Science.gov

Sample records for hormone receptor-mediated regulation

  1. Insulin receptor-mediated nutritional signalling regulates juvenile hormone biosynthesis and vitellogenin production in the German cockroach.

    PubMed

    Abrisqueta, Marc; Süren-Castillo, Songül; Maestro, José L

    2014-06-01

    Female reproductive processes, which comprise, amongst others, the synthesis of yolk proteins and the endocrine mechanisms which regulate this synthesis, need a considerable amount of energy and resources. The role of communicating that the required nutritional status has been attained is carried out by nutritional signalling pathways and, in particular, by the insulin receptor (InR) pathway. In the present study, using the German cockroach, Blattella germanica, as a model, we analysed the role of InR in different processes, but mainly those related to juvenile hormone (JH) synthesis and vitellogenin production. We first cloned the InR cDNA from B. germanica (BgInR) and then determined that its expression levels were constant in corpora allata and fat body during the first female gonadotrophic cycle. Results showed that the observed increase in BgInR mRNA in fat body from starved compared to fed females was abolished in those females treated with systemic RNAi in vivo against the transcription factor BgFoxO. RNAi-mediated BgInR knockdown during the final two nymphal stages produced significant delays in the moults, together with smaller adult females which could not spread the fore- and hindwings properly. In addition, BgInR knockdown led to a severe inhibition of juvenile hormone synthesis in adult female corpora allata, with a concomitant reduction of mRNA levels corresponding to 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase-1, HMG-CoA synthase-2, HMG-CoA reductase and methyl farnesoate epoxidase. BgInR RNAi treatment also reduced fat body vitellogenin mRNA and oocyte growth. Our results show that BgInR knockdown produces similar phenotypes to those obtained in starved females in terms of corpora allata activity and vitellogenin synthesis, and indicate that the InR pathway mediates the activation of JH biosynthesis and vitellogenin production elicited by nutrition signalling. PMID:24657890

  2. Perimenstrual-like hormonal regulation of extrasynaptic δ-containing GABAA receptors mediating tonic inhibition and neurosteroid sensitivity.

    PubMed

    Carver, Chase Matthew; Wu, Xin; Gangisetty, Omkaram; Reddy, Doodipala Samba

    2014-10-22

    Neurosteroids are endogenous regulators of neuronal excitability and seizure susceptibility. Neurosteroids, such as allopregnanolone (AP; 3α-hydroxy-5α-pregnan-20-one), exhibit enhanced anticonvulsant activity in perimenstrual catamenial epilepsy, a neuroendocrine condition in which seizures are clustered around the menstrual period associated with neurosteroid withdrawal (NSW). However, the molecular mechanisms underlying such enhanced neurosteroid sensitivity remain unclear. Neurosteroids are allosteric modulators of both synaptic (αβγ2-containing) and extrasynaptic (αβδ-containing) GABAA receptors, but they display greater sensitivity toward δ-subunit receptors in dentate gyrus granule cells (DGGCs). Here we report a novel plasticity of extrasynaptic δ-containing GABAA receptors in the dentate gyrus in a mouse perimenstrual-like model of NSW. In molecular and immunofluorescence studies, a significant increase occurred in δ subunits, but not α1, α2, β2, and γ2 subunits, in the dentate gyrus of NSW mice. Electrophysiological studies confirmed enhanced sensitivity to AP potentiation of GABA-gated currents in DGGCs, but not in CA1 pyramidal cells, in NSW animals. AP produced a greater potentiation of tonic currents in DGGCs of NSW animals, and such enhanced AP sensitivity was not evident in δ-subunit knock-out mice subjected to a similar withdrawal paradigm. In behavioral studies, mice undergoing NSW exhibited enhanced seizure susceptibility to hippocampus kindling. AP has enhanced anticonvulsant effects in fully kindled wild-type mice, but not δ-subunit knock-out mice, undergoing NSW-induced seizures, confirming δ-linked neurosteroid sensitivity. These results indicate that perimenstrual NSW is associated with striking upregulation of extrasynaptic, δ-containing GABAA receptors that mediate tonic inhibition and neurosteroid sensitivity in the dentate gyrus. These findings may represent a molecular rationale for neurosteroid therapy of catamenial

  3. Hormone stimulation of androgen receptor mediates dynamic changes in DNA methylation patterns at regulatory elements

    PubMed Central

    Dhiman, Vineet K.; Attwood, Kristopher; Campbell, Moray J.; Smiraglia, Dominic J.

    2015-01-01

    DNA methylation is an epigenetic modification that contributes to stable gene silencing by interfering with the ability of transcriptional regulators to bind to DNA. Recent findings have revealed that hormone stimulation of certain nuclear receptors induces rapid, dynamic changes in DNA methylation patterns alongside transcriptional responses at a subset of target loci, over time. However, the ability of androgen receptor (AR) to dynamically regulate gene transcription is relatively under-studied and its role in the regulation of DNA methylation patterns remains to be elucidated. Here we demonstrate in normal prostate cells that hormone stimulated AR activity results in dynamic changes in the transcription rate and DNA methylation patterns at the AR target genes, TIPARP and SGK1. Time-resolved chromatin immunoprecipitation experiments on the SGK1 locus reveals dynamic recruitment of AR and RNA Polymerase II, as well as the recruitment of proteins involved in the DNA demethylation process, TET1 and TDG. Furthermore, the presence of DNA methylation at dynamic regions inhibits protein binding and transcriptional activity of SGK1. These findings establish AR activity as a contributing factor to the dynamic regulation of DNA methylation patterns at target genes in prostate biology and infer further complexity involved in nuclear receptor mediation of transcriptional regulation. PMID:26646795

  4. H-Ras regulation of TRAIL death receptor mediated apoptosis

    PubMed Central

    Chen, Jun-Jie; Bozza, William P.; Di, Xu; Zhang, Yaqin; Hallett, William; Zhang, Baolin

    2014-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis through the death receptors (DRs) 4 and/or 5 expressed on the cell surface. Multiple clinical trials are underway to evaluate the antitumor activity of recombinant human TRAIL and agonistic antibodies to DR4 or DR5. However, their therapeutic potential is limited by the high frequency of cancer resistance. Here we provide evidence demonstrating the role of H-Ras in TRAIL receptor mediated apoptosis. By analyzing the genome wide mRNA expression data of the NCI60 cancer cell lines, we found that H-Ras expression was consistently upregulated in TRAIL-resistant cell lines. By contrast, no correlation was found between TRAIL sensitivity and K-Ras expression levels or their mutational profiles. Notably, H-Ras upregulation associated with a surface deficiency of TRAIL death receptors. Selective inhibition of H-Ras activity in TRAIL-resistant cells restored the surface expression of both DR4 and DR5 without changing their total protein levels. The resulting cells became highly susceptible to both TRAIL and agonistic DR5 antibody, whereas K-Ras inhibition had little or no effect on TRAIL-induced apoptosis, indicating H-Ras plays a distinct role in the regulation of TRAIL death receptors. Further studies are warranted to determine the therapeutic potential of H-Ras-specific inhibitors in combination with TRAIL receptor agonists. PMID:25026275

  5. Dopamine receptor-mediated regulation of neuronal "clock" gene expression.

    PubMed

    Imbesi, M; Yildiz, S; Dirim Arslan, A; Sharma, R; Manev, H; Uz, T

    2009-01-23

    Using a transgenic mice model (i.e. "clock" knockouts), clock transcription factors have been suggested as critical regulators of dopaminergic behaviors induced by drugs of abuse. Moreover, it has been shown that systemic administration of psychostimulants, such as cocaine and methamphetamine regulates the striatal expression of clock genes. However, it is not known whether dopamine receptors mediate these regulatory effects of psychostimulants at the cellular level. Primary striatal neurons in culture express dopamine receptors as well as clock genes and have been successfully used in studying dopamine receptor functioning. Therefore, we investigated the role of dopamine receptors on neuronal clock gene expression in this model using specific receptor agonists. We found an inhibitory effect on the expression of mClock and mPer1 genes with the D2-class (i.e. D2/D3) receptor agonist quinpirole. We also found a generalized stimulatory effect on the expression of clock genes mPer1, mClock, mNPAS2 (neuronal PAS domain protein 2), and mBmal1 with the D1-class (i.e. D1) receptor agonist SKF38393. Further, we tested whether systemic administration of dopamine receptor agonists causes similar changes in striatal clock gene expression in vivo. We found quinpirole-induced alterations in mPER1 protein levels in the mouse striatum (i.e. rhythm shift). Collectively, our results indicate that the dopamine receptor system may mediate psychostimulant-induced changes in clock gene expression. Using striatal neurons in culture as a model, further research is needed to better understand how dopamine signaling modulates the expression dynamics of clock genes (i.e. intracellular signaling pathways) and thereby influences neuronal gene expression, neuronal transmission, and brain functioning. PMID:19017537

  6. Cannabinoid CB1 receptor mediates glucocorticoid effects on hormone secretion induced by volume and osmotic changes.

    PubMed

    Ruginsk, S G; Uchoa, E T; Elias, L L K; Antunes-Rodrigues, J

    2012-02-01

    The present study provides the first in vivo evidence that the cannabinoid CB(1) receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB(1) receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB(1) receptor. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB(1) receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB(1) receptor in the control of peripheral factors that modulate cardiovascular function. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB(1) receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamic-pituitary-adrenal axis. Collectively, the results of the present study indicate that the CB(1) receptor modulates neurohypophyseal hormone secretion and

  7. NFAT regulates calcium-sensing receptor-mediated TNF production

    SciTech Connect

    abdullah, huda ismail; Pedraza, Paulina L.; Hao, Shoujin; Rodland, Karin D.; McGiff, John C.; Ferreri, Nicholas R.

    2006-05-01

    Because nuclear factor of activated T cells (NFAT) has been implicated in TNF production as well as osmoregulation and salt and water homeostasis, we addressed whether calcium-sensing receptor (CaR)-mediated TNF production in medullary thick ascending limb (mTAL) cells was NFAT dependent. TNF production in response to addition of extracellular Ca2+ (1.2 mM) was abolished in mTAL cells transiently transfected with a dominant-negative CaR construct (R796W) or pretreated with the phosphatidylinositol phospholipase C (PI-PLC) inhibitor U-73122. Cyclosporine A (CsA), an inhibitor of the serine/threonine phosphatase calcineurin, and a peptide ligand, VIVIT, that selectively inhibits calcineurin-NFAT signaling, also prevented CaR-mediated TNF production. Increases in calcineurin activity in cells challenged with Ca2+ were inhibited after pretreatment with U-73122 and CsA, suggesting that CaR activation increases calcineurin activity in a PI-PLC-dependent manner. Moreover, U-73122, CsA, and VIVIT inhibited CaR-dependent activity of an NFAT construct that drives expression of firefly luciferase in transiently transfected mTAL cells. Collectively, these data verify the role of calcineurin and NFAT in CaR-mediated TNF production by mTAL cells. Activation of the CaR also increased the binding of NFAT to a consensus oligonucleotide, an effect that was blocked by U-73122 and CsA, suggesting that a calcineurin- and NFAT-dependent pathway increases TNF production in mTAL cells. This mechanism likely regulates TNF gene transcription as U-73122, CsA, and VIVIT blocked CaR-dependent activity of a TNF promoter construct. Elucidating CaR-mediated signaling pathways that regulate TNF production in the mTAL will be crucial to understanding mechanisms that regulate extracellular fluid volume and salt balance.

  8. Receptor interconversion model of hormone action. 3. Estrogen receptor mediated repression of reporter gene activity in A431 cells.

    PubMed

    Nag, A; Park, I; Krust, A; Smith, R G

    1990-03-20

    The chicken estrogen receptor exists in three interconvertible forms, two of which bind estradiol with high affinity and one which lacks the capacity to bind estradiol. Interconversion is regulated by reactions involving ATP/Mg2+. By cotransfecting into A431 cells estrogen receptor cDNA in an expression vector together with the pA2 (-821/-87) tk-CAT vitellogenin construct, we demonstrate that constitutive expression of chloramphenicol acetyltransferase (CAT) activity can be regulated either by selection of ligand or by modifying phosphorylation reactions in the recipient cells. In the presence of estrogen receptors, constitutive expression of CAT activity is inhibited in three situations: (i) in the absence of an estrogenic ligand; (ii) in the presence of an anti-estrogen; and (iii) in the presence of an estrogenic ligand together with 12-O-tetradecanoylphorbol 13-acetate (TPA). Estrogen receptor mediated repression of constitutive CAT activity is not observed with the pA2 (-331/-87) tk-CAT construct, indicating that DNA sequences required for repression are located between -821 and -331 base pairs upstream of the transcription initiation site. PMID:2346742

  9. Silent NMDA receptor-mediated synapses are developmentally regulated in the dorsal horn of the rat spinal cord.

    PubMed

    Baba, H; Doubell, T P; Moore, K A; Woolf, C J

    2000-02-01

    In vitro whole cell patch-clamp recording techniques were utilized to study silent pure-N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses in lamina II (substantia gelatinosa, SG) and lamina III of the spinal dorsal horn. To clarify whether these synapses are present in the adult and contribute to neuropathic pain, transverse lumbar spinal cord slices were prepared from neonatal, naive adult and adult sciatic nerve transected rats. In neonatal rats, pure-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) were elicited in SG neurons either by focal intraspinal stimulation (n = 15 of 20 neurons) or focal stimulation of the dorsal root (n = 2 of 7 neurons). In contrast, in slices from naive adult rats, no silent pure-NMDA EPSCs were recorded in SG neurons following focal intraspinal stimulation (n = 27), and only one pure-NMDA EPSC was observed in lamina III (n = 23). Furthermore, in rats with chronic sciatic nerve transection, pure-NMDA EPSCs were elicited by focal intraspinal stimulation in only 2 of 45 SG neurons. Although a large increase in Abeta fiber evoked mixed alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptor-mediated synapses was detected after sciatic nerve injury, Abeta fiber-mediated pure-NMDA EPSCs were not evoked in SG neurons by dorsal root stimulation. Pure-NMDA receptor-mediated EPSCs are therefore a transient, developmentally regulated phenomenon, and, although they may have a role in synaptic refinement in the immature dorsal horn, they are unlikely to be involved in receptive field plasticity in the adult. PMID:10669507

  10. The Impact of Hyperthermia on Receptor-Mediated Interleukin-6 Regulation in Mouse Skeletal Muscle

    PubMed Central

    Welc, Steven S.; Morse, Deborah A.; Mattingly, Alex J.; Laitano, Orlando; King, Michelle A.; Clanton, Thomas L.

    2016-01-01

    In inflammatory cells, hyperthermia inhibits lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) gene expression and protein secretion. Since hyperthermia alone stimulates IL-6 in skeletal muscle, we hypothesized that it would amplify responses to other receptor-mediated stimuli. IL-6 regulation was tested in C2C12 myotubes and in soleus during treatment with epinephrine (EPI) or LPS. In EPI-treated myotubes (100 ng/ml), 1 h exposure at 40.5°C-42°C transiently increased IL-6 mRNA compared to EPI treatment alone at 37°C. In LPS-treated myotubes (1 μg/ml), exposure to 41°C-42°C also increased IL-6 mRNA. In isolated mouse soleus, similar amplifications of IL-6 gene expression were observed in 41°C, during both low (1 ng/ml) and high dose (100 ng/ml) EPI, but only in high dose LPS (1 μg/ml). In myotubes, heat increased IL-6 secretion during EPI exposure but had no effect or inhibited secretion with LPS. In soleus there were no effects of heat on IL-6 secretion during either EPI or LPS treatment. Mechanisms for the effects of heat on IL-6 mRNA were explored using a luciferase-reporter in C2C12 myotubes. Overexpression of heat shock factor-1 (HSF-1) had no impact on IL-6 promoter activity during EPI stimulation, but elevated IL-6 promoter activity during LPS stimulation. In contrast, when the activator protein-1 (AP-1) element was mutated, responses to both LPS and EPI were suppressed in heat. Using siRNA against activating transcription factor-3 (ATF-3), a heat-stress-induced inhibitor of IL-6, no ATF-3-dependent effects were observed. The results demonstrate that, unlike inflammatory cells, hyperthermia in muscle fibers amplifies IL-6 gene expression to EPI and LPS. The effect appears to reflect differential engagement of HSF-1 and AP-1 sensitive elements on the IL-6 gene, with no evidence for involvement of ATF-3. The functional significance of increased IL-6 mRNA expression during heat may serve to overcome the well-known suppression of protein synthetic

  11. Receptor-mediated endocytosis of albumin by kidney proximal tubule cells is regulated by phosphatidylinositide 3-kinase.

    PubMed

    Brunskill, N J; Stuart, J; Tobin, A B; Walls, J; Nahorski, S

    1998-05-15

    Receptor-mediated endocytosis of albumin is an important function of the kidney proximal tubule epithelium. We have measured endocytosis of [125I]-albumin in opossum kidney cells and examined the regulation of this process by phosphatidylinositide 3-kinase (PI 3-kinase). Albumin endocytosis was inhibited by both wortmannin (IC50 6.9 nM) and LY294002 (IC50 6.5 microM) at concentrations that suggested the involvement of PI 3-kinase in its regulation. Recycling rates were unaffected. We transfected OK cells with either a wild-type p85 subunit of PI 3-kinase, or a dominant negative form of the p85 subunit (Deltap85) using the LacSwitch expression system. Transfects were screened by immunoblotting with anti-PI 3-kinase antibodies. Under basal conditions, transfects demonstrated no expression of p85 or Deltap85, but expression was briskly induced by treatment of the cells with IPTG (EC50 13.7 microM). Inhibition of PI 3-kinase activity by Deltap85 was confirmed by in vitro kinase assay of anti-phosphotyrosine immunoprecipitates from transfected cells stimulated with insulin. Expression of Deltap85 resulted in marked inhibition of albumin endocytosis, predominantly as a result of reduction of the Vmax of the transport process. Expression of p85 had no significant effect on albumin uptake. The results demonstrate that PI 3-kinase regulates an early step in the receptor-mediated endocytosis of albumin by kidney proximal tubular cells. PMID:9593770

  12. Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated

    SciTech Connect

    Lee, W.

    1989-01-01

    The densities of total and M1 muscarinic receptors were measured using the muscarinic receptor antagonists {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine, respectively. Thus, the difference between the density of {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine binding sites represents the density of M2 sites. In addition, there is no observable change in either acetylcholine-stimulated phosphoinositide breakdown (suggested to be an M1 receptor-mediated response) or in carbachol-mediated inhibition of cyclic AMP accumulation (suggested to be an M2 receptor-mediated response) in slices of cortex+dorsal hippocampus following chronic atropine administration. In other experiments, it has been shown that the M1 and M2 receptors in rat cortex have different ontogenetic profiles. The M2 receptor is present at adult levels at birth, while the M1 receptor develops slowly from low levels at postnatal week 1 to adult levels at postnatal week 3. The expression of acetylcholine-stimulated phosphoinositide breakdown parallels the development of M1 receptors, while the development of carbachol-mediated inhibition of cyclic AMP accumulation occurs abruptly between weeks 2 and 3 postnatally.

  13. Bidirectional regulation of angiogenesis by phytoestrogens through estrogen receptor-mediated signaling networks.

    PubMed

    Liu, Hai-Xin; Wang, Yu; Lu, Qing; Yang, Ming-Zhu; Fan, Guan-Wei; Karas, Richard H; Gao, Xiu-Mei; Zhu, Yan

    2016-04-01

    Sex hormone estrogen is one of the most active intrinsic angiogenesis regulators; its therapeutic use has been limited due to its carcinogenic potential. Plant-derived phytoestrogens are attractive alternatives, but reports on their angiogenic activities often lack in-depth analysis and sometimes are controversial. Herein, we report a data-mining study with the existing literature, using IPA system to classify and characterize phytoestrogens based on their angiogenic properties and pharmacological consequences. We found that pro-angiogenic phytoestrogens functioned predominantly as cardiovascular protectors whereas anti-angiogenic phytoestrogens played a role in cancer prevention and therapy. This bidirectional regulation were shown to be target-selective and, for the most part, estrogen-receptor-dependent. The transactivation properties of ERα and ERβ by phytoestrogens were examined in the context of angiogenesis-related gene transcription. ERα and ERβ were shown to signal in opposite ways when complexed with the phytoestrogen for bidirectional regulation of angiogenesis. With ERα, phytoestrogen activated or inhibited transcription of some angiogenesis-related genes, resulting in the promotion of angiogenesis, whereas, with ERβ, phytoestrogen regulated transcription of angiogenesis-related genes, resulting in inhibition of angiogenesis. Therefore, the selectivity of phytoestrogen to ERα and ERβ may be critical in the balance of pro- or anti-angiogenesis process. PMID:27114311

  14. Androgen receptor-mediated regulation of adrenocortical activity in the sand rat, Psammomys obesus.

    PubMed

    Benmouloud, Abdelouafi; Amirat, Zaina; Khammar, Farida; Patchev, Alexandre V; Exbrayat, Jean M; Almeida, Osborne F X

    2014-12-01

    The wild sand rat, Psammomys obesus, displays seasonal variations in adrenocortical activity that parallel those of testicular activity, indicating functional cross-talk between the hypothalamo-pituitary-adrenal and hypothalamo-pituitary-gonadal axes. In the present study, we examined androgen receptor (AR)-mediated actions of testicular steroids in the regulation of adrenocortical function in the sand rat. Specifically, we examined the expression of AR in the adrenal cortex, as well as adrenal apoptosis in male sand rats that had been surgically castrated or castrated and supplemented with testosterone; biochemical indices of adrenocortical function and hormone profiles were also measured. Orchiectomy was followed by an increase in adrenocorticotropic hormone secretion from the anterior pituitary and subsequently, increased adrenocortical activity; the latter was evidenced by orchiectomy-induced increases in the adrenal content of cholesterol and lipids as well as adrenal hypertrophy (seen as an elevation of the RNA/DNA ratio). Further, androgen deprivation respectively up- and downregulated the incidence of apoptosis within the glucocorticoid-producing zona fasciculata and sex steroid-producing zona reticularis. Interestingly, orchiectomy resulted in increased expression of AR in the zona fasciculata. All of the orchiectomy-induced cellular and biochemical responses were reversible after testosterone substitution therapy. Together, these data suggest that adrenocortical activity in the sand rat is seasonally modulated by testicular androgens that act through AR located in the adrenal cortex itself. PMID:25179180

  15. Gastrointestinal hormones regulating appetite.

    PubMed

    Chaudhri, Owais; Small, Caroline; Bloom, Steve

    2006-07-29

    The role of gastrointestinal hormones in the regulation of appetite is reviewed. The gastrointestinal tract is the largest endocrine organ in the body. Gut hormones function to optimize the process of digestion and absorption of nutrients by the gut. In this capacity, their local effects on gastrointestinal motility and secretion have been well characterized. By altering the rate at which nutrients are delivered to compartments of the alimentary canal, the control of food intake arguably constitutes another point at which intervention may promote efficient digestion and nutrient uptake. In recent decades, gut hormones have come to occupy a central place in the complex neuroendocrine interactions that underlie the regulation of energy balance. Many gut peptides have been shown to influence energy intake. The most well studied in this regard are cholecystokinin (CCK), pancreatic polypeptide, peptide YY, glucagon-like peptide-1 (GLP-1), oxyntomodulin and ghrelin. With the exception of ghrelin, these hormones act to increase satiety and decrease food intake. The mechanisms by which gut hormones modify feeding are the subject of ongoing investigation. Local effects such as the inhibition of gastric emptying might contribute to the decrease in energy intake. Activation of mechanoreceptors as a result of gastric distension may inhibit further food intake via neural reflex arcs. Circulating gut hormones have also been shown to act directly on neurons in hypothalamic and brainstem centres of appetite control. The median eminence and area postrema are characterized by a deficiency of the blood-brain barrier. Some investigators argue that this renders neighbouring structures, such as the arcuate nucleus of the hypothalamus and the nucleus of the tractus solitarius in the brainstem, susceptible to influence by circulating factors. Extensive reciprocal connections exist between these areas and the hypothalamic paraventricular nucleus and other energy-regulating centres of the

  16. Estrous cycle regulation of extrasynaptic δ-containing GABA(A) receptor-mediated tonic inhibition and limbic epileptogenesis.

    PubMed

    Wu, Xin; Gangisetty, Omkaram; Carver, Chase Matthew; Reddy, Doodipala Samba

    2013-07-01

    The ovarian cycle affects susceptibility to behavioral and neurologic conditions. The molecular mechanisms underlying these changes are poorly understood. Deficits in cyclical fluctuations in steroid hormones and receptor plasticity play a central role in physiologic and pathophysiologic menstrual conditions. It has been suggested that synaptic GABA(A) receptors mediate phasic inhibition in the hippocampus and extrasynaptic receptors mediate tonic inhibition in the dentate gyrus. Here we report a novel role of extrasynaptic δ-containing GABA(A) receptors as crucial mediators of the estrous cycle-related changes in neuronal excitability in mice, with hippocampus subfield specificity. In molecular and immunofluorescence studies, a significant increase occurred in δ-subunit, but not α4- and γ2-subunits, in the dentate gyrus during diestrus. However, δ-subunit upregulation was not evident in the CA1 region. The δ-subunit expression was undiminished by age and ovariectomy and in mice lacking progesterone receptors, but it was significantly reduced by finasteride, a neurosteroid synthesis inhibitor. Electrophysiologic studies confirmed greater potentiation of GABA currents by progesterone-derived neurosteroid allopregnanolone in dissociated dentate gyrus granule cells in diestrus than in CA1 pyramidal cells. The baseline conductance and allopregnanolone potentiation of tonic currents in dentate granule cells from hippocampal slices were higher than in CA1 pyramidal cells. In behavioral studies, susceptibility to hippocampus kindling epileptogenesis was lower in mice during diestrus. These results demonstrate the estrous cycle-related plasticity of neurosteroid-sensitive, δ-containing GABA(A) receptors that mediate tonic inhibition and seizure susceptibility. These findings may provide novel insight on molecular cascades of menstrual disorders like catamenial epilepsy, premenstrual syndrome, and migraine. PMID:23667248

  17. LRP6 Protein Regulates Low Density Lipoprotein (LDL) Receptor-mediated LDL Uptake*

    PubMed Central

    Ye, Zhi-jia; Go, Gwang-Woong; Singh, Rajvir; Liu, Wenzhong; Keramati, Ali Reza; Mani, Arya

    2012-01-01

    Genetic variations in LRP6 gene are associated with high serum LDL cholesterol levels. We have previously shown that LDL clearance in peripheral B-lymphocytes of the LRP6R611C mutation carriers is significantly impaired. In this study we have examined the role of wild type LRP6 (LRP6WT) and LRP6R611C in LDL receptor (LDLR)-mediated LDL uptake. LDL binding and uptake were increased when LRP6WT was overexpressed and modestly reduced when it was knocked down in LDLR-deficient CHO (ldlA7) cells. These findings implicated LRP6 in LDLR-independent cellular LDL binding and uptake. However, LRP6 knockdown in wild type CHO cells resulted in a much greater decline in LDL binding and uptake compared with CHO-ldlA7 cells, suggesting impaired function of the LDLR. LDLR internalization was severely diminished when LRP6 was knocked down and was restored after LRP6 was reintroduced. Further analysis revealed that LRP6WT forms a complex with LDLR, clathrin, and ARH and undergoes a clathrin-mediated internalization after stimulation with LDL. LDLR and LRP6 internalizations as well as LDL uptake were all impaired in CHO-k1 cells expressing LRP6R611C. These studies identify LRP6 as a critical modulator of receptor-mediated LDL endocytosis and introduce a mechanism by which variation in LRP6 may contribute to high serum LDL levels. PMID:22128165

  18. Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by GABAB receptors in the rat hippocampus

    PubMed Central

    Morton, Robin A; Manuel, Nick A; Bulters, Diederick O; Cobb, Stuart R; Davies, Ceri H

    2001-01-01

    Both GABAB and muscarinic acetylcholine receptors (mAChRs) influence hippocampal-dependent mnemonic processing. Here the possibility of a direct interaction between GABAB receptors and mAChR-mediated synaptic responses has been studied using intracellular recording in rat hippocampal slices. The GABAB receptor agonist(−)-baclofen (5–10 μm) depressed an atropine-sensitive slow EPSP (EPSPM) and occluded the GABAB-receptor-mediated IPSP (IPSPB) which preceded it. These inhibitory effects were accompanied by postsynaptic hyperpolarization (9 ± 2 mV) and a reduction in cell input resistance (12 ± 3 %). The selective GABAB receptor antagonist CGP 55845A (1 μm) fully reversed the depressant effects of (−)-baclofen (5–10 μm) such that in the combined presence of (−)-baclofen and CGP 55845A the EPSPM was 134 ± 21 % of control. (−)-Baclofen (5–10 μm) caused a small (28 ± 11 %) inhibition of carbachol-induced (3.0 μm) postsynaptic depolarizations and increases in input resistance. CGP 55845A (1 μm) alone caused an increase in the amplitude of the EPSPM (253 ± 74 % of control) and blocked the IPSPB that preceded it. In contrast, the selective GABA uptake inhibitor NNC 05–0711 (10 μm) increased the amplitude of the IPSPB by 141 ± 38 % and depressed the amplitude of the EPSPM by 58 ± 10 %. This inhibition was abolished by CGP 55845A (1 μm). Taken together these data provide good evidence that synaptically released GABA activates GABAB receptors that inhibit mAChR-mediated EPSPs in hippocampal CA1 pyramidal neurones. The mechanism of inhibition may involve both pre- and postsynaptic elements. PMID:11559773

  19. Protein kinases A and C regulate receptor-mediated increases in cAMP in rabbit erythrocytes

    PubMed Central

    Sridharan, Meera; Bowles, Elizabeth A.; Stephenson, Alan H.; Ellsworth, Mary L.; Sprague, Randy S.

    2010-01-01

    Activation of the β-adrenergic receptor (β-AR) or the prostacyclin receptor (IPR) results in increases in cAMP and ATP release from erythrocytes. cAMP levels depend on a balance between synthesis via adenylyl cyclase and hydrolysis by phosphodiesterases (PDEs). Previously, we reported that cAMP increases associated with activation of the β-AR and IPR in rabbit and human erythrocytes are tightly regulated by distinct PDEs (1). Importantly, inhibitors of these PDEs potentiated both increases in cAMP and ATP release. It has been shown that increases in protein kinase (PK) activity can activate PDE3 and PDE4. Both PKA and PKC are present in the erythrocyte and can phosphorylate and activate these PDEs. Here we investigate the hypothesis that PKA regulates PDE activity associated with the β-AR and both PKA and PKC regulate the PDE activity associated with the IPR in rabbit erythrocytes. Pretreatment of erythrocytes with the PKA inhibitor, H89 (10 μM), in the presence of the PDE4 inhibitor, rolipram (10 μM), augmented isoproterenol (1 μM)-induced cAMP increases. In contrast, in the presence of the PDE3 inhibitor, cilostazol (10 μM), pretreatment of erythrocytes with either H89 (1 μM) or two chemically dissimilar inhibitors of PKC, calphostin C (1 μM) or GFX109203X (1 μM), potentiated iloprost (1 μM)-induced cAMP increases. Furthermore, pretreatment of erythrocytes with both H89 and GFX109203X in the presence of cilostazol augmented the iloprost-induced increases in cAMP to a greater extent than either PK inhibitor individually. These results support the hypothesis that PDEs associated with receptor-mediated increases in cAMP in rabbit erythrocytes are regulated by kinases specific to the receptor's signaling pathway. PMID:20008267

  20. Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells

    PubMed Central

    An, Byung Chull; Jung, Nak-Kyun; Park, Chun Young; Oh, In-Jae; Choi, Yoo-Duk; Park, Jae-Il; Lee, Seung-won

    2016-01-01

    Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7–8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-inflammatory signaling in lung cancer cells. PMID:27484907

  1. Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells.

    PubMed

    An, Byung Chull; Jung, Nak-Kyun; Park, Chun Young; Oh, In-Jae; Choi, Yoo-Duk; Park, Jae-Il; Lee, Seung-Won

    2016-08-31

    Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7-8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-inflammatory signaling in lung cancer cells. PMID:27484907

  2. Moderate differences in circulating corticosterone alter receptor-mediated regulation of 5-hydroxytryptamine neuronal activity.

    PubMed

    Judge, Sarah J; Ingram, Colin D; Gartside, Sarah E

    2004-12-01

    Circulating glucocorticoid levels vary with stress and psychiatric illness and play a potentially important role in regulating transmitter systems that regulate mood. To determine whether chronic variation in corticosterone levels within the normal diurnal range altered the control of 5-hydroxytryptamine (5-HT) neuronal activity, male rats were adrenalectomized and implanted with either a 2% or 70% corticosterone/cholesterol pellet (100 mg). Two weeks later, the regulation of 5-HT neuronal activity in the dorsal raphe nucleus was studied by in vitro electrophysiology. At this time, serum corticosterone levels approximated the low-point (2%) and mid-point (70%) of the diurnal range. The excitatory response of 5-HT neurones to the alpha1-adrenoceptor agonist phenylephrine (1-11 microM) was significantly greater in the 2% group compared to the 70% group. By contrast, the inhibitory response to 5-HT (10-50 microM) was significantly lower in the 2% group compared to the 70% group. Thus, chronic variation in circulating corticosterone over a narrow part of the normal diurnal range causes a shift in the balance of positive and negative regulation of 5-HT neurones, with increased alpha 1-adrenoceptor-mediated excitation and reduced 5-HT-mediated autoinhibition at lower corticosterone levels. This shift would have a major impact on control of 5-HT neuronal activity. PMID:15582914

  3. Calmodulin activity regulates group I metabotropic glutamate receptor-mediated signal transduction and synaptic depression.

    PubMed

    Sethna, Ferzin; Zhang, Ming; Kaphzan, Hanoch; Klann, Eric; Autio, Dawn; Cox, Charles L; Wang, Hongbing

    2016-05-01

    Group I metabotropic glutamate receptors (mGluR), including mGluR1 and mGluR 5 (mGluR1/5), are coupled to Gq and modulate activity-dependent synaptic plasticity. Direct activation of mGluR1/5 causes protein translation-dependent long-term depression (LTD). Although it has been established that intracellular Ca(2+) and the Gq-regulated signaling molecules are required for mGluR1/5 LTD, whether and how Ca(2+) regulates Gq signaling and upregulation of protein expression remain unknown. Through pharmacological inhibition, we tested the function of the Ca(2+) sensor calmodulin (CaM) in intracellular signaling triggered by the activation of mGluR1/5. CaM inhibitor N-[4-aminobutyl]-5-chloro-2-naphthalenesulfonamide hydrochloride (W13) suppressed the mGluR1/5-stimulated activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p70-S6 kinase 1 (S6K1) in hippocampal neurons. W13 also blocked the mGluR1/5 agonist-induced synaptic depression in hippocampal slices and in anesthetized mice. Consistent with the function of CaM, inhibiting the downstream targets Ca(2+) /CaM-dependent protein kinases (CaMK) blocked ERK1/2 and S6K1 activation. Furthermore, disruption of the CaM-CaMK-ERK1/2 signaling cascade suppressed the mGluR1/5-stimulated upregulation of Arc expression. Altogether, our data suggest CaM as a new Gq signaling component for coupling Ca(2+) and protein upregulation and regulating mGluR1/5-mediated synaptic modification. PMID:26864654

  4. Peroxisome proliferators and fatty acids negatively regulate liver X receptor-mediated activity and sterol biosynthesis.

    PubMed

    Johnson, T E; Ledwith, B J

    2001-04-01

    Peroxisome proliferators (PPs) are potent tumor promoters in rodents. The mechanism of hepatocarcinogenesis requires the nuclear receptor peroxisome proliferator activated receptor-alpha (PPARalpha), but might also involve the PPARalpha independent alteration of signaling pathways that regulate cell growth. Here, we studied the effects of PPs on the mevalonate pathway, a critical pathway that controls cell proliferation. Liver X receptors (LXRs) are nuclear receptors that act as sterol sensors in the mevalonate pathway. In gene reporter assays in COS-7 cells, the basal activity of the LXR responsive reporter gene (LXRE-luc) was suppressed by 10 microM lovastatin and zaragozic acid A, suggesting that this activity was attributed to the activation of native LXRs, by endogenously produced mevalonate products. The potent PP and rodent tumor promoter, pirinixic acid (WY-14643) also inhibited LXR-mediated transcription in a dose related manner (approximate IC(50) of 100 microM). As did several other PPs including ciprofibric acid and mono-ethylhexylphthalate. Polyunsaturated and medium to long chain fatty acids at 100 microM were also potent inhibitors; the arachidonic acid analogue eicosatetraynoic acid being the most active (approximate IC(50) of 10 microM). Of the PPs and fatty acids tested, there was a strong correlation between the ability of these agents to suppress de novo sterol synthesis in a rat hepatoma cell line, H4IIEC3, and inhibit LXR-mediated transcription in COS-7 cells, but a discordance between these endpoints and PPARalpha activation and fatty acid acyl-CoA oxidase induction. Taken together, these results suggest that PPs and fatty acids negatively regulate the mevalonate pathway through a mechanism that is not entirely dependent on PPARalpha activation. Because of the importance of the mevalonate pathway in regulating cell proliferation, the modulation of this pathway by PPs and fatty acids might contribute to their actions on cell growth

  5. Protein kinase C regulates tonic GABAA receptor-mediated inhibition in the hippocampus and thalamus

    PubMed Central

    Bright, Damian P; Smart, Trevor G

    2013-01-01

    Tonic inhibition mediated by extrasynaptic GABAA receptors (GABAARs) is an important regulator of neuronal excitability. Phosphorylation by protein kinase C (PKC) provides a key mode of regulation for synaptic GABAARs underlying phasic inhibition; however, less attention has been focused on the plasticity of tonic inhibition and whether this can also be modulated by receptor phosphorylation. To address this issue, we used whole-cell patch clamp recording in acute murine brain slices at both room and physiological temperatures to examine the effects of PKC-mediated phosphorylation on tonic inhibition. Recordings from dentate gyrus granule cells in the hippocampus and dorsal lateral geniculate relay neurons in the thalamus demonstrated that PKC activation caused downregulation of tonic GABAAR-mediated inhibition. Conversely, inhibition of PKC resulted in an increase in tonic GABAAR activity. These findings were corroborated by experiments on human embryonic kidney 293 cells expressing recombinant α4β2δ GABAARs, which represent a key extrasynaptic GABAAR isoform in the hippocampus and thalamus. Using bath application of low GABA concentrations to mimic activation by ambient neurotransmitter, we demonstrated a similar inhibition of receptor function following PKC activation at physiological temperature. Live cell imaging revealed that this was correlated with a loss of cell surface GABAARs. The inhibitory effects of PKC activation on α4β2δ GABAAR activity appeared to be mediated by direct phosphorylation at a previously identified site on the β2 subunit, serine 410. These results indicate that PKC-mediated phosphorylation can be an important physiological regulator of tonic GABAAR-mediated inhibition. PMID:24102973

  6. Dopamine D2 Receptor-Mediated Regulation of Pancreatic β Cell Mass.

    PubMed

    Sakano, Daisuke; Choi, Sungik; Kataoka, Masateru; Shiraki, Nobuaki; Uesugi, Motonari; Kume, Kazuhiko; Kume, Shoen

    2016-07-12

    Understanding the molecular mechanisms that regulate β cell mass and proliferation is important for the treatment of diabetes. Here, we identified domperidone (DPD), a dopamine D2 receptor (DRD2) antagonist that enhances β cell mass. Over time, islet β cell loss occurs in dissociation cultures, and this was inhibited by DPD. DPD increased proliferation and decreased apoptosis of β cells through increasing intracellular cAMP. DPD prevented β cell dedifferentiation, which together highly contributed to the increased β cell mass. DRD2 knockdown phenocopied the effects of domperidone and increased the number of β cells. Drd2 overexpression sensitized the dopamine responsiveness of β cells and increased apoptosis. Further analysis revealed that the adenosine agonist 5'-N-ethylcarboxamidoadenosine, a previously identified promoter of β cell proliferation, acted with DPD to increase the number of β cells. In humans, dopamine also modulates β cell mass through DRD2 and exerts an inhibitory effect on adenosine signaling. PMID:27373926

  7. Regulation of rat cortical 5-hydroxytryptamine2A-receptor mediated electrophysiological responses by repeated daily treatment with electroconvulsive shock or imipramine

    PubMed Central

    Marek, Gerard J.

    2008-01-01

    Down-regulation of 5-hydroxytryptamine2A (5-HT2A) receptors has been a consistent effect induced by most antidepressant drugs. In contrast, electroconvulsive shock (ECS) up-regulates the number of 5-HT2A receptor binding sites. However, the effects of antidepressants on 5-HT2A receptor-mediated responses on identified cells of the cerebral cortex has not been examined. The purpose of the present study was to compare the effects of the tricyclic antidepressant imipramine and ECS on 5-HT2A receptor-mediated electrophysiological responses involving glutamatergic and GABAergic neurotransmission in the rat medial prefrontal cortex (mPFC) and piriform cortex, respectively. The electrophysiological effects of activating 5-HT2A receptors was consistent with 5-HT2A receptor binding regulation for imipramine and ECS except for the mPFC where chronic ECS decreased the potency of 5-HT at a 5-HT2A receptor-mediated response. These findings are consistent with the general hypothesis that chronic antidepressant treatments shift the balance of serotonergic neurotransmission towards inhibitory effects in the cortex. PMID:18294819

  8. Adaptor Protein 2 Regulates Receptor-Mediated Endocytosis and Cyst Formation in Giardia lamblia

    PubMed Central

    Rivero, Maria R.; Vranych, Cecilia V.; Bisbal, Mariano; Maletto, Belkys A.; Ropolo, Andrea S.; Touz, Maria C.

    2010-01-01

    Synopsis The parasite Giardia lamblia possesses peripheral vacuoles (PVs) that function as both endosomes and lysosomes and are implicated in the adaptation, differentiation, and survival of the parasite in different environments. The mechanisms by which Giardia traffics essential proteins to these organelles and regulates their secretion have important implications in the control of parasite dissemination. In this study, we describe the participation of the heterotetrameric clathrin-adaptor protein gAP2 complex in lysosomal protein trafficking. A specific monoclonal antibody against the medium subunit (gμ2) of gAP2 showed localization of this complex to the PVs, cytoplasm, and plasma membrane in the growing trophozoites. gAP2 also colocalized with clathrin in the PVs, suggesting its involvement in endocytosis. Uptake experiments using standard molecules for the study of endocytosis revealed that gAP2 specifically participated in the endocytosis of LDL. Targeted downregulation of the gene encoding gμ2 in growing and encysting trophozoites resulted in a large decrease in the amount of cell growth and cyst wall formation, suggesting a distinct mechanism in which gAP2 is directly involved in both endocytosis and vesicular trafficking. PMID:20199400

  9. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target

    NASA Technical Reports Server (NTRS)

    Beningo, Karen A.; Wang, Yu-li

    2002-01-01

    Phagocytosis is an actin-based process used by macrophages to clear particles greater than 0.5 microm in diameter. In addition to its role in immunological responses, phagocytosis is also necessary for tissue remodeling and repair. To prevent catastrophic autoimmune reactions, phagocytosis must be tightly regulated. It is commonly assumed that the recognition/selection of phagocytic targets is based solely upon receptor-ligand binding. Here we report an important new criterion, that mechanical parameters of the target can dramatically affect the efficiency of phagocytosis. When presented with particles of identical chemical properties but different rigidity, macrophages showed a strong preference to engulf rigid objects. Furthermore, phagocytosis of soft particles can be stimulated with the microinjection of constitutively active Rac1 but not RhoA, and with lysophosphatidic acid, an agent known to activate the small GTP-binding proteins of the Rho family. These data suggest a Rac1-dependent mechanosensory mechanism for phagocytosis, which probably plays an important role in a number of physiological and pathological processes from embryonic development to autoimmune diseases.

  10. Phosphorylation of Src by phosphoinositide 3-kinase regulates beta-adrenergic receptor-mediated EGFR transactivation.

    PubMed

    Watson, Lewis J; Alexander, Kevin M; Mohan, Maradumane L; Bowman, Amber L; Mangmool, Supachoke; Xiao, Kunhong; Naga Prasad, Sathyamangla V; Rockman, Howard A

    2016-10-01

    β2-Adrenergic receptors (β2AR) transactivate epidermal growth factor receptors (EGFR) through formation of a β2AR-EGFR complex that requires activation of Src to mediate signaling. Here, we show that both lipid and protein kinase activities of the bifunctional phosphoinositide 3-kinase (PI3K) enzyme are required for β2AR-stimulated EGFR transactivation. Mechanistically, the generation of phosphatidylinositol (3,4,5)-tris-phosphate (PIP3) by the lipid kinase function stabilizes β2AR-EGFR complexes while the protein kinase activity of PI3K regulates Src activation by direct phosphorylation. The protein kinase activity of PI3K phosphorylates serine residue 70 on Src to enhance its activity and induce EGFR transactivation following βAR stimulation. This newly identified function for PI3K, whereby Src is a substrate for the protein kinase activity of PI3K, is of importance since Src plays a key role in pathological and physiological signaling. PMID:27169346

  11. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    SciTech Connect

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-12-18

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  12. Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling

    PubMed Central

    Wright, Peter T.; Nikolaev, Viacheslav O.; O’Hara, Thomas; Diakonov, Ivan; Bhargava, Anamika; Tokar, Sergiy; Schobesberger, Sophie; Shevchuk, Andrew I.; Sikkel, Markus B.; Wilkinson, Ross; Trayanova, Natalia A.; Lyon, Alexander R.; Harding, Sian E.; Gorelik, Julia

    2014-01-01

    The purpose of this study was to investigate whether caveolin-3 (Cav3) regulates localization of β2-adrenergic receptor (β2AR) and its cAMP signaling in healthy or failing cardiomyocytes. We co-expressed wildtype Cav3 or its dominant-negative mutant (Cav3DN) together with the Förster resonance energy transfer (FRET)-based cAMP sensor Epac2-camps in adult rat ventricular myocytes (ARVMs). FRET and scanning ion conductance microscopy were used to locally stimulate β2AR and to measure cytosolic cAMP. Cav3 overexpression increased the number of caveolae and decreased the magnitude of β2AR-cAMP signal. Conversely, Cav3DN expression resulted in an increased β2AR-cAMP response without altering the whole-cell L-type calcium current. Following local stimulation of Cav3DN-expressing ARVMs, β2AR response could only be generated in T-tubules. However, the normally compartmentalized β2AR-cAMP signal became diffuse, similar to the situation observed in heart failure. Finally, overexpression of Cav3 in failing myocytes led to partial β2AR redistribution back into the T-tubules. In conclusion, Cav3 plays a crucial role for the localization of β2AR and compartmentation of β2AR-cAMP signaling to the T-tubules of healthy ARVMs, and overexpression of Cav3 in failing myocytes can partially restore the disrupted localization of these receptors. PMID:24345421

  13. Androgen receptor-mediated non-genomic regulation of prostate cancer cell proliferation

    PubMed Central

    Liao, Ross S.; Ma, Shihong; Miao, Lu; Li, Rui; Yin, Yi

    2013-01-01

    Androgen receptor (AR)-mediated signaling is necessary for prostate cancer cell proliferation and an important target for therapeutic drug development. Canonically, AR signals through a genomic or transcriptional pathway, involving the translocation of androgen-bound AR to the nucleus, its binding to cognate androgen response elements on promoter, with ensuing modulation of target gene expression, leading to cell proliferation. However, prostate cancer cells can show dose-dependent proliferation responses to androgen within minutes, without the need for genomic AR signaling. This proliferation response known as the non-genomic AR signaling is mediated by cytoplasmic AR, which facilitates the activation of kinase-signaling cascades, including the Ras-Raf-1, phosphatidyl-inositol 3-kinase (PI3K)/Akt and protein kinase C (PKC), which in turn converge on mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) activation, leading to cell proliferation. Further, since activated ERK may also phosphorylate AR and its coactivators, the non-genomic AR signaling may enhance AR genomic activity. Non-genomic AR signaling may occur in an ERK-independent manner, via activation of mammalian target of rapamycin (mTOR) pathway, or modulation of intracellular Ca2+ concentration through plasma membrane G protein-coupled receptors (GPCRs). These data suggest that therapeutic strategies aimed at preventing AR nuclear translocation and genomic AR signaling alone may not completely abrogate AR signaling. Thus, elucidation of mechanisms that underlie non-genomic AR signaling may identify potential mechanisms of resistance to current anti-androgens and help developing novel therapies that abolish all AR signaling in prostate cancer. PMID:26816736

  14. Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling.

    PubMed

    Wright, Peter T; Nikolaev, Viacheslav O; O'Hara, Thomas; Diakonov, Ivan; Bhargava, Anamika; Tokar, Sergiy; Schobesberger, Sophie; Shevchuk, Andrew I; Sikkel, Markus B; Wilkinson, Ross; Trayanova, Natalia A; Lyon, Alexander R; Harding, Sian E; Gorelik, Julia

    2014-02-01

    The purpose of this study was to investigate whether caveolin-3 (Cav3) regulates localization of β2-adrenergic receptor (β2AR) and its cAMP signaling in healthy or failing cardiomyocytes. We co-expressed wildtype Cav3 or its dominant-negative mutant (Cav3DN) together with the Förster resonance energy transfer (FRET)-based cAMP sensor Epac2-camps in adult rat ventricular myocytes (ARVMs). FRET and scanning ion conductance microscopy were used to locally stimulate β2AR and to measure cytosolic cAMP. Cav3 overexpression increased the number of caveolae and decreased the magnitude of β2AR-cAMP signal. Conversely, Cav3DN expression resulted in an increased β2AR-cAMP response without altering the whole-cell L-type calcium current. Following local stimulation of Cav3DN-expressing ARVMs, β2AR response could only be generated in T-tubules. However, the normally compartmentalized β2AR-cAMP signal became diffuse, similar to the situation observed in heart failure. Finally, overexpression of Cav3 in failing myocytes led to partial β2AR redistribution back into the T-tubules. In conclusion, Cav3 plays a crucial role for the localization of β2AR and compartmentation of β2AR-cAMP signaling to the T-tubules of healthy ARVMs, and overexpression of Cav3 in failing myocytes can partially restore the disrupted localization of these receptors. PMID:24345421

  15. Differential regulation of nicotinic receptor-mediated neurotransmitter release following chronic (-)-nicotine administration.

    PubMed

    Jacobs, Iris; Anderson, David J; Surowy, Carol S; Puttfarcken, Pamela S

    2002-10-01

    previous work has demonstrated that different nAChR subtypes display various sensitivities to chronic Nic exposure, we suggest that the subtypes of nAChRs involved in regulating [(3)H]-DA release may be different in the striatum and frontal cortex. These results support findings from earlier studies comparing the pharmacology of nAChR-evoked striatal versus cortical [(3)H]-DA release. PMID:12384170

  16. α4 nicotinic acetylcholine receptor modulated by galantamine on nigrostriatal terminals regulates dopamine receptor-mediated rotational behavior.

    PubMed

    Inden, Masatoshi; Takata, Kazuyuki; Yanagisawa, Daijiro; Ashihara, Eishi; Tooyama, Ikuo; Shimohama, Shun; Kitamura, Yoshihisa

    2016-03-01

    Galantamine, an acetylcholine esterase (AChE) inhibitor used to treat dementia symptoms, also acts as an allosteric potentiating ligand (APL) at nicotinic acetylcholine receptors (nAChRs). This study was designed to evaluate the allosteric effect of galantamine on nAChR regulation of nigrostrial dopaminergic neuronal function in the hemiparkinsonian rat model established by unilateral nigral 6-hydroxydopamine (6-OHDA) injection. Methamphetamine, a dopamine releaser, induced ipsilateral rotation, whereas dopamine agonists apomorphine (a non-selective dopamine receptor agonist), SKF38393 (a selective dopamine D1 receptor agonist), and quinpirole (a selective dopamine D2 receptor agonist) induced contralateral rotation. When 6-OHDA-injected rats were co-treated with nomifensine, a dopamine transporter inhibitor, a more pronounced and a remarkable effect of nicotine and galantamine was observed. Under these conditions, the combination of nomifensine with nicotine or galantamine induced the ipsilateral rotation similar to the methamphetamine-induced rotational behavior, indicating that nicotine and galantamine also induce dopamine release from striatal terminals. Both nicotine- and galantamine-induced rotations were significantly blocked by flupenthixol (an antagonist of both D1 and D2 dopamine receptors) and mecamylamine (an antagonist of nAChRs), suggesting that galantamine modulation of nAChRs on striatal dopaminergic terminals regulates dopamine receptor-mediated movement. Immunohistochemical staining showed that α4 nAChRs were highly expressed on striatal dopaminergic terminals, while no α7 nAChRs were detected. Pretreatment with the α4 nAChR antagonist dihydroxy-β-erythroidine significantly inhibited nicotine- and galantamine-induced rotational behaviors, whereas pretreatment with the α7 nAChR antagonist methyllycaconitine was ineffective. Moreover, the α4 nAChR agonist ABT-418 induced ipsilateral rotation, while the α7 nAChR agonist PNU282987 had no

  17. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  18. Unliganded progesterone receptor-mediated targeting of an RNA-containing repressive complex silences a subset of hormone-inducible genes

    PubMed Central

    Vicent, Guillermo Pablo; Nacht, A. Silvina; Zaurin, Roser; Font-Mateu, Jofre; Soronellas, Daniel; Le Dily, Francois; Reyes, Diana; Beato, Miguel

    2013-01-01

    A close chromatin conformation precludes gene expression in eukaryotic cells. Genes activated by external cues have to overcome this repressive state by locally changing chromatin structure to a more open state. Although much is known about hormonal gene activation, how basal repression of regulated genes is targeted to the correct sites throughout the genome is not well understood. Here we report that in breast cancer cells, the unliganded progesterone receptor (PR) binds genomic sites and targets a repressive complex containing HP1γ (heterochromatin protein 1γ), LSD1 (lysine-specific demethylase 1), HDAC1/2, CoREST (corepressor for REST [RE1 {neuronal repressor element 1} silencing transcription factor]), KDM5B, and the RNA SRA (steroid receptor RNA activator) to 20% of hormone-inducible genes, keeping these genes silenced prior to hormone treatment. The complex is anchored via binding of HP1γ to H3K9me3 (histone H3 tails trimethylated on Lys 9). SRA interacts with PR, HP1γ, and LSD1, and its depletion compromises the loading of the repressive complex to target chromatin-promoting aberrant gene derepression. Upon hormonal treatment, the HP1γ–LSD1 complex is displaced from these constitutively poorly expressed genes as a result of rapid phosphorylation of histone H3 at Ser 10 mediated by MSK1, which is recruited to the target sites by the activated PR. Displacement of the repressive complex enables the loading of coactivators needed for chromatin remodeling and activation of this set of genes, including genes involved in apoptosis and cell proliferation. These results highlight the importance of the unliganded PR in hormonal regulation of breast cancer cells. PMID:23699411

  19. Thyroid Hormone Regulation of Metabolism

    PubMed Central

    Mullur, Rashmi; Liu, Yan-Yun

    2014-01-01

    Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5′-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets. PMID:24692351

  20. Guanine nucleotide regulation of muscarinic receptor-mediated inositol phosphate formation in permeabilized 1321N1 cells

    SciTech Connect

    Orellana, S.A.; Trilivas, I.; Brown, J.H.

    1986-03-05

    Carbachol and guanine nucleotides stimulate formation of the (/sup 3/H)inositol phosphates IP, IP2, and IP3 in saponin-permeabilized monolayers labelled with (/sup 3/H) inositol. Carbachol alone has little effect on formation of the (/sup 3/H) inositol phosphates (IPs), but GTP..gamma..S causes synergistic accumulation of (/sup 3/H)IPs to levels similar to those seen in intact cells. GTP, GppNHp, and GTP..gamma..S all support formation of the (/sup 3/H)IPs, with or without hormone, but GTP..gamma..S is the most effective. In the presence of GTP..gamma..S, the effect of carbachol is dose-dependent. Half-maximal and maximal accumulation of the (/sup 3/H)IPs occur at approx. 5 ..mu..M and approx. 100 ..mu..M carbachol, respectively; values close to those seen in intact cells. GTP..gamma..S alone stimulates formation of the (/sup 3/H)IPs after a brief lag time. The combination of GTP..gamma..S and carbachol both increases the rate of, and decreases the lag in, formation of the (/sup 3/H)IPs. LiCl increases (/sup 3/H)IP and IP2, but not IP3, accumulation; while 2,3-diphosphoglycerate substantially increases that of (/sup 3/H)IP3. GTP..gamma..S and carbachol cause formation of (/sup 3/H)IPs in the absence of Ca/sup + +/, but formation induced by GTP..gamma..S with or without carbachol is Ca/sup + +/-sensitive over a range of physiological concentrations. Although carbachol, Ca/sup + +/, and GTP..gamma..S all have effects on formation of (/sup 3/H)IPs, GTP..gamma..S appears to be a primary and obligatory regulator of phosphoinositide hydrolysis in the permeabilized 1321N1 astrocytoma cell.

  1. Thyroid Hormones as Renal Cell Cancer Regulators

    PubMed Central

    Matak, Damian; Bartnik, Ewa; Szczylik, Cezary; Czarnecka, Anna M.

    2016-01-01

    It is known that thyroid hormone is an important regulator of cancer development and metastasis. What is more, changes across the genome, as well as alternative splicing, may affect the activity of the thyroid hormone receptors. Mechanism of action of the thyroid hormone is different in every cancer; therefore in this review thyroid hormone and its receptor are presented as a regulator of renal cell carcinoma. PMID:27034829

  2. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life. PMID:24954142

  3. Research resource: Gonadotropin-releasing hormone receptor-mediated signaling network in LbetaT2 cells: a pathway-based web-accessible knowledgebase.

    PubMed

    Fink, Marc Y; Pincas, Hanna; Choi, Soon Gang; Nudelman, German; Sealfon, Stuart C

    2010-09-01

    The GnRH receptor (GnRHR), expressed at the cell surface of the anterior pituitary gonadotrope, is critical for normal secretion of gonadotropins LH and FSH, pubertal development, and reproduction. The signaling network downstream of the GnRHR and the molecular bases of the regulation of gonadotropin expression have been the subject of intense research. The murine LbetaT2 cell line represents a mature gonadotrope and therefore is an important model for the study of GnRHR-signaling pathways and modulation of the gonadotrope cell by physiological regulators. In order to facilitate access to the information contained in this complex and evolving literature, we have developed a pathway-based knowledgebase that is web hosted. At present, using 106 relevant primary publications, we curated a comprehensive knowledgebase of the GnRHR signaling in the LbetaT2 cell in the form of a process diagram. Positive and negative controls of gonadotropin gene expression, which included GnRH itself, hypothalamic factors, gonadal steroids and peptides, as well as other hormones, were illustrated. The knowledgebase contains 187 entities and 206 reactions. It was assembled using CellDesigner software, which provides an annotated graphic representation of interactions, stored in Systems Biology Mark-up Language. We then utilized Biological Pathway Publisher, a software suite previously developed in our laboratory, to host the knowledgebase in a web-accessible format as a public resource. In addition, the network entities were linked to a public wiki, providing a forum for discussion, updating, and error correction. The GnRHR-signaling network is openly accessible at http://tsb.mssm.edu/pathwayPublisher/GnRHR_Pathway/GnRHR_Pathway_ index.html. PMID:20592162

  4. The Drosophila FTZ-F1 nuclear receptor mediates juvenile hormone activation of E75A gene expression through an intracellular pathway.

    PubMed

    Dubrovsky, Edward B; Dubrovskaya, Veronica A; Bernardo, Travis; Otte, Valerie; DiFilippo, Robert; Bryan, Heather

    2011-09-23

    Juvenile hormone (JH) regulates a wide variety of biological activities in holometabolous insects, ranging from vitellogenesis and caste determination in adults to the timing of metamorphosis in larvae. The mechanism of JH signaling in such a diverse array of processes remains either unknown or contentious. We previously found that the nuclear receptor gene E75A is activated in S2 cells as a primary response to JH. Here, by expressing an intracellular form of JH esterase, we demonstrate that JH must enter the cell in order to activate E75A. To find intracellular receptors involved in the JH response, we performed an RNAi screen against nuclear receptor genes expressed in this cell line and identified the orphan receptor FTZ-F1. Removal of FTZ-F1 prevents JH activation of E75A, whereas overexpression enhances activation, implicating FTZ-F1 as a critical component of the JH response. FTZ-F1 is bound in vivo to multiple enhancers upstream of E75A, suggesting that it participates in direct JH-mediated gene activation. To better define the role of FTZ-F1 in JH signaling, we investigated interactions with candidate JH receptors and found that the bHLH-PAS proteins MET and GCE both interact with FTZ-F1 and can activate transcription through the FTZ-F1 response element. Removal of endogenous GCE, but not MET, prevents JH activation of E75A. We propose that FTZ-F1 functions as a competence factor by loading JH signaling components to the promoter, thus facilitating the direct regulation of E75A gene expression by JH. PMID:21832074

  5. The Drosophila FTZ-F1 Nuclear Receptor Mediates Juvenile Hormone Activation of E75A Gene Expression through an Intracellular Pathway*

    PubMed Central

    Dubrovsky, Edward B.; Dubrovskaya, Veronica A.; Bernardo, Travis; Otte, Valerie; DiFilippo, Robert; Bryan, Heather

    2011-01-01

    Juvenile hormone (JH) regulates a wide variety of biological activities in holometabolous insects, ranging from vitellogenesis and caste determination in adults to the timing of metamorphosis in larvae. The mechanism of JH signaling in such a diverse array of processes remains either unknown or contentious. We previously found that the nuclear receptor gene E75A is activated in S2 cells as a primary response to JH. Here, by expressing an intracellular form of JH esterase, we demonstrate that JH must enter the cell in order to activate E75A. To find intracellular receptors involved in the JH response, we performed an RNAi screen against nuclear receptor genes expressed in this cell line and identified the orphan receptor FTZ-F1. Removal of FTZ-F1 prevents JH activation of E75A, whereas overexpression enhances activation, implicating FTZ-F1 as a critical component of the JH response. FTZ-F1 is bound in vivo to multiple enhancers upstream of E75A, suggesting that it participates in direct JH-mediated gene activation. To better define the role of FTZ-F1 in JH signaling, we investigated interactions with candidate JH receptors and found that the bHLH-PAS proteins MET and GCE both interact with FTZ-F1 and can activate transcription through the FTZ-F1 response element. Removal of endogenous GCE, but not MET, prevents JH activation of E75A. We propose that FTZ-F1 functions as a competence factor by loading JH signaling components to the promoter, thus facilitating the direct regulation of E75A gene expression by JH. PMID:21832074

  6. ERK/MAPK regulates ERRγ expression, transcriptional activity and receptor-mediated tamoxifen resistance in ER+ breast cancer.

    PubMed

    Heckler, Mary M; Thakor, Hemang; Schafer, Cara C; Riggins, Rebecca B

    2014-05-01

    Selective estrogen receptor modulators such as tamoxifen (TAM) significantly improve breast cancer-specific survival for women with estrogen receptor-positive (ER+) disease. However, resistance to TAM remains a major clinical problem. The resistant phenotype is usually not driven by loss or mutation of the estrogen receptor; instead, changes in multiple proliferative and/or survival pathways over-ride the inhibitory effects of TAM. Estrogen-related receptor γ (ERRγ) is an orphan member of the nuclear receptor superfamily that promotes TAM resistance in ER+ breast cancer cells. This study sought to clarify the mechanism(s) by which this orphan nuclear receptor is regulated, and hence affects TAM resistance. mRNA and protein expression/phosphorylation were monitored by RT-PCR and western blotting, respectively. Site-directed mutagenesis was used to disrupt consensus extracellular signal-regulated kinase (ERK) target sites. Cell proliferation and cell-cycle progression were measured by flow cytometric methods. ERRγ transcriptional activity was assessed by dual-luciferase promoter-reporter assays. We show that ERRγ protein levels are affected by the activation state of ERK/mitogen-activated protein kinase, and mutation of consensus ERK target sites impairs ERRγ-driven transcriptional activity and TAM resistance. These findings shed new light on the functional significance of ERRγ in ER+ breast cancer, and are the first to demonstrate a role for kinase regulation of this orphan nuclear receptor. PMID:24684682

  7. Gestational and pregnane X receptor-mediated regulation of placental ATP-binding cassette drug transporters in mice.

    PubMed

    Gahir, Sarabjit S; Piquette-Miller, Micheline

    2011-03-01

    The ATP-binding cassette (ABC) drug transporters in the placenta are involved in controlling the exchange of endogenous and exogenous moieties. Pregnane X receptor (PXR) is a nuclear receptor that regulates the hepatic expression of several key ABC transporters, but it is unclear whether PXR is involved in the regulation of these transporters in the placenta. This study explores the role of PXR in the regulation of placental drug transporters. The placental mRNA expression of Mdr1a, Bcrp, and Mrp1, 2, and 3 was examined in PXR knockout (-/-), heterozygote (+/-), and wild-type (+/+) mice by quantitative PCR. The impact of PXR activation was examined in pregnant pregnane-16α-carbonitrile (PCN)-treated mice. Compared with that in controls, the basal expression of Mdr1a, Bcrp, Mrp1, and Mrp2 was significantly higher in (+/-) and (-/-) mice. Alterations in the expression of mdr1a, bcrp, and mrp1, 2, and 3 between gestational day (GD) 10 and GD 17 was dissimilar between (+/+) and (-/-) mice. Although PCN treatment induced maternal and fetal hepatic expression of Cyp3a11; placental expression of transporters were not significantly changed. Overall, our results suggest a repressive role of PXR in the basal expression of several placental transporters and a tissue-specific induction of these target genes after PXR activation. PMID:21127142

  8. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope

    PubMed Central

    Tsai, Shang-Yi A.; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-fei; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-01-01

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER–mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal. PMID:26554014

  9. Sigma-1 receptor mediates cocaine-induced transcriptional regulation by recruiting chromatin-remodeling factors at the nuclear envelope.

    PubMed

    Tsai, Shang-Yi A; Chuang, Jian-Ying; Tsai, Meng-Shan; Wang, Xiao-Fei; Xi, Zheng-Xiong; Hung, Jan-Jong; Chang, Wen-Chang; Bonci, Antonello; Su, Tsung-Ping

    2015-11-24

    The sigma-1 receptor (Sig-1R) chaperone at the endoplasmic reticulum (ER) plays important roles in cellular regulation. Here we found a new function of Sig-1R, in that it translocates from the ER to the nuclear envelope (NE) to recruit chromatin-remodeling molecules and regulate the gene transcription thereof. Sig-1Rs mainly reside at the ER-mitochondrion interface. However, on stimulation by agonists such as cocaine, Sig-1Rs translocate from ER to the NE, where Sig-1Rs bind NE protein emerin and recruit chromatin-remodeling molecules, including lamin A/C, barrier-to-autointegration factor (BAF), and histone deacetylase (HDAC), to form a complex with the gene repressor specific protein 3 (Sp3). Knockdown of Sig-1Rs attenuates the complex formation. Cocaine was found to suppress the gene expression of monoamine oxidase B (MAOB) in the brain of wild-type but not Sig-1R knockout mouse. A single dose of cocaine (20 mg/kg) in rats suppresses the level of MAOB at nuclear accumbens without affecting the level of dopamine transporter. Daily injections of cocaine in rats caused behavioral sensitization. Withdrawal from cocaine in cocaine-sensitized rats induced an apparent time-dependent rebound of the MAOB protein level to about 200% over control on day 14 after withdrawal. Treatment of cocaine-withdrawn rats with the MAOB inhibitor deprenyl completely alleviated the behavioral sensitization to cocaine. Our results demonstrate a role of Sig-1R in transcriptional regulation and suggest cocaine may work through this newly discovered genomic action to achieve its addictive action. Results also suggest the MAOB inhibitor deprenyl as a therapeutic agent to block certain actions of cocaine during withdrawal. PMID:26554014

  10. CK2 acts as a potent negative regulator of receptor-mediated insulin release in vitro and in vivo.

    PubMed

    Rossi, Mario; Ruiz de Azua, Inigo; Barella, Luiz F; Sakamoto, Wataru; Zhu, Lu; Cui, Yinghong; Lu, Huiyan; Rebholz, Heike; Matschinsky, Franz M; Doliba, Nicolai M; Butcher, Adrian J; Tobin, Andrew B; Wess, Jürgen

    2015-12-01

    G protein-coupled receptors (GPCRs) regulate virtually all physiological functions including the release of insulin from pancreatic β-cells. β-Cell M3 muscarinic receptors (M3Rs) are known to play an essential role in facilitating insulin release and maintaining proper whole-body glucose homeostasis. As is the case with other GPCRs, M3R activity is regulated by phosphorylation by various kinases, including GPCR kinases and casein kinase 2 (CK2). At present, it remains unknown which of these various kinases are physiologically relevant for the regulation of β-cell activity. In the present study, we demonstrate that inhibition of CK2 in pancreatic β-cells, knockdown of CK2α expression, or genetic deletion of CK2α in β-cells of mutant mice selectively augmented M3R-stimulated insulin release in vitro and in vivo. In vitro studies showed that this effect was associated with an M3R-mediated increase in intracellular calcium levels. Treatment of mouse pancreatic islets with CX4945, a highly selective CK2 inhibitor, greatly reduced agonist-induced phosphorylation of β-cell M3Rs, indicative of CK2-mediated M3R phosphorylation. We also showed that inhibition of CK2 greatly enhanced M3R-stimulated insulin secretion in human islets. Finally, CX4945 treatment protected mice against diet-induced hyperglycemia and glucose intolerance in an M3R-dependent fashion. Our data demonstrate, for the first time to our knowledge, the physiological relevance of CK2 phosphorylation of a GPCR and suggest the novel concept that kinases acting on β-cell GPCRs may represent novel therapeutic targets. PMID:26598688

  11. Dual regulation of mast cell degranulation through IgE receptor-mediated modulation of M₂-type pyruvate kinase.

    PubMed

    Zheng, Mei; Cho, Dong-Im; Le, Hang Thi; Cheon, Seung Hoon; Kim, Kyeong-Man

    2014-01-01

    It was reported that mast cell degranulation is inversely related to the enzymatic activity of M₂-type pyruvate kinase (M₂PK). This study shows that activation of high-affinity IgE receptor (FcεRI) evokes a sequential dual regulation of M₂PK, i.e., an immediate decrement followed by slow phase increment of enzymatic activities. Changes in the activities of M₂PK and mast cell degranulation showed similar time course after antigenic stimulation of FcεRI. The immediate inhibition of M₂PK involved tyrosine phosphorylation, and subsequently led to a cellular accumulation of glycolytic intermediates, including fructose 1,6-biphosphate (FBP), a feedforward activator of M₂PK. As the cellular levels of FBP were increased, both the enzymatic acitivity of M₂PK and mast cell degranulation slowly returned to near basal levels. A-Raf, when exogenously introduced into RBL-2H3 cells, phosphorylated M₂PK on the serine residues, elevated enzyme activities of M₂PK, and resulted in the inhibition of degranulation. These results suggest that dual regulation of M₂PK which involves the phosphorylation of M₂PK and accumulation of a feedforward activator of M₂PK plays important roles in the control of mast cell degranulation. PMID:24497038

  12. ERK/MAPK regulates ERRγ expression, transcriptional activity, and receptor-mediated Tamoxifen resistance in ER+ breast cancer

    PubMed Central

    Heckler, Mary Mazzotta; Thakor, Hemang; Schafer, Cara C.; Riggins, Rebecca B.

    2014-01-01

    Background Selective estrogen receptor modulators (SERMs) such as Tamoxifen (TAM) can significantly improve breast cancer-specific survival for women with ER-positive (ER+) disease. However, resistance to TAM remains a major clinical problem. The resistant phenotype is usually not driven by loss or mutation of ER; instead, changes in multiple proliferative and/or survival pathways override the inhibitory effects of TAM. Estrogen-related receptor gamma (ERRγ) is an orphan member of the nuclear receptor superfamily that promotes TAM resistance in ER+ breast cancer cells. In this study, we sought to clarify the mechanism(s) by which this orphan nuclear receptor is regulated and, in turn, affects TAM resistance. Methods mRNA and protein expression/phosphorylation were monitored by RT-PCR and Western blotting, respectively. Site-directed mutagenesis was used to disrupt consensus ERK target sites. Cell proliferation and cell cycle progression were measured by flow cytometric methods. ERRγ transcriptional activity was assessed by dual-luciferase promoter-reporter assays. Results We show that ERRγ protein levels are affected by the activation state of ERK/MAPK, and mutation of consensus ERK target sites impairs ERRγ-driven transcriptional activity and TAM resistance. Conclusions These findings shed new light on the functional significance of ERRγ in ER+ breast cancer, and are the first to demonstrate a role for kinase regulation of this orphan nuclear receptor. PMID:24684682

  13. Presynaptic Adenosine Receptor-Mediated Regulation of Diverse Thalamocortical Short-Term Plasticity in the Mouse Whisker Pathway.

    PubMed

    Ferrati, Giovanni; Martini, Francisco J; Maravall, Miguel

    2016-01-01

    Short-term synaptic plasticity (STP) sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In "driver" thalamocortical (TC) synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here, we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors (KARs), modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release. PMID:26941610

  14. Presynaptic GABAB Autoreceptor Regulation of Nicotinic Acetylcholine Receptor Mediated [3H]-GABA Release from Mouse Synaptosomes

    PubMed Central

    McClure-Begley, Tristan D.; Grady, Sharon R.; Marks, Michael J.; Collins, Allan C.; Stitzel, Jerry A.

    2014-01-01

    Activation of nicotinic acetylcholine receptors (nAChRs) can elicit neurotransmitter release from presynaptic nerve terminals. Mechanisms contributing to cell-and-terminal specific regulation of nAChR-mediated neurotransmitter exocytosis are not fully understood. The experiments discussed here examine how activation of GABAB auto- and hetero-receptors suppress nAChR-mediated release of [3H]-GABA and [3H]-dopamine (3H-DA) from mouse striatal synaptosomes. Activation of presynaptic GABAB receptors with (R)-baclofen decreased both [3H]-GABA and [3H]-DA release evoked by potassium depolarization. However, when nAChRs were activated with ACh to evoke neurotransmitter release, (R)-baclofen had no effect on [3H]-DA release, but potently inhibited ACh-evoked [3H]-GABA release. Inhibition of nAChR-evoked [3H]-GABA release by (R)-baclofen was time sensitive and the effect was lost after prolonged exposure to the GABAB agonist. The early inhibitory effect of GABA activation on ACh-evoked [3H]-GABA release was partially attenuated by antagonists of the phosphatase, calcineurin. Furthermore, antagonists of protein kinase C (PKC) prevented the time-dependent loss of the inhibitory (R)-baclofen effect on [3H]-GABA release. These results suggest that α4β2*-nAChRs present on GABAergic nerve terminals in the striatum are subject to functional regulation by GABAB autoreceptors that is apparently cell-type specific, since it is absent from DAergic striatal nerve terminals. In addition, the functional modulation of α4β2*-type nAChRs on striatal GABAergic nerve terminals by GABAB autoreceptor activation is time-sensitive and appears to involve opposing actions of calcineurin and PKC. PMID:24953818

  15. Hormonal and Local Regulation of Bone Formation.

    ERIC Educational Resources Information Center

    Canalis, Ernesto

    1985-01-01

    Reviews effects of hormones, systemic factors, and local regulators on bone formation. Identifies and explains the impact on bone growth of several hormones as well as the components of systemic and local systems. Concentrates on bone collagen and DNA synthesis. (Physicians may earn continuing education credit by completing an appended test). (ML)

  16. Network Identification of Hormonal Regulation

    PubMed Central

    Vis, Daniel J.; Westerhuis, Johan A.; Hoefsloot, Huub C. J.; Roelfsema, Ferdinand; van der Greef, Jan

    2014-01-01

    Relations among hormone serum concentrations are complex and depend on various factors, including gender, age, body mass index, diurnal rhythms and secretion stochastics. Therefore, endocrine deviations from healthy homeostasis are not easily detected or understood. A generic method is presented for detecting regulatory relations between hormones. This is demonstrated with a cohort of obese women, who underwent blood sampling at 10 minute intervals for 24-hours. The cohort was treated with bromocriptine in an attempt to clarify how hormone relations change by treatment. The detected regulatory relations are summarized in a network graph and treatment-induced changes in the relations are determined. The proposed method identifies many relations, including well-known ones. Ultimately, the method provides ways to improve the description and understanding of normal hormonal relations and deviations caused by disease or treatment. PMID:24852517

  17. Presynaptic Adenosine Receptor-Mediated Regulation of Diverse Thalamocortical Short-Term Plasticity in the Mouse Whisker Pathway

    PubMed Central

    Ferrati, Giovanni; Martini, Francisco J.; Maravall, Miguel

    2016-01-01

    Short-term synaptic plasticity (STP) sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In “driver” thalamocortical (TC) synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here, we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors (KARs), modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release. PMID:26941610

  18. Reduced Mechanical Stretch Induces Enhanced Endothelin B Receptor-Mediated Contractility via Activation of Focal Adhesion Kinase and Extracellular Regulated Kinase 1/2 in Cerebral Arteries from Rat.

    PubMed

    Spray, Stine; Rasmussen, Marianne N P; Skovsted, Gry F; Warfvinge, Karin; Sheykhzade, Majid; Edvinsson, Lars

    2016-07-01

    Cerebral ischaemia results in enhanced endothelin B (ETB ) receptor-mediated contraction and receptor protein expression in the affected cerebrovascular smooth muscle cells (SMC). Organ culture of cerebral arteries is a method to induce similar alterations in ETB receptor expression. We suggest that rapid and sustained reduction in wall tension/stretch is a possible trigger mechanism for this vascular remodelling. Isolated rat middle cerebral artery (MCA) segments were incubated in a wire myograph with or without mechanical stretch, prior to assessment of their contractile response to the selective ETB receptor agonist sarafotoxin 6c. The involvement of extracellular regulated kinase (ERK) 1/2 and focal adhesion kinase (FAK) was studied by their specific inhibitors U0126 and PF-228, respectively. Compared with their stretched counterparts, unstretched MCA segments showed a significantly increased ETB receptor-mediated contractile response after 12 hr of incubation, which was attenuated by either U0126 or PF-228. The functionally increased ETB -mediated contractility could be attributed to two different mechanisms: (i) a difference in ETB receptor localization from primarily endothelial expression to SMC expression and (ii) an increased calcium sensitivity of the SMCs due to an increased expression of the calcium channel transient receptor potential canonical 1. Collectively, our results present a possible mechanism linking lack of vessel wall stretch/tension to changes in ETB receptor-mediated contractility via triggering of an early mechanosensitive signalling pathway involving ERK1/2 and FAK signalling. A mechanism likely to be an initiating factor for the increased ETB receptor-mediated contractility found after cerebral ischaemia. PMID:26781487

  19. Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-beta1 in thyroid hormone-induced cardiac hypertrophy.

    PubMed

    Diniz, G P; Carneiro-Ramos, M S; Barreto-Chaves, M L M

    2007-04-01

    Increased thyroid hormone (TH) levels are known to induce cardiac hypertrophy. Some studies have provided evidence for a functional link between angiotensin II (ANG II) and transforming growth factor beta1 (TGF-beta1) in the heart, both being able to also induce cardiac hypertrophy. However, the contribution of this growth factor activated directly by TH or indirectly by ANG II in cardiac hypertrophy development remains unknown. To analyze the possible role of TGF-beta1 in cardiac hypertrophy induced by TH and also to evaluate if the TGF-beta1 effect is mediated by ANG II receptors, we employed Wistar rats separated into control, hypothyroid (hypo) and hyperthyroid (T4 - 10) groups combined or not with ANG II receptor blockers (losartan or PD123319). Serum levels of T3 and T4, systolic pressure and heart rate confirmed the thyroid state of the groups. The T4 - 10 group presented a significant increase in cardiac TGF-beta1 levels; however, TGF-beta1 levels in the hypo group did not change in relation to the control. Inhibition of the increase in cardiac TGF-beta1 levels was observed in the groups treated with T4 in association with losartan or PD123319 when compared to the T4 - 10 group. These results demonstrate for the first time the TH-modulated induction of cardiac TGF-beta1 in cardiac hypertrophy, and that this effect is mediated by ANG II receptors. PMID:17206447

  20. Studies on the mechanism of quinone action on hormonal regulation of metabolism in the rat liver

    SciTech Connect

    Cheng, E.Y.

    1989-01-01

    The mechanism of quinone actions in liver cell metabolism had been investigated using menadione as a model compound. Previous reports suggested that quinones and free radicals could produce perturbations in cellular calcium homeostasis. Since calcium plays an important role in the regulation of cellular metabolic processes, then regulation of cytosolic calcium concentrations, and thus of cellular metabolism, by calcium-mobilizing hormones such as phenylephrine and vasopressin could possibly be modified by quinones such as menadione. Methods used to approach this hypothesis included the assay for activation of glycogen phosphorylase, an indirect index of calcium mobilization; the determination of calcium mobilization with {sup 45}Ca efflux exchange and with fluorescent calcium indicator fura-2; and the measurement of phosphatidylinositides, an important link in the membrane-associated receptor-mediated signal transduction mechanism.

  1. Neuroendocrine Regulation of Growth Hormone Secretion.

    PubMed

    Steyn, Frederik J; Tolle, Virginie; Chen, Chen; Epelbaum, Jacques

    2016-01-01

    This article reviews the main findings that emerged in the intervening years since the previous volume on hormonal control of growth in the section on the endocrine system of the Handbook of Physiology concerning the intra- and extrahypothalamic neuronal networks connecting growth hormone releasing hormone (GHRH) and somatostatin hypophysiotropic neurons and the integration between regulators of food intake/metabolism and GH release. Among these findings, the discovery of ghrelin still raises many unanswered questions. One important event was the application of deconvolution analysis to the pulsatile patterns of GH secretion in different mammalian species, including Man, according to gender, hormonal environment and ageing. Concerning this last phenomenon, a great body of evidence now supports the role of an attenuation of the GHRH/GH/Insulin-like growth factor-1 (IGF-1) axis in the control of mammalian aging. © 2016 American Physiological Society. Compr Physiol 6:687-735, 2016. PMID:27065166

  2. Hormones and pheromones in regulation of insect behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both pheromones and hormones are well recognized regulators of insect biology. However, the interactions between hormones and pheromones in coordinating insect biology are less well understood. We have studied the interactions between juvenile hormone, its precursor methyl farnesoate, and pheromon...

  3. Hormonal Regulation of Nuclear Permeability*◆

    PubMed Central

    O'Brien, Elizabeth M.; Gomes, Dawidson A.; Sehgal, Sona; Nathanson, Michael H.

    2010-01-01

    Transport into the nucleus is critical for regulation of gene transcription and other intranuclear events. Passage of molecules into the nucleus depends in part upon their size and the presence of appropriate targeting sequences. However, little is known about the effects of hormones or their second messengers on transport across the nuclear envelope. We used localized, two-photon activation of a photoactivatable green fluorescent protein to investigate whether hormones, via their second messengers, could alter nuclear permeability. Vasopressin other hormones that increase cytosolic Ca2+ and activate protein kinase C increased permeability across the nuclear membrane of SKHep1 liver cells in a rapid unidirectional manner. An increase in cytosolic Ca2+ was both necessary and sufficient for this process. Furthermore, localized photorelease of caged Ca2+ near the nuclear envelope resulted in a local increase in nuclear permeability. Neither activation nor inhibition of protein kinase C affected nuclear permeability. These findings provide evidence that hormones linking to certain G protein-coupled receptors increase nuclear permeability via cytosolic Ca2+. Short term regulation of nuclear permeability may provide a novel mechanism by which such hormones permit transcription factors and other regulatory molecules to enter the nucleus, thereby regulating gene transcription in target cells. PMID:17158097

  4. Pressuromodulation at the cell membrane as the basis for small molecule hormone and peptide regulation of cellular and nuclear function.

    PubMed

    Sarin, Hemant

    2015-01-01

    Building on recent knowledge that the specificity of the biological interactions of small molecule hydrophiles and lipophiles across microvascular and epithelial barriers, and with cells, can be predicted on the basis of their conserved biophysical properties, and the knowledge that biological peptides are cell membrane impermeant, it has been further discussed herein that cellular, and thus, nuclear function, are primarily regulated by small molecule hormone and peptide/factor interactions at the cell membrane (CM) receptors. The means of regulating cellular, and thus, nuclear function, are the various forms of CM Pressuromodulation that exist, which include Direct CM Receptor-Mediated Stabilizing Pressuromodulation, sub-classified as Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) or Direct CM Receptor-Mediated Stabilizing Shift Pressuromodulation (Single, Dual or Tri) cum External Cationomodulation (≥3+ → 1+); which are with respect to acute CM receptor-stabilizing effects of small biomolecule hormones, growth factors or cytokines, and also include Indirect CM- or CM Receptor-Mediated Pressuromodulation, sub-classified as Indirect 1ary CM-Mediated Shift Pressuromodulation (Perturbomodulation), Indirect 2ary CM Receptor-Mediated Shift Pressuromodulation (Tri or Quad Receptor Internal Pseudo-Cationomodulation: SS 1+), Indirect 3ary CM Receptor-Mediated Shift Pressuromodulation (Single or Dual Receptor Endocytic External Cationomodulation: 2+) or Indirect (Pseudo) 3ary CM Receptor-Mediated Shift Pressuromodulation (Receptor Endocytic Hydroxylocarbonyloetheroylomodulation: 0), which are with respect to sub-acute CM receptor-stabilizing effects of small biomolecules, growth factors or cytokines. As a generalization, all forms of CM pressuromodulation decrease CM and nuclear membrane (NM) compliance (whole cell compliance), due to pressuromodulation of the intracellular microtubule network and increases the exocytosis of pre

  5. Subcellular localisation of BAG-1 and its regulation of vitamin D receptor-mediated transactivation and involucrin expression in oral keratinocytes: Implications for oral carcinogenesis

    SciTech Connect

    Lee, San San; Crabb, Simon J.; Janghra, Nari; Carlberg, Carsten; Williams, Ann C.; Cutress, Ramsey I.; Packham, Graham; Hague, Angela

    2007-09-10

    In oral cancers, cytoplasmic BAG-1 overexpression is a marker of poor prognosis. BAG-1 regulates cellular growth, differentiation and survival through interactions with diverse proteins, including the vitamin D receptor (VDR), a key regulator of keratinocyte growth and differentiation. BAG-1 is expressed ubiquitously in human cells as three major isoforms of 50 kDa (BAG-1L), 46 kDa (BAG-1M) and 36 kDa (BAG-1S) from a single mRNA. In oral keratinocytes BAG-1L, but not BAG-1M and BAG-1S, enhanced VDR transactivation in response to 1{alpha},25-dihydroxyvitamin D{sub 3.} BAG-1L was nucleoplasmic and nucleolar, whereas BAG-1S and BAG-1M were cytoplasmic and nucleoplasmic in localisation. Having identified the nucleolar localisation sequence in BAG-1L, we showed that mutation of this sequence did not prevent BAG-1L from potentiating VDR activity. BAG-1L also potentiated transactivation of known vitamin-D-responsive gene promoters, osteocalcin and 24-hydroxylase, and enhanced VDR-dependent transcription and protein expression of the keratinocyte differentiation marker, involucrin. These results demonstrate endogenous gene regulation by BAG-1L by potentiating nuclear hormone receptor function and suggest a role for BAG-1L in 24-hydroxylase regulation of vitamin D metabolism and the cellular response of oral keratinocytes to 1{alpha},25-dihydroxyvitamin D{sub 3}. By contrast to the cytoplasmic BAG-1 isoforms, BAG-1L may act to suppress tumorigenesis.

  6. Linker histones in hormonal gene regulation.

    PubMed

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms. PMID:26518266

  7. Hormonal regulation of secondary cell wall formation.

    PubMed

    Didi, Vojtěch; Jackson, Phil; Hejátko, Jan

    2015-08-01

    Secondary cell walls (SCWs) have critical functional importance but also constitute a high proportion of the plant biomass and have high application potential. This is true mainly for the lignocellulosic constituents of the SCWs in xylem vessels and fibres, which form a structured layer between the plasma membrane and the primary cell wall (PCW). Specific patterning of the SCW thickenings contributes to the mechanical properties of the different xylem cell types, providing the plant with mechanical support and facilitating the transport of solutes via vessels. In the last decade, our knowledge of the basic molecular mechanisms controlling SCW formation has increased substantially. Several members of the multi-layered regulatory cascade participating in the initiation and transcriptional regulation of SCW formation have been described, and the first cellular components determining the pattern of SCW at the subcellular resolution are being uncovered. The essential regulatory role of phytohormones in xylem development is well known and the molecular mechanisms that link hormonal signals to SCW formation are emerging. Here, we review recent knowledge about the role of individual plant hormones and hormonal crosstalk in the control over the regulatory cascades guiding SCW formation and patterning. Based on the analogy between many of the mechanisms operating during PCW and SCW formation, recently identified mechanisms underlying the hormonal control of PCW remodelling are discussed as potentially novel mechanisms mediating hormonal regulatory inputs in SCW formation. PMID:26002972

  8. [Regulation of SWS by hormones and cytokines].

    PubMed

    Li, L H; Ku, B S

    2000-01-01

    SWS is the most important component of sleep. (1) VLPO-TMN seems to generate sleep and wakefulness. The rostral basal forebrain, which was defined as PGD2-SPZ, may be involved in regulation of sleep. (2) PGD2 promotes sleep, especially SWS, while PGE2 prolongs wakefulness and depresses both SWS and REMS. (3) During SWS the activation of hypothalamus-pituitary-adrenocortic axis is inhibited, while the release of growth hormone is accelerated. The soporific effects of melatonin may be attributed to its hypothermic effects. (4) Interleukin-1 prolongs sleep, especially SWS, which seems to be mediated by PGD2. Tumor necrosis factor (TFN) may promote SWS through 5-HT and its receptor. Therefore, the development of new hypnotics, which selectively prolong SWS, might follow the following ways: PGD2 and chemicals which act like PGD2; immuno-regulators; substances with effects on 5-HT receptors; hormone, such as melatonin and growth hormone, which play roles in the physiological regulation on sleep-wakefulness. PMID:12532764

  9. Hormones in Synergy: Regulation of the Pituitary Gonadotropin Genes

    PubMed Central

    Thackray, Varykina G.; Mellon, Pamela L.; Coss, Djurdjica

    2009-01-01

    The precise interplay of hormonal influences that governs gonadotropin hormone production by the pituitary includes endocrine, paracrine and autocrine actions of hypothalamic gonadotropin-releasing hormone (GnRH), activin and steroids. However, most studies of hormonal regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in the pituitary gonadotrope have been limited to analyses of the isolated actions of individual hormones. LHβ and FSHβ subunits have distinct patterns of expression during the menstrual/estrous cycle as a result of the integration of activin, GnRH, and steroid hormone action. In this review, we focus on studies that delineate the interplay among these hormones in the regulation of LHβ and FSHβ gene expression in gonadotrope cells and discuss how signaling cross-talk contributes to differential expression. We also discuss how recent technological advances will help identify additional factors involved in the differential hormonal regulation of LH and FSH. PMID:19747958

  10. Regulation of dopamine D2 receptor-mediated extracellular signal-regulated kinase signaling and spine formation by GABAA receptors in hippocampal neurons.

    PubMed

    Yoon, Dong-Hoon; Yoon, Sehyoun; Kim, Donghoon; Kim, Hyun; Baik, Ja-Hyun

    2015-01-23

    Dopamine (DA) signaling via DA receptors is known to control hippocampal activity that contributes to learning, memory, and synaptic plasticity. In primary hippocampal neuronal culture, we observed that dopamine D2 receptors (D2R) co-localized with certain subtypes of GABAA receptors, namely α1, β3, and γ2 subunits, as revealed by double immunofluorocytochemical analysis. Treatment with the D2R agonist, quinpirole, was shown to elicit an increase in phosphorylation of extracellular signal-regulated kinase (ERK) in hippocampal neurons. This phosphorylation was inhibited by pretreatment with the GABAA receptor agonist, muscimol. Furthermore, treatment of hippocampal neurons with quinpirole increased the dendritic spine density and this regulation was totally blocked by pretreatment with a MAP kinase kinase (MEK) inhibitor (PD98059), D2R antagonist (haloperidol), or by the GABAA receptor agonist, muscimol. These results suggest that D2R-mediated ERK phosphorylation can control spine formation and that the GABAA receptor negatively regulates the D2R-induced spine formation through ERK signaling in hippocampal neurons, thus indicating a potential role of D2R in the control of hippocampal neuronal excitability. PMID:25483619

  11. Regulation of toll-like receptors-mediated inflammation by immunobiotics in bovine intestinal epitheliocytes: role of signaling pathways and negative regulators.

    PubMed

    Villena, Julio; Aso, Hisashi; Kitazawa, Haruki

    2014-01-01

    Intestinal epithelial cells (IECs) detect bacterial and viral associated molecular patterns via germline-encoded pattern-recognition receptors (PRRs) and are responsible for maintaining immune tolerance to the communities of resident commensal bacteria while being also capable to mount immune responses against pathogens. Toll-like receptors (TLRs) are a major class of PRRs expressed on IECs and immune cells, which are involved in the induction of both tolerance and inflammation. In the last decade, experimental and clinical evidence was generated to support the application of probiotics with immunoregulatory capacities (immunobiotics) for the prevention and treatment of several gastrointestinal inflammatory disorders in which TLRs exert a significant role. The majority of these studies were performed in mouse and human cell lines, and despite the growing interest in the bovine immune system due to the economic importance of cattle as livestock, only few studies have been conducted on cattle. In this regard, our group has established a bovine intestinal epithelial (BIE) cell line originally derived from fetal bovine intestinal epitheliocytes and used this cell line to evaluate the impact of immunobiotics in TLR-mediated inflammation. This review aims to summarize the current knowledge of the beneficial effects of immunobiotics in the regulation of intestinal inflammation/infection in cattle. Especially, we discuss the role of TLRs and their negative regulators in both the inflammatory response and the beneficial effects of immunobiotics in bovine IECs. This review article emphasizes the cellular and molecular interactions of immunobiotics with BIE cells through TLRs and gives the scientific basis for the development of immunomodulatory feed for bovine healthy development. PMID:25228903

  12. 12(S)-hydroxyeicosatetraenoic acid and 13(S)-hydroxyoctadecadienoic acid regulation of protein kinase C-alpha in melanoma cells: role of receptor-mediated hydrolysis of inositol phospholipids.

    PubMed Central

    Liu, B; Khan, W A; Hannun, Y A; Timar, J; Taylor, J D; Lundy, S; Butovich, I; Honn, K V

    1995-01-01

    Protein kinase C (PKC) isoenzymes are essential components of cell signaling. In this study, we investigated the regulation of PKC-alpha in murine B16 amelanotic melanoma (B16a) cells by the monohydroxy fatty acids 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] and 13(S)-hydroxyoctadecadienoic acid [13(S)-HODE]. 12(S)-HETE induced a translocation of PKC-alpha to the plasma membrane and focal adhesion plaques, leading to enhanced adhesion of B16a cells to the matrix protein fibronectin. However, 13(S)-HODE inhibited these 12(S)-HETE effects on PKC-alpha. A receptor-mediated mechanism of action for 12(S)-HETE and 13(S)-HODE is supported by the following findings. First, 12(S)-HETE triggered a rapid increase in cellular levels of diacylglycerol and inositol trisphosphate in B16a cells. 13(S)-HODE blocked the 12(S)-HETE-induced bursts of both second messengers. Second, the 12(S)-HETE-increased adhesion of B16a cells to fibronectin was sensitive to inhibition by a phospholipase C inhibitor and pertussis toxin. Finally, a high-affinity binding site (Kd = 1 nM) for 12(S)-HETE was detected in B16a cells, and binding of 12(S)-HETE to B16a cells was effectively inhibited by 13(S)-HODE (IC50 = 4 nM). In summary, our data provide evidence that regulation of PKC-alpha by 12(S)-HETE and 13(S)-HODE may be through a guanine nucleotide-binding protein-linked receptor-mediated hydrolysis of inositol phospholipids. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7568126

  13. Evidence for the involvement of PECAM-1 in a receptor mediated signal-transduction pathway regulating capacitation-associated tyrosine phosphorylation in human spermatozoa.

    PubMed

    Nixon, Brett; Paul, Jonathan W; Spiller, Cassy M; Attwell-Heap, Abigail G; Ashman, Leonie K; Aitken, R John

    2005-10-15

    Mammalian spermatozoa must become ;capacitated' in the female reproductive tract before they gain the ability to fertilize the oocyte. The attainment of a capacitated state has been correlated with a number of biochemical changes, the most notable of which is a dramatic increase in the tyrosine phosphorylation status of these cells. Despite its biological importance, the mechanisms responsible for initiating this tyrosine phosphorylation cascade in vivo are unknown. Here, we report that this signalling pathway can be elicited in a rapid, dose-dependent and lectin-specific manner by wheat germ agglutinin (WGA), but none of 18 other lectins assessed. This response was abrogated by prior enzymatic cleavage of either sialic acid or GlcNAc residues from the sperm surface and by treatment with a range of pharmacological inhibitors directed against protein kinase A, protein tyrosine kinases and intermediates including Src. Proteomic analysis of the WGA-binding sites on the sperm surface identified the putative cognate receptor as platelet cell adhesion molecule 1 (PECAM-1/CD31). This conclusion was supported by the following evidence: (i) anti-PECAM-1 antibodies identified a molecule of the correct molecular mass in human spermatozoa, (ii) PECAM-1 could be isolated from a pool of sperm surface proteins using WGA immobilized on a solid phase support, (iii) PECAM-1 and WGA co-localized to the sperm surface and (iv) anti-PECAM-1 antibodies could completely block the ability of WGA to stimulate tyrosine phosphorylation in these cells. Collectively, these data provide the first evidence that a receptor-mediated signal transduction pathway triggers human sperm capacitation and identifies PECAM-1 as the probable initiator of this second messenger cascade. PMID:16219692

  14. The behavior of renal-regulating hormones during hypogravic stress

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    The regulation of fluid and electrolyte behavior during space flight is believed to be under control, in large part, of a group of hormones which have their major effects on renal excretion. The hormones studied include renin-angitensin, aldosterone, and antidiuretic hormone (ADH). The regulatory systems of these renal-regulating hormones as they act individually and in concert with each other are analyzed. The analysis is based on simulations of the mathematical model of Guyton. A generalized theory is described which accounts for both short-term and long-term behavior of this set of hormones.

  15. Regulation of luteinizing hormone-releasing hormone and luteinizing hormone secretion by hypothalamic amino acids.

    PubMed

    Donoso, A O; Seltzer, A M; Navarro, C E; Cabrera, R J; López, F J; Negro-Vilar, A

    1994-04-01

    1. The present review discusses the proposed roles of the amino acids glutamate and GABA in the central regulation of luteinizing hormone-releasing hormone (LHRH) and in luteinizing hormone (LH) secretion. 2. Descriptions of the mechanisms of action of these neurotransmitters have focused on two diencephalic areas, namely, the preoptic-anterior hypothalamic area where the cell bodies of LHRH neurons are located, and the medial basal hypothalamus which contains the nerve endings of the LHRH system. Increasing endogenous GABA concentration by drugs, GABA agonists, or blockade of glutamatergic neurotransmission by selective antagonists in rats and non-human primates prevents ovulation and pulsatile LH release, and blunts the LH surges induced by estrogen or an estrogen-progesterone combination. In contrast, glutamate and different glutamate agonists such as NMDA, AMPA and kainate, can increase LHRH/LH secretion. 3. The simultaneous enhancement of glutamatergic activity and a decrease of GABAergic tone may positively influence the maturation of the pituitary-gonadal system in rats and non-human primates. Administration of glutamate receptor agonists has been shown to significantly advance the onset of puberty. Conversely, glutamate antagonists or increased endogenous GABA levels may delay the onset of puberty. The physiological regulation of LHRH/LH secretion may thus involve a GABA-glutamate interaction and a cooperative action of the various types of ionotropic glutamate receptors. 4. The inhibitory actions of GABA on LH release and ovulation may be exerted at the level of afferent nerve terminals that regulate LHRH secretion. A likely candidate is noradrenaline, as suggested by the synaptic connections between noradrenergic nerve terminals and GABAergic interneurons in the preoptic area. Recent experiments have provided complementary evidence for the physiological balance between inhibitory and excitatory transmission resulting in modulation of the action of

  16. The effects of hormonal contraceptives on glycemic regulation

    PubMed Central

    Cortés, Manuel E.; Alfaro, Andrea A.

    2014-01-01

    A number of side effects have been linked to the use of hormonal contraceptives, among others, alterations in glucose levels. Hence, the objective of this mini-review is to show the main effects of hormonal contraceptive intake on glycemic regulation. First, the most relevant studies on this topic are described, then the mechanisms that might be accountable for this glycemic regulation impairment as exerted by hormonal contraceptives are discussed. Finally, we briefly discuss the ethical responsibility of health professionals to inform about the potential risks on glycemic homeostasis regarding hormonal contraceptive intake. PMID:25249703

  17. Hormonal and Metabolite Regulation of Hepatic Glucokinase.

    PubMed

    Agius, Loranne

    2016-07-17

    Liver glucose metabolism is dependent on glucokinase activity. Glucokinase expression is transcriptionally regulated by hormones and metabolites of glucose, and glucokinase activity is dependent on reversible binding of glucokinase to a specific inhibitor protein, glucokinase regulatory protein (GKRP), and to other binding proteins such as 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK2/FBP2), which functions as an activator. Glucokinase is inhibited in the postabsorptive state by sequestration in the nucleus bound to GKRP, and it is activated postprandially by portal hyperglycemia and fructose through dissociation from GKRP, translocation to the cytoplasm, and binding to PFK2/FBP2. Glucagon dissociates this interaction, promoting translocation back to the nucleus. In humans, changes in glucokinase expression and activity are associated with poorly controlled type 2 diabetes and with nonalcoholic fatty liver disease, and a common variant of GKRP with altered binding affinity for glucokinase is associated with increased blood and liver lipids and other metabolic traits that implicate a role for GKRP in maintaining intrahepatic metabolite homeostasis. PMID:27146014

  18. Cross-talk between LPA1 and Epidermal Growth Factor Receptors Mediates Up-regulation of Sphingosine Kinase 1 to Promote Gastric Cancer Cell Motility and Invasion

    PubMed Central

    Shida, Dai; Fang, Xianjun; Kordula, Tomasz; Takabe, Kazuaki; Lépine, Sandrine; Alvarez, Sergio E.; Milstien, Sheldon; Spiegel, Sarah

    2009-01-01

    Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are lysophospholipid mediators of diverse cellular processes important for cancer progression. S1P is produced by two sphingosine kinases, SphK1 and SphK2. Expression of SphK1 is elevated in many cancers. Here, we report that LPA markedly enhanced SphK1 mRNA and protein in gastric cancer MKN1 cells but had no effect on SphK2. LPA also up-regulated SphK1 expression in other human cancer cells that endogenously express the LPA1 receptor, such as DLD1 colon cancer cells and MDA-MB-231 breast cancer cells, but not in HT29 colon cancer cells or MDA-MB-453 breast cancer cells, which do not express the LPA1 receptor. An LPA1 receptor antagonist or down-regulation of its expression prevented SphK1 and S1P3 receptor up-regulation by LPA. LPA transactivated the epidermal growth factor receptor (EGFR) in these cells, and the EGFR inhibitor AG1478 attenuated the increased SphK1 and S1P3 expression induced by LPA. Moreover, down-regulation of SphK1 attenuated LPA-stimulated migration and invasion of MNK1 cells yet had no effect on expression of neovascularizing factors, such as interleukin (IL)-8, IL-6, urokinase-type plasminogen activator (uPA), or uPA receptor induced by LPA. Finally, down-regulation of S1P3, but not S1P1, also reduced LPA-stimulated migration and invasion of MKN1 cells. Collectively, our results suggest that SphK1 is a convergence point of multiple cell surface receptors for three different ligands, LPA, EGF, and S1P, which have all been implicated in regulation of motility and invasiveness of cancer cells. PMID:18701480

  19. A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals.

    PubMed

    Davière, Jean-Michel; Achard, Patrick

    2016-01-01

    Plant phenotypic plasticity is controlled by diverse hormone pathways, which integrate and convey information from multiple developmental and environmental signals. Moreover, in plants many processes such as growth, development, and defense are regulated in similar ways by multiple hormones. Among them, gibberellins (GAs) are phytohormones with pleiotropic actions, regulating various growth processes throughout the plant life cycle. Previous work has revealed extensive interplay between GAs and other hormones, but the molecular mechanism became apparent only recently. Molecular and physiological studies have demonstrated that DELLA proteins, considered as master negative regulators of GA signaling, integrate multiple hormone signaling pathways through physical interactions with transcription factors or regulatory proteins from different families. In this review, we summarize the latest progress in GA signaling and its direct crosstalk with the main phytohormone signaling, emphasizing the multifaceted role of DELLA proteins with key components of major hormone signaling pathways. PMID:26415696

  20. Role of leptin signaling in hemato-vascular development and niche function: Leptin receptor-mediated signaling regulates LT-HSC homeostasis in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homeostatic functioning of the cardiovascular and hematopoietic systems is known to be interdependent and strongly influenced by the microenvironment in which hemato-vascular cells develop and reside. The role of nutrition and metabolism as regulable and dynamic extracellular cues however, remains a...

  1. Mg2+/Mn2+-dependent phosphatase 1A is involved in regulating pregnane X receptor-mediated cytochrome p450 3A4 gene expression.

    PubMed

    Pondugula, Satyanarayana R; Flannery, Patrick C; Apte, Udayan; Babu, Jeganathan Ramesh; Geetha, Thangiah; Rege, Shraddha D; Chen, Taosheng; Abbott, Kodye L

    2015-03-01

    Variations in the expression of human pregnane X receptor (hPXR)-mediated cytochrome p450 3A4 (CYP3A4) in liver can alter therapeutic response to a variety of drugs and may lead to potential adverse drug interactions. We sought to determine whether Mg(2+)/Mn(2+)-dependent phosphatase 1A (PPM1A) regulates hPXR-mediated CYP3A4 expression. PPM1A was found to be coimmunoprecipitated with hPXR. Genetic or pharmacologic activation of PPM1A led to a significant increase in hPXR transactivation of CYP3A4 promoter activity. In contrast, knockdown of endogenous PPM1A not only attenuated hPXR transactivation, but also increased proliferation of HepG2 human liver carcinoma cells, suggesting that PPM1A expression levels regulate hPXR, and that PPM1A expression is regulated in a proliferation-dependent manner. Indeed, PPM1A expression and hPXR transactivation were found to be significantly reduced in subconfluent HepG2 cells compared with confluent HepG2 cells, suggesting that both PPM1A expression and hPXR-mediated CYP3A4 expression may be downregulated in proliferating livers. Elevated PPM1A levels led to attenuation of hPXR inhibition by tumor necrosis factor-α and cyclin-dependent kinase-2, which are known to be upregulated and essential during liver regeneration. In mouse regenerating livers, similar to subconfluent HepG2 cells, expression of both PPM1A and the mouse PXR target gene cyp3a11 was found to be downregulated. Our results show that PPM1A can positively regulate PXR activity by counteracting PXR inhibitory signaling pathways that play a major role in liver regeneration. These results implicate a novel role for PPM1A in regulating hPXR-mediated CYP3A4 expression in hepatocytes and may explain a mechanism for CYP3A repression in regenerating livers. PMID:25561723

  2. Enzyme Action in the Regulation of Plant Hormone Responses*

    PubMed Central

    Westfall, Corey S.; Muehler, Ashley M.; Jez, Joseph M.

    2013-01-01

    Plants synthesize a chemically diverse range of hormones that regulate growth, development, and responses to environmental stresses. The major classes of plant hormones are specialized metabolites with exquisitely tailored perception and signaling systems, but equally important are the enzymes that control the dose and exposure to the bioactive forms of these molecules. Here, we review new insights into the role of enzyme families, including the SABATH methyltransferases, the methylesterases, the GH3 acyl acid-amido synthetases, and the hormone peptidyl hydrolases, in controlling the biosynthesis and modifications of plant hormones and how these enzymes contribute to the network of chemical signals responsible for plant growth, development, and environmental adaptation. PMID:23709222

  3. Arrestins 2 and 3 differentially regulate ETA and P2Y2 receptor-mediated cell signaling and migration in arterial smooth muscle

    PubMed Central

    Morris, Gavin E.; Nelson, Carl P.; Brighton, Paul J.; Standen, Nicholas B.; Challiss, R. A. John

    2012-01-01

    Overstimulation of endothelin type A (ETA) and nucleotide (P2Y) Gαq-coupled receptors in vascular smooth muscle causes vasoconstriction, hypertension, and, eventually, hypertrophy and vascular occlusion. G protein-coupled receptor kinases (GRKs) and arrestin proteins are sequentially recruited by agonist-occupied Gαq-coupled receptors to terminate phospholipase C signaling, preventing prolonged/inappropriate contractile signaling. However, these proteins also play roles in the regulation of several mitogen-activated protein kinase (MAPK) signaling cascades known to be essential for vascular remodeling. Here we investigated whether different arrestin isoforms regulate endothelin and nucleotide receptor MAPK signaling in rat aortic smooth muscle cells (ASMCs). When intracellular Ca2+ levels were assessed in isolated ASMCs loaded with Ca2+-sensitive dyes, P2Y2 and ETA receptor desensitization was attenuated by selective small-interfering (si)RNA-mediated depletion of G protein-coupled receptor kinase 2 (GRK2). Using similar siRNA techniques, knockdown of arrestin2 prevented P2Y2 receptor desensitization and enhanced and prolonged p38 and ERK MAPK signals, while arrestin3 depletion was ineffective. Conversely, arrestin3 knockdown prevented ETA receptor desensitization and attenuated ET1-stimulated p38 and ERK signals, while arrestin2 depletion had no effect. Using Transwell assays to assess agonist-stimulated ASMC migration, we found that UTP-stimulated migration was markedly attenuated following arrestin2 depletion, while ET1-stimulated migration was attenuated following knockdown of either arrestin. These data highlight a differential arrestin-dependent regulation of ETA and P2Y2 receptor-stimulated MAPK signaling. GRK2 and arrestin expression are essential for agonist-stimulated ASMC migration, which, as a key process in vascular remodeling, highlights the potential roles of GRK2 and arrestin proteins in the progression of vascular disease. PMID:22159081

  4. Arrestins 2 and 3 differentially regulate ETA and P2Y2 receptor-mediated cell signaling and migration in arterial smooth muscle.

    PubMed

    Morris, Gavin E; Nelson, Carl P; Brighton, Paul J; Standen, Nicholas B; Challiss, R A John; Willets, Jonathon M

    2012-03-01

    Overstimulation of endothelin type A (ET(A)) and nucleotide (P2Y) Gα(q)-coupled receptors in vascular smooth muscle causes vasoconstriction, hypertension, and, eventually, hypertrophy and vascular occlusion. G protein-coupled receptor kinases (GRKs) and arrestin proteins are sequentially recruited by agonist-occupied Gα(q)-coupled receptors to terminate phospholipase C signaling, preventing prolonged/inappropriate contractile signaling. However, these proteins also play roles in the regulation of several mitogen-activated protein kinase (MAPK) signaling cascades known to be essential for vascular remodeling. Here we investigated whether different arrestin isoforms regulate endothelin and nucleotide receptor MAPK signaling in rat aortic smooth muscle cells (ASMCs). When intracellular Ca(2+) levels were assessed in isolated ASMCs loaded with Ca(2+)-sensitive dyes, P2Y(2) and ET(A) receptor desensitization was attenuated by selective small-interfering (si)RNA-mediated depletion of G protein-coupled receptor kinase 2 (GRK2). Using similar siRNA techniques, knockdown of arrestin2 prevented P2Y(2) receptor desensitization and enhanced and prolonged p38 and ERK MAPK signals, while arrestin3 depletion was ineffective. Conversely, arrestin3 knockdown prevented ET(A) receptor desensitization and attenuated ET1-stimulated p38 and ERK signals, while arrestin2 depletion had no effect. Using Transwell assays to assess agonist-stimulated ASMC migration, we found that UTP-stimulated migration was markedly attenuated following arrestin2 depletion, while ET1-stimulated migration was attenuated following knockdown of either arrestin. These data highlight a differential arrestin-dependent regulation of ET(A) and P2Y(2) receptor-stimulated MAPK signaling. GRK2 and arrestin expression are essential for agonist-stimulated ASMC migration, which, as a key process in vascular remodeling, highlights the potential roles of GRK2 and arrestin proteins in the progression of vascular disease

  5. Tyrosine phosphorylation of GluK2 up-regulates kainate receptor-mediated responses and downstream signaling after brain ischemia

    PubMed Central

    Zhu, Qiu-Ju; Kong, Fan-Shu; Xu, Hao; Wang, Yi; Du, Cai-Ping; Sun, Chang-Cheng; Liu, Yong; Li, Ting; Hou, Xiao-Yu

    2014-01-01

    Although kainate receptors play important roles in ischemic stroke, the molecular mechanisms underlying postischemic regulation of kainate receptors remain unclear. In this study we demonstrate that Src family kinases contribute to the potentiation of kainate receptor function. Brain ischemia and reperfusion induce rapid and sustained phosphorylation of the kainate receptor subunit GluK2 by Src in the rat hippocampus, implicating a critical role for Src-mediated GluK2 phosphorylation in ischemic brain injury. The NMDA and kainate receptors are involved in the tyrosine phosphorylation of GluK2. GluK2 binds to Src, and the tyrosine residue at position 590 (Y590) on GluK2 is a major site of phosphorylation by Src kinases. GluK2 phosphorylation at Y590 is responsible for increases in whole-cell currents and calcium influx in response to transient kainate stimulation. In addition, GluK2 phosphorylation at Y590 facilitates the endocytosis of GluK2 subunits, and the activation of JNK3 and its substrate c-Jun after long-term kainate treatment. Thus, Src phosphorylation of GluK2 plays an important role in the opening of kainate receptor channels and downstream proapoptosis signaling after brain ischemia. The present study reveals an additional mechanism for the regulation of GluK2-containing kainate receptors by Src family kinases, which may be of pathological significance in ischemic stroke. PMID:25201974

  6. Egr-1 is a critical regulator of EGF-receptor-mediated expansion of subventricular zone neural stem cells and progenitors during recovery from hypoxia–hypoglycemia

    PubMed Central

    Alagappan, Dhivyaa; Balan, Murugabaskar; Jiang, Yuhui; Cohen, Rachel B.; Kotenko, Sergei V.; Levison, Steven W.

    2013-01-01

    We recently established that the EGF-R (epidermal growth factor receptor) (EGF-R) is an essential regulator of the reactive expansion of SVZ (subventricular zone) NPs (neural precursors) that occurs during recovery from hypoxic-ischemic brain injury. The purpose of the current studies was to identify the conditions and the transcription factor (s) responsible for inducing the EGF-R. Here, we show that the increase in EGF-R expression and the more rapid division of the NPs can be recapitulated in in vitro by exposing SVZ NPs to hypoxia and hypoglycemia simultaneously, but not separately. The EGF-R promoter has binding sites for multiple transcription factors that includes the zinc finger transcription factor, Egr-1. We show that Egr-1 expression increases in NPs, but not astrocytes, following hypoxia and hypoglycemia where it accumulates in the nucleus. To determine whether Egr-1 is necessary for EGF-R expression, we used SiRNAs (small interfering RNA) specific for Egr-1 to decrease Egr-1 expression. Knocking-down Egr-1 decreased basal levels of EGF-R and it abolished the stress-induced increase in EGF-R expression. By contrast, HIF-1 accumulation did not contribute to EGF-R expression and FGF-2 only modestly induced EGF-R. These studies establish a new role for Egr-1 in regulating the expression of the mitogenic EGF-R. They also provide new information into mechanisms that promote NP expansion and provide insights into strategies for amplifying the numbers of stem cells for CNS (central nervous system) regeneration. PMID:23763269

  7. GABAB receptor-mediated tonic inhibition regulates the spontaneous firing of locus coeruleus neurons in developing rats and in citalopram-treated rats

    PubMed Central

    Wang, Han-Ying; Kuo, Zhao-Chen; Fu, Yu-Show; Chen, Ruei-Feng; Min, Ming-Yuan; Yang, Hsiu-Wen

    2015-01-01

    Noradrenaline (NA)-releasing neurons in the locus coeruleus (LC) provide NA to the forebrain. Their activity is believed to be a key factor regulating the wakefulness/arousal level of the brain. In this study, we found that the activity of NA-releasing neurons in the LC (LC neurons) was subject to γ-aminobutyric acid (GABA) tonic inhibition through GABAB receptors (GABABRs), but not GABAA receptors. The intensity of GABABR tonic inhibition was found to depend on ambient GABA levels, as it was dramatically increased by blockade of GABA reuptake. It also varied with the function of GABABRs. The GABABR activity on LC neurons was found to increase with postnatal age up to postnatal days 8–10, resulting in increased tonic inhibition. Interestingly, there was no significant difference in the spontaneous activity of LC neurons at different postnatal ages unless GABABR tonic inhibition was blocked. These results show that, during postnatal development, there is a continuous increase in GABABR tonic inhibition that maintains the activity of LC neurons at a proper level. In male, but not female, rats, chronic perinatal treatment with citalopram, a selective serotonin reuptake inhibitor, reduced GABABR activity and tonic inhibition, which might result in the significantly higher spontaneous activity of LC neurons seen in these animals. In conclusion, our results show that GABABR-mediated tonic inhibition has a direct impact on the spontaneous activity of LC neurons and that the extent of the effect varies with ambient GABA levels and functionality of GABABR signalling. PMID:25556794

  8. Role of constitutive androstane receptor in Toll-like receptor-mediated regulation of gene expression of hepatic drug-metabolizing enzymes and transporters.

    PubMed

    Shah, Pranav; Guo, Tao; Moore, David D; Ghose, Romi

    2014-01-01

    Impairment of drug disposition in the liver during inflammation has been attributed to downregulation of gene expression of drug-metabolizing enzymes (DMEs) and drug transporters. Inflammatory responses in the liver are primarily mediated by Toll-like receptors (TLRs). We have recently shown that activation of TLR2 or TLR4 by lipoteichoic acid (LTA) and lipopolysaccharide (LPS), respectively, leads to the downregulation of gene expression of DMEs/transporters. However, the molecular mechanism underlying this downregulation is not fully understood. The xenobiotic nuclear receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), regulate the expression of DMEs/transporter genes. Downregulation of DMEs/transporters by LTA or LPS was associated with reduced expression of PXR and CAR genes. To determine the role of CAR, we injected CAR(+/+) and CAR(-/-) mice with LTA or LPS, which significantly downregulated (~40%-60%) RNA levels of the DMEs, cytochrome P450 (Cyp)3a11, Cyp2a4, Cyp2b10, uridine diphosphate glucuronosyltransferase 1a1, amine N-sulfotransferase, and the transporter, multidrug resistance-associated protein 2, in CAR(+/+) mice. Suppression of most of these genes was attenuated in LTA-treated CAR(-/-) mice. In contrast, LPS-mediated downregulation of these genes was not attenuated in CAR(-/-) mice. Induction of these genes by mouse CAR activator 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene was sustained in LTA- but not in LPS-treated mice. Similar observations were obtained in humanized CAR mice. We have replicated these results in primary hepatocytes as well. Thus, LPS can downregulate DME/transporter genes in the absence of CAR, whereas the effect of LTA on these genes is attenuated in the absence of CAR, indicating the potential involvement of CAR in LTA-mediated downregulation of DME/transporter genes. PMID:24194512

  9. P2Y2 receptor-mediated lymphotoxin-α secretion regulates intercellular cell adhesion molecule-1 expression in vascular smooth muscle cells.

    PubMed

    Seye, Cheikh I; Agca, Yuksel; Agca, Cansu; Derbigny, Wilbert

    2012-03-23

    The proinflammatory cytokine lymphotoxin-α (LTA) is thought to contribute to the pathogenesis of atherosclerosis. However, the mechanisms that regulate its expression in vascular smooth muscle cells (VSMC) are poorly understood. The ability of exogenous nucleotides to stimulate LTA production was evaluated in VSMC by ELISA. The P2Y(2) nucleotide receptor (P2Y(2)R) agonist UTP stimulates a strong and sustained release of LTA from WT but not P2Y(2)R(-/-) SMC. Assessment of LTA gene transcription by LTA promoter-luciferase construct indicated that LTA levels are controlled at the level of transcription. We show using RNAi techniques that knockdown of the actin-binding protein filamin-A (FLNa) severely impaired nucleotide-induced Rho activation and consequent Rho-mediated LTA secretion. Reintroduction of FLNa in FLNa RNAi SMC rescued UTP-induced LTA expression. In addition, we found that UTP-stimulated LTA secretion is not sensitive to brefeldin A, which blocks the formation of vesicles involved in protein transport from the endoplasmic reticulum to the Golgi apparatus, suggesting that P2Y(2)R/filamin-mediated secretion of LTA is independent of the endoplasmic reticulum/Golgi secretory vesicle route. Furthermore, UTP selectively induces ICAM-1 expression in WT but not SMC expressing a truncated P2Y(2)R deficient in LTA secretion. These data suggest that P2Y(2)R recruits FLNa to provide a cytoskeletal scaffold necessary for Rho signaling pathway upstream of LTA release and subsequent stimulation of ICAM-1 expression on vascular smooth muscle cells. PMID:22298782

  10. Pregnane X receptor mediated-transcription regulation of CYP3A by glycyrrhizin: a possible mechanism for its hepatoprotective property against lithocholic acid-induced injury.

    PubMed

    Wang, Yu-Guang; Zhou, Jian-Ming; Ma, Zeng-Chun; Li, Hua; Liang, Qian-De; Tan, Hong-Ling; Xiao, Cheng-Rong; Zhang, Bo-Li; Gao, Yue

    2012-10-25

    Licorice (LE) has been commonly used in traditional Chinese medicine (TCM) for over 4000 years to reconcile various drugs and for hepatic disorders. Glycyrrhizin is the main bioactive component isolated from LE herbs. In the present study we examined the effects of glycyrrhizin on pregnane X receptor (PXR)-mediated CYP3A expression and its hepatoprotective activity. Treatment of HepG2 cells with glycyrrhizin resulted in marked increase in both CYP3A4 mRNA and protein levels. The transcriptional activation of the CYP3A4 gene through glycyrrhizin is PXR-dependent, as shown in transient transfection experiments. Glycyrrhizin activates the DNA-binding capacity of the PXR for the CYP3A4 element responding to xenobiotic signals, as measured by the electrophoretic-mobility shift assay (EMSA). These results indicate that the induction of the hepatic CYP3A4 by glycyrrhizin is mediated through the activation of PXR. The next aim of the current study was to determine whether the activation of PXR and induction of CYP3A by glycyrrhizin prevents hepatotoxicity during cholestasis as a mechanism of hepatoprotection. Mice were pretreated with glycyrrhizin prior to induction of intrahepatic cholestasis using lithocholic acid (LCA). Pre-treatment with glycyrrhizin, as well as the PXR activator pregnenolone 16α-carbontrile (PCN), prevents the increase in plasma ALT and AST activity, multifocal necrosis and prevents an increase in a level of serum LCA level in mice, as compared with the results in the mice treated with LCA alone. Activation of the PXR by glycyrrhizin results in induction of CYP3A11 (CYP3A4 for human) expression and inhibition of CYP7A1 through an increase in small heterodimer partner (SHP) expression. Glycyrrhizin regulates the expression of the gene mentioned above to prevent toxic accumulation of bile acids in the liver and it also protects mouse livers from the harmful effects of LCA. In conclusion, PXR-mediated effects on CYP3A and CYP7A may contribute to the

  11. The ubiquitin-proteasome system regulates plant hormone signaling

    PubMed Central

    Santner, Aaron; Estelle, Mark

    2011-01-01

    SUMMARY Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated. PMID:20409276

  12. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    SciTech Connect

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-04-15

    Highlights: {yields} Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. {yields} Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. {yields} Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor {alpha}, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  13. Hormonal regulation of hepatocyte tight junctional permeability

    SciTech Connect

    Lowe, P.J.; Miyai, K.; Steinbach, J.H.; Hardison, W.G.M. Univ. of California, San Diego )

    1988-10-01

    The authors have investigated the effects of hormones on the permeability of the hepatocyte tight junction to two probes, ({sup 14}C)sucrose and horseradish peroxidase, using one-pass perfused rat livers. Using a single injection of horseradish peroxidase the authors have demonstrated that this probe can enter bile by two pathways that are kinetically distinct, a fast pathway, which corresponds to the passage of the probe through the hepatocyte tight junctions, and a slow pathway, which corresponds to the transcytotic entry into bile. The passage of horseradish peroxidase through the hepatocyte tight junctions was confirmed by electron microscopic histochemistry. Vasopressin, epinephrine, and angiotensin II, hormones that act in the hepatocyte through the intracellular mediators calcium, the inositol polyphosphates, and diacylglycerol, increased the bile-to-perfusion fluid ratio of ({sup 14}C)sucrose and the rapid entry of horseradish peroxidase into bile, indicating that the permeability of the tight junctions to these probes was increased. The effect of these hormones was dose dependent and in the cases of angiotensin II and epinephrine was inhibited by the specific inhibitors (Sar{sup 1},Thr{sup 8})angiotensin II and prazosin, respectively. Dibutyryl adenosine 3{prime},5{prime}-cyclic monophosphate did not affect the ({sup 14}C)sucrose bile-to-perfusion fluid ratio or the fast entry of horseradish peroxidase into bile. These results suggest that the hepatocyte tight junction can no longer be considered a static system of pores separating blood from bile. It is rather a dynamic barrier potentially capable of influencing the composition of the bile.

  14. Regulation of Seasonal Reproduction by Hypothalamic Activation of Thyroid Hormone

    PubMed Central

    Shinomiya, Ai; Shimmura, Tsuyoshi; Nishiwaki-Ohkawa, Taeko; Yoshimura, Takashi

    2014-01-01

    Organisms living outside the tropics measure the changes in the length of the day to adapt to seasonal changes in the environment. Animals that breed during spring and summer are called long-day breeders, while those that breed during fall are called short-day breeders. Although the influence of thyroid hormone in the regulation of seasonal reproduction has been known for several decades, its precise mechanism remained unknown. Recent studies revealed that the activation of thyroid hormone within the mediobasal hypothalamus plays a key role in this phenomenon. This localized activation of the thyroid hormone is controlled by thyrotropin (thyroid-stimulating hormone) secreted from the pars tuberalis of the pituitary gland. Although seasonal reproduction is a rate-limiting factor in animal production, genes involved in photoperiodic signal transduction pathway could emerge as potential targets to facilitate domestication. PMID:24600435

  15. Light-Mediated Hormonal Regulation of Plant Growth and Development.

    PubMed

    de Wit, Mieke; Galvão, Vinicius Costa; Fankhauser, Christian

    2016-04-29

    Light is crucial for plant life, and perception of the light environment dictates plant growth, morphology, and developmental changes. Such adjustments in growth and development in response to light conditions are often established through changes in hormone levels and signaling. This review discusses examples of light-regulated processes throughout a plant's life cycle for which it is known how light signals lead to hormonal regulation. Light acts as an important developmental switch in germination, photomorphogenesis, and transition to flowering, and light cues are essential to ensure light capture through architectural changes during phototropism and the shade avoidance response. In describing well-established links between light perception and hormonal changes, we aim to give insight into the mechanisms that enable plants to thrive in variable light environments. PMID:26905653

  16. MULTIPLE STABLE PERIODIC SOLUTIONS IN A MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE

    EPA Science Inventory

    ABSTRACT

    The pituitary hormones, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), and the ovarian hormones, estradiol (E2), progesterone (P4), and inhibin (Ih), are five hormones important for the regulation and maintenance of the human menstrual cycle. The...

  17. Regulation of Growth Hormone by the Splanchnic Area.

    PubMed

    Barja-Fernandez, Silvia; Folgueira, Cintia; Castelao, Cecilia; Leis, Rosaura; Crujeiras, Ana B; Casanueva, Felipe F; Seoane, Luisa M

    2016-01-01

    The regulation of growth hormone (GH) was traditionally thought to be under the control of two main hypothalamic neuropeptides; GH-releasing hormone and somatostatin. In 1999, with the isolation of ghrelin, as a gastric-derived peptide with potent GH-releasing activity, concept of regulation of the somatotropic axis completely changed. In addition to its GH-releasing activity, ghrelin exhibited the capacity to modulate food intake and body weight. The role of this splanchnic factor in regulating GH as a nexus of energy balance control and GH are explored in this chapter. From a physiological standpoint, a novel mechanism of GH regulation mediated by ghrelin exists, implicating the peripheral modulation of the cannabinoid receptor. PMID:26940386

  18. Effects of chronic growth hormone overexpression on appetite-regulating brain gene expression in coho salmon.

    PubMed

    Kim, Jin-Hyoung; Leggatt, Rosalind A; Chan, Michelle; Volkoff, Hélène; Devlin, Robert H

    2015-09-15

    Organisms must carefully regulate energy intake and expenditure to balance growth and trade-offs with other physiological processes. This regulation is influenced by key pathways controlling appetite, feeding behaviour and energy homeostasis. Growth hormone (GH) transgenesis provides a model where food intake can be elevated, and is associated with dramatic modifications of growth, metabolism, and feeding behaviour, particularly in fish. RNA-Seq and qPCR analyses were used to compare the expression of multiple genes important in appetite regulation within brain regions and the pituitary gland (PIT) of GH transgenic (fed fully to satiation or restricted to a wild-type ration throughout their lifetime) and wild-type coho salmon (Oncorhynchus kisutch). RNA-Seq results showed that differences in both genotype and ration levels resulted in differentially expressed genes associated with appetite regulation in transgenic fish, including elevated Agrp1 in hypothalamus (HYP) and reduced Mch in PIT. Altered mRNA levels for Agrp1, Npy, Gh, Ghr, Igf1, Mch and Pomc were also assessed using qPCR analysis. Levels of mRNA for Agrp1, Gh, and Ghr were higher in transgenic than wild-type fish in HYP and in the preoptic area (POA), with Agrp1 more than 7-fold higher in POA and 12-fold higher in HYP of transgenic salmon compared to wild-type fish. These data are consistent with the known roles of orexigenic factors on foraging behaviour acting via GH and through MC4R receptor-mediated signalling. Igf1 mRNA was elevated in fully-fed transgenic fish in HYP and POA, but not in ration-restricted fish, yet both of these types of transgenic animals have very pronounced feeding behaviour relative to wild-type fish, suggesting IGF1 is not playing a direct role in appetite stimulation acting via paracrine or autocrine mechanisms. The present findings provide new insights on mechanisms ruling altered appetite regulation in response to chronically elevated GH, and on potential pathways by which

  19. Prothoracicotropic hormone regulates developmental timing and body size in Drosophila

    PubMed Central

    McBrayer, Zofeyah; Ono, Hajime; Shimell, MaryJane; Parvy, Jean-Philippe; Beckstead, Robert B.; Warren, James T.; Thummel, Carl S.; Dauphin-Villemant, Chantal; Gilbert, Lawrence I.; O’Connor, Michael B.

    2008-01-01

    Summary In insects, control of body size is intimately linked to nutritional quality as well as environmental and genetic cues that regulate the timing of developmental transitions. Prothoracicotropic hormone (PTTH) has been proposed to play an essential role in regulating the production and/or release of ecdysone, a steroid hormone that stimulates molting and metamorphosis. In this report we examine the consequences on Drosophila development of ablating the PTTH-producing neurons. Surprisingly, PTTH production is not essential for molting or metamorphosis. Instead, loss of PTTH results in delayed larval development and eclosion of larger flies with more cells. Prolonged feeding, without changing the rate of growth, causes the developmental delay and is a consequence of low ecdysteroid titers. These results indicate that final body size in insects is determined by a balance between growth rate regulators such as insulin and developmental timing cues such as PTTH that set the duration of the feeding interval. PMID:18061567

  20. Genetic and hormonal regulation of cambial development.

    PubMed

    Ursache, Robertas; Nieminen, Kaisa; Helariutta, Ykä

    2013-01-01

    The stems and roots of most dicot plants increase in diameter by radial growth, due to the activity of secondary meristems. Two types of meristems function in secondary plant body formation: the vascular cambium, which gives rise to secondary xylem and phloem, and the cork cambium, which produces a bark layer that replaces the epidermis and protects the plant stem from mechanical damage and pathogens. Cambial development, the initiation and activity of the vascular cambium, leads to an accumulation of wood, the secondary xylem tissue. The thick, cellulose-rich cell walls of wood provide a source of cellulose and have the potential to be used as a raw material for sustainable and renewable energy production. In this review, we will discuss what is known about the mechanisms regulating the cambium and secondary tissue development. PMID:22551327

  1. Receptor-mediated mitophagy in yeast and mammalian systems.

    PubMed

    Liu, Lei; Sakakibara, Kaori; Chen, Quan; Okamoto, Koji

    2014-07-01

    Mitophagy, or mitochondria autophagy, plays a critical role in selective removal of damaged or unwanted mitochondria. Several protein receptors, including Atg32 in yeast, NIX/BNIP3L, BNIP3 and FUNDC1 in mammalian systems, directly act in mitophagy. Atg32 interacts with Atg8 and Atg11 on the surface of mitochondria, promoting core Atg protein assembly for mitophagy. NIX/BNIP3L, BNIP3 and FUNDC1 also have a classic motif to directly bind LC3 (Atg8 homolog in mammals) for activation of mitophagy. Recent studies have shown that receptor-mediated mitophagy is regulated by reversible protein phosphorylation. Casein kinase 2 (CK2) phosphorylates Atg32 and activates mitophagy in yeast. In contrast, in mammalian cells Src kinase and CK2 phosphorylate FUNDC1 to prevent mitophagy. Notably, in response to hypoxia and FCCP treatment, the mitochondrial phosphatase PGAM5 dephosphorylates FUNDC1 to activate mitophagy. Here, we mainly focus on recent advances in our understanding of the molecular mechanisms underlying the activation of receptor-mediated mitophagy and the implications of this catabolic process in health and disease. PMID:24903109

  2. Hormonal regulation of leaf senescence in Lilium.

    PubMed

    Arrom, Laia; Munné-Bosch, Sergi

    2012-10-15

    In addition to floral senescence and longevity, the control of leaf senescence is a major factor determining the quality of several cut flowers, including Lilium, in the commercial market. To better understand the physiological process underlying leaf senescence in this species, we evaluated: (i) endogenous variation in the levels of phytohormones during leaf senescence, (ii) the effects of leaf darkening in senescence and associated changes in phytohormones, and (iii) the effects of spray applications of abscisic acid (ABA) and pyrabactin on leaf senescence. Results showed that while gibberellin 4 (GA(4)) and salicylic acid (SA) contents decreased, that of ABA increased during the progression of leaf senescence. However, dark-induced senescence increased ABA levels, but did not affect GA(4) and SA levels, which appeared to correlate more with changes in air temperature and/or photoperiod than with the induction of leaf senescence. Furthermore, spray applications of pyrabactin delayed the progression of leaf senescence in cut flowers. Thus, we conclude that (i) ABA plays a major role in the regulation of leaf senescence in Lilium, (ii) darkness promotes leaf senescence and increases ABA levels, and (iii) exogenous applications of pyrabactin inhibit leaf senescence in Lilium, therefore suggesting that it acts as an antagonist of ABA in senescing leaves of cut lily flowers. PMID:22854182

  3. Circadian regulation of hormone signaling and plant physiology.

    PubMed

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways. PMID:27061301

  4. Current insights into hormonal regulation of microspore embryogenesis

    PubMed Central

    Żur, Iwona; Dubas, Ewa; Krzewska, Monika; Janowiak, Franciszek

    2015-01-01

    Plant growth regulator (PGR) crosstalk and interaction with the plant’s genotype and environmental factors play a crucial role in microspore embryogenesis (ME), controlling microspore-derived embryo differentiation and development as well as haploid/doubled haploid plant regeneration. The complexity of the PGR network which could exist at the level of biosynthesis, distribution, gene expression or signaling pathways, renders the creation of an integrated model of ME-control crosstalk impossible at present. However, the analysis of the published data together with the results received recently with the use of modern analytical techniques brings new insights into hormonal regulation of this process. This review presents a short historical overview of the most important milestones in the recognition of hormonal requirements for effective ME in the most important crop plant species and complements it with new concepts that evolved over the last decade of ME studies. PMID:26113852

  5. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity

    PubMed Central

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  6. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity.

    PubMed

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  7. Hormonal regulation of medullary bone metabolism in the laying hen

    SciTech Connect

    Harrison, J.R.

    1987-01-01

    A new organ culture system for the study of bone formation has been developed using medullary bone, a non-structural, metabolically active form of bone which is found in the marrow cavities of egg-laying birds. In the presence of fetal calf serum, bone explants were viable in culture by morphological criteria, and retained large numbers of osteoblasts and osteoclasts. Incorporation of /sup 3/H-proline into collagenase-digestible protein (CDP) and non-collagen protein (NCP) was determined using purified bacterial collagenase. Collagen accounted for over 10% of the total protein labeled. The calcium-regulating hormones, parathyroid hormone and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), caused a dose-dependent inhibition of /sup 3/H-proline incorporation into CDP. The effective dose range of 1,25(OH)2D3 was 0.1 nM to 100 nM, while that of PTH was 1.0 nM to 100 nM. The effect of both hormones was specific for collagen, since /sup 3/H-proline incorporation into NCP was unaffected. Hydroxyproline analysis of bone explants and culture medium revealed that both hormones decreased the total hydroxyroline content of the cultures, suggesting that the inhibition of /sup 3/H-proline incorporation into DCP is due to inhibition of collagen synthesis.

  8. Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions

    PubMed Central

    Mittag, Jens; Lyons, David J.; Sällström, Johan; Vujovic, Milica; Dudazy-Gralla, Susi; Warner, Amy; Wallis, Karin; Alkemade, Anneke; Nordström, Kristina; Monyer, Hannah; Broberger, Christian; Arner, Anders; Vennström, Björn

    2012-01-01

    Thyroid hormone is well known for its profound direct effects on cardiovascular function and metabolism. Recent evidence, however, suggests that the hormone also regulates these systems indirectly through the central nervous system. While some of the molecular mechanisms underlying the hormone’s central control of metabolism have been identified, its actions in the central cardiovascular control have remained enigmatic. Here, we describe a previously unknown population of parvalbuminergic neurons in the anterior hypothalamus that requires thyroid hormone receptor signaling for proper development. Specific stereotaxic ablation of these cells in the mouse resulted in hypertension and temperature-dependent tachycardia, indicating a role in the central autonomic control of blood pressure and heart rate. Moreover, the neurons exhibited intrinsic temperature sensitivity in patch-clamping experiments, providing a new connection between cardiovascular function and core temperature. Thus, the data identify what we believe to be a novel hypothalamic cell population potentially important for understanding hypertension and indicate developmental hypothyroidism as an epigenetic risk factor for cardiovascular disorders. Furthermore, the findings may be beneficial for treatment of the recently identified patients that have a mutation in thyroid hormone receptor α1. PMID:23257356

  9. Tissue specific regulation of lipogenesis by thyroid hormone

    SciTech Connect

    Blennemann, B.; Freake, H. )

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  10. The immune system as a regulator of thyroid hormone activity.

    PubMed

    Klein, John R

    2006-03-01

    It has been known for decades that the neuroendocrine system can both directly and indirectly influence the developmental and functional activity of the immune system. In contrast, far less is known about the extent to which the immune system collaborates in the regulation of endocrine activity. This is particularly true for immune-endocrine interactions of the hypothalamus-pituitary-thyroid axis. Although thyroid-stimulating hormone (TSH) can be produced by many types of extra-pituitary cells--including T cells, B cells, splenic dendritic cells, bone marrow hematopoietic cells, intestinal epithelial cells, and lymphocytes--the functional significance of those TSH pathways remains elusive and historically has been largely ignored from a research perspective. There is now, however, evidence linking cells of the immune system to the regulation of thyroid hormone activity in normal physiological conditions as well as during times of immunological stress. Although the mechanisms behind this are poorly understood, they appear to reflect a process of local intrathyroidal synthesis of TSH mediated by a population of bone marrow cells that traffic to the thyroid. This hitherto undescribed cell population has the potential to microregulate thyroid hormone secretion leading to critical alterations in metabolic activity independent of pituitary TSH output, and it has expansive implications for understanding mechanisms by which the immune system may act to modulate neuroendocrine function during times of host stress. In this article, the basic underpinnings of the hematopoietic-thyroid connection are described, and a model is presented in which the immune system participates in the regulation of thyroid hormone activity during acute infection. PMID:16514168

  11. Hormonal regulation of mannan-binding lectin synthesis in hepatocytes

    PubMed Central

    Sørensen, C M; Hansen, T K; Steffensen, R; Jensenius, J C; Thiel, S

    2006-01-01

    Activation of the complement system via the plasma protein mannan-binding lectin (MBL) provides a first line of defence against infections. The plasma level of MBL is, in part, determined genetically, but may also be influenced by different hormones in vivo. Here we study the hormonal regulation of MBL synthesis from the human hepatocyte cell line HuH-7. Cells were exposed to medium with growth hormone (GH), hydrocortisone, insulin-like growth factor (IGF)-1, insulin, interleukin (IL)-6 or thyroid hormones (T3 or T4). After 3 days the concentration of MBL in the culture supernatants was determined and the amount of mRNA for MBL was measured, relative to mRNA for β2 microglobulin. GH, IL-6, T3 and T4 significantly increased MBL synthesis in a dose-dependent manner, while hydrocortisone, insulin and IGF-1 had no effect. T3 caused a fourfold increase at 1 nM of T3 (P < 0·001) and at 100 nM of T3 the production was increased more than eightfold. The effect of T4 was less potent, reaching an eightfold increase at 1 µM of T4 (P < 0·001). GH augmented the production of MBL threefold at a concentration of 100 ng/ml (P = 0·018) with no further effect up to 10 µg/ml, whereas IL-6 caused only a very weak increase in MBL production. MBL mRNA levels were stable during the first 24 h of T3 stimulation but increased significantly between 24 and 48 h. The results suggest that MBL synthesis in humans may be increased by thyroid hormone and GH, whereas it does not exhibit a classical IL-6-dependent response. PMID:16792688

  12. Plant Hormonal Regulation of Nitrogen-Fixing Nodule Organogenesis

    PubMed Central

    Ryu, Hojin; Cho, Hyunwoo; Choi, Daeseok; Hwang, Ildoo

    2012-01-01

    Legumes have evolved symbiotic interactions with rhizobial bacteria to efficiently utilize nitrogen. Recent progress in symbiosis has revealed several key components of host plants required for nitrogen-fixing nodule organogenesis, in which complicated metabolic and signaling pathways in the host plant are reprogrammed to generate nodules in the cortex upon perception of the rhizobial Nod factor. Following the recognition of Nod factors, plant hormones are likely to be essential throughout nodule organogenesis for integration of developmental and environmental signaling cues into nodule development. Here, we review the molecular events involved in plant hormonal regulation and signaling cross-talk for nitrogen-fixing nodule development, and discuss how these signaling networks are integrated into Nod factor-mediated signaling during plant-microbe interactions. PMID:22820920

  13. Hippocampal Wnt Signaling: Memory Regulation and Hormone Interactions.

    PubMed

    Fortress, Ashley M; Frick, Karyn M

    2016-06-01

    Wnt signaling has emerged in recent years as a major player in both nervous system development and adult synaptic plasticity. Of particular relevance to researchers studying learning and memory, Wnt signaling is critical for normal functioning of the hippocampus, a brain region that is essential for many types of memory formation and whose dysfunction is implicated in numerous neurodegenerative and psychiatric conditions. Impaired hippocampal Wnt signaling is implicated in several of these conditions, however, little is known about how Wnt signaling mediates hippocampal memory formation. This review will provide a general overview of Wnt signaling and discuss evidence demonstrating a key role for Wnt signaling in hippocampal memory formation in both normal and disease states. The regulation of Wnt signaling by ovarian sex steroid hormones will also be highlighted, given that the neuroprotection afforded by Wnt-hormone interactions may have significant implications for cognitive function in aging, neurodegenerative disease, and ischemic injury. PMID:25717070

  14. Gonadal hormone regulation of the emotion circuitry in humans.

    PubMed

    van Wingen, G A; Ossewaarde, L; Bäckström, T; Hermans, E J; Fernández, G

    2011-09-15

    Gonadal hormones are known to influence the regulation of emotional responses and affective states. Whereas fluctuations in progesterone and estradiol are associated with increased vulnerability for mood disorders, testosterone is mainly associated with social dominance, aggressive, and antisocial behavior. Here, we review recent functional neuroimaging studies that have started to elucidate how these hormones modulate the neural circuitry that is important for emotion regulation, which includes the amygdala and the medial prefrontal (mPFC) and orbitofrontal cortex (OFC). The amygdala is thought to generate emotional responses, and the prefrontal brain regions to regulate those responses. Overall, studies that have investigated women during different phases of the menstrual cycle suggest that progesterone and estradiol may have opposing actions on the amygdala and prefrontal cortex. In addition, the influence of exogenous progesterone appears to be dose-dependent. Endogenous testosterone concentrations are generally positively correlated to amygdala and OFC responses, and exogenous testosterone increases amygdala reactivity. Whereas the administration of progesterone increases amygdala reactivity and its connectivity with the mPFC, testosterone administration increases amygdala reactivity but decreases its connectivity with the OFC. We propose that this opposing influence on amygdala-prefrontal coupling may contribute to the divergent effects of progesterone and testosterone on emotion regulation and behavioral inhibition, respectively, which may promote the differential vulnerability to various psychiatric disorders between women and men. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain. PMID:21540080

  15. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    PubMed Central

    Shen, Minqian; Shi, Haifei

    2015-01-01

    The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis. PMID:26491440

  16. Studies on the hormonal regulation of hepatic metabolism

    SciTech Connect

    Conricode, K.M.

    1990-01-01

    The effects of hormones on glycolysis, glycogenolysis, and the pentose phosphate pathway in freshly isolated rat hepatocytes were studied. Epidermal growth factor (EGF) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) stimulated glycolysis, as measured by lactate production. Both of these agents also increased [sup 3]H[sub 2]O release from [3-[sup 3]H]glucose, a measure of flux through phosphofructo-1-kinase, the key regulatory enzyme of glycolysis. The stimulations of glycolysis were not secondary to stimulation of glycogenolysis, since neither EGF nor TPA affected glucose production by hepatocytes. EGF, but not TPA, produced a small increase in the level of fructose 2,6-bisphosphate, an activator of phosphofructo-1-kinase. Both EGF and TPA produced a small decrease in the level of citrate, an inhibitor of phosphofructo-1-kinase. In addition, both of these agents stimulated flux through the pentose phosphate pathway, as measured by [sup 14]CO[sub 2] production from [1-[sup 14]C]glucose. The similar effects of EGF and TPA suggest that protein kinase C may be a mediator of EGF action in hepatocytes. EGF and vasopressin, a Ca[sup 2+]-mobilizing hormone in liver, stimulated glycolysis in Ca[sup 2+]-depleted cells, in which hormones are unable to mobilize Ca[sup 2+] from internal pools. This suggests that protein kinase C is also involved in the stimulation of glycolysis by vasopressin. The hypothesis that regulation of phospholipase A[sub 2] by specific inhibitory proteins is involved in hormone action was also examined. Several proteins were found to inhibit or stimulate phospholipase A[sub 2] in vitro in a fashion that was entirely dependent upon assay conditions. The nonspecificity of proteins an the variation of effects with assay condition casts doubt on the importance of this mechanism of regulation in cellular signal transduction.

  17. Thyroid hormones regulate levels of thyrotropin-releasing-hormone mRNA in the paraventricular nucleus

    SciTech Connect

    Koller, K.J.; Wolff, R.S.; Warden, M.K.; Zoeller, R.T.

    1987-10-01

    Cellular levels of messenger RNA encoding thyrotropin-releasing hormone (TRH) were measured in the paraventricular nucleus of the hypothalamus and the reticular nucleus of the thalamus in male rats after chemical thyroidectomy and thyroid hormone, replacement. TRH mRNA levels were measured by quantitative in situ hybridization histochemistry using a /sup 35/S-labeled synthetic 48-base oligodeoxynucleotide probe and quantitative autoradiography. Chemical thyroidectomy, produced by the administration of 6-(n-propyl)-2-thiouracil (PrSur), reduced plasma thyroxine below detection limits and significantly increased TRH mRNA in the paraventricular nucleus. Treatments with exogenous L-triiodothyronine (T/sub 3/) reduced TRH mRNA to the same level in both hypothyroid and euthyroid animals. Neither PrSur treatment nor T/sub 3/ replacement influenced TRH mRNA levels in the reticular nucleus of the thalamus. Blot hybridization analysis of electrophoretically fractionated total RNA from pituitaries of these animals indicated that thyrotropin-..beta.. mRNA levels were elevated after thyroidectomy and reduced by T/sub 3/ treatment, showing that the pituitary-thyroid axis was indeed stimulated by PrSur treatment. These results suggest that thyroid hormones are involved, either directly or indirectly, in regulating the biosynthesis of TRH in the thyrotropic center of the hypothalamus.

  18. Enzyme induction and histopathology elucidate aryl hydrocarbon receptor-mediated versus non-aryl hydrocarbon receptor-mediated effects of Aroclor 1268 in American mink (Neovison vison).

    PubMed

    Folland, William R; Newsted, John L; Fitzgerald, Scott D; Fuchsman, Phyllis C; Bradley, Patrick W; Kern, John; Kannan, Kurunthachalam; Zwiernik, Matthew J

    2016-03-01

    Polychlorinated biphenyl (PCB) concentrations reported in preferred prey and blubber of bottlenose dolphins from the Turtle-Brunswick River estuary (Georgia, USA) suggest the potential for adverse effects. However, PCBs in Turtle-Brunswick River estuary dolphins are primarily derived from Aroclor 1268, and predicting toxic effects of Aroclor 1268 is uncertain because of the mixture's unique composition and associated physiochemical characteristics. These differences suggest that toxicity benchmarks for other PCB mixtures may not be relevant to dolphins exposed to Aroclor 1268. American mink (Neovison vison) were used as a surrogate model for cetaceans to characterize mechanisms of action associated with Aroclor 1268 exposure. Mink share similarities in phylogeny and life history with cetaceans and are characteristically sensitive to PCBs, making them an attractive surrogate species for marine mammals in ecotoxicity studies. Adult female mink and a subsequent F1 generation were exposed to Aroclor 1268 through diet, and effects on enzyme induction, histopathology, thyroid hormone regulation, hematology, organ weights, and body condition index were compared to a negative control and a 3,3',4,4',5-pentachlorobiphenyl (PCB 126)-positive control. Aroclor 1268 dietary exposure concentrations ranged from 1.8 µg/g wet weight to 29 µg/g wet weight. Anemia, hypothyroidism, and hepatomegaly were observed in mink exposed to Aroclor 1268 beyond various dietary thresholds. Cytochrome P450 induction and squamous epithelial proliferation jaw lesions were low in Aroclor 1268 treatments relative to the positive control. Differences in enzyme induction and the development of squamous epithelial proliferation jaw lesions between Aroclor 1268 treatments and the positive control, coupled with effects observed in Aroclor 1268 treatments not observed in the positive control, indicate that mechanisms additional to the aryl hydrocarbon receptor-mediated pathway are associated with

  19. Hormonal regulation of uterine chemokines and immune cells

    PubMed Central

    Park, Dong-Wook

    2011-01-01

    The ultimate function of the endometrium is to allow the implantation of a blastocyst and to support pregnancy. Cycles of tissue remodeling ensure that the endometrium is in a receptive state during the putative 'implantation window', the few days of each menstrual cycle when an appropriately developed blastocyst may be available to implant in the uterus. A successful pregnancy requires strict temporal regulation of maternal immune function to accommodate a semi-allogeneic embryo. To preparing immunological tolerance at the onset of implantation, tight temporal regulations are required between the immune and endocrine networks. This review will discuss about the action of steroid hormones on the human endometrium and particularly their role in regulating the inflammatory processes associated with endometrial receptivity. PMID:22384440

  20. Regulation of hormone-sensitive renal phosphate transport.

    PubMed

    Gattineni, Jyothsna; Friedman, Peter A

    2015-01-01

    Phosphate is essential for growth and maintenance of the skeleton and for generating high-energy phosphate compounds. Evolutionary adaptation to high dietary phosphorous in humans and other terrestrial vertebrates involves regulated mechanisms assuring the efficient renal elimination of excess phosphate. These mechanisms prominently include PTH, FGF23, and Vitamin D, which directly and indirectly regulate phosphate transport. Disordered phosphate homeostasis is associated with pathologies ranging from kidney stones to kidney failure. Chronic kidney disease results in hyperphosphatemia, an elevated calcium×phosphate product with considerable morbidity and mortality, mostly associated with adverse cardiovascular events. This chapter highlights recent findings and insights regarding the hormonal regulation of renal phosphate transport along with imbalances of phosphate balance due to acquired or inherited diseases states. PMID:25817872

  1. Osteoblast hydraulic conductivity is regulated by calcitonin and parathyroid hormone

    NASA Technical Reports Server (NTRS)

    Hillsley, M. V.; Frangos, J. A.

    1996-01-01

    It is our hypothesis that osteoblasts play a major role in regulating bone (re)modeling by regulating interstitial fluid (ISF) flow through individual bone compartments. We hypothesize that osteoblasts of the blood-bone membrane lining the bone surfaces are capable of regulating transosseous fluid flow. This regulatory function of the osteoblasts was tested in vitro by culturing a layer of rat calvarial osteoblasts on porous membranes. Such a layer of osteoblasts subjected to 7.3 mm Hg of hydrostatic pressure posed a significant resistance to fluid flow across the cell layer similar in magnitude to the resistance posed by endothelial monolayers in vitro. The hydraulic conductivity, the volumetric fluid flux per unit pressure drop, of the osteoblast layer was altered in response to certain hormones. Hydraulic conductivity decreased approximately 40% in response to 33 nM parathyroid hormone, while it exhibited biphasic behavior in response to calcitonin: increased 40% in response to 100 nM calcitonin and decreased 40% in response to 1000 nM calcitonin. Further, activation of adenylate cyclase by forskolin dramatically increased the hydraulic conductivity, while elevation of intracellular calcium, [Ca2+]i, by the calcium ionophore A23187 initially decreased the hydraulic conductivity at 5 minutes before increasing conductivity by 30 minutes. These results suggest that cyclic adenosine monophosphate (cAMP) and [Ca2+]i may mediate changes in the osteoblast hydraulic conductivity. The increase in hydraulic conductivity in response to 100 nM calcitonin and the decrease in response to PTH suggest that the stimulatory and inhibitory effects on bone formation of calcitonin and parathyroid hormone, respectively, may be due in part to alterations in bone fluid flow.

  2. Negative regulation of juvenile hormone analog for ecdysteroidogenic enzymes.

    PubMed

    Ogihara, Mari H; Hikiba, Juri; Iga, Masatoshi; Kataoka, Hiroshi

    2015-09-01

    Disruption of the appropriate balance between juvenile hormone (JH) and ecdysteroids causes abnormal insect development. The application of a JH analog (JHA) during the early days of the final (fifth) instar induces dauer larvae with low ecdysteroid titers in insects, but the mechanism that underlies the action of JHA remains unclear. In this study, we clarified the negative effects of JHA on ecdysteroidogenic enzymes. JHA application to Bombyx mori larvae during the early stage of the fifth instar suppressed the expression of four enzymes, i.e., neverland (nvd), spook, phantom, and disembodied but not non-molting glossy and shadow. Furthermore, JHA application reduced the amount of 7-dehydrocholesterol, a metabolite produced by Nvd, in both the prothoracic glands and hemolymph, indicating JHA can disrupt ecdysteroidogenic pathway from the first step. Neck ligation resulted in increased nvd expression, whereas JHA application reversed this increase. These results suggest that the endogenous JH represses ecdysteroidogenesis during the early days in final instar larvae. Neck ligation and JHA application had no substantial effects on the expression of a transcription factor, ftz-f1, or a prothoracicotropic hormone receptor, torso; therefore, the inhibitory regulation of JHA may not involve these factors. Further analysis is required to clarify the regulation of JHA in ecdysteroidogenesis, but this study showed that JHA, and probably endogenous JH, can suppress the transcription of four of six ecdysteroidogenic enzymes. This regulation may be essential for maintaining the appropriate balance between JH and ecdysone during insect development. PMID:25907890

  3. Juvenile hormone regulation of longevity in the migratory monarch butterfly.

    PubMed

    Herman, W S; Tatar, M

    2001-12-22

    Monarch butterflies (Danaus plexippus) of eastern North America are well known for their long-range migration to overwintering roosts in south-central Mexico. An essential feature of this migration involves the exceptional longevity of the migrant adults; individuals persist from August/September to March while their summer counterparts are likely to live less than two months as adults. Migrant adults persist during a state of reproductive diapause in which both male and female reproductive development is arrested as a consequence of suppressed synthesis of juvenile hormone. Here, we describe survival in monarch butterflies as a function of the migrant syndrome. We show that migrant adults are longer lived than summer adults when each are maintained under standard laboratory conditions, that the longevity of migrant adults is curtailed by treatment with juvenile hormone and that the longevity of summer adults is increased by 100% when juvenile hormone synthesis is prevented by surgical removal of its source, the corpora allatum. Thus, monarch butterfly persistence through a long winter season is ensured in part by reduced ageing that is under endocrine regulation, as well as by the unique environmental properties of their winter roost sites. Phenotypic plasticity for ageing is an integral component of the monarch butterflies' migration-diapause syndrome. PMID:11749703

  4. Neurohypophysial Hormones Regulate Amphibious Behaviour in the Mudskipper Goby.

    PubMed

    Sakamoto, Tatsuya; Nishiyama, Yudai; Ikeda, Aoi; Takahashi, Hideya; Hyodo, Susumu; Kagawa, Nao; Sakamoto, Hirotaka

    2015-01-01

    The neurohypophysial hormones, arginine vasotocin and isotocin, regulate both hydromineral balance and social behaviors in fish. In the amphibious mudskipper, Periophthalmus modestus, we previously found arginine-vasotocin-specific regulation of aggressive behavior, including migration of the submissive subordinate into water. This migration also implies the need for adaptation to dehydration. Here, we examined the effects of arginine vasotocin and isotocin administration on the amphibious behavior of individual mudskippers in vivo. The mudskippers remained in the water for an increased period of time after 1-8 h of intracerebroventricular (ICV) injection with 500 pg/g arginine vasotocin or isotocin. The 'frequency of migration' was decreased after ICV injection of arginine vasotocin or isotocin, reflecting a tendency to remain in the water. ICV injections of isotocin receptor antagonist with arginine vasotocin or isotocin inhibited all of these hormonal effects. In animals kept out of water, mRNA expression of brain arginine vasotocin and isotocin precursors increased 3- and 1.5-fold, respectively. Given the relatively wide distribution of arginine vasotocin fibres throughout the mudskipper brain, induction of arginine vasotocin and isotocin under terrestrial conditions may be involved also in the preference for an aquatic habitat as ligands for brain isotocin receptors. PMID:26230718

  5. Neurohypophysial Hormones Regulate Amphibious Behaviour in the Mudskipper Goby

    PubMed Central

    Sakamoto, Tatsuya; Nishiyama, Yudai; Ikeda, Aoi; Takahashi, Hideya; Hyodo, Susumu; Kagawa, Nao; Sakamoto, Hirotaka

    2015-01-01

    The neurohypophysial hormones, arginine vasotocin and isotocin, regulate both hydromineral balance and social behaviors in fish. In the amphibious mudskipper, Periophthalmus modestus, we previously found arginine-vasotocin-specific regulation of aggressive behavior, including migration of the submissive subordinate into water. This migration also implies the need for adaptation to dehydration. Here, we examined the effects of arginine vasotocin and isotocin administration on the amphibious behavior of individual mudskippers in vivo. The mudskippers remained in the water for an increased period of time after 1–8 h of intracerebroventricular (ICV) injection with 500 pg/g arginine vasotocin or isotocin. The ‘frequency of migration’ was decreased after ICV injection of arginine vasotocin or isotocin, reflecting a tendency to remain in the water. ICV injections of isotocin receptor antagonist with arginine vasotocin or isotocin inhibited all of these hormonal effects. In animals kept out of water, mRNA expression of brain arginine vasotocin and isotocin precursors increased 3- and 1.5-fold, respectively. Given the relatively wide distribution of arginine vasotocin fibres throughout the mudskipper brain, induction of arginine vasotocin and isotocin under terrestrial conditions may be involved also in the preference for an aquatic habitat as ligands for brain isotocin receptors. PMID:26230718

  6. Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release

    PubMed Central

    Ignacio, Daniele Leão; da S. Silvestre, Diego H.; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  7. Thyroid hormone and estrogen regulate exercise-induced growth hormone release.

    PubMed

    Ignacio, Daniele Leão; da S Silvestre, Diego H; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade; Carvalho, Denise P; Werneck-de-Castro, João Pedro

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  8. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio).

    PubMed

    Ma, Zhiyuan; Yu, Yijun; Tang, Song; Liu, Hongling; Su, Guanyong; Xie, Yuwei; Giesy, John P; Hecker, Markus; Yu, Hongxia

    2015-12-01

    As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane×receptor (P×R)) pathways at 120hpf. Exposure to 0.5μM TBOEP significantly (p<0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were affected by TBOEP at the concentrations studied. Receptor-mediated responses (in vivo) and mammalian cell lines receptor binding assay (in vitro) combined with published information suggest that TBOEP can modulate receptor-mediated, endocrine process (in vivo/in vitro), particularly ER and MR. PMID:26562049

  9. Hormones

    MedlinePlus

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  10. Regulation of gonadotropin-releasing hormone gene expression.

    PubMed

    Kim, Helen H

    2007-09-01

    Reproductive function is influenced by several internal and external cues, which ultimately exert their effects on the gonadotropin-releasing hormone (GnRH) neuron. As the final common pathway in the brain for regulating reproduction, GnRH neurons receive signals from multiple cell types, and alterations in GnRH production impact reproductive competence. Historically, the paucity of GnRH neurons and their scattered distribution in the brain have limited the study of GnRH gene expression. With transgenic technology, newer model systems (such as immortalized GnRH-expressing cell lines and GnRH-reporter gene transgenic mice) have been developed, making molecular studies possible. This article provides an update on the molecular mechanisms responsible for the regulation of GnRH gene expression, focusing on tissue-specific expression and transcriptional regulation. After an overview of GnRH gene structure, synthesis, and secretion, the model systems for studying GnRH neurons are examined. The molecular mechanisms that translate physiologic stimuli, such as nutritional status or stress, into changes in GnRH expression will be reviewed, concentrating on the regulatory regions within the GnRH gene promoter and the critical transcription factors. PMID:17710727

  11. Thyroid hormone regulation of heme oxidation in the liver.

    PubMed Central

    Smith, T J; Drummond, G S; Kourides, I A; Kappas, A

    1982-01-01

    The effects of 3,5,3'-triiodothyronine (T3) on heme oxygenase (EC 1.14.99.3) activity and cytochrome P-450 content in liver were examined in thyroidectomized rats. T3, when administered for 5 days at a dose of 6 micrograms/100 g of body weight, stimulated basal heme oxygenase activity approximately equal to 2-fold compared to diluent-treated animals. The induction of heme oxygenase by cobalt heme also was enhanced approximately equal to 3-fold in T3-treated animals. T3 treatment lowered cytochrome P-450 content by approximately equal to 50% and potentiated the depletion of this heme protein after cobalt heme administration. Reverse T3 had no effect either on cytochrome P-450 content or on heme oxygenase activity in liver. The time course of response to a single dose of T3 (50 micrograms/100 g of body weight) revealed that both basal and cobalt heme-induced heme oxygenase activity peaked at 48 hr and that cytochrome P-450 content declined to approximately equal to 40% of controls at 96 hr. Examination of microsomal proteins by polyacrylamide gel electrophoresis after T3 treatment disclosed that major bands in the Mr approximately equal to 50,000-55,000 region were diminished. The administration of T3 together with SKF-525A, a compound known to complex with the heme prosthetic group of cytochrome P-450, resulted in partial preservation of these proteins. These data indicate that thyroid hormone can regulate heme oxygenase activity and concomitantly can lower cytochrome P-450 content in liver. The hormone also can act in a synergistic fashion to enhance the response of hepatic heme oxygenase to a chemical inducer of the enzyme. Thyroid status thus may be a potentially significant determinant of the rate of heme oxidation in the liver. Images PMID:6961431

  12. Hemoglobin Uptake by Paracoccidioides spp. Is Receptor-Mediated

    PubMed Central

    Bailão, Elisa Flávia Luiz Cardoso; Parente, Juliana Alves; Pigosso, Laurine Lacerda; de Castro, Kelly Pacheco; Fonseca, Fernanda Lopes; Silva-Bailão, Mirelle Garcia; Báo, Sônia Nair; Bailão, Alexandre Melo; Rodrigues, Marcio L.; Hernandez, Orville; McEwen, Juan G.; Soares, Célia Maria de Almeida

    2014-01-01

    Iron is essential for the proliferation of fungal pathogens during infection. The availability of iron is limited due to its association with host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host; however, little is known regarding how Paracoccidioides species incorporate and metabolize this ion. In this work, host iron sources that are used by Paracoccidioides spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and hemoglobin was observed. Paracoccidioides spp. present hemolytic activity and have the ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MSE proteomic approaches, fungal growth in the presence of hemoglobin was shown to result in the positive regulation of transcripts that encode putative hemoglobin receptors, in addition to the induction of proteins that are required for amino acid metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin in vitro. Antisense RNA technology and Agrobacterium tumefaciens-mediated transformation were used to generate mitotically stable Pbrbt5 mutants. The knockdown strain had a lower survival inside macrophages and in mouse spleen when compared with the parental strain, which suggested that Rbt5 could act as a virulence factor. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through receptor-mediated pathways that might be relevant for pathogenic mechanisms. PMID:24831516

  13. Receptor-mediated endocytosis and brain delivery of therapeutic biologics.

    PubMed

    Xiao, Guangqing; Gan, Liang-Shang

    2013-01-01

    Transport of macromolecules across the blood-brain-barrier (BBB) requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn) in regulating the efflux of Immunoglobulin G (IgG) from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed. PMID:23840214

  14. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics

    PubMed Central

    Xiao, Guangqing

    2013-01-01

    Transport of macromolecules across the blood-brain-barrier (BBB) requires both specific and nonspecific interactions between macromolecules and proteins/receptors expressed on the luminal and/or the abluminal surfaces of the brain capillary endothelial cells. Endocytosis and transcytosis play important roles in the distribution of macromolecules. Due to the tight junction of BBB, brain delivery of traditional therapeutic proteins with large molecular weight is generally not possible. There are multiple pathways through which macromolecules can be taken up into cells through both specific and nonspecific interactions with proteins/receptors on the cell surface. This review is focused on the current knowledge of receptor-mediated endocytosis/transcytosis and brain delivery using the Angiopep-2-conjugated system and the molecular Trojan horses. In addition, the role of neonatal Fc receptor (FcRn) in regulating the efflux of Immunoglobulin G (IgG) from brain to blood, and approaches to improve the pharmacokinetics of therapeutic biologics by generating Fc fusion proteins, and increasing the pH dependent binding affinity between Fc and FcRn, are discussed. PMID:23840214

  15. Regulation of calf renal 25-hydroxyvitamin D-hydroxylase activities by calcium-regulating hormones.

    PubMed

    Engstrom, G W; Goff, J P; Horst, R L; Reinhardt, T A

    1987-11-01

    Parathyroid hormone and 1,25-dihydroxyvitamin D3 had opposite effects on calf renal 25-hydroxyvitamin D3 24-, 23-, and 1 alpha-hydroxylase activities. Parathyroid hormone administration increased renal 25-hydroxyvitamin D3-1 alpha-hydroxylase activity 7-fold while 25-hydroxyvitamin D3-23- and 24-hydroxylase activities were essentially the same as controls. Administration of 1,25-dihydroxyvitamin D3 increased 25-hydroxyvitamin D3-23-hydroxylase and 24-hydroxylase activities 4-fold and decreased 25-hydroxyvitamin D3-1 alpha-hydroxylase activity to undetectable concentrations. Vitamin D deficiency increased 25-hydroxyvitamin D3-1 alpha -hydroxylase activity 13-fold, and 25-hydroxyvitamin D3-23-hydroxylase and 24-hydroxylase activities were undetectable. These results confirm previous reports with regard to control of renal 25-hydroxyvitamin D3-24-hydroxylase and 1 alpha -hydroxylase in other species and represent new findings relative to the control of 25-hydroxyvitamin D3-23-hydroxylase. Plasma P was lower and 1,25-dihydroxyvitamin D3 higher in calves treated with parathyroid hormone, and Ca and 1,25-dihydroxyvitamin D3 were lower in the vitamin D-deficient calves. 1,25-Dihydroxyvitamin D3-treated calves had higher plasma P and lower Mg than controls. Further studies using this calf model should lead to better understanding of Ca-regulating hormones control of vitamin D metabolism. PMID:3693631

  16. Promoter polymorphisms regulating corticotrophin-releasing hormone transcription in vitro.

    PubMed

    Wagner, U; Wahle, M; Moritz, F; Wagner, U; Häntzschel, H; Baerwald, C G O

    2006-02-01

    To investigate whether polymorphisms in the corticotrophin-releasing hormone (CRH) promoter are associated with altered CRH gene regulation, we studied the reactivity of three recently described promoter variants in vitro. The 3625 bp variants A1B1, A2B1 and A2B2 of the human CRH promoter were cloned in the 5' region to a luciferase reporter gene and transiently transfected into both mouse anterior pituitary cells AtT-20D16vF2 and pheochromocytoma cells PC12. Incubation with 8-Br-cAMP alone or in combination with cytokines significantly enhanced the promoter activity in both cell lines studied by up to 22-fold. However, dexamethasone antagonised cAMP effects on CRH expression in AtT-20 cells while showing no effect on PC12 cells, indicating that tissue-specific factors play a crucial role. Among the haplotypes studied, A1B1 exhibited the greatest reactivity on various stimuli. Electric mobility shift assay (EMSA) was performed to study whether the described polymorphic nucleotide sequences in the 5' region of the hCRH gene interfere with binding of nuclear proteins. A specific DNA protein complex was detected at position -2353 bp for the wild type sequence only, possibly interfering with a binding site for the activating transcription factor 6 (ATF6). Taken together, this is the first study to demonstrate that CRH promoter reactivity varies between the compound promoter alleles. PMID:16523405

  17. Thyroid hormones regulate skeletal muscle regeneration after acute injury.

    PubMed

    Leal, Anna Lúcia R C; Albuquerque, João Paulo C; Matos, Marina S; Fortunato, Rodrigo S; Carvalho, Denise P; Rosenthal, Doris; da Costa, Vânia Maria Corrêa

    2015-02-01

    We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03%) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue. PMID:24798447

  18. Transcriptional regulation of adipocyte hormone-sensitive lipase by glucose.

    PubMed

    Smih, Fatima; Rouet, Philippe; Lucas, Stéphanie; Mairal, Aline; Sengenes, Coralie; Lafontan, Max; Vaulont, Sophie; Casado, Marta; Langin, Dominique

    2002-02-01

    Hormone-sensitive lipase (HSL) catalyzes the rate-limiting step in the mobilization of fatty acids from adipose tissue, thus determining the supply of energy substrates in the body. HSL mRNA was positively regulated by glucose in human adipocytes. Pools of stably transfected 3T3-F442A adipocytes were generated with human adipocyte HSL promoter fragments from -2,400/+38 to -31/+38 bp linked to the luciferase gene. A glucose-responsive region was mapped within the proximal promoter (-137 bp). Electromobility shift assays showed that upstream stimulatory factor (USF)-1 and USF2 and Sp1 and Sp3 bound to a consensus E-box and two GC-boxes in the -137-bp region. Cotransfection of the -137/+38 construct with USF1 and USF2 expression vectors produced enhanced luciferase activity. Moreover, HSL mRNA levels were decreased in USF1- and USF2-deficient mice. Site-directed mutagenesis of the HSL promoter showed that the GC-boxes, although contributing to basal promoter activity, were dispensable for glucose responsiveness. Mutation of the E-box led to decreased promoter activity and suppression of the glucose response. Analogs and metabolites were used to determine the signal metabolite of the glucose response. The signal is generated downstream of glucose-6-phosphate in the glycolytic pathway before the triose phosphate step. PMID:11812735

  19. Mechanisms of crosstalk between endocrine systems: regulation of sex steroid hormone synthesis and action by thyroid hormones.

    PubMed

    Duarte-Guterman, Paula; Navarro-Martín, Laia; Trudeau, Vance L

    2014-07-01

    Thyroid hormones (THs) are well-known regulators of development and metabolism in vertebrates. There is increasing evidence that THs are also involved in gonadal differentiation and reproductive function. Changes in TH status affect sex ratios in developing fish and frogs and reproduction (e.g., fertility), hormone levels, and gonad morphology in adults of species of different vertebrates. In this review, we have summarized and compared the evidence for cross-talk between the steroid hormone and thyroid axes and present a comparative model. We gave special attention to TH regulation of sex steroid synthesis and action in both the brain and gonad, since these are important for gonad development and brain sexual differentiation and have been studied in many species. We also reviewed research showing that there is a TH system, including receptors and enzymes, in the brains and gonads in developing and adult vertebrates. Our analysis shows that THs influences sex steroid hormone synthesis in vertebrates, ranging from fish to pigs. This concept of crosstalk and conserved hormone interaction has implications for our understanding of the role of THs in reproduction, and how these processes may be dysregulated by environmental endocrine disruptors. PMID:24685768

  20. [dFOXO Transcription Factor Regulates Juvenile Hormone Metabolism in Drosophila melanogaster Females].

    PubMed

    Rauschenbach, I Yu; Karpova, E K; Gruntenko, N E

    2015-09-01

    dFOXO transcription factor is a component of the insulin/insulin-like growth factor signaling pathway in Drosophila. Juvenile hormone negatively regulates dFOXO gene expression. In the present work, the effect of hypomorphic dFOXO mutation on juvenile hormone metabolism under normal and stressing conditions and on D. melanogaster female resistance to thermal stress was studied. It was demonstrated that dFOXO mutation in D. melanogaster females induces (1) an increase in the level of juvenile hormone degradation and in the intensity of the response of the juvenile hormone metabolism system to thermal stress and (2) a decrease in thermal stress resistance. These parameters are indicators of the level of juvenile hormone synthesis and indicate its decrease in females with decreased dFOXO expression. Thus, the presence of feedback in the regulation of dFOXO gene expression by juvenile hormone was established for the first time. PMID:26606805

  1. Hormonal regulation of fibrinogen synthesis in cultured hepatocytes.

    PubMed

    Grieninger, G; Plant, P W; Liang, T J; Kalb, R G; Amrani, D; Mosesson, M W; Hertzberg, K M; Pindyck, J

    1983-06-27

    Most of what was originally known of the effects of hormones on fibrinogen synthesis was based, as noted above, on experiments involving surgical removal of endocrine glands. Some caution should be exercised when using such in vivo experiments to derive the hormonal requirements of fibrinogen synthesis, however, since multiple hormonal alterations often occur in these animals. The development of a variety of ex vivo systems has allowed investigators to more carefully control the hepatocellular environment. The work of several laboratories, including our own, has now made it clear that hormones and other agents directly stimulate hepatocellular synthesis of fibrinogen. From the studies summarized here, using chick embryo hepatocytes as a model, several generalizations emerge: Fibrinogen synthesis may be considered to be a "constitutive" liver function, since hepatocytes cultured without serum, hormones or other macromolecular supplements synthesize this protein at a basal rate for several days. Addition of certain hormones (e.g. T3, dexamethasone, insulin), individually and in physiological concentrations, elicits an increase in fibrinogen production, varying with each agent in onset, dose, minimum exposure required and accompanying effects on the synthesis of other plasma proteins. Glucocorticoids and thyroid hormones are similar in the selectivity of their stimulation (neither affects albumin or transferrin synthesis) but differ in that thyroid hormones need to be present for just a short "triggering" period. The stimulation of fibrinogen synthesis by insulin occurs only following prolonged exposure to concentrations 10-times higher than the very low doses to which albumin synthesis responds rapidly. PMID:6307104

  2. BACULOVIRUS REPLICATION ALTERS HORMONE-REGULATED HOST DEVELOPMENT.

    EPA Science Inventory

    The baculovirus Lymantria dispar nuclear polyhedrosis virus interferes with insect larval development by altering the host's hormonal system. The level of haemolymph ecdysteroids, the insect moulting hormone, was found to be higher in virus-infected larvae than in uninfected cont...

  3. Hormones, hormonal agents, and neuropeptides involved in the neuroendocrine regulation of sleep in humans.

    PubMed

    Kotronoulas, Grigorios; Stamatakis, Antonios; Stylianopoulou, Fotini

    2009-01-01

    Sleep is an essential ubiquitous biological process, a periodical state of quiescence in which there is minimal processing of sensory information and no interaction with conspecifics or the environment. Despite relevant research on sleep structure and testing of numerous endogenous sleep-affecting chemicals, questions as to the precise mechanisms and functions of sleep remain without satisfactory responses. The purpose of this review is to report on current evidence as regards the effect of several endogenous and exogenous hormones, hormonal agents, and neuropeptides on sleep onset or wake process, when administered in humans in specific doses and via different routes. The actions of several peptides are presented in detail. Some of them (growth hormone releasing hormone, ghrelin, galanin, neuropeptide Y) seem to promote sleep, whereas others (corticotropin, somatostatin) impair its continuity. PMID:20045796

  4. Hormones

    MedlinePlus

    ... the foods you eat Sexual function Reproduction Mood Endocrine glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, thymus, thyroid, adrenal ...

  5. Juvenile hormone regulates extreme mandible growth in male stag beetles.

    PubMed

    Gotoh, Hiroki; Cornette, Richard; Koshikawa, Shigeyuki; Okada, Yasukazu; Lavine, Laura Corley; Emlen, Douglas J; Miura, Toru

    2011-01-01

    The morphological diversity of insects is one of the most striking phenomena in biology. Evolutionary modifications to the relative sizes of body parts, including the evolution of traits with exaggerated proportions, are responsible for a vast range of body forms. Remarkable examples of an insect trait with exaggerated proportions are the mandibular weapons of stag beetles. Male stag beetles possess extremely enlarged mandibles which they use in combat with rival males over females. As with other sexually selected traits, stag beetle mandibles vary widely in size among males, and this variable growth results from differential larval nutrition. However, the mechanisms responsible for coupling nutrition with growth of stag beetle mandibles (or indeed any insect structure) remain largely unknown. Here, we demonstrate that during the development of male stag beetles (Cyclommatus metallifer), juvenile hormone (JH) titers are correlated with the extreme growth of an exaggerated weapon of sexual selection. We then investigate the putative role of JH in the development of the nutritionally-dependent, phenotypically plastic mandibles, by increasing hemolymph titers of JH with application of the JH analog fenoxycarb during larval and prepupal developmental periods. Increased JH signaling during the early prepupal period increased the proportional size of body parts, and this was especially pronounced in male mandibles, enhancing the exaggerated size of this trait. The direction of this response is consistent with the measured JH titers during this same period. Combined, our results support a role for JH in the nutrition-dependent regulation of extreme mandible growth in this species. In addition, they illuminate mechanisms underlying the evolution of trait proportion, the most salient feature of the evolutionary diversification of the insects. PMID:21731659

  6. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms.

    PubMed

    Mahmoud, Rand; Wainwright, Steven R; Galea, Liisa A M

    2016-04-01

    Neurogenesis within the adult hippocampus is modulated by endogenous and exogenous factors. Here, we review the role of sex hormones in the regulation of adult hippocampal neurogenesis in males and females. The review is framed around the potential functional implications of sex hormone regulation of adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation, which may be related to sex differences in incidence and severity of dementia and depression. We present findings from preclinical studies of endogenous fluctuations in sex hormones relating to reproductive function and ageing, and from studies of exogenous hormone manipulations. In addition, we discuss the modulating roles of sex, age, and reproductive history on the relationship between sex hormones and neurogenesis. Because sex hormones have diverse targets in the central nervous system, we overview potential mechanisms through which sex hormones may influence hippocampal neurogenesis. Lastly, we advocate for a more systematic consideration of sex and sex hormones in studying the functional implications of adult hippocampal neurogenesis. PMID:26988999

  7. Targeted gene delivery via N-acetylglucosamine receptor mediated endocytosis.

    PubMed

    Singh, Bijay; Maharjan, Sushila; Kim, You-Kyoung; Jiang, Tai; Islam, Mohammad Ariful; Kang, Sang-Kee; Cho, Myung-Haing; Choi, Yun-Jaie; Cho, Chong-Su

    2014-11-01

    Receptor-mediated endocytosis is a promising approach of gene delivery into the target cells via receptor-ligand interaction. Vimentins at the cell surface are recently known to bind N-acetylglucosamine (GlcNAc) residue, therefore, the cell surfaces of vimentin-expressing cells could be targeted by using the GlcNAc residue as a specific ligand for receptor-mediated gene delivery. Here, we have developed polymeric gene delivery vectors, based on poly(ethylene oxide)(PEO) and poly(aspartamide), namely poly[(aspartamide)(diethylenetriamine)]-b-[PEO-(GlcNAc)] (PADPG) and poly[(aspartamide)(diethylenetriamine)]-b-[PEO] (PADP) to elucidate the efficiency of GlcNAc ligand for gene delivery through receptor mediated endocytosis. To determine the efficiency of these polymeric vectors for specific gene delivery, the DNA condensation ability of PADPG and PADP and the subsequent formation of polymeric nanoparticles were confirmed by gel retardation assay and transmission electron microscopy respectively. Both PADPG and PADP had lower cytotoxicity than polyethylenimine 25 K (PEI 25 K). However, their transfection efficiency was comparatively lower than PEI 25 K due to hydrophilic property of PEO in the vectors. To observe the stability of polymeric nanoparticles, the transfection of PADPG and PADP was carried out in the presence of serum. Favorably, the interfering effect of serum on the transfection efficiency of PADPG and PADP was also very low. Finally, when the cell specificity of these polymeric vectors was investigated, PADPG had high gene transfection in vimentin-expressing cells than vimentin-deficiency cells. The high transfection efficiency of PADPG was attributed to the GlcNAc in the polymeric vector which interact specifically with vimentin in the cells for the receptor-mediated endocytosis. The competitive inhibition assay further proved the receptor-mediated endocytosis of PADPG. Thus, this study demonstrates that conjugation of GlcNAc is an effective and rational

  8. Prostaglandin E2 inhibits vasotocin-induced osmotic water permeability in the frog urinary bladder by EP1-receptor-mediated activation of NO/cGMP pathway.

    PubMed

    Bachteeva, Vera; Fock, Ekaterina; Lavrova, Elena; Nikolaeva, Svetlana; Gambaryan, Stepan; Parnova, Rimma

    2007-07-01

    PGE(2) is a well-known inhibitor of the antidiuretic hormone-induced increase of osmotic water permeability (OWP) in different osmoregulatory epithelia; however, the mechanisms underlying this effect of PGE(2) are not completely understood. Here, we report that, in the frog Rana temporaria urinary bladder, EP(1)-receptor-mediated inhibition of arginine-vasotocin (AVT)-induced OWP by PGE(2) is attributed to increased generation of nitric oxide (NO) in epithelial cells. It was shown that the inhibitory effect of 17-phenyl-trinor-PGE(2) (17-ph-PGE(2)), an EP(1) agonist, on AVT-induced OWP was significantly reduced in the presence of 7-nitroindazole (7-NI), a neuronal NO synthase (nNOS) inhibitor. NO synthase (NOS) activity in both lysed and intact epithelial cells measured as a rate of conversion of l-[(3)H]arginine to l-[(3)H]citrulline was Ca(2+) dependent and inhibited by 7-NI. PGE(2) and 17-ph-PGE(2), but not M&B-28767 (EP(3) agonist) or butaprost (EP(2) agonist), stimulated NOS activity in epithelial cells. The above effect of PGE(2) was abolished in the presence of SC-19220, an EP(1) antagonist. 7-NI reduced the stimulatory effect of 17-ph-PGE(2) on NOS activity. 17-ph-PGE(2) increased intracellular Ca(2+) concentration and cGMP in epithelial cells. Western blot analysis revealed an nNOS expression in epithelial cells. These results show that the inhibitory effect of PGE(2) on AVT-induced OWP in the frog urinary bladder is based at least partly on EP(1)-receptor-mediated activation of the NO/cGMP pathway, suggesting a novel cross talk between AVT, PGE(2), and nNOS that may be important in the regulation of water transport. PMID:17363677

  9. [Molecular physiology of receptor mediated endocytosis and its role in overcoming multidrug resistance].

    PubMed

    Severin, E S; Posypanova, G A

    2011-06-01

    Receptor-mediated endocytosis plays important role in the selective uptake of proteins at the plasma membrane of eukaryotic cells. Endocytosis regulates many processes of cell signalling by controlling the number of functional receptors on the cell surface. The article reviews the mechanism of clathrin-dependent endocytosis and the possibility of using this phenomenon for the targeted delivery of drugs. Use of certain proteins as targeting component of drug delivery systems can significantly improve the selectivity of this drug, as well as to overcome the multidrug resistance of cells resulting from the activity of the ABC-transporters. PMID:21874867

  10. Posttranscriptional regulation of rat growth hormone gene expression: increased message stability and nuclear polyadenylation accompany thyroid hormone depletion.

    PubMed Central

    Murphy, D; Pardy, K; Seah, V; Carter, D

    1992-01-01

    In thyroid hormone-depleted rats, the rate of transcription of the growth hormone (GH) gene in the anterior pituitary gland is lower than the rate in euthyroid controls, and there is a corresponding reduction in the abundance of the GH mRNA. Concomitantly, the poly(A) tail of the GH mRNA increases in length. Examination of nuclear RNA from anterior pituitary glands of control and thyroid hormone-depleted rats revealed no difference in the length of pre-mRNAs containing the first and last introns of the GH gene. However, mature nuclear GH RNA is differentially polyadenylated in euthyroid and hypothyroid animals. We suggest that the extent of polyadenylation of the GH transcript is regulated in the cell nucleus concomitant with or subsequent to the splicing of the pre-mRNA. Experiments with anterior pituitary gland explant cultures demonstrated that the GH mRNA from thyroid hormone-depleted rats is more stable than its euthyroid counterpart and that the poly(A) tail may contribute to the differential stability of free GH ribonucleoproteins. Images PMID:1588960

  11. Gene expression profiling of hormonal regulation related to the residual feed intake of Holstein cattle.

    PubMed

    Xi, Y M; Yang, Z; Wu, F; Han, Z Y; Wang, G L

    2015-09-11

    An accumulation of over a decade of research in cattle has shown that genetic selection for decreased residual feed intake (RFI), defined as the difference between an animal's actual feed intake and its expected feed intake, is a viable option for improving feed efficiency and reducing the feed requirements of herds, thereby improving the profitability of cattle producers. Hormonal regulation is one of the most important factors in feed intake. To determine the relationship between hormones and feed efficiency, we performed gene expression profiling of jugular vein serum on hormonal regulation of Chinese Holstein cattle with low and high RFI coefficients. 857 differential expression genes (from 24683 genes) were found. Among these, 415 genes were up-regulated and 442 genes were down-regulated in the low RFI group. The gene ontology (GO) search revealed 6 significant terms and 64 genes associated with hormonal regulation, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) selected the adipocytokine signaling pathway, insulin signaling pathway. In conclusion, the study indicated that the molecular expression of genes associated with hormonal regulation differs in dairy cows, depending on their RFI coefficients, and that these differences may be related to the molecular regulation of the leptin-NPY and insulin signaling pathways. PMID:26231801

  12. Hormonal regulation of focal adhesions in bovine adrenocortical cells: induction of paxillin dephosphorylation by adrenocorticotropic hormone.

    PubMed Central

    Vilgrain, I; Chinn, A; Gaillard, I; Chambaz, E M; Feige, J J

    1998-01-01

    A study of bovine adrenocortical cell shape on adrenocorticotropic hormone (ACTH) challenge showed that the cells round up and develop arborized processes. This effect was found to be (1) specific for ACTH because angiotensin II and basic fibroblast growth factor have no effect; (2) mediated by a cAMP-dependent pathway because forskolin reproduces the effect of the hormone; (3) inhibited by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor, but unchanged by okadaic acid, a serine/threonine phosphatase inhibitor; and (4) correlated with a complete loss of focal adhesions. Biochemical studies of the focal-adhesion-associated proteins showed that pp125fak, vinculin (110 kDa) and paxillin (70 kDa) were detected in the Triton X-100-insoluble fraction from adrenocortical cells. During cell adhesion on fibronectin as substratum, two major phosphotyrosine-containing proteins of molecular masses 125 and 68 kDa were immunodetected in the same fraction. A dramatic decrease in the extent of tyrosine phosphorylation of these proteins was observed within 60 min after treatment with ACTH. No change in pp125fak tyrosine phosphorylation nor in Src activity was detected. In contrast, paxillin was found to be tyrosine-dephosphorylated in a time-dependent manner in ACTH-treated cells. Sodium orthovanadate completely prevented the effect of ACTH. These observations suggest a possible role for phosphotyrosine phosphatases in hormone-dependent cellular regulatory processes. PMID:9601084

  13. Moderate Alcohol Exposure during the Rat Equivalent to the Third Trimester of Human Pregnancy Alters Regulation of GABAA Receptor-Mediated Synaptic Transmission by Dopamine in the Basolateral Amygdala.

    PubMed

    Diaz, Marvin Rafael; Jotty, Karick; Locke, Jason L; Jones, Sara R; Valenzuela, Carlos Fernando

    2014-01-01

    Fetal ethanol (EtOH) exposure leads to a range of neurobehavioral alterations, including deficits in emotional processing. The basolateral amygdala (BLA) plays a critical role in modulating emotional processing, in part, via dopamine (DA) regulation of GABA transmission. This BLA modulatory system is acquired during the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) and we hypothesized that it could be altered by EtOH exposure during this period. We found that exposure of rats to moderate levels of EtOH vapor during the third trimester-equivalent [postnatal days (P) 2-12] alters DA modulation of GABAergic transmission in BLA pyramidal neurons during periadolescence. Specifically, D1R-mediated potentiation of spontaneous inhibitory postsynaptic currents (IPSCs) was significantly attenuated in EtOH-exposed animals. However, this was associated with a compensatory decrease in D3R-mediated suppression of miniature IPSCs. Western blot analysis revealed that these effects were not a result of altered D1R or D3R levels. BLA samples from EtOH-exposed animals also had significantly lower levels of the DA precursor (L-3,4-dihydroxyphenylalanine) but DA levels were not affected. This is likely a consequence of reduced catabolism of DA, as indicated by reduced levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid in the BLA samples. Anxiety-like behavior was not altered in EtOH-exposed animals. This is the first study to demonstrate that the modulatory actions of DA in the BLA are altered by developmental EtOH exposure. Although compensatory adaptations were engaged in our moderate EtOH exposure paradigm, it is possible that these are not able to restore homeostasis and correct anxiety-like behaviors under conditions of heavier EtOH exposure. Therefore, future studies should investigate the potential role of alterations in the modulatory actions of DA in the pathophysiology of fetal alcohol spectrum disorders. PMID

  14. Hormonal regulation of ion and water transport in anuran amphibians.

    PubMed

    Uchiyama, Minoru; Konno, Norifumi

    2006-05-15

    Amphibians occupy a wide variety of ecological habitats, and their adaptation is made possible through the specialization of the epithelia of their osmoregulatory organs, such as the skin, kidney, and urinary bladder, which control the hydromineral and acid-base balance of their internal medium. Amphibians can change drastically plasma Na+, Cl-, and urea levels and excretion rates in response to environmental stimuli such as acute desiccation and changes in external salinity. Several hormones and the autonomic nervous system act to control osmoregulation. Several ion channels including an epithelial sodium channel (ENaC), a urea transporter (UT), and water channels (AQPs) are found in epithelial tissues of their osmoregulatory organs. This mini review examines the currents status of our knowledge about hormone receptors for arginine vasotocin, angiotensin II and aldosterone, and membrane ion channels and transporters, such as ENaC, UT, and AQPs in amphibians. PMID:16472810

  15. Hormonal regulation of wheat growth during hydroponic culture

    NASA Technical Reports Server (NTRS)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  16. Reactivation of apolipoprotein II gene transcription by cycloheximide reveals two steps in the deactivation of estrogen receptor-mediated transcription.

    PubMed

    Sensel, M G; Binder, R; Lazier, C B; Williams, D L

    1994-03-01

    In this report, we describe apolipoprotein II (apoII) gene expression in cell lines derived by stable expression of the chicken estrogen receptor in LMH chicken hepatoma cells. In cell lines expressing high levels of receptor (LMH/2A), apoII gene expression is increased by estrogen 300-fold compared with levels in the receptor-deficient parent LMH line. LMH/2A cells show apoII mRNA induction and turnover kinetics similar to those in chicken liver. Inhibition of protein synthesis with cycloheximide (CHX) or puromycin following estrogen withdrawal superinduces apoII mRNA without affecting apoII mRNA stability. Superinduction is due to an estrogen-independent reactivation of apoII gene transcription. The apoII gene can be reactivated by CHX for up to 24 h following hormone withdrawal, suggesting that the gene is in a repressed yet transcriptionally competent state. These results reveal two distinct events necessary for termination of estrogen receptor-mediated transcription. The first event, removal of hormone, is sufficient to stop transcription when translation is ongoing. The second event is revealed by the CHX-induced superinduction of apoII mRNA following hormone withdrawal. This superinduction suggests that deactivation of estrogen receptor-mediated transcription requires a labile protein. Furthermore, reactivation of apoII gene expression by CHX and estrogen is additive, suggesting that estrogen is unable to overcome repression completely. Thus, a labile protein may act to repress estrogen receptor-mediated transcription of the apoII gene. PMID:8114707

  17. Comparative analyses of lysophosphatidic acid receptor-mediated signaling.

    PubMed

    Fukushima, Nobuyuki; Ishii, Shoichi; Tsujiuchi, Toshifumi; Kagawa, Nao; Katoh, Kazutaka

    2015-06-01

    Lysophosphatidic acid (LPA) is a bioactive lipid mediator that activates G protein-coupled LPA receptors to exert fundamental cellular functions. Six LPA receptor genes have been identified in vertebrates and are classified into two subfamilies, the endothelial differentiation genes (edg) and the non-edg family. Studies using genetically engineered mice, frogs, and zebrafish have demonstrated that LPA receptor-mediated signaling has biological, developmental, and pathophysiological functions. Computational analyses have also identified several amino acids (aa) critical for LPA recognition by human LPA receptors. This review focuses on the evolutionary aspects of LPA receptor-mediated signaling by comparing the aa sequences of vertebrate LPA receptors and LPA-producing enzymes; it also summarizes the LPA receptor-dependent effects commonly observed in mouse, frog, and fish. PMID:25732591

  18. Multiscale Modeling of Virus Entry via Receptor-Mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    2012-11-01

    Virus infections are ubiquitous and remain major threats to human health worldwide. Viruses are intracellular parasites and must enter host cells to initiate infection. Receptor-mediated endocytosis is the most common entry pathway taken by viruses, the whole process is highly complex and dictated by various events, such as virus motions, membrane deformations, receptor diffusion and ligand-receptor reactions, occurring at multiple length and time scales. We develop a multiscale model for virus entry through receptor-mediated endocytosis. The binding of virus to cell surface is based on a mesoscale three dimensional stochastic adhesion model, the internalization (endocytosis) of virus and cellular membrane deformation is based on the discretization of Helfrich Hamiltonian in a curvilinear space using Monte Carlo method. The multiscale model is based on the combination of these two models. We will implement this model to study the herpes simplex virus entry into B78 cells and compare the model predictions with experimental measurements.

  19. Thyroid hormone receptor can modulate retinoic acid-mediated axis formation in frog embryogenesis.

    PubMed Central

    Banker, D E; Eisenman, R N

    1993-01-01

    teratogenesis. The previously characterized retinoic acid-responsive gene, Xhox.lab2, can be induced by thyroid hormone in embryos ectopically expressing thyroid hormone receptor and is less responsive to retinoic acid in such embryos. The fact that both thyroid hormone and retinoic acid can affect overlapping gene expression pathways to produce abnormal embryonic axes and can regulate the same early-expressed gene suggests a model in which thyroid hormone receptor blocks retinoic acid receptor-mediated teratogenesis by directly repressing retinoic acid-responsive genes. Images PMID:7504177

  20. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    SciTech Connect

    Adegbola, Onikepe; Pasternack, Gary R. . E-mail: gpastern@jhmi.edu

    2005-08-26

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing.

  1. NMDA Receptors Mediate Synaptic Competition in Culture

    PubMed Central

    She, Kevin; Craig, Ann Marie

    2011-01-01

    Background Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. Methodology/Principal Findings GluN1 -/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons, both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures, synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures. Conclusions/Significance The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde ‘reward’ signal generated by WT neurons, although in this paradigm there was no ‘punishment’ signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the developing nervous

  2. DYNAMIC BEHAVIOR OF A DELAY-DIFFERENTIAL EQUATION MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE

    EPA Science Inventory


    During the menstrual cycle, pituitary hormones stimulate the growth and development of ovarian follicles and the release of an ovum to be fertilized. The ovarian follicles secrete hormones during the cycle that regulate the production of the pituitary hormones creating positi...

  3. The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation.

    PubMed

    Ou, Qiuxiang; Zeng, Jie; Yamanaka, Naoki; Brakken-Thal, Christina; O'Connor, Michael B; King-Jones, Kirst

    2016-06-28

    Steroid hormones are ancient signaling molecules found in vertebrates and insects alike. Both taxa show intriguing parallels with respect to how steroids function and how their synthesis is regulated. As such, insects are excellent models for studying universal aspects of steroid physiology. Here, we present a comprehensive genomic and genetic analysis of the principal steroid hormone-producing organs in two popular insect models, Drosophila and Bombyx. We identified 173 genes with previously unknown specific expression in steroid-producing cells, 15 of which had critical roles in development. The insect neuropeptide PTTH and its vertebrate counterpart ACTH both regulate steroid production, but molecular targets of these pathways remain poorly characterized. Identification of PTTH-dependent gene sets identified the nuclear receptor HR4 as a highly conserved target in both Drosophila and Bombyx. We consider this study to be a critical step toward understanding how steroid hormone production and release are regulated in all animal models. PMID:27320926

  4. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    SciTech Connect

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxin and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via ..beta..-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents.

  5. Regulation of five tubulin isotypes by thyroid hormone during brain development.

    PubMed

    Aniello, F; Couchie, D; Gripois, D; Nunez, J

    1991-11-01

    Nucleic acid probes derived from the 3' noncoding region of five tubulin cDNAs were used to study the effects of thyroid hormone deficiency on the expression of the mRNAs encoding two alpha (alpha 1 and alpha 2)- and three beta (beta 2, beta 4, and beta 5)-tubulin isotypes in the developing cerebral hemispheres and cerebellum. The content of alpha 1, which markedly declines during development in both brain regions, is maintained at high levels in the hypothyroid cerebellum, whereas it is decreased in the cerebral hemispheres. The alpha 2 level also declines during development and is decreased in both regions by thyroid hormone deficiency, but only during the two first postnatal weeks. Thyroid hormone deficiency slightly increases at all stages the beta 2 level in the cerebellum, whereas a decrease is observed at early stages in the cerebral hemispheres. The beta 5 level seems to be independent of thyroid hormone in the cerebral hemispheres, whereas it decreases at early stages in the hypothyroid cerebellum. Finally, the expression of the brain-specific beta 4 isotype is markedly depressed by thyroid hormone deficiency, particularly in the cerebellum. These data suggest that the genes encoding the tubulin isotypes are, directly or not, differently regulated by thyroid hormone during brain development. This might contribute to abnormal neurite outgrowth seen in the hypothyroid brain and therefore to impairment in brain functions produced by thyroid hormone deficiency. PMID:1717658

  6. The thyrotropin-releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo.

    PubMed

    Sugrue, Michelle L; Vella, Kristen R; Morales, Crystal; Lopez, Marisol E; Hollenberg, Anthony N

    2010-02-01

    The expression of the TRH gene in the paraventricular nucleus (PVH) of the hypothalamus is required for the normal production of thyroid hormone (TH) in rodents and humans. In addition, the regulation of TRH mRNA expression by TH, specifically in the PVH, ensures tight control of the set point of the hypothalamic-pituitary-thyroid axis. Although many studies have assumed that the regulation of TRH expression by TH is at the level of transcription, there is little data available to demonstrate this. We used two in vivo model systems to show this. In the first model system, we developed an in situ hybridization (ISH) assay directed against TRH heteronuclear RNA to measure TRH transcription directly in vivo. We show that in the euthyroid state, TRH transcription is present both in the PVH and anterior/lateral hypothalamus. In the hypothyroid state, transcription is activated in the PVH only and can be shut off within 5 h by TH. In the second model system, we employed transgenic mice that express the Cre recombinase under the control of the genomic region containing the TRH gene. Remarkably, TH regulates Cre expression in these mice in the PVH only. Taken together, these data affirm that TH regulates TRH at the level of transcription in the PVH only and that genomic elements surrounding the TRH gene mediate its regulation by T(3). Thus, it should be possible to identify the elements within the TRH locus that mediate its regulation by T(3) using in vivo approaches. PMID:20032051

  7. Minireview: Regulation of Gap Junction Dynamics by Nuclear Hormone Receptors and Their Ligands

    PubMed Central

    Kapadia, Bhumika J.

    2012-01-01

    Gap junctions are plasma membrane channels comprising connexin proteins that mediate intercellular permeability and communication. The presence, composition, and function of gap junctions can be regulated by diverse sets of physiological signals. Evidence from many hormone-responsive tissues has shown that connexin expression, modification, stability, and localization can be targeted by nuclear hormone receptors and their ligands through both transcriptional and nontranscriptional mechanisms. The focus of this review is to discuss molecular, cellular, and physiological studies that directly link receptor- and ligand-triggered signaling pathways to the regulation of gap junction dynamics. PMID:22935924

  8. Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors

    PubMed Central

    Lu, Changxue; Cheng, Sheue-Yann

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) and thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily. They are ligand-dependent transcription factors that interact with their cognate hormone response elements in the promoters to regulate respective target gene expression to modulate cellular functions. While the transcription activity of each is regulated by their respective ligands, recent studies indicate that via multiple mechanisms PPARs and TRs crosstalk to affect diverse biological functions. Here, we review recent advances in the understanding of the molecular mechanisms and biological impact of crosstalk between these two important nuclear receptors, focusing on their roles in adipogenesis and carcinogenesis. PMID:19741045

  9. Mini-review: regulation of the renal NaCl cotransporter by hormones.

    PubMed

    Rojas-Vega, Lorena; Gamba, Gerardo

    2016-01-01

    The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone. PMID:26511649

  10. Human Mammospheres Secrete Hormone-Regulated Active Extracellular Vesicles

    PubMed Central

    Rodriguez-Suarez, Eva; Gil, David; Royo, Felix; Elortza, Felix; Falcon-Perez, Juan M.; Vivanco, Maria dM.

    2014-01-01

    Breast cancer is a leading cause of cancer-associated death worldwide. One of the most important prognostic factors for survival is the early detection of the disease. Recent studies indicate that extracellular vesicles may provide diagnostic information for cancer management. We demonstrate the secretion of extracellular vesicles by primary breast epithelial cells enriched for stem/progenitor cells cultured as mammospheres, in non-adherent conditions. Using a proteomic approach we identified proteins contained in these vesicles whose expression is affected by hormonal changes in the cellular environment. In addition, we showed that these vesicles are capable of promoting changes in expression levels of genes involved in epithelial-mesenchymal transition and stem cell markers. Our findings suggest that secreted extracellular vesicles could represent potential diagnostic and/or prognostic markers for breast cancer and support a role for extracellular vesicles in cancer progression. PMID:24404144

  11. Computer simulation analysis of the behavior of renal-regulating hormones during hypogravic stress

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1982-01-01

    A computer simulation of a mathematical circulation model is used to study the alterations of body fluids and their electrolyte composition that occur in weightlessness. The behavior of the renal-regulating hormones which control these alterations is compared in simulations of several one-g analogs of weightlessness and space flight. It is shown that the renal-regulating hormones represent a tightly coupled system that responds acutely to volume disturbances and chronically to electrolyte disturbances. During hypogravic conditions these responses lead to an initial suppression of hormone levels and a long-term effect which varies depending on metabolic factors that can alter the plasma electrolytes. In addition, it is found that if pressure effects normalize rapidly, a transition phase may exist which leads to a dynamic multiphasic endocrine response.

  12. Hormonal regulation of Na -K -ATPase in cultured epithelial cells

    SciTech Connect

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-08-01

    Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

  13. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation.

    PubMed

    Fraser, Scott P; Ozerlat-Gunduz, Iley; Brackenbury, William J; Fitzgerald, Elizabeth M; Campbell, Thomas M; Coombes, R Charles; Djamgoz, Mustafa B A

    2014-03-19

    Although ion channels are increasingly being discovered in cancer cells in vitro and in vivo, and shown to contribute to different aspects and stages of the cancer process, much less is known about the mechanisms controlling their expression. Here, we focus on voltage-gated Na(+) channels (VGSCs) which are upregulated in many types of carcinomas where their activity potentiates cell behaviours integral to the metastatic cascade. Regulation of VGSCs occurs at a hierarchy of levels from transcription to post-translation. Importantly, mainstream cancer mechanisms, especially hormones and growth factors, play a significant role in the regulation. On the whole, in major hormone-sensitive cancers, such as breast and prostate cancer, there is a negative association between genomic steroid hormone sensitivity and functional VGSC expression. Activity-dependent regulation by positive feedback has been demonstrated in strongly metastatic cells whereby the VGSC is self-sustaining, with its activity promoting further functional channel expression. Such auto-regulation is unlike normal cells in which activity-dependent regulation occurs mostly via negative feedback. Throughout, we highlight the possible clinical implications of functional VGSC expression and regulation in cancer. PMID:24493753

  14. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice.

    PubMed

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-01-01

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems. PMID:27420076

  15. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice

    PubMed Central

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-01-01

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems PMID:27420076

  16. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms.

    PubMed

    Hazell, Tom J; Islam, Hashim; Townsend, Logan K; Schmale, Matt S; Copeland, Jennifer L

    2016-03-01

    The physiological control of appetite regulation involves circulating hormones with orexigenic (appetite-stimulating) and anorexigenic (appetite-inhibiting) properties that induce alterations in energy intake via perceptions of hunger and satiety. As the effectiveness of exercise to induce weight loss is a controversial topic, there is considerable interest in the effect of exercise on the appetite-regulating hormones such as acylated ghrelin, peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and pancreatic polypeptide (PP). Research to date suggests short-term appetite regulation following a single exercise session is likely affected by decreases in acylated ghrelin and increases in PYY, GLP-1, and PP. Further, this exercise-induced response may be intensity-dependent. In an effort to guide future research, it is important to consider how exercise alters the circulating concentrations of these appetite-regulating hormones. Potential mechanisms include blood redistribution, sympathetic nervous system activity, gastrointestinal motility, cytokine release, free fatty acid concentrations, lactate production, and changes in plasma glucose and insulin concentrations. This review of relevant research suggests blood redistribution during exercise may be important for suppressing ghrelin, while other mechanisms involving cytokine release, changes in plasma glucose and insulin concentrations, SNS activity, and muscle metabolism likely mediate changes in the anorexigenic signals PYY and GLP-1. Overall, changes in appetite-regulating hormones following acute exercise appear to be intensity-dependent, with increasing intensity leading to a greater suppression of orexigenic signals and greater stimulation of anorexigenic signals. However, there is less research on how exercise-induced responses in appetite-regulating hormones differ between sexes or different age groups. A better understanding of how exercise intensity and workload affect appetite across the sexes and life

  17. Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat.

    PubMed Central

    Bayliss, D A; Millhorn, D E; Gallman, E A; Cidlowski, J A

    1987-01-01

    We have examined the effect on respiration of the steroid hormone progesterone, administered either intravenously or directly into the medulla oblongata in anesthetized and paralyzed male and female cats. The carotid sinus and vagus nerves were cut, and end-tidal PCO2 and temperature were kept constant with servo-controllers. Phrenic nerve activity was used to quantitate central respiratory activity. Repeated doses of progesterone (from 0.1 to 2.0 micrograms/kg, cumulative) caused a sustained (greater than 45 min) facilitation of phrenic nerve activity in female and male cats; however, the response was much more variable in females. Progesterone injected into the region of nucleus tractus solitarii, a respiratory-related area in the medulla oblongata, also caused a prolonged stimulation of respiration. Progesterone administration at high concentration by both routes also caused a substantial hypotension. Identical i.v. doses of other classes of steroid hormones (17 beta-estradiol, testosterone, and cortisol) did not elicit the same respiratory effect. Pretreatment with RU 486, a progesterone-receptor antagonist, blocked the facilitatory effect of progesterone. We conclude that progesterone acts centrally through a steroid receptor-mediated mechanism to facilitate respiration. PMID:3478727

  18. Progesterone stimulates respiration through a central nervous system steroid receptor-mediated mechanism in cat.

    PubMed

    Bayliss, D A; Millhorn, D E; Gallman, E A; Cidlowski, J A

    1987-11-01

    We have examined the effect on respiration of the steroid hormone progesterone, administered either intravenously or directly into the medulla oblongata in anesthetized and paralyzed male and female cats. The carotid sinus and vagus nerves were cut, and end-tidal PCO2 and temperature were kept constant with servo-controllers. Phrenic nerve activity was used to quantitate central respiratory activity. Repeated doses of progesterone (from 0.1 to 2.0 micrograms/kg, cumulative) caused a sustained (greater than 45 min) facilitation of phrenic nerve activity in female and male cats; however, the response was much more variable in females. Progesterone injected into the region of nucleus tractus solitarii, a respiratory-related area in the medulla oblongata, also caused a prolonged stimulation of respiration. Progesterone administration at high concentration by both routes also caused a substantial hypotension. Identical i.v. doses of other classes of steroid hormones (17 beta-estradiol, testosterone, and cortisol) did not elicit the same respiratory effect. Pretreatment with RU 486, a progesterone-receptor antagonist, blocked the facilitatory effect of progesterone. We conclude that progesterone acts centrally through a steroid receptor-mediated mechanism to facilitate respiration. PMID:3478727

  19. NHERF-1 and the regulation of renal phosphate reabsoption: a tale of three hormones

    PubMed Central

    Lederer, Eleanor D.

    2012-01-01

    The renal excretion of inorganic phosphate is regulated in large measure by three hormones, namely, parathyroid hormone, dopamine, and fibroblast growth factor-23. Recent experiments have indicated that the major sodium-dependent phosphate transporter in the renal proximal tubule, Npt2a, binds to the adaptor protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1) and in the absence of NHERF-1, the inhibitory effect of these three hormones is absent. From these observations, a new model for the hormonal regulation of renal phosphate transport was developed. The downstream signaling pathways of these hormones results in the phosphorylation of the PDZ 1 domain of NHERF-1 and the dissociation of Npt2a/NHERF-1 complexes. In turn, this dissociation facilitates the endocytosis of Npt2a with a subsequent decrease in the apical membrane abundance of the transporter and a decrease in phosphate reabsorption. The current review outlines the experimental observations supporting the operation of this unique regulatory system. PMID:22535796

  20. Sex steroid hormones regulate constitutive expression of Cyp2e1 in female mouse liver

    PubMed Central

    Cheng, Jie; Gonzalez, Frank J.

    2013-01-01

    CYP2E1 is of paramount toxicological significance because it metabolically activates a large number of low-molecular-weight toxicants and carcinogens. In this context, factors that interfere with Cyp2e1 regulation may critically affect xenobiotic toxicity and carcinogenicity. The aim of this study was to investigate the role of female steroid hormones in the regulation of CYP2E1, as estrogens and progesterone are the bases of contraceptives and hormonal replacement therapy in menopausal women. Interestingly, a fluctuation in the hepatic expression pattern of Cyp2e1 was revealed in the different phases of the estrous cycle of female mice, with higher Cyp2e1 expression at estrus (E) and lower at methestrus (ME), highly correlated with that in plasma gonadal hormone levels. Depletion of sex steroids by ovariectomy repressed Cyp2e1 expression to levels similar to those detected in males and cyclic females at ME. Hormonal supplementation brought Cyp2e1 expression back to levels detected at E. The role of progesterone appeared to be more prominent than that of 17β-estradiol. Progesterone-induced Cyp2e1 upregulation could be attributed to inactivation of the insulin/PI3K/Akt/FOXO1 signaling pathway. Tamoxifen, an anti-estrogen, repressed Cyp2e1 expression potentially via activation of the PI3K/Akt/FOXO1 and GH/STAT5b-linked pathways. The sex steroid hormone-related changes in hepatic Cyp2e1 expression were highly correlated with those observed in Hnf-1α, β-catenin, and Srebp-1c. In conclusion, female steroid hormones are clearly involved in the regulation of CYP2E1, thus affecting the metabolism of a plethora of toxicants and carcinogenic agents, conditions that may trigger several pathologies or exacerbate the outcomes of various pathophysiological states. PMID:23548611

  1. Thyroid Hormone Signalling Genes Are Regulated by Photoperiod in the Hypothalamus of F344 Rats

    PubMed Central

    Russell, Laura; Darras, Veerle M.; Morgan, Peter J.

    2011-01-01

    Seasonal animals adapt their physiology and behaviour in anticipation of climate change to optimise survival of their offspring. Intra-hypothalamic thyroid hormone signalling plays an important role in seasonal responses in mammals and birds. In the F344 rat, photoperiod stimulates profound changes in food intake, body weight and reproductive status. Previous investigations of the F344 rat have suggested a role for thyroid hormone metabolism, but have only considered Dio2 expression, which was elevated in long day photoperiods. Microarray analysis was used to identify time-dependent changes in photoperiod responsive genes, which may underlie the photoperiod-dependent phenotypes of the juvenile F344 rat. The most significant changes are those related to thyroid hormone metabolism and transport. Using photoperiod manipulations and melatonin injections into long day photoperiod (LD) rats to mimic short day (SD), we show photoinduction and photosuppression gene expression profiles and melatonin responsiveness of genes by in situ hybridization; TSHβ, CGA, Dio2 and Oatp1c1 genes were all elevated in LD whilst in SD, Dio3 and MCT-8 mRNA were increased. NPY was elevated in SD whilst GALP increased in LD. The photoinduction and photosuppression profiles for GALP were compared to that of GHRH with GALP expression following GHRH temporally. We also reveal gene sets involved in photoperiodic responses, including retinoic acid and Wnt/ß-catenin signalling. This study extends our knowledge of hypothalamic regulation by photoperiod, by revealing large temporal changes in expression of thyroid hormone signalling genes following photoperiod switch. Surprisingly, large changes in hypothalamic thyroid hormone levels or TRH expression were not detected. Expression of NPY and GALP, two genes known to regulate GHRH, were also changed by photoperiod. Whether these genes could provide links between thyroid hormone signalling and the regulation of the growth axis remains to be

  2. Gonadotropin-releasing hormone, estradiol, and inhibin regulation of follicle-stimulating hormone and luteinizing hormone surges: implications for follicle emergence and selection in heifers.

    PubMed

    Haughian, James M; Ginther, O J; Diaz, Francisco J; Wiltbank, Milo C

    2013-06-01

    Mechanisms regulating gonadotropin surges and gonadotropin requirements for follicle emergence and selection were studied in heifers. Experiment 1 evaluated whether follicular inhibins regulate the preovulatory luteinizing hormone (LH)/follicle-stimulating hormone (FSH) surges elicited by gonadotropin-releasing hormone (GnRH) injection (Hour = 0) and the subsequent periovulatory FSH surge. Treatments included control (n = 6), steroid-depleted bovine follicular fluid (bFF) at Hour -4 (n = 6), and bFF at Hour 6 (n = 6). Gonadotropins in blood were assessed hourly from Hours -6 to 36, and follicle growth tracked by ultrasound. Consistent with inhibin independence, bFF at Hour -4 did not impact the GnRH-induced preovulatory FSH surge, whereas treatment at Hour 6 delayed onset of the periovulatory FSH surge and impeded growth of a new follicular wave. Experiment 2 examined GnRH and estradiol (E2) regulation of the periovulatory FSH surge. Treatment groups were control (n = 8), GnRH-receptor antagonist (GnRHr-ant, n = 8), and E2 + GnRHr-ant (n = 4). GnRHr-ant (acyline) did not reduce the concentrations of FSH during the periovulatory surge and early follicle development (<7.0 mm) was unaffected, although subsequent growth of a dominant follicle (>8.0 mm) was prevented by GnRHr-ant. Addition of E2 delayed both the onset of the periovulatory FSH surge and emergence of a follicular wave. Failure to select a dominant follicle in the GnRHr-ant group was associated with reduced concentrations of LH but not FSH. Maximum diameter of F1 in controls (13.3 ± 0.5 mm) was greater than in both GnRHr-ant (7.7 ± 0.3 mm) and E2 + GnRHr-ant (6.7 ± 0.8 mm) groups. Results indicated that the periovulatory FSH surge stems from removal of negative stimuli (follicular E2 and inhibin), but is independent of GnRH stimulation. Emergence and early growth of follicles (until about 8 mm) requires the periovulatory FSH surge but not LH pulses. However, follicular deviation and late-stage growth of

  3. The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy

    PubMed Central

    Wu, Hao; Xue, Danfeng; Chen, Guo; Han, Zhe; Huang, Li; Zhu, Chongzhuo; Wang, Xiaohui; Jin, Haijing; Wang, Jun; Zhu, Yushan; Liu, Lei; Chen, Quan

    2014-01-01

    Receptor-mediated mitophagy is one of the major mechanisms of mitochondrial quality control essential for cell survival. We previously have identified FUNDC1 as a mitophagy receptor for selectively removing damaged mitochondria in mammalian systems. A critical unanswered question is how receptor-mediated mitophagy is regulated in response to cellular and environmental cues. Here, we report the striking finding that BCL2L1/Bcl-xL, but not BCL2, suppresses mitophagy mediated by FUNDC1 through its BH3 domain. Mechanistically, we demonstrate that BCL2L1, but not BCL2, interacts with and inhibits PGAM5, a mitochondrially localized phosphatase, to prevent the dephosphorylation of FUNDC1 at serine 13 (Ser13), which activates hypoxia-induced mitophagy. Our results showed that the BCL2L1-PGAM5-FUNDC1 axis is critical for receptor-mediated mitophagy in response to hypoxia and that BCL2L1 possesses unique functions distinct from BCL2. PMID:25126723

  4. Hormonal regulation of fluid and electrolyte metabolism during periods of headward fluid shifts

    NASA Technical Reports Server (NTRS)

    Keil, Lanny C.; Severs, W. B.; Thrasher, T.; Ramsay, D. J.

    1991-01-01

    In the broadest sense, this project evaluates how spaceflight induced shifts of blood and interstitial fluids into the thorax affect regulation by the central nervous system (CNS) of fluid-electrolyte hormone secretion. Specifically, it focuses on the role of hormones related to salt/water balance and their potential function in the control of intracranial pressure and cerebrospinal fluid (CSF) composition. Fluid-electrolyte status during spaceflight gradually equilibrates, with a reduction in all body fluid compartments. Related to this is the cardiovascular deconditioning of spaceflight which is manifested upon return to earth as orthostatic intolerance.

  5. Hormonal regulation of fluid and electrolyte metabolism in zero-g and bedrest

    NASA Technical Reports Server (NTRS)

    Vernikos, Joan

    1991-01-01

    The study of man in spaceflight has consistently indicated changes in fluid and electrolyte balance. Sodium (Na), Potassium (K), and Calcium (Ca) excretion are increased, accompanied by changes in the levels and responsiveness of adrenal hormones and the sympathetic nervous system (SNS). These hormones and neurohumors are critical to the regulation of blood pressure, blood flow, and blood volume. The primary objectives of the research conducted under this task have been to use -6 deg head down bedrest (BR) as the analog to spaceflight, to determine the long term changes in these systems, their relationship to orthostatic tolerance, and to develop and test suitable countermeasures.

  6. Hormonal regulation of rat hypothalamic neuropeptide mRNAs: effect of hypophysectomy and hormone replacement on growth-hormone-releasing factor, somatostatin and the insulin-like growth factors.

    PubMed

    Wood, T L; Berelowitz, M; Gelato, M C; Roberts, C T; LeRoith, D; Millard, W J; McKelvy, J F

    1991-03-01

    Hormonal feedback regulation of hypothalamic peptides putatively involved in growth hormone (GH) regulation has been studied by measurement of steady-state mRNA levels in male hypophysectomized rats with or without thyroid hormone, corticosterone, testosterone or GH replacement. Hypothalamic GH-releasing factor (GRF) mRNA levels increased progressively following hypophysectomy to 420% of sham levels after 15 days while hypothalamic insulin-like growth factor I (IGF-I) and insulin-like growth factor II (IGF-II) mRNA levels decreased to less than 40% of sham levels. Whole hypothalamic somatostatin mRNA levels were not significantly different from sham. One week of continuous GH infusion restored hypothalamic IGF-I mRNA to levels (95%) indistinguishable from those in sham-operated controls but had no effect on either IGF-II or GRF mRNA. Thyroid hormone, corticosterone and testosterone treatment without GH had no effect on the hypophysectomy-induced reduction of either IGF-I or IGF-II mRNA levels but reversed the elevation of GRF mRNA. We conclude that hypothalamic IGF-I may be involved in GH feedback regulation and thus may function as a hypothalamic modulator of GH. In contrast, IGF-II may be regulated by one of the pituitary trophic hormones but not by GH or the target hormones tested. Finally, hypothalamic GRF mRNA regulation appears to be complex and may include target hormone feedback. PMID:1674982

  7. Hormonal regulation of colour change in eyes of a cryptic fish

    PubMed Central

    Sköld, Helen Nilsson; Yngsell, Daniel; Mubashishir, Muhmd; Wallin, Margareta

    2015-01-01

    ABSTRACT Colour change of the skin in lower vertebrates such as fish has been a subject of great scientific and public interest. However, colour change also takes place in eyes of fish and while an increasing amount of data indicates its importance in behaviour, very little is known about its regulation. Here, we report that both eye and skin coloration change in response to white to black background adaptation in live sand goby Pomatoschistus minutes, a bentic marine fish. Through in vitro experiments, we show that noradrenaline and melanocyte concentrating hormone (MCH) treatments cause aggregation of pigment organelles in the eye chromatophores. Daylight had no aggregating effect. Combining forskolin to elevate intracellular cyclic adenosine monophosphate (cAMP) with MCH resulted in complete pigment dispersal and darkening of the eyes, whereas combining prolactin, adrenocorticotrophic hormone (ACTH) or melanocyte stimulating hormone (α-MSH) with MCH resulted in more yellow and red eyes. ACTH and MSH also induced dispersal in the melanophores, resulting in overall darker eyes. By comparing analysis of eyes, skin and peritoneum, we conclude that the regulation pattern is similar between these different tissues in this species which is relevant for the cryptic life strategy of this species. With the exception of ACTH which resulted in most prominent melanophore pigment dispersal in the eyes, all other treatments provided similar results between tissue types. To our knowledge, this is the first study that has directly analysed hormonal regulation of physiological colour change in eyes of fish. PMID:25596278

  8. Seedless Fruit Production by Hormonal Regulation of Fruit Set

    PubMed Central

    Pandolfini, Tiziana

    2009-01-01

    Seed and fruit development are intimately related processes controlled by internal signals and environmental cues. The absence of seeds is usually appreciated by consumers and producers because it increases fruit quality and fruit shelf-life. One method to produce seedless fruit is to develop plants able to produce fruits independently from pollination and fertilization of the ovules. The onset of fruit growth is under the control of phytohormones. Recent genomic studies have greatly contributed to elucidate the role of phytohormones in regulating fruit initiation, providing at the same time genetic methods for introducing seedlessness in horticultural plants. PMID:22253976

  9. Hormonal Regulation Of Hepatic Glucose Production In Health And Disease

    PubMed Central

    Lin, Hua V.; Accili, Domenico

    2011-01-01

    We review mechanisms that regulate production of glucose by the liver, focusing on areas of budding consensus, and endeavoring to provide a candid assessment of lingering controversies. We also attempt to reconcile data from tracer studies in humans and large animals with the growing compilation of mouse knockouts that display changes in glucose production. A clinical hallmark of diabetes, excessive glucose production remains key to its treatment. Hence, we attempt to integrate emerging pathways into the broader goal to rejuvenate the staid anti-diabetic pharmacopeia. PMID:21723500

  10. Hormone response element binding proteins: novel regulators of vitamin D and estrogen signaling

    PubMed Central

    Lisse, Thomas S.; Hewison, Martin; Adams, John S.

    2011-01-01

    Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as “vitamin D or estrogen response element-binding proteins”, behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements. PMID:21236284

  11. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    SciTech Connect

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh; Godbole, Madan M.

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  12. A review of the peripheral levels of regulation by thyroid hormone.

    PubMed

    Little, Alexander G

    2016-08-01

    Thyroid hormone (TH) regulates many physiological processes that differ between tissues, developmental stages and in response to specific environmental cues. It can therefore play very different signaling roles depending on specific physiological contexts. Much progress has been made in resolving mechanisms for TH signaling over the past 2 decades, and there has been increasing emphasis on the role of peripheral levels of regulation in determining ultimate TH action. This progress has revealed a complex regulatory network, where TH bioavailability and bioactivity are peripherally regulated by sometimes subtle mechanisms at various levels of organization, including membrane receptors and transporters on the cell surface, intracellular deiodinase enzymes, thyroid receptor isoforms and cytosolic thyroid hormone binding proteins, and via accessibility and subtypes of thyroid hormone response elements in the promoters of target genes. The majority of this research comes from disease models, and so the biological relevance of each of these regulatory levels has not been comprehensively explored. This review synthesizes what is known of these local levels of TH regulation, with particular focus on their functional roles in regulating animal response to environmental cues. While thorough analysis for all of these regulatory levels in any one study is currently unrealistic, an appreciation for their collective importance is necessary to frame comparative analyses in a relevant context. This is important because common biomarkers for TH action can have very different meanings, not only for different tissues, but also for individuals, populations and species from different developmental or environmental backgrounds. PMID:27062031

  13. Dietary regulation of adiponectin by direct and indirect lipid activators of nuclear hormone receptors.

    PubMed

    Rühl, R; Landrier, J F

    2016-01-01

    Adiponectin is an adipokine mainly secreted by adipocytes that presents antidiabetic, anti-inflammatory, and antiatherogenic functions. Therefore, modulation of adiponectin expression represents a promising target for prevention or treatment of several diseases including insulin resistance and type II diabetes. Pharmacological agents such as the nuclear hormone receptor synthetic agonists like peroxisome proliferator activated receptor γ agonists are of particular interest in therapeutic strategies due to their ability to increase the plasma adiponectin concentration. Nutritional approaches are also of particular interest, especially in primary prevention, since some active compounds of our diet (notably vitamins, carotenoids, or other essential nutrients) are direct or indirect lipid-activators of nuclear hormone receptors and are modifiers of adiponectin expression and secretion. The aim of the present review is to summarize current knowledge about the nutritional regulation of adiponectin by derivatives of active compounds naturally present in the diet acting as indirect or direct activators of nuclear hormone receptors. PMID:26610729

  14. Serotonergic neurons respond to nutrients and regulate the timing of steroid hormone biosynthesis in Drosophila

    PubMed Central

    Shimada-Niwa, Yuko; Niwa, Ryusuke

    2014-01-01

    The temporal transition of development is flexibly coordinated in the context of the nutrient environment, and this coordination is essential for organisms to increase their survival fitness and reproductive success. Steroid hormone, a key player of the juvenile-to-adult transition, is biosynthesized in a nutrient-dependent manner; however, the underlying genetic mechanism remains unclear. Here we report that the biosynthesis of insect steroid hormone, ecdysteroid, is regulated by a subset of serotonergic neurons in Drosophila melanogaster. These neurons directly innervate the prothoracic gland (PG), an ecdysteroid-producing organ and share tracts with the stomatogastric nervous system. Interestingly, the projecting neurites morphologically respond to nutrient conditions. Moreover, reduced activity of the PG-innervating neurons or of serotonin signalling in the PG strongly correlates with a delayed developmental transition. Our results suggest that serotonergic neurons form a link between the external environment and the internal endocrine system by adaptively tuning the timing of steroid hormone biosynthesis. PMID:25502946

  15. Signal transduction pathways mediating parathyroid hormone regulation of osteoblastic gene expression

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Bloch, S. R.; Pearman, A. T.

    1994-01-01

    Parathyroid hormone (PTH) plays a central role in regulation of calcium metabolism. For example, excessive or inappropriate production of PTH or the related hormone, parathyroid hormone related protein (PTHrP), accounts for the majority of the causes of hypercalcemia. Both hormones act through the same receptor on the osteoblast to elicit enhanced bone resorption by the osteoclast. Thus, the osteoblast mediates the effect of PTH in the resorption process. In this process, PTH causes a change in the function and phenotype of the osteoblast from a cell involved in bone formation to one directing the process of bone resorption. In response to PTH, the osteoblast decreases collagen, alkaline phosphatase, and osteopontin expression and increases production of osteocalcin, cytokines, and neutral proteases. Many of these changes have been shown to be due to effects on mRNA abundance through either transcriptional or post-transcriptional mechanisms. However, the signal transduction pathway for the hormone to cause these changes is not completely elucidated in any case. Binding of PTH and PTHrP to their common receptor has been shown to result in activation of protein kinases A and C and increases in intracellular calcium. The latter has not been implicated in any changes in mRNA of osteoblastic genes. On the other hand activation of PKA can mimic all the effects of PTH; protein kinase C may be involved in some responses. We will discuss possible mechanisms linking PKA and PKC activation to changes in gene expression, particularly at the nuclear level.

  16. Hormonal regulation of hepatic glycogenolysis in the carp, Cyprinus carpio

    SciTech Connect

    Janssens, P.A.; Lowrey, P.

    1987-04-01

    Carp (Cyprinus carpio) liver maintained normal glycogen content and enzyme complement for several days in organ culture. Epinephrine-stimulated glycogenolysis, phosphorylase activation, and cyclic AMP (cAMP) accumulation in a concentration-dependent manner with EC/sub 50/s of 100, 100, and 500 nM, respectively. These actions were blocked by the ..beta..-adrenergic antagonist, propranolol, but not by the ..cap alpha..-adrenergic antagonist phentolamine. Glycogenolysis and tissue cAMP were uninfluenced by 10/sup -6/ M arginine vasotocin, arginine vasopressin, lysine vasotocin, lysine vasopressin, mesotocin, or oxytocin, but were slightly increased by 10/sup -5/ M isotocin and slightly decreased by 10/sup -6/ M angiotensin II. (/sup 125/I)-iodocyanopindolol (ICP), a ..beta..-adrenergic ligand, bound to isolated carp liver membranes with a K/sub D/ of 83 pM. Maximum binding of 45 fmol/mg protein was at 600 pM. Propranolol, isoprenaline, epinephrine, phenylephrine, norepinephrine, and phenoxybenzamine displaced ICP with K/sub D/s of 100 nM, 2, 20, 20, 60, and 200 ..mu..M, respectively. The ..cap alpha..-adrenergic antagonists, yohimbine and prazosin, showed no specific binding. These data provide evidence that catecholamines act via ..beta..-adrenergic receptors in carp liver and that ..cap alpha..-adrenergic receptors are not present. Vasoactive peptides play no significant role in regulation of carp liver glycogenolysis.

  17. Metabolic regulation of the plant hormone indole-3-acetic acid

    SciTech Connect

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  18. Receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid

    SciTech Connect

    Walsh, R.J.; Slaby, F.J.; Posner, B.I.

    1987-05-01

    Prolactin (PRL) interacts with areas of the central nervous system which reside behind the blood-brain barrier. While vascular PRL does not cross this barrier, it is readily accessible to the cerebrospinal fluid (CSF) from which it may gain access to the PRL-responsive areas of the brain. Studies were undertaken to characterize the mechanism responsible for the translocation of PRL from blood to CSF. Rats were given external jugular vein injections of (/sup 125/-I)iodo-PRL in the presence or absence of an excess of unlabeled ovine PRL (oPRL), human GH, bovine GH, or porcine insulin. CSF and choroid plexus were removed 60 min later. CSF samples were electrophoresed on sodium dodecyl sulfate-polyacrylamide slab gels and resultant autoradiographs were analyzed with quantitative microdensitometry. The data revealed that unlabeled lactogenic hormones, viz. oPRL and human GH, caused a statistically significant inhibition of (/sup 125/I)iodo-PRL transport from blood to CSF. In contrast, nonlactogenic hormones, viz bovine GH and insulin, had no effect on (/sup 125/I)iodo-PRL transport into the CSF. An identical pattern of competition was observed in the binding of hormone to the choroid plexus. Furthermore, vascular injections of (/sup 125/I)iodo-PRL administered with a range of concentrations of unlabeled oPRL revealed a dose-response inhibition in the transport of (/sup 125/I)iodo-PRL from blood to CSF. The study demonstrates that PRL enters the CSF by a specific, PRL receptor-mediated transport mechanism. The data is consistent with the hypothesis that the transport mechanism resides at the choroid plexus. The existence of this transport mechanism reflects the importance of the cerebroventricular system in PRL-brain interactions.

  19. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    PubMed

    Breitel, Dario A; Chappell-Maor, Louise; Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-03-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process. PMID:26959229

  20. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening

    PubMed Central

    Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-01-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process. PMID:26959229

  1. FoxO1 Deacetylation Regulates Thyroid Hormone-induced Transcription of Key Hepatic Gluconeogenic Genes*

    PubMed Central

    Singh, Brijesh Kumar; Sinha, Rohit Anthony; Zhou, Jin; Xie, Sherwin Ying; You, Seo-Hee; Gauthier, Karine; Yen, Paul Michael

    2013-01-01

    Hepatic gluconeogenesis is a concerted process that integrates transcriptional regulation with hormonal signals. A major regulator is thyroid hormone (TH), which acts through its nuclear receptor (TR) to induce the expression of the hepatic gluconeogenic genes, phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC). Forkhead transcription factor FoxO1 also is an important regulator of these genes; however, its functional interactions with TR are not known. Here, we report that TR-mediated transcriptional activation of PCK1 and G6PC in human hepatic cells and mouse liver was FoxO1-dependent and furthermore required FoxO1 deacetylation by the NAD+-dependent deacetylase, SirT1. siRNA knockdown of FoxO1 decreased, whereas overexpression of FoxO1 increased, TH-dependent transcriptional activation of PCK1 and G6PC in cultured hepatic cells. FoxO1 siRNA knockdown also decreased TH-mediated transcription in vivo. Additionally, TH was unable to induce FoxO1 deacetylation or hepatic PCK1 gene expression in TH receptor β-null (TRβ−/−) mice. Moreover, TH stimulated FoxO1 recruitment to the PCK1 and G6PC gene promoters in a SirT1-dependent manner. In summary, our results show that TH-dependent deacetylation of a second metabolically regulated transcription factor represents a novel mechanism for transcriptional integration of nuclear hormone action with cellular energy status. PMID:23995837

  2. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level

    SciTech Connect

    Eisenstein, R.S.; Rosen, J.M.

    1988-08-01

    The mechanism by which individual peptide and steroid hormones and cell-substratum interactions regulate milk protein gene expression has been studied in the COMMA-D mammary epithelial cell line. In the presence of insulin, hydrocortisone, and prolactin, growth of COMMA-D cells on floating collagen gels in comparison with that on a plastic substratum resulted in a 2.5- to 3-fold increase in the relative rate of ..beta..-casein gene transcription but a 37-fold increase in ..beta..-casein mRNA accumulation. In contrast, whey acidic protein gene transcription was constitutive in COMMA-D cells grown on either substratum, but its mRNA was unstable and little intact mature mRNA was detected. Culturing COMMA-D cells on collagen also promoted increased expression of other genes expressed in differentiated mammary epithelial cells, including those encoding ..cap alpha..- and ..gamma..-casein, transferrin, malic enzyme, and phosphoenolpyruvate carboxykinase but decreased the expression of actin and histone genes. Using COMMA-D cells, the authors defined further the role of individual hormones in influencing ..beta..-casein gene transcription. With insulin alone, a basal level of ..beta..-casein gene transcription was detected in COMMA-D cells grown on floating collagen gels. Addition of prolactin but not hydrocortisone resulted in a 2.5- to 3.0-fold increase in ..beta..-casein gene transcription, but both hormones were required to elicit the maximal 73-fold induction in mRNA accumulation. The posttranscriptional effect of hormones on casein mRNA accummulation preceded any detectable changes in the relative rate of transcription. Thus, regulation by both hormones and cell substratum of casein gene expression is exerted primarily at the post transcriptional level.

  3. Circadian and sleep-dependent regulation of hormone release in humans

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Klerman, E. B.

    1999-01-01

    rhythm sleep disorders, including the dyssomnia of shift work and visual impairment. Yet to be fully investigated are the interactions of these factors with age and gender. Characterization of the factors governing hormone secretion is critical to understanding the temporal regulation of endocrine systems and presents many exciting areas for future research.

  4. Tracking Progesterone Receptor-Mediated Actions in Breast Cancer

    PubMed Central

    Knutson, Todd P.; Lange, Carol A.

    2014-01-01

    Ovarian steroid hormones contribute to breast cancer initiation and progression primarily through the actions of their nuclear transcription factors, the estrogen receptor alpha (ERα) and progesterone receptors (PRs). These receptors are important drivers of the luminal A and B subtypes of breast cancer, where estrogen-blocking drugs have been effective endocrine therapies for patients with these tumors. However, many patients do not respond, or become resistant to treatment. When endocrine therapies fail, the luminal subtypes of breast cancer are more difficult to treat because these subtypes are among the most heterogeneous in terms of mutation diversity and gene expression profiles. Recent evidence suggests that progestin and PR actions may be important drivers of luminal breast cancers. Clinical trial data has demonstrated that hormone replacement therapy with progestins drives invasive breast cancer and results in greater mortality. PR transcriptional activity is dependent upon cross-talk with growth factor signaling pathways that alter PR phosphorylation, acetylation, or SUMOylation as mechanisms for regulating PR target gene selection required for increased cell proliferation and survival. Site-specific PR phosphorylation is the primary driver of gene-selective PR transcriptional activity. However, PR phosphorylation and heightened transcriptional activity is coupled to rapid PR protein degradation; the range of active PR detected in tumors is likely to be dynamic. Thus, PR target gene signatures may provide a more accurate means of tracking PR’s contribution to tumor progression rather than standard clinical protein-based (IHC) assays. Further development of antiprogestin therapies should be considered along side antiestrogens and aromatase inhibitors. PMID:24291072

  5. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 3; Plasma Analysis Hormone Measurements

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Popova, I. A.; Grossman, E.; Rudolph, I.

    1994-01-01

    Plasma from space flight and tail suspended rats was analyzed for a number of constituents in order to evaluate their metabolic status and endocrine function. The data presented here cover plasma hormone measurements. Corticosterone, thyroxine, and testosterone were measured by radioimmunoassay. Prolactin and growth hormone were measured by double antibody immunoassays using hormones and antisera prepared in house. Data were evaluated by analysis of variance.

  6. CYP18A1 regulates tissue-specific steroid hormone inactivation in Bombyx mori.

    PubMed

    Li, Zhiqian; Ge, Xie; Ling, Lin; Zeng, Baosheng; Xu, Jun; Aslam, Abu F M; You, Lang; Palli, Subba Reddy; Huang, Yongping; Tan, Anjiang

    2014-11-01

    Insect development and metamorphosis are regulated by two major hormones, juvenile hormone and ecdysteroids. Despite being the key regulator of insect developmental transitions, the metabolic pathway of the primary steroid hormone, 20-hydroxyecdysone (20E), especially its inactivation pathway, is still not completely elucidated. A cytochrome P450 enzyme, CYP18A1, has been shown to play key roles in insect steroid hormone inactivation through 26-hydroxylation. Here, we identified two CYP18 (BmCYP18A1 and BmCYP18B1) orthologs in the lepidopteran model insect, Bombyx mori. Interestingly, BmCYP18A1 gene is predominantly expressed in the middle silk gland (MSG) while BmCYP18B1 expresses ubiquitously in B. mori. BmCYP18A1 is induced by 20E in vitro, suggesting its role in 20E metabolism. Using the binary Gal4/UAS transgenic system, we ectopically overexpressed BmCYP18A1 in a MSG-specific manner with a Sericin1-Gal4 (Ser-Gal4) driver or in a ubiquitous manner with an Actin3-Gal4 (A3-Gal4) driver. Ectopic overexpression of BmCYP18A1 in MSG or in all tissues resulted in developmental arrestment of transgenic animals during the final instar larval stage. The 20E titers in the transgenic animals expressing BmCYP18A1 were lower compared to the levels in the control animals. Although the biological significance of MSG-specific expression of BmCYP18A1 is unclear, our results provide the first evidence that BmCYP18A1, which is conserved in most arthropods, is involved in a tissue-specific steroid hormone inactivation in B. mori. PMID:25173591

  7. Molecular basis of thyroid hormone regulation of myelin basic protein gene expression in rodent brain.

    PubMed

    Farsetti, A; Mitsuhashi, T; Desvergne, B; Robbins, J; Nikodem, V M

    1991-12-01

    Regulation of myelin basic protein (MBP) gene expression by thyroid hormone has been investigated in rodent brain. Quantitation of the 4 major alternatively spliced transcripts by RNase protection assay showed that the individual mRNAs, corresponding to MBP isoforms 21.5, 18.5, 17, and 14 kDa, were decreased from 2- to 17-fold at all ages studied (4-60 days) in hypothyroid animals when compared to euthyroid, but the timing of onset of expression was not altered. MBP mRNA was also reduced in young adult rats thyroidectomized at the age of 5-6 weeks and was restored to normal by thyroxine administration. Nuclear run-off assays showed that the rate of MBP gene transcription is dependent on thyroid state. Co-transfection of MBP (-256/+1)-chloramphenicol acetyltransferase chimeric gene with a plasmid expressing thyroid hormone receptor alpha, and in the presence of 3,5,3'-triiodothyronine, into NIH3T3 or NG108-15, increased chloramphenicol acetyltransferase expression 4-fold. Using a footprinting technique and Spodoptera frugiperda 9 (Sf9) nuclear extract infected with baculovirus expressing TR alpha, we have identified a single DNA-binding site (-186/-163) for the receptor. A part of this region contains the AGGACA sequence found in thyroid hormone-responsive elements of other 3,5,3'-triiodothyronine-regulated genes. Our finding of a specific hormone-receptor interaction with the MBP promoter region is the first direct demonstration of a thyroid hormone-responsive element in a brain-specific gene. PMID:1720778

  8. CYP18A1 regulates tissue-specific steroid hormone inactivation in Bombyx mori

    PubMed Central

    Li, Zhiqian; Ge, Xie; Ling, Lin; Zeng, Baosheng; Xu, Jun; Aslam, Abu F.M.; You, Lang; Palli, Subba Reddy; Huang, Yongping; Tan, Anjiang

    2015-01-01

    Insect development and metamorphosis are regulated by two major hormones, juvenile hormone and ecdysteroids. Despite being the key regulator of insect developmental transitions, the metabolic pathway of the primary steroid hormone, 20-hydroxyecdysone (20E), especially its inactivation pathway, is still not completely elucidated. A cytochrome P450 enzyme, CYP18A1, has been shown to play key roles in insect steroid hormone inactivation through 26-hydroxylation. Here, we identified two CYP18 (BmCYP18A1 and BmCYP18B1) orthologs in the lepidopteran model insect, Bombyx mori. Interestingly, BmCYP18A1 gene is predominantly expressed in the middle silk gland (MSG) while BmCYP18B1 expresses ubiquitously in B. mori. BmCYP18A1 is induced by 20E in vitro, suggesting its role in 20E metabolism. Using the binary Gal4/UAS transgenic system, we ectopically overexpressed BmCYP18A1 in a MSG-specific manner with a Sericin1-Gal4 (Ser-Gal4) driver or in a ubiquitous manner with an Actin3-Gal4 (A3-Gal4) driver. Ectopic overexpression of BmCYP18A1 in MSG or in all tissues resulted in developmental arrestment of transgenic animals during the final instar larval stage. The 20E titers in the transgenic animals expressing BmCYP18A1 were lower compared to the levels in the control animals. Although the biological significance of MSG-specific expression of BmCYP18A1 is unclear, our results provide the first evidence that BmCYP18A1, which is conserved in most arthropods, is involved in a tissue-specific steroid hormone inactivation in B. mori. PMID:25173591

  9. Juvenile Hormone Regulates the Expression of Drosophila Epac– a Guanine Nucleotide Exchange Factor for Rap1 Small GTPase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The juvenile hormones (JH) are a key group of insect hormones involved in regulating larval development and adult reproductive processes. Although well-studied from the physiological standpoint, the molecular actions of JH remain unclear. Using cDNA microchip array technology, we previously identifi...

  10. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis.

    PubMed

    Choi, Hyunmo; Oh, Eunkyoo

    2016-08-31

    As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth. PMID:27432188

  11. Epigenetic regulation of the expression of genes involved in steroid hormone biosynthesis and action

    PubMed Central

    Martinez-Arguelles, Daniel B.; Papadopoulos, Vassilios

    2010-01-01

    Steroid hormones participate in organ development, reproduction, body homeostasis, and stress responses. The steroid machinery is expressed in a development- and tissue-specific manner, with the expression of these factors being tightly regulated by an array of transcription factors (TFs). Epigenetics provides an additional layer of gene regulation through DNA methylation and histone tail modifications. Evidence of epigenetic regulation of key steroidogenic enzymes is increasing, though this does not seem to be a predominant regulatory pathway. Steroid hormones exert their action in target tissues through steroid nuclear receptors belonging to the NR3A and NR3C families. Nuclear receptor expression levels and post-translational modifications regulate their function and dictate their sensitivity to steroid ligands. Nuclear receptors and TFs are more likely to be epigenetically regulated than proteins involved in steroidogenesis and have secondary impact on the expression of these steroidogenic enzymes. Here we review evidence for epigenetic regulation of enzymes, transcription factors, and nuclear receptors related to steroid biogenesis and action. PMID:20156469

  12. PIF4 Integrates Multiple Environmental and Hormonal Signals for Plant Growth Regulation in Arabidopsis

    PubMed Central

    Choi, Hyunmo; Oh, Eunkyoo

    2016-01-01

    As sessile organisms, plants must be able to adapt to the environment. Plants respond to the environment by adjusting their growth and development, which is mediated by sophisticated signaling networks that integrate multiple environmental and endogenous signals. Recently, increasing evidence has shown that a bHLH transcription factor PIF4 plays a major role in the multiple signal integration for plant growth regulation. PIF4 is a positive regulator in cell elongation and its activity is regulated by various environmental signals, including light and temperature, and hormonal signals, including auxin, gibberellic acid and brassinosteroid, both transcriptionally and post-translationally. Moreover, recent studies have shown that the circadian clock and metabolic status regulate endogenous PIF4 level. The PIF4 transcription factor cooperatively regulates the target genes involved in cell elongation with hormone-regulated transcription factors. Therefore, PIF4 is a key integrator of multiple signaling pathways, which optimizes growth in the environment. This review will discuss our current understanding of the PIF4-mediated signaling networks that control plant growth. PMID:27432188

  13. Barhl1 is directly regulated by thyroid hormone in the developing cerebellum of mice

    SciTech Connect

    Dong, Hongyan; Yauk, Carole L.; Wade, Michael G.

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Thyroid hormone receptor binds to the promoter region of Barhl1. Black-Right-Pointing-Pointer Barhl1 expression in cerebellum is negatively regulated by thyroid hormone. Black-Right-Pointing-Pointer Negative regulation of Barhl1 by thyroid hormone was confirmed in vitro. Black-Right-Pointing-Pointer Thyroid hormone may play a role in normal brain development through transcriptional control of Barhl1. -- Abstract: Thyroid hormones (THs) are essential for the brain development. Despite considerable effort, few genes directly regulated by THs have been identified. In this study, we investigate the effects of THs on the regulation of Barhl1, a transcription factor that regulates sensorineural development. Using DNA microarray combined with chromatin immunoprecipitation (ChIP-chip), we identified a TR{beta} binding site in the promoter of Barhl1. The binding was further confirmed by ChIP-PCR. The site is located approximately 755 bp upstream of the transcription start site. Reporter vectors containing the binding site or mutated fragments were transfected into GH3 cells. T3 treatment decreased the transcriptional activity of the wild fragment but not the mutant. Two 28 bp oligonucleotides containing sequences that resemble known TH response elements (TREs) were derived from this binding site and DNA-protein interaction was performed using electrophoretic mobility shift assays (EMSA). Binding analysis in a nuclear extract containing TR{beta} revealed that one of these fragments bound TR{beta}. This complex was shifted with the addition of anti-TR{beta} antibody. We investigated Barhl1 expression in animal models and TH-treated cultured cells. Both long term treatment with 6-propyl-2-thiouracil and short-term treatment with 0.05% methimazole/1% sodium perchlorate (both treatments render mice hypothyroid) resulted in up-regulation of Barhl1. TH supplementation of hypothyroid mice caused a decrease in the expression of Barhl1

  14. Sex-specific regulation of follicle-stimulating hormone secretion by synaptotagmin 9

    PubMed Central

    Roper, Lindsey K.; Briguglio, Joseph S.; Evans, Chantell S.; Jackson, Meyer B.; Chapman, Edwin R.

    2015-01-01

    The anterior pituitary releases six different hormones that control virtually all aspects of vertebrate physiology, yet the molecular mechanisms underlying their Ca2+-triggered release remain unknown. A subset of the synaptotagmin (syt) family of proteins serve as Ca2+ sensors for exocytosis in neurons and neuroendocrine cells, and are thus likely to regulate pituitary hormone secretion. Here we show that numerous syt isoforms are highly expressed in the pituitary gland in a lobe, and sex-specific manner. We further investigated a Ca2+-activated isoform, syt-9, and found that it is expressed in a subpopulation of anterior pituitary cells, the gonadotropes. Follicle-stimulating hormone (FSH) and syt-9 are highly co-localized in female, but not male, mice. Loss of syt-9 results in diminished basal and stimulated FSH secretion only in females, resulting in alterations in the oestrus cycle. This work uncovers a new function for syt-9 and reveals a novel sex difference in reproductive hormone secretion. PMID:26482442

  15. Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion.

    PubMed

    Cimino, Irene; Casoni, Filippo; Liu, Xinhuai; Messina, Andrea; Parkash, Jyoti; Jamin, Soazik P; Catteau-Jonard, Sophie; Collier, Francis; Baroncini, Marc; Dewailly, Didier; Pigny, Pascal; Prescott, Mel; Campbell, Rebecca; Herbison, Allan E; Prevot, Vincent; Giacobini, Paolo

    2016-01-01

    Anti-Müllerian hormone (AMH) plays crucial roles in sexual differentiation and gonadal functions. However, the possible extragonadal effects of AMH on the hypothalamic-pituitary-gonadal axis remain unexplored. Here we demonstrate that a significant subset of GnRH neurons both in mice and humans express the AMH receptor, and that AMH potently activates the GnRH neuron firing in mice. Combining in vivo and in vitro experiments, we show that AMH increases GnRH-dependent LH pulsatility and secretion, supporting a central action of AMH on GnRH neurons. Increased LH pulsatility is an important pathophysiological feature in many cases of polycystic ovary syndrome (PCOS), the most common cause of female infertility, in which circulating AMH levels are also often elevated. However, the origin of this dysregulation remains unknown. Our findings raise the intriguing hypothesis that AMH-dependent regulation of GnRH release could be involved in the pathophysiology of fertility and could hold therapeutic potential for treating PCOS. PMID:26753790

  16. Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion

    PubMed Central

    Cimino, Irene; Casoni, Filippo; Liu, Xinhuai; Messina, Andrea; Parkash, Jyoti; Jamin, Soazik P.; Catteau-Jonard, Sophie; Collier, Francis; Baroncini, Marc; Dewailly, Didier; Pigny, Pascal; Prescott, Mel; Campbell, Rebecca; Herbison, Allan E.; Prevot, Vincent; Giacobini, Paolo

    2016-01-01

    Anti-Müllerian hormone (AMH) plays crucial roles in sexual differentiation and gonadal functions. However, the possible extragonadal effects of AMH on the hypothalamic–pituitary–gonadal axis remain unexplored. Here we demonstrate that a significant subset of GnRH neurons both in mice and humans express the AMH receptor, and that AMH potently activates the GnRH neuron firing in mice. Combining in vivo and in vitro experiments, we show that AMH increases GnRH-dependent LH pulsatility and secretion, supporting a central action of AMH on GnRH neurons. Increased LH pulsatility is an important pathophysiological feature in many cases of polycystic ovary syndrome (PCOS), the most common cause of female infertility, in which circulating AMH levels are also often elevated. However, the origin of this dysregulation remains unknown. Our findings raise the intriguing hypothesis that AMH-dependent regulation of GnRH release could be involved in the pathophysiology of fertility and could hold therapeutic potential for treating PCOS. PMID:26753790

  17. [Role of hormonal regulation and stress in the interaction of sleep and biorhythms in aging].

    PubMed

    Goudochnikov, V I

    2014-01-01

    The present work describes bibliographic analysis of ontogenetic changes in hormonal regulation of sleep and circadian biorhythms. It is suggested that two-stage, age-related dynamics of such changes may be related to differential occurrence registered by us earlier, of maxima of morbidity and mortality caused by a number of disorders, in middle-age and in senile period. It is proposed to concentrate future efforts on elaboration of mathematical models of ontogenetic regulation, on the basis of systems biomedicine. PMID:25051757

  18. Molecular mechanisms of regulation of growth hormone gene expression in cultured rat pituitary cells by thyroid and glucocorticoid hormones

    SciTech Connect

    Yaffe, B.M.

    1989-01-01

    In cultured GC cells, a rat pituitary tumor cell line, growth hormone (GH) is induced in a synergistic fashion by physiologic concentrations of thyroid and glucocorticoid hormones. Abundant evidence indicates that these hormones mediate this response via their specific receptors. The purpose of this thesis is to explore the mechanisms by which these hormones affect GH production. When poly (A){sup +} RNA was isolated from cells grown both with and without hormones and translated in a cell-free wheat germ system, the preGH translation products were shown to be proportional to immunoassayable GH production under all combinations of hormonal milieux, indicating that changes in GH production is modulated at a pretranslational level. A cDNA library was constructed from poly (A){sup +}RNA and one clone containing GH cDNA sequences was isolated. This was used to confirm the above results by Northern dot blot analysis. This probe was also used to assess hormonal effects on GH mRNA half-life and synthetic rates as well as GH gene transcription rates in isolated nuclei. Using a pulse-chase protocol in which cellular RNA was labeled in vivo with ({sup 3}H)uridine, and quantitating ({sup 3}H)GHmRNA directly by hybridization to GH cDNA bound to nitrocellulose filters, GHmRNA was found to have a half-life of approximately 50 hours, and was not significantly altered by the presence of inducing hormones.

  19. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression (S)

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  20. A Boolean Network Model of Nuclear Receptor Mediated Cell Cycle Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that regulate a broad range of cellular processes. Hormones, lipids and xenobiotics have been shown to activate NRs with a range of consequences on development, metabolism, oxidative stress, apoptosis, and prolif...

  1. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    SciTech Connect

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  2. Transcriptional regulation of neuropeptide and peptide hormone expression by the Drosophila dimmed and cryptocephal genes.

    PubMed

    Gauthier, Sebastien A; Hewes, Randall S

    2006-05-01

    The regulation of neuropeptide and peptide hormone gene expression is essential for the development and function of neuroendocrine cells in integrated physiological networks. In insects, a decline in circulating ecdysteroids triggers the activation of a neuroendocrine system to stimulate ecdysis, the behaviors used to shed the old cuticle at the culmination of each molt. Here we show that two evolutionarily conserved transcription factor genes, the basic helix-loop-helix (bHLH) gene dimmed (dimm) and the basic-leucine zipper (bZIP) gene cryptocephal (crc), control expression of diverse neuropeptides and peptide hormones in Drosophila. Central nervous system expression of three neuropeptide genes, Dromyosuppressin, FMRFamide-related and Leucokinin, is activated by dimm. Expression of Ecdysis triggering hormone (ETH) in the endocrine Inka cells requires crc; homozygous crc mutant larvae display markedly reduced ETH levels and corresponding defects in ecdysis. crc activates ETH expression though a 382 bp enhancer, which completely recapitulates the ETH expression pattern. The enhancer contains two evolutionarily conserved regions, and both are imperfect matches to recognition elements for activating transcription factor-4 (ATF-4), the vertebrate ortholog of the CRC protein and an important intermediate in cellular responses to endoplasmic reticulum stress. These regions also contain a putative ecdysteroid response element and a predicted binding site for the products of the E74 ecdysone response gene. These results suggest that convergence between ATF-related signaling and an important intracellular steroid response pathway may contribute to the neuroendocrine regulation of insect molting. PMID:16651547

  3. Making the gradient: Thyroid hormone regulates cone opsin expression in the developing mouse retina

    PubMed Central

    Roberts, Melanie R.; Srinivas, Maya; Forrest, Douglas; Morreale de Escobar, Gabriella; Reh, Thomas A.

    2006-01-01

    Most mammals have two types of cone photoreceptors, which contain either medium wavelength (M) or short wavelength (S) opsin. The number and spatial organization of cone types varies dramatically among species, presumably to fine-tune the retina for different visual environments. In the mouse, S- and M-opsin are expressed in an opposing dorsal–ventral gradient. We previously reported that cone opsin patterning requires thyroid hormone β2, a nuclear hormone receptor that regulates transcription in conjunction with its ligand, thyroid hormone (TH). Here we show that exogenous TH inhibits S-opsin expression, but activates M-opsin expression. Binding of endogenous TH to TRβ2 is required to inhibit S-opsin and to activate M-opsin. TH is symmetrically distributed in the retina at birth as S-opsin expression begins, but becomes elevated in the dorsal retina at the time of M-opsin onset (postnatal day 10). Our results show that TH is a critical regulator of both S-opsin and M-opsin, and suggest that a TH gradient may play a role in establishing the gradient of M-opsin. These results also suggest that the ratio and patterning of cone types may be determined by TH availability during retinal development. PMID:16606843

  4. Thyroid hormone-regulated brain mitochondrial genes revealed by differential cDNA cloning.

    PubMed Central

    Vega-Núñez, E; Menéndez-Hurtado, A; Garesse, R; Santos, A; Perez-Castillo, A

    1995-01-01

    Thyroid hormone (T3) plays a critical role in the development of the central nervous system and its deficiency during the early neonatal period results in severe brain damage. However the mechanisms involved and the genes specifically regulated by T3 during brain development are largely unknown. By using a subtractive hybridization technique we have isolated a number of cDNAs that represented mitochondrial genes (12S and 16S rRNAs and cytochrome c oxidase subunit III). The steady state level of all three RNAs was reduced in hypothyroid animals during the postnatal period and T3 administration restored control levels. During fetal life the level of 16S rRNA was decreased in the brain of hypothyroid animals, suggesting a prenatal effect of thyroid hormone on brain development. Since T3 does not affect the amount of mitochondrial DNA, the results suggest that the effect of T3 is at transcriptional and/or postranscriptional level. In addition, the transcript levels for two nuclear-encoded mitochondrial cytochrome c oxidase subunits: subunits IV and VIc were also decreased in the brains of hypothyroid animals. Hypothyroidism-induced changes in mitochondrial RNAs were followed by a concomitant 40% decrease in cytochrome c oxidase activity. This study shows that T3 is an important regulator of mitochondrial function in the neonatal brain and, more importantly, provides a molecular basis for the specific action of this hormone in the developing brain. Images PMID:7635984

  5. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    SciTech Connect

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  6. Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT) regulates glucocorticoid action in adipocytes

    PubMed Central

    Emont, Margo P.; Mantis, Stelios; Kahn, Jonathan H.; Landeche, Michael; Han, Xuan; Sargis, Robert M

    2015-01-01

    Local modulation of glucocorticoid action in adipocytes regulates adiposity and systemic insulin sensitivity. However, the specific cofactors that mediate glucocorticoid receptor (GR) action in adipocytes remain unclear. Here we show that the silencing mediator of retinoid and thyroid hormone receptors (SMRT) is recruited to GR in adipocytes and regulates ligand-dependent GR function. Decreased SMRT expression in adipocytes in vivo increases expression of glucocorticoid-responsive genes. Moreover, adipocytes with decreased SMRT expression exhibit altered glucocorticoid regulation of lipolysis. We conclude that SMRT regulates the metabolic functions of GR in adipocytes in vivo. Modulation of GR-SMRT interactions in adipocytes represents a novel approach to control the local degree of glucocorticoid action and thus influence adipocyte metabolic function. PMID:25766503

  7. Sleep regulation and sex hormones exposure in men and women across adulthood.

    PubMed

    Lord, C; Sekerovic, Z; Carrier, J

    2014-10-01

    This review aims to discuss how endogenous and exogenous testosterone exposures in men and estrogens/progesterone exposures in women interact with sleep regulation. In young men, testosterone secretion peaks during sleep and is linked to sleep architecture. Animal and human studies support the notion that sleep loss suppresses testosterone secretion. Testosterone levels decline slowly throughout the aging process, but relatively few studies investigate its impact on age-related sleep modifications. Results suggest that poorer sleep quality is associated with lower testosterone concentrations and that sleep loss may have a more prominent effect on testosterone levels in older individuals. In women, sex steroid levels are characterized by a marked monthly cycle and reproductive milestones such as pregnancy and menopause. Animal models indicate that estrogens and progesterone influence sleep. Most studies do not show any clear effects of the menstrual cycle on sleep, but sample sizes are too low, and research designs often inhibit definitive conclusions. The effects of hormonal contraceptives on sleep are currently unknown. Pregnancy and the postpartum period are associated with increased sleep disturbances, but their relation to the hormonal milieu still needs to be determined. Finally, studies suggest that menopausal transition and the hormonal changes associated with it are linked to lower subjective sleep quality, but results concerning objective sleep measures are less conclusive. More research is necessary to unravel the effects of vasomotor symptoms on sleep. Hormone therapy seems to induce positive effects on sleep, but key concerns are still unresolved, including the long-term effects and efficacy of different hormonal regimens. PMID:25218407

  8. Tonic GABAA Receptor-Mediated Inhibition in the Rat Dorsal Motor Nucleus of the Vagus

    PubMed Central

    Gao, Hong

    2010-01-01

    Type A γ-aminobutyric acid (GABAA) receptors expressed in the dorsal motor nucleus of vagus (DMV) critically regulate the activity of vagal motor neurons and, by inference, the gastrointestinal (GI) tract. Two types of GABAA receptor-mediated inhibition have been identified in the brain, represented by phasic (Iphasic) and tonic (Itonic) inhibitory currents. The hypothesis that Itonic regulates neuron activity was tested in the DMV using whole cell patch-clamp recordings in transverse brain stem slices from rats. An Itonic was present in a subset of DMV neurons, which was determined to be mediated by different receptors than those mediating fast, synaptic currents. Preapplication of tetrodotoxin significantly decreased the resting Itonic amplitude in DMV neurons, suggesting that most of the current was due to action potential (AP)–dependent GABA release. Blocking GABA transport enhanced Itonic and multiple GABA transporters cooperated to regulate Itonic. The Itonic was composed of both a gabazine-insensitive component that was nearly saturated under basal conditions and a gabazine-sensitive component that was activated when extracellular GABA concentration was elevated. Perfusion of THIP (10 μM) significantly increased Itonic amplitude without increasing Iphasic amplitude. The Itonic played a major role in determining the overall excitability of DMV neurons by contributing to resting membrane potential and AP frequency. Our results indicate that Itonic contributes to DMV neuron membrane potential and activity and is thus an important regulator of vagally mediated GI function. PMID:20018836

  9. Hormonal regulation of liver fatty acid-binding protein in vivo and in vitro: effects of growth hormone and insulin.

    PubMed

    Carlsson, L; Nilsson, I; Oscarsson, J

    1998-06-01

    Liver fatty acid-binding protein (LFABP) is an abundant protein in hepatocytes that binds most of the long chain fatty acids present in the cytosol. It is suggested to be of importance for fatty acid uptake and utilization in the hepatocyte. In the present study, the effects of bovine GH (bGH) and other hormones on the expression of LFABP and its messenger RNA (mRNA) were studied in hypophysectomized rats and in vitro using primary cultures of rat hepatocytes. One injection of bGH increased LFABP mRNA levels about 5-fold after 6 h, but there was no effect of this treatment on LFABP levels. However, 7 days of bGH treatment increased both LFABP mRNA and LFABP protein levels 2- to 5-fold. Female rats had higher levels of LFABP than male rats. Hypophysectomy of female rats, but not that of male rats, decreased LFABP levels markedly. Treatment of hypophysectomized rats with bGH for 7 days as two daily injections or as a continuous infusion increased LFABP levels to a similar degree. This finding indicates that the sex difference in the expression of LFABP is not regulated by the sexually dimorphic secretory pattern of GH. Neither insulin nor insulin-like growth factor I treatment of hypophysectomized rats for 6-7 days had any effect on LFABP mRNA or LFABP levels. In vitro, bGH dose-dependently increased the expression of LFABP mRNA, but only in the presence of insulin. Insulin alone had a marked dose-dependent effect on LFABP mRNA levels and was of importance for maintaining the expression of LFABP mRNA during the culture. Incubation with bGH increased LFABP mRNA levels within 3 h. GH had no effect on LFABP mRNA levels in the presence of actinomycin D, indicating a transcriptional effect of GH. Incubation with glucagon in vitro decreased LFABP mRNA levels markedly, indicating that glucagon, in contrast to GH, has an effect opposite that of insulin on LFABP mRNA expression. It is concluded that GH is an important regulator of LFABP in vivo and in vitro. In contrast to

  10. Developmental and hormonal regulation of protein H1 degrees in rodents.

    PubMed Central

    Gjerset, R; Gorka, C; Hasthorpe, S; Lawrence, J J; Eisen, H

    1982-01-01

    The tissue and cellular distribution and regulation of the chromatin protein H1 degrees has been examined in developing and adult mouse and in rat. The protein appears in specific cell types of solid tissues only when the cells have terminated their maturation. This was found for brain, retina, striated and cardiac muscle, and liver. In tissues that depend on hormones for their function and maintenance, the expression of H1 degrees is dependent on the continued presence of the specific maintenance hormone. In regenerating rat liver the amount of H1 degrees decreases to one-third after the onset of DNA synthesis. The possible role of H1 degrees is discussed in light of these results. Images PMID:6954544

  11. The involvement of gonadotropin inhibitory hormone and kisspeptin in the metabolic regulation of reproduction.

    PubMed

    Wahab, F; Shahab, M; Behr, R

    2015-05-01

    Recently, kisspeptin (KP) and gonadotropin inhibitory hormone (GnIH), two counteracting neuropeptides, have been acknowledged as significant regulators of reproductive function. KP stimulates reproduction while GnIH inhibits it. These two neuropeptides seem to be pivotal for the modulation of reproductive activity in response to internal and external cues. It is well-documented that the current metabolic status of the body is closely linked to its reproductive output. However, how reproductive function is regulated by the body's energy status is less clear. Recent studies have suggested an active participation of hypothalamic KP and GnIH in the modulation of reproductive function according to available metabolic cues. Expression of KISS1, the KP encoding gene, is decreased while expression of RFRP (NPVF), the gene encoding GnIH, is increased in metabolic deficiency conditions. The lower levels of KP, as suggested by a decrease in KISS1 gene mRNA expression, during metabolic deficiency can be corrected by administration of exogenous KP, which leads to an increase in reproductive hormone levels. Likewise, administration of RF9, a GnIH receptor antagonist, can reverse the inhibitory effect of fasting on testosterone in monkeys. Together, it is likely that the integrated function of both these hypothalamic neuropeptides works as a reproductive output regulator in response to a change in metabolic status. In this review, we have summarized literature from nonprimate and primate studies that demonstrate the involvement of KP and GnIH in the metabolic regulation of reproduction. PMID:25957191

  12. Thyroid-pituitary interaction: Feedback regulation of thyrotropin secretion by thyroid hormones

    SciTech Connect

    Larsen, P.R.; Bleich, H.L.; Moore, M.J.

    1982-01-07

    Thyroid-hormone regulation of TSH production involves a response to plasma concentrations of T4 and T3. A substantial fraction of intracellular T3 in the pituitary derives from the conversion of T4 to T3, and recent studies indicate that this process is physiologically regulated. Changes in pituitary conversion of T4 to T3 are often the opposite of those that occur in the liver and kidney under similar circumstances. The presence of this pathway for T3 production indicates that the pituitary can respond independently to changes in plasma levels of T4 and T3; in contrast, many tissues appear to be sensitive mainly to the plasma T3 concentration. Recent studies suggest that conversion of T4 to T3 in the cerebral cortex and cerebellum is also important in providing intracellular T3 to these particular tissues. Given these results, it is not suprising that a complete definition of thyroid status requires more than the measurement of the serum concentrations of thyroid hormones. For some tissues, among them the brain and pituitary, the intracellular T3 concentrations may only partly reflect those in the serum. Recognition that the intracellular T3 concentration in each tissue may be subject to local regulation and an understanding of the importance of this process to the regulation of TSH production shoul permit a better appreciation of the limitations of radioimmunoassay serum thyroid hormone and TSH levels. These concepts also provide a physiologic rationale for the use of thyroxine for replacement in hypothyroid patients or for TSH suppression.

  13. Thyroid hormone-regulated mouse cerebral cortex genes are differentially dependent on the source of the hormone: a study in monocarboxylate transporter-8- and deiodinase-2-deficient mice.

    PubMed

    Morte, Beatriz; Ceballos, Ainhoa; Diez, Diego; Grijota-Martínez, Carmen; Dumitrescu, Alexandra M; Di Cosmo, Caterina; Galton, Valerie Anne; Refetoff, Samuel; Bernal, Juan

    2010-05-01

    Thyroid hormones influence brain development through the control of gene expression. The concentration of the active hormone T(3) in the brain depends on T(3) transport through the blood-brain barrier, mediated in part by the monocarboxylate transporter 8 (Mct8/MCT8) and the activity of type 2 deiodinase (D2) generating T(3) from T(4). The relative roles of each of these pathways in the regulation of brain gene expression is not known. To shed light on this question, we analyzed thyroid hormone-dependent gene expression in the cerebral cortex of mice with inactivated Mct8 (Slc16a2) and Dio2 genes, alone or in combination. We used 34 target genes identified to be controlled by thyroid hormone in microarray comparisons of cerebral cortex from wild-type control and hypothyroid mice on postnatal d 21. Inactivation of the Mct8 gene (Mct8KO) was without effect on the expression of 31 of these genes. Normal gene expression in the absence of the transporter was mostly due to D2 activity because the combined disruption of Mct8 and Dio2 led to similar effects as hypothyroidism on the expression of 24 genes. Dio2 disruption alone did not affect the expression of positively regulated genes, but, as in hypothyroidism, it increased that of negatively regulated genes. We conclude that gene expression in the Mct8KO cerebral cortex is compensated in part by D2-dependent mechanisms. Intriguingly, positive or negative regulation of genes by thyroid hormone is sensitive to the source of T(3) because Dio2 inactivation selectively affects the expression of negatively regulated genes. PMID:20211971

  14. Transcriptional Regulation of the Human P450 Oxidoreductase Gene: Hormonal Regulation and Influence of Promoter Polymorphisms

    PubMed Central

    Tee, Meng Kian; Huang, Ningwu; Damm, Izabella

    2011-01-01

    P450 oxidoreductase (POR) is the flavoprotein that acts as the obligatory electron donor to all microsomal P450 enzymes, including those involved in hepatic drug metabolism as well as three steroidogenic P450 enzymes. The untranslated first exon of human POR was located recently, permitting analysis of human POR transcription. Expression of deletional mutants containing up to 3193 bp of the human POR promoter in human adrenal NCI-H295A and liver Hep-G2 cells located the proximal promoter at −325/−1 bp from the untranslated exon. Common human POR polymorphisms at −208 and −173 had little influence on transcription, but the polymorphism at −152 reduced transcription significantly in both cell lines. EMSA and supershift assays identified binding of Smad3/Smad4 between −249 and −261 and binding of thyroid hormone receptor-β (TRβ) at −240/−245. Chromatin immunoprecipitation showed that Smad3, Smad4, TRα, TRβ, and estrogen receptor-α were bound between −374 and −149. Cotransfection of vectors for these transcription factors and POR promoter-reporter constructs into both cell types followed by hormonal treatment showed that T3 exerts major tropic effects via TRβ, with TRα, estrogen receptor-α, Smad3, and Smad4 exerting lesser, modulatory effects. T3 also increased POR mRNA in both cell lines. Thyroid hormone also is essential for rat liver POR expression but acts via different transcription factor complexes. These are the first data on human POR gene transcription, establishing roles for TRβ and Smad3/4 in its expression and indicating that the common polymorphism at −152 may play a role in genetic variation in steroid biosynthesis and drug metabolism. PMID:21393444

  15. Regulation of object recognition and object placement by ovarian sex steroid hormones

    PubMed Central

    Tuscher, Jennifer J.; Fortress, Ashley M.; Kim, Jaekyoon; Frick, Karyn M.

    2014-01-01

    The ovarian hormones 17β-estradiol (E2) and progesterone (P4) are potent modulators of hippocampal memory formation. Both hormones have been demonstrated to enhance hippocampal memory by regulating the cellular and molecular mechanisms thought to underlie memory formation. Behavioral neuroendocrinologists have increasingly used the object recognition and object placement (object location) tasks to investigate the role of E2 and P4 in regulating hippocampal memory formation in rodents. These one-trial learning tasks are ideal for studying acute effects of hormone treatments on different phases of memory because they can be administered during acquisition (pre-training), consolidation (post-training), or retrieval (pre-testing). This review synthesizes the rodent literature testing the effects of E2 and P4 on object recognition (OR) and object placement (OP), and the molecular mechanisms in the hippocampus supporting memory formation in these tasks. Some general trends emerge from the data. Among gonadally intact females, object memory tends to be best when E2 and P4 levels are elevated during the estrous cycle, pregnancy, and in middle age. In ovariectomized females, E2 given before or immediately after testing generally enhances OR and OP in young and middle-aged rats and mice, although effects are mixed in aged rodents. Effects of E2 treatment on OR 7and OP memory consolidation can be mediated by both classical estrogen receptors (ERα and ERβ), and depend on glutamate receptors (NMDA, mGluR1) and activation of numerous cell signaling cascades (e.g., ERK, PI3K/Akt, mTOR) and epigenetic processes (e.g., histone H3 acetylation, DNA methylation). Acute P4 treatment given immediately after training also enhances OR and OP in young and middle-aged ovariectomized females by activating similar cell signaling pathways as E2 (e.g., ERK, mTOR). The few studies that have administered both hormones in combination suggest that treatment can enhance OR and OP, but that

  16. Cerebellar vermis H₂ receptors mediate fear memory consolidation in mice.

    PubMed

    Gianlorenço, A C L; Riboldi, A M; Silva-Marques, B; Mattioli, R

    2015-02-01

    Histaminergic fibers are present in the molecular and granular layers of the cerebellum and have a high density in the vermis and flocullus. Evidence supports that the cerebellar histaminergic system is involved in memory consolidation. Our recent study showed that histamine injections facilitate the retention of an inhibitory avoidance task, which was abolished by pretreatment with an H2 receptor antagonist. In the present study, we investigated the effects of intracerebellar post training injections of H1 and H2 receptor antagonists as well as the selective H2 receptor agonist on fear memory consolidation. The cerebellar vermi of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of the following histaminergic drugs: experiment 1, saline or chlorpheniramine (0.016, 0.052 or 0.16 nmol); experiment 2, saline or ranitidine (0.57, 2.85 or 5.07 nmol); and experiment 3, saline or dimaprit (1, 2 or 4 nmol). Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. Animals microinjected with chlorpheniramine did not show any behavioral effects at the doses that we used. Intra-cerebellar injection of the H2 receptor antagonist ranitidine inhibited, while the selective H2 receptor agonist dimaprit facilitated, memory consolidation, suggesting that H2 receptors mediate memory consolidation in the inhibitory avoidance task in mice. PMID:25524412

  17. [Glutamate receptor-mediated retinal neuronal injury in experimental glaucoma].

    PubMed

    Wang, Zhong-Feng; Yang, Xiong-Li

    2016-08-25

    Glaucoma, the second leading cause of blindness, is a neurodegenerative disease characterized by optic nerve degeneration related to apoptotic death of retinal ganglion cells (RGCs). In the pathogenesis of RGC death following the onset of glaucoma, functional changes of glutamate receptors are commonly regarded as important risk factors. During the past several years, we have explored the mechanisms underlying RGC apoptosis and retinal Müller cell reactivation (gliosis) in a rat chronic ocular hypertension (COH) model. We demonstrated that elevated intraocular pressure in COH rats may induce changes of various signaling pathways, which are involved in RGC apoptosis by modulating glutamate NMDA and AMPA receptors. Moreover, we also demonstrated that over-activation of group I metabotropic glutamate receptors (mGluR I) by excessive extracellular glutamate in COH rats could contribute to Müller cell gliosis by suppressing Kir4.1 channels. In this review, incorporating our results, we discuss glutamate receptor- mediated RGC apoptosis and Müller cell gliosis in experimental glaucoma. PMID:27546508

  18. Activated Thyroid Hormone Promotes Differentiation and Chemotherapeutic Sensitization of Colorectal Cancer Stem Cells by Regulating Wnt and BMP4 Signaling.

    PubMed

    Catalano, Veronica; Dentice, Monica; Ambrosio, Raffaele; Luongo, Cristina; Carollo, Rosachiara; Benfante, Antonina; Todaro, Matilde; Stassi, Giorgio; Salvatore, Domenico

    2016-03-01

    Thyroid hormone is a pleiotropic factor that controls many cellular processes in multiple cell types such as cancer stem cells (CSC). Thyroid hormone concentrations in the blood are stable, but the action of the deiodinases (D2-D3) provides cell-specific regulation of thyroid hormone activity. Deregulation of deiodinase function and thyroid hormone status has been implicated in tumorigenesis. Therefore, we investigated the role of thyroid hormone metabolism and signaling in colorectal CSCs (CR-CSC), where deiodinases control cell division and chemosensitivity. We found that increased intracellular thyroid hormone concentration through D3 depletion induced cell differentiation and sharply mitigated tumor formation. Upregulated BMP4 expression and concomitantly attenuated Wnt signaling accompanied these effects. Furthermore, we demonstrate that BMP4 is a direct thyroid hormone target and is involved in a positive autoregulatory feedback loop that modulates thyroid hormone signaling. Collectively, our findings highlight a cell-autonomous metabolic mechanism by which CR-CSCs exploit thyroid hormone signaling to facilitate their self-renewal potential and suggest that drug-induced cell differentiation may represent a promising therapy for preventing CSC expansion and tumor progression. PMID:26676745

  19. Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila.

    PubMed

    Liu, Bo; Zheng, Yonggang; Yin, Feng; Yu, Jianzhong; Silverman, Neal; Pan, Duojia

    2016-01-28

    The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss of Hippo pathway tumor suppressors or activation of Yorkie in fat bodies, the Drosophila immune organ, leads to elevated cactus mRNA levels, decreased expression of antimicrobial peptides, and vulnerability to infection by Gram-positive bacteria. Furthermore, Gram-positive bacteria acutely activate Hippo-Yorkie signaling in fat bodies via the Toll-Myd88-Pelle cascade through Pelle-mediated phosphorylation and degradation of the Cka subunit of the Hippo-inhibitory STRIPAK PP2A complex. Our studies elucidate a Toll-mediated Hippo signaling pathway in antimicrobial response, highlight the importance of regulating IκB/Cactus transcription in innate immunity, and identify Gram-positive bacteria as extracellular stimuli of Hippo signaling under physiological settings. PMID:26824654

  20. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing.

    PubMed

    Danielsen, E Thomas; Moeller, Morten E; Yamanaka, Naoki; Ou, Qiuxiang; Laursen, Janne M; Soenderholm, Caecilie; Zhuo, Ran; Phelps, Brian; Tang, Kevin; Zeng, Jie; Kondo, Shu; Nielsen, Christian H; Harvald, Eva B; Faergeman, Nils J; Haley, Macy J; O'Connor, Kyle A; King-Jones, Kirst; O'Connor, Michael B; Rewitz, Kim F

    2016-06-20

    Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms are regulated by TOR and feedback signaling that couples steroidogenesis with growth and ensures proper maturation timing. These results reveal genes regulating steroidogenesis during development that likely modulate disease mechanisms. PMID:27326933

  1. The "love hormone" oxytocin regulates the loss and gain of the fat-bone relationship.

    PubMed

    Colaianni, Graziana; Sun, Li; Zaidi, Mone; Zallone, Alberta

    2015-01-01

    The involvement of oxytocin (OT) in bone metabolism is an interesting area of research that recently achieved remarkable results. Moreover, several lines of evidence have largely demonstrated that OT also participates in the regulation of energy metabolism. Hence, it has recently been determined that the posterior pituitary hormone OT directly regulates bone mass: mice lacking OT or OT receptor display severe osteopenia, caused by impaired bone formation. OT administration normalizes ovariectomy-induced osteopenia, bone marrow adiposity, body weight, and intra-abdominal fat depots in mice. This effect is mediated through inhibition of adipocyte precursor differentiation and reduction of adipocyte size. The exquisite role of OT in regulating the bone-fat connection adds another milestone to the biological evidence supporting the existence of a tight relationship between the adipose tissue and the skeleton. PMID:26042088

  2. Thyroid Hormone Regulates Hepatic Expression of Fibroblast Growth Factor 21 in a PPARα-dependent Manner*

    PubMed Central

    Adams, Andrew C.; Astapova, Inna; Fisher, ffolliott M.; Badman, Michael K.; Kurgansky, Katherine E.; Flier, Jeffrey S.; Hollenberg, Anthony N.; Maratos-Flier, Eleftheria

    2010-01-01

    Thyroid hormone has profound and diverse effects on liver metabolism. Here we show that tri-iodothyronine (T3) treatment in mice acutely and specifically induces hepatic expression of the metabolic regulator fibroblast growth factor 21 (FGF21). Mice treated with T3 showed a dose-dependent increase in hepatic FGF21 expression with significant induction at doses as low as 100 μg/kg. Time course studies determined that induction is seen as early as 4 h after treatment with a further increase in expression at 6 h after injection. As FGF21 expression is downstream of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα), we treated PPARα knock-out mice with T3 and found no increase in expression, indicating that hepatic regulation of FGF21 by T3 in liver is via a PPARα-dependent mechanism. In contrast, in white adipose tissue, FGF21 expression was suppressed by T3 treatment, with other T3 targets unaffected. In cell culture studies with an FGF21 reporter construct, we determined that three transcription factors are required for induction of FGF21 expression: thyroid hormone receptor β (TRβ), retinoid X receptor (RXR), and PPARα. These findings indicate a novel regulatory pathway whereby T3 positively regulates hepatic FGF21 expression, presenting a novel therapeutic target for diseases such as non-alcoholic fatty liver disease. PMID:20236931

  3. Nexus between epidermolysis bullosa and transcriptional regulation by thyroid hormone in epidermal keratinocytes

    PubMed Central

    Tomic-Canic, Marjana; Stojadinovic, Olivera; Lee, Brian; Walsh, Rebecca; Blumenberg, Miroslav

    2014-01-01

    Thyroid hormone, T3, through the interaction of its receptor with the recognition sequences in the DNA, regulates gene expression. This regulation includes the promoter activity of keratin genes. The receptor shares co-regulators with other members of the nuclear receptor family, including RXR. Intending to define the transcriptional effects of thyroid hormones in keratinocytes, we used Affymetrix microarrays to comprehensively compare the genes expressed in T3 treated and untreated human epidermal keratinocytes. The transcriptomes were compared at 1, 4, 24, 48 and 72 hrs. Surprisingly, T3 induced only 9 and suppressed 28 genes, much fewer than expected. Significantly, genes associated with Epidermolysis bullosa, a set of inherited blistering skin diseases, were found statistically highly over-represented among the suppressed genes. These genes include Integrin β4, Plectin, Collagen XVII, MMP1, MMP3 and MMP14. The data imply that in keratinocytes T3 could suppresses the remodeling by, attachment to, and production of extracellular matrix. The results suggest that topical treatment with T3 may be effective for alleviation of symptoms in patients with Epidermolysis bullosa. PMID:20443817

  4. The structure and regulation of expression of the mouse growth hormone receptor and binding protein

    SciTech Connect

    Talamantes, F.

    1994-12-31

    The mouse growth hormone receptor (mGHR) and the mouse growth hormone-binding protein (mGHBP) are products of a single gene which are generated alternative splicing. The factors that regulate the expression of mGHR and mGHBP mRNA and protein during pregnancy in the mouse are incompletely understood. During pregnancy in the mouse, there are parallel increases in circulating mouse growth hormone (mGH), liver mGHR, and serum mGHBP. The increase in both hepatic mGHR and serum mGHBP begins on Day 9 of gestation and by late gestation the hepatic mGHR content has increased 8-fold and serum mGHBP has increased 30-fold compared with values in nonpregnant controls. A parallel increase occurs in the steady state levels of liver GHR and GHBP encoding mRNAs. The increase in both messages begins on Day 9 of gestation; however, the GHR mRNA reaches maximum levels by Day 13, while the GHBP mRNA continues to increase until the end of pregnancy. The magnitude of the increase in the GHR-encoding message is 15- to 20-fold between nonpregnant and late pregnant mice, and the magnitude of the increase in the GHBP-encoding message is 30- to 50-fold. Both pituitary mGH and the number of conceptuses influence the receptors and binding protein for mGH during pregnancy. 22 refs.

  5. Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively

    PubMed Central

    Shojima, Kensaku; Sato, Akira; Hanaki, Hideaki; Tsujimoto, Ikuko; Nakamura, Masahiro; Hattori, Kazunari; Sato, Yuji; Dohi, Keiji; Hirata, Michinari; Yamamoto, Hideki; Kikuchi, Akira

    2015-01-01

    Wnt5a activates the Wnt/β-catenin-independent pathway and its overexpression is associated with tumor aggressiveness enhancing invasive activity. For this action, Wnt5a-induced receptor endocytosis with clathrin is required. Wnt5a expression was previously believed to be associated with cancer cell motility but not proliferation. Recently, it was reported that Wnt5a is also implicated in cancer cell proliferation, but the mechanism was not clear. In this study, we generated a neutralizing anti-Wnt5a monoclonal antibody (mAb5A16) to investigate the mechanism by which Wnt5a regulates cancer cell proliferation. Wnt5a stimulated both invasion and proliferation of certain types of cancer cells, including HeLaS3 cervical cancer cells and A549 lung cancer cells although Wnt5a promoted invasion but not proliferation in other cancer cells such as KKLS gastric cancer cells. mAb5A16 did not affect the binding of Wnt5a to its receptor, but it suppressed Wnt5a-induced receptor-mediated endocytosis. mAb5A16 inhibited invasion but not proliferation of HeLaS3 and A549 cells. Wnt5a activated Src family kinases (SFKs) and Wnt5a-dependent cancer cell proliferation was dependent on SFKs, yet blockade of receptor-mediated endocytosis did not affect cancer cell proliferation and SFK activity. These results suggest that Wnt5a promotes invasion and proliferation of certain types of cancer cells through receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. PMID:25622531

  6. Ovarian steroid hormone-regulated uterine remodeling occurs independently of macrophages in mice.

    PubMed

    Care, Alison S; Ingman, Wendy V; Moldenhauer, Lachlan M; Jasper, Melinda J; Robertson, Sarah A

    2014-09-01

    Macrophages are abundant in the uterine stroma and are intimately juxtaposed with other cell lineages comprising the uterine epithelial and stromal compartments. We postulated that macrophages may participate in mediating or amplifying the effects of ovarian steroid hormones to facilitate the uterine remodeling that is a characteristic feature of every estrus cycle and is essential for pregnancy. Using the Cd11b-Dtr transgenic mouse model with an ovariectomy and hormone replacement strategy, we depleted macrophages to determine their role in hormone-driven proliferation of uterine epithelial and stromal cells and uterine vascular development. Following diphtheria toxin (DT) administration, approximately 85% of EMR1-positive (EMR1⁺) macrophages, as well as 70% of CD11C⁺ dendritic cells, were depleted from Cd11b-Dtr mice. There was no change in bromodeoxyuridine incorporation into epithelial cells induced to proliferate by administration of 17beta-estradiol (E2) to ovariectomized mice or into stromal cells induced to proliferate in response to E2 and progesterone (P4), and the resulting sizes and structures of the luminal epithelial and stromal cell compartments were not altered compared with those of leukocyte replete controls. Depletion of CD11B⁺ myeloid cells failed to alter the density or pattern of distribution of uterine blood vessels, as identified by staining PECAM1-positive endothelial cells in the uterine stroma of E2- or E2 combined with P4 (E2P4)-treated ovariectomized mice. These experiments support the interpretation that macrophages are dispensable to regulation of proliferative events induced by steroid hormones in the cycling and early pregnant mouse uterus to establish the epithelial, stromal, and vascular architecture which is critical for normal reproductive competence. PMID:25061095

  7. Energy homeostasis and appetite regulating hormones as predictors of weight loss in men and women.

    PubMed

    Williams, Rebecca L; Wood, Lisa G; Collins, Clare E; Morgan, Philip J; Callister, Robin

    2016-06-01

    Sex differences in weight loss are often seen despite using the same weight loss program. There has been relatively little investigation of physiological influences on weight loss success in males and females, such as energy homeostasis and appetite regulating hormones. The aims were to 1) characterise baseline plasma leptin, ghrelin and adiponectin concentrations in overweight and obese males and females, and 2) determine whether baseline concentrations of these hormones predict weight loss in males and females. Subjects were overweight or obese (BMI 25-40 kg/m(2)) adults aged 18-60 years. Weight was measured at baseline, and after three and six months participation in a weight loss program. Baseline concentrations of leptin, adiponectin and ghrelin were determined by enzyme-linked immunosorbent assay (ELISA). An independent t-test or non-parametric equivalent was used to determine any differences between sex. Linear regression determined whether baseline hormone concentrations were predictors of six-month weight change. Females had significantly higher baseline concentrations of leptin, adiponectin and unacylated ghrelin as well as ratios of leptin:adiponectin and leptin:ghrelin. The ratio of acylated:unacylated ghrelin was significantly higher in males. In males and females, a higher baseline concentration of unacylated ghrelin predicted greater weight loss at six months. Additionally in females, higher baseline total ghrelin predicted greater weight loss and a higher ratio of leptin:ghrelin predicted weight gain at six months. A higher pre-weight-loss plasma concentration of unacylated ghrelin is a modest predictor of weight loss success in males and females, while a higher leptin:ghrelin ratio is a predictor of weight loss failure in females. Further investigation is required into what combinations and concentrations of these hormones are optimal for weight loss success. PMID:26921488

  8. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances

    PubMed Central

    Xu, Shi; Olenyuk, Bogdan Z.; Okamoto, Curtis T.; Hamm-Alvarez, Sarah F.

    2012-01-01

    Targeting of drugs and their carrier systems by using receptor-mediated endocytotic pathways was in its nascent stages 25 years ago. In the intervening years, an explosion of knowledge focused on design and synthesis of nanoparticulate delivery systems as well as elucidation of the cellular complexity of what was previously-termed receptor-mediated endocytosis has now created a situation when it has become possible to design and test the feasibility of delivery of highly specific nanoparticle drug carriers to specific cells and tissue. This review outlines the mechanisms governing the major modes of receptor-mediated endocytosis used in drug delivery and highlights recent approaches using these as targets for in vivo drug delivery of nanoparticles. The review also discusses some of the inherent complexity associated with the simple shift from a ligand-drug conjugate versus a ligand-nanoparticle conjugate, in terms of ligand valency and its relationship to the mode of receptor-mediated internalization. PMID:23026636

  9. Bombesin receptor-mediated imaging and cytotoxicity: review and current status

    PubMed Central

    Sancho, Veronica; Di Florio, Alessia; Moody, Terry W.; Jensen, Robert T.

    2010-01-01

    The three mammalian bombesin (Bn) receptors (gastrin-releasing peptide [GRP] receptor, neuromedin B [NMB] receptor, BRS-3) are one of the classes of G protein-coupled receptors that are most frequently over-express/ectopically expressed by common, important malignancies. Because of the clinical success of somatostatin receptor-mediated imaging and cytotoxicity with neuroendocrine tumors, there is now increasing interest in pursuing a similar approach with Bn receptors. In the last few years then have been more than 200 studies in this area. In the present paper, the in vitro and in vivo results, as well as results of human studies from many of these studies are reviewed and the current state of Bn receptor-mediated imaging or cytotoxicity is discussed. Both Bn receptor-mediated imaging studies as well as Bn receptor-mediated tumoral cytotoxic studies using radioactive and non-radioactive Bn-based ligands are covered. PMID:21034419

  10. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells

    NASA Technical Reports Server (NTRS)

    Swarthout, John T.; D'Alonzo, Richard C.; Selvamurugan, Nagarajan; Partridge, Nicola C.

    2002-01-01

    Parathyroid hormone (PTH) is an 84-amino-acid polypeptide hormone functioning as a major mediator of bone remodeling and as an essential regulator of calcium homeostasis. PTH and PTH-related protein (PTHrP) indirectly activate osteoclasts resulting in increased bone resorption. During this process, PTH changes the phenotype of the osteoblast from a cell involved in bone formation to one directing bone resorption. In addition to these catabolic effects, PTH has been demonstrated to be an anabolic factor in skeletal tissue and in vitro. As a result, PTH has potential medical application to the treatment of osteoporosis, since intermittent administration of PTH stimulates bone formation. Activation of osteoblasts by PTH results in expression of genes important for the degradation of the extracellular matrix, production of growth factors, and stimulation and recruitment of osteoclasts. The ability of PTH to drive changes in gene expression is dependent upon activation of transcription factors such as the activator protein-1 family, RUNX2, and cAMP response element binding protein (CREB). Much of the regulation of these processes by PTH is protein kinase A (PKA)-dependent. However, while PKA is linked to many of the changes in gene expression directed by PTH, PKA activation has been shown to inhibit mitogen-activated protein kinase (MAPK) and proliferation of osteoblasts. It is now known that stimulation of MAPK and proliferation by PTH at low concentrations is protein kinase C (PKC)-dependent in both osteoblastic and kidney cells. Furthermore, PTH has been demonstrated to regulate components of the cell cycle. However, whether this regulation requires PKC and/or extracellular signal-regulated kinases or whether PTH is able to stimulate other components of the cell cycle is unknown. It is possible that stimulation of this signaling pathway by PTH mediates a unique pattern of gene expression resulting in proliferation in osteoblastic and kidney cells; however, specific