations can be rapidly and faithfully evaluated. PMID:26802880

  18. Hormone stimulation of androgen receptor mediates dynamic changes in DNA methylation patterns at regulatory elements

    PubMed Central

    Dhiman, Vineet K.; Attwood, Kristopher; Campbell, Moray J.; Smiraglia, Dominic J.

    2015-01-01

    DNA methylation is an epigenetic modification that contributes to stable gene silencing by interfering with the ability of transcriptional regulators to bind to DNA. Recent findings have revealed that hormone stimulation of certain nuclear receptors induces rapid, dynamic changes in DNA methylation patterns alongside transcriptional responses at a subset of target loci, over time. However, the ability of androgen receptor (AR) to dynamically regulate gene transcription is relatively under-studied and its role in the regulation of DNA methylation patterns remains to be elucidated. Here we demonstrate in normal prostate cells that hormone stimulated AR activity results in dynamic changes in the transcription rate and DNA methylation patterns at the AR target genes, TIPARP and SGK1. Time-resolved chromatin immunoprecipitation experiments on the SGK1 locus reveals dynamic recruitment of AR and RNA Polymerase II, as well as the recruitment of proteins involved in the DNA demethylation process, TET1 and TDG. Furthermore, the presence of DNA methylation at dynamic regions inhibits protein binding and transcriptional activity of SGK1. These findings establish AR activity as a contributing factor to the dynamic regulation of DNA methylation patterns at target genes in prostate biology and infer further complexity involved in nuclear receptor mediation of transcriptional regulation. PMID:26646795

  19. Transit of Hormonal and EGF receptor-dependent Signals Through Cholesterol-rich Membranes

    PubMed Central

    Freeman, Michael R.; Cinar, Bekir; Kim, Jayoung; Mukhopadhyay, Nishit K.; Di Vizio, Dolores; Adam, Rosalyn M.; Solomon, Keith R.

    2009-01-01

    The functional consequences of changes in membrane lipid composition that coincide with malignant growth are poorly understood. Sufficient data have been acquired from studies of lipid binding proteins, post-translational modifications of signaling proteins, and biochemical inhibition of lipidogenic pathways to indicate that growth and survival pathways might be substantially re-directed by alterations in the lipid content of membranes. Cholesterol and glycosphingolipids segregate into membrane patches that exhibit a liquid-ordered state in comparison to membrane domains containing relatively lower amounts of these classes of lipids. These “lipid raft” structures, which may vary in size and stability in different cell types, both accumulate and exclude signaling proteins and have been implicated in signal transduction through a number of cancer-relevant pathways. In prostate cancer cells, signaling from epidermal growth factor receptor (EGFR) to the serine-threonine kinase Akt1, as well as from IL-6 to STAT3, have been demonstrated to be influenced by experimental interventions that target cholesterol homeostasis. The recent finding that classical steroid hormone receptors also reside in these microdomains, and thus may function within these structures in a signaling capacity independent of their role as nuclear factors, suggests a novel means of cross-talk between receptor tyrosine kinase-derived and steroidogenic signals. Potential points of intersection between components of the EGFR family of receptor tyrosine kinases and androgen receptor signaling pathways, which may be sensitive to disruptions in cholesterol metabolism, are discussed. Understanding the manner in which these pathways converge within cholesterol-rich membranes may present new avenues for therapeutic intervention in hormone-dependent cancers. PMID:17173942

  20. 3,5-T2 is an alternative ligand for the thyroid hormone receptor β1.

    PubMed

    Mendoza, A; Navarrete-Ramírez, P; Hernández-Puga, G; Villalobos, P; Holzer, G; Renaud, J P; Laudet, V; Orozco, A

    2013-08-01

    Several liganded nuclear receptors have alternative ligands acting in a tissue-specific fashion and playing important biological roles. We present evidence that 3,5-diiodothyronine (T(2)), a naturally occurring iodothyronine that results from T(3) outer-ring deiodination, is an alternative ligand for thyroid hormone receptor β1 (TRβ1). In tilapia, 2 TRβ isoforms differing by 9 amino acids in the ligand-binding domain were cloned. Binding and transactivation studies showed that T(2) activates the human and the long tilapia TRβ1 isoform, but not the short one. A chimeric human TRβ1 (hTRβ1) that contained the 9-amino-acid insert showed no response to T(2), suggesting that the conformation of the hTRβ1 naturally allows T(2) binding and that other regions of the receptor are implicated in TR activation by T(2). Indeed, further analysis showed that the N terminus is essential for T(2)-mediated transactivation but not for that by T(3) in the long and hTRβ1, suggesting a functional interaction between the N-terminal domain and the insertion in the ligand-binding domain. To establish the functional relevance of T(2)-mediated TRβ1 binding and activation, mRNA expression and its regulation by T(2) and T(3) was evaluated for both isoforms. Our data show that long TRβ1expression is 10(6)-fold higher than that of the short isoform, and T(3) and T(2) differentially regulate the expression of these 2 TRβ1 isoforms in vivo. Taken together, our results prompted a reevaluation of the role and mechanism of action of thyroid hormone metabolites previously believed to be inactive. More generally, we propose that classical liganded receptors are only partially locked to very specific ligands and that alternative ligands may play a role in the tissue-specific action of receptors. PMID:23736295

  1. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    PubMed

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. PMID:26976217

  2. Functional heterodimerization of prolactin and growth hormone receptors by ovine placental lactogen.

    PubMed

    Herman, A; Bignon, C; Daniel, N; Grosclaude, J; Gertler, A; Djiane, J

    2000-03-01

    Although homo- or heterodimerization are common mechanisms for activation of cytokine receptors, cross-talk between two distinct receptors in this superfamily has been never shown. Here we show a physiologically relevant example indicating that such an interaction does occurs, thus raising the hypothesis that heterodimerization between distinct cytokine receptors may be a novel mechanism contributing to the diversity of cytokine signaling. These findings were documented using both surface plasmon resonance and gel filtration experiments and show that ovine placental lactogen (PL) heterodimerizes the extracellular domains (ECDs) of ruminant growth hormone receptor (GHR) and prolactin receptor (PRLR). We also show that PL or PL analogues that exhibit little or no activity in cells transfected with PRLRs and no activity in cells transfected with ovine GHRs exhibit largely enhanced activity in cells cotransfected with both PRLRs and GHRs. Furthermore, chimeric receptors consisting of cytosolic and transmembrane part of ovine GHR or ovine PRLR and ECDs of human granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR) alpha or beta were constructed. Upon transfection into Chinese hamster ovary cells along with reporter luciferase gene and stimulation by GM-CSF, a significant increase in luciferase activity occurred when GM-CSFR-alpha-PRLR and GM-CSFR-beta-GHR or GM-CSFR-alpha-GHR and GM-CSRR-beta-PRLR were cotransfected. In conclusion, we show that ovine PL is capable of functional heterodimerization of GHR and PRLR and that when their cytosolic parts, coupled to the ECD of GM-CSF receptors, are heterodimerized by GM-CSF, they are capable of transducing biological signal. PMID:10692427

  3. Repression of the alpha-fetoprotein gene promoter by progesterone and chimeric receptors in the presence of hormones and antihormones.

    PubMed Central

    Turcotte, B; Meyer, M E; Bocquel, M T; Bélanger, L; Chambon, P

    1990-01-01

    Using transient transfection assays, we showed that repression of the alpha-fetoprotein promoter by intact and deletion mutants of the progesterone receptor and by chimeric progesterone/glucocorticoid-estrogen receptors in the presence of their cognate hormones was closely correlated with their ability to bind to a progesterone/glucocorticoid-responsive element. This negative regulation was also observed in the presence of antihormones, providing evidence that receptor-antihormone complexes can bind to their responsive elements in vivo. Images PMID:1697036

  4. Shaping policy: the Canadian Cancer Society and the Hormone Receptor Testing Inquiry

    PubMed Central

    Mathews, M.; Newbury, J.; Housser, E. M.

    2011-01-01

    Background In 2007, the Government of Newfoundland and Labrador established the Commission of Inquiry on Hormone Receptor Testing to examine problems with estrogen and progesterone hormone receptor tests conducted in the province between 1997 and 2005. Using the Inquiry as a case study, we examine the knowledge transfer activities used by the Canadian Cancer Society – Newfoundland and Labrador Division (CCS-NL) to shape policy and improve cancer control in the province. Implementation CCS-NL established a panel to advise its legal counsel and asked academic researchers to prepare papers to submit to the Commission. CCS-NL also interviewed patients to better inform its legal arguments, used its province-wide networks to raise awareness of the Inquiry, and provided a toll-free number that people could call. It also provided basic information, resources, and contact information for people who were affected by the flawed hormone receptor tests. The effectiveness of CCS-NL’s activities is reflected by the inclusion of its key messages in the Commission’s recommendations, and the investment in cancer care following the Inquiry. Discussion The success of the CCS-NL knowledge transfer efforts stemmed from its reputation as an advocate for cancer patients and its long-standing relationship with researchers, especially at the local level. The case illustrates real-world application of knowledge transfer practices in the development of public policy, and describes how community-based non-government organizations can identify and draw attention to important issues that otherwise might not have been addressed. PMID:21874116

  5. Diversification and coevolution of the ghrelin/growth hormone secretagogue receptor system in vertebrates.

    PubMed

    Tine, Mbaye; Kuhl, Heiner; Teske, Peter R; Tschöp, Matthias H; Jastroch, Martin

    2016-04-01

    The gut hormone ghrelin is involved in numerous metabolic functions, such as the stimulation of growth hormone secretion, gastric motility, and food intake. Ghrelin is modified by ghrelin O-acyltransferase (GOAT) or membrane-bound O-acyltransferase domain-containing 4 (MBOAT4) enabling action through the growth hormone secretagogue receptors (GHS-R). During the course of evolution, initially strong ligand/receptor specificities can be disrupted by genomic changes, potentially modifying physiological roles of the ligand/receptor system. Here, we investigated the coevolution of ghrelin, GOAT, and GHS-R in vertebrates. We combined similarity search, conserved synteny analyses, phylogenetic reconstructions, and protein structure comparisons to reconstruct the evolutionary history of the ghrelin system. Ghrelin remained a single-gene locus in all vertebrate species, and accordingly, a single GHS-R isoform was identified in all tetrapods. Similar patterns of the nonsynonymous (dN) and synonymous (dS) ratio (dN/dS) in the vertebrate lineage strongly suggest coevolution of the ghrelin and GHS-R genes, supporting specific functional interactions and common physiological pathways. The selection profiles do not allow confirmation as to whether ghrelin binds specifically to GOAT, but the ghrelin dN/dS patterns are more similar to those of GOAT compared to MBOAT1 and MBOAT2 isoforms. Four GHS-R isoforms were identified in teleost genomes. This diversification of GHS-R resulted from successive rounds of duplications, some of which remained specific to the teleost lineage. Coevolution signals are lost in teleosts, presumably due to the diversification of GHS-R but not the ghrelin gene. The identification of the GHS-R diversity in teleosts provides a molecular basis for comparative studies on ghrelin's physiological roles and regulation, while the comparative sequence and structure analyses will assist translational medicine to determine structure-function relationships of the

  6. Two coexisting heterozygous frameshift mutations in PROP1 are responsible for a different phenotype of combined pituitary hormone deficiency.

    PubMed

    Ziemnicka, K; Budny, B; Drobnik, K; Baszko-Błaszyk, D; Stajgis, M; Katulska, K; Waśko, R; Wrotkowska, E; Słomski, R; Ruchała, M

    2016-08-01

    The role of genetic background in childhood-onset combined pituitary hormone deficiency (CPHD) has been extensively studied. The major contributors are the PROP1, POU1F1, LHX3, LHX4 and HESX1 genes coding transcription factors implicated in pituitary organogenesis. The clinical consequences of mutations encompass impaired synthesis of a growth hormone (GH) and one or more concurrent pituitary hormones (i.e. LH, FSH, TSH, PRL). Manifestation of the disorder may vary due to various mutation impacts on the final gene products or an influence of environmental factors during pituitary organogenesis. We describe the clinical and molecular characteristics of two brothers aged 47 and 39 years presenting an uncommon manifestation of congenital hypopituitarism. Sequencing of the PROP1, POU1F1, LHX3, LHX4 and HESX1 genes was performed to confirm the genetic origin of the disorder. A compound heterozygosity in the PROP1 gene has been identified for both probands. The first change represents a mutational hot spot (c.150delA, p.R53fsX164), whereas the second is a novel alteration (p.R112X) that leads to protein disruption. Based on precise genetic diagnosis, an in silico prediction of a p.R112X mutation on protein architecture was performed. The resulting clinical phenotype was surprisingly distinct compared to most patients with genetic alterations in PROP1 reported in the current literature. This may be caused by a residual activity of a newly identified p.R112X protein that preserves over 70 % of the homeodomain structure. This examination may confirm a key role of a DNA-binding homeodomain in maintaining PROP1 functionality and suggests a conceivable explanation of an unusual phenotype. PMID:26608600

  7. Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones

    PubMed Central

    Honsel, Anne; Kojima, Mikiko; Haas, Richard; Frank, Wolfgang; Sakakibara, Hitoshi; Herschbach, Cornelia; Rennenberg, Heinz

    2012-01-01

    The influence of sulphur (S) depletion on the expression of genes related to S metabolism, and on metabolite and plant hormone contents was analysed in young and mature leaves, fine roots, xylem sap, and phloem exudates of poplar (Populus tremula×Populus alba) with special focus on early consequences. S depletion was applied by a gradual decrease of sulphate availability. The observed changes were correlated with sulphate contents. Based on the decrease in sulphate contents, two phases of S depletion could be distinguished that were denominated as ‘S limitation’ and ‘early S deficiency’. S limitation was characterized by improved sulphate uptake (enhanced root-specific sulphate transporter PtaSULTR1;2 expression) and reduction capacities (enhanced adenosine 5′-phosphosulphate (APS) reductase expression) and by enhanced remobilization of sulphate from the vacuole (enhanced putative vacuolar sulphate transporter PtaSULTR4;2 expression). During early S deficiency, whole plant distribution of S was impacted, as indicated by increasing expression of the phloem-localized sulphate transporter PtaSULTR1;1 and by decreasing glutathione contents in fine roots, young leaves, mature leaves, and phloem exudates. Furthermore, at ‘early S deficiency’, expression of microRNA395 (miR395), which targets transcripts of PtaATPS3/4 (ATP sulphurylase) for cleavage, increased. Changes in plant hormone contents were observed at ‘early S deficiency’ only. Thus, S depletion affects S and plant hormone metabolism of poplar during ‘S limitation’ and ‘early S deficiency’ in a time series of events. Despite these consequences, the impact of S depletion on growth of poplar plants appears to be less severe than in Brassicaceae such as Arabidopsis thaliana or Brassica sp. PMID:22162873

  8. The relationship between growth hormone polymorphism and growth hormone receptor genes with milk yield and reproductive performance in Holstein dairy cows

    PubMed Central

    Hadi, Z; Atashi, H; Dadpasand, M; Derakhshandeh, A; Ghahramani Seno, M. M

    2015-01-01

    The aim of this study was to investigate the potential association between growth hormone GH/AluI and growth hormone receptor GHR/AluI polymorphisms with milk yield and reproductive performances in Holstein dairy cows in Iran. Blood samples of 150 Holstein cows were collected and their genomic DNA was extracted using Gene-Fanavaran DNA extracting kit. Fragments of the 428 bp of exon 5 growth hormone (GH) gene and the 342 bp of exon 10 growth hormone receptor (GHR) gene were amplified using the polymerase chain reaction (PCR) method. PCR products were digested by the AluI restriction enzyme and electrophoresed on 3% agarose gel. Continuous and categorical data were analyzed using linear mixed models through Proc MIXED and logistic regression models through Proc GENMOD of SAS software, respectively. The results showed no relationship between the examined traits and GH/AluI or GHR/AluI genes. A significant relationship was found between GH/AluI polymorphism and dystocia, but the presence of the GH-L allele reduced the incidence of dystocia. The results suggest that the GH-LL genotype reduces dystocia probably by affecting the release of growth hormone; nevertheless, further studies will be needed to examine the relationship between dystocia and GH genotypes. PMID:27175183

  9. Isolation and Functional Characterization of Calcitonin-Like Diuretic Hormone Receptors in Rhodnius prolixus

    PubMed Central

    Zandawala, Meet; Li, Shizhong; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Orchard, Ian

    2013-01-01

    Several families of diuretic hormones exist in insects, one of which is the calcitonin-like diuretic hormone (CT/DH) family. CT/DH mediates its effects by binding to family B G-protein coupled receptors (GPCRs). Here we isolate and functionally characterize two R. prolixus CT/DH receptor paralogs (Rhopr-CT/DH-R1 and Rhopr-CT/DH-R2) using a novel heterologous assay utilizing a modified human embryonic kidney 293 (HEK293) cell line. Rhopr-CT/DH-R1 is orthologous to the previously characterized D. melanogaster CT/DH receptor (CG17415) while Rhopr-CT/DH-R2 is orthologous to the D. melanogaster receptor (CG4395), an orphan receptor whose ligand was unknown until now. We determine the cDNA sequences of three splice variants encoding Rhopr-CT/DH-R1 (Rhopr-CT/DH-R1-A, Rhopr-CT/DH-R1-B and Rhopr-CT/DH-R1-C) and two splice variants encoding Rhopr-CT/DH-R2 (Rhopr-CT/DH-R2-A and Rhopr-CT/DH-R2-B). Rhopr-CT/DH-R1-A and Rhopr-CT/DH-R2-A encode truncated receptors that lack six and seven of the characteristic seven transmembrane domains, respectively. Rhopr-CT/DH-R1-B and Rhopr-CT/DH-R1-C, which only differ by 2 amino acids in their C-terminal domain, can both be activated by Rhopr-CT/DH at equal sensitivities (EC50 = 200-300nM). Interestingly, Rhopr-CT/DH-R2-B is much more sensitive to Rhopr-CT/DH (EC50 = 15nM) compared to Rhopr-CT/DH-R1-B/C and also yields a much greater response (amplitude) in our heterologous assay. This is the first study to reveal that insects possess at least two CT/DH receptors, which may be functionally different. Quantitative PCR demonstrates that Rhopr-CT/DH-R1 and Rhopr-CT/DH-R2 have distinct expression patterns, with both receptors expressed centrally and peripherally. Moreover, the expression analysis also identified novel target tissues for this neuropeptide, including testes, ovaries and prothoracic glands, suggesting a possible role for Rhopr-CT/DH in reproductive physiology and development. PMID:24312424

  10. Functional role of the heterodimeric glycoprotein hormone, GPA2/GPB5, and its receptor, LGR1: An invertebrate perspective.

    PubMed

    Rocco, David A; Paluzzi, Jean-Paul V

    2016-08-01

    In vertebrates, follicle-stimulating hormone (FSH), luteinizing hormone (LH), chorionic gonadotropin (CG) and thyroid-stimulating hormone (TSH) are glycoprotein hormones that play central roles in metabolism, reproduction and development. Recently, a novel heterodimeric glycoprotein hormone, called GPA2/GPB5, was discovered in humans; however, contrary to its vertebrate glycoprotein hormone relatives, the physiological role of GPA2/GPB5 has not yet been fully elucidated in any vertebrate or invertebrate. Moreover, it is unclear as to whether GPA2/GPB5 functions as a heterodimer or as individual GPA2 and GPB5 monomers in these organisms. GPA2- and GPB5-like subunits have been identified or predicted in a wide array of animal phyla including the nematodes, chordates, hemichordates, arthropods, molluscs, echinoderms and annelids. So far, molecular studies on transcript expression of the GPA2/GPB5 subunits and its putative receptor, the leucine-rich repeat-containing G protein-coupled receptor 1 (LGR1), suggests this glycoprotein hormone system plays a developmental role and may also function in hydromineral balance in invertebrates. This mini-review summarizes the current state of knowledge on the physiological actions and activity of this evolutionarily ancient heterodimeric glycoprotein hormone with a particular focus on its known functions in the invertebrates. PMID:26704853

  11. Altered immune response in mice deficient for the G protein-coupled receptor GPR34.

    PubMed

    Liebscher, Ines; Müller, Uwe; Teupser, Daniel; Engemaier, Eva; Engel, Kathrin M Y; Ritscher, Lars; Thor, Doreen; Sangkuhl, Katrin; Ricken, Albert; Wurm, Antje; Piehler, Daniel; Schmutzler, Sandra; Fuhrmann, Herbert; Albert, Frank W; Reichenbach, Andreas; Thiery, Joachim; Schöneberg, Torsten; Schulz, Angela

    2011-01-21

    The X-chromosomal GPR34 gene encodes an orphan G(i) protein-coupled receptor that is highly conserved among vertebrates. To evaluate the physiological relevance of GPR34, we generated a GPR34-deficient mouse line. GPR34-deficient mice were vital, reproduced normally, and showed no gross abnormalities in anatomical, histological, laboratory chemistry, or behavioral investigations under standard housing. Because GPR34 is highly expressed in mononuclear cells of the immune system, mice were specifically tested for altered functions of these cell types. Following immunization with methylated BSA, the number of granulocytes and macrophages in spleens was significantly lower in GPR34-deficient mice as in wild-type mice. GPR34-deficient mice showed significantly increased paw swelling in the delayed type hypersensitivity test and higher pathogen burden in extrapulmonary tissues after pulmonary infection with Cryptococcus neoformans compared with wild-type mice. The findings in delayed type hypersensitivity and infection tests were accompanied by significantly different basal and stimulated TNF-α, GM-CSF, and IFN-γ levels in GPR34-deficient animals. Our data point toward a functional role of GPR34 in the cellular response to immunological challenges. PMID:21097509

  12. Altered Immune Response in Mice Deficient for the G Protein-coupled Receptor GPR34*

    PubMed Central

    Liebscher, Ines; Müller, Uwe; Teupser, Daniel; Engemaier, Eva; Engel, Kathrin M. Y.; Ritscher, Lars; Thor, Doreen; Sangkuhl, Katrin; Ricken, Albert; Wurm, Antje; Piehler, Daniel; Schmutzler, Sandra; Fuhrmann, Herbert; Albert, Frank W.; Reichenbach, Andreas; Thiery, Joachim; Schöneberg, Torsten; Schulz, Angela

    2011-01-01

    The X-chromosomal GPR34 gene encodes an orphan Gi protein-coupled receptor that is highly conserved among vertebrates. To evaluate the physiological relevance of GPR34, we generated a GPR34-deficient mouse line. GPR34-deficient mice were vital, reproduced normally, and showed no gross abnormalities in anatomical, histological, laboratory chemistry, or behavioral investigations under standard housing. Because GPR34 is highly expressed in mononuclear cells of the immune system, mice were specifically tested for altered functions of these cell types. Following immunization with methylated BSA, the number of granulocytes and macrophages in spleens was significantly lower in GPR34-deficient mice as in wild-type mice. GPR34-deficient mice showed significantly increased paw swelling in the delayed type hypersensitivity test and higher pathogen burden in extrapulmonary tissues after pulmonary infection with Cryptococcus neoformans compared with wild-type mice. The findings in delayed type hypersensitivity and infection tests were accompanied by significantly different basal and stimulated TNF-α, GM-CSF, and IFN-γ levels in GPR34-deficient animals. Our data point toward a functional role of GPR34 in the cellular response to immunological challenges. PMID:21097509

  13. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    PubMed

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo. PMID:23074026

  14. Deficiency of interleukin-1 receptor-associated kinase 4 presenting as fatal Pseudomonas aeruginosa bacteremia in two siblings.

    PubMed

    Stergiopoulou, Theodouli; Walsh, Thomas J; Seghaye, Marie-Christine; Netea, Mihai G; Casanova, Jean-Laurent; Moutschen, Michel; Picard, Capucine

    2015-03-01

    Interleukin-1 receptor-associated kinase 4 (IRAK-4) deficiency is a primary immunodeficiency of innate immunity. This is the case of a previous healthy toddler and his sibling, who both died of fulminant sepsis due to Pseudomonas aeruginosa. Subsequent genetic analysis demonstrated IRAK-4 deficiency with compound heterozygous splice mutations. Fulminant fatal P. aeruginosa sepsis may be the first manifestation of IRAK-4 deficiency. PMID:25232776

  15. Effects of perinatal exposure to low-dose cadmium on thyroid hormone-related and sex hormone receptor gene expressions in brain of offspring.

    PubMed

    Ishitobi, Hiromi; Mori, Kohki; Yoshida, Katsumi; Watanabe, Chiho

    2007-07-01

    Perinatal cadmium (Cd) exposure has been shown to alter behaviors and reduce learning ability of offspring. A few studies have shown that Cd reduced serum thyroid hormones (THs), which are important for brain development during the perinatal period. Brain specific genes, neurogranin (RC3) and myelin basic protein (BMP), are known to be regulated by TH through TH receptors (TR). It has been suggested that RC3 may play roles in memory and learning. In addition, Cd has been suggested to have estrogen-like activity. To evaluate the effects of perinatal low-dose exposure to Cd on thyroid hormone-related gene (RC3, TR-beta1, MBP, RAR-beta) and sex hormone receptor gene (ER-alpha, ER-beta and PgR) expressions in the brain and on behaviors of offspring, mice were administered with 10ppm Cd (from gestational day 1 to postnatal day 10) and/or 0.025% methimazole (MMI; anti-thyroid drug) (from gestational day 12 to postnatal day 10) in drinking water. Also, 0.1% MMI was administered as a positive control (high MMI group). RC3 mRNA expression was reduced in the female brain of combined exposure and high MMI groups and was negatively correlated with the activity in the open-field. ER-alpha, ER-beta and PgR mRNA expressions were decreased in male and female Cd, and female Cd+MMI groups, respectively; among these changes the reduced expression of PgR was opposite to estrogenic action. These results suggested that perinatal exposure to Cd disrupted the gene expressions of sex hormone receptors, which could not be considered to be a result of estrogenic action. Our study indicates that alteration in the gene expressions of RC3 and sex hormone receptors in the brain induced by perinatal Cd and MMI exposure might be one mechanism of developmental toxicity of Cd. PMID:17408746

  16. Vitamin D Receptor and Enzyme Expression in Dorsal Root Ganglia of Adult Female Rats: Modulation by Ovarian Hormones

    PubMed Central

    Tague, Sarah E.; Smith, Peter G.

    2010-01-01

    Vitamin D insufficiency impacts sensory processes including pain and proprioception, but little is known regarding vitamin D signaling in adult sensory neurons. We analyzed female rat dorsal root ganglia (DRG) for vitamin receptor (VDR) and the vitamin D metabolizing enzymes CYP27B1 and CYP24. Western blots and immunofluorescence revealed the presence of these proteins in sensory neurons. Nuclear VDR immunoreactivity was present within nearly all neurons, while cytoplasmic VDR was found preferentially in unmyelinated calcitonin gene-related peptide (CGRP)-positive neurons, colocalizing with CYP27B1 and CYP24. These data suggest that 1,25(OH)2D3 may affect sensory neurons through nuclear or extranuclear signaling pathways. In addition, local vitamin D metabolite concentrations in unmyelinated sensory neurons may be controlled through expression of CYP27B1 and CYP24. Because vitamin D deficiency appears to exacerbate some peri-menopausal pain syndromes, we assessed the effect of ovariectomy on vitamin D-related proteins. Two weeks following ovariectomy, total VDR expression in DRG dropped significantly, owing to a slight decrease in the percentage of total neurons expressing nuclear VDR and a large drop in unmyelinated CGRP-positive neurons expressing cytoplasmic VDR. Total CYP27B1 expression dropped significantly, predominantly due to decreased expression within unmyelinated CGRP-positive neurons. CYP24 expression remained unchanged. Therefore, unmyelinated CGRP-positive neurons appear to have a distinct vitamin D phenotype with hormonally-regulated ligand and receptor levels. These findings imply that vitamin D signaling may play a specialized role in a neural cell population that is primarily nociceptive. PMID:20969950

  17. Adipose Triglyceride Lipase and Hormone-Sensitive Lipase Are Involved in Fat Loss in JunB-Deficient Mice

    PubMed Central

    Pinent, Montserrat; Prokesch, Andreas; Hackl, Hubert; Voshol, Peter J.; Klatzer, Ariane; Walenta, Evelyn; Panzenboeck, Ute; Kenner, Lukas; Trajanoski, Zlatko; Hoefler, Gerald

    2011-01-01

    Proteins of the activator protein-1 family are known to have roles in many physiological processes such as proliferation, apoptosis, and inflammation. However, their role in fat metabolism has yet to be defined in more detail. Here we study the impact of JunB deficiency on the metabolic state of mice. JunB knockout (JunB-KO) mice show markedly decreased weight gain, reduced fat mass, and a low survival rate compared with control mice. If fed a high-fat diet, the weight gain of JunB-KO mice is comparable to control mice and the survival rate improves dramatically. Along with normal expression of adipogenic marker genes in white adipose tissue (WAT) of JunB-KO mice, this suggests that adipogenesis per se is not affected by JunB deficiency. This is supported by in vitro data, because neither JunB-silenced 3T3-L1 cells nor mouse embryonic fibroblasts from JunB-KO mice show a change in adipogenic potential. Interestingly, the key enzymes of lipolysis, adipose triglyceride lipase and hormone-sensitive lipase, were significantly increased in WAT of fasted JunB-KO mice. Concomitantly, the ratio of plasma free fatty acids per gram fat mass was increased, suggesting an elevated lipolytic rate under fasting conditions. Furthermore, up-regulation of TNFα and reduced expression of perilipin indicate that this pathway is also involved in increased lipolytic rate in these mice. Additionally, JunB-KO mice are more insulin sensitive than controls and show up-regulation of lipogenic genes in skeletal muscle, indicating a shuttling of energy substrates from WAT to skeletal muscle. In summary, this study provides valuable insights into the impact of JunB deficiency on the metabolic state of mice. PMID:21540289

  18. The testicular form of hormone-sensitive lipase HSLtes confers rescue of male infertility in HSL-deficient mice.

    PubMed

    Vallet-Erdtmann, Virginie; Tavernier, Geneviève; Contreras, Juan Antonio; Mairal, Aline; Rieu, Cécile; Touzalin, Anne-Marie; Holm, Cecilia; Jégou, Bernard; Langin, Dominique

    2004-10-01

    Inactivation of the hormone-sensitive lipase gene (HSL) confers male sterility with a major defect in spermatogenesis. Several forms of HSL are expressed in testis. HSLtes mRNA and protein are found in early and elongated spermatids, respectively. The other forms are expressed in diploid germ cells and interstitial cells of the testis. To determine whether the absence of the testis-specific form of HSL, HSLtes, was responsible for the infertility in HSL-null mice, we generated transgenic mice expressing HSLtes under the control of its own promoter. The transgenic animals were crossed with HSL-null mice to produce mice deficient in HSL in nongonadal tissues but expressing HSLtes in haploid germ cells. Cholesteryl ester hydrolase activity was almost completely blunted in HSL-deficient testis. Mice with one allele of the transgene showed an increase in enzymatic activity and a small elevation in the production of spermatozoa. The few fertile hemizygous male mice produced litters of very small to small size. The presence of the two alleles led to a doubling in cholesteryl ester hydrolase activity, which represented 25% of the wild type values associated with a qualitatively normal spermatogenesis and a partial restoration of sperm reserves. The fertility of these mice was totally restored with normal litter sizes. In line with the importance of the esterase activity, HSLtes transgene expression reversed the cholesteryl ester accumulation observed in HSL-null mice. Therefore, expression of HSLtes and cognate cholesteryl ester hydrolase activity leads to a rescue of the infertility observed in HSL-deficient male mice. PMID:15292223

  19. Studies on the structure of the follicle-stimulating hormone receptor using photoaffinity labeling procedures

    SciTech Connect

    Smith, R.A.

    1985-01-01

    The general objective of this project was to study the structure of the follicle stimulating hormone (FSH) receptor using affinity labeling methods. A low density fraction derived from homogenates of bovine testis was found to contain high affinity and low capacity receptors specific for FSH. Electron microscopic examination of the fraction revealed structure resembling multilamellar membranous vesicles (MV). For photoaffinity labeling of the FSH receptors in MV, an azidobenzoyl-/sup 125/I-analog of human FSH was prepared (/sup 125/I-AB-hFSH) and binding of specific FSH receptors was studied. /sup 125/I-AB-hFSH binding of receptors was inhibited in a dose dependent manner by unlabeled hFSH, and binding was not prevented by structurally-related human chorionic gonadotropin (hCG). The formation of photocrosslinked protein of relative molecular mass (M/sub r/) 54,000, 64,000, 76,000, 84,000, 97,000 and 116,000 was found to be inhibited by unlabeled hFSH in a dose related manner, and to be dependent on photoactivation of the FSH derivative. The interpretation of the photoaffinity labeling experiments was that three proteins associated with the FSH receptor were photoaffinity labeled. Analysis by indirect means suggested that the three proteins were assembled to form oligomeric complexes, and based on the intensities and composition of the oligomeric species, spatial relationships of the polypeptides with respect to each other on the membrane surface were deduced. The results of photoaffinity labeling suggest the FSH receptor is composed of three subunits of M/sub r/ 38,000, 48,000, and 81,000 and exists in the membrane in part as a M/sub r/ 330,000 dimer.

  20. Luteinizing hormone receptors in human ovarian follicles and corpora lutea during the menstrual cycle

    SciTech Connect

    Yamoto, M.; Nakano, R.; Iwasaki, M.; Ikoma, H.; Furukawa, K.

    1986-08-01

    The binding of /sup 125/I-labeled human luteinizing hormone (hLH) to the 2000-g fraction of human ovarian follicles and corpora lutea during the entire menstrual cycle was examined. Specific high affinity, low capacity receptors for hLH were demonstrated in the 2000-g fraction of both follicles and corpora lutea. Specific binding of /sup 125/I-labeled hLH to follicular tissue increased from the early follicular phase to the ovulatory phase. Specific binding of /sup 125/I-labeled hLH to luteal tissue increased from the early luteal phase to the midluteal phase and decreased towards the late luteal phase. The results of the present study indicate that the increase and decrease in receptors for hLH during the menstrual cycle might play an important role in the regulation of the ovarian cycle.

  1. Effect of thyrotrophin releasing hormone on opiate receptors of the rat brain

    SciTech Connect

    Balashov, A.M.; Shchurin, M.R.

    1987-01-01

    It has recently been shown that the hypothalamic thyrotropin releasing hormone (TRH) has the properties of a morphine antagonist, blocking its inhibitory action on respiration and, to a lesser degree, its analgesic action. This suggests that the antagonistic effects of TRH are mediated through its interaction with opiate receptors. The aim of this paper is to study this hypothesis experimentally. Tritium-labelled enkephalins in conjunction with scintillation spectroscopy were used to assess the receptor binding behavior. The results indicate the existence of interconnections between the opiate systems and TRH. Although it is too early to reach definite conclusions on the mechanisms of this mutual influence and its physiological significance it can be tentatively suggested that TRH abolishes the pharmacological effects of morphine by modulating the functional state of opiate reception.

  2. Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) regulates glucocorticoid action in adipocytes

    PubMed Central

    Emont, Margo P.; Mantis, Stelios; Kahn, Jonathan H.; Landeche, Michael; Han, Xuan; Sargis, Robert M

    2015-01-01

    Local modulation of glucocorticoid action in adipocytes regulates adiposity and systemic insulin sensitivity. However, the specific cofactors that mediate glucocorticoid receptor (GR) action in adipocytes remain unclear. Here we show that the silencing mediator of retinoid and thyroid hormone receptors (SMRT) is recruited to GR in adipocytes and regulates ligand-dependent GR function. Decreased SMRT expression in adipocytes in vivo increases expression of glucocorticoid-responsive genes. Moreover, adipocytes with decreased SMRT expression exhibit altered glucocorticoid regulation of lipolysis. We conclude that SMRT regulates the metabolic functions of GR in adipocytes in vivo. Modulation of GR-SMRT interactions in adipocytes represents a novel approach to control the local degree of glucocorticoid action and thus influence adipocyte metabolic function. PMID:25766503

  3. Cardiovascular risk in adult hypopituitaric patients with growth hormone deficiency: is there a role for vitamin D?

    PubMed

    Savanelli, Maria Cristina; Scarano, Elisabetta; Muscogiuri, Giovanna; Barrea, Luigi; Vuolo, Laura; Rubino, Manila; Savastano, Silvia; Colao, Annamaria; Di Somma, Carolina

    2016-04-01

    Hypovitaminosis D represent an environmental risk factors for cardiovascular (CV) disease. To investigate the prevalence of hypovitaminosis D and the correlation between GH/IGF-I deficiency and hypovitaminosis D with CV risk in GH deficiency (GHD) patients. A link between these hormones has been shown. Forty-one hypopituitaric patients with GHD (22 males, age 18-84 years) and 41 controls were enrolled in the study. Anthropometric parameters, blood pressure, glucose and lipid profile, parathyroid hormone (PTH), 25(OH) vitamin D (vitamin D), metabolic syndrome (MS), GH peak after GHRH + ARG, IGF-I, and standard deviation score (SDS) of IGF-I (zIGF-I) were assessed. Vitamin D levels were lower in patients than in controls (21.3 ± 12.3 vs. 28.2 ± 9.4, p = 0.006). Deficiency was found in 51 % of patients versus 14.6 % of controls (p < 0.01), insufficiency in 26.8 versus 41.4 % (p = 0.269) and normal vitamin D levels in 21.9 versus 43.9 % (p = 0.060). The prevalence of dyslipidemia was 51.2 % in patients versus 12.1 % in controls (p < 0.001), type 2 diabetes mellitus (DM) was 7.3 versus 17 % (p = 0.292), hypertension was 44 versus 22 % (p = 0.060), and MS was 17 versus 14.6 % (p = 0.957). In patients, an association was found between the presence of hypovitaminosis D and the prevalence of dyslipidemia, hypertension and MS and between zIGF-I and the prevalence of hypertension. Hypovitaminosis D was the most powerful predictor of the prevalence of dyslipidemia and hypertension. GHD patients have an increased prevalence of hypovitaminosis D compared with controls. The presence of hypovitaminosis D was the most powerful predictor of the prevalence of dyslipidemia and hypertension in GHD patients, suggesting the involvement of both factors in the CV risk in these patients. PMID:26511949

  4. Diagnosis of Iron Deficiency in Inflammatory Bowel Disease by Transferrin Receptor-Ferritin Index

    PubMed Central

    Abitbol, Vered; Borderie, Didier; Polin, Vanessa; Maksimovic, Fanny; Sarfati, Gilles; Esch, Anouk; Tabouret, Tessa; Dhooge, Marion; Dreanic, Johann; Perkins, Geraldine; Coriat, Romain; Chaussade, Stanislas

    2015-01-01

    Abstract Iron deficiency is common in patients with inflammatory bowel disease (IBD), but can be difficult to diagnose in the presence of inflammation because ferritin is an acute phase reactant. The transferrin receptor-ferritin index (TfR-F) has a high sensitivity and specificity for iron deficiency diagnosis in chronic diseases. The diagnostic efficacy of TfR-F is little known in patients with IBD. The aim of the study was to assess the added value of TfR-F to iron deficiency diagnosis in a prospective cohort of patients with IBD. Consecutive IBD patients were prospectively enrolled. Patients were excluded in case of blood transfusion, iron supplementation, or lack of consent. IBD activity was assessed on markers of inflammation (C-reactive protein, endoscopy, fecal calprotectin). Hemoglobin, ferritin, vitamin B9 and B12, Lactate dehydrogenase, haptoglobin, and soluble transferrin receptor (sTfR) were assayed. TfR-F was calculated as the ratio sTfR/log ferritin. Iron deficiency was defined by ferritin <30 ng/mL or TfR-F >2 in the presence of inflammation. One-hundred fifty patients with median age 38 years (16–78) and Crohn disease (n = 105), ulcerative colitis (n = 43), or unclassified colitis (n = 2) were included. Active disease was identified in 45.3%. Anemia was diagnosed in 28%. Thirty-six patients (24%) had ferritin <30 ng/mL. Thirty-two patients (21.3%) had ferritin levels from 30 to 100 ng/ml and inflammation: 2 had vitamin B12 deficiency excluding TfR-F analysis, 13 of 30 (43.3%) had TfR-F >2. Overall, iron deficiency was diagnosed in 32.7% of the patients. TfR-F in addition to ferritin <30 ng/mL criterion increased by 36% diagnosis rates of iron deficiency. TfR-F appeared as a useful biomarker that could help physicians to diagnose true iron deficiency in patients with active IBD. PMID:26131803

  5. Diagnosis of Iron Deficiency in Inflammatory Bowel Disease by Transferrin Receptor-Ferritin Index.

    PubMed

    Abitbol, Vered; Borderie, Didier; Polin, Vanessa; Maksimovic, Fanny; Sarfati, Gilles; Esch, Anouk; Tabouret, Tessa; Dhooge, Marion; Dreanic, Johann; Perkins, Geraldine; Coriat, Romain; Chaussade, Stanislas

    2015-07-01

    Iron deficiency is common in patients with inflammatory bowel disease (IBD), but can be difficult to diagnose in the presence of inflammation because ferritin is an acute phase reactant. The transferrin receptor-ferritin index (TfR-F) has a high sensitivity and specificity for iron deficiency diagnosis in chronic diseases. The diagnostic efficacy of TfR-F is little known in patients with IBD. The aim of the study was to assess the added value of TfR-F to iron deficiency diagnosis in a prospective cohort of patients with IBD.Consecutive IBD patients were prospectively enrolled. Patients were excluded in case of blood transfusion, iron supplementation, or lack of consent. IBD activity was assessed on markers of inflammation (C-reactive protein, endoscopy, fecal calprotectin). Hemoglobin, ferritin, vitamin B9 and B12, Lactate dehydrogenase, haptoglobin, and soluble transferrin receptor (sTfR) were assayed. TfR-F was calculated as the ratio sTfR/log ferritin. Iron deficiency was defined by ferritin <30 ng/mL or TfR-F >2 in the presence of inflammation.One-hundred fifty patients with median age 38 years (16-78) and Crohn disease (n = 105), ulcerative colitis (n = 43), or unclassified colitis (n = 2) were included. Active disease was identified in 45.3%. Anemia was diagnosed in 28%. Thirty-six patients (24%) had ferritin <30 ng/mL. Thirty-two patients (21.3%) had ferritin levels from 30 to 100 ng/ml and inflammation: 2 had vitamin B12 deficiency excluding TfR-F analysis, 13 of 30 (43.3%) had TfR-F >2. Overall, iron deficiency was diagnosed in 32.7% of the patients.TfR-F in addition to ferritin <30 ng/mL criterion increased by 36% diagnosis rates of iron deficiency. TfR-F appeared as a useful biomarker that could help physicians to diagnose true iron deficiency in patients with active IBD. PMID:26131803

  6. Cannabinoid CB1 receptor mediates glucocorticoid effects on hormone secretion induced by volume and osmotic changes.

    PubMed

    Ruginsk, S G; Uchoa, E T; Elias, L L K; Antunes-Rodrigues, J

    2012-02-01

    The present study provides the first in vivo evidence that the cannabinoid CB(1) receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB(1) receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB(1) receptor. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB(1) receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB(1) receptor in the control of peripheral factors that modulate cardiovascular function. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB(1) receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamic-pituitary-adrenal axis. Collectively, the results of the present study indicate that the CB(1) receptor modulates neurohypophyseal hormone secretion and

  7. Evidence for impaired retinoic acid receptor-thyroid hormone receptor AF-2 cofactor activity in human lung cancer.

    PubMed Central

    Moghal, N; Neel, B G

    1995-01-01

    Retinoic acid (RA) is required for normal airway epithelial cell growth and differentiation both in vivo and in vitro. One of the earliest events following the exposure of bronchial epithelial cells to RA is the strong induction of RA receptor beta (RAR beta) mRNA. Previous work established that many lung cancer cell lines and primary tumors display abnormal RAR beta mRNA expression, most often absence or weak expression of the RAR beta 2 isoform, even after RA treatment. Restoration of RAR beta 2 into RAR beta-negative lung cancer cell lines has been reported to inhibit tumorigenicity. Since RAR beta 2 inactivation may contribute to lung cancer, we have investigated the molecular mechanism of defective RAR beta 2 expression. Nuclear run-on assays and transient transfections with RAR beta 2 promoter constructs indicate the presence of trans-acting transcriptional defects in most lung cancer cell lines, which map to the RA response element (RARE). These defects cannot be complemented by RAR-retinoid X receptor cotransfection and can be separated into two types: (i) one affecting transcription from direct repeat RAREs, but not palindromic RAREs, and (ii) another affecting transcription from both types of RARE. Studies using chimeras between RAR alpha, TR alpha, and other transcription factors suggest the existence of novel RAR-thyroid hormone receptor AF-2-specific cofactors, which are necessary for high levels of transcription. Furthermore, these factors may be frequently inactivated in human lung cancer. PMID:7791800

  8. Juvenile hormone receptors in insect larval epidermis: Identification by photoaffinity labeling

    SciTech Connect

    Palli, S.R.; Osir, E.O.; Edwards, M.; Hiruma, K.; Riddiford, L.M. ); Eng, W.; Boehm, M.F.; Kulscar, P.; Ujvary, I.; Prestwich, G.D. )

    1990-01-01

    Tritiated photoaffinity analogs of the natural lepidopteran juvenile hormones, JH I and II (epoxy({sup 3}H)bishomofarnesyl diazoacetate (({sup 3}H)EHDA) and epoxy({sup 3}H)homofarnesyl diazoacetate (({sup 3}H)EHDA)), and of the JH analog methoprene (({sup 3}H)methoprene diazoketone (({sup 3}H)MDK)) were synthesized and used to identify specific JH binding proteins in the larval epidermis of the tobacco hornworm (Manduca sexta). EBDA and EHDA specifically photolabeled a 29-kDa nuclear protein (pI 5.8). This protein and a second 29-kDa protein (pI 6.0) were labeled by MDK, but excess unlabeled methoprene or MDK only prevented binding to the latter. These 29-kDa proteins are also present in larval fat body but not in epidermis from either wandering stage or allatectomized larvae, which lack high-affinity JH binding sites. A 29-kDa nuclear protein with the same developmental specificity as this JH binder bound the DNA of two larval endocuticle genes. A 38-kDa cytosolic protein was also specifically photolabeled by these photoaffinity analogs. The 29-kDa nuclear protein is likely the high-affinity receptor for JH that mediates its genomic action, whereas the 38-kDa cytosolic protein may serve as an intracellular carrier for these highly lipophilic hormones and hormone analogs.

  9. Molecular cloning and functional characterization of the diapause hormone receptor in the corn earworm Helicoverpa zea

    PubMed Central

    Jiang, Hongbo; Wei, Zhaojun; Nachman, Ronald J.; Park, Yoonseong

    2013-01-01

    The diapause hormone (DH) in the heliothine moth has shown its activity in termination of pupal diapause, while the orthology in the silkworm is known to induce embryonic diapause. In the current study, we cloned the diapause hormone receptor from the corn earworm Helicoverpa zea (HzDHr) and tested its ligand specificities in a heterologous reporter system. HzDHr was expressed in Chinese Hamster Ovary (CHO) cells, which were co-transfected with the aequorin reporter, and was used to measure the ligand activities. A total of 68 chemicals, including natural DH analogs and structurally similar peptide mimetics, were tested for agonistic and antagonistic activities. Several peptide mimetics with a 2-amino-7-bromofluorene-succinoyl (2Abf-Suc) N-terminal modification showed strong agonistic activities; these mimetics included 2Abf-Suc-F[dA]PRLamide, 2Abf-Suc-F[dR]PRLamide, 2Abf-Suc-FKPRLamide and 2Abf-Suc-FGPRLamide. Antagonistic activity was found in the ecdysis triggering hormone in Drosophila melanogaster (FFLKITKNVPRLamide). Interestingly, HzDHr does not discriminate between DH (WFGPRLamide C-terminal motif) and another closely related endogenous peptide, pyrokinin 1 (FXPRXamide; a C-terminal motif that is separate from WFGPRLamide). We provide large-scale in vitro data that serve as a reference for the development of agonists and antagonists to disrupt the DH signaling pathway. PMID:24257143

  10. G-protein-coupled receptor controls steroid hormone signaling in cell membrane

    PubMed Central

    Wang, Di; Zhao, Wen-Li; Cai, Mei-Juan; Wang, Jin-Xing; Zhao, Xiao-Fan

    2015-01-01

    G-protein-coupled receptors (GPCRs) are involved in animal steroid hormone signaling, but their mechanism is unclear. In this research, we report that a GPCR called ErGPCR-2 controls steroid hormone 20-hydroxyecdysone (20E) signaling in the cell membrane of the lepidopteran insect Helicoverpa armigera. ErGPCR-2 was highly expressed during molting and metamorphosis. 20E, via ErGPCR-2, regulated rapid intracellular calcium increase, protein phosphorylation, gene transcription, and insect metamorphosis. ErGPCR-2 was located in the cell surface and was internalized by 20E induction. GPCR kinase 2 participated in 20E-induced ErGPCR-2 phosphorylation and internalization. The internalized ErGPCR-2 was degraded by proteases to desensitize 20E signaling. ErGPCR-2 knockdown suppressed the entrance of 20E analog [3H] ponasterone A ([3H]Pon A) into the cells. ErGPCR-2 overexpression or blocking of ErGPCR-2 internalization increased the entrance of [3H]Pon A into the cells. However, ErGPCR-2 did not bind to [3H]Pon A. Results suggest that ErGPCR-2 transmits steroid hormone 20E signaling and controls 20E entrance into cells in the cell membrane. PMID:25728569

  11. Differential sorting of lysosomal enzymes in mannose 6-phosphate receptor-deficient fibroblasts.

    PubMed Central

    Ludwig, T; Munier-Lehmann, H; Bauer, U; Hollinshead, M; Ovitt, C; Lobel, P; Hoflack, B

    1994-01-01

    In higher eukaryotes, the transport of soluble lysosomal enzymes involves the recognition of their mannose 6-phosphate signal by two receptors: the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor (CD-MPR). It is not known why these two different proteins are present in most cell types. To investigate their relative function in lysosomal enzyme targeting, we created cell lines that lack either or both MPRs. This was accomplished by mating CD-MPR-deficient mice with Thp mice that carry a CI-MPR deleted allele. Fibroblasts prepared from embryos that lack the two receptors exhibit a massive missorting of multiple lysosomal enzymes and accumulate undigested material in their endocytic compartments. Fibroblasts that lack the CI-MPR, like those lacking the CD-MPR, exhibit a milder phenotype and are only partially impaired in sorting. This demonstrates that both receptors are required for efficient intracellular targeting of lysosomal enzymes. More importantly, comparison of the phosphorylated proteins secreted by the different cell types indicates that the two receptors may interact in vivo with different subgroups of hydrolases. This observation may provide a rational explanation for the existence of two distinct mannose 6-phosphate binding proteins in mammalian cells. Images PMID:8062819

  12. Alternative splicing of pre-mRNA in cancer: focus on G protein-coupled peptide hormone receptors.

    PubMed

    Körner, Meike; Miller, Laurence J

    2009-08-01

    Through alternative splicing, multiple different transcripts can be generated from a single gene. Alternative splicing represents an important molecular mechanism of gene regulation in physiological processes such as developmental programming as well as in disease. In cancer, splicing is significantly altered. Tumors express a different collection of alternative spliceoforms than normal tissues. Many tumor-associated splice variants arise from genes with an established role in carcinogenesis or tumor progression, and their functions can be oncogenic. This raises the possibility that products of alternative splicing play a pathogenic role in cancer. Moreover, cancer-associated spliceoforms represent potential diagnostic biomarkers and therapeutic targets. G protein-coupled peptide hormone receptors provide a good illustration of alternative splicing in cancer. The wild-type forms of these receptors have long been known to be expressed in cancer and to modulate tumor cell functions. They are also recognized as attractive clinical targets. Recently, splice variants of these receptors have been increasingly identified in various types of cancer. In particular, alternative cholecystokinin type 2, secretin, and growth hormone-releasing hormone receptor spliceoforms are expressed in tumors. Peptide hormone receptor splice variants can fundamentally differ from their wild-type receptor counterparts in pharmacological and functional characteristics, in their distribution in normal and malignant tissues, and in their potential use for clinical applications. PMID:19574427

  13. Calcium mobilization from fish scales is mediated by parathyroid hormone related protein via the parathyroid hormone type 1 receptor.

    PubMed

    Rotllant, J; Redruello, B; Guerreiro, P M; Fernandes, H; Canario, A V M; Power, D M

    2005-12-15

    The scales of bony fish represent a significant reservoir of calcium but little is known about their contribution, as well as of bone, to calcium balance and how calcium deposition and mobilization are regulated in calcified tissues. In the present study we report the action of parathyroid hormone-related protein (PTHrP) on calcium mobilization from sea bream (Sparus auratus) scales in an in vitro bioassay. Ligand binding studies of piscine 125I-(1-35(tyr))PTHrP to the membrane fraction of isolated sea bream scales revealed the existence of a single PTH receptor (PTHR) type. RT-PCR of fish scale cDNA using specific primers for two receptor types found in teleosts, PTH1R, and PTH3R, showed expression only of PTH1R. The signalling mechanisms mediating binding of the N-terminal amino acid region of PTHrP were investigated. A synthetic peptide (10(-8) M) based on the N-terminal 1-34 amino acid residues of Fugu rubripes PTHrP strongly stimulated cAMP synthesis and [3H]myo-inositol incorporation in sea bream scales. However, peptides (10(-8) M) with N-terminal deletions, such as (2-34), (3-34) and (7-34)PTHrP, were defective in stimulating cAMP production but stimulated [3H]myo-inositol incorporation. (1-34)PTHrP induced significant osteoclastic activity in scale tissue as indicated by its stimulation of tartrate-resistant acid phosphatase. In contrast, (7-34)PTHrP failed to stimulate the activity of this enzyme. This activity could also be abolished by the adenylyl cyclase inhibitor SQ-22536, but not by the phospholipase C inhibitor U-73122. The results of the study indicate that one mechanism through which N-terminal (1-34)PTHrP stimulates osteoclastic activity of sea bream scales, is through PTH1R and via the cAMP/AC intracellular signalling pathway. It appears, therefore, that fish scales can act as calcium stores and that (1-34)PTHrP regulates calcium mobilization from them; it remains to be established if this mechanism contributes to calcium homeostasis in vivo

  14. Establishment and characterization of DB-1: a leptin receptor-deficient murine macrophage cell line.

    PubMed

    Dib, Lea H; Ortega, M Teresa; Melgarejo, Tonatiuh; Chapes, Stephen K

    2016-08-01

    Metabolic and immune mediators activate many of the same signal transduction pathways. Therefore, molecules that regulate metabolism often affect immune responses. Leptin is an adipokine that exemplifies this interplay. Leptin is the body's major nutritional status sensor, but it also plays a key role in immune system regulation. To provide an in vitro tool to investigate the link between leptin and innate immunity, we immortalized and characterized a leptin receptor-deficient macrophage cell line, DB-1. The cell line was created using bone marrow cells from leptin receptor-deficient mice. Bone marrow cells were differentiated into macrophages by culturing them with recombinant mouse macrophage colony stimulating factor, and passaged when confluent for 6 months. The cells spontaneously immortalized at approximately passage 20. Cells were cloned twice by limiting dilution cloning prior to characterization. The macrophage cell line is diploid and grows at a linear rate for 4-5 days before reaching the growth plateau. The cells are MAC-2 and F4/80 positive and have phagocytic activity similar to primary macrophages from wild-type and leptin receptor-deficient mice. DB-1 cells were responsive to stimulation with interferon-γ as measured by increase in Nos2 transcript levels. In addition, DB-1 macrophages are not responsive to the chemotactic signaling of adipocyte conditioned media nor leptin when compared to primary WT macrophages. We believe that DB-1 cells provide a dependable tool to study the role of leptin or the leptin receptor in obesity-associated inflammation and immune system dysregulation. PMID:25599862

  15. Ghrelin and the growth hormone secretagogue receptor in growth and development.

    PubMed

    Chanoine, J-P; De Waele, K; Walia, P

    2009-04-01

    The pancreas is a major source of ghrelin in the perinatal period, whereas gastric production progressively increases after birth. Loss of function of the genes for ghrelin or for the constitutively activated growth hormone secretagogue receptor (GHSR) does not affect birth weight and early postnatal growth. However, ghrl(-/-) or ghsr(-/-) mice fed a high fat diet starting soon after weaning are resistant to diet-induced obesity, suggesting that ghrelin affects the maturation of the metabolic axes involved in energy balance. In addition, animal and human studies suggest that GHSR plays a physiological role in linear growth. In mice, absence of the GHSR gene is associated with lower insulin-like growth factor 1 concentrations and lower body mass in adult animals, independently of food intake. In humans, a mutation of the GHSR gene that impairs the constitutive activity of the receptor was found in two families with short stature. Administration of acylated ghrelin to rat pups directly does not affect weight gain. In contrast, administration of ghrelin to pregnant or lactating rats results in greater fetal weight and postnatal weight gain, respectively, suggesting that maternal ghrelin may stimulate perinatal growth. These data point toward a physiological role for ghrelin and GHSR in growth and/or in the maturation of hormonal systems involved in the regulation of energy balance. PMID:19363508

  16. Thyroid hormone receptor alpha1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway.

    PubMed

    Grespin, Matthew E; Bonamy, Ghislain M C; Roggero, Vincent R; Cameron, Nicole G; Adam, Lindsay E; Atchison, Andrew P; Fratto, Victoria M; Allison, Lizabeth A

    2008-09-12

    The thyroid hormone receptor alpha1 (TRalpha) exhibits a dual role as an activator or repressor of its target genes in response to thyroid hormone (T(3)). Previously, we have shown that TRalpha, formerly thought to reside solely in the nucleus bound to DNA, actually shuttles rapidly between the nucleus and cytoplasm. An important aspect of the shuttling activity of TRalpha is its ability to exit the nucleus through the nuclear pore complex. TRalpha export is not sensitive to treatment with the CRM1-specific inhibitor leptomycin B (LMB) in heterokaryon assays, suggesting a role for an export receptor other than CRM1. Here, we have used a combined approach of in vivo fluorescence recovery after photobleaching experiments, in vitro permeabilized cell nuclear export assays, and glutathione S-transferase pull-down assays to investigate the export pathway used by TRalpha. We show that, in addition to shuttling in heterokaryons, TRalpha shuttles rapidly in an unfused monokaryon system as well. Furthermore, our data show that TRalpha directly interacts with calreticulin, and point to the intriguing possibility that TRalpha follows a cooperative export pathway in which both calreticulin and CRM1 play a role in facilitating efficient translocation of TRalpha from the nucleus to cytoplasm. PMID:18641393

  17. Targeted Therapies Overcoming Endocrine Resistance in Hormone Receptor-Positive Breast Cancer

    PubMed Central

    Almstedt, Katrin; Schmidt, Marcus

    2015-01-01

    Summary Breast cancer is a heterogeneous disease with different molecular subtypes. Most tumours are hormone receptor positive (luminal subtype) with potential endocrine responsiveness. Endocrine therapy is commonly used in these patients. Disease progression caused by endocrine resistance represents a significant challenge in the treatment of breast cancer. To understand the mechanisms of resistance of long-term oestrogen-deprived breast cancer cells, it is important to focus on cross-talk between steroid receptor signalling and other growth factor receptors and intracellular pathways. (Pre-)clinical trials showed that co-targeting these pathways can restore endocrine sensitivity. The focus of the current review is on the intracellular PI3K/AKT/mTOR signalling pathway and cyclin-dependant kinases (CDKs) in oestrogen receptor (ER)-positive breast cancer. Study results clearly show that both inhibition of the PI3K/AKT/mTOR pathway and CDK4/6 are promising ways to improve the efficacy of endocrine treatment in ER-positive breast cancer patients with comparably few side effects. Further clinical trials are needed to identify the patient population who would benefit most from a dual inhibition. PMID:26557821

  18. Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor.

    PubMed

    Zhang, Li; Yao, Jian; Withers, John; Xin, Xiu-Fang; Banerjee, Rahul; Fariduddin, Qazi; Nakamura, Yoko; Nomura, Kinya; Howe, Gregg A; Boland, Wilhelm; Yan, Honggao; He, Sheng Yang

    2015-11-17

    In the past decade, characterization of the host targets of pathogen virulence factors took a center stage in the study of pathogenesis and disease susceptibility in plants and humans. However, the impressive knowledge of host targets has not been broadly exploited to inhibit pathogen infection. Here, we show that host target modification could be a promising new approach to "protect" the disease-vulnerable components of plants. In particular, recent studies have identified the plant hormone jasmonate (JA) receptor as one of the common targets of virulence factors from highly evolved biotrophic/hemibiotrophic pathogens. Strains of the bacterial pathogen Pseudomonas syringae, for example, produce proteinaceous effectors, as well as a JA-mimicking toxin, coronatine (COR), to activate JA signaling as a mechanism to promote disease susceptibility. Guided by the crystal structure of the JA receptor and evolutionary clues, we succeeded in modifying the JA receptor to allow for sufficient endogenous JA signaling but greatly reduced sensitivity to COR. Transgenic Arabidopsis expressing this modified receptor not only are fertile and maintain a high level of insect defense, but also gain the ability to resist COR-producing pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola. Our results provide a proof-of-concept demonstration that host target modification can be a promising new approach to prevent the virulence action of highly evolved pathogens. PMID:26578782

  19. New Frontier in Glycoprotein Hormones and Their Receptors Structure–Function

    PubMed Central

    Szkudlinski, Mariusz W.

    2015-01-01

    Last two decades of structure–function studies performed in numerous laboratories provided substantial progress in understanding basic science, physiological, pathophysiological, pharmacological, and comparative aspects of glycoprotein hormones (GPHs) and their cognate receptors. Multiple concepts and models developed based on experimental data in the past stood the test of time and have been, at least in part, confirmed and/or remained compatible with the new structures resolved at the atomic level. Major advances in understanding of the ligand–receptor relationships are heralding the dawn of a new era for GPHs and their receptors, although many basic questions still remain unanswered. This article examines retrospectively several basic science aspects of GPH super-agonists and related “biosuperiors” in a broader context of the advances in the ligand–receptor structure–function relationships and new mechanistic models generated based on the structure elucidation. Due to selective focus of my comments and perspectives in certain parts, the reader is directed to the most relevant publications and reviews in the field for more comprehensive analyses. PMID:26539160

  20. The Ernst Schering Poster Award. Intracellular traffic of steroid hormone receptors.

    PubMed

    Guiochon-Mantel, A; Delabre, K; Lescop, P; Milgrom, E

    1996-01-01

    The signal responsible for the nuclear localization of the progesterone receptor has been characterized. It is a complex signal. The study of the mechanism of this nuclear localization has revealed that the receptor continuously shuttles between nucleus and the cytoplasm. The receptor diffuses into the cytoplasm and is constantly and actively transported back into the nucleus. The same phenomenon exists for estradiol and glucocorticoid receptors. The mechanism of entry of proteins into the nucleus is well documented, whereas the mechanism of their outward movement to the cytoplasm is not understood. We have grafted different nuclear localization signals (NLSs) onto beta-galactosidase and have studied the traffic of this protein using heterokaryons and microinjection experiments. We have demonstrated that the same NLSs are involved in both the inward and the outward movement of proteins through the nuclear membrane. These results suggest that the nucleocytoplasmic shuttling may be a general phenomenon for nuclear proteins that could possibly undergo modifications in the cytoplasm and exert some biological activities there. These conclusions also imply that at least part of the cellular machinery involved in the nuclear import of proteins may function bidirectionally. Using these techniques, we have shown that the two major antiprogestins, RU486 and ZK98299, act at the same distal level of hormone action. PMID:8603044

  1. The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors.

    PubMed

    Alexander, Stephen Ph; Cidlowski, John A; Kelly, Eamonn; Marrion, Neil; Peters, John A; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Southan, Christopher; Davies, Jamie A

    2015-12-01

    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13352/full. Nuclear hormone receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates. PMID:26650443

  2. Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor

    PubMed Central

    Zhang, Li; Yao, Jian; Withers, John; Xin, Xiu-Fang; Banerjee, Rahul; Fariduddin, Qazi; Nakamura, Yoko; Nomura, Kinya; Howe, Gregg A.; Boland, Wilhelm; Yan, Honggao; He, Sheng Yang

    2015-01-01

    In the past decade, characterization of the host targets of pathogen virulence factors took a center stage in the study of pathogenesis and disease susceptibility in plants and humans. However, the impressive knowledge of host targets has not been broadly exploited to inhibit pathogen infection. Here, we show that host target modification could be a promising new approach to “protect” the disease-vulnerable components of plants. In particular, recent studies have identified the plant hormone jasmonate (JA) receptor as one of the common targets of virulence factors from highly evolved biotrophic/hemibiotrophic pathogens. Strains of the bacterial pathogen Pseudomonas syringae, for example, produce proteinaceous effectors, as well as a JA-mimicking toxin, coronatine (COR), to activate JA signaling as a mechanism to promote disease susceptibility. Guided by the crystal structure of the JA receptor and evolutionary clues, we succeeded in modifying the JA receptor to allow for sufficient endogenous JA signaling but greatly reduced sensitivity to COR. Transgenic Arabidopsis expressing this modified receptor not only are fertile and maintain a high level of insect defense, but also gain the ability to resist COR-producing pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola. Our results provide a proof-of-concept demonstration that host target modification can be a promising new approach to prevent the virulence action of highly evolved pathogens. PMID:26578782

  3. Pharmacologic management of bone-related complications and bone metastases in postmenopausal women with hormone receptor-positive breast cancer

    PubMed Central

    Yardley, Denise A

    2016-01-01

    There is a high risk for bone loss and skeletal-related events, including bone metastases, in postmenopausal women with hormone receptor-positive breast cancer. Both the disease itself and its therapeutic treatments can negatively impact bone, resulting in decreases in bone mineral density and increases in bone loss. These negative effects on the bone can significantly impact morbidity and mortality. Effective management and minimization of bone-related complications in postmenopausal women with hormone receptor-positive breast cancer remain essential. This review discusses the current understanding of molecular and biological mechanisms involved in bone turnover and metastases, increased risk for bone-related complications from breast cancer and breast cancer therapy, and current and emerging treatment strategies for managing bone metastases and bone turnover in postmenopausal women with hormone receptor-positive breast cancer. PMID:27217795

  4. Dopamine D1 and corticotrophin-releasing hormone type-2α receptors assemble into functionally interacting complexes in living cells

    PubMed Central

    Fuenzalida, J; Galaz, P; Araya, K A; Slater, P G; Blanco, E H; Campusano, J M; Ciruela, F; Gysling, K

    2014-01-01

    Background and Purpose Dopamine and corticotrophin-releasing hormone (CRH; also known as corticotrophin-releasing factor) are key neurotransmitters in the interaction between stress and addiction. Repeated treatment with cocaine potentiates glutamatergic transmission in the rat basolateral amygdala/cortex pathway through a synergistic action of D1-like dopamine receptors and CRH type-2α receptors (CRF2α receptors). We hypothesized that this observed synergism could be instrumented by heteromers containing the dopamine D1 receptor and CRF2α receptor. Experimental Approach D1/CRF2α receptor heteromerization was demonstrated in HEK293T cells using co-immunoprecipitation, BRET and FRET assays, and by using the heteromer mobilization strategy. The ability of D1 receptors to signal through calcium, when singly expressed or co-expressed with CRF2α receptors, was evaluated by the calcium mobilization assay. Key Results D1/CRF2α receptor heteromers were observed in HEK293T cells. When singly expressed, D1 receptors were mostly located at the cell surface whereas CRF2α receptors accumulated intracellularly. Interestingly, co-expression of both receptors promoted D1 receptor intracellular and CRF2α receptor cell surface targeting. The heteromerization of D1/CRF2α receptors maintained the signalling through cAMP of both receptors but switched D1 receptor signalling properties, as the heteromeric D1 receptor was able to mobilize intracellular calcium upon stimulation with a D1 receptor agonist. Conclusions and Implications D1 and CRF2α receptors are capable of heterodimerization in living cells. D1/CRF2α receptor heteromerization might account, at least in part, for the complex physiological interactions established between dopamine and CRH in normal and pathological conditions such as addiction, representing a new potential pharmacological target. PMID:25073922

  5. Inappropriate heat dissipation ignites brown fat thermogenesis in mice with a mutant thyroid hormone receptor α1

    PubMed Central

    Warner, Amy; Rahman, Awahan; Solsjö, Peter; Gottschling, Kristina; Davis, Benjamin; Vennström, Björn; Arner, Anders; Mittag, Jens

    2013-01-01

    Thyroid hormone is a major regulator of thermogenesis, acting both in peripheral organs and on central autonomic pathways. Mice heterozygous for a point mutation in thyroid hormone receptor α1 display increased thermogenesis as a consequence of high sympathetic brown fat stimulation. Surprisingly, despite the hypermetabolism, their body temperature is not elevated. Here we show, using isolated tail arteries, that defective thyroid hormone receptor α1 signaling impairs acetylcholine-mediated vascular relaxation as well as phenylephrine-induced vasoconstriction. Using infrared thermography on conscious animals, we demonstrate that these defects severely interfere with appropriate peripheral heat conservation and dissipation, which in turn leads to compensatory alterations in brown fat activity. Consequently, when the vasoconstrictive defect in mice heterozygous for a point mutation in thyroid hormone receptor α1 was reversed with the selective α1-adrenergic agonist midodrine, the inappropriate heat loss over their tail surface was reduced, normalizing brown fat activity and energy expenditure. Our analyses demonstrate that thyroid hormone plays a key role in vascular heat conservation and dissipation processes, adding a unique aspect to its well-documented functions in thermoregulation. The data thus facilitate understanding of temperature hypersensitivity in patients with thyroid disorders. Moreover, the previously unrecognized connection between cardiovascular regulation and metabolic activity revealed in this study challenges the interpretation of several experimental paradigms and questions some of the currently derived hypotheses on the role of thyroid hormone in thermogenesis. PMID:24046370

  6. Liver X receptor β: new player in the regulatory network of thyroid hormone and 'browning' of white fat.

    PubMed

    Miao, Yifei; Warner, Margaret; Gustafsson, Jan-Ke

    2016-01-01

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type II diabetes. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride and glucose metabolism. Following our previous finding that LXRs serve as repressors of UCP1 in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyrotropin releasing hormone positive neurons in the paraventricular area of the hypothalamus, and thus stimulated secretion of thyroid-stimulating hormone from the pituitary. Consequently production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. One unexpected finding of our study is that LXRs are indispensable in the thyroid hormone negative feedback loop at the level of the hypothalamus. LXRs maintain expression of thyroid receptors in the brain and when they are inactivated there is no negative feedback of thyroid hormone in the hypothalamus. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knock-out mice and provided support for targeting LXRs in treatment of obesity. PMID:27386163

  7. An aprotinin binding site localized in the hormone binding domain of the estrogen receptor from calf uterus.

    PubMed

    Nigro, V; Medici, N; Abbondanza, C; Minucci, S; Moncharmont, B; Molinari, A M; Puca, G A

    1990-07-31

    It has been proposed that the estrogen receptor bears proteolytic activity responsible for its own transformation. This activity was inhibited by aprotinin. Incubation of transformed ER with aprotinin modified the proteolytic digestion of the hormone binding subunit by proteinase K. The smallest hormone-binding fragment of the ER, obtained by tryptic digestion, was still able to bind to aprotinin. These results suggest that aprotinin interacts with ER and the hormone-binding domain of ER is endowed with a specific aprotinin-binding site. PMID:1696480

  8. Low concentrations of bisphenol a suppress thyroid hormone receptor transcription through a nongenomic mechanism

    SciTech Connect

    Sheng, Zhi-Guo; Tang, Yuan; Liu, Yu-Xiang; Yuan, Ye; Zhao, Bao-Quan; Chao, Xi-Juan; Zhu, Ben-Zhan

    2012-02-15

    Bisphenol (BPA) is one of the highest-volume chemicals produced worldwide, and human exposure to BPA is thought to be ubiquitous. Various rodent and in vitro studies have shown that thyroid hormone (TH) function can be impaired by BPA. However, it is still unknown if low concentrations of BPA can suppress the thyroid hormone receptor (TR) transcription. The present study aims to investigate the possible suppressing effects of low concentrations of BPA on TR transcription and the involved mechanism(s) in CV-1 cells derived from cercopithecus aethiops monkey kidneys. Using gene reporter assays, BPA at concentrations as low as 10{sup −9} M suppresses TR or steroid receptor coactivator-1(SRC-1)-enhanced TR transcription, but not reducing TR/SRC-1 interaction in mammalian two-hybrid and glutathione S-transferase pull-down studies. It has been further shown that both nuclear receptor co-repressor (N-CoR) and silencing mediator for retinoid and thyroid hormone receptors (SMRT) are recruited to the TR-β1 by BPA in the presence of physiologic concentrations of T3 or T4. However, the overexpression of β3 integrin or c-Src significantly reduces BPA-induced recruitment of N-CoR/SMRT to TR or suppression of TR transcription. Furthermore, BPA inhibits the T3/T4-mediated interassociation of the β3 integrin/c-Src/MAPK/TR-β1 pathways by the co-immunoprecipitation. These results indicate that low concentrations of BPA suppress the TR transcription by disrupting physiologic concentrations of T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways, followed by recruiting N-CoR/SMRT to TR-β1, providing a novel insight regarding the TH disruption effects of low concentration BPA. -- Highlights: ► Environmentally relevant concentrations of BPA suppress TR transcription. ► BPA recruits the N-CoR/SMRT to TR under the physiologic concentrations of T3/T4. ► BPA disrupts T3/T4-mediated β3 integrin/c-Src/MAPK/TR-β1 pathways.

  9. Aberrant distribution of junctional complex components in retinoic acid receptor alpha-deficient mice

    PubMed Central

    Chung, Sanny S W; Choi, Cindy; Wang, Xiangyuan; Hallock, Loretta; Wolgemuth, Debra J

    2009-01-01

    Retinoic acid receptor alpha (RARα)-deficient mice are sterile, with abnormalities in the progression of spermatogenesis and spermiogenesis. In the present study, we investigated whether defective retinoid signaling involved at least in part, disrupted cell-cell interactions. Hypertonic fixation approaches revealed defects in the integrity of the Sertoli-cell barrier in the tubules of RARα-deficient testes. Dye transfer experiments further revealed that coupling between cells from the basal to adluminal compartments was aberrant. There were also differences in the expression of several known retinoic acid (RA)-responsive genes encoding structural components of tight junctions and gap junctions. Immunostaining demonstrated a delay in the incorporation of zonula occludens (ZO-1), a peripheral component protein of tight junctions, into the Sertoli cell tight junctions. Markedly reduced expression of connexin-40 in mutant pachytene spermatocytes and round spermatids was found by in situ hybridization. An ectopic distribution of vimentin and disrupted cyclic expression of vimentin, which is usually tightly regulated during spermiogenesis, was found in RARα-deficient testes at all ages examined. Thus, the specific defects in spermiogenesis in RARα-deficient testes may correlate with a disrupted cyclic expression of RA-responsive structural components, including vimentin, a down-regulation of connexin-40 in spermatogenic cells, and delayed assembly of ZO-1 into Sertoli cell tight junctions. Interestingly, bioinformatic analysis revealed that many genes that are components of tight junctions and gap junctions contained potential retinoic acid response element binding sites. PMID:19937743

  10. Fc receptor-mediated phagocytosis, superoxide production and calcium signaling of beta 2 integrin-deficient bovine neutrophils.

    PubMed

    Nagahata, H; Sawada, C; Higuchi, H; Teraoka, H; Yamaguchi, M

    1997-01-01

    Fc receptor for immunoglobulin G-mediated phagocytosis, superoxide production and intracellular calcium ([Ca2+]i) signaling of complement receptor type 3 (CR3)-deficient neutrophils from a heifer with leukocyte adhesion deficiency (BLAD) were compared to those of control heifers. The mean phagocytic activity of IgG-coated yeasts and aggregated bovine IgG (Agg-IgG)-induced superoxide production of CR3-deficient neutrophils were 10% and 77.9%, respectively, of those of control neutrophils. The [Ca2+]i signals in CR3-deficient neutrophils stimulated with Agg-IgG or concanavalin A were different with mean peak [Ca2+]i concentrations of 78% and 41.9%, respectively, of those of control neutrophils. These findings suggest that Fc receptor-mediated neutrophil functions are closely dependent on the presence of CR3 (CD11b/CD18) on the neutrophil cell surfaces. PMID:9343828

  11. Growth hormone in vascular pathology: neovascularization and expression of receptors is associated with cellular proliferation.

    PubMed

    Lincoln, D T; Singal, P K; Al-Banaw, A

    2007-01-01

    Vascular tumours are common lesions of the skin and subcutaneous tissue, but also occur in many other tissues and internal organs. The well-differentiated tumours consist of irregular anastomosing, blood-filled vascular channels that are lined by variably atypical endothelial cells. The less differentiated tumours may show solid strands and sheets, resembling carcinoma or lymphoma. Several growth factors, including basic fibroblast growth factor, transforming growth factors and vascular endothelial growth factor, play a role in tumour angiogenesis. Growth hormone (GH) is mitogenic for a variety of vascular tissue cells, including smooth muscle cells, fibroblasts and endothelial cells and exerts its regulatory functions in controlling metabolism, balanced growth and differentiated cell expression by acting on specific membrane-bound receptors, which trigger a phosphorylation cascade resulting in the modulation of numerous signalling pathways and of gene expression. Essential to the initiation of a cellular response to GH, the presence of receptors for this hormone may predict the adaptation of tumour cells resulting from GH exposure. To address the site/mode of action through which GH exerts its effects, a well characterized monoclonal antibody, obtained by hybridoma technology from Balb/c mice immunized with purified rabbit and rat liver GH-receptor (GHR) and directed against the hormone binding site of the receptor, was applied, using the ABC technique to determine GHR expression in a panel of vascular tumours. The GHR was cloned from a rabbit liver cDNA library with the aid of an oligonucleotide probe based on a 19 residue tryptic peptide sequence derived from 5900 fold purified rabbit liver receptor. A total of 64 benign and malignant vascular tumours were obtained from different human organ sites, including the chest wall, skin, axillary contents, duodenum, female breast, abdomen, stomach, colon, lymph node, bladder, body flank and neck regions. The tumours

  12. Exclusion of growth hormone (GH)-releasing hormone gene mutations in familial isolated GH deficiency by linkage and single strand conformation analysis

    SciTech Connect

    Perez Jurado, L.A.; Francke, U.; Phillips, J.A. III

    1994-03-01

    The molecular basis and the locus responsible for most familial cases of isolated GH deficiency (IGHD) are still unknown. The GH-releasing hormone (GHRH) gene has been evaluated as a possible candidate in 23 unrelated families with IGHD, 14 of whom were classified as having autosomal recessive IGHD type IB and 9 of whom had autosomal dominant IGHD type II. Three highly polymorphic microsatellites (dinucleotide repeats), mapped close to GHRH on chromosome 20 by previous linkage studies, were analyzed as markers for the GHRH locus. All available family members were genotyped for D20S44 [no recombination with GHRH at a LOD (logarithm of the odds) score of 3.6]. Noninformative families were also genotyped for D20S45 and/or D20S54 (located at {approximately} 1 and 3 centiMorgan of genetic distance from GHRH, respectively). Twenty families were informative for linkage analysis with 1 or more of these markers. They found at least 1 obligate recombinant with discordance between phenotype and genotype in 19 of the 23 families (83%). There is only a very small chance (1-3% or less) that the discordances observed are due to recombination between the GHRH locus and the marker tested. Concordant segregation was seen in only 1 type IB family (4%). When probands from this and the 3 noninformative families were screened for sequence variants in the 5 exons of the GHRH gene by single strand conformation analysis, no abnormal patterns were observed. They conclude that mutations responsible for IGHD are not within or near the structural gene for GHRH on chromosome 20 in the 23 families studied. As linkage to the GH-1 gene has also been previously excluded in 65% of these families, mutations in a locus or loci unlinked to GH-1 and GHRH must be responsible for the majority of these IGHD families. 31 refs., 4 figs., 1 tab.

  13. Insulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma.

    PubMed

    Metz, Heather E; Kargl, Julia; Busch, Stephanie E; Kim, Kyoung-Hee; Kurland, Brenda F; Abberbock, Shira R; Randolph-Habecker, Julie; Knoblaugh, Sue E; Kolls, Jay K; White, Morris F; Houghton, A McGarry

    2016-08-01

    Insulin receptor substrate-1 (IRS-1) is a signaling adaptor protein that interfaces with many pathways activated in lung cancer. It has been assumed that IRS-1 promotes tumor growth through its ability to activate PI3K signaling downstream of the insulin-like growth factor receptor. Surprisingly, tumors with reduced IRS-1 staining in a human lung adenocarcinoma tissue microarray displayed a significant survival disadvantage, especially within the Kirsten rat sarcoma viral oncogene homolog (KRAS) mutant subgroup. Accordingly, adenoviral Cre recombinase (AdCre)-treated LSL-Kras/Irs-1(fl/fl) (Kras/Irs-1(-/-)) mice displayed increased tumor burden and mortality compared with controls. Mechanistically, IRS-1 deficiency promotes Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling via the IL-22 receptor, resulting in enhanced tumor-promoting inflammation. Treatment of Kras/Irs-1(+/+) and Kras/Irs-1(-/-) mice with JAK inhibitors significantly reduced tumor burden, most notably in the IRS-1-deficient group. PMID:27439864

  14. Sweet Taste Receptor Deficient Mice Have Decreased Adiposity and Increased Bone Mass

    PubMed Central

    Simon, Becky R.; Learman, Brian S.; Parlee, Sebastian D.; Scheller, Erica L.; Mori, Hiroyuki; Cawthorn, William P.; Ning, Xiaomin; Krishnan, Venkatesh; Ma, Yanfei L.; Tyrberg, Björn; MacDougald, Ormond A.

    2014-01-01

    Functional expression of sweet taste receptors (T1R2 and T1R3) has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carbohydrate diet, and sweet taste receptors have been reported to regulate adipogenesis in vitro. To assess the potential contribution of sweet taste receptors to adipose tissue biology, we investigated the adipose tissue phenotypes of T1R2 and T1R3 knockout mice. Here we provide data to demonstrate that when fed an obesogenic diet, both T1R2 and T1R3 knockout mice have reduced adiposity and smaller adipocytes. Although a mild glucose intolerance was observed with T1R3 deficiency, other metabolic variables analyzed were similar between genotypes. In addition, food intake, respiratory quotient, oxygen consumption, and physical activity were unchanged in T1R2 knockout mice. Although T1R2 deficiency did not affect adipocyte number in peripheral adipose depots, the number of bone marrow adipocytes is significantly reduced in these knockout animals. Finally, we present data demonstrating that T1R2 and T1R3 knockout mice have increased cortical bone mass and trabecular remodeling. This report identifies novel functions for sweet taste receptors in the regulation of adipose and bone biology, and suggests that in these contexts, T1R2 and T1R3 are either dependent on each other for activity or have common independent effects in vivo. PMID:24466105

  15. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.

    PubMed

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-08-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893

  16. Gonadotropin-releasing hormone receptor mRNA expression by human pituitary tumors in vitro.

    PubMed Central

    Alexander, J M; Klibanski, A

    1994-01-01

    An important question in the pathogenesis and regulation of human gonadotroph adenomas is whether heterogeneous gonadotropin responses to gonadotropin-releasing hormone (GnRH) are due to dysregulation of GnRH receptor biosynthesis and/or cell-signaling pathways. We investigated gonadotropin responsiveness to pulsatile GnRH in 13 gonadotroph adenomas. All tumors had evidence of follicle-stimulating hormone (FSH) beta and alpha subunit biosynthesis using reverse transcriptase/polymerase chain reaction (RTPCR) techniques. Four tumors significantly increased gonadotropin and/or free subunit secretion during pulsatile 10(-8) M GnRH administration. The GnRH antagonist Antide (10(-6) to 10(-8) M) blocked secretory increases in all GnRH-responsive tumors. Gonadotropin and/or free subunit secretion increased after 60 mM KCl, confirming that GnRH nonresponsiveness was not due to intracellular gonadotropin depletion. We hypothesized that GnRH nonresponsiveness in these tumors may be due to GnRH receptor (GnRH-Rc) biosynthetic defects. RTPCR analyses detected GnRH-Rc transcripts only in responsive tumors and normal human pituitary. This is the first demonstration of a cell-surface receptor biosynthetic defect in human pituitary tumors. We conclude (a) one third of gonadotroph tumors respond to pulsatile GnRH in vitro, (b) GnRH-Rc mRNA is detected in human gonadotroph adenomas and predicts GnRH responsiveness, and (c) GnRH-Rc biosynthetic defects may underlie GnRH nonresponsiveness in gonadotroph tumors. Images PMID:8200967

  17. Gadd45a levels in human breast cancer are hormone receptor dependent

    PubMed Central

    2013-01-01

    Background Gadd45a is a member of the Gadd45 family of genes that are known stress sensors. Gadd45a has been shown to serve as an effector in oncogenic stress in breast carcinogenesis in murine models. The present study was aimed at clarifying the expression of Gadd45a in human breast cancer and its correlation with clinicopathologic features. Methods The expression levels of Gadd45a in breast tissue samples of female breast surgery cases were examined by immunohistochemistry (IHC) using a Gadd45a antibody. Percent staining was determined and statistical analyses were applied to determine prognostic correlations. Results 56 female breast surgery cases were studied: Normal (11), Luminal A (9), Luminal B (11), HER2+ (10), Triple Negative (15). There was a highly significant difference in percent Gadd45a staining between groups [Mean]: Normal 16.3%; Luminal A 65.3%; Luminal B 80.7%; HER2+ 40.5%; TN 32%, P < 0.001, ANOVA. Gadd45a IHC levels for Normal cases found 82% negative/low. Luminal A breast cancer cases were found to be 67% high. Luminal B breast cancers were 100% high. Her2+ cases were 50% negative/low. Triple Negative cases were 67% negative/low. This difference in distribution of Gadd45a levels across breast cancer receptor subtypes was significant, P = 0.0009. Conclusions Gadd45a levels are significantly associated with hormone receptor status in human breast cancer. Normal breast tissue displays low Gadd45a levels. High Gadd45a levels are associated with Luminal A and Luminal B subtypes. Absence of hormone receptors in Triple Negative subtype is associated with Negative/Low levels of Gadd45a. Further studies are indicated to elucidate the role of Gadd45a in breast cancer as a potential prognosticator or target for treatment. PMID:23706118

  18. Identification of Thyroid Hormone Receptor Active Compounds Using a Quantitative High-Throughput Screening Platform

    PubMed Central

    Freitas, Jaime; Miller, Nicole; Mengeling, Brenda J.; Xia, Menghang; Huang, Ruili; Houck, Keith; Rietjens, Ivonne M.C.M.; Furlow, J. David; Murk, Albertinka J.

    2014-01-01

    To adapt the use of GH3.TRE-Luc reporter gene cell line for a quantitative high-throughput screening (qHTS) platform, we miniaturized the reporter gene assay to a 1536-well plate format. 1280 chemicals from the Library of Pharmacologically Active Compounds (LOPAC) and the National Toxicology Program (NTP) 1408 compound collection were analyzed to identify potential thyroid hormone receptor (TR) agonists and antagonists. Of the 2688 compounds tested, eight scored as potential TR agonists when the positive hit cut-off was defined at ≥10% efficacy, relative to maximal triiodothyronine (T3) induction, and with only one of those compounds reaching ≥20% efficacy. One common class of compounds positive in the agonist assays were retinoids such as all-trans retinoic acid, which are likely acting via the retinoid-X receptor, the heterodimer partner with the TR. Five potential TR antagonists were identified, including the antiallergy drug tranilast and the anxiolytic drug SB 205384 but also some cytotoxic compounds like 5-fluorouracil. None of the inactive compounds were structurally related to T3, nor had been reported elsewhere to be thyroid hormone disruptors, so false negatives were not detected. None of the low potency (>100µM) TR agonists resembled T3 or T4, thus these may not bind directly in the ligand-binding pocket of the receptor. For TR agonists, in the qHTS, a hit cut-off of ≥20% efficacy at 100 µM may avoid identification of positives with low or no physiological relevance. The miniaturized GH3.TRE-Luc assay offers a promising addition to the in vitro test battery for endocrine disruption, and given the low percentage of compounds testing positive, its high-throughput nature is an important advantage for future toxicological screening. PMID:24772387

  19. Erythroblast transferrin receptors and transferrin kinetics in iron deficiency and various anemias

    SciTech Connect

    Muta, K.; Nishimura, J.; Ideguchi, H.; Umemura, T.; Ibayashi, H.

    1987-06-01

    To clarify the role of transferrin receptors in cases of altered iron metabolism in clinical pathological conditions, we studied: number of binding sites; affinity; and recycling kinetics of transferrin receptors on human erythroblasts. Since transferrin receptors are mainly present on erythroblasts, the number of surface transferrin receptors was determined by assay of binding of /sup 125/I-transferrin and the percentage of erythroblasts in bone marrow mononuclear cells. The number of binding sites on erythroblasts from patients with an iron deficiency anemia was significantly greater than in normal subjects. Among those with an aplastic anemia, hemolytic anemia, myelodysplastic syndrome, and polycythemia vera compared to normal subjects, there were no considerable differences in the numbers of binding sites. The dissociation constants (Kd) were measured using Scatchard analysis. The apparent Kd was unchanged (about 10 nmol/L) in patients and normal subjects. The kinetics of endocytosis and exocytosis of /sup 125/I-transferrin, examined by acid treatment, revealed no variations in recycling kinetics among the patients and normal subjects. These data suggest that iron uptake is regulated by modulation of the number of surface transferrin receptors, thereby reflecting the iron demand of the erythroblast.

  20. The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases.

    PubMed

    Brüser, Antje; Schulz, Angela; Rothemund, Sven; Ricken, Albert; Calebiro, Davide; Kleinau, Gunnar; Schöneberg, Torsten

    2016-01-01

    Glycoprotein hormones (GPHs) are the main regulators of the pituitary-thyroid and pituitary-gonadal axes. Selective interaction between GPHs and their cognate G protein-coupled receptors ensure specificity in GPH signaling. The mechanisms of how these hormones activate glycoprotein hormone receptors (GPHRs) or how mutations and autoantibodies can alter receptor function were unclear. Based on the hypothesis that GPHRs contain an internal agonist, we systematically screened peptide libraries derived from the ectodomain for agonistic activity on the receptors. We show that a peptide (p10) derived from a conserved sequence in the C-terminal part of the extracellular N terminus can activate all GPHRs in vitro and in GPHR-expressing tissues. Inactivating mutations in this conserved region or in p10 can inhibit activation of the thyroid-stimulating hormone receptor by autoantibodies. Our data suggest an activation mechanism where, upon extracellular ligand binding, this intramolecular agonist isomerizes and induces structural changes in the 7-transmembrane helix domain, triggering G protein activation. This mechanism can explain the pathophysiology of activating autoantibodies and several mutations causing endocrine dysfunctions such as Graves disease and hypo- and hyperthyroidism. Our findings highlight an evolutionarily conserved activation mechanism of GPHRs and will further promote the development of specific ligands useful to treat Graves disease and other dysfunctions of GPHRs. PMID:26582202

  1. Molecular characterization of thyroid hormone receptors from the leopard gecko, and their differential expression in the skin.

    PubMed

    Kanaho, Yoh-Ichiro; Endo, Daisuke; Park, Min Kyun

    2006-06-01

    Thyroid hormones (THs) play crucial roles in various developmental and physiological processes in vertebrates, including squamate reptiles. The effect of THs on shedding frequency is interesting in Squamata, since the effects on lizards are quite the reverse of those in snakes: injection of thyroxine increases shedding frequency in lizards, but decreases it in snakes. However, the mechanism underlying this differential effect remains unclear. To facilitate the investigation of the molecular mechanism of the physiological functions of THs in Squamata, their two specific receptor (TRalpha and beta) cDNAs, which are members of the nuclear hormone receptor superfamily, were cloned from a lizard, the leopard gecko, Eublepharis macularius. This is the first molecular cloning of thyroid hormone receptors (TRs) from reptiles. The deduced amino acid sequences showed high identity with those of other species, especially in the C and E/F domains, which are characteristic domains in nuclear hormone receptors. Expression analysis revealed that TRs were widely expressed in many tissues and organs, as in other animals. To analyze their role in the skin, temporal expression analysis was performed by RT-PCR, revealing that the two TRs had opposing expression patterns: TRalpha was expressed more strongly after than before skin shedding, whereas TRbeta was expressed more strongly before than after skin shedding. This provides good evidence that THs play important roles in the skin, and that the roles of their two receptor isoforms are distinct from each other. PMID:16849843

  2. Ovarian hormones and the heterogeneous receptor mechanisms mediating the discriminative stimulus effects of ethanol in female rats.

    PubMed

    Helms, Christa M; McCracken, Aubrey D; Heichman, Sharon L; Moschak, Travis M

    2013-04-01

    Past studies have suggested that progesterone-derived ovarian hormones contribute to the discriminative stimulus effects of ethanol, particularly via progesterone metabolites that act at γ-aminobutyric acid type A (GABA(A)) receptors. It is unknown whether loss of ovarian hormones in women, for example, after menopause, may be associated with altered receptor mediation of the effects of ethanol. The current study measured the substitution of allopregnanolone, pregnanolone, pentobarbital, midazolam, dizocilpine, TFMPP, and RU 24969 in female sham and ovariectomized rats trained to discriminate 1.0 g/kg ethanol from water. The groups did not differ in the substitution of GABA(A)-positive modulators (barbiturates, benzodiazepines, neuroactive steroids) or the N-methyl-D-aspartate receptor antagonist dizocilpine. Similarly, blood-ethanol concentration did not differ between the groups, and plasma adrenocorticotropic hormone, progesterone, pregnenolone, and deoxycorticosterone were unchanged 30 min after administration of 1.0 g/kg ethanol or water. However, substitution of neuroactive steroids and RU 24969, a 5-hydroxytryptamine (5-HT)(1A/1B) receptor agonist, was lower than observed in previous studies of male rats, and TFMPP substitution was decreased in ovariectomized rats. Ovarian hormones appear to contribute to 5-HT receptor mediation of the discriminative stimulus effects of ethanol in rats. PMID:23399883

  3. Testosterone Replacement Therapy Prevents Alterations of Coronary Vascular Reactivity Caused by Hormone Deficiency Induced by Castration

    PubMed Central

    Rouver, Wender Nascimento; Delgado, Nathalie Tristão Banhos; Menezes, Jussara Bezerra; Santos, Roger Lyrio; Moyses, Margareth Ribeiro

    2015-01-01

    The present study aimed to determine the effects of chronic treatment with different doses of testosterone on endothelium–dependent coronary vascular reactivity in male rats. Adult male rats were divided into four experimental groups: control (SHAM), castrated (CAST), castrated and immediately treated subcutaneously with a physiological dose (0.5 mg/kg/day, PHYSIO group) or supraphysiological dose (2.5 mg/kg/day, SUPRA group) of testosterone for 15 days. Systolic blood pressure (SBP) was assessed at the end of treatment through tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed using the Langendorff retrograde perfusion technique. A dose–response curve for bradykinin (BK) was constructed, followed by inhibition with 100 μM L-NAME, 2.8 μM indomethacin (INDO), L-NAME + INDO, or L-NAME + INDO + 0.75 μM clotrimazole (CLOT). We observed significant endothelium–dependent, BK–induced coronary vasodilation, which was abolished in the castrated group and restored in the PHYSIO and SUPRA groups. Furthermore, castration modulated the lipid and hormonal profiles and decreased body weight, and testosterone therapy restored all of these parameters. Our results revealed an increase in SBP in the SUPRA group. In addition, our data led us to conclude that physiological concentrations of testosterone may play a beneficial role in the cardiovascular system by maintaining an environment that is favourable for the activity of an endothelium–dependent vasodilator without increasing SBP. PMID:26322637

  4. Testosterone Replacement Therapy Prevents Alterations of Coronary Vascular Reactivity Caused by Hormone Deficiency Induced by Castration.

    PubMed

    Rouver, Wender Nascimento; Delgado, Nathalie Tristão Banhos; Menezes, Jussara Bezerra; Santos, Roger Lyrio; Moyses, Margareth Ribeiro

    2015-01-01

    The present study aimed to determine the effects of chronic treatment with different doses of testosterone on endothelium-dependent coronary vascular reactivity in male rats. Adult male rats were divided into four experimental groups: control (SHAM), castrated (CAST), castrated and immediately treated subcutaneously with a physiological dose (0.5 mg/kg/day, PHYSIO group) or supraphysiological dose (2.5 mg/kg/day, SUPRA group) of testosterone for 15 days. Systolic blood pressure (SBP) was assessed at the end of treatment through tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed using the Langendorff retrograde perfusion technique. A dose-response curve for bradykinin (BK) was constructed, followed by inhibition with 100 μM L-NAME, 2.8 μM indomethacin (INDO), L-NAME + INDO, or L-NAME + INDO + 0.75 μM clotrimazole (CLOT). We observed significant endothelium-dependent, BK-induced coronary vasodilation, which was abolished in the castrated group and restored in the PHYSIO and SUPRA groups. Furthermore, castration modulated the lipid and hormonal profiles and decreased body weight, and testosterone therapy restored all of these parameters. Our results revealed an increase in SBP in the SUPRA group. In addition, our data led us to conclude that physiological concentrations of testosterone may play a beneficial role in the cardiovascular system by maintaining an environment that is favourable for the activity of an endothelium-dependent vasodilator without increasing SBP. PMID:26322637

  5. Thyroid hormone and retinoid X receptor function and expression during sea lamprey (Petromyzon marinus) metamorphosis.

    PubMed

    Manzon, Lori A; Youson, John H; Holzer, Guillaume; Staiano, Leopoldo; Laudet, Vincent; Manzon, Richard G

    2014-08-01

    Sea lampreys (Petromyzon marinus) are members of the ancient class Agnatha and undergo a metamorphosis that transforms blind, sedentary, filter-feeding larvae into free-swimming, parasitic juveniles. Thyroid hormones (THs) appear to be important for lamprey metamorphosis, however, serum TH concentrations are elevated in the larval phase, decline rapidly during early metamorphosis and remain low until metamorphosis is complete; these TH fluctuations are contrary to those of other metamorphosing vertebrates. Moreover, thyroid hormone synthesis inhibitors (goitrogens) induce precocious metamorphosis and exogenous TH treatments disrupt natural metamorphosis in P. marinus. Given that THs exert their effects by binding to TH nuclear receptors (TRs) that often act as heterodimers with retinoid X receptors (RXRs), we cloned and characterized these receptors from P. marinus and examined their expression during metamorphosis. Two TRs (PmTR1 and PmTR2) and three RXRs (PmRXRs) were isolated from P. marinus cDNA. Phylogenetic analyses group the PmTRs together on a branch prior to the gnathostome TRα/β split. The three RXRs also group together, but our data indicated that these transcripts are most likely either allelic variants of the same gene locus, or the products of a lamprey-specific duplication event. Importantly, these P. marinus receptors more closely resemble vertebrate as opposed to invertebrate chordate receptors. Functional analysis revealed that PmTR1 and PmTR2 can activate transcription of TH-responsive genes when treated with nanomolar concentrations of TH and they have distinct pharmacological profiles reminiscent of vertebrate TRβ and TRα, respectively. Also similar to other metamorphosing vertebrates, expression patterns of the PmTRs during lamprey metamorphosis suggest that PmTR1 has a dynamic, tissue-specific expression pattern that correlates with tissue morphogenesis and biochemical changes and PmTR2 has a more uniform expression pattern. This TR

  6. Identification of a gonadotropin-releasing hormone receptor orthologue in Caenorhabditis elegans

    PubMed Central

    Vadakkadath Meethal, Sivan; Gallego, Miguel J; Haasl, Ryan J; Petras, Stephen J; Sgro, Jean-Yves; Atwood, Craig S

    2006-01-01

    Background The Caenorhabditis elegans genome is known to code for at least 1149 G protein-coupled receptors (GPCRs), but the GPCR(s) critical to the regulation of reproduction in this nematode are not yet known. This study examined whether GPCRs orthologous to human gonadotropin-releasing hormone receptor (GnRHR) exist in C. elegans. Results Our sequence analyses indicated the presence of two proteins in C. elegans, one of 401 amino acids [GenBank: NP_491453; WormBase: F54D7.3] and another of 379 amino acids [GenBank: NP_506566; WormBase: C15H11.2] with 46.9% and 44.7% nucleotide similarity to human GnRHR1 and GnRHR2, respectively. Like human GnRHR1, structural analysis of the C. elegans GnRHR1 orthologue (Ce-GnRHR) predicted a rhodopsin family member with 7 transmembrane domains, G protein coupling sites and phosphorylation sites for protein kinase C. Of the functionally important amino acids in human GnRHR1, 56% were conserved in the C. elegans orthologue. Ce-GnRHR was actively transcribed in adult worms and immunoanalyses using antibodies generated against both human and C. elegans GnRHR indicated the presence of a 46-kDa protein, the calculated molecular mass of the immature Ce-GnRHR. Ce-GnRHR staining was specifically localized to the germline, intestine and pharynx. In the germline and intestine, Ce-GnRHR was localized specifically to nuclei as revealed by colocalization with a DNA nuclear stain. However in the pharynx, Ce-GnRHR was localized to the myofilament lattice of the pharyngeal musculature, suggesting a functional role for Ce-GnRHR signaling in the coupling of food intake with reproduction. Phylogenetic analyses support an early evolutionary origin of GnRH-like receptors, as evidenced by the hypothesized grouping of Ce-GnRHR, vertebrate GnRHRs, a molluscan GnRHR, and the adipokinetic hormone receptors (AKHRs) and corazonin receptors of arthropods. Conclusion This is the first report of a GnRHR orthologue in C. elegans, which shares significant

  7. Molecular analysis of rat pituitary and hypothalamic growth hormone secretagogue receptors.

    PubMed

    McKee, K K; Palyha, O C; Feighner, S D; Hreniuk, D L; Tan, C P; Phillips, M S; Smith, R G; Van der Ploeg, L H; Howard, A D

    1997-04-01

    GH release is thought to occur under the reciprocal regulation of two hypothalamic peptides, GH releasing hormone (GHRH) and somatostatin, via their engagement with specific cell surface receptors on the anterior pituitary somatotroph. In addition, GH-releasing peptides, such as GHRP-6 and the nonpeptide mimetics, L-692,429 and MK-0677, stimulate GH release through their activation of a distinct receptor, the GH secretagogue receptor (GHS-R). The recent cloning of the GHS-R from human and swine pituitary gland identifies yet a third G protein-coupled receptor (GPC-R) involved in the control of GH release and further supports the existence of an undiscovered hormone that may activate this receptor. Using the human GHS-R as a probe, we report the isolation of a rat pituitary GHS-R cDNA derived from an unspliced, precursor mRNA. The rat cDNA encodes a protein of 364 amino acids containing seven transmembrane domains (7-TM) with >90% sequence identity to both the human and swine GHS-Rs. A single intron of approximately 2 kb divides the open reading frame into two exons encoding TM 1-5 and TM 6-7, thus placing the GHS-R into the intron-containing class of GPC-Rs. The intron maps to the site of sequence divergence between the human and swine type 1a and 1b GHS-R mRNAs. In addition, determination of the nucleotide sequence for the human GHS-R gene confirmed the position of an intron in the human GHS-R gene at this position. A full-length contiguous cDNA from rat hypothalamus was isolated and shown to be identical in its nucleotide and deduced amino acid sequence to the rat pituitary GHS-R. The cloned rat GHS-R binds [35S]MK-0677 with high affinity [dissociation constant (K(D)) = 0.7 nM] and is functionally active when expressed in HEK-293 cells. Expression of the rat GHS-R was observed specifically in the pituitary and hypothalamus when compared with control tissues. PMID:9092793

  8. Expression of Sex Steroid Hormone Receptors in Vagal Motor Neurons Innervating the Trachea and Esophagus in Mouse

    PubMed Central

    Mukudai, Shigeyuki; Ichi Matsuda, Ken; Bando, Hideki; Takanami, Keiko; Nishio, Takeshi; Sugiyama, Yoichiro; Hisa, Yasuo; Kawata, Mitsuhiro

    2016-01-01

    The medullary vagal motor nuclei, the nucleus ambiguus (NA) and dorsal motor nucleus of the vagus (DMV), innervate the respiratory and gastrointestinal tracts. We conducted immunohistochemical analysis of expression of the androgen receptor (AR) and estrogen receptor α (ERα), in relation to innervation of the trachea and esophagus via vagal motor nuclei in mice. AR and ERα were expressed in the rostral NA and in part of the DMV. Tracing experiments using cholera toxin B subunit demonstrated that neurons of vagal motor nuclei that innervate the trachea and esophagus express AR and ERα. There was no difference in expression of sex steroid hormone receptors between trachea- and esophagus-innervating neurons. These results suggest that sex steroid hormones may act on vagal motor nuclei via their receptors, thereby regulating functions of the trachea and esophagus. PMID:27006520

  9. Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells.

    PubMed

    Du, Xing; Li, Qiqi; Pan, Zengxiang; Li, Qifa

    2016-08-01

    Androgen, which acts via the androgen receptor (AR), plays crucial roles in mammalian ovarian function. Recent studies showed that androgen/AR signaling regulates follicle-stimulating hormone receptor (FSHR) expression in follicles; however, the detailed mechanism underlying this regulation remained unknown. Here, we demonstrate that AR and miR-126* cooperate to inhibit FSHR expression and function in pig follicular granulosa cells (pGCs). In pGCs, overexpression of AR decreased, whereas knockdown increased, FSHR mRNA and protein expression; however, neither manipulation affected FSHR promoter activity. Using a dual-luciferase reporter assay, we found that the FSHR gene is a direct target of miR-126*, which inhibits FSHR expression and increases the rate of AR-induced apoptosis in pGCs. Collectively, our data show for the first time that the AR/miR-126* axis exerts synergetic effects in the regulation of FSHR expression and apoptosis in pGCs. Our findings thus define a novel pathway, AR/miR-126*/FSHR, that regulates mammalian GC functions. PMID:27222597

  10. A new variant in signal peptide of the human luteinizing hormone receptor (LHCGR) affects receptor biogenesis causing leydig cell hypoplasia.

    PubMed

    Vezzoli, Valeria; Duminuco, Paolo; Vottero, Alessandra; Kleinau, Gunnar; Schülein, Ralf; Minari, Roberta; Bassi, Ivan; Bernasconi, Sergio; Persani, Luca; Bonomi, Marco

    2015-11-01

    The human luteinizing hormone/chorionic gonadotropin receptor (LHCGR) plays a fundamental role in male and female reproduction. In males, loss-of-function mutations in LHCGR have been associated with distinct degrees of impairment in pre- and postnatal testosterone secretion resulting in a variable phenotypic spectrum, classified as Leydig cell hypoplasia (LCH) type 1 (complete LH resistance and disorder of sex differentiation) and type 2 (partial LH resistance with impaired masculinization and fertility). Here, we report the case of an adolescent who came to the pediatric endocrinologist at the age of 12 years old for micropenis and cryptorchidism. Testis biopsy showed profound LCH and absent germinal line elements (Sertoli-only syndrome). The sequence analysis of the LHCGR gene showed the presence of a compound heterozygosity, being one variation, c.1847C>A p.S616Y, already described in association to Hypergonadotropic Hypogonadism, and the other, c.29 C>T p.L10P, a new identified variant in the putative signal peptide (SP) of LHCGR. Functional and structural studies provide first evidence that LHCGR have a functional and cleavable SP required for receptor biogenesis. Moreover, we demonstrate the pathogenic role of the novel p.L10P allelic variant, which has to be considered a loss-of-function mutation significantly contributing, in compound heterozygosity with p.S616Y, to the LCH type 2 observed in our patient. PMID:26246498

  11. Hormone- and DNA-binding mechanisms of the recombinant human estrogen receptor.

    PubMed

    Obourn, J D; Koszewski, N J; Notides, A C

    1993-06-22

    We have investigated the hormone- and DNA-binding mechanisms of the wild-type human estrogen receptor (hER) overproduced in insect cells using a baculovirus expression system. The recombinant hER was indistinguishable in size (67 kDa) and immunogenically from the native human estrogen receptor in MCF-7 breast carcinoma cells. The recombinant hER was purified to 70-80% homogeneity with a two-step procedure that included ammonium sulfate precipitation and oligonucleotide affinity chromatography using a unique Teflon affinity matrix. The recombinant hER bound estradiol with a positively cooperative mechanism. At hER concentrations in excess of 13 nM the Hill coefficient reached a maximal value of 1.6, whereas, at lower hER concentrations, the Hill coefficient approached 1.0, suggesting that the hER was dissociated to the monomeric species and site-site interactions were diminished. The hER specifically bound an estrogen responsive element (ERE) from chicken vitellogenin II gene as measured by the gel mobility assay, ethylation, and thymine interference footprinting. Specific interference patterns suggest a two-fold symmetry of the hER binding to the ERE with each monomer of the hER bound in the major groove of the DNA. These data indicate that the recombinant hER is valuable to define the biochemical and structural properties of the native estrogen receptor. PMID:8512933

  12. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting.

    PubMed

    Kumar, Raj

    2016-01-01

    Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer. PMID:27364545

  13. Synthesis and bioassay of radiolabeled, chiral probes for juvenile hormone receptor study

    SciTech Connect

    Eng, W.

    1987-01-01

    Four different types of compounds were synthesized for the detailed study on interactions between insect juvenile hormone (JH) and the corresponding binding proteins, receptor proteins and catabolic enzymes: (1) High specific activity /sup 3/H-labeled, chiral alkyldiazoacetates with their skeletons approaching those of natural JH I and JH II were synthesized as photoaffinity labels for probing JH receptor proteins in Lepidoptera. Compared with epoxy farnesyl diazoacetate (EFDA), epoxy bishomofarnesyl diazoacetate (EBDA) and epoxy homofarnesyl diazoacetate (EHDA) have largely increased affinity to Manduca sexta JH binding proteins (JHBP) as demonstrated by gel electrophoresis. (2) Chiral JH I and JH II acids, as well as 12-hydroxy-JH I and JH II were synthesized. The hydroxy groups in these compounds provide tether points for attachment to proteins to serve as antigens with most of the recognition sites preserved to be used in JH radioimmunoassays. (3) The first radioiodine-labeled JH, (/sup 125/I)-12-iodo-JH I, was synthesized, both in no-carrier-added and carrier-added forms, as one of the probes for JH receptor study. (4) Four alkylthioltrifluoropropanones with skeletons approaching that of JH III and functional groups mimicking the JH epoxide moiety were synthesized as inhibitors for JH esterase (JHE).

  14. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting

    PubMed Central

    Kumar, Raj

    2016-01-01

    Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer. PMID:27364545

  15. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    SciTech Connect

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-08-01

    The specific binding of iodinated epidermal growth factor ((/sup 125/I)iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites (dissociation constant (Kd) = 0.7-1.8 nM). Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status.

  16. Growth hormone deficiency and antipituitary antibodies in a patient with common variable immunodeficiency.

    PubMed

    Delvecchio, M; De Bellis, A; De Mattia, D; Cavallo, L; Martire, B

    2009-09-01

    Common variable immunodeficiency (CVID) is characterized by hypogammaglobulinemia and T-lymphocytes dysfunction. Autoimmune diseases are frequent. A 10.7-yr-old female, diagnosed with CVID when 7 yr old, was referred because of short stature. She was pre-pubertal and short (height -2.86 SD score) with delayed bone age. Her intestinal absorption, routine biochemistry, heart, renal, liver, and thyroid functions were normal. Two stimulation tests for GH showed a maximum peak of 1.9 ng/ml (IGF-1: 154 ng/ml, 147-832). When the patient was 13 yr old (height -4.23 SD score, telarche and pubarche stage 2, bone age 6.25 yr), GH treatment was initiated. Despite poor compliance, the growth velocity showed improvement. Anti-thyrogobulin, anti-thyroperoxidase, anti-21-hydroxylase, and anti-tyrosine-phosphate antibodies were negative while anti- pituitary antibodies (APA) were positive. For the first time, the presence of APA (previously associated with GH deficiency in non-CVID subjects) is reported in a CVID patient. The possibility of an autoimmune involvement of the pituitary gland was previously debated for CVID patients, but had never been demonstrated. This case suggests that in CVID, the pituitary gland can be targeted by autoantibodies and thus a more comprehensive follow-up of these patients should be performed. PMID:19509479

  17. Inhibition of activin receptor type IIB increases strength and lifespan in myotubularin-deficient mice.

    PubMed

    Lawlor, Michael W; Read, Benjamin P; Edelstein, Rachel; Yang, Nicole; Pierson, Christopher R; Stein, Matthew J; Wermer-Colan, Ariana; Buj-Bello, Anna; Lachey, Jennifer L; Seehra, Jasbir S; Beggs, Alan H

    2011-02-01

    X-linked myotubular myopathy (XLMTM) is a congenital disorder caused by deficiency of the lipid phosphatase, myotubularin. Patients with XLMTM often have severe perinatal weakness that requires mechanical ventilation to prevent death from respiratory failure. Muscle biopsy specimens from patients with XLMTM exhibit small myofibers with central nuclei and central aggregations of organelles in many cells. It was postulated that therapeutically increasing muscle fiber size would cause symptomatic improvement in myotubularin deficiency. Recent studies have elucidated an important role for the activin-receptor type IIB (ActRIIB) in regulation of muscle growth and have demonstrated that ActRIIB inhibition results in significant muscle hypertrophy. To evaluate whether promoting muscle hypertrophy can attenuate symptoms resulting from myotubularin deficiency, the effect of ActRIIB-mFC treatment was determined in myotubularin-deficient (Mtm1δ4) mice. Compared with wild-type mice, untreated Mtm1δ4 mice have decreased body weight, skeletal muscle hypotrophy, and reduced survival. Treatment of Mtm1δ4 mice with ActRIIB-mFC produced a 17% extension of lifespan, with transient increases in weight, forelimb grip strength, and myofiber size. Pathologic analysis of Mtm1δ4 mice during treatment revealed that ActRIIB-mFC produced marked hypertrophy restricted to type 2b myofibers, which suggests that oxidative fibers in Mtm1δ4 animals are incapable of a hypertrophic response in this setting. These results support ActRIIB-mFC as an effective treatment for the weakness observed in myotubularin deficiency. PMID:21281811

  18. International Union of Basic and Clinical Pharmacology. XCIII. The Parathyroid Hormone Receptors—Family B G Protein–Coupled Receptors

    PubMed Central

    Vilardaga, Jean-Pierre

    2015-01-01

    The type-1 parathyroid hormone receptor (PTHR1) is a family B G protein–coupled receptor (GPCR) that mediates the actions of two polypeptide ligands; parathyroid hormone (PTH), an endocrine hormone that regulates the levels of calcium and inorganic phosphate in the blood by acting on bone and kidney, and PTH-related protein (PTHrP), a paracrine-factor that regulates cell differentiation and proliferation programs in developing bone and other tissues. The type-2 parathyroid hormone receptor (PTHR2) binds a peptide ligand, called tuberoinfundibular peptide-39 (TIP39), and while the biologic role of the PTHR2/TIP39 system is not as defined as that of the PTHR1, it likely plays a role in the central nervous system as well as in spermatogenesis. Mechanisms of action at these receptors have been explored through a variety of pharmacological and biochemical approaches, and the data obtained support a basic “two-site” mode of ligand binding now thought to be used by each of the family B peptide hormone GPCRs. Recent crystallographic studies on the family B GPCRs are providing new insights that help to further refine the specifics of the overall receptor architecture and modes of ligand docking. One intriguing pharmacological finding for the PTHR1 is that it can form surprisingly stable complexes with certain PTH/PTHrP ligand analogs and thereby mediate markedly prolonged cell signaling responses that persist even when the bulk of the complexes are found in internalized vesicles. The PTHR1 thus appears to be able to activate the Gαs/cAMP pathway not only from the plasma membrane but also from the endosomal domain. The cumulative findings could have an impact on efforts to develop new drug therapies for the PTH receptors. PMID:25713287

  19. Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats.

    PubMed

    Li, Yan; Raaby, Kasper F; Sánchez, Connie; Gulinello, Maria

    2013-11-01

    Hormonally induced mood disorders such as premenstrual dysphoric disorder (PMDD) are characterized by a range of physical and affective symptoms including anxiety, irritability, anhedonia, social withdrawal and depression. Studies demonstrated rodent models of progesterone withdrawal (PWD) have a high level of constructive and descriptive validity to model hormonally-induced mood disorders in women. Here we evaluate the effects of several classes of antidepressants in PWD female Long-Evans rats using the forced swim test (FST) as a measure of antidepressant activity. The study included fluoxetine, duloxetine, amitriptyline and an investigational multimodal antidepressant, vortioxetine (5-HT(3), 5-HT(7) and 5-HT(1D) receptor antagonist; 5-HT(1B) receptor partial agonist; 5-HT(1A) receptor agonist; inhibitor of the serotonin transporter (SERT)). After 14 days of administration, amitriptyline and vortioxetine significantly reduced immobility in the FST whereas fluoxetine and duloxetine were ineffective. After 3 injections over 48 h, neither fluoxetine nor duloxetine reduced immobility, whereas amitriptyline and vortioxetine significantly reduced FST immobility during PWD. When administered acutely during PWD, the 5-HT(1A) receptor agonist, flesinoxan, significantly reduced immobility, whereas the 5-HT(1A) receptor antagonist, WAY-100635, increased immobility. The 5-HT(3) receptor antagonist, ondansetron, significantly reduced immobility, whereas the 5-HT(3) receptor agonist, SR-57227, increased immobility. The 5-HT(7) receptor antagonist, SB-269970, was inactive, although the 5-HT(7) receptor agonist, AS-19, significantly increased PWD-induced immobility. None of the compounds investigated (ondansetron, flesinoxan and SB-269970) improved the effect of fluoxetine during PWD. These data indicate that modulation of specific 5-HT receptor subtypes is critical for manipulating FST immobility in this model of hormone-induced depression. PMID:24016840

  20. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    SciTech Connect

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  1. The epidemiology of iodine-deficiency disorders in relation to goitrogenic factors and thyroid-stimulating-hormone regulation.

    PubMed

    Thilly, C H; Swennen, B; Bourdoux, P; Ntambue, K; Moreno-Reyes, R; Gillies, J; Vanderpas, J B

    1993-02-01

    In children aged 5-7 y from goiter-endemic areas in Ubangi, Zaire, and Ntcheu, Malawi, mean serum thyroxin (T4) concentrations were 53 +/- 49 vs 81 +/- 33 nmol/L (P < 0.05), and thyroid-stimulating hormone (TSH) values were 24.3 +/- 9.6 vs 4.5 +/- 3.3 mU/L respectively (P < 0.01); mean urinary iodine concentrations were 0.14 +/- 0.02 vs 0.09 +/- 0.02 mumol/L, and mean thiocyanate concentrations were 0.33 +/- 0.05 vs 0.17 +/- 0.05 nmol/L, respectively (P < 0.05). Mean serum selenium concentrations were 0.343 +/- 0.176 mumol/L in Ubangi and 0.437 +/- 0.178 mumol/L in Ntcheu (P < 0.05). In two groups of 11 adolescent girls from Ubangi, the mean values for excretion of urinary iodine were 1.31 +/- 0.14 and 0.58 +/- 0.17 mumol/L (P < 0.05) after a meal of cassava or a control meal of rice, respectively. In euthyroid subjects from Ubangi, mean serum TSH for a given serum T4 was approximately twice as high for children aged < 15 y than for those aged 16-25 y. The high frequency of myxedematous cretins observed in Ubangi very probably result from both severe iodine and selenium deficiency together with thiocyanate overload. PMID:8427202

  2. Antibodies to the extracellular receptor domain restore the hormone-insensitive kinase and conformation of the mutant insulin receptor valine 382.

    PubMed

    Lebrun, C; Baron, V; Kaliman, P; Gautier, N; Dolais-Kitabgi, J; Taylor, S; Accili, D; Van Obberghen, E

    1993-05-25

    A mutation substituting a valine for phenylalanine at residue 382 in the insulin receptor alpha-subunit has been found in two sisters with a genetic form of extreme insulin resistance. This receptor mutation impairs the ability of the hormone to activate autophosphorylation of solubilized receptors and phosphorylation of substrates (Accili, D., Mosthaf, L., Ullrich, A., and Taylor, S. I. (1991) J. Biol. Chem. 266, 434-439). We have previously demonstrated that in native receptors insulin induces a conformational change in the receptor beta-subunit, which is thought to be necessary for receptor activation (Baron, V., Gautier, N., Komoriya, A., Hainaut, P., Scimeca, J. C., Mervic, M., Lavielle, S., Dolais-Kitabgi, J., and Van Obberghen, E. (1990) Biochemistry 29, 4634-4641). Hence, it was thought that a defect in this conformational change might explain the functional defect of the mutant receptor. This appears to be the case, as we demonstrate here that the mutant receptor is locked in its inactive configuration. However, we found two monoclonal antibodies, directed to the extracellular domain, which are capable of restoring the mutant receptor kinase activity. The activation of the mutant receptor was accompanied by restoration of conformational changes in the beta-subunit C terminus. From these data, we draw the two following conclusions. (i) A causal link exists between receptor kinase activation and the occurrence of conformational changes. (ii) Ligands other than insulin, such as antibodies, which perturb the extracellular domain, can function as alternative ways to restore the mutant receptor kinase. PMID:8388389

  3. Regulation of gene expression in ovarian cancer cells by luteinizing hormone receptor expression and activation

    PubMed Central

    2011-01-01

    Background Since a substantial percentage of ovarian cancers express gonadotropin receptors and are responsive to the relatively high concentrations of pituitary gonadotropins during the postmenopausal years, it has been suggested that receptor activation may contribute to the etiology and/or progression of the neoplasm. The goal of the present study was to develop a cell model to determine the impact of luteinizing hormone (LH) receptor (LHR) expression and LH-mediated LHR activation on gene expression and thus obtain insights into the mechanism of gonadotropin action on ovarian surface epithelial (OSE) carcinoma cells. Methods The human ovarian cancer cell line, SKOV-3, was stably transfected to express functional LHR and incubated with LH for various periods of time (0-20 hours). Transcriptomic profiling was performed on these cells to identify LHR expression/activation-dependent changes in gene expression levels and pathways by microarray and qRT-PCR analyses. Results Through comparative analysis on the LHR-transfected SKOV-3 cells exposed to LH, we observed the differential expression of 1,783 genes in response to LH treatment, among which five significant families were enriched, including those of growth factors, translation regulators, transporters, G-protein coupled receptors, and ligand-dependent nuclear receptors. The most highly induced early and intermediate responses were found to occupy a network impacting transcriptional regulation, cell growth, apoptosis, and multiple signaling transductions, giving indications of LH-induced apoptosis and cell growth inhibition through the significant changes in, for example, tumor necrosis factor, Jun and many others, supportive of the observed cell growth reduction in in vitro assays. However, other observations, e.g. the substantial up-regulation of the genes encoding the endothelin-1 subtype A receptor, stromal cell-derived factor 1, and insulin-like growth factor II, all of which are potential therapeutic

  4. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    SciTech Connect

    Chi, Hsiang-Cheng; Liao, Chen-Hsin; Huang, Ya-Hui; Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I; Chen, Wei-Jan; Lin, Kwang-Huei

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  5. Identification and Molecular Interaction Studies of Thyroid Hormone Receptor Disruptors among Household Dust Contaminants.

    PubMed

    Zhang, Jin; Li, Yaozong; Gupta, Arun A; Nam, Kwangho; Andersson, Patrik L

    2016-08-15

    Thyroid hormone disrupting chemicals (THDCs), often found abundantly in the environment, interfere with normal thyroid hormone signaling and induce physiological malfunctions, possibly by affecting thyroid hormone receptors (THRs). Indoor dust ingestion is a significant human exposure route of THDCs, raising serious concerns for human health. Here, we developed a virtual screening protocol based on an ensemble of X-ray crystallographic structures of human THRβ1 and the generalized Born solvation model to identify potential THDCs targeting the human THRβ1 isoform. The protocol was applied to virtually screen an in-house indoor dust contaminant inventory, yielding 31 dust contaminants as potential THRβ1 binders. Five predicted binders and one negative control were tested using isothermal titration calorimetry, of which four, i.e., 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) ether (BADGE-HCl-H2O), 2,2',4,4'-tetrahydroxybenzophenone (BP2), and 2,4-dichlorophenoxyacetic acid (2,4-D), were identified as THRβ1 binders with binding affinities ranging between 60 μM and 460 μM. Molecular dynamics (MD) simulations were employed to examine potential binding modes of these binders and provided a rationale for explaining their specific recognition by THRβ1. The combination of in vitro binding affinity measurements and MD simulations allowed identification of four new potential THR-targeting THDCs that have been found in household dust. We suggest using the developed structure-based virtual screening protocol to identify and prioritize testing of potential THDCs. PMID:27410513

  6. Characterization and expression analysis of adipokinetic hormone and its receptor in eusocial aphid Pseudoregma bambucicola.

    PubMed

    Jedličková, Veronika; Jedlička, Pavel; Lee, How-Jing

    2015-11-01

    Aphids display an extraordinary phenotypic plasticity ranging from widespread reproductive and wing polyphenisms to the occurrence of sterile or subfertile soldier morphs restricted to eusocial species of the subfamilies Eriosomatinae and Hormaphidinae. Individual morphs are specialized by their behavior, anatomy, and physiology to perform different roles in aphid societies at different stages of the life cycle. The capacity of the insects to cope with environmental stressors is under the control of a group of neuropeptides of the adipokinetic hormone/red pigment-concentrating hormone family (AKH/RPCH) that bind to a specific receptor (AKHR). Here, we describe the molecular characteristics of AKH and AKHR in the eusocial aphid Pseudoregma bambucicola. The sequence of the bioactive AKH decapeptide and the intron position in P. bambucicola AKH preprohormone were found to be identical to those in a phylogenetically distant aphid Dreyfusia spp. (Adelgidae). We detected four transcript variants of AKHR that are translated into three protein isoforms. Further, we analyzed AKH/AKHR expression in different tissues and insects of different castes. In wingless females, a remarkable amount of AKH mRNA was only expressed in the heads. In contrast, AKHR transcript levels increased in the order gut

  7. Ovary ecdysteroidogenic hormone functions independently of the insulin receptor in the yellow fever mosquito, Aedes aegypti.

    PubMed

    Dhara, Animesh; Eum, Jai-Hoon; Robertson, Anne; Gulia-Nuss, Monika; Vogel, Kevin J; Clark, Kevin D; Graf, Rolf; Brown, Mark R; Strand, Michael R

    2013-12-01

    Most mosquito species must feed on the blood of a vertebrate host to produce eggs. In the yellow fever mosquito, Aedes aegypti, blood feeding triggers medial neurosecretory cells in the brain to release insulin-like peptides (ILPs) and ovary ecdysteroidogenic hormone (OEH). Theses hormones thereafter directly induce the ovaries to produce ecdysteroid hormone (ECD), which activates the synthesis of yolk proteins in the fat body for uptake by oocytes. ILP3 stimulates ECD production by binding to the mosquito insulin receptor (MIR). In contrast, little is known about the mode of action of OEH, which is a member of a neuropeptide family called neuroparsin. Here we report that OEH is the only neuroparsin family member present in the Ae. aegypti genome and that other mosquitoes also encode only one neuroparsin gene. Immunoblotting experiments suggested that the full-length form of the peptide, which we call long OEH (lOEH), is processed into short OEH (sOEH). The importance of processing, however, remained unclear because a recombinant form of lOEH (rlOEH) and synthetic sOEH exhibited very similar biological activity. A series of experiments indicated that neither rlOEH nor sOEH bound to ILP3 or the MIR. Signaling studies further showed that ILP3 activated the MIR but rlOEH did not, yet both neuropeptides activated Akt, which is a marker for insulin pathway signaling. Our results also indicated that activation of TOR signaling in the ovaries required co-stimulation by amino acids and either ILP3 or rlOEH. Overall, we conclude that OEH activates the insulin signaling pathway independently of the MIR, and that insulin and TOR signaling in the ovaries is coupled. PMID:24076067

  8. Identification of Thyroid Hormone Receptor Binding Sites and Target Genes Using ChIP-on-Chip in Developing Mouse Cerebellum

    PubMed Central

    Dong, Hongyan; Yauk, Carole L.; Rowan-Carroll, Andrea; You, Seo-Hee; Zoeller, R. Thomas; Lambert, Iain; Wade, Michael G.

    2009-01-01

    Thyroid hormone (TH) is critical to normal brain development, but the mechanisms operating in this process are poorly understood. We used chromatin immunoprecipitation to enrich regions of DNA bound to thyroid receptor beta (TRβ) of mouse cerebellum sampled on post natal day 15. Enriched target was hybridized to promoter microarrays (ChIP-on-chip) spanning −8 kb to +2 kb of the transcription start site (TSS) of 5000 genes. We identified 91 genes with TR binding sites. Roughly half of the sites were located in introns, while 30% were located within 1 kb upstream (5′) of the TSS. Of these genes, 83 with known function included genes involved in apoptosis, neurodevelopment, metabolism and signal transduction. Two genes, MBP and CD44, are known to contain TREs, providing validation of the system. This is the first report of TR binding for 81 of these genes. ChIP-on-chip results were confirmed for 10 of the 13 binding fragments using ChIP-PCR. The expression of 4 novel TH target genes was found to be correlated with TH levels in hyper/hypothyroid animals providing further support for TR binding. A TRβ binding site upstream of the coding region of myelin associated glycoprotein was demonstrated to be TH-responsive using a luciferase expression system. Motif searches did not identify any classic binding elements, indicating that not all TR binding sites conform to variations of the classic form. These findings provide mechanistic insight into impaired neurodevelopment resulting from TH deficiency and a rich bioinformatics resource for developing a better understanding of TR binding. PMID:19240802

  9. Evaluation of growth hormone (GH) action in mice: discovery of GH receptor antagonists and clinical indications.

    PubMed

    Kopchick, John J; List, Edward O; Kelder, Bruce; Gosney, Elahu S; Berryman, Darlene E

    2014-04-01

    The discovery of a growth hormone receptor antagonist (GHA) was initially established via expression of mutated GH genes in transgenic mice. Following this discovery, development of the compound resulted in a drug termed pegvisomant, which has been approved for use in patients with acromegaly. Pegvisomant treatment in a dose dependent manner results in normalization of IGF-1 levels in most patients. Thus, it is a very efficacious and safe drug. Since the GH/IGF-1 axis has been implicated in the progression of several types of cancers, many have suggested the use of pegvisomant as an anti-cancer therapeutic. In this manuscript, we will review the use of mouse strains that possess elevated or depressed levels of GH action for unraveling many of GH actions. Additionally, we will describe experiments in which the GHA was discovered, review results of pegvisomant's preclinical and clinical trials, and provide data suggesting pegvisomant's therapeutic value in selected types of cancer. PMID:24035867

  10. Age- and sex-associated plasma proteomic changes in growth hormone receptor gene-disrupted mice.

    PubMed

    Ding, Juan; Berryman, Darlene E; Jara, Adam; Kopchick, John J

    2012-08-01

    Growth hormone receptor gene-disrupted (GHR-/-) mice are dwarf, insulin sensitive, and long lived despite being obese. In order to identify characteristics associated with their increased longevity, we studied age-related plasma proteomic changes in these mice. Male and female GHR-/- mice and their littermate controls were followed longitudinally at 8, 16, and 24 months of ages for plasma proteomic analysis. Relative to control littermates, GHR-/- mice had increased levels of apolipoprotein A-4 and retinol-binding protein-4 and decreased levels of apolipoprotein E, haptoglobin, and mannose-binding protein-C. Female GHR-/- mice showed decreased inflammatory cytokines including interleukin-1β and monocyte chemotactic protein-1. Additionally, sex differences were found in specific isoforms of apolipoprotein E, RBP-4, haptoglobin, albumin, and hemoglobin subunit beta. In conclusion, we find plasma proteomic changes in GHR-/- mice that favor a longer life span as well as sex differences indicative of an improved health span in female mice. PMID:22156438

  11. Molecular and biological interaction between major histocompatibility complex class I antigens and luteinizing hormone receptors or beta-adrenergic receptors triggers cellular response in mice.

    PubMed Central

    Solano, A R; Cremaschi, G; Sánchez, M L; Borda, E; Sterin-Borda, L; Podestá, E J

    1988-01-01

    Purified IgG from BALB/c mouse anti-C3H serum exerts positive inotropic and chronotropic effects in C3H mouse atria and induces testosterone synthesis in C3H mouse Leydig cells. The effect depends on IgG concentration and can be abolished by beta-adrenergic-receptor and luteinizing hormone-receptor antagonists. IgG interferes with the binding of dihydroalprenolol and luteinizing hormone. Monoclonal antibodies against major histocompatibility complex class I antigens were active on the Leydig cells of C3H and BALB/c mice. There was a parallelism between the effect of each individual monoclonal antibody with specificity for a particular haplotype and the response of the target cell from the strains carrying such haplotypes. These antibodies could precipitate the soluble luteinizing hormone-receptor complex. The results suggested that bound hormone triggers the association of major histocompatibility class I antigen with the receptor, thereby activating the respective target cells. PMID:2839829

  12. Genetic NMDA receptor deficiency disrupts acute and chronic effects of cocaine but not amphetamine.

    PubMed

    Ramsey, Amy J; Laakso, Aki; Cyr, Michel; Sotnikova, Tatyana D; Salahpour, Ali; Medvedev, Ivan O; Dykstra, Linda A; Gainetdinov, Raul R; Caron, Marc G

    2008-10-01

    NMDA receptor-mediated glutamate transmission is required for several forms of neuronal plasticity. Its role in the neuronal responses to addictive drugs is an ongoing subject of investigation. We report here that the acute locomotor-stimulating effect of cocaine is absent in NMDA receptor-deficient mice (NR1-KD). In contrast, their acute responses to amphetamine and to direct dopamine receptor agonists are not significantly altered. The striking attenuation of cocaine's acute effects is not likely explained by alterations in the dopaminergic system of NR1-KD mice, since most parameters of pre- and postsynaptic dopamine function are unchanged. Consistent with the behavioral findings, cocaine induces less c-Fos expression in the striatum of these mice, while amphetamine-induced c-Fos expression is intact. Furthermore, chronic cocaine-induced sensitization and conditioned place preference are attenuated and develop more slowly in mutant animals, but amphetamine's effects are not altered significantly. Our results highlight the importance of NMDA receptor-mediated glutamatergic transmission specifically in cocaine actions, and support a hypothesis that cocaine and amphetamine elicit their effects through differential actions on signaling pathways. PMID:18185498

  13. Expression of steroid hormone receptors in the genital structures of a true hermaphrodite pug dog.

    PubMed

    Bartel, C; Meyer, F; Schäfer-Somi, S; Walter, I

    2015-02-01

    Hermaphroditism is a rare and a not well-understood disordered sexual development (DSD) in dogs. The objective of the study was to analyse the sex steroid hormone receptor (STHR) expression patterns in the internal genital structures, because the responsiveness of the different tissue types to the steroid hormones may have a key role in pathological alterations based on DSDs. Furthermore, the adhesion molecule β-catenin was investigated by means of immunohistochemistry because of its important role in development, tissue integrity and disease. Molecular sexing was performed via PCR targeting DBX/DBY genes to identify the pug dog as a true XX hermaphrodite. The portions of uterine tissue revealed comparable expression patterns for STHRs as investigated in normal female reproductive tissue. In the male parts, β-catenin showed strong expression in the Sertoli cells of the seminiferous tubules; this was in contrast to normal testicular tissue. Likewise, the layers of smooth muscle actin-positive cells surrounding the seminiferous tubules were reduced in the hermaphrodite. The results of this study deepen the knowledge of tissue characteristics in a hermaphrodite dog and highlight the importance of early diagnosis because the STH responsiveness in maldeveloped reproductive tissue might lead to serious problems for the dog. PMID:25472589

  14. Androgen receptor repression of gonadotropin-releasing hormone gene transcription via enhancer 1.

    PubMed

    Brayman, Melissa J; Pepa, Patricia A; Mellon, Pamela L

    2012-11-01

    Gonadotropin-releasing hormone (GnRH) plays a major role in the hypothalamic-pituitary-gonadal (HPG) axis, and synthesis and secretion of GnRH are regulated by gonadal steroid hormones. Disruptions in androgen levels are involved in a number of reproductive defects, including hypogonadotropic hypogonadism and polycystic ovarian syndrome. Androgens down-regulate GnRH mRNA synthesis in vivo and in vitro via an androgen receptor (AR)-dependent mechanism. Methyltrienolone (R1881), a synthetic AR agonist, represses GnRH expression through multiple sites in the proximal promoter. In this study, we show AR also represses GnRH transcription via the major enhancer (GnRH-E1). A multimer of the -1800/-1766 region was repressed by R1881 treatment. Mutation of two bases, -1792 and -1791, resulted in decreased basal activity and a loss of AR-mediated repression. AR bound to the -1796/-1791 sequence in electrophoretic mobility shift assays, indicating a direct interaction with DNA or other transcription factors in this region. We conclude that AR repression of GnRH-E1 acts via multiple AR-responsive regions, including the site at -1792/-1791. PMID:22877652

  15. Growth hormone activity in mitochondria depends on GH receptor Box 1 and involves caveolar pathway targeting

    SciTech Connect

    Perret-Vivancos, Cecile; Abbate, Aude; Ardail, Dominique; Raccurt, Mireille; Usson, Yves; Lobie, Peter E.; Morel, Gerard . E-mail: gerard.morel@univ-lyon1.fr

    2006-02-01

    Growth hormone (GH) binding to its receptor (GHR) initiates GH-dependent signal transduction and internalization pathways to generate the biological effects. The precise role and way of action of GH on mitochondrial function are not yet fully understood. We show here that GH can stimulate cellular oxygen consumption in CHO cells transfected with cDNA coding for the full-length GHR. By using different GHR cDNA constructs, we succeeded in determining the different parts of the GHR implicated in the mitochondrial response to GH. Polarography and two-photon excitation fluorescence microscopy analysis showed that the Box 1 of the GHR intracellular domain was required for an activation of the mitochondrial respiration in response to a GH exposure. However, confocal laser scanning microscopy demonstrated that cells lacking the GHR Box 1 could efficiently internalize the hormone. We demonstrated that internalization mediated either by clathrin-coated pits or by caveolae was able to regulate GH mitochondrial effect: these two pathways are both essential to obtain the GH stimulatory action on mitochondrial function. Moreover, electron microscopic and biochemical approaches allowed us to identify the caveolar pathway as essential for targeting GH and GHR to mitochondria.

  16. Unliganded Thyroid Hormone Receptor α Controls Developmental Timing in Xenopus tropicalis

    PubMed Central

    Wen, Luan

    2015-01-01

    Thyroid hormone (T3) affects adult metabolism and postembryonic development in vertebrates. T3 functions mainly via binding to its receptors (TRs) to regulate gene expression. There are 2 TR genes, TRα and TRβ, with TRα more ubiquitously expressed. During development, TRα expression appears earlier than T3 synthesis and secretion into the plasma. This and the ability of TRs to regulate gene expression both in the presence and absence of T3 have indicated a role for unliganded TR during vertebrate development. On the other hand, it has been difficult to study the role of unliganded TR during development in mammals because of the difficulty to manipulate the uterus-enclosed, late-stage embryos. Here we use amphibian development as a model to address this question. We have designed transcriptional activator–like effector nucleases (TALENs) to mutate the TRα gene in Xenopus tropicalis. We show that knockdown of TRα enhances tadpole growth in premetamorphic tadpoles, in part because of increased growth hormone gene expression. More importantly, the knockdown also accelerates animal development, with the knockdown animals initiating metamorphosis at a younger age and with a smaller body size. On the other hand, such tadpoles are resistant to exogenous T3 treatment and have delayed natural metamorphosis. Thus, our studies not only have directly demonstrated a critical role of endogenous TRα in mediating the metamorphic effect of T3 but also revealed novel functions of unliganded TRα during postembryonic development, that is, regulating both tadpole growth rate and the timing of metamorphosis. PMID:25456066

  17. Thyroid Hormone Regulates the mRNA Expression of Small Heterodimer Partner through Liver Receptor Homolog-1

    PubMed Central

    Ahn, Hwa Young; Kim, Hwan Hee; Kim, Ye An; Kim, Min; Ohn, Jung Hun; Chung, Sung Soo; Lee, Yoon-Kwang; Park, Do Joon; Park, Kyong Soo

    2015-01-01

    Background Expression of hepatic cholesterol 7α-hydroxylase (CYP7A1) is negatively regulated by orphan nuclear receptor small heterodimer partner (SHP). In this study, we aimed to find whether thyroid hormone regulates SHP expression by modulating the transcriptional activities of liver receptor homolog-1 (LRH-1). Methods We injected thyroid hormone (triiodothyronine, T3) to C57BL/6J wild type. RNA was isolated from mouse liver and used for microarray analysis and quantitative real-time polymerase chain reaction (PCR). Human hepatoma cell and primary hepatocytes from mouse liver were used to confirm the effect of T3 in vitro. Promoter assay and electrophoretic mobility-shift assay (EMSA) were also performed using human hepatoma cell line Results Initial microarray results indicated that SHP expression is markedly decreased in livers of T3 treated mice. We confirmed that T3 repressed SHP expression in the liver of mice as well as in mouse primary hepatocytes and human hepatoma cells by real-time PCR analysis. LRH-1 increased the promoter activity of SHP; however, this increased activity was markedly decreased after thyroid hormone receptor β/retinoid X receptor α/T3 administration. EMSA revealed that T3 inhibits specific LRH-1 DNA binding. Conclusion We found that thyroid hormone regulates the expression of SHP mRNA through interference with the transcription factor, LRH-1. PMID:26485468

  18. Effect of gonadotropin-releasing hormone II receptor (GnRHR-II) knockdown on testosterone secretion in the boar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unlike the classical gonadotropin-releasing hormone (GnRH-I), the second mammalian GnRH isoform (GnRH-II; His5, Trp7, Tyr8) is a poor stimulator of gonadotropin secretion. In addition, GnRH-II is ubiquitously expressed, with transcript levels highest in tissues outside of the brain. A receptor speci...

  19. Cytoskeletal reorganization dependence of signaling by the gonadotropin-releasing hormone receptor.

    PubMed

    Davidson, Lindsay; Pawson, Adam J; Millar, Robert P; Maudsley, Stuart

    2004-01-16

    Activation of classical G protein-coupled receptors (GPCRs) like the mammalian gonadotropin-releasing hormone receptor (GnRHR) typically stimulates heterotrimeric G protein molecules that subsequently activate downstream effectors. Receptor activation of heterotrimeric G protein pathways primarily controls intermediary cell metabolism by elevation or diminution of soluble cytoplasmic second messenger molecules. We have demonstrated here that stimulation of the GnRHR also results in a dramatic change in both cell adhesion and superstructural morphology. Gonadotropin-releasing hormone (GnRH) receptor activation rapidly increases the capacity of HEK293 cells expressing the GnRHR to remain matrix-adherent in the face of fluid insults. Coinciding with this profound elevation in matrix adherence, we demonstrated a GnRH-induced alteration in both cell morphology and the de novo generation of polymerized actin structures. GnRH induction of cytoskeletal remodeling was correlated with significant increases in the tyrosine phosphorylation status of a series of cytoskeletal associated proteins, e.g. focal adhesion kinase (FAK), c-Src, and microtubule-associated protein kinase (MAPK or ERK1/2). The activation of the distal downstream effector ERK1/2 was demonstrated to be sensitive to the disrupters of cytoskeletal rearrangement, cytochalasin D and latrunculin B. In addition to the sensitivity of ERKs to cytoskeletal integrity, GnRH-induced FAK and c-Src kinase activation were sensitive to these agents and the fibronectin-integrin antagonistic RGDS peptide. Activation of ERK was dependent on its protein-protein assembly with FAK and c-Src at focal adhesion complexes. Induction of the cell remodeling event leading to this signaling complex assembly occurred primarily via GnRHR activation of the monomeric G protein Rac but not RhoA. These findings demonstrated a clear divergence of GnRHR signaling via the Rac monomeric G protein focal adhesion signaling complex assembly and

  20. Association of follicle stimulating hormone receptor promoter with ovarian response in IVF-ET patients

    PubMed Central

    Dan, Wang; Jing, Gao; Liangbin, Xia; Ting, Zhang; Ying, Zeng

    2015-01-01

    Background: Poor ovarian response phenomenon has been observed in some of the in vitro fertilization-embryo transfer patients. Some investigations found that follicle stimulating hormone receptor (FSHR) gene plays a role in the process, but no direct evidence shows the correlation between genotypes of FSHR and ovarian response. Objective: Exploring the molecular mechanism behind the mutation of FSHR promoter association with ovarian granulosa cells and poor ovarian response. Materials and Methods: This cross sectional study was performed using 158 women undergoing the controlled short program ovarian stimulation for IVF treatment. The 263 bp DNA fragments before the follicle stimulating hormone (FSH) receptor 5' initiation site were sequenced in the patients under IVF cycle, 70 of which had poor ovarian response and 88 showed normal ovarian responses. Results: With a mutation rate of 40%, 63 in 158 cases showed a 29th site G→A point mutation; among the mutated cases, the mutation rate of the poor ovarian responders was significantly higher than the normal group (60% versus 23.9%; χ2=21.450, p<0.001). Besides, the variability was also obvious in antral follicle count, and ovum pick-ups. The estradiol peak values and the number of mature eggs between the two groups had significant difference. However, there was no obvious variability (t=0.457, p=0.324) in the basic FSH values between the two groups (normal group, 7.2±2.3 U/L; mutation group, 7.1±2.0 U/L). Conclusion: The activity of FSHR promoter is significantly affected by the 29th site G→A mutation that will weaken promoter activity and result in poor response to FSH. PMID:26730247