Science.gov

Sample records for hormones growth factors

  1. Growth hormone, growth factors, and acromegaly

    SciTech Connect

    Ludecke, D.K.; Tolis, G.T.

    1987-01-01

    This book contains five sections, each consisting of several papers. The section headings are: Biochemistry and Physiology of GH and Growth Factors, Pathology of Acromegaly, Clinical Endocrinology of Acromegaly, Nonsurgical Therapy of Acromegaly, and Surgical Therapy of Acromegaly.

  2. Growth Hormone

    MedlinePlus

    ... the dose of glucose. Growth hormone stimulates the production of insulin-like growth factor-1 (IGF-1) . ... regular intervals for years afterward to monitor GH production and to detect tumor recurrence. Other blood tests ...

  3. Growth hormone-insulinlike growth factor I and immune function.

    PubMed

    Gelato, M C

    1993-04-01

    Growth hormone (GH) and insulinlike growth factor I (IGF-I) may be part of a neuroendocrine immune axis that stimulates cellular proliferation of primary lymphoid organs (bone marrow, thymus) as well as stimulates activation of peripheral lymphocytes and macrophages to enhance specific immune responses. GH can also stimulate production of thymic hormones and cytokines, and in this way impact on immune function. It is not clear whether GH and IGF-I act independently or whether the action of GH is mediated by local production of IGF-I by lymphocytes. Both GH and IGF-I and their receptors are present in lymphocytes. Thus, cells of the immune system may be important targets of the GH-IGF-I axis. PMID:18407143

  4. Intestinal hormones and growth factors: Effects on the small intestine

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2009-01-01

    There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In partI, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids. PMID:19152442

  5. Growth hormone, insulin-like growth factor system and carcinogenesis.

    PubMed

    Boguszewski, Cesar Luiz; Boguszewski, Margaret Cristina da Silva; Kopchick, John J

    2016-01-01

    The growth hormone (GH) and insulin-like growth factor (IGF) system plays an important role in the regulation of cell proliferation, differentiation, apoptosis, and angiogenesis. In terms of cell cycle regulation, the GH-IGF system induces signalling pathways for cell growth that compete with other signalling systems that result in cell death; thus the final effect of these opposed forces is critical for normal and abnormal cell growth. The association of the GH-IGF system with carcinogenesis has long been hypothesised, mainly based on in vitro studies and the use of a variety of animal models of human cancer, and also on epidemiological and clinical evidence in humans. While ample experimental evidence supports a role of the GH-IGF system in tumour promotion and progression, with several of its components being currently tested as central targets for cancer therapy, the strength of evidence from patients with acromegaly, GH deficiency, or treated with GH is much weaker. In this review, we will attempt to consolidate this data. (Endokrynol Pol 2016; 67 (4): 414-426). PMID:27387246

  6. Growth Hormone and Insulin-Like Growth Factor-1.

    PubMed

    Nicholls, Adam R; Holt, Richard I G

    2016-01-01

    Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. PMID:27347885

  7. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    SciTech Connect

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-08-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation.

  8. Growth hormone releasing factor-like immunoreactivity in human milk.

    PubMed

    Werner, H; Amarant, T; Fridkin, M; Koch, Y

    1986-03-28

    The presence of immunoreactive growth hormone-releasing factor (GRF) in human milk has been demonstrated. By using sequential high performance liquid chromatography, it has been shown that most of the immunoreactivity co-elutes with the synthetic, hypothalamic-like, GRF (1-40). The concentrations of GRF detected (between 152 and 432 pg GRF/ml milk) exceed several fold its values in plasma. PMID:3083812

  9. Growth hormone deficiency - children

    MedlinePlus

    ... the same age. The child will have normal intelligence in most cases. In older children, puberty may ... hormones cause the body to make. Tests can measure these growth factors. Accurate growth hormone deficiency testing ...

  10. Effect of sericin on diabetic hippocampal growth hormone/insulin-like growth factor 1 axis

    PubMed Central

    Chen, Zhihong; Yang, Songhe; He, Yaqiang; Song, Chengjun; Liu, Yongping

    2013-01-01

    Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus model was established by intraperitoneal injection of 25 mg/kg streptozotocin for 3 successive days, following which the rats were treated with sericin for 35 days. After treatment, the blood glucose levels of the diabetic rats decreased significantly, the growth hormone level in serum and its expression in the hippocampus decreased significantly, while the insulin-like growth factor-1 level in serum and insulin-like growth factor-1 and growth hormone receptor expression in the hippocampus increased significantly. The experimental findings indicate that sericin improves disorders of the growth hormone/insulin-like growth factor 1 axis to alleviate hippocampal damage in diabetic rats. PMID:25206472

  11. Skeletal effects of growth hormone and insulin-like growth factor-I therapy.

    PubMed

    Lindsey, Richard C; Mohan, Subburaman

    2016-09-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965

  12. Effects of Hypergravity Rearing on Growth Hormone and Insulin-Like Growth Factor in Rat Pups

    NASA Technical Reports Server (NTRS)

    Baer, L. A.; Chowdhury, J. H.; Grindeland, R. E.; Wade, C. E.; Ronca, A. E.

    2003-01-01

    Body weights of rat pups reared during exposure to hypergravity (hg) are significantly reduced relative to 1 g controls. In the present study, we examined in hg-reared rat pups two major contributors to growth and development, namely growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Beginning on Gestational day (G)11 of the rats 22 day pregnancy, rat dams and their litters were continuously exposed to either 1.5-g or 2.0-g. On Postnatal day (P)l0, plasma GH and IGF-1 were analyzed using radioimmunoassay (RIA). Both hormones were significantly elevated in hg pups relative to 1-g control pups. Together, these findings suggest that GH and IGF-1 are not primary determinants of reduced body weights observed in hg-reared pups. The significant elevations in pup GH and IGF-1 may be related to increased physical stimulation in hypergravity.

  13. Growth Hormone Promotes Lymphangiogenesis

    PubMed Central

    Banziger-Tobler, Nadja Erika; Halin, Cornelia; Kajiya, Kentaro; Detmar, Michael

    2008-01-01

    The lymphatic system plays an important role in inflammation and cancer progression, although the molecular mechanisms involved are poorly understood. As determined using comparative transcriptional profiling studies of cultured lymphatic endothelial cells versus blood vascular endothelial cells, growth hormone receptor was expressed at much higher levels in lymphatic endothelial cells than in blood vascular endothelial cells. These findings were confirmed by quantitative real-time reverse transcriptase-polymerase chain reaction and Western blot analyses. Growth hormone induced in vitro proliferation, sprouting, tube formation, and migration of lymphatic endothelial cells, and the mitogenic effect was independent of vascular endothelial growth factor receptor-2 or -3 activation. Growth hormone also inhibited serum starvation-induced lymphatic endothelial cell apoptosis. No major alterations of lymphatic vessels were detected in the normal skin of bovine growth hormone-transgenic mice. However, transgenic delivery of growth hormone accelerated lymphatic vessel ingrowth into the granulation tissue of full-thickness skin wounds, and intradermal delivery of growth hormone resulted in enlargement and enhanced proliferation of cutaneous lymphatic vessels in wild-type mice. These results identify growth hormone as a novel lymphangiogenic factor. PMID:18583315

  14. Measuring Growth Hormone and Insulin-like Growth Factor-I in Infants: What is Normal?

    PubMed Central

    Hawkes, Colin Patrick; Grimberg, Adda

    2014-01-01

    The role of growth hormone (GH) and insulin-like growth factor-I (IGF-I) change through early childhood. Whereas poor growth is a later presenting feature, infants with isolated GH deficiency have a normal birth weight and length, and often present with hypoglycemia. IGF-I plays an important role antenatally and post-natally in somatic and brain growth. In order to evaluate the GH/IGF-I axis in infancy, an understanding of the normal physiology is required. Measurements of GH and IGF-I in this population should be interpreted in the context of the assays used, as well as their limitations. In this review, we summarize our current understanding of normal GH and IGF-I secretion in children under 18 months of age, and describe variations in the reported assay-specific measurements. PMID:24575549

  15. Diverse Roles of Growth Hormone and Insulin-Like Growth Factor-1 in Mammalian Aging: Progress and Controversies

    PubMed Central

    Csiszar, Anna; de Cabo, Raphael; Ferrucci, Luigi; Ungvari, Zoltan

    2012-01-01

    Because the initial reports demonstrating that circulating growth hormone and insulin-like growth factor-1 decrease with age in laboratory animals and humans, there have been numerous studies related to the importance of these hormones for healthy aging. Nevertheless, the role of these potent anabolic hormones in the genesis of the aging phenotype remains controversial. In this chapter, we review the studies demonstrating the beneficial and deleterious effects of growth hormone and insulin-like growth factor-1 deficiency and explore their effects on specific tissues and pathology as well as their potentially unique effects early during development. Based on this review, we conclude that the perceived contradictory roles of growth hormone and insulin-like growth factor-1 in the genesis of the aging phenotype should not be interpreted as a controversy on whether growth hormone or insulin-like growth factor-1 increases or decreases life span but rather as an opportunity to explore the complex roles of these hormones during specific stages of the life span. PMID:22522510

  16. Effect of hypophysectomy and growth hormone replacement on hypothalamic growth hormone-releasing factor messenger ribonucleic Acid levels.

    PubMed

    Eccleston, L M; Powell, J F; Clayton, R N

    1991-12-01

    Abstract The mechanisms by which the pituitary gland, and growth hormone (GH) in particular, affect growth hormone-releasing factor (GRF) gene expression have been addressed using the technique of in situ hybridization. Anatomically matched sections through the mediobasal hypothalamus of control and hypophysectomized male rats, with or without GH hormone replacement, were analysed to obtain information on GRF mRNA levels within the arcuate nucleus and around the ventromedial hypothalamus. Hypophysectomy resulted in a 70% increase in the amount of GRF mRNA per cell (P<0.001), within neurons in the arcuate nucleus. GH replacement and T4 replacement separately partially attenuated this increase (GH replacement P< 0.001 versus hypophysectomy, T4 replacement P<0.05 versus hypophysectomy). Additionally, after hypophysectomy there was an 80% increase in the number of cells expressing the GRF gene in neurons around the ventromedial hypothalamus, when compared to shamoperated controls (P<0.01). Both GH and T4 replacement separately partially attenuated this phenomenon (P<0.01 versus hypophysectomized animals). Hypothyroidism alone did not affect GRF mRNA levels in either the arcuate nucleus or in the area surrounding the ventromedial hypothalamus. These results show that hypophysectomy increases GRF mRNA levels in two separate ways: by increasing the amount of mRNA produced per cell within the arcuate nucleus, and by increasing the number of cells expressing the gene in the area surrounding the ventromedial hypothalamus. This increase in the number of GRF mRNA-containing cells after hypophysectomy could result from the recruitment of neurons which previously did not express the GRF gene, and may reflect the plasticity of the adult central nervous system in response to a changing endocrine environment. This could represent part of a sensor mechanism to drive the production of GRF in the arcuate nucleus in response to extreme disruption of the GRF/ GH feedback loop. PMID

  17. Growth hormone test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003706.htm Growth hormone test To use the sharing features on this page, please enable JavaScript. The growth hormone test measures the amount of growth hormone in ...

  18. Growth hormone suppression test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003376.htm Growth hormone suppression test To use the sharing features on this page, please enable JavaScript. The growth hormone suppression test determines whether growth hormone production is ...

  19. Growth hormone suppression test

    MedlinePlus

    The growth hormone suppression test determines whether growth hormone production is being suppressed by high blood sugar. ... away. The lab measures the glucose and growth hormone (GH) levels in each sample.

  20. Adipocytokines, gut hormones and growth factors in anorexia nervosa.

    PubMed

    Kowalska, Irina; Karczewska-Kupczewska, Monika; Strączkowski, Marek

    2011-09-18

    Anorexia nervosa is a complex eating disorder of unknown etiology which affects adolescent girls and young women and leads to chronic malnutrition. Clinical manifestations of prolonged semistarvation include a variety of physical features and psychiatric disorders. The study of different biological factors involved in the pathophysiology of anorexia nervosa is an area of active interest. In this review we have described the role of adipocytokines, neurotrophins, peptides of the gastrointestinal system and growth factors in appetite regulation, energy balance and insulin sensitivity in anorexia nervosa patients. PMID:21699889

  1. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    PubMed

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. PMID:23747407

  2. Growth hormone and insulin-like growth factor I in a Sydney Olympic gold medallist.

    PubMed

    Armanini, D; Faggian, D; Scaroni, C; Plebani, M

    2002-04-01

    An Italian athlete who won a gold medal at the Sydney Olympic Games was studied. She was accused of doping after the finding of high levels of plasma growth hormone (GH) before the Games. She was studied firstly under stressed and then under unstressed conditions. In the first study, GH was measured every 20 minutes for one hour; it was above the normal range in all blood samples, whereas insulin-like growth factor I (IGF-I) was normal. In the second study, GH progressively returned to accepted normal levels; IGF-I was again normal. It was concluded that the normal range for GH in athletes must be reconsidered for doping purposes, because athletes are subject to stress and thus to wide variations in GH levels. PMID:11916901

  3. Growth hormone, insulin-like growth factor-1 and the aging brain.

    PubMed

    Ashpole, Nicole M; Sanders, Jessica E; Hodges, Erik L; Yan, Han; Sonntag, William E

    2015-08-01

    Growth hormone (GH) and insulin-like growth factor (IGF)-1 regulate the development and function of cells throughout the body. Several clinical diseases that result in a decline in physical and mental functions are marked by mutations that disrupt GH or IGF-1 signaling. During the lifespan there is a robust decrease in both GH and IGF-1. Because GH and IGF-1 are master regulators of cellular function, impaired GH and IGF-1 signaling in aging/disease states leads to significant alterations in tissue structure and function, especially within the brain. This review is intended to highlight the effects of the GH and IGF-1 on neuronal structure, function, and plasticity. Furthermore, we address several potential mechanisms through which the age-related reductions in GH and IGF-1 affect cognition. Together, the studies reviewed here highlight the importance of maintaining GH and IGF-1 signaling in order to sustain proper brain function throughout the lifespan. PMID:25300732

  4. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    PubMed

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance. PMID:11953652

  5. Diabetes, growth hormone-insulin-like growth factor pathways and association to benign prostatic hyperplasia.

    PubMed

    Wang, Zongwei; Olumi, Aria F

    2011-01-01

    Diabetes significantly increases the risk of benign prostatic hyperplasia (BPH) and low urinary tract symptoms (LUTS). The major endocrine aberration in connection with the metabolic syndrome is hyperinsulinemia. Insulin is an independent risk factor and a promoter of BPH. Insulin resistance may change the risk of BPH through several biological pathways. Hyperinsulinemia stimulates the liver to produce more insulin-like growth factor (IGF), another mitogen and an anti-apoptotic agent which binds insulin receptor/IGF receptor and stimulates prostate growth. The levels of IGFs and IGF binding proteins (IGFBPs) in prostate tissue and in blood are associated with BPH risk, with the regulation of circulating androgen and growth hormone. Stromal-epithelial interactions play a critical role in the development and growth of the prostate gland and BPH. Previously, we have shown that the expression of c-Jun in the fibroblastic stroma can promote secretion of IGF-I, which stimulates prostate epithelial cell proliferation through activating specific target genes. Here, we will review the epidemiologic, clinical, and molecular findings which have evaluated the relation between diabetes and development of BPH. PMID:21536370

  6. Galactopoiesis/Effects of hormones and growth factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The term galactopoiesis was originally coined to describe the enhancement of an established lactation. In this sense, only exogenous somatotropin and thyroid hormones are clearly demonstrated galactopoietic agents in dairy animals. However, in a more inclusive sense, galactopoiesis has been used t...

  7. Gastrointestinal growth factors and hormones have divergent effects on Akt activation

    PubMed Central

    Berna, Marc J.; Tapia, Jose A.; Sancho, Veronica; Thill, Michelle; Pace, Andrea; Hoffmann, K. Martin; Gonzalez-Fernandez, Lauro; Jensen, Robert T.

    2009-01-01

    Akt is a central regulator of apoptosis, cell growth and survival. Growth factors and some G-protein-coupled receptors (GPCR) regulate Akt. Whereas growth-factor activation of Akt has been extensively studied, the regulation of Akt by GPCR's, especially gastrointestinal hormones/neurotransmitters, remains unclear. To address this area, in this study the effects of GI growth factors and hormones/neurotransmitters were investigate in rat pancreatic acinar cells which are high responsive to these agents. Pancreatic acini expressed Akt and 5 of 7 known pancreatic growth-factors stimulate Akt phosphorylation (T308, S473) and translocation. These effects are mediated by p85 phosphorylation and activation of PI3K. GI hormones increasing intracellular cAMP had similar effects. However, GI-hormones/neurotransmitters[CCK, bombesin,carbachol] activating phospholipase C (PLC) inhibited basal and growth-factor-stimulated Akt activation. Detailed studies with CCK, which has both physiological and pathophysiological effects on pancreatic acinar cells at different concentrations, demonstrated CCK has a biphasic effect: at low concentrations(pM) stimulating Akt by a Src-dependent mechanism and at higher concentrations(nM) inhibited basal and stimulated Akt translocation, phosphorylation and activation, by de-phosphorylating p85 resulting in decreasing PI3K activity. This effect required activation of both limbs of the PLC-pathway and a protein tyrosine phosphatase, but was not mediated by p44/42 MAPK, Src or activation of a serine phosphatase. Akt inhibition by CCK was also found in vivo and in Panc-1 cancer cells where it inhibited serum-mediated rescue from apoptosis. These results demonstrate that GI growth factors as well as gastrointestinal hormones/neurotransmitters with different cellular basis of action can all regulate Akt phosphorylation in pancreatic acinar cells. This regulation is complex with phospholipase C agents such as CCK, because both stimulatory and inhibitory

  8. Hormonal regulation of rat hypothalamic neuropeptide mRNAs: effect of hypophysectomy and hormone replacement on growth-hormone-releasing factor, somatostatin and the insulin-like growth factors.

    PubMed

    Wood, T L; Berelowitz, M; Gelato, M C; Roberts, C T; LeRoith, D; Millard, W J; McKelvy, J F

    1991-03-01

    Hormonal feedback regulation of hypothalamic peptides putatively involved in growth hormone (GH) regulation has been studied by measurement of steady-state mRNA levels in male hypophysectomized rats with or without thyroid hormone, corticosterone, testosterone or GH replacement. Hypothalamic GH-releasing factor (GRF) mRNA levels increased progressively following hypophysectomy to 420% of sham levels after 15 days while hypothalamic insulin-like growth factor I (IGF-I) and insulin-like growth factor II (IGF-II) mRNA levels decreased to less than 40% of sham levels. Whole hypothalamic somatostatin mRNA levels were not significantly different from sham. One week of continuous GH infusion restored hypothalamic IGF-I mRNA to levels (95%) indistinguishable from those in sham-operated controls but had no effect on either IGF-II or GRF mRNA. Thyroid hormone, corticosterone and testosterone treatment without GH had no effect on the hypophysectomy-induced reduction of either IGF-I or IGF-II mRNA levels but reversed the elevation of GRF mRNA. We conclude that hypothalamic IGF-I may be involved in GH feedback regulation and thus may function as a hypothalamic modulator of GH. In contrast, IGF-II may be regulated by one of the pituitary trophic hormones but not by GH or the target hormones tested. Finally, hypothalamic GRF mRNA regulation appears to be complex and may include target hormone feedback. PMID:1674982

  9. Growth hormone and insulin-like growth factors in fish: Where we are and where to go

    USGS Publications Warehouse

    Reinecke, M.; Bjornsson, Bjorn Thrandur; Dickhoff, Walton W.; McCormick, S.D.; Navarro, I.; Power, D.M.; Gutierrez, J.

    2005-01-01

    This communication summarizes viewpoints, discussion, perspectives, and questions, put forward at a workshop on "Growth hormone and insulin-like growth factors in fish" held on September 7th, 2004, at the 5th International Symposium on Fish Endocrinology in Castello??n, Spain. ?? 2005 Elsevier Inc. All rights reserved.

  10. Epidermal growth factor (EGF) inhibits stimulated thyroid hormone secretion in the mouse

    SciTech Connect

    Ahren, B.

    1987-07-01

    It is known that epidermal growth factor (EGF) inhibits iodide uptake in the thyroid follicular cells and lowers plasma levels of thyroid hormones upon infusion into sheep and ewes. In this study, the effects of EGF on basal and stimulated thyroid hormone secretion were investigated in the mouse. Mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was not altered by intravenous injection of EGF (5 micrograms/animal). However, the radioiodine secretion stimulated by both TSH (120 microU/animal) and vasoactive intestinal peptide (VIP; 5 micrograms/animal) were inhibited by EGF (5 micrograms/animal). At a lower dose level (0.5 microgram/animal), EGF had no influence on stimulated radioiodine secretion. In conclusion, EGF inhibits stimulated thyroid hormone secretion in the mouse.

  11. Acute alterations in growth hormone-insulin-like growth factor axis in humans injected with endotoxin.

    PubMed

    Lang, C H; Pollard, V; Fan, J; Traber, L D; Traber, D L; Frost, R A; Gelato, M C; Prough, D S

    1997-07-01

    The purpose of the present study was to characterize the acute changes in the insulin-like growth factor (IGF) system in humans after administration of endotoxin (lipopolysaccharide; LPS). Escherichia coli LPS (4 ng/kg) was injected intravenously into healthy adults, and serial blood samples were collected for the next 5 h; subjects injected with saline served as time-matched controls. LPS administration resulted in a gradual decrease in the total extractable IGF-I concentration, which was reduced by approximately 20% over the final 2 h of the experiment; levels of free IGF-I were not significantly altered. LPS also produced a marked but transient elevation in growth hormone (GH) concentration. IGF-binding protein (BP)-1 levels were elevated more than fivefold 2 h after LPS injection, and thereafter levels gradually returned toward baseline. IGFBP-2 concentration also increased after LPS injection, but the maximal increase (approximately 50% above basal) was observed during the final 2 h of the protocol. In contrast, IGFBP-3 levels did not vary over the period examined in response to LPS, and there was no apparent increase in number of BP-3 proteolytic fragments. Cortisol levels were increased early and remained two- to threefold above baseline throughout the protocol. No significant alterations in serum concentration of glucose or insulin were noted. LPS also produced an early elevation in tumor necrosis factor and a later increase in interleukin-6. These data indicate that the acute changes in the GH-IGF axis in humans in response to LPS are comparable with those observed in humans in other traumatic conditions and in animal models of endotoxemia and infection. PMID:9249574

  12. Effects of growth hormone and insulin-like growth factor I on muscle in mouse models of human growth disorders.

    PubMed

    Clark, Ryan P; Schuenke, Mark; Keeton, Stephanie M; Staron, Robert S; Kopchick, John J

    2006-01-01

    The precise effects of growth hormone (GH) and insulin-like growth factor I (IGF-I) on muscle development and physiology are relatively unknown. Furthermore, there have been conflicting reports on the effects of GH/IGF-I on muscle. Distinguishing the direct effects of GH versus those of IGF-I is problematic, but animal models with altered GH/IGF-I action could help to alleviate some of the conflicting results and help to determine the independent actions of GH and IGF-I. The phenotypes of several mouse models, namely the GH receptor-gene-disrupted (GHR -/-) mouse and a variety of IGF-I -/- mice, are summarized, which ultimately will aid our understanding of this complex area. PMID:17259718

  13. Human growth hormone.

    PubMed

    Strobl, J S; Thomas, M J

    1994-03-01

    The study of human growth hormone is a little more than 100 years old. Growth hormone, first identified for its dramatic effect on longitudinal growth, is now known to exert generalized effects on protein, lipid, and carbohydrate metabolism. Additional roles for growth hormone in human physiology are likely to be discovered in the areas of sleep research and reproduction. Furthermore, there is some indication that growth hormone also may be involved in the regulation of immune function, mental well-being, and the aging process. Recombinant DNA technology has provided an abundant and safe, albeit expensive, supply of human growth hormone for human use, but the pharmacological properties of growth hormone are poor. Most growth hormone-deficient individuals exhibit a secretory defect rather than a primary defect in growth hormone production, however, and advances in our understanding of the neuroendocrine regulation of growth hormone secretion have established the basis for the use of drugs to stimulate release of endogenously synthesized growth hormone. This promises to be an important area for future drug development. PMID:8190748

  14. Hormonal regulatory role of eyestalk factors on growth of heart in mud crab, Scylla serrata

    PubMed Central

    Allayie, Sartaj Ahmad; Ravichandran, S.; Bhat, Bilal Ahmad

    2011-01-01

    The present study was attempted to know the growth regulation of eyestalk factors on the growth of heart in Scylla serrata using eyestalk extractions and bilateral eyestalk ablations. The bilateral eyestalk ablation led to the maximum growth indices of the heart ((H) indices) to 0.162 and 0.158 in ablated male and female, respectively, in comparison to 0.153 and 0.167 in the control male and female and 0.147 and 0.157 in injected male and female, respectively. The data have shown that the heart of male crabs grows faster than female crabs. The study has also shown that bilateral eyestalk ablation resulted in a significant increase in the heart indices in males and has least effect on the growth of the female heart. The results presented strongly support a potential role of the eyestalk factors and molting hormone regulating the growth of the heart in S. serrata. PMID:23961136

  15. Human fetal and adult chondrocytes. Effect of insulinlike growth factors I and II, insulin, and growth hormone on clonal growth.

    PubMed Central

    Vetter, U; Zapf, J; Heit, W; Helbing, G; Heinze, E; Froesch, E R; Teller, W M

    1986-01-01

    Clonal proliferation of freshly isolated human fetal chondrocytes and adult chondrocytes in response to human insulinlike growth factors I and II (IGF I, IGF II), human biosynthetic insulin, and human growth hormone (GH) was assessed. IGF I (25 ng/ml) stimulated clonal growth of fetal chondrocytes (54 +/- 12 colonies/1,000 inserted cells, mean +/- 1 SD), but IGF II (25 ng/ml) was significantly more effective (106 +/- 12 colonies/1,000 inserted cells, P less than 0.05, unstimulated control: 14 +/- 4 colonies/1,000 inserted cells). In contrast, IGF I (25 ng/ml) was more effective in adult chondrocytes (42 +/- 6 colonies/1,000 inserted cells) than IGF II (25 ng/ml) (21 +/- 6 colonies/1,000 inserted cells; P less than 0.05, unstimulated control: 6 +/- 3 colonies/1,000 inserted cells). GH and human biosynthetic insulin did not affect clonal growth of fetal or adult chondrocytes. The clonal growth pattern of IGF-stimulated fetal and adult chondrocytes was not significantly changed when chondrocytes were first grown in monolayer culture, harvested, and then inserted in the clonal culture system. However, the adult chondrocytes showed a time-dependent decrease of stimulation of clonal growth by IGF I and II. This was not true for fetal chondrocytes. The results are compatible with the concept that IGF II is a more potent stimulant of clonal growth of chondrocytes during fetal life, whereas IGF I is more effective in stimulating clonal growth of chondrocytes during postnatal life. Images PMID:3519682

  16. Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3.

    PubMed

    Kartal, Ömer; Aydınöz, Seçil; Kartal, Ayşe Tuğba; Kelestemur, Taha; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Karademir, Ferhan; Süleymanoğlu, Selami; Kul, Mustafa; Yulug, Burak; Kilic, Ertugrul

    2016-08-01

    Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival. PMID:26943480

  17. Growth hormone stimulation test

    MedlinePlus

    The growth hormone (GH) stimulation test measures the ability of the body to produce GH. ... killing medicine (antiseptic). The first sample is drawn early in the morning. Medicine is given through the ...

  18. Effects of sericin on the testicular growth hormone/insulin-like growth factor-1 axis in a rat model of type 2 diabetes

    PubMed Central

    Song, Cheng-Jun; Yang, Zhen-Jun; Tang, Qi-Feng; Chen, Zhi-Hong

    2015-01-01

    This study investigated the effects of sericin on the testicular growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in rats with type 2 diabetes mellitus. Forty rats were randomly assigned to normal control, type 2 diabetes mellitus, sericin and metformin treated groups. Type 2 diabetes was established by repeated intraperitoneal injection of streptozotocin, and identified by blood glucose ≥16.7 mmol/L at 1 week. The diabetic rats were given no other treatment, these rats in the sericin group were intragastrically perfused with 2.4 g/kg sericin and the metformin treated rats were intragastrically perfused with 55.33 mg/kg Metformin daily for 35 consecutive days. Enzyme-linked immunosorbent assays were used to determine serum testosterone, growth hormone and IGF-1 levels. Immunohistochemical staining, western blotting and reverse transcription-PCR were used to determine testicular growth hormone, growth hormone receptor and IGF-1 expression. The sericin significantly reduced serum growth hormone levels, downregulated growth hormone expression, increased serum testosterone and IGF-1 levels, and upregulated testicular growth hormone receptor and IGF-1 expression. Moreover, there were no significant differences in any of the parameters between the sericin and metformin treated groups. These findings indicated that sericin improved spermatogenic function through regulating the growth hormone/IGF-1 axis, thereby protecting reproductive function against diabetes-induced damage. PMID:26379831

  19. Effects of sericin on the testicular growth hormone/insulin-like growth factor-1 axis in a rat model of type 2 diabetes.

    PubMed

    Song, Cheng-Jun; Yang, Zhen-Jun; Tang, Qi-Feng; Chen, Zhi-Hong

    2015-01-01

    This study investigated the effects of sericin on the testicular growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in rats with type 2 diabetes mellitus. Forty rats were randomly assigned to normal control, type 2 diabetes mellitus, sericin and metformin treated groups. Type 2 diabetes was established by repeated intraperitoneal injection of streptozotocin, and identified by blood glucose ≥16.7 mmol/L at 1 week. The diabetic rats were given no other treatment, these rats in the sericin group were intragastrically perfused with 2.4 g/kg sericin and the metformin treated rats were intragastrically perfused with 55.33 mg/kg Metformin daily for 35 consecutive days. Enzyme-linked immunosorbent assays were used to determine serum testosterone, growth hormone and IGF-1 levels. Immunohistochemical staining, western blotting and reverse transcription-PCR were used to determine testicular growth hormone, growth hormone receptor and IGF-1 expression. The sericin significantly reduced serum growth hormone levels, downregulated growth hormone expression, increased serum testosterone and IGF-1 levels, and upregulated testicular growth hormone receptor and IGF-1 expression. Moreover, there were no significant differences in any of the parameters between the sericin and metformin treated groups. These findings indicated that sericin improved spermatogenic function through regulating the growth hormone/IGF-1 axis, thereby protecting reproductive function against diabetes-induced damage. PMID:26379831

  20. Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-I system.

    PubMed

    Reinecke, M

    2010-04-01

    Insulin-like growth factor-I (IGF-I) is a key component of the complex system that regulates differentiation, development, growth and reproduction of fishes. The IGF-I gene is mainly expressed in the liver that represents the principal source of endocrine IGF-I but also in numerous other organs where the hormone most probably acts in an autocrine-paracrine manner. The primary stimulus for synthesis and release of IGF-I is growth hormone (GH) from the anterior pituitary. Thus, in analogy to mammals, it is usual to speak of a fish 'GH-IGF-I axis'. The GH-IGF-I system is affected by changes in the environment and probably represents a target of endocrine disrupting compounds (EDC) that impair many physiological processes in fishes. Thus, the review deals with the influences of changes in different environmental factors, such as food availability, temperature, photoperiod, season, salinity and EDCs, on GH gene expression in pituitary, IGF-I gene expression in liver and extrahepatic sites and the physiological effects resulting from the evoked alterations in endocrine and local IGF-I. Environmental influences certainly interact with each other but for convenience of the reader they will be dealt with in separate sections. Current trends in GH-IGF-I research are analysed and future focuses are suggested at the end of the sections. PMID:20537012

  1. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    SciTech Connect

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-08-01

    The specific binding of iodinated epidermal growth factor ((/sup 125/I)iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites (dissociation constant (Kd) = 0.7-1.8 nM). Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status.

  2. Thyroid Hormone Regulates Hepatic Expression of Fibroblast Growth Factor 21 in a PPARα-dependent Manner*

    PubMed Central

    Adams, Andrew C.; Astapova, Inna; Fisher, ffolliott M.; Badman, Michael K.; Kurgansky, Katherine E.; Flier, Jeffrey S.; Hollenberg, Anthony N.; Maratos-Flier, Eleftheria

    2010-01-01

    Thyroid hormone has profound and diverse effects on liver metabolism. Here we show that tri-iodothyronine (T3) treatment in mice acutely and specifically induces hepatic expression of the metabolic regulator fibroblast growth factor 21 (FGF21). Mice treated with T3 showed a dose-dependent increase in hepatic FGF21 expression with significant induction at doses as low as 100 μg/kg. Time course studies determined that induction is seen as early as 4 h after treatment with a further increase in expression at 6 h after injection. As FGF21 expression is downstream of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα), we treated PPARα knock-out mice with T3 and found no increase in expression, indicating that hepatic regulation of FGF21 by T3 in liver is via a PPARα-dependent mechanism. In contrast, in white adipose tissue, FGF21 expression was suppressed by T3 treatment, with other T3 targets unaffected. In cell culture studies with an FGF21 reporter construct, we determined that three transcription factors are required for induction of FGF21 expression: thyroid hormone receptor β (TRβ), retinoid X receptor (RXR), and PPARα. These findings indicate a novel regulatory pathway whereby T3 positively regulates hepatic FGF21 expression, presenting a novel therapeutic target for diseases such as non-alcoholic fatty liver disease. PMID:20236931

  3. Molecular genetics of human growth hormone, insulin-like growth factors and their pathways in common disease.

    PubMed

    Rodriguez, Santiago; Gaunt, Tom R; Day, Ian N M

    2007-08-01

    The human growth hormone gene (GH1) and the insulin-like growth factor 1 and 2 genes (IGF1 and IGF2) encode the central elements of a key pathway influencing growth in humans. This "growth pathway" also includes transcription factors, agonists, antagonists, receptors, binding proteins, and endocrine factors that constitute an intrincate network of feedback loops. GH1 is evolutionarily coupled with other genes in linkage disequilibrium in 17q24.2, and the same applies to IGF2 in 11p15.5. In contrast, IGF1 in 12q22-24.1 is not in strong linkage disequilibrium with neighbouring genes. Knowledge of the functional architecture of these regions is important for the understanding of the combined evolution and function of GH1, IGF2 and IGF1 in relation to complex diseases. A number of mutations accounting for rare Mendelian disorders have been described in GH-IGF elements. The constellation of genes in this key pathway contains potential candidates in a number of complex diseases, including growth disorders, metabolic syndrome, diabetes (notably IGF2BP2) cardiovascular disease, and central nervous system diseases, and in longevity, aging and cancer. We review these genes and their associations with disease phenotypes, with special attention to metabolic risk traits. PMID:17534663

  4. Human pituitary and placental hormones control human insulin-like growth factor II secretion in human granulosa cells

    SciTech Connect

    Ramasharma, K.; Li, C.H.

    1987-05-01

    Human granulosa cells cultured with calf serum actively proliferated for 18-20 generations and secreted progesterone into the medium; progesterone levels appeared to decline with increase in generation number. Cells cultured under serum-free conditions secreted significant amounts of progesterone and insulin-like growth factor II (IGF-II). The progesterone secretion was enhanced by the addition of human follitropin, lutropin, and chorionic gonadotropin but not by growth hormone. These cells, when challenged to varying concentrations of human growth hormone, human chorionic somatomammotropin, human prolactin, chorionic gonadotropin, follitropin, and lutropin, secreted IGF-II into the medium as measured by specific IGF-II RIA. Among these human hormones, chorionic gonadotropin, follitropin, and lutropin were most effective in inducing IGF-II secretion from these cells. When synthetic lutropin-releasing hormone and ..cap alpha..-inhibin-92 were tested, only lutropin-releasing hormone was effective in releasing IGF-II. The results described suggest that cultured human granulosa cells can proliferate and actively secrete progesterone and IGF-II into the medium. IGF-II production in human granulosa cells was influenced by a multi-hormonal complex including human growth hormone, human chorionic somatomammotropin, and prolactin.

  5. The growth hormone receptor.

    PubMed

    Waters, Michael J

    2016-06-01

    Once thought to be present only in liver, muscle and adipose tissue, the GH receptor is now known to be ubiquitously distributed, in accord with the many pleiotropic actions of GH. These include the regulation of metabolism, postnatal growth, cognition, immune, cardiac and renal systems and gut function. GH exerts these actions primarily through alterations in gene expression, initiated by activation of its membrane receptor and the resultant activation of the associated JAK2 (Janus kinase 2) and Src family kinases. Receptor activation involves hormone initiated movements within a receptor homodimer, rather than simple receptor dimerization. We have shown that binding of the hormone realigns the orientation of the two receptors both by relative rotation and by closer apposition just above the cell membrane. This is a consequence of the asymmetric placement of the binding sites on the hormone. Binding results in a conversion of parallel receptor transmembrane domains into a rotated crossover orientation, which produces separation of the lower part of the transmembrane helices. Because the JAK2 is bound to the Box1 motif proximal to the inner membrane, receptor activation results in separation of the two associated JAK2s, and in particular the removal of the inhibitory pseudokinase domain from the kinase domain of the other JAK2 (and vice versa). This brings the two kinase domains into position for trans-activation and initiates tyrosine phosphorylation of the receptor cytoplasmic domain and other substrates such as STAT5, the key transcription factor mediating most genomic actions of GH. There are a limited number of genomic actions initiated by the Src kinase family member which also associates with the upper cytoplasmic domain of the receptor, including important immune regulatory actions to dampen exuberant innate immune activation of cells involved in transplant rejection. These findings offer insights for developing specific receptor antagonists which may be

  6. Genetics of growth hormone deficiency.

    PubMed

    Mullis, Primus E

    2007-03-01

    When a child is not following the normal, predicted growth curve, an evaluation for underlying illness and central nervous system abnormalities is required and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency. This article focuses on the GH gene, the various gene alterations, and their possible impact on the pituitary gland. Transcription factors regulating pituitary gland development may cause multiple pituitary hormone deficiency but may present initially as GH deficiency. The role of two most important transcription factors, POU1F1 (Pit-1) and PROP 1, is discussed. PMID:17336732

  7. Modulation of cultured porcine granulosa cell responsiveness to follicle stimulating hormone and epidermal growth factor

    SciTech Connect

    Buck, P.A.

    1986-01-01

    Ovarian follicular development is dependent upon the coordinated growth and differentiation of the granulosa cells which line the follicle. Follicle stimulating hormone (FSH) induces granulosa cell differentiation both in vivo and in vitro. Epidermal growth factor (EGF) stimulates granulosa cell proliferation in vitro. The interaction of these two effectors upon selected parameters of growth and differentiation was examined in monolayer cultures of porcine granulose cells. Analysis of the EGF receptor by /sup 125/I-EGF binding revealed that the receptor was of high affinity with an apparent dissociation constant of 4-6 x 10/sup -10/ M. The average number of receptors per cell varied with the state of differentiation both in vivo and in vitro; highly differentiated cells bound two-fold less /sup 125/I-EGF and this effect was at least partially induced by FSH in vitro. EGF receptor function was examined by assessing EGF effects on cell number and /sup 3/H-thymidine incorporation. EGF stimulated thymidine incorporation in both serum-free and serum-supplemented culture, but only in serum-supplemented conditions was cell number increased. EGF receptor function was inversely related to the state of differentiation and was attenuated by FSH. The FSH receptor was examined by /sup 125/I-FSH binding. EGF increased FSH receptor number, and lowered the affinity of the receptor. The function of these receptors was assessed by /sup 125/I-hCG binding and progesterone radioimmunoassay. If EGF was present continuously in the cultures. FSH receptor function was attenuated regardless of FSH receptor number. A preliminary effort to examine the mechanism of this interaction was performed by analyzing hormonally controlled protein synthesis with /sup 35/S-methionine labeling, SDS polyacrylamide gel electrophoresis and fluorography. FSH promoted the expression of a 27,000 dalton protein. This effect was attenuated by EGF.

  8. Hormonal regulation of epidermal growth factor and protease in the submandibular gland of the adult mouse.

    PubMed

    Gresik, E W; Schenkein, I; van der Noen, H; Barka, T

    1981-09-01

    The structure of the granular convoluted tubules of the mouse submandibular gland is influenced by androgens, adrenal steroids, and thyroid hormones. We wished to investigate the effects of variations in hormonal status on the quantitative and qualitative distribution of two secretory products of these tubules, epidermal growth factor (EGF) and protease. The effects of the thyroid and adrenal glands on EGF content and protease activity of the submandibular glands of adult female mice were studied by RIAs (EGF), enzyme assays (protease), and immunocytochemical methods. In animals rendered chronically hypothyroid by propylthiouracil (4 months) or in animals which were adrenalectomized and ovariectomized (3 weeks), protease activity and EGF levels were reduced by 81-97%. The administration of testosterone induced these polypeptides even in hypothyroid animals. Daily administration of L-T4 (T4; 1 micrograms/g BW) for 7 days increased EGF and protease activity 3.6-fold in intact mice and reversed the effect of hypothyroidism. EGF and protease were also induced by T4 in adrenalectomized and ovariectomized mice, although to a lesser degree than in intact animals. Immunocytochemical stainings of submandibular glands indicated that the number of granular convoluted tubule cells immunoreactive for EGF correlated with the levels of EGF determined by RIAs. With respect to immunostaining for protease, such a correlation was not observed. The data indicate multihormonal regulation of EGF and protease in the mouse submandibular gland. PMID:7021131

  9. Effect of a bovine hypothalamic factor on the release and biosynthesis of growth hormone.

    PubMed

    Matsuno, T; Sawano, S; Yamasaki, M

    1977-02-01

    Partial purification of growth hormone (GH)-releasing factor (GRF) by acid extraction followed by gel filtration on Sephadex G-25 has been attained from bovine hypothalami. When rat pituitaries were incubated in 2 ml Krebs Ringer-bicarbonate-glucose (KRBG) medium, a stimulatory effect of the GRF fraction on immunoreactive GH (IR-GH) release was observed, while that of the factor neither on GH synthesis nor release of the synthesized GH was demonstrated. Stimulation of the GH release was exerted maximally within 30 min of incubation. Cycloheximide and actinomycin D, at a concentration which inhibited protein and RNA synthesis to less than 5 and 20% of the control, respectively, were without effect on the stimulatory action of the factor on GH release. On the other hand, stimulation of GH synthesis was observed under incubation in 0.3 ml medium with the factor and enhancing effect of the factor on the IR-GH release was undetectable. These results suggest that stimulation of the release and synthesis of GH mediated by the hypothalamic GRF fraction is under influence of the pool size of incubation media. PMID:324757

  10. Relationship between cognitive function, growth hormone and insulin-like growth factor I plasma levels in aged subjects.

    PubMed

    Rollero, A; Murialdo, G; Fonzi, S; Garrone, S; Gianelli, M V; Gazzerro, E; Barreca, A; Polleri, A

    1998-01-01

    Basal growth hormone (GH) and insulin-like growth factor I (IGF-I) as well as GH responses to GH-releasing hormone (GHRH) were studied in 22 subjects (7 females, 15 males), aged between 65 and 86 years. The study was aimed at investigating the possible correlations between the age-dependent GH-IGF-I axis decline and the cognitive function - assessed by the Mini Mental State Examination (MMSE). The relationship between hormonal data, cognition and age, body weight, body mass index (BMI), some nutritional indices (triceps skinfolds, TSF, mid-arm circumference, MAC), and physical activity - quantified by the physical functioning index (PFI)--were also analyzed. GH basal levels were within the normal range, while GH responses to GHRH were blunted in most cases. GH peaks after GHRH were directly correlated with GH basal values. IGF-I serum levels were found to be in the lower part of the reference range for adult subjects or below it. GH responses to GHRH, but not GH and IGF-I basal levels, were inversely correlated with subject age. GH secretion areas after GHRH were inversely correlated with BMI, but no further correlations between GH data and clinical or nutritional parameters were found. MMSE values directly correlated with MAC and PFI values. IGF-I levels were directly correlated with MMSE scores, being lowered in patients with more advanced cognitive deterioration, and with MAC values--the decrease of which is thought to reflect protein caloric malnutrition--but not with body weight, BMI, TSF and PFI. MMSE-related protein caloric malnutrition and decreased physical activity possibly take part in affecting IGF- I function in subjects with mild cognitive impairment and, reciprocally, IGF-I decrement might affect neuronal function. PMID:9732206

  11. [Hormones and hair growth].

    PubMed

    Trüeb, R M

    2010-06-01

    With respect to the relationship between hormones and hair growth, the role of androgens for androgenetic alopecia (AGA) and hirsutism is best acknowledged. Accordingly, therapeutic strategies that intervene in androgen metabolism have been successfully developed for treatment of these conditions. Clinical observations of hair conditions involving hormones beyond the androgen horizon have determined their role in regulation of hair growth: estrogens, prolactin, thyroid hormone, cortisone, growth hormone (GH), and melatonin. Primary GH resistance is characterized by thin hair, while acromegaly may cause hypertrichosis. Hyperprolactinemia may cause hair loss and hirsutism. Partial synchronization of the hair cycle in anagen during late pregnancy points to an estrogen effect, while aromatase inhibitors cause hair loss. Hair loss in a causal relationship to thyroid disorders is well documented. In contrast to AGA, senescent alopecia affects the hair in a diffuse manner. The question arises, whether the hypothesis that a causal relationship exists between the age-related reduction of circulating hormones and organ function also applies to hair and the aging of hair. PMID:20502852

  12. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    PubMed

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. PMID:27032617

  13. Effects of inorganic iodide, epidermal growth factor and phorbol ester on hormone synthesis by porcine thyroid follicles cultured in suspension

    SciTech Connect

    Kasai, Kikuo; Ichimura, Kenichi; Banba, Nobuyuki; Emoto, Tatsushi; Hiraiwa, Masaki; Hishinuma, Akira; Hattori, Yoshiyuki; Shimoda, Shinichi ); Yamaguchi, Fumihiko; Hosoya, Toichiro )

    1992-01-01

    Porcine thyroid follicles cultured in suspension for 96 h synthesized and secreted thyroid hormones in the presence of thyrotropin (TSH). The secretion of newly synthesized hormones was assessed by determining in the contents of thyroxine (T{sub 4}) and triiodothyronine (T{sub 3}) in the media and by paperchromatographic analysis of {sup 125}I-labeled hormones in the media where the follicles were cultured in the presence and absence of inhibitors of hormone synthesis. The hormone synthesis and secretion was modified by exogenously added NaI. The maximal response was obtained at 1 {mu}M. Thyroid peroxidase (TPO) activity in the cultured follicles with TSH for 96 h was dose-dependently inhibited by NaI. One hundred {mu}M and NaI completely inhibited TSH-induced TPO activity. Moreover, both epidermal growth factor and phorbol 12-myristate 13-acetate inhibited de novo hormone synthesis. An induction of TPO activity by TSH was also inhibited by either agent. These data provide direct evidences that thyroid hormone synthesis is regulated by NaI as well as TSH at least in part via regulation of TPO activity and also that both EGF and PMA are inhibitory on thyroid hormone formation.

  14. Quantification of insulin-like growth factor-1 in dried blood spots for detection of growth hormone abuse in sport.

    PubMed

    Cox, Holly D; Rampton, Jessica; Eichner, Daniel

    2013-02-01

    There is significant evidence that athletes are using recombinant human growth hormone (rhGH) to enhance performance, and its use is banned by the World Anti-Doping Agency and professional sports leagues. Insulin-like growth factor-1 (IGF-1) is the primary mediator of growth hormone action and is used as a biomarker for the detection of rhGH abuse. The current biomarker-based method requires collection and expedited shipment of venous blood which is costly and may decrease the number of tests performed. Measurement of GH biomarkers in dried blood spots (DBS) would considerably simplify sample collection and shipping methods to allow testing of a greater number of samples regardless of location. A method was developed to quantify intact IGF-1 protein in DBS by liquid chromatography-tandem mass spectrometry. A step-wise acid-acetonitrile extraction was optimized to achieve a sensitive assay with a lower limit of quantification of 50 ng/mL. IGF-1 remained stable at room temperature for up to 8 days, which would allow shipment of DBS cards at ambient temperature. In a comparison between plasma concentrations of IGF-1 and concentrations measured from venous and finger prick DBS, there was good correlation and agreement, r(2) of 0.8551 and accuracy of 86-113 % for venous DBS and r(2) of 0.9586 and accuracy of 89-122 % for finger prick DBS. The method is intended for use as a rapid screening method for IGF-1 to be used in the biomarker method of rhGH abuse detection. PMID:23263515

  15. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 2; Hypothalamic Growth Hormone-Releasing Factor, Somatostatin Immunoreactivity, and Messenger RNA Levels in Microgravity

    NASA Technical Reports Server (NTRS)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1994-01-01

    Immunohistochemical analyses of hypothalamic hormones carried out on tissue from rats flown on an earlier flight (Cosmos 1887) suggested preferential effects on hypophysiotropic principles involved in the regulation of growth hormone secretion and synthesis. We found that staining in the median eminence for peptides that provide both stimulatory (growth hormone-releasing factor, or GRF) and inhibitory (somatostatin, SS) influences on growth hormone secretion were depressed in flight animals relative to synchronous controls, while staining for other neuroendocrine peptides, cortocotropin-releasing factor and arginine vasopressin, were similar in these two groups. While this suggests some selective impact of weightlessness on the two principal central nervous system regulators of growth hormone dynamics, the fact that both GRF- and SS-immunoreactivity (IR) appeared affected in the same direction is somewhat problematic, and makes tentative any intimation that effects on CNS control mechanisms may be etiologically significant contributors to the sequelae of reduced growth hormone secretion seen in prolonged space flight. To provide an additional, and more penetrating, analysis we attempted in hypothalamic material harvested from animals flown on Cosmos 2044 to complement immunohistochemical analyses of GRF and SS staining with quantitative, in situ assessments of messenger RNAs encoding the precursors for both these hormones.

  16. Growth Hormone Induces Transforming Growth Factor-Beta-Induced Protein in Podocytes: Implications for Podocyte Depletion and Proteinuria.

    PubMed

    Chitra, P Swathi; Swathi, T; Sahay, Rakesh; Reddy, G Bhanuprakash; Menon, Ram K; Kumar, P Anil

    2015-09-01

    The glomerular podocytes form a major size selective barrier for the filtration of serum proteins and reduced podocyte number is a critical event in the pathogenesis of proteinuria during diabetic nephropathy (DN). An elevated level of growth hormone (GH) is implicated as a causative factor in the development of nephropathy in patients with type 1 diabetes mellitus. We have previously shown that podocytes express GH receptor and are a target for GH action. To elucidate the molecular basis for the effects of GH on podocyte depletion, we conducted PCR-array analyses for extracellular matrix and adhesion molecules in podocytes. Our studies reveal that GH increases expression of a gene that encodes transforming growth factor-beta-induced protein (TGFBIp) expression. Similarly, microarray data retrieved from the Nephromine database revealed elevation of TGFBIp in patients with DN. Treatment with GH results in increased secretion of extracellular TGFBIp by podocytes. Both GH and TGFBIp induced apoptosis and epithelial mesenchymal transition (EMT) of podocytes. Exposure of podocytes to GH and TGFBIp resulted in increased migration of cells and altered podocyte permeability to albumin across podocyte monolayer. Administration of GH to rats induced EMT and apoptosis in the glomerular fraction of the kidney. Therefore, we conclude that the GH-dependent increase in TGFBIp in the podocyte is one of the mechanisms responsible for podocyte depletion in DN. PMID:25740786

  17. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  18. Structural study of human growth hormone-releasing factor fragment (1?29) by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Carmona, P.; Molina, M.; Lasagabaster, A.

    1995-05-01

    The conformational structure of fragment 1-29 of human growth hormone releasing factor, hGHRF (1-29), in aqueous solution and in the solid state is investigated by infrared and Raman spectroscopy. The polypeptide backbone is found to be unordered in the solid state. However, the spectra of the peptide prepared as 5% (w/w) aqueous solutions show that approximately 28% of the peptide is involved in intermolecular β-sheet aggregation. The remainder of the peptide exists largely as disordered and β-sheet conformations with a small portion of α-helices. Tyrosine residues are found to be exposed to the solvent. The secondary structures are quantitatively examined through infrared spectroscopy, the conformational percentages being near those obtained by HONDAet al. [ Biopolymers31, 869 (1991)] using circular dichroism. The fast hydrogen/deuterium exchange in peptide groups and the absence of any NMR sign indicative of ordered structure [ G. M. CLOREet al., J. Molec. Biol.191, 553 (1986)] support that the solution conformations of the non-aggregated peptide interconvert in dynamic equilibrium. Some physiological advantages that may derive from this conformational flexibility are also discussed

  19. Growth hormone signaling pathways.

    PubMed

    Carter-Su, Christin; Schwartz, Jessica; Argetsinger, Lawrence S

    2016-06-01

    Over 20years ago, our laboratory showed that growth hormone (GH) signals through the GH receptor-associated tyrosine kinase JAK2. We showed that GH binding to its membrane-bound receptor enhances binding of JAK2 to the GHR, activates JAK2, and stimulates tyrosyl phosphorylation of both JAK2 and GHR. The activated JAK2/GHR complex recruits a variety of signaling proteins, thereby initiating multiple signaling pathways and cellular responses. These proteins and pathways include: 1) Stat transcription factors implicated in the expression of multiple genes, including the gene encoding insulin-like growth factor 1; 2) Shc adapter proteins that lead to activation of the grb2-SOS-Ras-Raf-MEK-ERK1,2 pathway; 3) insulin receptor substrate proteins implicated in the phosphatidylinositol-3-kinase and Akt pathway; 4) signal regulatory protein α, a transmembrane scaffold protein that recruits proteins including the tyrosine phosphatase SHP2; and 5) SH2B1, a scaffold protein that can activate JAK2 and enhance GH regulation of the actin cytoskeleton. Our recent work has focused on the function of SH2B1. We have shown that SH2B1β is recruited to and phosphorylated by JAK2 in response to GH. SH2B1 localizes to the plasma membrane, cytoplasm and focal adhesions; it also cycles through the nucleus. SH2B1 regulates the actin cytoskeleton and promotes GH-dependent motility of RAW264.7 macrophages. Mutations in SH2B1 have been found in humans exhibiting severe early-onset childhood obesity and insulin resistance. These mutations impair SH2B1 enhancement of GH-induced macrophage motility. As SH2B1 is expressed ubiquitously and is also recruited to a variety of receptor tyrosine kinases, our results raise the possibility that effects of SH2B1 on the actin cytoskeleton in various cell types, including neurons, may play a role in regulating body weight. PMID:26421979

  20. MicroRNA miR-8 regulates multiple growth factor hormones produced from Drosophila fat cells.

    PubMed

    Lee, G J; Jun, J W; Hyun, S

    2015-06-01

    Metabolic organs such as the liver and adipose tissue produce several peptide hormones that influence metabolic homeostasis. Fat bodies, the Drosophila counterpart of liver and adipose tissues, have been thought to analogously secrete several hormones that affect organismal physiology, but their identity and regulation remain poorly understood. Previous studies have indicated that microRNA miR-8, functions in the fat body to non-autonomously regulate organismal growth, suggesting that fat body-derived humoral factors are regulated by miR-8. Here, we found that several putative peptide hormones known to have mitogenic effects are regulated by miR-8 in the fat body. Most members of the imaginal disc growth factors and two members of the adenosine deaminase-related growth factors are up-regulated in the absence of miR-8. Drosophila insulin-like peptide 6 (Dilp6) and imaginal morphogenesis protein-late 2 (Imp-L2), a binding partner of Dilp, are also up-regulated in the fat body of miR-8 null mutant larvae. The fat body-specific reintroduction of miR-8 into the miR-8 null mutants revealed six peptides that showed fat-body organ-autonomous regulation by miR-8. Amongst them, only Imp-L2 was found to be regulated by U-shaped, the miR-8 target for body growth. However, a rescue experiment by knockdown of Imp-L2 indicated that Imp-L2 alone does not account for miR-8's control over the insect's growth. Our findings suggest that multiple peptide hormones regulated by miR-8 in the fat body may collectively contribute to Drosophila growth. PMID:25492518

  1. Calcitriol, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease

    PubMed Central

    Brito Galvao, Joao F; Nagode, Larry A; Schenck, Patricia A; Chew, Dennis J

    2013-01-01

    Objective To review the inter-relationships between calcium, phosphorus, parathyroid hormone (PTH), parent and activated vitamin D metabolites (vitamin D, 25(OH)-vitamin D, 1,25(OH)2-vitamin D, 24,25(OH)2-vitamin D), and fibroblast growth factor-23 (FGF-23) during chronic kidney disease (CKD) in dogs and cats. Data Sources Human and veterinary literature. Human Data Synthesis Beneficial effects of calcitriol treatment during CKD have traditionally been attributed to regulation of PTH but new perspectives emphasize direct renoprotective actions independent of PTH and calcium. It is now apparent that calcitriol exerts an important effect on renal tubular reclamation of filtered 25(OH)-vitamin D, which may be important in maintaining adequate circulating 25(OH)-vitamin D. This in turn may be vital for important pleiotropic actions in peripheral tissues through autocrine/paracrine mechanisms that impact the health of those local tissues. Veterinary Data Synthesis Limited information is available reporting the benefit of calcitriol treatment in dogs and cats with CKD. Conclusions A survival benefit has been shown for dogs with CKD treated with calcitriol compared to placebo. The concentrations of circulating 25(OH)-vitamin D have recently been shown to be low in people and dogs with CKD and are related to survival in people with CKD. Combination therapy for people with CKD using both parental and activated vitamin D compounds is common in human nephrology and there is a developing emphasis using combination treatment with activated vitamin D and renin-angiotensin-aldosterone-system (RAAS) inhibitors. PMID:23566108

  2. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  3. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  4. Insulin-like growth factor system in patients with HIV infection: effect of exogenous growth hormone administration.

    PubMed

    Mynarcik, D C; Frost, R A; Lang, C H; DeCristofaro, K; McNurlan, M A; Garlick, P J; Steigbigel, R T; Fuhrer, J; Ahnn, S; Gelato, M C

    1999-09-01

    The purpose of this study was to characterize changes in the levels of insulin-like growth factor-I (IGF-I) and IGF binding proteins (BP) 1, 2, and 3 in HIV-infected adults throughout the course of their disease, and to assess the responsiveness of the IGF system components to growth hormone (GH) administration (6 mg/day) for 2 weeks. Healthy control study subjects (n = 10) were compared with patients who were either HIV-positive (n = 9), had AIDS without weight loss (n = 13), or had AIDS with >10% weight loss (n = 6), all of whom had been free of acute illness for at least 3 months. Under basal conditions, fasting serum concentrations of epinephrine, norepinephrine, cortisol, glucagon, insulin, IGF-I, and IGFBP-3 were not significantly different among the four groups. The serum concentrations of IGFBP-1 and IGFBP-2 were significantly higher in AIDS patients with wasting than in the other three groups (p < .05). In addition, there was a statistically significant positive correlation between the levels of IGFBP- 1 (p = .004) and IGFBP-2 (p = .03) and the stage of disease. Following GH administration, the serum concentrations of insulin and IGF-I were increased in all groups (p < .05). In addition, the increases in insulin levels correlated with stage of disease (p = .004). The responses of the IGFBPs were more variable. GH administration significantly increased the levels of IGFBP-3 in all groups except the patients with AIDS wasting, whereas the levels of IGFBP-1 were significantly decreased in controls and AIDS patients. These results demonstrate that there is a continuum of both elevations in the IGFBPs and altered metabolic responsiveness in patients infected with HIV that increases with the severity of the disease. These data also demonstrate that AIDS patients, who are free from secondary infection, respond to administration of GH by significantly increasing hepatic IGF-I production. PMID:10534146

  5. Regulation of insulin-like growth factor II receptors by growth hormone and insulin in rat adipocytes.

    PubMed Central

    Lönnroth, P; Assmundsson, K; Edén, S; Enberg, G; Gause, I; Hall, K; Smith, U

    1987-01-01

    The acute and long-term effects of growth hormone (GH) on the binding of insulin-like growth factor II (IGF-II) were evaluated in adipose cells from hypophysectomized rats given replacement therapy with thyroxine and hydrocortisone and in cells from their sham-operated littermates. After the cells were incubated with insulin and/or GH, the recycling of IGF-II receptors was metabolically inhibited by treating the cells with KCN. IGF-II binding was 100 +/- 20% higher in cells from GH-deficient animals when compared with sham-operated controls. These GH-deficient cells also showed an increased sensitivity for insulin as compared with control cells (the EC50 for insulin was 0.06 ng/ml in GH-deficient cells and 0.3 ng/ml in control cells). However, the maximal incremental effect of insulin on IGF-II binding was reduced approximately 27% by hypophysectomy. GH added to the incubation medium increased the number of IGF-II binding sites by 100 +/- 18% in cells from hypophysectomized animals. This increase was rapidly induced (t1/2, approximately 10 min), but the time course was slower than that for the stimulatory effect of insulin. Half-maximal effect of GH on IGF-II binding was obtained at approximately equal to 10 ng/ml. Thus, GH added in vitro exerted a rapid insulin-like effect on the number of IGF-II receptors. GH also appears to play a regulating role for maintaining the cellular number of IGF-II receptors and, in addition, modulates the stimulatory effect of insulin on IGF-II binding. PMID:2954159

  6. Effect of intravenous bovine growth hormone or human pancreatic growth hormone-releasing factor on milk production and plasma hormones and metabolites in sheep.

    PubMed

    Hart, I C; Chadwick, P M; James, S; Simmonds, A D

    1985-05-01

    Although it is well known that exogenous bovine GH (bGH) increases milk yield in ruminants it has not been possible to determine whether an increase in endogenous GH secretion has the same effect. The recent isolation of human pancreatic GH-releasing factor (hpGRF-44) has enabled this comparison of the effects of bGH and hpGRF-44 on milk production in sheep. Three pairs of Dorset ewes underwent three 4-day treatments according to a Latin square design. Treatment 1 involved: 2-hourly i.v. injections (approximately 3.0 ml) of bGH (15 micrograms/kg; 1.8 units/mg); treatment 2: 2-hourly i.v. injections (approximately 3.0 ml) of hpGRF-44 (0.6 microgram/kg); treatment 3: 2-hourly i.v. injections (3.0 ml) of the vehicle. Treatment periods were separated by 10 days. Sheep were milked twice daily and the milk was analysed for fat, protein and lactose. Blood samples (5.0 ml) were taken before and at 15, 45, 75 and 100 min after every third injection throughout the 4 days. Plasma was analysed for insulin, glucose, urea and non-esterified fatty acids (NEFA). The changes in plasma GH stimulated by hpGRF-44 were consistent and repeatable throughout the 4 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3921646

  7. Insulin-like growth factor binding protein-6 interacts with the thyroid hormone receptor α1 and modulates the thyroid hormone-response in osteoblastic differentiation.

    PubMed

    Qiu, Jia; Ma, Xiao-Li; Wang, Xin; Chen, Hong; Huang, Bing-Ren

    2012-02-01

    Insulin-like growth factor binding protein-6 (IGFBP-6) is a member of the insulin-like growth factor binding protein family, which has both Insulin-like growth factor-dependent and independent effects on cell growth. In previous studies, we have shown that recombinant IGFBP-6 could be translocated into the cell nucleus. But the effect in the nucleus of IGFBP-6 is not clear. In the present study, we use multiple methodologies including Glutathione S-transferase pull-down assay, co-immunoprecipitation, fluorescence resonance energy transfer to demonstrate that IGFBP-6 can directly interact with thyroid hormone receptor alpha 1 (TRα1) in vitro and in vivo. We also demonstrate that the DNA-binding domains and Ligand-binding domains of TRα1 and N-terminal domains and C-terminal domains of IGFBP-6 are involved in the interaction. This interaction also can block the formation of TR: retinoid X receptor heterodimers. Furthermore, immunofluorescence co-localization studies show IGFBP-6 and TRα1 could co-localize in the nucleus of the cells. Reporter gene experiment shows that IGFBP-6 negatively regulates the growth hormone promoter activity induced by ligand activated TRα1. Moreover, real-time RT-PCR demonstrates that IGFBP-6 could inhibit the osteocalcin mRNA transcription induced by Triiodothyronine (3,3',5-Triiodo-L-thyronine, T3) in osteoblastic cells. Finally, alkaline phosphatase activity was significantly decreased in osteoblastic cells when the cells were transfected with IGFBP-6 in the presence of T3. In conclusion, these studies provide evidence that overexpression of IGFBP-6 suppresses osteoblastic differentiation regulated by TR in the present of T3. PMID:21997736

  8. Interaction of growth hormone-releasing hormone with the insulin-like growth-factors during prenatal development in the rat.

    PubMed

    Spatola, E; Pescovitz, O H; Marsh, K; Johnson, N B; Berry, S A; Gelato, M C

    1991-09-01

    The placenta is a chimeric organ that produces all the components of the hypothalamic-pituitary GH axis. We propose that placental GH-releasing hormone (GHRH) stimulates placental GH-like hormones which in turn stimulate production of the insulin-like growth factors (IGFs), IGF-I and IGF-II, and these placental IGFs are important for growth and development of the placenta as well as the fetus. To test this hypothesis, pregnant rats were given either GHRH antisera or preimmune sera ip from days 7-19 of gestation. Fetuses were killed on day 19, and IGF-I and IGF-II tissue and serum concentrations in the mother and fetus were measured by RIA. IGF-II receptor content was measured by Western analysis. IGF-I and IGF-II messenger (m) RNA levels were measured in the placentas as well as in the fetal livers. The GHRH antibody titer was highest at day 19 of gestation but continued to be present through day 20 of postnatal development. Although placental weights did not differ, antibody-treated animals had higher placental IGF-I and IGF-II levels (I, 108 +/- 6 (SD); II, 126 +/- 5 ng/g, respectively) vs. control animals (I, 88 +/- 2.5 (SD); II, 48 +/- 11 ng/g) in pooled specimens. The IGF-II receptor was also up-regulated in placentas from antibody-treated mothers. The fetuses of antibody-treated (A) mothers were larger than the controls (C) (A, 2.615 g; C, 2.49 g, P less than 0.05). Levels of both IGFs were significantly increased in livers of antibody treated fetuses (IGF-I: A, 15 +/- 1 (SD); C, 12 +/- 0.8 ng/g; and IGF-II: A, 295 +/- 10 (SD); C, 233 +/- 10 (SD) ng/g). In addition, the concentration of the IGF-II receptor in liver of antibody-treated fetuses was also increased. Further, pooled fetal sera from antibody-treated fetuses had higher levels of IGF-II than controls (A, 950 ng/ml; C, 700 ng/ml), and the circulating IGF-II receptor was increased as measured by Western analysis. In the liver, IGF-II mRNA levels of antibody-treated fetuses were increased to 117% of

  9. Growth hormone stimulation test (image)

    MedlinePlus

    ... test is performed by administering the amino acid arginine in a vein to raise hGH levels. The ... to secrete growth hormone in response to the arginine. Lack of hGH can cause growth retardation in ...

  10. Chronic alterations in growth hormone/insulin-like growth factor-I signaling lead to changes in mouse tendon structure.

    PubMed

    Nielsen, R H; Clausen, N M; Schjerling, P; Larsen, J O; Martinussen, T; List, E O; Kopchick, J J; Kjaer, M; Heinemeier, K M

    2014-02-01

    The growth hormone/insulin-like growth factor-I (GH/IGF-I) axis is an important stimulator of collagen synthesis in connective tissue, but the effect of chronically altered GH/IGF-I levels on connective tissue of the muscle-tendon unit is not known. We studied three groups of mice; 1) giant transgenic mice that expressed bovine GH (bGH) and had high circulating levels of GH and IGF-I, 2) dwarf mice with a disrupted GH receptor gene (GHR-/-) leading to GH resistance and low circulating IGF-I, and 3) a wild-type control group (CTRL). We measured the ultra-structure, collagen content and mRNA expression (targets: GAPDH, RPLP0, IGF-IEa, IGF-IR, COL1A1, COL3A1, TGF-β1, TGF-β2, TGF-β3, versican, scleraxis, tenascin C, fibronectin, fibromodulin, decorin) in the Achilles tendon, and the mRNA expression was also measured in calf muscle (same targets as tendon plus IGF-IEb, IGF-IEc). We found that GHR-/- mice had significantly lower collagen fibril volume fraction in Achilles tendon, as well as decreased mRNA expression of IGF-I isoforms and collagen types I and III in muscle compared to CTRL. In contrast, the mRNA expression of IGF-I isoforms and collagens in bGH mice was generally high in both tendon and muscle compared to CTRL. Mean collagen fibril diameter was significantly decreased with both high and low GH/IGF-I signaling, but the GHR-/- mouse tendons were most severely affected with a total loss of the normal bimodal diameter distribution. In conclusion, chronic manipulation of the GH/IGF-I axis influenced both morphology and mRNA levels of selected genes in the muscle-tendon unit of mice. Whereas only moderate structural changes were observed with up-regulation of GH/IGF-I axis, disruption of the GH receptor had pronounced effects upon tendon ultra-structure. PMID:24080228

  11. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    ERIC Educational Resources Information Center

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  12. Long [R3] insulin-like growth factor-I reduces growth, plasma growth hormone, IGF binding protein-3 and endogenous IGF-I concentrations in pigs.

    PubMed

    Dunaiski, V; Dunshea, F R; Walton, P E; Goddard, C

    1997-12-01

    Growth hormone (GH) improves growth performance in the pig. Analogues of insulin-like growth factor-I (IGF-I) that bind poorly to IGF binding proteins (IGFBP) stimulate growth in the rat but, in contrast, inhibit growth in the pig. This study was designed to determine the effect of IGF peptides alone or in combination with porcine GH (pGH) on growth characteristics and plasma hormone concentrations in finisher pigs. A four-day infusion of Long [R3] IGF-I (LR3IGF-I; 180 micrograms/kg/day) decreased the average daily gain, food intake, and plasma IGFBP-3, IGF-I and insulin concentrations. The mean plasma GH concentration was decreased by 23% and the area under the GH peaks was reduced by 60%. Co-administration of pGH (30 micrograms/kg/day) with LR3IGF-I had no interactive effect on growth performance, and plasma insulin, IGFBP-3 and IGF-I concentrations remained suppressed. The area under the GH peaks was not restored with this combination treatment although mean plasma GH concentrations were elevated in all animals receiving pGH. Infusion of IGF-I (180 micrograms/kg/day) decreased plasma insulin and mean GH concentrations but had no significant effect on IGFBP-3 concentrations. Average daily gain and feed intake were not changed by IGF-I treatment. A combination of IGF-I and pGH injection (30 micrograms/kg/day) increased plasma IGFBP-3 concentrations but plasma insulin levels remained suppressed. Plasma glucose levels were unaffected by any treatment. The study demonstrates that both IGF-I and LR3IGF-I suppress plasma GH concentrations in finisher pigs. This, in turn, may be responsible for the reduction in the plasma concentration of IGF-I, IGFBP-3 and insulin seen in LR3IGF-I-treated animals. The decrease in these parameters may contribute to the inhibitory effect of LR3IGF-I on growth performance in the pig. PMID:9488001

  13. Genetics Home Reference: isolated growth hormone deficiency

    MedlinePlus

    ... Health Conditions isolated growth hormone deficiency isolated growth hormone deficiency Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Isolated growth hormone deficiency is a condition caused by a severe ...

  14. Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency.

    PubMed

    Laumonnier, Frédéric; Ronce, Nathalie; Hamel, Ben C J; Thomas, Paul; Lespinasse, James; Raynaud, Martine; Paringaux, Christine; Van Bokhoven, Hans; Kalscheuer, Vera; Fryns, Jean-Pierre; Chelly, Jamel; Moraine, Claude; Briault, Sylvain

    2002-12-01

    Physical mapping of the breakpoints of a pericentric inversion of the X chromosome (46,X,inv[X][p21q27]) in a female patient with mild mental retardation revealed localization of the Xp breakpoint in the IL1RAPL gene at Xp21.3 and the Xq breakpoint near the SOX3 gene (SRY [sex determining region Y]-box 3) (GenBank accession number NM_005634) at Xq26.3. Because carrier females with microdeletion in the IL1RAPL gene do not present any abnormal phenotype, we focused on the Xq breakpoint. However, we were unable to confirm the involvement of SOX3 in the mental retardation in this female patient. To validate SOX3 as an X-linked mental retardation (XLMR) gene, we performed mutation analyses in families with XLMR whose causative gene mapped to Xq26-q27. We show here that the SOX3 gene is involved in a large family in which affected individuals have mental retardation and growth hormone deficiency. The mutation results in an in-frame duplication of 33 bp encoding for 11 alanines in a polyalanine tract of the SOX3 gene. The expression pattern during neural and pituitary development suggests that dysfunction of the SOX3 protein caused by the polyalanine expansion might disturb transcription pathways and the regulation of genes involved in cellular processes and functions required for cognitive and pituitary development. PMID:12428212

  15. Transcription Factor SOX3 Is Involved in X-Linked Mental Retardation with Growth Hormone Deficiency

    PubMed Central

    Laumonnier, Frédéric; Ronce, Nathalie; Hamel, Ben C. J.; Thomas, Paul; Lespinasse, James; Raynaud, Martine; Paringaux, Christine; van Bokhoven, Hans; Kalscheuer, Vera; Fryns, Jean-Pierre; Chelly, Jamel; Moraine, Claude; Briault, Sylvain

    2002-01-01

    Physical mapping of the breakpoints of a pericentric inversion of the X chromosome (46,X,inv[X][p21q27]) in a female patient with mild mental retardation revealed localization of the Xp breakpoint in the IL1RAPL gene at Xp21.3 and the Xq breakpoint near the SOX3 gene (SRY [sex determining region Y]–box 3) (GenBank accession number NM_005634) at Xq26.3. Because carrier females with microdeletion in the IL1RAPL gene do not present any abnormal phenotype, we focused on the Xq breakpoint. However, we were unable to confirm the involvement of SOX3 in the mental retardation in this female patient. To validate SOX3 as an X-linked mental retardation (XLMR) gene, we performed mutation analyses in families with XLMR whose causative gene mapped to Xq26-q27. We show here that the SOX3 gene is involved in a large family in which affected individuals have mental retardation and growth hormone deficiency. The mutation results in an in-frame duplication of 33 bp encoding for 11 alanines in a polyalanine tract of the SOX3 gene. The expression pattern during neural and pituitary development suggests that dysfunction of the SOX3 protein caused by the polyalanine expansion might disturb transcription pathways and the regulation of genes involved in cellular processes and functions required for cognitive and pituitary development. PMID:12428212

  16. Pharmacodynamic evaluation of a PEGylated analogue of human growth hormone releasing factor in rats and pigs.

    PubMed

    D'Antonio, M; Louveau, I; Esposito, P; Bertolino, M; Canali, S

    2004-06-01

    The aim of this study was to assess the in vivo efficacy of monoPEGylated GRF(1-29)NH(2) having one PEG(5000) chains attached to either lysine 12 or 21 as compared to the GRF(1-29)NH(2) in rats and pigs. This analogue termed GRF-1PEG(5000) was tested after a single intravenous administration in rats and after a single intravenous or subcutaneous injection in pigs. After 1 h administration, GH concentrations returned to values close to controls in the group of rats injected with GRF(1-29)NH(2). In animals injected with the same dose of GRF-1PEG(5000), the AUC values corresponding to the whole period 0.5-48 h and particularly to the 0.5-8 h period were higher than in the placebo or in the GRF(1-29)NH(2) groups. Interestingly, two additional peaks were observed at about 6 and 8 h following administration. An increase in the response of the endogenous GH peaks was also observed in pigs administered GRF-1PEG(5000) by intravenous route. When GRF-1PEG(5000) was administered subcutaneously to pigs, a significant increase, as compared to placebo and GRF(1-29)NH(2,) in both GH and IGF-I levels was observed. This new analogue might find therapeutic application in paediatric growth hormone deficiency or in aging. PMID:15125884

  17. Regulation of human papillomavirus type 16 DNA replication by E2, glucocorticoid hormone and epidermal growth factor.

    PubMed

    Piccini, A; Storey, A; Romanos, M; Banks, L

    1997-08-01

    The E1 and E2 proteins are the only human papillomavirus (HPV) proteins required for transient replication of plasmids containing the viral origin. The E2 gene products play key roles in both viral transcription and replication. In this study we have analysed in further detail the nature of the association between E1 and E2 using a series of E2 proteins mutated in conserved regions of the N-terminal domain. These proteins were tested for their ability to activate transcription and to stimulate viral DNA replication. Several of these mutants revealed that the two functions of E2 can be separated, and that they define three widely spaced regions of the N-terminal domain which are important for DNA replication, two of which retain E1-binding activity. This suggests that E2 may have a role in viral DNA replication other than simply localizing E1 to the origin of replication. Additional important elements for regulating viral gene expression have been shown to be glucocorticoid hormones and epidermal growth factor (EGF). We show here that they may also be involved in regulating viral DNA replication. Our studies show that the addition of glucocorticoid hormone significantly stimulates viral DNA replication. In contrast, addition of EGF results in modest repression of viral DNA replication. These results have important implications for the pathogenesis of HPV infection and suggest that the relative levels of E2, glucocorticoid hormone and EGF may significantly affect the outcome of an HPV infection. PMID:9266995

  18. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation.

    PubMed

    Fraser, Scott P; Ozerlat-Gunduz, Iley; Brackenbury, William J; Fitzgerald, Elizabeth M; Campbell, Thomas M; Coombes, R Charles; Djamgoz, Mustafa B A

    2014-03-19

    Although ion channels are increasingly being discovered in cancer cells in vitro and in vivo, and shown to contribute to different aspects and stages of the cancer process, much less is known about the mechanisms controlling their expression. Here, we focus on voltage-gated Na(+) channels (VGSCs) which are upregulated in many types of carcinomas where their activity potentiates cell behaviours integral to the metastatic cascade. Regulation of VGSCs occurs at a hierarchy of levels from transcription to post-translation. Importantly, mainstream cancer mechanisms, especially hormones and growth factors, play a significant role in the regulation. On the whole, in major hormone-sensitive cancers, such as breast and prostate cancer, there is a negative association between genomic steroid hormone sensitivity and functional VGSC expression. Activity-dependent regulation by positive feedback has been demonstrated in strongly metastatic cells whereby the VGSC is self-sustaining, with its activity promoting further functional channel expression. Such auto-regulation is unlike normal cells in which activity-dependent regulation occurs mostly via negative feedback. Throughout, we highlight the possible clinical implications of functional VGSC expression and regulation in cancer. PMID:24493753

  19. Association of Chicken Growth Hormones and Insulin-like Growth Factor Gene Polymorphisms with Growth Performance and Carcass Traits in Thai Broilers

    PubMed Central

    Anh, Nguyen Thi Lan; Kunhareang, Sajee; Duangjinda, Monchai

    2015-01-01

    Molecular marker selection has been an acceptable tool in the acceleration of the genetic response of desired traits to improve production performance in chickens. The crossbreds from commercial parent stock (PS) broilers with four Thai synthetic breeds; Kaen Thong (KT), Khai Mook Esarn (KM), Soi Nin (SN), and Soi Pet (SP) were used to study the association among chicken growth hormones (cGH) and the insulin-like growth factor (IGF-I) genes for growth and carcass traits; for the purpose of developing a suitable terminal breeding program for Thai broilers. A total of 408 chickens of four Thai broiler lines were genotyped, using polymerase chain reaction-restriction fragment length polymorphism methods. The cGH gene was significantly associated with body weight at hatching; at 4, 6, 8, 10 weeks of age and with average daily gain (ADG); during 2 to 4, 4 to 6, 0 to 6, 0 to 8, and 0 to 10 weeks of age in PS×KM chickens. For PS×KT populations, cGH gene showed significant association with body weight at hatching, and ADG; during 8 to 10 weeks of age. The single nucleotide polymorphism variant confirmed that allele G has positive effects for body weight and ADG. Within carcass traits, cGH revealed a tentative association within the dressing percentage. For the IGF-I gene polymorphism, there were significant associations with body weight at hatching; at 2, 4, and 6 weeks of age and ADG; during 0 to 2, 4 to 6, and 0 to 6 weeks of age; in all of four Thai broiler populations. There were tentative associations of the IGF-I gene within the percentages of breast muscles and wings. Thus, cGH gene may be used as a candidate gene, to improve growth traits of Thai broilers. PMID:26580435

  20. Association of Chicken Growth Hormones and Insulin-like Growth Factor Gene Polymorphisms with Growth Performance and Carcass Traits in Thai Broilers.

    PubMed

    Anh, Nguyen Thi Lan; Kunhareang, Sajee; Duangjinda, Monchai

    2015-12-01

    Molecular marker selection has been an acceptable tool in the acceleration of the genetic response of desired traits to improve production performance in chickens. The crossbreds from commercial parent stock (PS) broilers with four Thai synthetic breeds; Kaen Thong (KT), Khai Mook Esarn (KM), Soi Nin (SN), and Soi Pet (SP) were used to study the association among chicken growth hormones (cGH) and the insulin-like growth factor (IGF-I) genes for growth and carcass traits; for the purpose of developing a suitable terminal breeding program for Thai broilers. A total of 408 chickens of four Thai broiler lines were genotyped, using polymerase chain reaction-restriction fragment length polymorphism methods. The cGH gene was significantly associated with body weight at hatching; at 4, 6, 8, 10 weeks of age and with average daily gain (ADG); during 2 to 4, 4 to 6, 0 to 6, 0 to 8, and 0 to 10 weeks of age in PS×KM chickens. For PS×KT populations, cGH gene showed significant association with body weight at hatching, and ADG; during 8 to 10 weeks of age. The single nucleotide polymorphism variant confirmed that allele G has positive effects for body weight and ADG. Within carcass traits, cGH revealed a tentative association within the dressing percentage. For the IGF-I gene polymorphism, there were significant associations with body weight at hatching; at 2, 4, and 6 weeks of age and ADG; during 0 to 2, 4 to 6, and 0 to 6 weeks of age; in all of four Thai broiler populations. There were tentative associations of the IGF-I gene within the percentages of breast muscles and wings. Thus, cGH gene may be used as a candidate gene, to improve growth traits of Thai broilers. PMID:26580435

  1. Neuroendocrine Regulation of Growth Hormone Secretion.

    PubMed

    Steyn, Frederik J; Tolle, Virginie; Chen, Chen; Epelbaum, Jacques

    2016-01-01

    This article reviews the main findings that emerged in the intervening years since the previous volume on hormonal control of growth in the section on the endocrine system of the Handbook of Physiology concerning the intra- and extrahypothalamic neuronal networks connecting growth hormone releasing hormone (GHRH) and somatostatin hypophysiotropic neurons and the integration between regulators of food intake/metabolism and GH release. Among these findings, the discovery of ghrelin still raises many unanswered questions. One important event was the application of deconvolution analysis to the pulsatile patterns of GH secretion in different mammalian species, including Man, according to gender, hormonal environment and ageing. Concerning this last phenomenon, a great body of evidence now supports the role of an attenuation of the GHRH/GH/Insulin-like growth factor-1 (IGF-1) axis in the control of mammalian aging. © 2016 American Physiological Society. Compr Physiol 6:687-735, 2016. PMID:27065166

  2. Factors associated with the quality of laboratory performance in the United Kingdom external quality assessment scheme for serum growth hormone.

    PubMed

    Seth, J; Hanning, I

    1988-05-31

    A search was made for associations between poor performance in the UK External Quality Assessment Scheme (EQAS) for serum growth hormone (GH), and a range of factors including assay method, laboratory workload and staffing, and Internal Quality Control (IQC) procedures. On the basis of the factors identified as being associated with poor performance we recommend the following. 1. Laboratories using RIA for GH should routinely analyse samples at two dilutions and report a mean result. 2. The use of 125I-GH which is 5 or more weeks old should be avoided. Tracer should also be chromatographed to remove aggregate before use. 3. Laboratories using RIA should avoid using a standard curve which covers too wide a range concentration; a curve midpoint (ie GH concentration to reduce the zero standard binding by 50%) of about 8 mU/l or less is probably acceptable. 4. It should be noted that high workloads present a risk of some loss in quality of responsible for checking IQC data. 6. Laboratories which do not have the resources to maintain fully their own RIA as outlined above should carefully consider use of an unbiased, precise IRMA. The UK EQAS has identified two assays (Boots-Celltech Sucrosep, NETRIA) that appear to meet these criteria [2]. The above observations may also be relevant to immunoassays for other peptide hormones. PMID:3383443

  3. MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways.

    PubMed

    Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Obata, Toshihiro; Fernie, Alisdair R; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd

    2013-10-01

    Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth. PMID:23855375

  4. Growth factors and hormones which affect survival, growth, and differentiation of the MCF-7 stem cells and their descendants

    SciTech Connect

    Resnicoff, M.; Medrano, E.E. )

    1989-03-01

    The human breast tumor cell line was separated by Percoll density gradient centrifugation into six different subpopulations, A to F, of which (E) appears to contain the stem cells on the basis of several criteria. The authors analyzed the response of the isolated subpopulations to insulin, thrombin, PGF{sub 2{alpha}}, estradiol, and 13-cis-retinal. They demonstrate that the first two growth factors stimulate ({sup 3}H)thymidine incorporation in the more differentiated subpopulations (D and F), while PGF{sub 2{alpha}} has mitogenic activity in subpopulations C and D. In the absence of any added growth factor, estradiol has the extreme and transient capacity of allowing the stem cell to detach from the tissue culture dish and to grow in suspension as multicellular aggregates (MCF-7/SE cells). 13-cis-Retinal acts as a negative modulator of differentiation and protects the cells from the inhibitory and differentiation activity in Na-butyrate.

  5. Seasonal response of ghrelin, growth hormone, and insulin-like growth factor I in the free-ranging Florida manatee (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Tighe, Rachel L; Bonde, Robert K.; Avery, Julie P.

    2016-01-01

    Seasonal changes in light, temperature, and food availability stimulate a physiological response in an animal. Seasonal adaptations are well studied in Arctic, Sub-Arctic, and hibernating mammals; however, limited studies have been conducted in sub-tropical species. The Florida manatee (Trichechus manatus latirostris), a sub-tropical marine mammal, forages less during colder temperatures and may rely on adipose stores for maintenance energy requirements. Metabolic hormones, growth hormone (GH), insulin-like growth factor (IGF)-I, and ghrelin influence growth rate, accretion of lean and adipose tissue. They have been shown to regulate seasonal changes in body composition. The objective of this research was to investigate manatee metabolic hormones in two seasons to determine if manatees exhibit seasonality and if these hormones are associated with seasonal changes in body composition. In addition, age related differences in these metabolic hormones were assessed in multiple age classes. Concentrations of GH, IGF-I, and ghrelin were quantified in adult manatee serum using heterologous radioimmunoassays. Samples were compared between short (winter) and long (summer) photoperiods (n = 22 male, 20 female) and by age class (adult, juvenile, and calf) in long photoperiods (n = 37). Short photoperiods tended to have reduced GH (p = 0.08), greater IGF-I (p = 0.01), and greater blubber depth (p = 0.03) compared with long photoperiods. No differences were observed in ghrelin (p = 0.66). Surprisingly, no age related differences were observed in IGF-I or ghrelin concentrations (p > 0.05). However, serum concentrations of GH tended (p = 0.07) to be greater in calves and juveniles compared with adults. Increased IGF-I, greater blubber thickness, and reduced GH during short photoperiod suggest a prioritization for adipose deposition. Whereas, increased GH, reduced blubber thickness, and decreased IGF-I in long photoperiod suggest prioritization of lean tissue

  6. Growth Hormone and Cerebral Amyloidosis.

    PubMed

    Benvenga, S; Guarneri, F

    2016-08-01

    Great interest has recently been focused on a paper reporting characteristic deposits of amyloid-β protein associated with Alzheimer's disease in brains of adults who died of Creutzfeldt-Jakob disease. As they had contracted such disease after treatment with prion-contaminated human growth hormone extracted from cadaver-derived pituitaries, the authors have suggested that interhuman transmission of Alzheimer's disease had occurred. Our previous research led us to find that amyloid-forming peptides share amino acid sequence homology, summarized by a motif. Here, we probed the amino acid sequence of human growth hormone for such a motif, and found that 2 segments fit the motif and are potentially amyloid-forming. This finding was confirmed by Aggrescan, another well-known software for the prediction of amyloidogenic peptides. Our results, taken together with data from the literature that are missing in the aforementioned paper and associated commentaries, minimize the contagious nature of the iatrogenically-acquired coexistence of Creutzfeldt-Jakob disease and Alzheimer's disease. In particular, the above mentioned paper misses literature data on intratumoral amyloidosis in growth hormone- and prolactin-secreting adenomas, tumors relatively frequent in adults, which are often silent. It cannot be excluded that some pituitaries used to extract growth hormone contained clinically silent microadenomas, a fraction of which containing amyloid deposits, and patients might had received a fraction of growth hormone (with or without prolactin) that already was an amyloid seed. The intrinsic amyloidogenicity of growth hormone, in the presence of contaminating prion protein (and perhaps prolactin as well) and amyloid-β contained in some cadavers' pituitaries, may have led to the observed co-occurring of Creutzfeldt-Jakob disease and Alzheimer's disease. PMID:27214308

  7. Growth hormone deficiency - children

    MedlinePlus

    ... gender. The child will still have normal body proportions, but may be chubby. The child's face often ... A physical exam, including weight, height, and body proportions, will show signs of slowed growth. The child ...

  8. Soluble tumour necrosis factor alpha receptor 2, a serum marker of resistance to the anabolic actions of growth hormone in subjects with HIV disease.

    PubMed

    Gelato, Marie C; Mynarcik, Dennis; McNurlan, Margaret A

    2002-01-01

    Therapies are still being sought for the prevention of loss of body weight and lean body mass in HIV disease. The purpose of the present study was to identify a serum marker that would help in selecting patients who may be appropriate candidates for the use of anabolic agents, such as growth hormone, to restore lean body mass. This study included 26 HIV-infected patients and nine healthy controls, assessed previously for the effectiveness of 2 weeks of growth hormone administration in the stimulation of protein synthesis in skeletal muscle. Serum levels of interleukins-1beta, -6 and -10 were not useful predictors of the anabolic response to growth hormone. Serum concentrations of tumour necrosis factor alpha (TNFalpha) were significantly elevated (P<0.05) in patients with AIDS and AIDS-related weight loss, and there was a significant correlation between the serum concentration of interleukin-1 receptor antagonist and stage of disease (P=0.03). However, the serum concentration of the soluble TNFalpha receptor type 2 was most predictive of an inability of muscle protein synthesis to respond anabolically to growth hormone (r=-0.42, P=0.01). These data suggest that inflammation impacts on the responsiveness of muscle tissue to an anabolic stimulus, and that the soluble TNFalpha receptor type 2 provides a useful serum marker for metabolic dysfunction in HIV disease, which can be used to identify individuals likely to respond to growth hormone-based anabolic therapy. PMID:11749664

  9. Growth Hormone: Use and Abuse

    MedlinePlus

    ... than children of the same age), such as chronic kidney disease, Turner syndrome, and Prader-Willi syndrome In adults, GH is used to treat • Growth hormone deficiency • Muscle wasting (loss of muscle tissue) from HIV • Short bowel ...

  10. Nitrogen balance and mineral excretion in growing male pigs injected with a human growth hormone-releasing factor analog.

    PubMed Central

    Dubreuil, P; Abribat, T; Brazeau, P; Lapierre, H

    1998-01-01

    A human growth hormone-releasing factor analog ([Desamino-Tyr1,D-Ala2,Ala15] hGRF(1-29) NH2) has been reported to reduce feed intake and increase growth and feed efficiency in a dose-dependent manner in growing pigs. The aim of this study was to determine the effect of this analog on nitrogen (N) balance and mineral excretion. Fifteen castrated male Yorkshire x Landrace pigs (45.9 +/- 1.4 kg) were randomly allotted to 2 groups: control (saline, n = 7) and GRF (6.66 micrograms/kg sc, TID, n = 8). The animals were injected for 20 consecutive days: feces and urine were collected during the last 10 d of injection. The animals had free access to water and food until satiety (approximately 15 min) at 07:00, 11:00, 15:00, 19:00, 23:00 and 07:00 h. The diet consisted of a hog fattening ration (18.0% crude protein). Blood samples were collected on the last day of the study by venipuncture. This analog increased (P < 0.05) insulin-like growth factor-1 and glucose serum concentrations and decreased (P < 0.05) serum urea nitrogen concentration and feed intake. The GRF-treated animals ingested less N, excreted less N in urine and feces to retain a similar amount of N than controls. The apparent coefficient of digestibility of the N has been slightly increased (P < 0.05) by GRF. Urinary excretion of P, K, and Cl decreased (P < 0.01) with GRF treatment. In conclusion, this GRF analog increased N digestibility and retention relative to N ingestion and reduced urinary N, P, K, and Cl excretion. PMID:9442933

  11. Evidence for growth hormone/insulin-like growth factor I axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus

    USGS Publications Warehouse

    Mancera, J.M.; McCormick, S.D.

    1998-01-01

    The ability of ovine growth hormone (oGH), recombinant bovine insulin- like growth factor I (rbIGF-I), recombinant human insulin-like growth factor II (rhIGF-II), and bovine insulin to increase hypoosmoregulatory capacity in the euryhaline teleost Fundulus heteroclitus was examined. Fish acclimated to brackish water (BW, 10 ppt salinity, 320 mOsm/kg H2O) were injected with a single dose of hormone and transferred to seawater (SW, 35 ppt salinity, 1120 mOsm/kg H2O) 2 days later. Fish were sampled 24 h after transfer and plasma osmolality, plasma glucose, and gill Na+,K+-ATPase activity were examined. Transfer from BW to SW increased plasma osmolality and gill Na+,K+-ATPase activity. Transfer from BW to BW had no effect on these parameters. rbIGF-I (0.05, 0.1, and 0.2 ??g/g) improved the ability to maintain plasma osmolality and to increase gill Na+, K+-ATPase activity in a dose-dependent manner. oGH (0.5, 1, and 2 ??g/g) also increased hypoosmoregulatory ability but only the higher doses (2 ??g/g) significantly increased gill Na+,K+-ATPase activity. oGH (1 ??g/g) and rbIGF-I (0.1 ??g/g) had a significantly greater effect on plasma osmolality and gill Na+,K+-ATPase activity than either hormone alone. rhIGF-II (0.05, 0.1, and 0.2 ??g/g) and bovine insulin (0.01 and 0.05 ??g/g) were without effect. The results suggest a role of GH and insulin-like growth factor I (IGF-I) in seawater acclimation of E heteroclitus. Based on these findings and previous studies, it is concluded that the capacity of the GH/IGF-I axis to increase hypoosmoregulatory ability may be a common feature of euryhalinity in teleosts.

  12. Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I.

    PubMed

    Zoidis, E; Ghirlanda-Keller, C; Schmid, C

    2011-02-01

    Insulin and parathyroid hormone (PTH) regulate glucose metabolism in bone cells. In order to differentiate between the effects of these hormones and to compare the potency of insulin with that of insulin-like growth factor (IGF) I, we treated rat bone-derived osteoblastic (PyMS) cells for different time periods and at different concentrations with insulin, IGF I, or PTH, and measured [1-(14)C]-2-deoxy-D-glucose (2DG) uptake and incorporation of D-[U-(14)C] glucose into glycogen. 2DG uptake was Na-independent with an apparent affinity constant (K (M)) of ~2 mmol/l. Expression of the high affinity glucose transporters (GLUT), GLUT1 and GLUT3 but not of GLUT4, was found by Northern and Western analysis. Similar to the findings with primary rat osteoblasts, but distinct from those in rat fibroblasts, 2DG uptake and glycogen synthesis were increased in this cell line after exposure to low concentrations (0.1 nmol/l and above) of PTH. IGF I at low doses (0.3 nmol/l and above) or insulin at higher doses (1 nmol/l and above) stimulated 2DG uptake and [(3)H] thymidine incorporation into DNA. 2DG transport was enhanced already after 30 min of IGF I treatment whereas the effect of PTH became significant after 6 h. It is concluded that IGF I rather than insulin may be a physiological regulator of 2DG transport and glycogen synthesis in osteoblasts. PMID:21076856

  13. Corticotropin Releasing Hormone and Urocortin 3 Stimulate Vascular Endothelial Growth Factor Expression through the cAMP/CREB Pathway.

    PubMed

    Rhee, Sang Hoon; Ma, Elise L; Lee, Yunna; Taché, Yvette; Pothoulakis, Charalabos; Im, Eunok

    2015-10-23

    Colonic epithelium is the first line of defense against various pathological offenses in the gut. Previous studies have shown that the peptides of the corticotropin-releasing hormone (CRH) family modulate vascular endothelial growth factor (VEGF)-A production in other cells. Here we sought to investigate whether CRH and urocortin (Ucn) 3 regulate VEGF-A secretion in colonocytes through CRH receptors and to elucidate the underlying mechanism of action. CRH and Ucn 3 significantly increased the expression levels of VEGF-A mRNA and protein through CRH receptor 1 and 2, respectively, in human colonic epithelial cells and primary mouse intestinal epithelial cells. Underlying mechanisms involve activation of adenylyl cyclase with subsequent increase of intracellular cAMP level and increased DNA binding activity of transcription factor CREB on VEGF-A promoter region. Finally, genetic deficiency of CREB decreased intestinal inflammation and VEGF-A expression in a dextran sodium sulfate-induced colitis model. These results show that activation of CRH receptors by CRH ligands stimulates VEGF-A expression in intestinal epithelial cells through the cAMP/CREB pathway. Since VEGF-A boosts inflammatory responses through angiogenesis, these data suggest that CREB may be a key effector of CRH and Ucn 3-dependent inflammatory angiogenesis. PMID:26350463

  14. Growth hormone-like factor produced by the tapeworm, Spirometra mansonoides, displaces human growth hormone (hGH) from its receptors on cultured human lymphocytes

    SciTech Connect

    Watts, D.J.; Phares, C.K.

    1986-03-01

    An analogue of hGH isolated from plerocercoids of the tapeworm Spirometra mansonoides displaces (/sup 125/I)hGH from its receptors in rabbit, rat, and hamster liver membranes. Biologically, plerocercoid growth factor (PGF) is more similar to hGH than to other mammalian GH's but has not been shown to bond human cells. Receptors specific for hGH have been described on cultured human lymphocytes (IM-9). In this study, the authors compared the binding of PGF and hGH in IM-9 cells and in rabbit hepatic membranes. IM-9 lymphocytes (12 x 10/sup 6/ cells/tube) were incubated with (/sup 125/I)hGH and increasing concentrations of hGH (ng/ml) or PGF (serial dilutions) for 90 min at 30/sup 0/ C. Specific binding (B/sub 0/ - NSB) was determined for each dose of hGH or PGF and the binding curves were analyzed by logit-log regression. The results show that PGF displaced (/sup 125/I)hGH from human cells in a dose dependent manner (r = 0.98). Based on the IM-9 assay, 1 ml of the PGF had an activity equivalent to 625 ng of the hGH standard (ngE). However, the binding activity of the PGF in the rabbit liver RRA was 1653 ngE/ml, indicating that the binding potency of PGF in IM-9 cells was only 38% of that in the rabbit liver. These results clearly demonstrate that PGF binds hGH receptors in cells of human origin, suggesting that PGF will be effective in humans.

  15. Growth and the Growth Hormone-Insulin Like Growth Factor 1 Axis in Children With Chronic Inflammation: Current Evidence, Gaps in Knowledge, and Future Directions.

    PubMed

    Wong, S C; Dobie, R; Altowati, M A; Werther, G A; Farquharson, C; Ahmed, S F

    2016-02-01

    Growth failure is frequently encountered in children with chronic inflammatory conditions like juvenile idiopathic arthritis, inflammatory bowel disease, and cystic fibrosis. Delayed puberty and attenuated pubertal growth spurt are often seen during adolescence. The underlying inflammatory state mediated by proinflammatory cytokines, prolonged use of glucocorticoid, and suboptimal nutrition contribute to growth failure and pubertal abnormalities. These factors can impair growth by their effects on the GH-IGF axis and also directly at the level of the growth plate via alterations in chondrogenesis and local growth factor signaling. Recent studies on the impact of cytokines and glucocorticoid on the growth plate further advanced our understanding of growth failure in chronic disease and provided a biological rationale of growth promotion. Targeting cytokines using biological therapy may lead to improvement of growth in some of these children, but approximately one-third continue to grow slowly. There is increasing evidence that the use of relatively high-dose recombinant human GH may lead to partial catch-up growth in chronic inflammatory conditions, although long-term follow-up data are currently limited. In this review, we comprehensively review the growth abnormalities in children with juvenile idiopathic arthritis, inflammatory bowel disease, and cystic fibrosis, systemic abnormalities of the GH-IGF axis, and growth plate perturbations. We also systematically reviewed all the current published studies of recombinant human GH in these conditions and discussed the role of recombinant human IGF-1. PMID:26720129

  16. Direct cellular effects of some mediators, hormones and growth factor-like agents on denervated (isolated) rat gastric mucosal cells.

    PubMed

    Bódis, B; Karádi, O; Nagy, L; Dohoczky, C; Kolega, M; Mózsik, G

    1997-01-01

    The brain-gut axis has an important role in the mechanism of gastric cytoprotection in vivo. The aim of this study was to evaluate the in vitro effect of protective agents without any central and peripheral innervation. A mixed population of rat gastric mucosal cells was isolated by the method of Nagy et al (Gastroenterology (1994) 77, 433-443). Cells were incubated for 60 min with cytoprotective drugs such as prostacyclin, histamine, pentagastrin and PL-10 substances (synthesized parts of BPC). At the end of this incubation cells were treated by 15% ethanol for 5 min. Cell viability was tested by trypan blue exclusion test and succinic dehydrogenase activity. The following results were obtained: 1) prostacyclin, histamine and pentagastrin had no direct cytoprotective effect on isolated cells; and 2) PL-10 substances significantly protected the cells against ethanol-induced cellular damage. This led to the following conclusions: 1) in the phenomenon of gastric cytoprotection only the growth factor-like agents have a direct cellular effect; and 2) the intact peripheral innervation is basically necessary for the development of mediators and hormone-induced gastric cytoprotection. PMID:9403792

  17. Prolactin, growth hormone, erythropoietin and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity.

    PubMed Central

    Gouilleux, F; Pallard, C; Dusanter-Fourt, I; Wakao, H; Haldosen, L A; Norstedt, G; Levy, D; Groner, B

    1995-01-01

    The molecular components which mediate cytokine signaling from the cell membrane to the nucleus were studied. Upon the interaction of cytokines with their receptors, members of the janus kinase (Jak) family of cytoplasmic protein tyrosine kinases and of the signal transducers and activators of transcription (Stat) family of transcription factors are activated through tyrosine phosphorylation. It has been suggested that the Stat proteins are substrates of the Jak protein tyrosine kinases. MGF-Stat5 is a member of the Stat family which has been found to confer the prolactin response. MGF-Stat5 can be phosphorylated and activated in its DNA binding activity by Jak2. The activation of MGF-Stat5 is not restricted to prolactin. Erythropoietin (EPO) and growth hormone (GH) stimulate the DNA binding activity of MGF-Stat5 in COS cells transfected with vectors encoding EPO receptor and MGF-Stat5 or vectors encoding GH receptor and MGF-Stat5. The activation of DNA binding by prolactin, EPO and GH requires the phosphorylation of tyrosine residue 694 of MGF-Stat5. The transcriptional induction of a beta-casein promoter luciferase construct in transiently transfected COS cells is specific for the prolactin activation of MGF-Stat5; it is not observed in EPO- and GH-treated cells. In the UT7 human hematopoietic cell line, EPO and granulocyte-macrophage colony stimulating factor activate the DNA binding activity of a factor closely related to MGF-Stat5 with respect to its immunological reactivity, DNA binding specificity and molecular weight. These results suggest that MGF-Stat5 regulates physiological processes in mammary epithelial cells, as well as in hematopoietic cells.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:7744007

  18. Skeletal unloading causes resistance of osteoprogenitor cells to parathyroid hormone and to insulin-like growth factor-I

    NASA Technical Reports Server (NTRS)

    Kostenuik, P. J.; Harris, J.; Halloran, B. P.; Turner, R. T.; Morey-Holton, E. R.; Bikle, D. D.

    1999-01-01

    Skeletal unloading decreases bone formation and osteoblast number in vivo and decreases the number and proliferation of bone marrow osteoprogenitor (BMOp) cells in vitro. We tested the ability of parathyroid hormone (PTH) to stimulate BMOp cells in vivo by treating Sprague Dawley rats (n = 32) with intermittent PTH(1-34) (1 h/day at 8 microg/100 g of body weight), or with vehicle via osmotic minipumps during 7 days of normal weight bearing or hind limb unloading. Marrow cells were flushed from the femur and cultured at the same initial density for up to 21 days. PTH treatment of normally loaded rats caused a 2.5-fold increase in the number of BMOp cells, with similar increases in alkaline phosphatase (ALP) activity and mineralization, compared with cultures from vehicle-treated rats. PTH treatment of hind limb unloaded rats failed to stimulate BMOp cell number, ALP activity, or mineralization. Hind limb unloading had no significant effect on PTH receptor mRNA or protein levels in the tibia. Direct in vitro PTH challenge of BMOp cells isolated from normally loaded bone failed to stimulate their proliferation and inhibited their differentiation, suggesting that the in vivo anabolic effect of intermittent PTH on BMOp cells was mediated indirectly by a PTH-induced factor. We hypothesize that this factor is insulin-like growth factor-I (IGF-I), which stimulated the in vitro proliferation and differentiation of BMOp cells isolated from normally loaded bone, but not from unloaded bone. These results suggest that IGF-I mediates the ability of PTH to stimulate BMOp cell proliferation in normally loaded bone, and that BMOp cells in unloaded bone are resistant to the anabolic effect of intermittent PTH therapy due to their resistance to IGF-I.

  19. A Simulated Growth Hormone Analysis

    NASA Astrophysics Data System (ADS)

    Harris, Mary

    1996-08-01

    Growth hormone is a drug that is sometimes abused by amateur or professional athletes for performance-enhancement. This laboratory is a semimicroscale simulation analysis of a sample of "urine" to detect proteins of two very different molecular weights. Gel filtration uses a 10 mL disposable pipette packed with Sephadex. Students analyze the fractions from the filtration by comparing colors of the Brilliant Blue Coomassie Dye as it interacts with the proteins in the sample to a standard set of known concentration of protein with the dye. The simulated analysis of growth hormone is intended to be included in a unit on organic chemistry or in the second year of high school chemistry.

  20. Histological changes of testes in growth hormone transgenic mice with high plasma level of GH and Insulin-like Growth Factor-1

    PubMed Central

    Słuczanowska-Głąbowska, Sylwia; Kucia, Magda; Bartke, Andrzej; Laszczyńska, Maria; Ratajczak, Mariusz Z.

    2016-01-01

    Introduction Overexpression of growth hormone (GH) leads to increase in Insulin-Like Growth Factor-I (IGF-I) plasma level, stimulation of growth and increase in body size, organomegaly and reduced body fat. The action of GH affects all the organs and transgenic mice that overexpress bovine GH (bGH mice) serve as convenient model to study somatotrophic axis. Male mice overexpressing GH are fertile, however, they show reduced overall lifespan as well as reproductive life span. The aim of the study was to evaluate the morphology and expression of androgen receptor (AR) and luteinizing hormone receptor (LHR) of bGH mice testes. Material and methods The experiment was performed on 6 and 12 month-old bGH male mice and 6 and 12 month-old wild type (WT) littermates (8 animals in each group). The morphology of testes was evaluated on deparaffinized sections stained by the periodic acid-Schiff (PAS) method. Expression of AR and LHR was investigated by immunohistochemistry and diameters of seminiferous tubules (ST) were measured on round cross sections of ST. Results We noted larger testes in 6-month bGH mice as compared to normal WT littermates. The morphological observations revealed essentially normal structure of Leydig cells, seminiferous epithelium and other morphological structures. However, some changes like tubules containing only Sertoli cells, tubules with arrested spermatogenesis or vacuoles in seminiferous epithelium could be attributed to the overexpression of GH. In contrast to WT mice, 12 month-old bGH mice displayed first symptoms of testicular aging. The immunoexpression of AR and LHR was decreased in 12 month-old bGH males as compared to 12 month-old WT mice and younger animals. Conclusion Chronic exposure to elevated GH level accelerates testicular aging and thus potentially may change response of Leydig cells to LH and Sertoli and germ cells to testosterone. PMID:26348370

  1. Fibroblast Growth Factor-23-mediated Inhibition of Renal Phosphate Transport in Mice Requires Sodium-Hydrogen Exchanger Regulatory Factor-1 (NHERF-1) and Synergizes with Parathyroid Hormone*

    PubMed Central

    Weinman, Edward J.; Steplock, Deborah; Shenolikar, Shirish; Biswas, Rajatsubhra

    2011-01-01

    Fibroblast growth factor-23 (FGF-23) inhibits sodium-dependent phosphate transport in brush border membrane vesicles derived from hormone-treated kidney slices of the mouse and in mouse proximal tubule cells by processes involving mitogen-activated protein kinase (MAPK) but not protein kinase A (PKA) or protein kinase C (PKC). By contrast, phosphate transport in brush border membrane vesicles and proximal tubule cells from sodium-hydrogen exchanger regulatory factor-1 (NHERF-1)-null mice were resistant to the inhibitory effect of FGF-23 (10−9 m). Infection of NHERF-1-null proximal tubule cells with wild-type adenovirus-GFP-NHERF-1 increased basal phosphate transport and restored the inhibitory effect of FGF-23. Infection with adenovirus-GFP-NHERF-1 containing a S77A or T95D mutation also increased basal phosphate transport, but the cells remained resistant to FGF-23 (10−9 m). Low concentrations of FGF-23 (10−13 m) and PTH (10−11 m) individually did not inhibit phosphate transport or activate PKA, PKC, or MAPK. When combined, however, these hormones markedly inhibited phosphate transport associated with activation of PKC and PKA but not MAPK. These studies indicate that FGF-23 inhibits phosphate transport in the mouse kidney by processes that involve the scaffold protein NHERF-1. In addition, FGF-23 synergizes with PTH to inhibit phosphate transport by facilitating the activation of the PTH signal transduction pathway. PMID:21908609

  2. Synergistic interaction between insulin-like growth factors-I and -II in central regulation of pulsatile growth hormone secretion.

    PubMed

    Harel, Z; Tannenbaum, G S

    1992-08-01

    Insulin-like growth factor (IGF)-I and -II peptides, receptors, mRNAs, and binding proteins are widely distributed in the central nervous system (CNS), yet their physiological role in the brain remains largely unknown. While earlier in vivo studies in the rat suggested that IGF-I may participate in feedback regulation of GH secretion at a CNS level, the preparations used were only partially pure. The recent availability of purified recombinant IGF-I and -II peptides prompted us to reexamine the involvement of the IGFs in vivo in central regulation of pulsatile GH secretion. Five groups of free-moving adult male rats bearing chronic intracerebroventricular (icv) and intracardiac venous cannulae were icv administered IGF-I (in doses of 0.5, 2, 3, and 10 micrograms) or the acid-saline vehicle; an additional group received 1 microgram of the potent IGF-I analog, long R3 IGF-I. Spontaneous 6-h plasma GH secretory profiles were obtained from all groups. Vehicle-injected control animals exhibited the typical pulsatile pattern of GH secretion, with most peak GH values above 150 ng/ml and trough levels below 1.2 ng/ml. Central administration of IGF-I alone or long R3 IGF-I at all doses tested failed to alter the pulsatile pattern of GH release; there were no significant differences in GH peak amplitude, GH trough level, GH interpeak interval, or mean 6-h plasma GH level compared to those in vehicle-injected controls. In a second study, designed to determine the effects of central administration of IGF-I and IGF-II, in combination, icv injection of 1 microgram IGF-I and 1 microgram IGF-II resulted in a marked suppression in the amplitude of spontaneous GH secretory bursts approximately 3 h after injection; both GH pulse amplitude (43.5 +/- 5.6 vs. 130.6 +/- 14.6 ng/ml; P less than 0.001) and mean plasma GH level (16.3 +/- 1.9 vs. 35.2 +/- 1.8 ng/ml; P less than 0.001) were severely reduced 3-6 h after injection compared to those in vehicle-injected controls. These results

  3. Growth hormone: its physiology and control.

    PubMed

    Scanes, C G; Lauterio, T J

    1984-12-01

    Growth hormone (GH) is a protein hormone produced by the somatotrophs of the anterior pituitary gland of birds and other vertebrates. The secretion of GH in birds is under hypothalamic control; it involves three peptidergic releasing factors: growth hormone-releasing factor (GRF) (stimulatory); thyrotropin-releasing hormone (TRH) (stimulatory); and somatostatin (SRIF) (inhibitory). In addition, there is evidence for effects of biogenic amines (including serotonin and norepinephrine) and prostaglandins at the level of the hypothalamus and possibly also the pituitary gland. In all avian species examined, plasma concentrations of GH are high in young posthatching chicks but low in the adult and embryo. The difference in plasma concentrations of GH between young and adult birds is due to both greater GH secretion and reduced clearance. The lower secretion of GH in adult birds reflects fewer somatotrophs in the pituitary, changes in somatotroph structure, and reduced GH responses to TRH or GRF administration. There is only limited data on the role of GH in birds. GH appears to be required for normal growth; acting at least in part by increasing somatomedin production. However, plasma concentrations of GH do not necessarily correlate with growth rate. For instance, in chicks with reduced growth rate owing to either goitrogen or protein deficiency in the diet, plasma concentrations of GH are elevated. GH also can influence lipid metabolism by increasing lipolysis, decreasing lipogenesis, and stimulating the uptake of glucose by adipose tissue. The physiological significance of these actions is, however, not established. In addition, GH affects the secretion of other hormones, the immune system, and perhaps also the reproductive system. PMID:6151579

  4. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells.

    PubMed

    Krajisnik, Tijana; Björklund, Peyman; Marsell, Richard; Ljunggren, Osten; Akerström, Göran; Jonsson, Kenneth B; Westin, Gunnar; Larsson, Tobias E

    2007-10-01

    Fibroblast growth factor-23 (FGF23) is a circulating factor that decreases serum levels of inorganic phosphate (Pi) as well as 1,25-dihydroxyvitamin D(3). Recent studies also suggest a correlation between serum levels of FGF23 and parathyroid hormone (PTH) in patients with chronic kidney disease. It is, however, unknown whether FGF23 directly modulates PTH expression, or whether the correlation is secondary to abnormalities in Pi and vitamin D metabolism. The objective of the current study was therefore to elucidate possible direct effects of FGF23 on bovine parathyroid cells in vitro. Treatment of parathyroid cells with a stabilized form of recombinant FGF23 (FGF23(R176Q)) induced a rise in early response gene-1 mRNA transcripts, a marker of FGF23 signaling. FGF23(R176Q) potently and dose-dependently decreased the PTH mRNA level within 12 h. In agreement, FGF23(R176Q) also decreased PTH secretion into conditioned media. In contrast, FGF23(R176Q) dose-dependently increased 1alpha-hydroxylase expression within 3 h. FGF23 (R176Q) did not affect cell viability nor induce apoptosis, whereas a small but significant increase in cell proliferation was found. We conclude that FGF23 is a negative regulator of PTH mRNA expression and secretion in vitro. Our data suggest that FGF23 may be a physiologically relevant regulator of PTH. This defines a novel function of FGF23 in addition to the previously established roles in controlling vitamin D and Pi metabolism. PMID:17911404

  5. Differential expression of hormonal and growth factor receptors in salivary duct carcinomas: biologic significance and potential role in therapeutic stratification of patients.

    PubMed

    Williams, Michelle D; Roberts, Dianna; Blumenschein, George R; Temam, Stephane; Kies, Merrill S; Rosenthal, David I; Weber, Randal S; El-Naggar, Adel K

    2007-11-01

    Salivary duct carcinoma (SDC), a rare malignancy, manifests remarkable morphologic and biologic resemblance to high-grade mammary ductal carcinoma. We contend that, similar to mammary ductal carcinoma, hormones and growth factors may play a role in SDCs. Our aim was to determine the incidence and clinical significance of the expression of several hormone and growth factor receptors and evaluate their potential in therapeutic stratification of SDC patients in the largest cohort studied to date. Eighty-four archived tumor tissue blocks were analyzed immunohistochemically for expression of estrogen receptor-beta (ERbeta), androgen receptor (AR), and proline, glutamic acid, and leucine-rich protein-1 and growth factor receptors HER-2 and epidermal growth factor receptor. The results were correlated with available pathologic, demographic, and clinical data from 59 of 84 cases. Proline, glutamic acid, and leucine-rich protein-1, ERbeta, and AR were expressed individually in 94% (71/76), 73% (57/80), and 67% (56/84) of SDCs, respectively, and coexpressed in 45% (34/75). AR was expressed significantly more often in SDCs of men than in SDCs of women [79% (35/57) vs. 33% (9/27), P<0.001]. Epidermal growth factor receptor and HER-2 were overexpressed individually in 48% (40/83) and 25% (21/84), respectively, and co-overexpressed in 12% (10/83). Survival decreased significantly in patients with lymph node metastasis (P=0.002) and positive surgical margins (P=0.006). Lack of ERbeta expression correlated with increased local and regional recurrence (P=0.05 and P=0.002, respectively). Together, these results indicate that (a) ERbeta down-regulation is associated with adverse clinical features, (b) lymph node and surgical margin status are significant survival factors, and (c) the differential expression of these hormones and growth factor receptors may assist in triaging patients with SDC for novel therapies. PMID:18059220

  6. Changes in tissue levels of growth hormone, insulin-like growth factor-I, and somatostatin in the femurs of hind-limb immobilized rats.

    PubMed

    Suliman, I A; Elhassan, A M; Adem, A; El-Bakri, N K; Lindgren, J U

    2001-04-01

    Immobilization of an extremity causes skeletal muscle atrophy and a dramatic increase in bone resorption. Growth hormone (GH) is known to play an important role in bone remodeling mediated in part by local insulin-like growth factor-I (IGF-I). In this study, we investigated changes in the levels of GH and IGF-I peptide in bone extracts from the femur after hind-limb immobilization for 5 days, 2, 4, and 8 weeks. The levels of somatostatin, which interacts with GH, were also measured in the bone extracts. GH levels increased after 8 weeks of hind-limb immobilization whereas the IGF-I concentrations increased after 2 weeks, but returned to control levels at 4 weeks, and decreased after 8 weeks of immobilization. The somatostatin levels in the bone extracts increased only after 8 weeks of hind-limb immobilization. Our findings suggest that, after hind-limb immobilization, changes in the concentrations of GH, IGF-I, and somatostatin in bone may mediate bone resorption either directly or through interaction with other factors. PMID:11372951

  7. The effect of recombinant human growth hormone and insulin-like growth factor-1 on the mitochondrial function and viability of peripheral blood mononuclear cells in vitro.

    PubMed

    Keane, James; Tajouri, Lotti; Gray, Bon

    2015-02-01

    This study investigated whether the putative physiological benefits induced by growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are countered at supra-physiological concentrations because of an augmentation in the production of mitochondrial-derived free radicals with a subsequent increase in oxidative damage, compromising mitochondrial function. To test this hypothesis, peripheral blood mononuclear cells were incubated for 4 h with either recombinant human GH (rhGH) (range = 0.25-100 μg/L) or recombinant IGF-1 (rIGF-1) (range = 100-600 μg/L) and along with control samples were subsequently analyzed by flow cytometry for the determination of cellular viability, mitochondrial membrane potential (Δψm), mitochondrial superoxide (O2(-)) generation, and mitochondrial permeability transition pore (mtPTP) activity. Results showed levels of mitochondrial O2(-) generation to be significantly reduced compared with control samples (lymphocytes: 21.5 ± 1.6 AU; monocytes: 230.2 ± 9.8 AU) following rhGH treatment at both concentrations of 5 μg/L (13.5 ± 1.3 AU, P ≤ 0.05) and 10 μg/L (12.3 ± 1.5 AU, P ≤ 0.05) in lymphocytes and at 10 μg/L (153.4 ± 11.4 AU, P ≤ 0.05) in monocytes. However, no significant effect was found at either higher rhGH concentrations or following treatment with any concentration of rIGF-1. In addition, neither of the 2 hormones had any significant effect on Δψm, mtPTP activity, or on cellular viability. In conclusion, physiological concentrations of rhGH elicited a protective cellular effect through the reduction of oxidative free radicals within mitochondria. This antioxidant effect was diminished at supra-physiological concentrations but not to a level that would elicit disruption of mitochondrial function. PMID:25531671

  8. Growth Hormone-Releaser Diet Attenuates Cognitive Dysfunction in Klotho Mutant Mice via Insulin-Like Growth Factor-1 Receptor Activation in a Genetic Aging Model

    PubMed Central

    Park, Seok Joo; Chung, Yoon Hee; Lee, Jeong Hyun; Dang, Duy-Khanh; Nam, Yunsung; Jeong, Ji Hoon; Kim, Yong Sun; Nabeshima, Toshitaka

    2014-01-01

    Background It has been recognized that a defect in klotho gene expression accelerates the degeneration of multiple age-sensitive traits. Accumulating evidence indicates that aging is associated with declines in cognitive function and the activity of growth hormone (GH)/insulin-like growth factor-1 (IGF-1). Methods In this study, we examined whether a GH-releaser diet could be effective in protecting against cognitive impairment in klotho mutant mice. Results The GH-releaser diet significantly induced the expression of IGF-1 and IGF-1 receptors in the hippocampus of klotho mutant mice. Klotho mutant mice showed significant memory impairments as compared with wild-type mice. In addition, the klotho mutation significantly decreased the expression of cell survival/antiapoptotic factors, including phospho-Akt (p-Akt)/phospho-glycogen synthase kinase3β (p-GSK3β), phospho-extracellular signal-related kinase (p-ERK), and Bcl-2, but significantly increased those of cell death/proapoptotic factors, such as phospho-c-jun N-terminal kinase (p-JNK), Bax, and cleaved caspase-3 in the hippocampus. Treatment with GH-releaser diet significantly attenuated both decreases in the expression of cell survival/antiapoptotic factors and increases in the expression of cell death/proapoptotic factors in the hippocampus of klotho mutant mice. In addition, klotho mutation-induced oxidative stress was significantly attenuated by the GH-releaser diet. Consequently, a GH-releaser diet significantly improved memory function in the klotho mutant mice. GH-releaser diet-mediated actions were significantly reversed by JB-1, an IGF-1 receptor antagonist. Conclusion The results suggest that a GH-releaser diet attenuates oxidative stress, proapoptotic changes and consequent dysfunction in klotho mutant mice by promoting IGF-1 expression and IGF-1 receptor activation. PMID:25309793

  9. Fibroblast Growth Factor Receptor 3 Deficiency Does Not Impair the Osteoanabolic Action of Parathyroid Hormone on Mice

    PubMed Central

    Xie, Yangli; Yi, Lingxian; Weng, Tujun; Huang, Junlan; Luo, Fengtao; Jiang, Wanling; Xian, Cory J; Du, Xiaolan; Chen, Lin

    2016-01-01

    Summary: PTH stimulates bone formation in Fgfr3 knockout mice through promotion of proliferation and differentiation in osteoblasts. Introduction: Previous studies showed that endogenous fibroblast growth factor 2 (FGF-2) is required for parathyroid hormone (PTH)-stimulated bone anabolic effects, however, the exact mechanisms by which PTH stimulate bone formation and the function of FGF receptors in mediating these actions are not fully defined. FGF receptor 3 (FGFR3) has been characterized as an important regulator of bone metabolism and is confirmed to cross-talk with PTH/PTHrP signal in cartilage and bone development. Methods: Fgfr3 knockout and wild-type mice at 2-month-old and 4-month-old were intraperitoneally injected with PTH intermittently for 4 weeks and then the skeletal responses to PTH were assessed by dual energy X-ray absorptiometry (DEXA), micro-computed tomography (μCT) and bone histomorphometry. Results: Intermittent PTH treatment improved bone mineral density (BMD) and femoral mechanical properties in both Fgfr3-/- and wild-type mice. Histomorphometric analysis showed that bone formation and bone resorption were increased in both genotypes following PTH treatment. PTH treatment increased trabecular bone volume (BV/TV) in WT and Fgfr3-deficient mice. The anabolic response in Fgfr3-deficient and wild-type bone is characterized by an increase of both bone formation and resorption-related genes following PTH treatment. In addition, we found that Fgfr3 null osteoblasts (compared to wild-type controls) maintained normal abilities to response to PTH-stimulated increase of proliferation, differentiation, expression of osteoblastic marker genes (Cbfa1, Osteopontin and Osteocalcin), and phosphorylation of Erk1/2. Conclusions: Bone anabolic effects of PTH were not impaired by the absence of FGFR3, suggesting that the FGFR3 signaling may not be required for osteoanabolic effects of PTH activities. PMID:27489502

  10. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone

    NASA Technical Reports Server (NTRS)

    Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.

    2002-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.

  11. Prolactin and growth hormone in fish osmoregulation

    USGS Publications Warehouse

    Sakamoto, T.; McCormick, S.D.

    2006-01-01

    Prolactin is an important regulator of multiple biological functions in vertebrates, and has been viewed as essential to ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in freshwater and euryhaline fish. Prolactin-releasing peptide seems to stimulate prolactin expression in the pituitary and peripheral organs during freshwater adaptation. Growth hormone, a member of the same family of hormones as prolactin, promotes acclimation to seawater in several teleost fish, at least in part through the action of insulin-like growth factor I. In branchial epithelia, development and differentiation of the seawater-type chloride cell (and their underlying biochemistry) is regulated by GH, IGF-I, and cortisol, whereas the freshwater-type chloride cell is regulated by prolactin and cortisol. In the epithelia of gastrointestinal tract, prolactin induces cell proliferation during freshwater adaptation, whereas cortisol stimulates both cell proliferation and apoptosis. We propose that control of salinity acclimation in teleosts by prolactin and growth hormone primarily involves regulation of cell proliferation, apoptosis, and differentiation (the latter including upregulation of specific ion transporters), and that there is an important interaction of these hormones with corticosteroids. ?? 2005 Elsevier Inc. All rights reserved.

  12. Growth hormone deficiency: an update.

    PubMed

    Audí, L; Fernández-Cancio, M; Camats, N; Carrascosa, A

    2013-03-01

    Growth hormone (GH) deficiency (GHD) in humans manifests differently according to the individual developmental stage (early after birth, during childhood, at puberty or in adulthood), the cause or mechanism (genetic, acquired or idiopathic), deficiency intensity and whether it is the only pituitary-affected hormone or is combined with that of other pituitary hormones or forms part of a complex syndrome. Growing knowledge of the genetic basis of GH deficiency continues to provide us with useful information to further characterise mutation types and mechanisms for previously described and new candidate genes. Despite these advances, a high proportion of GH deficiencies with no recognisable acquired basis continue to be labelled as idiopathic, although less frequently when they are congenital and/or familial. The clinical and biochemical diagnoses continue to be a conundrum despite efforts to harmonise biochemical assays for GH and IGF-1 analysis, probably because the diagnosis based on the so-called GH secretion stimulation tests will prove to be of limited usefulness for predicting therapy indications. PMID:23435439

  13. Effect of growth hormone administration to mature miniature Brahman cattle treated with or without insulin on circulating concentrations of insulin-like growth factor-I and other metabolic hormones and metabolites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we determined that a primary cause of proportional stunted growth in a line of Brahman cattle was related to an apparent refractoriness in metabolic response to growth hormone (GH) in young animals. The objective of this study was to determine the effect of administration of GH, insulin...

  14. Adult-Onset Deficiency in Growth Hormone and Insulin-Like Growth Factor-I Alters Oligodendrocyte Turnover in the Corpus Callosum

    PubMed Central

    Hua, Kun; Forbes, M. Elizabeth; Lichtenwalner, Robin J.; Sonntag, William E.; Riddle, David R.

    2009-01-01

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) provide trophic support during development and also appear to influence cell structure, function and replacement in the adult brain. Recent studies demonstrated effects of the GH/IGF-I axis on adult neurogenesis, but it is unclear whether the GH/IGF-I axis influences glial turnover in the normal adult brain. In the current study we used a selective model of adult-onset GH and IGF-I deficiency to evaluate the role of GH and IGF-I in regulating glial proliferation and survival in the adult corpus callosum. GH/IGF-I-deficient dwarf rats of the Lewis strain were made GH/IGF-I replete via twice daily injections of GH starting at postnatal day 28 (P28), approximately the age at which GH pulse amplitude increases in developing rodents. GH/IGF-I deficiency was initiated in adulthood by removing animals from GH treatment. Quantitative analyses revealed that adult-onset GH/IGF-I deficiency decreased cell proliferation in the white matter and decreased the survival of newborn oligodendrocytes. These findings are consistent with the hypothesis that aging-related changes in the GH/IGF-I axis produce deficits in ongoing turnover of oligodendrocytes, which may contribute to aging-related cognitive changes and deficits in remyelination after injury. PMID:19115393

  15. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I

    PubMed Central

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-01-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition. [BMB Reports 2015; 48(9): 501-506] PMID:25644636

  16. Effects of somatostatin on the growth hormone-insulin-like growth factor axis and seawater adaptation of rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Poppinga, J.; Kittilson, J.; McCormick, S.D.; Sheridan, M.A.

    2007-01-01

    Growth hormone (GH) has been shown to contribute to the seawater (SW) adaptability of euryhaline fish both directly and indirectly through insulin-like growth factor-1 (IGF-1). This study examined the role of somatostatin-14 (SS-14), a potent inhibitor of GH, on the GH-IGF-1 axis and seawater adaptation. Juvenile rainbow trout (Oncorhynchus mykiss) were injected intraperitoneally with SS-14 or saline and transferred to 20??ppt seawater. A slight elevation in plasma chloride levels was accompanied by significantly reduced gill Na+, K+-ATPase activity in SS-14-treated fish compared to control fish 12??h after SW transfer. Seawater increased hepatic mRNA levels of GH receptor 1 (GHR 1; 239%), GHR 2 (48%), and IGF-1 (103%) in control fish 12??h after transfer. Levels of GHR 1 (155%), GHR 2 (121%), IGF-1 (200%), IGF-1 receptor A (IGFR1A; 62%), and IGFR1B (157%) increased in the gills of control fish 12??h after transfer. SS-14 abolished or attenuated SW-induced changes in the expression of GHR, IGF-1, and IGFR mRNAs in liver and gill. These results indicate that SS-14 reduces seawater adaptability by inhibiting the GH-IGF-1 axis. ?? 2007 Elsevier B.V. All rights reserved.

  17. The effect of ovariectomy and ovarian steroid treatment on growth hormone and insulin-like growth factor-I levels in the rat femur.

    PubMed

    Suliman, I A; El-Bakri, N K; Adem, A; Mustafa, A; Lindgren, J U

    2001-11-01

    Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are known to play an important role in bone metabolism. The regulation of plasma levels of GH and IGF-I by ovarian steroids is well known, however, their effect on local GH and IGF-I is still unclear. In this study, we investigated the effect of ovariectomy and ovarian steroid treatment on the femur GH and IGF-I levels as well as on bone density in the rat. Nine month-old rats were ovariectomized (OVX) or sham-operated (SHAM) and 9 weeks after the surgery they were treated with daily s.c. injections of either 17beta-estradiol (OVX + E), progesterone (OVX + P), or vehicle (OVX + V) for another 10 weeks. GH and IGF-I levels in the femur extracts were measured by specific radioimmunoassay (RIA). Ovariectomy decreased GH and had no effect on IGF-I levels. Estradiol treatment increased femur GH and IGF-I levels compared to SHAM rats. Progesterone restored GH and increased IGF-I levels. Ovariectomy decreased, estrogen restored and progesterone partially restored femur bone density. Our results demonstrate that ovariectomy and ovarian steroids modulate the levels of GH and IGF-I in the bone of aged OVX rats. However, these effects appear to be limited to supraphysiological concentrations of estradiol and progesterone. PMID:11780998

  18. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I.

    PubMed

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-09-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition. PMID:25644636

  19. Acute and long-term genotoxicity of deltamethrin to insulin-like growth factors and growth hormone in rainbow trout.

    PubMed

    Aksakal, Ercüment; Ceyhun, Saltuk Buğrahan; Erdoğan, Orhan; Ekinci, Deniz

    2010-11-01

    We report here the acute and long-term influences of deltamethrin on the expression of IGF-I, IGF-II and GH-I in rainbow trout muscles. We treated rainbow trouts with different concentrations of deltamethrin (0.25 microg/L, 1 microg/L and 2.5 microg/L) and observed the alterations in mRNA expression levels of IGF-I, IGF-II and GH-I at different time intervals (at 6th, 12th, 24th, 48th, 72nd hours and 30th day). The mRNA levels significantly decreased with increasing deltamethrin concentrations for acute administration. Interestingly, a significant recovery in GH-I expression was seen after the 72nd hour up to 30th day while no significant differences were observed for IGF-I and IGF-II between the same time intervals. Here we demonstrate that deltamethrin exposure decreases the expression of IGF-I, IGF-II and GH-I in rainbow trout which might cause undesirable outcomes not only in growth, but also in development and reproduction. PMID:20647053

  20. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass.

    PubMed

    Won, Eugene T; Douros, Jonathan D; Hurt, David A; Borski, Russell J

    2016-04-01

    Leptin is an anorexigenic peptide hormone that circulates as an indicator of adiposity in mammals, and functions to maintain energy homeostasis by balancing feeding and energy expenditure. In fish, leptin tends to be predominantly expressed in the liver, another important energy storing tissue, rather than in fat depots as it is in mammals. The liver also produces the majority of circulating insulin-like growth factors (IGFs), which comprise the mitogenic component of the growth hormone (GH)-IGF endocrine growth axis. Based on similar regulatory patterns of leptin and IGFs that we have documented in previous studies on hybrid striped bass (HSB: Morone saxatilis×Morone chrysops), and considering the co-localization of these peptides in the liver, we hypothesized that leptin might regulate the endocrine growth axis in a manner that helps coordinate somatic growth with energy availability. Using a HSB hepatocyte culture system to simulate autocrine or paracrine exposure that might occur within the liver, this study examines the potential for leptin to modulate metabolism and growth through regulation of IGF gene expression directly, or indirectly through the regulation of GH receptors (GHR), which mediate GH-induced IGF expression. First, we verified that GH (50nM) has a classical stimulatory effect on IGF-1 and additionally show it stimulates IGF-2 transcription in hepatocytes. Leptin (5 and/or 50nM) directly stimulated in vitro GHR2 gene expression within 8h of exposure, and both GHR1 and GHR2 as well as IGF-1 and IGF-2 gene expression after 24h. Cells were then co-incubated with submaximal concentrations of leptin and GH (25nM each) to test if they had a synergistic effect on IGF gene expression, possibly through increased GH sensitivity following GHR upregulation by leptin. In combination, however, the treatments only had an additive effect on stimulating IGF-1 mRNA despite their capacity to increase GHR mRNA abundance. This suggests that leptin's stimulatory

  1. Growth Hormone and Craniofacial Tissues. An update

    PubMed Central

    Litsas, George

    2015-01-01

    Growth hormone is an important regulator of bone homeostasis. In childhood, it determines the longitudinal bone growth, skeletal maturation, and acquisition of bone mass. In adulthood, it is necessary to maintain bone mass throughout life. Although an association between craniofacial and somatic development has been clearly established, craniofacial growth involves complex interactions of genes, hormones and environment. Moreover, as an anabolic hormone seems to have an important role in the regulation of bone remodeling, muscle enhancement and tooth development. In this paper the influence of growth hormone on oral tissues is reviewed. PMID:25674165

  2. Determinants of Growth Hormone Resistance in Malnutrition

    PubMed Central

    Fazeli, Pouneh K.; Klibanski, Anne

    2014-01-01

    States of under-nutrition are characterized by growth hormone resistance. Decreased total energy intake, as well as isolated protein-calorie malnutrition and isolated nutrient deficiencies result in elevated growth hormone levels and low levels of IGF-I. We review various states of malnutrition and a disease state characterized by chronic under-nutrition -- anorexia nervosa -- and discuss possible mechanisms contributing to the state of growth hormone resistance, including FGF-21 and SIRT1. We conclude by examining the hypothesis that growth hormone resistance is an adaptive response to states of under-nutrition, in order to maintain euglycemia and preserve energy. PMID:24363451

  3. Actions and Interactions of Alcohol and Transforming Growth Factor ß1 on Prepubertal Hypothalamic Gonadotropin-Releasing Hormone

    PubMed Central

    Srivastava, Vinod K.; Hiney, Jill K.; Dees, William L.

    2014-01-01

    Background Alcohol (ALC) diminishes gonadotropin-releasing hormone (GnRH) secretion and delays puberty. Glial transforming growth factor ß1 (TGFß1) plays a role in glial-neuronal communications facilitating prepubertal GnRH secretion. We assessed the effects of acute ALC administration on TGFß1-induced GnRH gene expression in the brain preoptic area (POA), and release of the peptide from the medial basal hypothalamus (MBH). Furthermore, we assessed actions and interactions of TGFβ1 and ALC on an adhesion/signaling gene family involved in glial-neuronal communications. Methods Prepubertal female rats were administered ALC or water via gastric gavage at 0730 h. At 0900 h saline or TGFβ1 (100ng/3μl) was administered into the third ventricle. At 1500 h the POA was removed and frozen for gene expression analysis and repeated for protein assessments. In another experiment, the MBH was removed from ALC-free rats. After equilibration, tissues were incubated in Locke’s medium only or medium containing TGFß1 with or without 50 mM ALC for measurement of GnRH peptide released in vitro. Results TGFβ1 induced GnRH gene expression in the POA and this effect was blocked by ALC. We also described the presence and responsiveness of the TGFβ1 receptor in the POA and showed that acute ALC exposure not only altered the TGFß1 induced increase in TGFß-R1 protein expression but also the activation of receptor associated proteins, Smad2 and Smad3, key downstream components of the TGFß1 signaling pathway. Assessment of an adhesion/signaling family consisting of glial RPTPβ and neuronal Caspr1 and contactin showed that the neuronal components were induced by TGFβ1 and that ALC blocked these effects. Finally, TGFß1 was shown to induce release of the GnRH peptide in vitro, an action that was blocked by ALC. Conclusion We have demonstrated glial-derived TGFß1 induces GnRH gene expression in the POA, and stimulates release of the peptide from the MBH; actions necessary for

  4. Endocrine and metabolic changes in neonatal calves in response to growth hormone and long-R3-insulin-like growth factor-I administration.

    PubMed

    Hammon, H; Blum, J W

    1998-01-01

    Postnatal growth is primarily controlled by growth hormone (GH) and insulin-like growth factor-I (IGF-I). We have studied effects of recombinant bovine GH (rbGH) and Long-R3-insulin-like growth factor-I (Long-R3-IGF-I) on metabolic and endocrine characteristics of neonatal calves. Group GrC (control) was fed colostrum as first meal and then milk replacer up to day 7. Groups GrIGFf, GrIGFi and GrGH were fed as GrC. In group GrIGFf, Long-R3-IGF-I (50 micrograms/[kg x day], twice daily for 7 days) was fed together with colostrum or milk replacer and in group GrIGFi, Long-R3-IGF-I (50 micrograms/[kg x day], twice daily for 7 days) was injected subcutaneously at times of feeding. Calves of group GrGH were injected rbGH (1 mg/[kg x day, s.c.], twice daily for 7 days) at times of feeding. While orally administered Long-R3-IGF-I had no effects, subcutaneously administered Long-R3-IGF-I lowered plasma glucose and insulin concentrations (p < 0.05). In group GrGH, day-2 postprandial plasma insulin concentrations were increased more than in Long-R3-IGF-I-treated groups (p < 0.05) and day-2 postprandial prolactin responses were greater in group GrGH than in controls (p < 0.05). Other traits (lactic acid, nonesterified fatty acids, glucagon, cortisol, thyroxine and 3.5.3'-triiodothyronine) exhibited age-dependent changes, but were not significantly affected by rbGH or Long-R3-IGF-I. The study shows, that parenteral, but not oral, Long-R3-IGF-I affects plasma glucose and insulin concentrations, and that rbGH transiently influences plasma prolactin concentrations in neonatal calves. PMID:9483305

  5. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS.

    PubMed Central

    Scharfman, Helen E.; MacLusky, Neil J.

    2007-01-01

    In the CNS, there are widespread and diverse interactions between growth factors and estrogen. Here we examine the interactions of estrogen and brain-derived neurotrophic factor (BDNF), two molecules that have historically been studied separately, despite the fact that they seem to share common targets, effects, and mechanisms of action. The demonstration of an estrogen-sensitive response element on the BDNF gene provided an impetus to explore a direct relationship between estrogen and BDNF, and predicted that the effects of estrogen, at least in part, might be due to the induction of BDNF. This hypothesis is discussed with respect to the hippocampus, where substantial evidence has accumulated in favor of it, but alternate hypotheses are also raised. It is suggested that some of the interactions between estrogen and BDNF, as well as the controversies and implications associated with their respective actions, may be best appreciated in light of the ability of BDNF to induce neuropeptide Y (NPY) synthesis in hippocampal neurons. Taken together, this tri-molecular cascade, estrogen-BDNF-NPY, may be important in understanding the hormonal regulation of hippocampal function. It may also be relevant to other regions of the CNS where estrogen is known to exert profound effects, such as amygdala and hypothalamus; and may provide greater insight into neurological disorders and psychiatric illness, including Alzheimer’s disease, depression and epilepsy. PMID:17055560

  6. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life. PMID:24954142

  7. Growth hormone doping: a review

    PubMed Central

    Erotokritou-Mulligan, Ioulietta; Holt, Richard IG; Sönksen, Peter H

    2011-01-01

    The use of growth hormone (GH) as a performance enhancing substance was first promoted in lay publications, long before scientists fully acknowledged its benefits. It is thought athletes currently use GH to enhance their athletic performance and to accelerate the healing of sporting injuries. Over recent years, a number of high profile athletes have admitted to using GH. To date, there is only limited and weak evidence for its beneficial effects on performance. Nevertheless the “hype” around its effectiveness and the lack of a foolproof detection methodology that will detect its abuse longer than 24 hours after the last injection has encouraged its widespread use. This article reviews the current evidence of the ergogenic effects of GH along with the risks associated with its use. The review also examines methodologies, both currently available and in development for detecting its abuse. PMID:24198576

  8. Seasonal regulation of the growth hormone-insulin-like growth factor-I axis in the American black bear (Ursus americanus).

    PubMed

    Blumenthal, Stanley; Morgan-Boyd, Rebecca; Nelson, Ralph; Garshelis, David L; Turyk, Mary E; Unterman, Terry

    2011-10-01

    The American black bear maintains lean body mass for months without food during winter denning. We asked whether changes in the growth hormone/insulin-like growth factor-I (GH-IGF-I) axis may contribute to this remarkable adaptation to starvation. Serum IGF-I levels were measured by radioimmunoassay, and IGF-binding proteins (IGFBPs) were analyzed by ligand blotting. Initial studies in bears living in the wild showed that IGF-I levels are highest in summer and lowest in early winter denning. Detailed studies in captive bears showed that IGF-I levels decline in autumn when bears are hyperphagic, continue to decline in early denning, and later rise above predenning levels despite continued starvation in the den. IGFBP-2 increased and IGFBP-3 decreased in early denning, and these changes were also reversed in later denning. Treatment with GH (0.1 mg·kg(-1)·day(-1) × 6 days) during early denning increased serum levels of IGF-I and IGFBP-3 and lowered levels of IGFBP-2, indicating that denning bears remain responsive to GH. GH treatment lowered blood urea nitrogen levels, reflecting effects on protein metabolism. GH also accelerated weight loss and markedly increased serum levels of free fatty acids and β-hydroxybutyrate, resulting in a ketoacidosis (bicarbonate decreased to 15 meq/l), which was reversed when GH was withdrawn. These results demonstrate seasonal regulation of GH/IGF-I axis activity in black bears. Diminished GH activity may promote fat storage in autumn in preparation for denning and prevent excessive mobilization and premature exhaustion of fat stores in early denning, whereas restoration of GH/IGF activity in later denning may prepare the bear for normal activity outside the den. PMID:21730258

  9. Locally produced estrogen through aromatization might enhance tissue expression of pituitary tumor transforming gene and fibroblast growth factor 2 in growth hormone-secreting adenomas.

    PubMed

    Ozkaya, Hande Mefkure; Comunoglu, Nil; Keskin, Fatma Ela; Oz, Buge; Haliloglu, Ozlem Asmaz; Tanriover, Necmettin; Gazioglu, Nurperi; Kadioglu, Pinar

    2016-06-01

    Aromatase, a key enzyme in local estrogen synthesis, is expressed in different pituitary tumors including growth hormone (GH)-secreting adenomas. We aimed to evaluate aromatase, estrogen receptor α (ERα), estrogen receptor β (ERβ), pituitary tumor transforming gene (PTTG), and fibroblast growth factor 2 (FGF2) expressions in GH-secreting adenomas, and investigate their correlation with clinical, pathologic, and radiologic parameters. This cross-sectional study was conducted in a tertiary center in Turkey. Protein expressions were determined via immunohistochemical staining in ex vivo tumor samples of 62 patients with acromegaly and ten normal pituitary tissues. Concordantly increased aromatase, PTTG, and FGF2 expressions were detected in the tumor samples as compared with controls (p < 0.001 for all). None of the tumors expressed ERα while ERβ was detected only in mixed somatotroph adenomas. Aromatase, ERβ, PTTG expressions were not significantly different between patients with and without remission (p > 0.05 for all). FGF2 expression was significantly higher in patients without postoperative and late remission (p = 0.002 and p = 0.012, respectively), with sphenoid bone invasion, optic chiasm compression, and somatostatin analog resistance (p = 0.005, p = 0.033, and p = 0.013, respectively). Aromatase, PTTG and FGF2 expressions were positively correlated with each other (r = 0,311, p = 0.008 for aromatase, FGF2; r = 0.380, p = 0.001 for aromatase, PTTG; r = 0.400, p = 0.001 for FGF2, PTTG). PTTG-mediated FGF2 upregulation is associated with more aggressive tumor features in patients with acromegaly. Also, locally produced estrogen through aromatization might have a role in this phenomenon. PMID:26578364

  10. A low dose euglycemic infusion of recombinant human insulin-like growth factor I rapidly suppresses fasting-enhanced pulsatile growth hormone secretion in humans.

    PubMed Central

    Hartman, M L; Clayton, P E; Johnson, M L; Celniker, A; Perlman, A J; Alberti, K G; Thorner, M O

    1993-01-01

    To determine if insulin-like growth factor I (IGF-I) inhibits pulsatile growth hormone (GH) secretion in man, recombinant human IGF-I (rhIGF-I) was infused for 6 h at 10 micrograms.kg-1.h-1 during a euglycemic clamp in 10 normal men who were fasted for 32 h to enhance GH secretion. Saline alone was infused during an otherwise identical second admission as a control. As a result of rhIGF-I infusion, total and free IGF-I concentrations increased three- and fourfold, respectively. Mean GH concentrations fell from 6.3 +/- 1.6 to 0.59 +/- 0.07 micrograms/liter after 120 min. GH secretion rates, calculated by a deconvolution algorithm, decreased with a t 1/2 of 16.6 min and remained suppressed thereafter. Suppression of GH secretion rates occurred within 60 min when total and free IGF-I concentrations were 1.6-fold and 2-fold above baseline levels, respectively, and while glucose infusion rates were < 1 mumol.kg-1.min-1. During saline infusion, GH secretion rates remained elevated. Infusion of rhIGF-I decreased the mass of GH secreted per pulse by 84% (P < 0.01) and the number of detectable GH secretory pulses by 32% (P < 0.05). Plasma insulin and glucagon decreased to nearly undetectable levels after 60 min of rhIGF-I. Serum free fatty acids, beta-hydroxybutyrate, and acetoacetate were unaffected during the first 3 h of rhIGF-I but decreased thereafter to 52, 32, and 50% of levels observed during saline. We conclude that fasting-enhanced GH secretion is rapidly suppressed by a low-dose euglycemic infusion of rhIGF-I. This effect of rhIGF-I is likely mediated through IGF-I receptors independently of its insulin-like metabolic actions. PMID:8514857

  11. Attribution to Heterogeneous Risk Factors for Breast Cancer Subtypes Based on Hormone Receptor and Human Epidermal Growth Factor 2 Receptor Expression in Korea.

    PubMed

    Park, Boyoung; Choi, Ji-Yeob; Sung, Ho Kyung; Ahn, Choonghyun; Hwang, Yunji; Jang, Jieun; Lee, Juyeon; Kim, Heewon; Shin, Hai-Rim; Park, Sohee; Han, Wonshik; Noh, Dong-Young; Yoo, Keun-Young; Kang, Daehee; Park, Sue K

    2016-04-01

    We conducted a heterogeneous risk assessment of breast cancer based on the hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) calculating the risks and population-based attributable fractions (PAFs) for modifiable and nonmodifiable factors.Using matched case-control study design from the Seoul Breast Cancer Study and the national prevalence of exposure, the risks and PAFs for modifiable and nonmodifiable factors were estimated for total breast cancers and subtypes.The attribution to modifiable factors was different for each subtype (luminal A, PAF = 61.4% [95% confidence interval, CI = 54.3%-69.8%]; luminal B, 21.4% [95% CI = 18.6-24.9%]; HER2-overexpression, 59.4% [95% CI = 47.8%-74.3%], and triple negative tumors [TNs], 27.1% [95% CI = 22.9%-32.4%)], and the attribution to the modifiable factors for the luminal A and HER2-overexpression subtypes was higher than that of the luminal B and TN subtypes (P heterogeneity ≤ 0.001). The contribution of modifiable reproductive factors to luminal A type in premenopausal women was higher than that of the other subtypes (18.2% for luminal A; 3.1%, 8.1%, and -3.1% for luminal B, HER2-overexpression, and TN subtypes, respectively; P heterogeneity ≤ 0.001). Physical activity had the highest impact preventing 32.6% of luminal A, 14.5% of luminal B, 38.0% of HER2-overexpression, and 26.9% of TN subtypes (P heterogeneity = 0.014). Total reproductive factors were also heterogeneously attributed to each breast cancer subtype (luminal A, 65.4%; luminal B, 24.1%; HER2-overexpression, 57.9%, and TN subtypes, -3.1%; P heterogeneity ≤ 0.001).Each pathological subtype of breast cancer by HRs and HER2 status may be associated with heterogeneous risk factors and their attributable risk, suggesting a different etiology. The luminal B and TN subtypes seemed to be less preventable despite intervention for alleged risk factors, even though physical activity had a high preventable

  12. Growth and growth hormone: An overview.

    PubMed

    Teran, Enrique; Chesner, Jaclyn; Rapaport, Robert

    2016-06-01

    Growth is a good indicator of a child's health. Growth disturbances, including short stature or growth failure, could be indications of illnesses such as chronic disease, nutritional deficits, celiac disease or hormonal abnormalities. Therefore, a careful assessment of the various requirements for normal growth needs to be done by history, physical examination, and screening laboratory tests. More details will be reviewed about the GH-IGF axis, its abnormalities with special emphasis on GH deficiency, its diagnosis and treatment. GH treatment indications in the US will be reviewed and a few only will be highlighted. They will include GH deficiency, as well as the treatment of children born SGA, including the results of a US study using FDA approved dose of 0.48mg/kg/week. GH deficiency in adults will also be briefly reviewed. Treatment of patients with SHOX deficiency will also be discussed. Possible side effects of GH treatment and the importance of monitoring safety will be highlighted. PMID:26936284

  13. Decreased levels of proapoptotic factors and increased key regulators of mitochondrial biogenesis constitute new potential beneficial features of long-lived growth hormone receptor gene-disrupted mice.

    PubMed

    Gesing, Adam; Masternak, Michal M; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J; Bartke, Andrzej

    2013-06-01

    Decreased somatotrophic signaling is among the most important mechanisms associated with extended longevity. Mice homozygous for the targeted disruption of the growth hormone (GH) receptor gene (GH receptor knockout; GHRKO) are obese and dwarf, are characterized by a reduced weight and body size, undetectable levels of GH receptor, high concentration of serum GH, and greatly reduced plasma levels of insulin and insulin-like growth factor-I, and are remarkably long lived. Recent results suggest new features of GHRKO mice that may positively affect longevity-decreased levels of proapoptotic factors and increased levels of key regulators of mitochondrial biogenesis. The alterations in levels of the proapoptotic factors and key regulators of mitochondrial biogenesis were not further improved by two other potential life-extending interventions-calorie restriction and visceral fat removal. This may attribute the primary role to GH resistance in the regulation of apoptosis and mitochondrial biogenesis in GHRKO mice in terms of increased life span. PMID:23197187

  14. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer.

    PubMed

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed. PMID:27468248

  15. Treatment challenges for community oncologists treating postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer

    PubMed Central

    Gradishar, William J

    2016-01-01

    Community-based oncologists are faced with challenges and opportunities when delivering quality patient care, including high patient volumes and diminished resources; however, there may be the potential to deliver increased patient education and subsequently improve outcomes. This review discusses the treatment of postmenopausal women with endocrine-resistant, hormone receptor-positive, human epidermal growth factor receptor 2- negative advanced breast cancer in order to illustrate considerations in the provision of pertinent quality education in the treatment of these patients and the management of therapy-related adverse events. An overview of endocrine-resistant breast cancer and subsequent treatment challenges is also provided. Approved treatment options for endocrine-resistant breast cancer include hormonal therapies and mammalian target of rapamycin inhibitors. Compounds under clinical investigation are also discussed. PMID:27468248

  16. Recombinant human growth hormone and recombinant human insulin-like growth factor I diminish the catabolic effects of hypogonadism in man: metabolic and molecular effects.

    PubMed

    Hayes, V Y; Urban, R J; Jiang, J; Marcell, T J; Helgeson, K; Mauras, N

    2001-05-01

    Severe gonadal androgen deficiency can have profound catabolic effects in man. Hypogonadal men develop a loss of lean body mass, increased adiposity, and decreased muscle strength despite normal GH and insulin-like growth factor I (IGF-I) concentrations. We designed these studies to investigate whether GH or IGF-I administration to male subjects with profound hypogonadism can diminish or abolish the catabolic effects of testosterone deficiency. Moreover, we also examined the nature of the interactions among GH, IGF-I, and androgens in specific genes of the im system. A group of 13 healthy subjects (mean age, 22 +/- 1 yr) was studied at baseline (D1) and 10 weeks after being made hypogonadal using a GnRH analog (GnRHa; D2). At 6 weeks from baseline they were started on either recombinant human (rh) IGF-I (60 microg/kg, sc, twice daily) or rhGH (12.5 microg/kg, sc, daily) for 4 weeks. On each study day subjects had infusions of L-[(13)C]leucine; indirect calorimetry; isokinetic dynamometry of the knee extensors; determination of body composition (dual energy x-ray absortiometry) and hormone and growth factor concentrations, as well as percutaneous muscle biopsies. Their data were compared with those of previously studied male subjects who received only GNRHA: Administration of rhIGF-I and rhGH to the hypogonadal men had similar effects on whole body metabolism, with maintenance of protein synthesis rates, fat oxidation rates, and fat-free mass compared with the eugonadal state, preventing the decline observed with hypogonadism alone. This was further amplified by the molecular assessment of important genes in muscle function. During rhIGF-I treatment, im expression of IGF-I declined, and IGF-binding protein-4 increased, similar to the changes during GnRHa alone. However, rhGH administration was associated with a marked increase in IGF-I and androgen receptor messenger ribonucleic acid concentrations in skeletal muscle with a reciprocal decline in IGF-binding protein

  17. Data on alteration of hormone and growth factor receptor profiles over progressive passages of breast cancer cell lines representing different clinical subtypes.

    PubMed

    Nair, Madhumathy G; Desai, Krisha; Prabhu, Jyothi S; Hari, P S; Remacle, Jose; Sridhar, T S

    2016-09-01

    Human breast cancers are a highly heterogeneous group of tumours consisting of several molecular subtypes with a variable profile of hormone, growth factor receptors and cytokeratins [1]. Here, the data shows immunofluorescence profiling of four different cell lines belonging to distinct clinical subtypes of breast cancer. Post revival, the cell lines were passaged in culture and immunophenotyping was done for ER, HER-2, AR and EGFR. Data for the markers from early passage (5th) through passages as late as 25 for the different cell lines is presented. PMID:27508248

  18. Potential role of human growth hormone in melanoma growth promotion.

    PubMed

    Handler, Marc Z; Ross, Andrew L; Shiman, Michael I; Elgart, George W; Grichnik, James M

    2012-10-01

    BACKGROUND Human growth hormone (HGH) and insulin-like growth factor-1 (IGF-1) have been shown to play a role in the malignant transformation and progression of a variety of cancers. HGH is also known to upregulate molecular signaling pathways implicated in the pathogenesis of melanoma. Although HGH has previously been implicated in promoting the clinical growth of both benign and malignant melanocytic neoplasms, to our knowledge there are no conclusive studies demonstrating an increased risk of melanoma following HGH therapy. Nevertheless, there are reports of melanoma developing subsequent to HGH coadministered with either other hormones or following irradiation. OBSERVATION A 49-year-old white man presented with a new pigmented papule that was diagnosed as melanoma. The patient reported using HGH for 3 months prior to the diagnosis. His 51-year-old wife, who also was white, had also been using exogenous HGH for 3 months and had been diagnosed as having a melanoma 2 weeks prior. CONCLUSIONS Given the unlikelihood of 2 unrelated people developing melanoma within a short time span, it is reasonable to assume that a common environmental component (HGH or other shared exposure) contributed to the development of both melanomas. Because of the increased use of exogenous HGH as an antiaging agent, it is important to be aware of the growth-promoting effects of this hormone. Until better data are available that determines the true risk of exogenous HGH, its use as an antiaging agent merits increased surveillance. PMID:23069955

  19. Growth hormone activation of human monocytes for superoxide production but not tumor necrosis factor production, cell adherence, or action against Mycobacterium tuberculosis.

    PubMed Central

    Warwick-Davies, J; Lowrie, D B; Cole, P J

    1995-01-01

    We have previously demonstrated that growth hormone (GH) is a human macrophage-activating factor which primes monocytes for enhanced production of H2O2 in vitro. This report extends our observations to other monocyte functions relevant to infection. We find that GH also primes monocytes for O2- production, to a degree similar to the effect of gamma interferon. Neither macrophage-activating factor alone stimulates monocytes to release bioactive tumor necrosis factor. However, GH, unlike gamma interferon, does not synergize with endotoxin for enhanced tumor necrosis factor production. In further contrast, GH does not alter monocyte adherence or morphology, while phagocytosis and killing of Mycobacterium tuberculosis by GH-treated monocytes are also unaffected. Therefore, despite the multiplicity of the effects of GH on the immune system in vivo, its effects on human monocytes in vitro appear to be limited to priming for the release of reactive oxygen intermediates. PMID:7591064

  20. Sex steroids and growth hormone interactions.

    PubMed

    Fernández-Pérez, Leandro; de Mirecki-Garrido, Mercedes; Guerra, Borja; Díaz, Mario; Díaz-Chico, Juan Carlos

    2016-04-01

    GH and sex hormones are critical regulators of body growth and composition, somatic development, intermediate metabolism, and sexual dimorphism. Deficiencies in GH- or sex hormone-dependent signaling and the influence of sex hormones on GH biology may have a dramatic impact on liver physiology during somatic development and in adulthood. Effects of sex hormones on the liver may be direct, through hepatic receptors, or indirect by modulating endocrine, metabolic, and gender-differentiated functions of GH. Sex hormones can modulate GH actions by acting centrally, regulating pituitary GH secretion, and peripherally, by modulating GH signaling pathways. The endocrine and/or metabolic consequences of long-term exposure to sex hormone-related compounds and their influence on the GH-liver axis are largely unknown. A better understanding of these interactions in physiological and pathological states will contribute to preserve health and to improve clinical management of patients with growth, developmental, and metabolic disorders. PMID:26775014

  1. Differential impact of simple childhood obesity on the components of the growth hormone-insulin-like growth factor (IGF)-IGF binding proteins axis.

    PubMed

    Ballerini, María Gabriela; Ropelato, María Gabriela; Domené, Horacio Mario; Pennisi, Patricia; Heinrich, Juan Jorge; Jasper, Héctor Guillermo

    2004-05-01

    Simple childhood obesity is characterized by normal or even accelerated growth in spite of reduced growth hormone (GH) secretion. There are conflicting reports on the effects of obesity upon components of the GH-insulin-like growth factor-I (IGF-I)-IGF binding proteins (IGFBPs) system. In the present study we aimed to determine GH, IGF-I, IGFBP-3 and IGFBP-2 as well as some of the less explored components of this axis (IGFBP-3 proteolytic activity, IGFBP-3 plasma fragments, and total acid labile subunit [ALS]) in 22 obese and 17 age-matched control children. We also evaluated not only total GH binding protein (GHBP) serum levels but also GHBP bound to GH (complexed) in both groups. Obese and control groups strongly differed in BMI (obese: 4.7 +/- 0.36 vs control: 0.37 +/- 0.25 SDS, p <0.0001). In the obese group, we found lower GH serum levels, but normal serum levels of GH-GHBP complex, IGF-I, IGFBP-3, IGF-I/IGFBP-3 molar ratio, IGFBP-3 proteolytic activity, IGFBP-3 plasma fragments and total ALS. Obese children presented higher total circulating GHBP (6.0 +/- 0.44 vs 2.9 +/- 0.29 nmol/l, p <0.001) and insulin levels (10.5 +/- 1.5 vs 5.1 +/- 0.8 mU/l, p <0.001), while IGFBP-2 (4.6 +/- 0.5 vs 6.6 +/- 0.7%, p <0.05) and the ratio IGFBP-2/IGF-I (0.032 +/- 0.019 vs 0.095 +/- 0.01, p = 0.013) were lower than in controls. BMI and insulin were directly, and IGFBP-2 serum levels inversely, correlated to total GHBP serum levels when multiple regression analysis was performed (r = 0.74, p <0.001). By stepwise regression analysis, insulin (r = -0.37, p <0.05) and BMI (r = -0.52, p <0.01) inversely determined IGFBP-2. In summary, obese children present normal growth in spite of reduced GH secretion, probably because the combination of increased total GHBP and normal GH-GHBP complex serum levels (suggesting increased GH receptor [GHR] number and a normal serum GH reservoir, respectively) allow for the achievement of normal levels of IGF-I, IGFBP-3, IGFBP-3 proteolytic activity

  2. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on progesterone secretion and viability of cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Vazhoor, B; Yadav, V P; Gupta, M; Pathak, M C; Panda, R P; Khan, F A; Verma, M R; Maurya, V P; Singh, G; Sarkar, M

    2014-12-01

    We evaluated the temporal (24, 48 and 72 hours) and dose-dependent (5, 10, and 100 ng/mL of LH, IGF-1, and EGF, respectively) production and secretion of progesterone (P4) in cultured luteal cells from different stages of estrous cycle as well as the expression of steroidogenic acute regulatory protein (STARD1), cytochrome P450 cholesterol side-chain cleavage (CYP11A1), and 3β-hydroxysteroid dehydrogenase (HSD3B), anti-apoptotic gene PCNA, and pro-apoptotic gene BAX in luteal cells of mid-luteal phase in buffalo. Samples from early luteal phase (ELP; Day 1 to 4; n = 4), mid-luteal phase (MLP; Day 5 to 10; n = 4), and late luteal phase (LLP; Day 11 to 16; n = 4) of estrous cycle were collected. Progesterone was assayed by RIA, whereas mRNA expression was determined by quantitative real-time polymerase chain reaction. Results depicted that highest dose (100 ng/mL) of LH, IGF-1, and EGF and longer duration of time brought about a (P < 0.05) rise in P4 level and expression of steroidogenic enzymes and PCNA compared with the lower level(s) and control while, all treatments (P < 0.05) inhibited BAX expression in a time dependent-manner. Analysis of interaction between stage and treatments revealed that LH treatment (P < 0.05) increased P4 production compared with IGF-1 and EGF in ELP and MLP. However in LLP, treatment with IGF-1 and EGF significantly (P < 0.05) increased P4 production compared with LH treatment. Summarizing, our study explores the steroidogenic potential of LH and growth factors across different luteal stages in buffalo, which on promoting steroidogenic enzyme expression and cell viability culminated in enhanced P4 production in luteal cells. PMID:25263485

  3. Recombinant Bovine Growth Hormone Criticism Grows.

    ERIC Educational Resources Information Center

    Gaard, Greta

    1995-01-01

    Discusses concerns related to the use of recombinant bovine growth hormone in the United States and other countries. Analyses the issue from the perspectives of animal rights, human health, world hunger, concerns of small and organic farmers, costs to the taxpayer, and environmental questions. A sidebar discusses Canadian review of the hormone.…

  4. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth...

  5. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth...

  6. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth...

  7. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth...

  8. Effect of different growth hormone-releasing factors on the concentrations of growth hormone, insulin and metabolites in the plasma of sheep maintained in positive and negative energy balance.

    PubMed

    Hart, I C; Chadwick, P M; Coert, A; James, S; Simmonds, A D

    1985-04-01

    Three experiments were conducted to compare the ability of different preparations of growth hormone-releasing factor (GRF) to stimulate GH secretion in sheep maintained in positive and negative energy balance. In experiment 1 five sheep were injected (i.v.) with three preparations of human pancreatic GRF (hpGRF-44, hpGRF-40, hpGRF-29-NH2) and one preparation of rat hypothalamic GRF (rhGRF-29-NH2) all at 98.0 pmol/kg, or control vehicle, in a Latin square design when the animals either had free access to food or were fed half their maintenance requirements. Analysis of plasma samples, obtained before and for 150 min after injection, revealed that the reduced food intake resulted in the expected changes in body weight and circulating GH, insulin, glucose, urea and non-esterified fatty acids. The maximum post-injection concentrations of GH did not differ between either the two levels of feeding or the four GRF preparations but the mean post-injection concentration of GH was significantly higher for all GRF treatments on the restricted ration (P less than 0.001). The mean post-injection response to rhGRF-29-NH2 was less than that obtained with hpGRF-44 for sheep with food available ad libitum (P less than 0.05) and was clearly more persistent for all GRF treatments in animals fed the reduced diet (P less than 0.001). In experiment 2 the same five sheep were injected i.v. with rhGRF-29-NH2 (98.0 pmol/kg) when they had free access to food and after food had been withdrawn for 3 days.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2859343

  9. Transforming growth factor-beta activities in 'in vivo' lines of hormone-dependent and independent mammary adenocarcinomas induced by medroxyprogesterone acetate in BALB/c mice.

    PubMed

    Elizalde, P V; Lanari, C; Kordon, E; Tezón, J; Charreau, E H

    1990-07-01

    We have determined the presence of transforming growth factor-beta (TGF-beta)-like polypeptides in mammary adenocarcinomas induced by medroxyprogesterone acetate (MPA) in BALB/c mice. In hormone-dependent tumors (HD) from nontreated and MPA-treated mice a high molecular weight (43 kDa) transforming activity was purified by Bio-Gel P-60 chromatography. This TGF was able to confer the neoplastic phenotype on NRK-49F cells without the addition of epidermal growth factor (EGF), though its activity was potentiated by EGF. It did not compete for binding to the EGF receptor, had no mitogenic activity on monolayer cultures of NRK fibroblasts, and was a potent inhibitor of DNA synthesis induced in these cells by EGF and insulin. In HD and hormone-independent tumors (HI) another TGF with a Mr of 13 kDa was isolated. This transforming activity showed the same biological properties as 43 kDa TGF, with the exception that in the absence of EGF it did not stimulate soft agar growth of NRK-49F cells. The synthesis of both factors in 'in vivo' HD tumors seems to be under MPA control, since it is much lower in HD tumors from MPA-treated mice. Further purification of the 13 and 43 kDa TGFs by hydrophobic interaction HPLC demonstrated that each one eluted in a different position, and that their elution profile differed from the TGF-beta from human platelets. The biological activity of the 13 and 43 kDa TGFs was not neutralized by a specific anti-TGF-beta antibody. PMID:2145045

  10. Detecting growth hormone misuse in athletes.

    PubMed

    Holt, Richard I G

    2013-10-01

    Athletes have been misusing growth hormone (GH) for its anabolic and metabolic effects since the early 1980s, at least a decade before endocrinologists began to treat adults with GH deficiency. Although there is an ongoing debate about whether GH is performance enhancing, recent studies suggest that GH improves strength and sprint capacity, particularly when combined with anabolic steroids. The detection of GH misuse is challenging because it is an endogenous hormone. Two approaches have been developed to detect GH misuse; the first is based on the measurement of pituitary GH isoforms and the ratio of 22-kDa isoform to total GH. The second is based on the measurement of insulin like growth factor-I (IGF-I) and N-terminal propeptide of type III procollagen (P-III-NP) which increase in a dose-dependent manner in response to GH administration. Both methodologies have been approved by the World Anti-Doping Agency (WADA) and have led to the detection of a number of athletes misusing GH. PMID:24251151

  11. Human growth hormone (GH)-releasing factor stimulates and somatostatin inhibits the release of rat GH variants.

    PubMed

    Yokoya, S; Friesen, H G

    1986-11-01

    Two-dimensional polyacrylamide gel electrophoresis (2D PAGE) was used for the analysis of proteins secreted by male rat pituitary cells in monolayer culture in the presence of 10 nM human GH-releasing factor (hGRF) or 30 nM somatostatin (SRIF) or in the absence of these factors. More than 300 medium proteins were reproducibly detected either by fluorographic autoradiography or by silver staining. Immunoreactivity of each protein was examined after 2D PAGE followed by Western blotting and immunostaining with affinity-purified antirat GH (rGH) antibody. While there was a cluster of immunoreactive spots in the GH dimer range (40,000-50,000 mol wt), at least 16 medium proteins of mol wt 22,000 or less were also stained. Among these 16 proteins the release of 15 was stimulated and the release of 14 was inhibited by hGRF and SRIF, respectively. On the other hand, there were 3 proteins of approximate mol wt 16,000 whose secretion was regulated in a coordinate manner as rGH by the hypothalamic factors but which did not cross-react with anti-rGH antibodies. The increase or decrease in the radioactivity of each protein spot obtained from media after pituitary cells were incubated with [35S]methionine and hypothalamic factors was analyzed statistically. A pulse-chase study suggested that at least 7 of the hormonally regulated proteins, including rGH, were synthesized very rapidly. Finally, the 2D PAGE analysis of cell-free translation products of messenger RNA derived from male rat anterior pituitaries revealed the presence of about 40 rGH-immunoreactive proteins which included pre-GH. These data suggest that there are multiple forms of rGH-variants or rGH-related proteins. The biological significance(s) of all the rGH immunoreactive proteins and of the GRF- and SRIF-regulated pituitary proteins remains unclear. It is evident that a number of these proteins are synthesized and released rapidly by pituitary cells in culture. Furthermore, the presence of multiple genes for

  12. Growth Hormone Response after Administration of L-dopa, Clonidine, and Growth Hormone Releasing Hormone in Children with Down Syndrome.

    ERIC Educational Resources Information Center

    Pueschel, Seigfried M.

    1993-01-01

    This study of eight growth-retarded children with Down's syndrome (aged 1 to 6.5 years) found that administration of growth hormone was more effective than either L-dopa or clonidine. Results suggest that children with Down's syndrome have both anatomical and biochemical hypothalamic derangements resulting in decreased growth hormone secretion and…

  13. Obtaining growth hormone from calf blood

    NASA Technical Reports Server (NTRS)

    Kalchev, L. A.; Ralchev, K. K.; Nikolov, I. T.

    1979-01-01

    The preparation of a growth hormone from human serum was used for the isolation of the hormone from calf serum. The preparation was biologically active - it increased the quantity of the free fatty acids released in rat plasma by 36.4 percent. Electrophoresis in Veronal buffer, ph 8.6, showed the presence of a single fraction having mobility intermediate between that of alpha and beta globulins. Gel filtration through Sephadex G 100 showed an elutriation curve identical to that obtained by the growth hormone prepared from pituitary glands.

  14. Interactions of growth hormone secretagogues and growth hormone-releasing hormone/somatostatin.

    PubMed

    Tannenbaum, G S; Bowers, C Y

    2001-02-01

    The class of novel synthetic compounds termed growth hormone secretagogues (GHSs) act in the hypothalamus through, as yet, unknown pathways. We performed physiologic and histochemical studies to further understand how the GHS system interacts with the well-established somatostatin (SRIF)/growth hormone-releasing hormone (GHRH) neuroendocrine system for regulating pulsatile GH secretion. Comparison of the GH-releasing activities of the hexapeptide growth hormone-releasing peptide-6 (GHRP-6) and GHRH administered intravenously to conscious adult male rats showed that the pattern of GH responsiveness to GHRP-6 was markedly time-dependent, similar to that observed with GHRH. Immunoneutralization of endogenous SRIF reversed the blunted GH response to GHRP-6 at trough times, suggesting that GHRP-6 neither disrupts nor inhibits the cyclical release of endogenous hypothalamic SRIF. By striking contrast, passive immunization with anti-GHRH serum virtually obliterated the GH responses to GHRP-6, irrespective of the time of administration. These findings suggest that the GHSs do not act by altering SRIF release but, rather, stimulate GH release via GHRH-dependent pathways. Our dual chromogenic and autoradiographic in situ hybridization experiments revealed that a subpopulation of GHRH mRNA-containing neurons in the arcuate (Arc) nucleus and ventromedial nucleus (VMN) of the hypothalamus expressed the GHS receptor (GHS-R) gene. These results provide strong anatomic evidence that GHSs may directly stimulate GHRH release into hypophyseal portal blood, and thereby influence GH secretion, through interaction with the GHS-R on GHRH- containing neurons. Altogether, these findings support the notion that an additional neuroendocrine pathway may exist to regulate pulsatile GH secretion, possibly through the influence of the newly discovered GHS natural peptide, ghrelin. PMID:11322498

  15. The effect of hypophysectomy on pancreatic islet hormone and insulin-like growth factor I content and mRNA expression in rat.

    PubMed

    Jevdjovic, Tanja; Maake, Caroline; Zwimpfer, Cornelia; Krey, Gunthild; Eppler, Elisabeth; Zapf, Jürgen; Reinecke, Manfred

    2005-02-01

    The growth arrest after hypophysectomy in rats is mainly due to growth hormone (GH) deficiency because replacement of GH or insulin-like growth factor (IGF) I, the mediator of GH action, leads to resumption of growth despite the lack of other pituitary hormones. Hypophysectomized (hypox) rats have, therefore, often been used to study metabolic consequences of GH deficiency and its effects on tissues concerned with growth. The present study was undertaken to assess the effects of hypophysectomy on the serum and pancreatic levels of the three major islet hormones insulin, glucagon, and somatostatin, as well as on IGF-I. Immunohistochemistry (IHC), in situ hybridization (ISH), radioimmunoassays (RIA), and Northern blot analysis were used to localize and quantify the hormones in the pancreas at the peptide and mRNA levels. IHC showed slightly decreased insulin levels in the beta cells of hypox compared with normal, age-matched rats whereas glucagon in alpha cells and somatostatin in delta cells showed increase. IGF-I, which localized to alpha cells, showed decrease. ISH detected a slightly higher expression of insulin mRNA and markedly stronger signals for glucagon and somatostatin mRNA in the islets of hypox rats. Serum glucose concentrations did not differ between the two groups although serum insulin and C-peptide were lower and serum glucagon was higher in the hypox animals. These changes were accompanied by a more than tenfold drop in serum IGF-I. The pancreatic insulin content per gram of tissue was not significantly different in hypox and normal rats. Pancreatic glucagon and somatostatin per gram of tissue were higher in the hypox animals. The pancreatic IGF-I content of hypox rats was significantly reduced. Northern blot analysis gave a 2.6-, 4.5-, and 2.2-fold increase in pancreatic insulin, glucagon, and somatostatin mRNA levels, respectively, in hypox rats, and a 2.3-fold decrease in IGF-I mRNA levels. Our results show that the fall of serum IGF-I after

  16. The inflammatory milieu and the insulin like growth factor axis in children with inflammatory bowel disease following recombinant human growth hormone treatment.

    PubMed

    Wong, S C; Dalzell, A M; Mcgrogan, P; Didi, M; Laing, P; Ahmed, S F

    2015-01-01

    It is unclear whether recombinant human growth hormone (rhGH) in inflammatory bowel disease (IBD) alters cytokine profile. The objective of this study is to evaluate changes in cytokines and systemic markers of the insulin growth factor axis following 6 months of rhGH treatment in children with IBD. In a six-month randomised control trial in children with IBD treated with rhGH at 0.067 mg/kg/day and controls (11 in each group), we measured pro-, anti-inflammatory cytokines and systemic markers of the IGF axis (total IGF-1, free IGF-1, total IGFBP-3, ALS, IGFBP-2) at baseline (T+0), and six months (T+6). Results expressed as median (range). In the rhGH group, TNFα was 3.1pg/ml (2.9, 100.6) and 3.6pg/ml (3.1, 5.3) at T+0 and T+6, respectively (p=0.85), whereas in the controls this was 3.3pg/ ml (2.7, 4.0) and 3.1pg/m l (2.7, 4.7), respectively (p=0.79). In the rhGH group, IL1β was 18.0pg/ml (5.0,716.7) and 18.0pg/ml (1.7, 52.2) at T+0 and T+6 respectively(p=0.90), whereas in the controls this was 19.8pg/ml (4.1, 27.1) and 19.1pg/ml (2.4,77.3), respectively (p=0.65). None of the twenty-eight other cytokines analysed was different at T+6 in either group. Despite increase in total IGF1 in the rhGH group (p=0.03), free IGF1, IGFBP3, ALS and IGFBP2 did not change in either group at T+6. Percentage change in IGFBP3, was significantly associated with percentage change in IL2 (r=0.77, p=0.009) and IL4 (r=0.58, p=0.01). Percentage change in ALS was significantly associated with percentage change in IL2 (r=0.90, p less than 0.0001) and IL4 (r=0.63, p=0.04). Although changes in markers of the GH/IGF-1 axis do show an association with cytokines (IL-2, IL-4) in pediatric IBD, six months of rhGH treatment was not associated with any significant changes in levels of a range of pro and anti-inflammatory cytokine. Careful evaluation of disease process is required in future trials of rhGH in paediatric IBD. PMID:25864739

  17. Growth Hormone Deficiency in Children

    MedlinePlus

    ... many reasons for slow growth and below-average height in children. At times, slow growth is normal ... same age Signs of GHD • Slowed growth in height in infants, children, or adolescents (teenagers) • A young- ...

  18. Growth Hormone Research Society perspective on the development of long-acting growth hormone preparations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Growth Hormone (GH) Research Society (GRS) convened a workshop to address important issues regarding trial design, efficacy, and safety of long-acting growth hormone preparations (LAGH). A closed meeting of 55 international scientists with expertise in GH, including pediatric and adult endocrino...

  19. Associations of Ionizing Radiation and Breast Cancer-Related Serum Hormone and Growth Factor Levels in Cancer-Free Female A-Bomb Survivors

    PubMed Central

    Grant, Eric J.; Neriishi, Kazuo; Cologne, John; Eguchi, Hidetaka; Hayashi, Tomonori; Geyer, Susan; Izumi, Shizue; Nishi, Nobuo; Land, Charles; Stevens, Richard G.; Sharp, Gerald B.; Nakachi, Kei

    2013-01-01

    Levels of exposure to ionizing radiation are increasing for women worldwide due to the widespread use of CT and other radiologic diagnostic modalities. Exposure to ionizing radiation as well as increased levels of estradiol and other sex hormones are acknowledged breast cancer risk factors, but the effects of whole-body radiation on serum hormone levels in cancer-free women are unknown. This study examined whether ionizing radiation exposure is associated with levels of serum hormones and other markers that may mediate radiation-associated breast cancer risk. Serum samples were measured from cancer-free women who attended biennial health examinations with a wide range of past radiation exposure levels (N = 412, ages 26–79). The women were selected as controls for separate case-control studies from a cohort of A-bomb survivors. Outcome measures included serum levels of total estradiol, bioavailable estradiol, testosterone, progesterone, prolactin, insulin-like growth factor-1 (IGF1), insulin-like growth factor-binding protein 3 (IGFBP-3), and ferritin. Relationships were assessed using repeated-measures regression models fitted with generalized estimating equations. Geometric mean serum levels of total estradiol and bioavailable estradiol increased with 1 Gy of radiation dose among samples collected from postmenopausal women (17%1Gy, 95% CI: 1%–36% and 21%1Gy, 95% CI: 4%–40%, respectively), while they decreased in samples collected from premenopausal women (−11%1Gy, 95% CI: −20%–1% and −12%1Gy, 95% CI: −20%– −2%, respectively). Interactions by menopausal status were significant (P = 0.003 and P < 0.001, respectively). Testosterone levels increased with radiation dose in postmenopausal samples (30.0%1Gy, 95% CI: 13%–49%) while they marginally decreased in premenopausal samples (−10%1Gy, 95% CI: −19%–0%) and the interaction by menopausal status was significant (P < 0.001). Serum levels of IGF1 increased linearly with radiation dose (11%1Gy

  20. Associations of ionizing radiation and breast cancer-related serum hormone and growth factor levels in cancer-free female A-bomb survivors.

    PubMed

    Grant, Eric J; Neriishi, Kazuo; Cologne, John; Eguchi, Hidetaka; Hayashi, Tomonori; Geyer, Susan; Izumi, Shizue; Nishi, Nobuo; Land, Charles; Stevens, Richard G; Sharp, Gerald B; Nakachi, Kei

    2011-11-01

    Levels of exposure to ionizing radiation are increasing for women worldwide due to the widespread use of CT and other radiologic diagnostic modalities. Exposure to ionizing radiation as well as increased levels of estradiol and other sex hormones are acknowledged breast cancer risk factors, but the effects of whole-body radiation on serum hormone levels in cancer-free women are unknown. This study examined whether ionizing radiation exposure is associated with levels of serum hormones and other markers that may mediate radiation-associated breast cancer risk. Serum samples were measured from cancer-free women who attended biennial health examinations with a wide range of past radiation exposure levels (N  =  412, ages 26-79). The women were selected as controls for separate case-control studies from a cohort of A-bomb survivors. Outcome measures included serum levels of total estradiol, bioavailable estradiol, testosterone, progesterone, prolactin, insulin-like growth factor-1 (IGF1), insulin-like growth factor-binding protein 3 (IGFBP-3), and ferritin. Relationships were assessed using repeated-measures regression models fitted with generalized estimating equations. Geometric mean serum levels of total estradiol and bioavailable estradiol increased with 1 Gy of radiation dose among samples collected from postmenopausal women (17%(1Gy), 95% CI: 1%-36% and 21%(1Gy), 95% CI: 4%-40%, respectively), while they decreased in samples collected from premenopausal women (-11%(1Gy), 95% CI: -20%-1% and -12%(1Gy), 95% CI: -20%- -2%, respectively). Interactions by menopausal status were significant (P  =  0.003 and P < 0.001, respectively). Testosterone levels increased with radiation dose in postmenopausal samples (30.0%(1Gy), 95% CI: 13%-49%) while they marginally decreased in premenopausal samples (-10%(1Gy), 95% CI: -19%-0%) and the interaction by menopausal status was significant (P < 0.001). Serum levels of IGF1 increased linearly with radiation dose (11%(1Gy

  1. USE OF MOLECULAR BIOLOGICAL TECHNIQUES TO EVALUATE EFFECT OF ENDOGENOUS HORMONES AND A XENOBIOTIC PESTICIDE ON GROWTH OF SHEEPSHEAD MINNOW

    EPA Science Inventory

    We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...

  2. Growth hormone receptors in the atherinid Odontesthes bonariensis: characterization and expression profile after fasting-refeeding and growth hormone administration.

    PubMed

    Botta, P E; Simó, I; Sciara, A A; Arranz, S E

    2016-05-01

    In order to improve the understanding of pejerrey Odontesthes bonariensis, growth hormone (Gh)-insulin-like growth factor-1(Igf1) axis, O. bonariensis growth hormone receptor type 1 (ghr1) and type 2 (ghr2) mRNA sequences were obtained. Both transcripts were ubiquitously expressed except in kidney, encephalon and anterior intestine. Alternative transcripts of both receptors were found in muscle. Interestingly, two different ghr2 transcripts with alternative polyadenylation (APA) sites located in the long 3' untranslated region (UTR-APA) were also found in liver. Hepatic ghr1, ghr2 and insulin-like growth factor type 1 (igf1) transcript levels were examined under two different metabolic conditions. In the first experimental condition, fish were fasted for 2 weeks and then re-fed for another 2 weeks. Despite igf1 mRNA relative expression did not show significant differences under the experimental period of time examined, both ghr transcripts decreased their expression levels after the fasting period and returned to their control levels after re-feeding. In the second treatment, recombinant O. bonariensis growth hormone (r-pjGh) was orally administered once a week. After 4 weeks of treatment, liver igf1, ghr1 and ghr2 mRNA relative expression increased (13, 4·5 and 2·1 fold, P < 0·05) compared to control values. These results add novel information to the growth hormone-insulin-like growth factor system in teleosts. PMID:27097742

  3. Relationship between receptors for epidermal growth factor and steroid hormones in normal, dysplastic and neoplastic canine mammary tissues.

    PubMed

    Donnay, I; Devleeschouwer, N; Wouters-Ballman, P; Leclercq, G; Verstegen, J

    1996-05-01

    The concentrations of receptors for epidermal growth factor (EGF-R), oestrogen (ER) and progesterone (PR) were measured in 108 samples from canine mammary tumours and 132 samples of normal mammary tissue removed surgically from 84 bitches. The history and clinical signs were also recorded. Binding sites of high affinity were detected in 70 per cent of both types of tissue and no significant variations in EGF-R concentrations or positivity were observed with the histology, location, size or number of mammary tumours or the age of the animal. A significant direct correlation (P = 0.002) was observed between the concentrations of ER and EGF-R only in malignant tumours. The concentrations of EGF-R were significantly correlated (P = 0.04) in normal mammary tissues adjacent to and distant from the lesions, but not between normal tissue and tumour tissue. No significant differences were observed in the expression of EGF-R in normal and neoplastic tissues from the same bitches. The direct correlation between the concentrations of EGF-R and ER in malignant tumours could be related to an oestrogen-dependent expression of EGF-R or to a similar pattern of regulation of the receptors. PMID:8735517

  4. Parathyroid hormone blocks the stimulatory effect of insulin-like growth factor-I on collagen synthesis in cultured 21-day fetal rat calvariae

    SciTech Connect

    Kream, B.E.; Petersen, D.N.; Raisz, L.G. )

    1990-01-01

    We examined the interaction of parathyroid hormone (PTH) and recombinant human insulin-like growth factor I (IGF-I) on collagen synthesis in 21-day fetal rat calvariae as assessed by measuring the incorporation of ({sup 3}H)proline into collagenase-digestible protein. After 96 hours of culture, 10 nM PTH antagonized the stimulation of collagen synthesis and partially blocked the increase in dry weight produced by 10 nM IGF-I. The effect of PTH to block IGF-I stimulated collagen synthesis was observed in the central bone of calvariae and was mimicked by forskolin and phorbol 12-myristate 13-acetate, but not by 1,25-dihydroxyvitamin D3, transforming growth factor-alpha or dexamethasone. Our data are consistent with the concept that the direct effect of PTH is to inhibit basal CDP labeling and fully oppose IGF-I stimulated CDP labeling. The finding that this effect of PTH is mimicked by forskolin and PMA suggests that this block in IGF-I stimulation of CDP labeling involves both cAMP and protein kinase C mediated pathways.

  5. Pegylated peptides. V. Carboxy-terminal PEGylated analogs of growth hormone-releasing factor (GRF) display enhanced duration of biological activity in vivo.

    PubMed

    Campbell, R M; Heimer, E P; Ahmad, M; Eisenbeis, H G; Lambros, T J; Lee, Y; Miller, R W; Stricker, P R; Felix, A M

    1997-06-01

    In the present study, human growth hormone-releasing factor (hGRF) and analogs were successfully pegylated at the carboxy-terminus using a novel solid- and solution-phase strategy. Following synthesis, these pegylated hGRF analogs were evaluated for in vitro and in vivo biological activity. Specifically, hGRF (1-29)-NH2, [Ala15]-hGRF (1-29)-NH2, [desNH2Tyr1, D-Ala2, Ala15]-hGRF(1-29)-NH2 and [His1, Val2, Gln8, Ala15, Leu27]-hGRF(1-32)-OH were each C-terminally extended using a Gly-Gly-Cys-NH2 spacer (previously demonstrated not to alter intrinsic biological activity), and then monopegylated via coupling to an activated dithiopyridyl-PEG reagent. PEG moieties of 750, 2000, 5000 or 10,000 molecular weight (MW) were examined to determine the effect of polymer weight on activity. Initial biological evaluations in vitro revealed that all C-terminally pegylated hGRF analogs retained high growth hormone (GH)-releasing potencies, regardless of the MW of PEG polymer employed. Two of these pegylated hGRF analogs, [desNH2Tyr1, D-Ala2, Ala15]-hGRF (1-29)-Gly-Gly-Cys(NH2)-S-Nle-PEG5000 and [His1, Val2, Gln8, Ala15, Leu27]-hGRF(1-32)-Gly-Cys(NH2)-S-Nle-PEG5000, were subsequently evaluated in both pig and mouse models and found to be highly potent (in vivo potency range = 12-55-fold that of native hGRF). Relative to their non-pegylated counterparts, these two pegylated hGRF analogs exhibited enhanced duration of activity. PMID:9266480

  6. Peripheral activities of growth hormone-releasing hormone.

    PubMed

    Granata, R

    2016-07-01

    Growth hormone (GH)-releasing hormone (GHRH) is produced by the hypothalamus and stimulates GH synthesis and release in the anterior pituitary gland. In addition to its endocrine role, GHRH exerts a wide range of extrapituitary effects which include stimulation of cell proliferation, survival and differentiation, and inhibition of apoptosis. Accordingly, expression of GHRH, as well as the receptor GHRH-R and its splice variants, has been demonstrated in different peripheral tissues and cell types. Among the direct peripheral activities, GHRH regulates pancreatic islet and β-cell survival and function and endometrial cell proliferation, promotes cardioprotection and wound healing, influences the immune and reproductive systems, reduces inflammation, indirectly increases lifespan and adiposity and acts on skeletal muscle cells to inhibit cell death and atrophy. Therefore, it is becoming increasingly clear that GHRH exerts important extrapituitary functions, suggesting potential therapeutic use of the peptide and its analogs in a wide range of medical settings. PMID:26891937

  7. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs

    NASA Technical Reports Server (NTRS)

    Draghia-Akli, R.; Fiorotto, M. L.; Hill, L. A.; Malone, P. B.; Deaver, D. R.; Schwartz, R. J.

    1999-01-01

    Ectopic expression of a new serum protease-resistant porcine growth hormone-releasing hormone, directed by an injectable muscle-specific synthetic promoter plasmid vector (pSP-HV-GHRH), elicits growth in pigs. A single 10 mg intramuscular injection of pSP-HV-GHRH DNA followed by electroporation in three-week-old piglets elevated serum GHRH levels by twofold to fourfold, enhanced growth hormone secretion, and increased serum insulin-like growth factor-I by threefold to sixfold over control pigs. After 65 days the average body weight of the pigs injected with pSP-HV-GHRH was approximately 37% greater than the placebo-injected controls and resulted in a significant reduction in serum urea concentration, indicating a decrease in amino acid catabolism. Evaluation of body composition indicated a uniform increase in mass, with no organomegaly or associated pathology.

  8. [Growth hormone deficiency in the adult: only an endocrinologic problem?].

    PubMed

    Martini, Chiara; Maffei, Pietro; De Carlo, Eugenio; Mioni, Roberto; Sicolo, Nicola; Scandellari, Cesare

    2002-01-01

    In the literature published during the last decade an increased risk of death due to cerebrovascular and cardiovascular events in growth hormone deficient adults has been reported. A partial reversibility of the syndrome following recombinant growth hormone treatment has also been described. Both these factors have contributed to the proposal of growth hormone therapy not only for children but also for adults. Following the initial enthusiasm, the scientific community is now evaluating various clinical experiences held over recent years and weighing up the results. Present day medicine has to take the economic impact of prescribed therapeutic regimens into consideration; in other words the ratio between cost and benefits must be calculated. The relatively recent issuance of the license for the treatment of growth hormone deficiency in adults using recombinant growth hormone does not allow us to evaluate a possible reduction in the risk of death due to cerebrovascular and cardiovascular events in treated subjects. A much longer observational period will be required. Besides the partial reversibility of the syndrome as a consequence of treatment, it is necessary to single out the selection criteria for the choice of treatment. These could also be useful as indicators of the efficacy of the same treatment. PMID:12402662

  9. Growth hormone: health considerations beyond height gain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The therapeutic benefit of growth hormone (GH) therapy in improving height in short children is widely recognized; however, GH therapy is associated with other metabolic actions that may be of benefit in these children. Beneficial effects of GH on body composition have been documented in several dif...

  10. Growth Hormone Deficiency, Brain Development, and Intelligence

    ERIC Educational Resources Information Center

    Meyer-Bahlburg, Heino F. L.; And Others

    1978-01-01

    Available from: American Medical Association, 535 N. Dearborn Street, Chicago, Illinois 60610. In order to determine what effect, if any, growth hormone (GH) has on human brain development, 29 patients (mean age 11.7 years) with GH deficiency were selected according to the following criteria: no evidence of reversible GH deficiency, onset of…

  11. Human Growth Hormone: The Latest Ergogenic Aid?

    ERIC Educational Resources Information Center

    Cowart, Virginia S.

    1988-01-01

    Believing that synthetic human growth hormone (hGH) will lead to athletic prowess and fortune, some parents and young athletes wish to use the drug to enhance sports performance. Should hGH become widely available, its abuse could present many problems, from potential health risks to the ethics of drug-enhanced athletic performance. (JL)

  12. Interactions Between Genome-wide Significant Genetic Variants and Circulating Concentrations of Insulin-like Growth Factor 1, Sex Hormones, and Binding Proteins in Relation to Prostate Cancer Risk in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium

    PubMed Central

    Tsilidis, Konstantinos K.; Travis, Ruth C.; Appleby, Paul N.; Allen, Naomi E.; Lindstrom, Sara; Schumacher, Fredrick R.; Cox, David; Hsing, Ann W.; Ma, Jing; Severi, Gianluca; Albanes, Demetrius; Virtamo, Jarmo; Boeing, Heiner; Bueno-de-Mesquita, H. Bas; Johansson, Mattias; Quirós, J. Ramón; Riboli, Elio; Siddiq, Afshan; Tjønneland, Anne; Trichopoulos, Dimitrios; Tumino, Rosario; Gaziano, J. Michael; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Stampfer, Meir J.; Giles, Graham G.; Andriole, Gerald L.; Berndt, Sonja I.; Chanock, Stephen J.; Hayes, Richard B.; Key, Timothy J.

    2012-01-01

    Genome-wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. There is limited information on the mechanistic basis of these associations, particularly about whether they interact with circulating concentrations of growth factors and sex hormones, which may be important in prostate cancer etiology. Using conditional logistic regression, the authors compared per-allele odds ratios for prostate cancer for 39 GWAS-identified SNPs across thirds (tertile groups) of circulating concentrations of insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3), testosterone, androstenedione, androstanediol glucuronide, estradiol, and sex hormone-binding globulin (SHBG) for 3,043 cases and 3,478 controls in the Breast and Prostate Cancer Cohort Consortium. After allowing for multiple testing, none of the SNPs examined were significantly associated with growth factor or hormone concentrations, and the SNP-prostate cancer associations did not differ by these concentrations, although 4 interactions were marginally significant (MSMB-rs10993994 with androstenedione (uncorrected P = 0.008); CTBP2-rs4962416 with IGFBP-3 (uncorrected P = 0.003); 11q13.2-rs12418451 with IGF-1 (uncorrected P = 0.006); and 11q13.2-rs10896449 with SHBG (uncorrected P = 0.005)). The authors found no strong evidence that associations between GWAS-identified SNPs and prostate cancer are modified by circulating concentrations of IGF-1, sex hormones, or their major binding proteins. PMID:22459122

  13. Climacteric in untreated isolated growth hormone deficiency

    PubMed Central

    Menezes, Menilson; Salvatori, Roberto; Oliveira, Carla R.P.; Pereira, Rossana M.C.; Souza, Anita H.O.; Nobrega, Luciana M.A.; Cruz, Edla do A.C.; Menezes, Marcos; Alves, Érica O.; Aguiar-Oliveira, Manuel H.

    2008-01-01

    Objective To study the time, intensity of symptoms, hormonal profile, and related morbidity of climacteric in women with untreated isolated growth hormone (GH) deficiency (IGHD). Design Women belonging to a large Brazilian kindred with IGHD due to a homozygous mutation in the GH-releasing hormone receptor gene were studied. None of them had ever received GH replacement therapy. A two-step protocol was performed. In the first case-control experiment, aimed to determine the age at climacteric, we compared eight women with IGHD and 32 normal women between 37 and 55 years of age. In the second cross-sectional experiment, aimed to determine the severity of climacteric symptoms, seven women with IGHD (aged 47-65 y) were compared with 13 controls (aged 44-65 y). The Kupperman Index scores, serum follicle-stimulating hormone, luteinizing hormone, prolactin, and estradiol levels were determined, and pelvic and mammary ultrasonography, mammography, and colpocytology were performed. Results The number of women with follicle-stimulating hormone above 20 mIU/mL was higher in women with IGHD than controls. Kupperman’s Index was not different between the two groups. Menarche had been delayed and parity was lower in women with IGHD. Hormonal profile was similar, but prolactin was lower in women with IGHD. Uterine volume was smaller in women with IGHD, and endometrial thickness and ovarian volume were similar in the two groups. No difference in breast images or in colpocytology was observed between the two groups. Conclusions Menarche was delayed and the beginning of climacteric is anticipated in untreated lifetime IGHD, but menopausal symptoms and hormonal profile resemble the normal climacteric. PMID:18223507

  14. Cardiovascular Risk in Growth Hormone Deficiency: Beneficial Effects of Growth Hormone Replacement Therapy.

    PubMed

    Lanes, Roberto

    2016-06-01

    Growth hormone deficiency (GHD) in adulthood is associated with an increased risk of developing adverse cardiovascular events and with reduced life expectancy. Cardiovascular and metabolic abnormalities have so far been evaluated only in a small number of children with GHD and adolescents. In this article we review these abnormalities and their underlying mechanisms and discuss the beneficial effect of growth hormone treatment in subjects with GHD. PMID:27241971

  15. Preventing Growth Hormone Abuse: An Emerging Health Concern.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1989-01-01

    Facts about growth hormone abuse should be incorporated into substance abuse components of health education curriculums. Sources, uses, and dangers associated with human growth hormones are discussed. A sample lesson plan is included. (IAH)

  16. Information for People Treated with Human Growth Hormone (Summary)

    MedlinePlus

    ... Program (NHPP): Information for People Treated with Pituitary Human Growth Hormone (Summary) Page Content On this page: ... disease (CJD) occur in people treated with pituitary human growth hormone (hGH)? How many people treated with ...

  17. Enzyme immunoassay for rat growth hormone: applications to the study of growth hormone variants

    SciTech Connect

    Farrington, M.A.; Hymer, W.C.

    1987-06-29

    A sensitive and specific competitive enzyme immunoassay (EIA) for rat growth hormone was developed. In this assay soluble growth hormone and growth hormone adsorbed to a solid-phase support compete for monkey anti-growth hormone antibody binding sites. The immobilized antibody-growth hormone complex is detected and quantified using goat anti-monkey immunoglobin G covalently conjugated to horse radish peroxidase. Therefore, a high concentration of soluble growth hormone in the sample will result in low absorbance detection from the colored products of the enzyme reaction. Assay parameters were optimized by investigating the concentration of reagents and the reaction kinetics in each of the assay steps. The assay can be performed in 27 hours. A sensitivity range of 0.19 ng to 25 ng in the region of 10 to 90% binding was obtained. Near 50% binding (3 ng) the intraassay coefficient of variation (CV) was 5.54% and the interassay CV was 5.33%. The correlation coefficient (r/sup 2/) between radioimmunoassay and EIA was 0.956 and followed the curve Y = 0.78X + 1.0. 9 references, 6 figures.

  18. In vitro development of bovine secondary follicles in two- and three-dimensional culture systems using vascular endothelial growth factor, insulin-like growth factor-1, and growth hormone.

    PubMed

    Araújo, V R; Gastal, M O; Wischral, A; Figueiredo, J R; Gastal, E L

    2014-12-01

    The aim of this study was to evaluate the development and estradiol production of isolated bovine secondary follicles in two-dimensional (2D, experiment 1) and three-dimensional (3D using alginate, experiment 2) long-term culture systems in the absence (control group; only α-MEM(+)) or presence of vascular endothelial growth factor (VEGF), insulin-like growth factor-1, or GH alone, or a combination of all. A total of 363 isolated secondary follicles were cultured individually for 32 days at 38.5 °C in 5% CO2 in a humidified incubator with addition of medium (5 μL) every other day. In 2D culture system, follicular growth and antrum formation rates were higher (P < 0.05) in VEGF treatment compared with the other treatments. In 3D culture system, only estradiol concentration was greater (P < 0.05) in the GH than in the control group, whereas the other end points were similar (P > 0.05). In summary, this study demonstrated that the benefits of using a certain type of medium supplement depended on the culture system (2D vs. 3D). Vascular endothelial growth factor was an effective supplement for the in vitro culture of bovine secondary follicles when the 2D culture system was used, whereas GH only affected estradiol production using the 3D culture system. This study sheds light on advancements in methodology to facilitate subsequent studies on bovine preantral follicle development. PMID:25219848

  19. Gravitational effects on plant growth hormone concentration

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.

    1983-01-01

    Dolk's (1936) finding that more growth hormone diffuses from the lower side of a gravity-stimulated plant shoot than from the upper side is presently confirmed by means of both an isotope dilution assay and selected ion monitoring-gas chromatography-mass spectrometry, and it is established that the asymmetrically distributed hormone is indole-3-acetic acid (IAA). This is the first physicochemical demonstration that there is more IAA on the lower sides of a geostimulated plant shoot. It is also found that free IAA primarily occurs in the conductive vascular tissues of the shoot, while IAA esters predominate in the growing cortical cells. A highly sensitive gas chromatographic isotope dilution assay shows that the hormone asymmetry also occurs in the nonvascular tissue.

  20. Effects of peroral insulin and glucose on circulating insulin-like growth factor-I, its binding proteins and thyroid hormones in neonatal calves

    PubMed Central

    Kirovski, Danijela; Lazareviæ, M.; Baričević-Jones, Ivona; Nediæ, Olgica; Masnikosa, Romana; Nikolić, Judith Anna

    2008-01-01

    There is disagreement in the literature about the ability of neonatal calves to absorb perorally administered insulin. This study evaluated the absorption of a bolus of insulin administered alone or with an energy souce and its effects on the circulating insulin-like growth factor system and thyroid hormones in newborn Holstein-Friesian calves. Within 1 h of dosing, mean serum insulin and triiodothyronine (T3) concentrations had increased considerably, whether the insulin was applied alone (n = 4) or together with glucose (n = 4), accompanied by marked hypoglycemia. No significant changes were observed in control calves (n = 4) given the vehicle solution. Increased serum glucose and T3 concentrations with no change in insulinemia occurred in a 4th group of calves given glucose alone. At 32 h of age and after 3 meals of colostrum there were no differences in glycemia, insulinemia, or proteinemia among the 4 groups of calves examined. Mean serum insulin-like growth factor-I (IGF-I) tended to decrease over this period in the control group. The decrease was more pronounced in the insulin-treated group but absent in both groups that received glucose. These differences were associated with equivalent differences in abundance of the 40–45K IGF-binding protein-3 (IGFBP-3); however, lower molecular mass IGFBPs were not affected. The results show that a pharmacological peroral dose of insulin can lead to rapid systemic alterations in the IGF/IGFBP system in neonatal calves that can be modified by simultaneous administration of a small energy supply in the form of glucose. PMID:18505189

  1. Signal transduction by the growth hormone receptor

    SciTech Connect

    Waters, M.J.; Rowlinson, S.W.; Clarkson, R.W.

    1994-12-31

    It has been proposed that dimerization of identical receptor subunits by growth hormone (GH) is the mechanism of signal transduction across the cell membrane. We present here data with analogs of porcine GH (pGH), with GH receptors (GHR) mutated in the dimerization domain and with monoclonal antibodies to the GHR which indicate that dimerization is necessary but not sufficient for transduction. We also report nuclear uptake of GH both in vivo and in vitro, along with nuclear localization of the receptor and GH-binding protein (GHBP). This suggests that GH acts directly at the nucleus, and one possible target for this action is a rapid increase in transcription of C/EBP delta seen in 3T3-F442A cells in response to GH. This tyrosine kinase-dependent event may be an archetype for induction of other immediate early gene transcription factors which then interact to determine the programming of the subsequent transcriptional response to GH. 29 refs., 1 fig., 1 tab.

  2. Leukocytes, cytokines, growth factors and hormones in human skeletal muscle and blood after uphill or downhill running.

    PubMed

    Malm, Christer; Sjödin, The Late Bertil; Sjöberg, Berit; Lenkei, Rodica; Renström, Per; Lundberg, Ingrid E; Ekblom, Björn

    2004-05-01

    Muscular adaptation to physical exercise has previously been described as a repair process following tissue damage. Recently, evidence has been published to question this hypothesis. The purpose of this study was to investigate inflammatory processes in human skeletal muscle and epimysium after acute physical exercise with large eccentric components. Three groups of subjects (n= 19) performed 45 min treadmill running at either 4 deg (n= 5) or 8 deg (n= 9) downhill or 4 deg uphill (n= 5) and one group served as control (n= 9). One biopsy was taken from each subject 48 h post exercise. Blood samples were taken up to 7 days post exercise. Compared to the control group, none of the markers of inflammation in muscle and epimysium samples was different in any exercised group. Only subjects in the Downhill groups experienced delayed onset of muscle soreness (DOMS) and increased serum creatine kinase activity (CK). The detected levels of immunohistochemical markers for T cells (CD3), granulocytes (CD11b), leukaemia inhibitory factor (LIF) and hypoxia-inducible factor 1beta (HIF-1beta) were greater in epimysium from exercised subjects with DOMS ratings >3 (0-10 scale) compared to exercised subjects without DOMS but not higher than controls. Eccentric physical exercise (downhill running) did not result in skeletal muscle inflammation 48 h post exercise, despite DOMS and increased CK. It is suggested that exercise can induce DOMS by activating inflammatory factors present in the epimysium before exercise. Repeated physical training may alter the content of inflammatory factors in the epimysium and thus reduce DOMS. PMID:14766942

  3. Delaying Chemotherapy in the Treatment of Hormone Receptor–Positive, Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer

    PubMed Central

    Brufsky, Adam M.

    2015-01-01

    Global guidelines for the management of locally advanced or metastatic hormone receptor–positive (HR-positive), human epidermal growth factor 2–negative (HER2-negative) breast cancer recommend endocrine therapy as first-line treatment for all patients, regardless of age or postmenopausal status. However, current practice patterns in the United States and Europe suggest that these modes of therapy are not being used as recommended, and many patients with advanced HR-positive, HER2-negative disease are being treated first-line with chemotherapy or switched to chemotherapy after a single endocrine therapy. Given that chemotherapy is associated with increased toxicity and reduced quality of life (QOL) compared with endocrine therapy, prolonging the duration of response obtained with endocrine therapy may help delay chemotherapy and its attendant toxicities. Several strategies to delay or overcome endocrine resistance and thereby postpone chemotherapy have been explored, including the use of second-line endocrine agents with different mechanisms of action, adding targeted agents that inhibit specific resistance pathways, and adding agents that act in complementary or synergistic ways to inhibit tumor cell proliferation. This review analyzes the different therapy options available to HR-positive, HER2-negative patients with advanced breast cancer that can be used to delay chemotherapy and enhance QOL. PMID:26793013

  4. Epidermal Growth Factor and Parathyroid Hormone-related Peptide mRNA in the Mammary Gland and their Concentrations in Milk

    PubMed Central

    Bruder, E. D.; Van Hoof, J.; Young, J. B.; Raff, H.

    2008-01-01

    The physiological adaptations of the neonatal rat to hypoxia from birth include changes in gastrointestinal function and intermediary metabolism. We hypothesized that the hypoxic lactating dam would exhibit alterations in mammary gland function leading to changes in the concentration of milk peptides that are important in neonatal gastrointestinal development. The present study assessed the effects of chronic hypoxia on peptides produced by the mammary glands and present in milk. Chronic hypoxia decreased the concentration of epidermal growth factor (EGF) in expressed milk and pup stomach contents and decreased maternal mammary gland Egf mRNA. The concentration of parathyroid hormone-related protein (PTHrp) was unchanged in milk and decreased in pup stomach contents; however, mammary Pthlh mRNA was increased by hypoxia. There was a significant increase in adiponectin concentrations in milk from hypoxic dams. Chronic hypoxia decreased maternal body weight, and pair feeding normoxic dams an amount of food equivalent to hypoxic dam food intake decreased body weight to an equivalent degree. Decreased food intake did not affect the expression of Egf, Pthlh, or Lep mRNA in mammary tissue. The results indicated that chronic hypoxia modulated mammary function independently of hypoxia-induced decreases in maternal food intake. Decreased EGF and increased adiponectin concentrations in milk from hypoxic dams likely affect the development of neonatal intestinal function. PMID:18401831

  5. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding.

    PubMed

    Tong, Xin; Muchnik, Marina; Chen, Zheng; Patel, Manish; Wu, Nan; Joshi, Shree; Rui, Liangyou; Lazar, Mitchell A; Yin, Lei

    2010-11-19

    Fibroblast growth factor 21 (FGF21) is a potent antidiabetic and triglyceride-lowering hormone whose hepatic expression is highly responsive to food intake. FGF21 induction in the adaptive response to fasting has been well studied, but the molecular mechanism responsible for feeding-induced repression remains unknown. In this study, we demonstrate a novel link between FGF21 and a key circadian output protein, E4BP4. Expression of Fgf21 displays a circadian rhythm, which peaks during the fasting phase and is anti-phase to E4bp4, which is elevated during feeding periods. E4BP4 strongly suppresses Fgf21 transcription by binding to a D-box element in the distal promoter region. Depletion of E4BP4 in synchronized Hepa1c1c-7 liver cells augments the amplitude of Fgf21 expression, and overexpression of E4BP4 represses FGF21 secretion from primary mouse hepatocytes. Mimicking feeding effects, insulin significantly increases E4BP4 expression and binding to the Fgf21 promoter through AKT activation. Thus, E4BP4 is a novel insulin-responsive repressor of FGF21 expression during circadian cycles and feeding. PMID:20851878

  6. Cyclin A1 Modulates the Expression of Vascular Endothelial Growth Factor and Promotes Hormone-Dependent Growth and Angiogenesis of Breast Cancer

    PubMed Central

    Kopparapu, Pradeep Kumar; Anagnostaki, Lola; Härkönen, Pirkko; Persson, Jenny Liao

    2013-01-01

    Alterations in cellular pathways related to both endocrine and vascular endothelial growth factors (VEGF) may contribute to breast cancer progression. Inhibition of the elevated levels of these pathways is associated with clinical benefits. However, molecular mechanisms by which endocrine-related pathways and VEGF signalling cooperatively promote breast cancer progression remain poorly understood. In the present study, we show that the A-type cyclin, cyclin A1, known for its important role in the initiation of leukemia and prostate cancer metastasis, is highly expressed in primary breast cancer specimens and metastatic lesions, in contrasting to its barely detectable expression in normal human breast tissues. There is a statistically significant correlation between cyclin A1 and VEGF expression in breast cancer specimens from two patient cohorts (p<0.01). Induction of cyclin A1 overexpression in breast cancer cell line MCF-7 results in an enhanced invasiveness and a concomitant increase in VEGF expression. In addition, there is a formation of protein–protein complexes between cyclin A1 and estrogen receptor ER-α cyclin A1 overexpression increases ER-α expression in MCF-7 and T47D cells. In mouse tumor xenograft models in which mice were implanted with MCF-7 cells that overexpressed cyclin A1 or control vector, cyclin A1 overexpression results in an increase in tumor growth and angiogenesis, which is coincident with an enhanced expression of VEGF, VEGFR1 and ER-α Our findings unravel a novel role for cyclin A1 in growth and progression of breast cancer, and suggest that multiple cellular pathways, including cell cycle regulators, angiogenesis and estrogen receptor signalling, may cooperatively contribute to breast cancer progression. PMID:23991063

  7. Clinicopathological and prognostic impact of human epidermal growth factor receptor type 2 (HER2) and hormone receptor expression in uterine papillary serous carcinoma.

    PubMed

    Togami, Shinichi; Sasajima, Yuko; Oi, Takateru; Ishikawa, Mitsuya; Onda, Takashi; Ikeda, Shun-Ichi; Kato, Tomoyasu; Tsuda, Hitoshi; Kasamatsu, Takahiro

    2012-05-01

    Uterine papillary serous carcinoma (UPSC) is a rare and aggressive variant of endometrial carcinoma. Little is known about the pathological and biological features of this tumor. Human epidermal growth factor receptor 2 (HER2) and hormone receptor (HR) expression have an important role in tumor behavior and clinical outcome, but their relevance in UPSC is not clear. In the present study, the immunohistochemical expression of HER2 and HR was assessed in 27 patients with Stage I disease, 13 with Stage II disease, 25 with Stage III disease, and 6 with Stage IV disease. Correlations between HER2 and HR expression and the clinicopathological parameters of UPSC were evaluated using Cox's univariate and multivariate analyses. For all patients, the 5-year recurrence-free survival (RFS) and overall survival (OS) rates were 51% and 66%, respectively; in patients with Stage I, II, III and IV disease, the RFS and OS were 67%/81%, 59%/77%, 43%/54% and 0%/0%, respectively. Of all 71 patients, 14% (10/71) were positive for HER2 and 52% (37/71) were positive for HR. Overexpression of HER2 was correlated with lower OS (P = 0.01), whereas HR overexpression was correlated with higher OS (P = 0.008). In multivariate models, HER2, HR, and histologic subtype were identified as independent prognostic indicators for RFS (P = 0.022, P = 0.018, and P = 0.01, respectively), but HR was the only independent factor associated with OS (P = 0.044). Thus, HER2 and HR are prognostic variables in UPSC, with HR an independent prognostic factor for OS. PMID:22329832

  8. Human growth hormone doping in sport

    PubMed Central

    Saugy, M; Robinson, N; Saudan, C; Baume, N; Avois, L; Mangin, P

    2006-01-01

    Background and objectives Recombinant human growth hormone (rhGH) has been on the list of forbidden substances since availability of its recombinant form improved in the early 1990s. Although its effectiveness in enhancing physical performance is still unproved, the compound is likely used for its potential anabolic effect on the muscle growth, and also in combination with other products (androgens, erythropoietin, etc.). The degree of similarity between the endogenous and the recombinant forms, the pulsatile secretion and marked interindividual variability makes detection of doping difficult. Two approaches proposed to overcome this problem are: the indirect method, which measures a combination of several factors in the biological cascade affected by administration of GH; and the direct method, which measures the difference between the circulating and the recombinant (represented by the unique 22 kD molecule) forms of GH. This article gives an overview of what is presently known about hGH in relation to sport. The available methods of detection are also evaluated. Methods Review of the literature on GH in relation to exercise, and its adverse effects and methods of detection when used for doping. Results and conclusion The main effects of exercise on hGH production and the use and effects of rhGH in athletes are discussed. Difficulties encountered by laboratories to prove misuse of this substance by both indirect and direct analyses are emphasised. The direct method currently seems to have the best reliability, even though the time window of detection is too short. hGH doping is a major challenge in the fight against doping. The effect of exercise on hGH and its short half‐life are still presenting difficulties during doping analysis. To date the most promising method appears to be the direct approach utilising immunoassays. PMID:16799101

  9. PEGylation of growth hormone-releasing hormone (GRF) analogues.

    PubMed

    Esposito, P; Barbero, L; Caccia, P; Caliceti, P; D'Antonio, M; Piquet, G; Veronese, F M

    2003-09-26

    Synthetically produced GRF1-29 (Sermorelin) has an amino acid composition identical to the N-terminal 29 amino acids sequence of the natural hypothalamic GHRH1-44 (Figure 1). It maintains bioactivity in vitro and is almost equally effective in eliciting secretion of endogenous growth hormone in vivo. The main drawbacks associated with the pharmaceutical use of hGRF1-29 relate to its short half-life in plasma, about 10-20 min in humans, which is caused mostly by renal ultrafiltration and enzymatic degradation at the N terminus. PEGylation has been considered as one valid approach to obtain more stable forms of the peptide, with a longer in vivo half-life and ultimately with increased pharmacodynamic response along the somatotropic axis (endogenous GH, IGF-1 levels). Different PEGylated GRF conjugates were obtained and their bioactivity was tested in vitro and in vivo by monitoring endogenous growth hormone (GH) serum levels after intravenous (i.v.) injection in rats, and intravenous and subcutaneous (s.c.) injection in pigs. It was found that GRF-PEG conjugates are able to bind and activate the human GRF receptor, although with different potency. The effect of PEG molecular weight, number of PEG chains bound and position of PEGylation site on GRF activity were investigated. Mono-PEGylated isomers with a PEG5000 polymer chain linked to Lys 12 or Lys 21 residues, showed high biological activity in vitro, which is similar to that of hGRF1-29, and a higher pharmacodynamic response as compared to unmodified GRF molecule. PMID:14499707

  10. Internet informs parents about growth hormone

    PubMed Central

    Cousounis, Pamela; Lipman, Terri H.; Ginsburg, Kenneth; Grimberg, Adda

    2013-01-01

    Background Parent knowledge influences decisions regarding medical care for their children. Methods Parents of pediatric primary care patients aged 9-14 years, irrespective of height, participated in open focus groups (OFG). Moderators asked, “How do people find out about growth hormone (GH)?” Because many parents cited the Internet, the top 10 results from the Google searches, growth hormone children and parents of children who take growth hormone, were examined as representative. Three investigators independently performed content analysis, then reached consensus. Results were tabulated via summary statistics. Results Eighteen websites were reviewed, most with the purpose of education (56%) and many funded by commercial sources (44%). GH treatment information varied, with 33% of sites containing content only about U.S Food and Drug Administration-approved indications. Fifty-six percent of sites included information about psychosocial benefits from treatment, 44% acknowledging them as controversial. Although important to OFG participants, risks and costs were each omitted from 39% of websites. Conclusion Parents often turn to the Internet for GH-related information for their children, though its content may be incomplete and/or biased. Clinicians may want to provide parents with tools for critically evaluating Internet-based information, a list of pre-reviewed websites, or their own educational materials. PMID:23942255

  11. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  12. Comparative pharmacokinetics and pharmacodynamics of a PEGylated recombinant human growth hormone and daily recombinant human growth hormone in growth hormone-deficient children

    PubMed Central

    Hou, Ling; Chen, Zhi-hang; Liu, Dong; Cheng, Yuan-guo; Luo, Xiao-ping

    2016-01-01

    Objective Recombinant human growth hormone (rhGH) replacement therapy in children generally requires daily subcutaneous (sc) injections, which may be inconvenient for patients. Jintrolong® is a PEGylated rhGH with the purpose of weekly sc injections. The aim of the current study was to examine the pharmacokinetics, pharmacodynamics, safety, and tolerability of multiple sc doses of Jintrolong® vs daily doses of rhGH. Design and methods Twelve children with growth hormone deficiency participated in this single-center, open-label, crossover Phase I trial. All subjects received daily sc injections of rhGH at 0.0286 mg/kg/d for 7 days, followed by a 4-week washout period and six weekly doses of Jintrolong® at 0.2 mg/kg/w. Results In comparison with rhGH, sc injection of Jintrolong® produced a noticeably higher Cmax, significantly longer half-life (t1/2), and slower plasma clearance, signifying a profile suitable for long-term treatment. The ratio of the area under the concentration vs time curve (AUC) after the seventh and first injections (AUC(0–∞)7th/AUC(0–∞)1st) of rhGH was 1.02, while the AUC(0–∞)6th/AUC(0–∞)1st of Jintrolong ® was 1.03, indicating no accumulation of circulating growth hormone. There was no significant difference in the change in insulin-like growth factor-1 expression produced by 7 days of sc rhGH and weekly Jintrolong® injections. There were no severe adverse events during the trial. Conclusion The elimination rate of Jintrolong® was slower than that of sc rhGH. No progressive serum accumulation of Jintrolong® was found. The changes in insulin-like growth factor-1 expression produced by rhGH and Jintrolong® were comparable, indicating similar pharmacodynamics. Our results demonstrate that Jintrolong® is suitable for long-term growth hormone treatment in children with growth hormone deficiency. PMID:26719670

  13. CREB coactivator CRTC2/TORC2 and its regulator calcineurin crucially mediate follicle-stimulating hormone and transforming growth factor β1 upregulation of steroidogenesis.

    PubMed

    Fang, Wei-Ling; Lee, Ming-Ting; Wu, Leang-Shin; Chen, Yun-Ju; Mason, Jian; Ke, Ferng-Chun; Hwang, Jiuan-Jiuan

    2012-06-01

    In vitro and in vivo studies implicate that follicle-stimulating hormone (FSH) and transforming growth factor β1 (TGFβ1) play crucial physiological roles in regulating ovarian granulosa cell function essential to fertility control in females. FSH induces cAMP and calcium signaling, thereby activating transcription factor CREB to upregulate steroidogenic gene expression, and TGFβ1 greatly enhances FSH-stimulated steroidogenesis. A CREB coactivator CRTC2/TORC2 was identified to function as a cAMP and calcium-sensitive coincidence sensor. This led us to explore the role of CRTC2 and its regulator calcineurin in FSH and TGFβ1-stimulated steroidogenesis. Primary culture of granulosa cells from gonadotropin-primed immature rats was used. Immunoblotting analysis shows that FSH rapidly and transiently induced dephosphorylation/activation of CRTC2, and FSH + TGFβ1 additionally induced late-phase CRTC2 dephosphorylation. Immunofluorescence analysis further confirms FSH ± TGFβ1 promoted CRTC2 nuclear translocation. Using selective inhibitors, we demonstrate that FSH activated CRTC2 in a PKA- and calcineurin-dependent manner, and TGFβ1 acting through its type I receptor (TGFβRI)-modulated FSH action in a calcineurin-mediated and PKA-independent fashion. Next, we investigated the involvement of calcineurin and CRTC2 in FSH and TGFβ1-stimulated steroidogenesis. Calcineurin and TGFβRI inhibitor dramatically reduced the FSH ± TGFβ1-increased progesterone synthesis and protein levels of StAR, P450scc, and 3β-HSD enzyme. Furthermore, chromatin-immunoprecipitation and immunoprecipitation analyses demonstrate that FSH ± TGFβ1 differentially increased CRTC2, CREB, and CBP binding to these steroidogenic genes, and CREB nuclear association with CRTC2 and CBP. In all, this study reveals for the first time that CRTC2 and calcineurin are critical signaling mediators in FSH and TGFβ1-stimulated steroidogenesis in ovarian granulosa cells. PMID:21826657

  14. Hormonal Factors and Disturbances in Eating Disorders.

    PubMed

    Culbert, Kristen M; Racine, Sarah E; Klump, Kelly L

    2016-07-01

    This review summarizes the current state of the literature regarding hormonal correlates of, and etiologic influences on, eating pathology. Several hormones (e.g., ghrelin, CCK, GLP-1, PYY, leptin, oxytocin, cortisol) are disrupted during the ill state of eating disorders and likely contribute to the maintenance of core symptoms (e.g., dietary restriction, binge eating) and/or co-occurring features (e.g., mood symptoms, attentional biases). Some of these hormones (e.g., ghrelin, cortisol) may also be related to eating pathology via links with psychological stress. Despite these effects, the role of hormonal factors in the etiology of eating disorders remains unknown. The strongest evidence for etiologic effects has emerged for ovarian hormones, as changes in ovarian hormones predict changes in phenotypic and genetic influences on disordered eating. Future studies would benefit from utilizing etiologically informative designs (e.g., high risk, behavioral genetic) and continuing to explore factors (e.g., psychological, neural responsivity) that may impact hormonal influences on eating pathology. PMID:27222139

  15. Insulin-like growth factor binding proteins-2 and -3 stimulate growth hormone receptor binding and mitogenesis in rat osteosarcoma cells.

    PubMed

    Slootweg, M C; Ohlsson, C; Salles, J P; de Vries, C P; Netelenbos, J C

    1995-10-01

    GH exerts its biological actions on osteoblasts through a specific high affinity receptor expressed on these cells. GH receptor binding is positively modulated by a number of factors, including retinoic acid and dexamethasone, whereas fetal calf serum strongly decreases the binding. To identify responsible factors in serum, components of serum, the insulin-like growth factors (IGFs)-I and -II, and IGF binding proteins (IGFBPs)-2 and -3 were tested for a possible negative modulatory role. IGF-I and -II decreased [125I]hGH binding at an optimal concentration of 30 ng/ml for IGF-I and 100 ng/ml IGF-II, reducing the binding to 51% and 55%, respectively, of control values. A stimulation of [125I]hGH binding was observed with IGFBP-2 as well as IGFBP-3, inducing an increase to 148% and 151% of control binding at an optimal concentration of 3000 ng/ml for both peptides. The effects of all peptides were dependent on the incubation time, being significantly increased after 8 h of incubation and reaching the full effect thereafter. The effects were declined at 24 h compared with 16 h for IGFBP-2 and -3 but not for IGF-I and -II. Coincubation of the cells with IGF-I and -II and IGFBP-2 and -3 neutralized the effects of the factors alone. In conclusion, these results show that IGF-I and -II on the one hand and IGFBP-2 and -3 on the other hand exert opposite actions on [125I]hGH binding, IGFBP-2 and -3 exerting probably an IGF-independent effect. Further, IGF-I and -II decreased GH receptor messenger RNA (mRNA) levels, as quantified by a solution hybridization ribonuclease protection assay, from 8.65 +/- 1.78 attomoles (amol)/microgram DNA (control) to 2.4 +/- 0.68 and 2.16 +/- 0.92 amol/microgram DNA, respectively. IGFBP-2 increased GH receptor mRNA levels from 5.26 +/- 1.17 (control) to 13.19 +/- 3.48. Incubation with IGFBP-3 did not result in stimulation of GH receptor mRNA levels (8.59 +/- 2.91 amol/microgram DNA). This shows that the mechanism of regulation of the GH

  16. An examination of the effects of different doses of recombinant human growth hormone on children with growth hormone deficiency

    PubMed Central

    XUE, YING; GAO, YIQING; WANG, SHUQIN; WANG, PEI

    2016-01-01

    The aim of the present study was to examine the effects of different doses of recombinant human growth hormone (rhGH) on children with growth hormone deficiency (GHD) and on thyroid and glucose metabolism to identify more reasonable therapeutic doses of growth hormone (GH) for the treatment of this condition. In total, 60 prepubertal patients with GHD were randomly divided into the high-dose and low-dose groups (n=30 per group). The groups were treated with 0.1 or 0.05 U/kg for 6 months, respectively. The follow-up study focused on changes to the serum levels of insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein (IGFBP)-3, blood glucose, thyroid hormone [triiodothyronine (T3) and its prohormone, thyroxine (T4), and thyroid stimulating hormone (TSH)] and the analysis of variance of the repeated data. Changes in the height, body weight and bone age of the high-dose group were greater than those of the low-dose group. After 6 months of treatment, the difference in height between the two groups was statistically significant (P<0.05). Glucose metabolism in the two groups was consistent, but there was a statistically significant difference in the fasting blood glucose (FBG) levels of the two groups after 6 months of treatment (P<0.05). Prior to treatment, the T3, T4 and TSH values (the thyroid function tests) in the two groups, especially for the value of T3 in high-dose group were varied. However, 6 months after treatment, statistically significant differences between the two groups (P<0.05) were identified. In conclusion, 0.1 U/kg of GH is beneficial to children with GHD in attaining a satisfactory height, but it leads to insulin resistance. Thus, glucose metabolism and thyroid function should be monitored on a regular basis in a clinical setting. PMID:27168784

  17. The pituitary growth hormone cell in space

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Grindeland, R.

    1989-01-01

    Growth hormone (GH), produced and secreted from specialized cells in the pituitary gland, controls the metabolism of protein, fat, and carbohydrate. It is also probably involved in the regulation of proper function of bone, muscle and immune systems. The behavior of the GH cell system was studied by flying either isolated pituitary cells or live rats. In the latter case, pituitary GH cells are prepared on return to earth and then either transplanted into hypophysectomized rats or placed into cell culture so that function of GH cells in-vivo vs. in-vitro can be compared. The results from three flights to date (STS-8, 1983; SL-3, 1985; Cosmos 1887, 1987) established that the ability of GH cells to release hormone, on return to earth, is compromised. The mechanism(s) responsible for this attenuation response is unknown. However, the data are sufficiently positive to indicate that the nature of the secretory defect resides directly within the GH cells.

  18. Dimerization of Human Growth Hormone by Zinc

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian C.; Mulkerrin, Michael G.; Wells, James A.

    1991-08-01

    Size-exclusion chromatography and sedimentation equilibrium studies demonstrated that zinc ion (Zn2+) induced the dimerization of human growth hormone (hGH). Scatchard analysis of 65Zn2+ binding to hGH showed that two Zn2+ ions associate per dimer of hGH in a cooperative fashion. Cobalt (II) can substitute for Zn2+ in the hormone dimer and gives a visible spectrum characteristic of cobalt coordinated in a tetrahedral fashion by oxygen- and nitrogen-containing ligands. Replacement of potential Zn2+ ligands (His18, His21, and Glu174) in hGH with alanine weakened both Zn2+ binding and hGH dimer formation. The Zn2+-hGH dimer was more stable than monomeric hGH to denaturation in guanidine-HCl. Formation of a Zn2+-hGH dimeric complex may be important for storage of hGH in secretory granules.

  19. Promotion of melanoma growth by the metabolic hormone leptin.

    PubMed

    Ellerhorst, Julie A; Diwan, A H; Dang, Shyam M; Uffort, Deon G; Johnson, Marilyn K; Cooke, Carolyn P; Grimm, Elizabeth A

    2010-04-01

    We have previously shown that melanoma cells proliferate in response to the metabolic hormones TRH and TSH. The objective of the present study was to test the hypothesis that a third metabolic hormone, leptin, serves as a growth factor for melanoma. Using western blotting, indirect immunofluorescence, and RT-PCR, leptin receptors were found to be expressed by human melanoma cells. In contrast, cultured melanocytes expressed message for the receptor without detectable protein. Melanoma cells responded to treatment with leptin by activating the MAPK pathway and proliferating. Melanoma cells but not melanocytes, also expressed leptin protein, creating a potential autocrine loop. Examination of human melanoma tumors by immunohistochemistry revealed that melanomas and nevi expressed leptin at a high frequency. Melanomas also strongly expressed the leptin receptor, whereas nevi expressed this receptor to a much lesser degree. We conclude that leptin is a melanoma growth factor and that a leptin autocrine-loop may contribute to the uncontrolled proliferation of these cells. PMID:20204272

  20. Assessment of Hormone Receptor and Human Epidermal Growth Factor Receptor 2 Status in Breast Carcinoma Using Thin-Prep Cytology Fine Needle Aspiration Cytology FISH Experience From China

    PubMed Central

    Zhang, Zhihui; Yuan, Peng; Guo, Huiqin; Zhao, Linlin; Ying, Jianming; Wang, Mingrong; Zhao, Huan; Pan, Qinjing; Xu, Binghe

    2015-01-01

    Abstract Estrogen receptor (ER) and progesterone receptor (PR) overexpression can be used to predict patient prognosis in breast cancer (BC). Human epidermal growth factor receptor 2 (HER2) is a reliable predictive marker in invasive breast cancer (IBC). Thin-Prep (TP) specimens are commonly utilized for immunocytochemistry (ICC) in fine needle aspiration cytology (FNAC). Thus, we sought to investigate if the incorporation of molecular diagnosis performed on TP-processed specimens is applicable in clinical practice. Hormone receptors (HRs) and HER2 immunocytochemistry was performed on 542 primary breast cancer FNAC specimens using the TP method. One hundred fourteen HER2 fluorescence in situ hybridization (FISH) analyses were performed on HER2 ICC 2+ FNAC specimens and the corresponding tissue samples. HRs results of TP slides and those of formalin-fixed paraffin-embedded (FFPE) slides were correlated well for ER (concordance rate = 93.3%, kappa value = 0.85) and PR (concordance rate = 88.6%, kappa value = 0.75). HER2 results for the TP slides and those of the matched FFPE slides also correlated well (concordance rate = 80.0%, kappa value = 0.62). The specificity of HER2 was 97.3%; however, the sensitivity was only 67.1%. Cytological specimens and histological samples showed a strong correlation (concordance rate = 99.1%, kappa value = 0.98) while being used to evaluate HER2 gene amplification. FNAC is a minimally invasive technique that can be used as an alternative method to collect tissue especially in cases where an excisional or core biopsy is difficult to obtain, or when recurrence is present. The results of ICC HRs in FNAC TP specimens may be used instead, but HER2 assessment may not be reliable enough for clinical use. FISH testing is necessary in this setting.

  1. Growth hormone responses to growth hormone-releasing hormone in Hand-Schüller-Christian Disease.

    PubMed

    Gelato, M C; Loriaux, D L; Merriam, G R

    1989-09-01

    Bolus doses of GH-releasing hormone (GHRH), 1 microgram/kg i.v., were given to two groups of adult patients with growth hormone deficiency (GHD): 9 with Hand-Schüller-Christian disease (HSCD, presumed hypothalamic GHD) and 9 with idiopathic GHD (IGHD, etiology unknown). Six patients in each group were then given further GHRH doses daily for 5 days, and the GH responses to GHRH were measured over 3 h on day 1 and day 5. Plasma levels of insulin-like growth factor-I (IGF-I) were measured twice daily on days 1 and 5 during GHRH treatment. All patients with HSCD had measurable GH responses to the first dose of GHRH, with a mean peak response of 6.4 +/- 2.1 ng/ml (mean +/- SE). Only 5 of 9 patients with IGHD had GH responses above the detection limits of the assay; their mean peak response, 1.3 +/- 0.2 ng/ml, was significantly lower than the GH responses of the HSCD patients (p less than 0.05). Responses in both groups of patients were lower than those previously observed in normal adult men (35 +/- 8 ng/ml; p less than 0.01). Five days of daily stimulation with GHRH significantly (p less than 0.01) increased the GH response in both groups of patients. The rise was greater in patients with HSCD than with IGHD (HSCD, 5.1 +/- 2.5 ng/ml on day 1, vs. 12.0 +/- 6.8 ng/ml on day 5; IGHD, 1.4 +/- 0.3 ng/ml vs. 2.9 +/- 0.6 ng/ml).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2507952

  2. Netherton syndrome associated with growth hormone deficiency.

    PubMed

    Aydın, Banu Küçükemre; Baş, Firdevs; Tamay, Zeynep; Kılıç, Gürkan; Süleyman, Ayşe; Bundak, Rüveyde; Saka, Nurçin; Özkaya, Esen; Güler, Nermin; Darendeliler, Feyza

    2014-01-01

    Netherton syndrome (NS) is a rare autosomal recessive disorder characterized by ichthyosiform scaling, hair abnormalities, and variable atopic features. Mutations in the serine protease inhibitor Kazal type 5 (SPINK5) gene leading to lymphoepithelial Kazal-type-related inhibitor (LEKTI) deficiency cause NS. Growth retardation is a classic feature of NS, but growth hormone (GH) deficiency with subsequent response to GH therapy is not documented in the literature. It is proposed that a lack of inhibition of proteases due to a deficiency of LEKTI in the pituitary gland leads to the overprocessing of human GH in NS. Herein we report three patients with NS who had growth retardation associated with GH deficiency and responded well to GH therapy. PMID:24015757

  3. Relationship between urinary and serum growth hormone and pubertal status.

    PubMed Central

    Crowne, E C; Wallace, W H; Shalet, S M; Addison, G M; Price, D A

    1992-01-01

    Urinary growth hormone (uGH) excretion and serum growth hormone concentrations have been compared in three groups of children. Group 1 consisted of 21 children who had had cranial irradiation as part of their treatment for acute lymphoblastic leukaemia; group 2, 18 normal children; and group 3, 12 boys with constitutional delay in growth and puberty who were in early puberty. Children in groups 1 and 2 each had a 24 hour serum growth hormone profile (sampling every 20 minutes) and concurrent urine collection. The 12 boys in group 3 had a total of 21 profiles (sampling every 15 minutes for 12 hours) and concurrent urine collections. In the prepubertal children (n = 17), in both groups 1 and 2, there was a significant correlation between mean serum growth hormone and total uGHng/g creatinine. There were also significant correlations between total uGHng/g creatinine and both peak serum growth hormone and mean amplitude of the pulses in the growth hormone profile. In the pubertal children (n = 22), in groups 1 and 2, whether combined or in separate groups, there was no significant correlation between total uGHng/g creatinine and mean serum growth hormone, peak serum growth hormone, or mean amplitude of the pulses in the growth hormone profile. In group 3 there were significant correlations between total uGHng/g creatinine and both the mean serum growth hormone and mean amplitude of the pulses in the profile. Therefore uGH estimations appear to correlate well with serum growth hormone profiles in children who are prepubertal or in early puberty, but not in those further advanced in pubertal development. These results may reflect a variation in the renal handling of growth hormone during pubertal development. uGH estimation may be an unreliable screening investigation for growth hormone sufficiency in mid to late puberty. PMID:1739346

  4. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland. PMID:27052215

  5. A randomized, placebo-controlled trial of combined insulin-like growth factor I and low dose growth hormone therapy for wasting associated with human immunodeficiency virus infection.

    PubMed

    Lee, P D; Pivarnik, J M; Bukar, J G; Muurahainen, N; Berry, P S; Skolnik, P R; Nerad, J L; Kudsk, K A; Jackson, L; Ellis, K J; Gesundheit, N

    1996-08-01

    Loss of body mass, or wasting, is a major cause of morbidity and a contributor to mortality in human immunodeficiency virus-1 (HIV-1) infection. Dietary supplements and appetite adjuvants have had limited effectiveness in treating this condition. GH and insulin-like growth factor I (IGF-I) have been shown to be anabolic in many catabolic conditions, and limited data suggest similar efficacy in HIV wasting. In addition, it appears that GH and IGF-I may have complementary anabolic effects with opposing glucoregulatory effects. We report results from a 12-week randomized, placebo-controlled trial of combination recombinant human GH (rhGH; Nutropin; 0.34 mg, sc, twice daily) and rhIGF-I (5.0 mg, sc, twice daily) in individuals with HIV wasting and without active opportunistic infection, cancer, or gastrointestinal disease. A total of 142 subjects (140 males and 2 females) were randomized using a 2:1, double blind treatment scheme and assigned to receive either active treatment or placebo injections. Eighty subjects completed the 12-week protocol. Nutritional intake and demographic and clinical characteristics did not differ between the groups at any study time point. At 3 weeks, the treatment group had a significantly larger weight increase (P = 0.0003), but this difference was not observed at any later time point. Similarly, fat-free mass, calculated from skinfold measurements, increased transiently in the treatment group at 6 weeks (P = 0.002). No significant differences in isokinetic muscle strength or endurance testing or in quality of life were observed between the groups. Resting heart rate was significantly higher in the treatment group at each time point post-baseline. GH and IGF-binding protein-3 levels did not change; however, IGF-I levels were higher in the treatment group at 6 and 12 weeks. There were no significant between-group differences in any of the measured biochemical or immunological parameters. rhGH plus rhIGF-I treatment was associated with an

  6. Sex steroids, growth hormone, leptin and the pubertal growth spurt.

    PubMed

    Rogol, Alan D

    2010-01-01

    A normal rate for the linear growth of a child or adolescent is a strong statement for the good general health of that child. Normal growth during childhood is primarily dependent on adequate nutrition, an adequate psychosocial environment, the absence of disease and adequate amounts thyroid hormone and growth hormone (and its downstream product, IGF-1). At adolescence there is the reawakening of the hypothalamic-pituitary-gonadal axis and its interaction with the GH/IGF-1 axis to subserve the pubertal growth spurt. The fat tissue-derived hormone, leptin and its receptor are likely involved in at least two aspects of pubertal development - sexual development itself and the alterations in body composition including the regional distribution of fat and bone mineralization. During the prepubertal years the male female differences in body composition are quite modest, but change remarkably during pubertal development with boys showing a relative decrement in fat percentage and girls a marked increase in concert with rising levels of circulating leptin. The boys show a much greater increase in lean body tissue and the relative proportions of water, muscle and bone. These may be observed as the differential growth of the shoulders and hips. The net effect of these pubertal changes is that the young adult woman has approximately 25% body fat in the 'gynoid' distribution while the male has much more muscle, especially in the shoulders and upper body but only approximately 13% body fat. PMID:19955758

  7. Random Secretion of Growth Hormone in Humans

    NASA Astrophysics Data System (ADS)

    Prank, Klaus; Kloppstech, Mirko; Nowlan, Steven J.; Sejnowski, Terrence J.; Brabant, Georg

    1996-08-01

    In normal humans, growth hormone (GH) is secreted from a gland located adjacent to the brain (pituitary) into the blood in distinct pulses, but in patients bearing a tumor within the pituitary (acromegaly) GH is excessively secreted in an irregular manner. It has been hypothesized that GH secretion in the diseased state becomes random. This hypothesis is supported by demonstrating that GH secretion in patients with acromegaly cannot be distinguished from a variety of linear stochastic processes based on the predictability of the fluctuations of GH concentration in the bloodstream.

  8. A history of growth hormone injection devices.

    PubMed

    Fidotti, E

    2001-05-01

    In the early 1960s, growth hormone (GH) deficiency was treated by intramuscular injection of GH extracted from human pituitary glands. Since then, there have been many advances in treatment encompassing the route of administration, the injection product and the injection device. This review considers the advances in injection device that have already taken place and how they have benefited the patient, particularly in terms of reduced pain and improved convenience. In the future, needle-free injection techniques and depot formulations of GH are likely to offer alternatives to daily subcutaneous injections. PMID:11393569

  9. Gravitational effects on plant growth hormone concentration

    NASA Astrophysics Data System (ADS)

    Bandurski, Robert S.; Schulze, Aga

    Numerous studies, particularly those of H. Dolk in the 1930's, established by means of bio-assay, that more growth hormone diffused from the lower, than from the upper side of a gravity-stimulated plant shoot. Now, using an isotope dilution assay, with 4,5,6,7 tetradeutero indole-3-acetic acid as internal standard, and selected ion monitoring-gas chromatography-mass spectrometry as the method of determination, we have confirmed Dolk's finding and established that the asymmetrically distributed hormone is, in fact, indole-3-acetic acid (IAA). This is the first physico-chemical demonstration that there is more free IAA on the lower sides of a geo-stimulated plant shoot. We have also shown that free IAA occurs primarily in the conductive vascular tissues of the shoot, whereas IAA esters predominate in the growing cortical cells. Now, using an especially sensitive gas chromatographic isotope dilution assay we have found that the hormone asymmetry also occurs in the non-vascular tissue. Currently, efforts are directed to developing isotope dilution assays, with picogram sensitivity, to determine how this asymmetry of IAA distribution is attained so as to better understand how the plant perceives the geo-stimulus.

  10. Effects of CDK4/6 Inhibition in Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer Cells with Acquired Resistance to Paclitaxel

    PubMed Central

    Trapé, Adriana Priscila; Liu, Shuying; Cortes, Andrea Carolina; Ueno, Naoto T.; Gonzalez-Angulo, Ana Maria

    2016-01-01

    Among patients with hormone receptor (HR)-positive breast cancer, those with residual disease after neoadjuvant chemotherapy have a higher risk of relapse and poorer survival than those with a complete response. Previous studies have revealed a correlation between activation of cell cycle-regulating pathways in HR-positive breast cancer, particularly cyclin-dependent kinase (CDK) 4 and 6/cyclin D1 signaling, and resistance to standard therapies. Although CDK4/6 inhibition by palbociclib in combination with endocrine therapy has shown potent antiproliferative effects in HR-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer, the potential role of palbociclib in re-sensitizing chemotherapy-resistant HR-positive breast cancer is not well defined. We hypothesized that CDK4/6 inhibition by palbociclib re-sensitizes HR-positive/HER2-negative residual breast cancer to taxane-based adjuvant therapy. Using cell counting, flow cytometry, and western blotting, we evaluated the efficacy of palbociclib alone and in concurrent or sequential combination with paclitaxel in parental and paclitaxel-resistant T47D HR-positive/HER2-negative breast cancer cells. The CDK4/6 pathway was constitutively active in both parental and paclitaxel-resistant T47D cells; thus, both cell types were highly sensitive to the inhibitory effects of single-agent palbociclib on cell growth and cell cycle progression. However, palbociclib did not re-sensitize resistant cells to paclitaxel-induced G2/M arrest and cell death in any of the combinations tested. Our results suggest that CDK4/6 inhibition by palbociclib does not re-sensitize HR-positive/HER2-negative residual breast cancer to chemotherapy. Nevertheless, the fact that CDK4/6 activation remained intact in paclitaxel-resistant cells indicates that patients who have HR-positive/HER2-negative residual disease after taxane-based neoadjuvant chemotherapy may still benefit from palbociclib in combination with other regimens

  11. Predictors of Treatment Response to Tesamorelin, a Growth Hormone-Releasing Factor Analog, in HIV-Infected Patients with Excess Abdominal Fat

    PubMed Central

    Mangili, Alexandra; Falutz, Julian; Mamputu, Jean-Claude; Stepanians, Miganush; Hayward, Brooke

    2015-01-01

    Background Tesamorelin, a synthetic analog of human growth hormone-releasing factor, decreases visceral adipose tissue (VAT) in human immunodeficiency virus (HIV)-infected patients with lipodystrophy. Objectives 1) To evaluate the utility of patient characteristics and validated disease-risk scores, namely indicator variables for the metabolic syndrome defined by the International Diabetes Federation (MetS-IDF) or the National Cholesterol Education Program (MetS-NCEP) and the Framingham Risk Score (FRS), as predictors of VAT reduction during tesamorelin therapy at 3 and 6 months, and 2) To explore the characteristics of patients who reached a threshold of VAT <140 cm2, a level associated with lower risk of adverse health outcomes, after 6 months of treatment with tesamorelin. Methods Data were analyzed from two Phase 3 studies in which HIV-infected patients with excess abdominal fat were randomized in a 2:1 ratio to receive tesamorelin 2 mg (n = 543) or placebo (n = 263) subcutaneously daily for 6 months, using ANOVA and ANCOVA models. Results Metabolic syndrome (MetS-IDF or MetS-NCEP) and FRS were significantly associated with VAT at baseline. Presence of metabolic syndrome ([MetS-NCEP), triglyceride levels >1.7 mmol/L, and white race had a significant impact on likelihood of response to tesamorelin after 6 months of therapy (interaction p-values 0.054, 0.063, and 0.025, respectively). No predictive factors were identified at 3 months. The odds of a VAT reduction to <140 cm2 for subjects treated with tesamorelin was 3.9 times greater than that of subjects randomized to placebo after controlling for study, gender, baseline body mass index (BMI) and baseline VAT (95% confidence interval [CI] 2.03; 7.44). Conclusions Individuals with baseline MetS-NCEP, elevated triglyceride levels, or white race were most likely to experience reductions in VAT after 6 months of tesamorelin treatment. The odds of response of VAT <140 cm2 was 3.9 times greater for tesamorelin

  12. Nonparallel changes of growth hormone (GH) and insulin-like growth factor-I, insulin-like growth factor binding protein-3, and GH-binding protein, after craniospinal irradiation and chemotherapy

    SciTech Connect

    Nivot, S.; Adan, L.; Souberbielle, J.; Rappaport, R.; Brauner, R.; Benelli, C.; Clot, J.P.; Saucet, C.; Zucker, J.M.

    1994-03-01

    The authors studied the GH-insulin-like growth factor-I (IGF-I) axis serially over 24-36 months in six patients with medulloblastoma who underwent surgical removal of the tumor followed by craniospinal irradiation therapy for 6 weeks and then chemotherapy for 42 weeks. Eighteen and 24 months after beginning irradiation there was a decline in the peak GH secretory response to acute stimulation with arginine/insulin hypoglycemia. Six months after irradiation and during chemotherapy there was a transient decline in IGF-I, IGF binding protein-3 (IGFBP-3), and GH-BP values (respective mean values of 56.1 {+-} 9.0 ng/mL, 1.1 {+-} 0.2 {mu}g/mL, and 7.6 {+-} 3.3% of radioactivity as compared to time 0 values: 139 {+-} 15 ng/mL, 2.2 {+-} 0.2 {mu}g/mL, and 20.0 {+-} 4.0%, P < 0.001), although provoked GH secretion was normal at this time. The IGF-I, IGFBP-3, and GH-BP returned to pretreatment ranges by 12-36 months after initiation of the study. There was also a decline in body mass index and serum protein values at 6 months after irradiation in ligand and immunoblot analysis there was a decline in IGFBP-3 and an abnormal electrophoretic mobility of IGFBP-2 that were both normalized at 36 months. In one patient they observed a high level of IGFBP-3 proteolysis at this time. This study demonstrates that before the decrease of GH secretion in patients receiving cranial irradiation there is a transient phase of GH insensitivity that may be characteristic of the acute therapeutic phase including the chemotherapy. This partial insensitivity may explain the early growth retardation observed in these patients. 28 refs., 4 figs., 1 tab.

  13. Growth hormone deficiency and cerebral palsy

    PubMed Central

    Devesa, Jesús; Casteleiro, Nerea; Rodicio, Cristina; López, Natalia; Reimunde, Pedro

    2010-01-01

    Cerebral palsy (CP) is a catastrophic acquired disease, occurring during development of the fetal or infant brain. It mainly affects the motor control centres of the developing brain, but can also affect cognitive functions, and is usually accompanied by a cohort of symptoms including lack of communication, epilepsy, and alterations in behavior. Most children with cerebral palsy exhibit a short stature, progressively declining from birth to puberty. We tested here whether this lack of normal growth might be due to an impaired or deficient growth hormone (GH) secretion. Our study sample comprised 46 CP children, of which 28 were male and 18 were female, aged between 3 and 11 years. Data obtained show that 70% of these children lack normal GH secretion. We conclude that GH replacement therapy should be implemented early for CP children, not only to allow them to achieve a normal height, but also because of the known neurotrophic effects of the hormone, perhaps allowing for the correction of some of the common disabilities experienced by CP children. PMID:20856687

  14. Production and characterization of recombinantly derived peptides and antibodies for accurate determinations of somatolactin, growth hormone and insulin-like growth factor-I in European sea bass (Dicentrarchus labrax).

    PubMed

    de Celis, S Vega-Rubín; Gómez-Requeni, P; Pérez-Sánchez, J

    2004-12-01

    A specific radioimmunoassay (RIA) for European sea bass (Dicentrarchus labrax) growth hormone (GH) was developed and validated. For this purpose, a stable source of GH was produced by means of recombinant DNA technology in a bacteria system. The identity of the purified protein (ion exchange chromatography) was demonstrated by Western blot and a specific GH antiserum was raised in rabbit. In Western blot and RIA system, this antiserum recognized specifically native and recombinant GH, and it did not cross-react with fish prolactin (PRL) and somatolactin (SL). In a similar way, a specific polyclonal antiserum against the now available recombinant European sea bass SL was raised and used in the RIA system to a sensitivity of 0.3 ng/ml (90% of binding of tracer). Further, European sea bass insulin-like growth factor-I (IGF-I) was cloned and sequenced, and its high degree of identity with IGF-I peptides of barramundi, tuna, and sparid fish allowed the use of a commercial IGF-I RIA based on barramundi IGF-I antiserum. These assay tools assisted for the first time accurate determinations of SL and GH-IGF-I axis activity in a fish species of the Moronidae family. Data values were compared to those found with gilthead sea bream (Sparus aurata), which is currently used as a Mediterranean fish model for growth endocrinology studies. As a characteristic feature, the average concentration year round of circulating GH in growing mature males of European sea bass was higher than in gilthead sea bream. By contrast, the average concentration of circulating SL was lower. Concerning to circulating concentration of IGF-I, the measured plasma values for a given growth rate were also lower in European sea bass. These findings are discussed on the basis of a different energy status that might allowed a reduced but more continuous growth in European sea bass. PMID:15560873

  15. Mapping the human growth hormone-releasing hormone receptor (GHRHR) gene to the short arm of chromosome 7(7p13-p21) near the epidermal growth factor receptor (EGFR) gene

    SciTech Connect

    Vamvakopoulos, N.C. ); Kunz, J.; Olberding, U. ); Scherer, S.W. ); Sioutopoulou, O.T. ); Schneider, V.; Durkin, A.S.; Nierman, W.C. )

    1994-03-15

    In this report, the authors have assigned the human GHRHR gene to chromosome 7p13-p21, using polymerase chain reaction (PCR) amplification of DNA from well-defined human-rodent somatic cell hybrids. The GHRHR gene was assigned to human chromosome 7 by discordancy analysis (data not shown) of PCR amplification products from NIGMS mapping panel Nos. 1 and 2 DNA templates. The PCR primers (p[sub f], 5[prime]-GCTGCCTCATCACGCCACTGGAGTCCAC-3[prime]; and P[sub r], 5[prime]-CAGGTTTATTGGCTCCTCTGAGCCTTGG-3[prime]) amplified a 276-bp-long fragment from the 3[prime] untranslated region of the human GHRHR gene. Subsequently, they determined the location of the GHRHR gene within human chromosome 7 by PCR amplification of genomic DNA template from somatic cell hybrids that contain deletions of this chromosome. Amplification of the 276-bp DNA fragment was seen only in the cell lines that contained an intact chromosome 7 short arm. The lack of amplification using genomic DNA from 0044 Rag 1-15 and It A9 2-21-14 maps this gene to 7p13-p21. Additionally, the appropriate amplified product was observed from the human chromosome 4 containing NIGMS panel 2 cell line GM10115. This line was reported to have retained a small region of human chromosome 7 containing the epidermal growth factor receptor (EGFR) gene that is mapped to 7p12-p13. The authors conclude that the human GHRHR gene maps to the small arm of chromosome 7 within 7p13-p21 and close to the EGFR gene. This assignment is consistent with the syntenic relationship between mouse chromosome 6 and human chromosome 7 in this region.

  16. Thyroid Hormone Receptor Binds to a Site in the Rat Growth Hormone Promoter Required for Induction by Thyroid Hormone

    NASA Astrophysics Data System (ADS)

    Koenig, Ronald J.; Brent, Gregory A.; Warne, Robert L.; Reed Larsen, P.; Moore, David D.

    1987-08-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. We have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. We show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor.

  17. Effects of plasmid-mediated growth hormone-releasing hormone in severely debilitated dogs with cancer.

    PubMed

    Draghia-Akli, Ruxandra; Hahn, Kevin A; King, Glen K; Cummings, Kathleen K; Carpenter, Robert H

    2002-12-01

    Cachexia is a common manifestation of late stage malignancy and is characterized by anemia, anorexia, muscle wasting, loss of adipose tissue, and fatigue. Although cachexia is disabling and can diminish the life expectancy of cancer patients, there are still no effective therapies for this condition. We have examined the feasibility of using a myogenic plasmid to express growth hormone-releasing hormone (GHRH) in severely debilitated companion dogs with naturally occurring tumors. At a median of 16 days after intramuscular delivery of the plasmid, serum concentrations of insulin-like growth factor I (IGF-I), a measure of GHRH activity, were increased in 12 of 16 dogs (P < 0.01). These increases ranged from 21 to 120% (median, 49%) of the pretreatment values and were generally sustained or higher on the final evaluation. Anemia resolved posttreatment, as indicated by significant increases in mean red blood cell count, hematocrit, and hemoglobin concentrations, and there was also a significant rise in the percentage of circulating lymphocytes. Treated dogs maintained their weights over the 56-day study and did not show any adverse effects from the GHRH gene transfer. We conclude that intramuscular injection of a GHRH-expressing plasmid is both safe and capable of stimulating the release of growth hormone and IGF-I in large animals. The observed anabolic responses to a single dose of this therapy might be beneficial in patients with cancer-associated anemia and cachexia. PMID:12498779

  18. Tissue-specific regulation of the growth hormone/insulin-like growth factor axis during fasting and re-feeding: Importance of muscle expression of IGF-I and IGF-II mRNA in the tilapia.

    PubMed

    Fox, Bradley K; Breves, Jason P; Davis, Lori K; Pierce, Andrew L; Hirano, Tetsuya; Grau, E Gordon

    2010-05-01

    The effects of prolonged nutrient restriction (fasting) and subsequent restoration (re-feeding) on the growth hormone (GH)/insulin-like growth factor (IGF) axis were investigated in the tilapia (Oreochromis mossambicus). Mean weight and specific growth rate declined within 1 week in fasted fish, and remained lower than controls throughout 4 weeks of fasting. Plasma levels of IGF-I were lower than fed controls during 4 weeks of fasting, suggesting a significant catabolic state. Following re-feeding, fasted fish gained weight continuously, but did not attain the weight of fed controls at 8 weeks after re-feeding. Specific growth rate increased above the continuously-fed controls during the first 6 weeks of re-feeding, clearly indicating a compensatory response. Plasma IGF-I levels increased after 1 week of re-feeding and levels were not otherwise different from fed controls. Plasma GH levels were unaffected by either fasting or re-feeding. No consistent effect of fasting or re-feeding was observed on liver expression of GH receptor (GH-R), somatolactin (SL) receptor (SL-R), IGF-I or IGF-II. In contrast, muscle expression of GH-R increased markedly during 4 weeks of fasting, and then declined below control levels upon re-feeding for weeks 1 and 2. Similarly, muscle expression of SL-R increased after 4 weeks of fasting, and reduced below control levels after 1 and 2 weeks of re-feeding. On the other hand, muscle expression of IGF-I was strongly reduced throughout the fasting period, and levels recovered 2 weeks after re-feeding. Muscle expression of IGF-II was not affected by fasting, but was reduced after 1 and 2 weeks of re-feeding. These results indicate that GH/IGF axis, particularly muscle expression of GH-R, SL-R and IGF-I and -II, is sensitive to nutritional status in the tilapia. PMID:19932110

  19. Auxin, the organizer of the hormonal/environmental signals for root hair growth.

    PubMed

    Lee, Richard D-W; Cho, Hyung-Taeg

    2013-01-01

    The root hair development is controlled by diverse factors such as fate-determining developmental cues, auxin-related environmental factors, and hormones. In particular, the soil environmental factors are important as they maximize their absorption by modulating root hair development. These environmental factors affect the root hair developmental process by making use of diverse hormones. These hormonal factors interact with each other to modulate root hair development in which auxin appears to form the most intensive networks with the pathways from environmental factors and hormones. Moreover, auxin action for root hair development is genetically located immediately upstream of the root hair-morphogenetic genes. These observations suggest that auxin plays as an organizing node for environmental/hormonal pathways to modulate root hair growth. PMID:24273547

  20. Regulation of Growth Hormone by the Splanchnic Area.

    PubMed

    Barja-Fernandez, Silvia; Folgueira, Cintia; Castelao, Cecilia; Leis, Rosaura; Crujeiras, Ana B; Casanueva, Felipe F; Seoane, Luisa M

    2016-01-01

    The regulation of growth hormone (GH) was traditionally thought to be under the control of two main hypothalamic neuropeptides; GH-releasing hormone and somatostatin. In 1999, with the isolation of ghrelin, as a gastric-derived peptide with potent GH-releasing activity, concept of regulation of the somatotropic axis completely changed. In addition to its GH-releasing activity, ghrelin exhibited the capacity to modulate food intake and body weight. The role of this splanchnic factor in regulating GH as a nexus of energy balance control and GH are explored in this chapter. From a physiological standpoint, a novel mechanism of GH regulation mediated by ghrelin exists, implicating the peripheral modulation of the cannabinoid receptor. PMID:26940386

  1. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    SciTech Connect

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  2. Effect of growth hormone on ribonucleic acid metabolism. The template activity of the chromatin and molecular species of ribonucleic acid synthesized after treatment with the hormone

    PubMed Central

    Gupta, S. L.; Talwar, G. P.

    1968-01-01

    Growth hormone stimulates the synthesis of RNA in hypophysectomized rat liver. The question whether the hormonal stimulation of RNA synthesis is due to the activation of repressed cistrons or to other factors was studied. Nuclear RNA from the livers of adult female hypophysectomized and growth-hormone-treated rats was examined for molecular homology by hybridization techniques: no new species of RNA were detected after hormone treatment. The template activity of the chromatin for RNA synthesis is also not increased by the action of growth hormone. Short- and long-pulse-labelling experiments demonstrate that the hormonal stimulation of RNA synthesis is most marked in experiments where the period of incorporation of radioactive precursors is limited to 1–2hr. It is concluded that the hormone influences essentially the rate of RNA synthesis in these tissues. PMID:5701666

  3. Studies on the nature of plasma growth hormone

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Grindeland, R. E.; Reilly, T. J.; Yang, S. H.

    1976-01-01

    The paper presents further evidence for the existence of two discrete forms of growth hormone in human plasma, one which is detectable by both radioimmunoassay and bioassay and is immunoreactive, and the other, termed 'bioactive', which is detected by tibial bioassay but shows little reactivity with currently available antisera to pituitary growth hormone. The same division of immunoactive and bioactive growth hormone occurs in rats, though with less disparity. Tests on rats indicated that the bioactive hormone is preferentially released into jugular vein plasma and that plasma concentrations of the bioactive hormone can be enhanced by insulin administration. The bioactive hormone was detectable by tibial assays in Cohn fractions IV, IV-1, and IV-4, and could be concentrated about 40-fold by fractionation with (NaPO3)6 and (NH4)2SO4.

  4. Metabolism of growth hormone releasing peptides.

    PubMed

    Thomas, Andreas; Delahaut, Philippe; Krug, Oliver; Schänzer, Wilhelm; Thevis, Mario

    2012-12-01

    New, potentially performance enhancing compounds have frequently been introduced to licit and illicit markets and rapidly distributed via worldwide operating Internet platforms. Developing fast analytical strategies to follow these new trends is one the most challenging issues for modern doping control analysis. Even if reference compounds for the active drugs are readily obtained, their unknown metabolism complicates effective testing strategies. Recently, a new class of small C-terminally amidated peptides comprising four to seven amino acid residues received considerable attention of sports drug testing authorities due to their ability to stimulate growth hormone release from the pituitary. The most promising candidates are the growth hormone releasing peptide (GHRP)-1, -2, -4, -5, -6, hexarelin, alexamorelin, and ipamorelin. With the exemption of GHRP-2, the entity of these peptides represents nonapproved pharmaceuticals; however, via Internet providers, all compounds are readily available. To date, only limited information on the metabolism of these substances is available and merely one metabolite for GHRP-2 is established. Therefore, a comprehensive in vivo (po and iv administration in rats) and in vitro (with human serum and recombinant amidase) study was performed in order to generate information on urinary metabolites potentially useful for routine doping controls. The urine samples from the in vivo experiments were purified by mixed-mode cation-exchange solid-phase extraction and analyzed by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution/high-accuracy mass spectrometry. Combining the high resolution power of a benchtop Orbitrap mass analyzer for the first metabolite screening and the speed of a quadrupole/time-of-flight (Q-TOF) instrument for identification, urinary metabolites were screened by means of a sensitive full scan analysis and subsequently confirmed by high-accuracy product ion scan experiments. Two

  5. Synthesis of the Growth Hormone Secretion Mechanism Using Nonlinear Analysis and CAD Tools.

    PubMed

    Shell, J R

    2005-01-01

    The goal of this paper is to present a hardware realization of the feed-forward and feedback hypothalamic-pituitary growth hormone (GH) secretion mechanism based on a bio-mathematical nonlinear delay differential equation model developed by Farhy et al. (2003) and Veldhuis et al. (2001). Behavioral modeling is implemented through Verilog hardware descriptive language (HDL) to simulate the antagonistic and stimulatory interaction of growth hormone, growth hormone releasing hormone (GHRH) and somatotropin release inhibiting factor (SRIF). The model is synthesized using computer aided design (CAD) tools and is promulgated through a combinational complex programmable logic device (CPLD)/field programmable grid array (FPGA) Xilinx XSA-50 microchip. The microchip sequentially displays the decimal equivalents of the time changing hormonal concentration levels of the biomathematical model. PMID:17281277

  6. Secretory pattern of canine growth hormone

    SciTech Connect

    French, M.B.; Vaitkus, P.; Cukerman, E.; Sirek, A.; Sirek, O.V.

    1987-02-01

    The aim of this paper was to define the secretory pattern of growth hormone (GH) under basal conditions in fasted, conscious, male dogs accustomed to handling. Blood samples were withdrawn from a cephalic vein at 15-min intervals. In this way, any ultradian rhythms, if present, could be detected within the frequency range of 0.042-2 cycles/h. In addition, samples were drawn at either 1- or 2.5-min intervals for 2.5 or 5 h to determine whether frequency components greater than 2 cycles/h were present. GH was measured by radioimmunoassay and the raw data were submitted to time series analysis employing power spectral estimation by means of fast Fourier transformation techniques. Peak plasma levels were up to 12 times higher than the baseline concentration of approx. 1 ng/ml. Spectral analysis revealed an endogenous frequency of 0.22 cycles/h, i.e., a periodicity of 4.5 h/cycle. The results indicate that under basal conditions the secretory bursts of canine GH are limited to one peak every 4.5 h.

  7. Justified and unjustified use of growth hormone

    PubMed Central

    van der Lely, A J

    2004-01-01

    Growth hormone (GH) replacement therapy for children and adults with proven GH deficiency due to a pituitary disorder has become an accepted therapy with proven efficacy. GH is increasingly suggested, however, as a potential treatment for frailty, osteoporosis, morbid obesity, cardiac failure, and various catabolic conditions. However, the available placebo controlled studies have not reported many significant beneficial effects, and it might even be dangerous to use excessive GH dosages in conditions in which the body has just decided to decrease GH actions. GH can indeed induce changes in body composition that are considered to be advantageous to GH deficient and non-GH deficient subjects. In contrast to GH replacement therapy in GH deficient subjects, however, excessive GH action due to GH misuse seems to be ineffective in improving muscle power. Moreover, there are no available study data to indicate that the use of GH for non-GH deficient subjects should be advocated, especially as animal data suggest that lower GH levels are positively correlated with longevity. PMID:15466991

  8. Discovery of growth hormone-releasing hormones and receptors in nonmammalian vertebrates

    PubMed Central

    Lee, Leo T. O.; Siu, Francis K. Y.; Tam, Janice K. V.; Lau, Ivy T. Y.; Wong, Anderson O. L.; Lin, Marie C. M.; Vaudry, Hubert; Chow, Billy K. C.

    2007-01-01

    In mammals, growth hormone-releasing hormone (GHRH) is the most important neuroendocrine factor that stimulates the release of growth hormone (GH) from the anterior pituitary. In nonmammalian vertebrates, however, the previously named GHRH-like peptides were unable to demonstrate robust GH-releasing activities. In this article, we provide evidence that these GHRH-like peptides are homologues of mammalian PACAP-related peptides (PRP). Instead, GHRH peptides encoded in cDNAs isolated from goldfish, zebrafish, and African clawed frog were identified. Moreover, receptors specific for these GHRHs were characterized from goldfish and zebrafish. These GHRHs and GHRH receptors (GHRH-Rs) are phylogenetically and structurally more similar to their mammalian counterparts than the previously named GHRH-like peptides and GHRH-like receptors. Information regarding their chromosomal locations and organization of neighboring genes confirmed that they share the same origins as the mammalian genes. Functionally, the goldfish GHRH dose-dependently activates cAMP production in receptor-transfected CHO cells as well as GH release from goldfish pituitary cells. Tissue distribution studies showed that the goldfish GHRH is expressed almost exclusively in the brain, whereas the goldfish GHRH-R is actively expressed in brain and pituitary. Taken together, these results provide evidence for a previously uncharacterized GHRH-GHRH-R axis in nonmammalian vertebrates. Based on these data, a comprehensive evolutionary scheme for GHRH, PRP-PACAP, and PHI-VIP genes in relation to three rounds of genome duplication early on in vertebrate evolution is proposed. These GHRHs, also found in flounder, Fugu, medaka, stickleback, Tetraodon, and rainbow trout, provide research directions regarding the neuroendocrine control of growth in vertebrates. PMID:17283332

  9. Recombinant growth hormone treatment of amyotrophic lateral sclerosis.

    PubMed

    Smith, R A; Melmed, S; Sherman, B; Frane, J; Munsat, T L; Festoff, B W

    1993-06-01

    Based on the known trophic effects of growth hormone (GH) on nerve and muscle 75 patients with ALS were treated for up to 18 months with synthetic human growth hormone (Protropin) or a placebo. The course of ALS was assessed serially using a quantitative (TQNE) neuromuscular and manual exam (MRC) and laboratory chemistries. Average insulin-related growth factor (IGF-I) values increased from 1.2 to 2.3 U/mL in the treated group. Surprisingly, serum insulin levels did not increase. Hyperglycemia was noted in only 2 patients of the 38 patients receiving hGH, and this resolved with cessation of treatment. Over the 12 months of treatment there were 11 deaths (6 controls, 5 treated). Survival analysis, performed approximately 12 months following cessation of treatment, did not reveal a difference between the treatment and placebo group. The TQNE scores declined inexorably in both the control and treated group. Retrospective analysis of the TQNE data indicated a poor prognosis for patients who lost arm strength early. A correlation between the TQNE and MRC scores was evident at early stages of motor unit loss, less so when muscle weakness was advanced. PMID:8502260

  10. Growth hormone treatment in non-growth hormone-deficient children.

    PubMed

    Loche, Sandro; Carta, Luisanna; Ibba, Anastasia; Guzzetti, Chiara

    2014-03-01

    Until 1985 growth hormone (GH) was obtained from pituitary extracts, and was available in limited amounts only to treat severe growth hormone deficiency (GHD). With the availability of unlimited quantities of GH obtained from recombinant DNA technology, researchers started to explore new modalities to treat GHD children, as well as to treat a number of other non-GHD conditions. Although with some differences between different countries, GH treatment is indicated in children with Turner syndrome, chronic renal insufficiency, Prader-Willi syndrome, deletions/mutations of the SHOX gene, as well as in short children born small for gestational age and with idiopathic short stature. Available data from controlled trials indicate that GH treatment increases adult height in patients with Turner syndrome, in patients with chronic renal insufficiency, and in short children born small for gestational age. Patients with SHOX deficiency seem to respond to treatment similarly to Turner syndrome. GH treatment in children with idiopathic short stature produces a modest mean increase in adult height but the response in the individual patient is unpredictable. Uncontrolled studies indicate that GH treatment may be beneficial also in children with Noonan syndrome. In patients with Prader-Willi syndrome GH treatment normalizes growth and improves body composition and cognitive function. In any indication the response to GH seems correlated to the dose and the duration of treatment. GH treatment is generally safe with no major adverse effects being recorded in any condition. PMID:24926456

  11. An enzyme immunoassay for rat growth hormone - Applications to the study of growth hormone variants

    NASA Technical Reports Server (NTRS)

    Farrington, Marianne A.; Hymer, W. C.

    1987-01-01

    A sensitive and specific competitive enzyme immunoassay for rat growth hormone (GH) is described and its use in the detection of GH variants is demonstrated. In the present assay, soluble GH and GH adsorbed to a solid-phase support compete for monkey anti-GH antibody binding sites. The immobilized antibody-GH complex is detected and quantified using goat antimonkey immunoglobin G covalently conjugated to horseradish peroxidase. It is noted that the assay can be performed in 27 hours and that sensitivities in the range of 0.19 to 25 ng can be obtained in the region of 10 to 90 percent binding.

  12. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  13. Effects of a green tea extract, Polyphenon E, on systemic biomarkers of growth factor signalling in women with hormone receptor-negative breast cancer

    PubMed Central

    Crew, K. D.; Ho, K. A.; Brown, P.; Greenlee, H.; Bevers, T. B.; Arun, B.; Sneige, N.; Hudis, C.; McArthur, H. L.; Chang, J.; Rimawi, M.; Cornelison, T. L.; Cardelli, J.; Santella, R. M.; Wang, A.; Lippman, S. M.; Hershman, D. L.

    2014-01-01

    Background Observational and experimental data support a potential breast cancer chemopreventive effect of green tea. Methods We conducted an ancillary study using archived blood/urine from a phase IB randomised, placebo-controlled dose escalation trial of an oral green tea extract, Polyphenon E (Poly E), in breast cancer patients. Using an adaptive trial design, women with stage I–III breast cancer who completed adjuvant treatment were randomised to Poly E 400 mg (n = 16), 600 mg (n = 11) and 800 mg (n = 3) twice daily or matching placebo (n = 10) for 6 months. Blood and urine collection occurred at baseline, and at 2, 4 and 6 months. Biological endpoints included growth factor [serum hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF)], lipid (serum cholesterol, triglycerides), oxidative damage and inflammatory biomarkers. Results From July 2007-August 2009, 40 women were enrolled and 34 (26 Poly E, eight placebo) were evaluable for biomarker endpoints. At 2 months, the Poly E group (all dose levels combined) compared to placebo had a significant decrease in mean serum HGF levels (−12.7% versus +6.3%, P = 0.04). This trend persisted at 4 and 6 months but was no longer statistically significant. For the Poly E group, serum VEGF decreased by 11.5% at 2 months (P = 0.02) and 13.9% at 4 months (P = 0.05) but did not differ compared to placebo. At 2 months, there was a trend toward a decrease in serum cholesterol with Poly E (P = 0.08). No significant differences were observed for other biomarkers. Conclusions Our findings suggest potential mechanistic actions of tea polyphenols in growth factor signalling, angiogenesis and lipid metabolism. PMID:24646362

  14. The influence of nutrition on the insulin-like growth factor system and the concentrations of growth hormone, glucose, insulin, gonadotropins and progesterone in ovarian follicular fluid and plasma from adult female horses (Equus caballus)

    PubMed Central

    2014-01-01

    Background Feed intake affects the GH-IGF system and may be a key factor in determining the ovarian follicular growth rate. In fat mares, the plasma IGF-1 concentration is high with low GH and a quick follicular growth rate, in contrast to values observed in thin mares. Nothing is known regarding the long-term effects of differential feed intake on the IGF system. The objective of this experiment was to quantify IGFs, IGFBPs, GH, glucose, insulin, gonadotropin and progesterone (P4) in blood and in preovulatory follicular fluid (FF) in relation to feeding levels in mares. Methods Three years prior to the experiment, Welsh Pony mares were assigned to a restricted diet group (R, n = 10) or a well-fed group (WF, n = 9). All mares were in good health and exhibited differences in body weight and subcutaneous fat thickness. Follicular development was scanned daily and plasma was also collected daily. Preovulatory FF was collected by ultrasound-guided follicular aspiration. Hormone levels were assayed in FF and plasma with a validated RIA. Results According to scans, the total number of follicles in group R was 53% lower than group WF. Insulin and IGF-1 concentrations were higher in WF than in R mares. GH and IGF-2 concentrations were lower in plasma from WF mares than from R mares, but the difference was not significant in FF. The IGFBP-2/IGFBP-3 ratio in FF was not affected by feeding but was dramatically increased in R mare plasma. No difference in gonadotropin concentration was found with the exception of FSH, which was higher in the plasma of R mares. On the day of puncture, P4 concentrations were not affected by feeding but were higher in preovulatory FF than in plasma. Conclusions The bioavailability of IGF-1 or IGF-2, represented by the IGFBP2/IGFBP3 ratio, is modified by feed intake in plasma but not in FF. These differences partially explain the variability in follicular growth observed between well-fed mares and mares on restricted diets. PMID:25078409

  15. Aging and immune function: a possible role for growth hormone.

    PubMed

    Gelato, M C

    1996-01-01

    Elderly individuals have four to five times the case rate of cancer, tuberculosis and herpes zoster and six to seven times the fatality rate from pneumonia compared to young adults. This may be causally related to two changes that occur with aging, i.e. decreased growth hormone (GH)/insulin-like growth factor-1 (IGF-1) production and decreased immune function. Data from our laboratory as well as others have shown that, based on either GH secretory dynamics or IGF-1 levels, approximately 40% of adults aged 60 and older are GH deficient. In the same population of subjects, immune function decreases such that there is a decline in cell-mediated and humoral immune responsiveness. Some of these immune deficits have been shown to be reversed in humans and primates by GH and/or IGF-1 treatment. This paper will review some of these data. PMID:8742118

  16. Transient partial growth hormone deficiency due to zinc deficiency.

    PubMed

    Nishi, Y; Hatano, S; Aihara, K; Fujie, A; Kihara, M

    1989-04-01

    We present here a 13-year-old boy with partial growth hormone deficiency due to chronic mild zinc deficiency. When zinc administration was started, his growth rate, growth hormone levels, and plasma zinc concentrations increased significantly. His poor dietary intake resulted in chronic mild zinc deficiency, which in turn could be the cause of a further loss of appetite and growth retardation. There was also a possibility of renal zinc wasting which may have contributed to zinc deficiency. Zinc deficiency should be carefully ruled out in patients with growth retardation. PMID:2708733

  17. Growth hormone deficiency in 18q deletion syndrome

    SciTech Connect

    Ghidoni, P.D.; Cody, J.; Danney, J.

    1994-09-01

    The 18q- syndrome is one of the most common chromosomal deletion syndromes. Clinical characteristics are variable but may include: hypotonia, cleft palate, mental retardation and hearing impairment. Growth failure (GF) (<3% weight/height) is present in 80% of affected individuals. We evaluated growth hormone (GH) sufficiency in 15 patients with 18q- syndrome. Of these 15 patients, 10 have growth failure (<3% weight/height); of the remaining 5, 3 had normal growth parameters and 2 had growth along the 5%. Twelve patients failed to produce adequate GH following standard stimulation testing. Of these 12 patients with inadequate GH production, 2 had normal growth (above 3%). Of the 15, only 1 has normal GH production and normal growth parameters. Bone age was obtained on 1 patient with both GH deficiency and GF, and revealed significant delays. GH levels in response to GH releasing factor were normal in 3 out of 4 patients. MRI studies of GH-deficient patients indicated normal midline structures. Myelination in the few studied GH-deficient patients appeared delayed. The gene for myelin basic protein (MBP) is known to be located on the terminal portion of the long arm of chromosome 18. Neither the gene for GH, GH releasing factor nor GH releasing factor receptor is on chromosome 18. These genes are located on chromosomes 17, chromosome 20 and chromosome 7, respectively. Findings to date suggest that GH deficiency is common in individuals with 18q- syndrome. The etiology of this finding is unknown. We postulate that a gene(s) on chromosome 18q is involved in GH expression.

  18. Growth hormone deficiency during young adulthood and the benefits of growth hormone replacement

    PubMed Central

    Ahmid, M; Perry, C G; Ahmed, S F

    2016-01-01

    Until quite recently, the management of children with growth hormone deficiency (GHD) had focussed on the use of recombinant human GH (rhGH) therapy to normalise final adult height. However, research over the past two decades that has demonstrated deficits in bone health and cardiac function, as well as impaired quality of life in adults with childhood-onset GHD (CO-GHD), has questioned this practice. Some of these studies suggested that there may be short-term benefits of rhGH in certain group of adolescents with GHD during transition, although the impact of GHD and replacement during the transition period has not been adequately investigated and its long-term benefits remain unclear. GH therapy remains expensive and well-designed long-term studies are needed to determine the cost effectiveness and clinical benefit of ongoing rhGH during transition and further into adulthood. In the absence of compelling data to justify widespread continuation of rhGH into adult life, there are several questions related to its use that remain unanswered. This paper reviews the effects of growth hormone deficiency on bone health, cardiovascular function, metabolic profile and quality of life during transition and young adulthood. PMID:27129699

  19. The growth hormone receptor antagonist pegvisomant blocks both mammary gland development and MCF-7 breast cancer xenograft growth.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary gland development is dependent upon the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis, this same axis has also been implicated in breast cancer progression. In this study we investigated the effect of a GH antagonist, pegvisomant (Somavert((R)), Pfizer), on normal mammary gla...

  20. Neuroprotective Actions of Ghrelin and Growth Hormone Secretagogues

    PubMed Central

    Frago, Laura M.; Baquedano, Eva; Argente, Jesús; Chowen, Julie A.

    2011-01-01

    The brain incorporates and coordinates information based on the hormonal environment, receiving information from peripheral tissues through the circulation. Although it was initially thought that hormones only acted on the hypothalamus to perform endocrine functions, it is now known that they in fact exert diverse actions on many different brain regions including the hypothalamus. Ghrelin is a gastric hormone that stimulates growth hormone secretion and food intake to regulate energy homeostasis and body weight by binding to its receptor, growth hormone secretagogues–GH secretagogue-receptor, which is most highly expressed in the pituitary and hypothalamus. In addition, ghrelin has effects on learning and memory, reward and motivation, anxiety, and depression, and could be a potential therapeutic agent in neurodegenerative disorders where excitotoxic neuronal cell death and inflammatory processes are involved. PMID:21994488

  1. Pharmacokinetics and pharmacodynamics of recombinant human growth hormone by subcutaneous jet- or needle-injection in patients with growth hormone deficiency.

    PubMed

    Houdijk, E C; Herdes, E; Delemarre-Van de Waal, H A

    1997-12-01

    Eighteen growth hormone (GH) deficient children and adolescents (11 6/12-20 9/12 y) participated in a randomized open, two-period (4 weeks) cross-over study to evaluate the pharmacokinetics and pharmacodynamics of recombinant human growth hormone (rhGH) administered daily, either by subcutaneous jet-injection or conventional needle-injection. Plasma growth hormone (GH), insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3), glucose, insulin, HbAlc and serum-free fatty acids (FFA) levels were analysed repeatedly. GH absorption characteristics, expressed as AUC(0-infinity), Cmax and Tmax ratio (%) jet-injected over needle-injected were similar in both groups. IGF-I and IGFBP-3 plasma levels were identical in both groups. Serum FFA concentrations were comparable after GH administration with either injection device. Surprisingly nocturnal blood glucose decreased to asymptomatic hypoglycaemic levels in all patients. The results of this study showed equal responses concerning absorption and bioavailability of growth hormone administered daily for 4 weeks by either a jet- or a needle-injection device in GH-deficient children and adolescents. PMID:9475305

  2. COMPLEMENTARY DNA CLONING AND EXPRESSION STUDIES FOR PROLACTIN, GROWTH HORMONE, SOMATOLACTIN AND IGF-I IN YELLOW PERCH PERCA FLAVESCENS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In several species of teleost, the pituitary hormones prolactin (PRL), growth hormone (GH) and somatolactin (SL) show different secretory patterns based on gender and development and can also be influenced by abiotic factors (e.g., salinity, photoperiod & temperature). Plasma insulin-like growth fa...

  3. Growth hormone receptor polymorphism and growth hormone therapy response in children: a Bayesian meta-analysis.

    PubMed

    Renehan, Andrew G; Solomon, Mattea; Zwahlen, Marcel; Morjaria, Reena; Whatmore, Andrew; Audí, Laura; Binder, Gerhard; Blum, Werner; Bougnères, Pierre; Santos, Christine Dos; Carrascosa, Antonio; Hokken-Koelega, Anita; Jorge, Alexander; Mullis, Primus E; Tauber, Maïthé; Patel, Leena; Clayton, Peter E

    2012-05-01

    Recombinant human growth hormone (rhGH) therapy is used in the long-term treatment of children with growth disorders, but there is considerable treatment response variability. The exon 3-deleted growth hormone receptor polymorphism (GHR(d3)) may account for some of this variability. The authors performed a systematic review (to April 2011), including investigator-only data, to quantify the effects of the GHR(fl-d3) and GHR(d3-d3) genotypes on rhGH therapy response and used a recently established Bayesian inheritance model-free approach to meta-analyze the data. The primary outcome was the 1-year change-in-height standard-deviation score for the 2 genotypes. Eighteen data sets from 12 studies (1,527 children) were included. After several prior assumptions were tested, the most appropriate inheritance model was codominant (posterior probability = 0.93). Compared with noncarriers, carriers had median differences in 1-year change-in-height standard-deviation score of 0.09 (95% credible interval (CrI): 0.01, 0.17) for GHR(fl-d3) and of 0.14 (95% CrI: 0.02, 0.26) for GHR(d3-d3). However, the between-study standard deviation of 0.18 (95% CrI: 0.10, 0.33) was considerable. The authors tested by meta-regression for potential modifiers and found no substantial influence. They conclude that 1) the GHR(d3) polymorphism inheritance is codominant, contrasting with previous reports; 2) GHR(d3) genotypes account for modest increases in rhGH effects in children; and 3) considerable unexplained variability in responsiveness remains. PMID:22494952

  4. Levels of hormones and cytokines associated with growth in Honamlı and native hair goats.

    PubMed

    Devrim, A K; Elmaz, O; Mamak, N; Sudagidan, M

    2015-01-01

    This study was designed to assess alterations of hormone and cytokine levels associated with growth period during puberty in Honamlı goats which were identified as a new goat breed and had one of the highest meat production potential among the other goat breeds in Turkey. Honamlı goats are originated from native hair goats, so parallel studies of sampling and analyzing were conducted also in native hair goats which have moderate meat production. Blood serum samples of Honamlı (n=90) and native hair goats (n=90) were obtained from the pure herds in Korkuteli and Ka districts of Anatolia. Concentrations of growth hormone (GH), myostatin (MSTN), insulin-like growth factor (IGF), growth hormone releasing hormone (GHRH), growth hormone releasing peptide (GHRP), leptin, transforming growth factor-betal (TGF-β1) and vascular endothelial cell growth factor (VEGF) levels were measured by ELISA in each breed in the age groups of 4, 8 and 12 months. The present results indicate interesting correlations among the age groups and all the examined hormone and cytokine parameters exhibited significant (P<0.05 and P<0.001) differences. The parameters investigated were usually begun to increase after 4 months of age in the both breeds and sexes. Therefore, this paper supported the view that the beginning of hormonal alterations of goats could occur at 4th month of age. The results reported here emphasize the primary role played by GH, MSTN, IGF-1, leptin, GHRH, GHRP, TGF-βi and VEGF in the first year growth period of goats. PMID:26172195

  5. [dFOXO Transcription Factor Regulates Juvenile Hormone Metabolism in Drosophila melanogaster Females].

    PubMed

    Rauschenbach, I Yu; Karpova, E K; Gruntenko, N E

    2015-09-01

    dFOXO transcription factor is a component of the insulin/insulin-like growth factor signaling pathway in Drosophila. Juvenile hormone negatively regulates dFOXO gene expression. In the present work, the effect of hypomorphic dFOXO mutation on juvenile hormone metabolism under normal and stressing conditions and on D. melanogaster female resistance to thermal stress was studied. It was demonstrated that dFOXO mutation in D. melanogaster females induces (1) an increase in the level of juvenile hormone degradation and in the intensity of the response of the juvenile hormone metabolism system to thermal stress and (2) a decrease in thermal stress resistance. These parameters are indicators of the level of juvenile hormone synthesis and indicate its decrease in females with decreased dFOXO expression. Thus, the presence of feedback in the regulation of dFOXO gene expression by juvenile hormone was established for the first time. PMID:26606805

  6. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  7. Adult Growth Hormone Deficiency – Benefits, Side Effects, and Risks of Growth Hormone Replacement

    PubMed Central

    Reed, Mary L.; Merriam, George R.; Kargi, Atil Y.

    2013-01-01

    Deficiency of growth hormone (GH) in adults results in a syndrome characterized by decreased muscle mass and exercise capacity, increased visceral fat, impaired quality of life, unfavorable alterations in lipid profile and markers of cardiovascular risk, decrease in bone mass and integrity, and increased mortality. When dosed appropriately, GH replacement therapy (GHRT) is well tolerated, with a low incidence of side effects, and improves most of the alterations observed in GH deficiency (GHD); beneficial effects on mortality, cardiovascular events, and fracture rates, however, remain to be conclusively demonstrated. The potential of GH to act as a mitogen has resulted in concern over the possibility of increased de novo tumors or recurrence of pre-existing malignancies in individuals treated with GH. Though studies of adults who received GHRT in childhood have produced conflicting reports in this regard, long-term surveillance of adult GHRT has not demonstrated increased cancer risk or mortality. PMID:23761782

  8. Growth Charts for Prader-Willi Syndrome During Growth Hormone Treatment.

    PubMed

    Butler, Merlin G; Lee, Jaehoon; Cox, Devin M; Manzardo, Ann M; Gold, June-Anne; Miller, Jennifer L; Roof, Elizabeth; Dykens, Elisabeth; Kimonis, Virginia; Driscoll, Daniel J

    2016-09-01

    The purpose of the current study was to develop syndrome-specific standardized growth curves for growth hormone-treated Prader-Willi syndrome (PWS) individuals aged 0 to 18 years. Anthropometric growth-related measures were obtained on 171 subjects with PWS who were treated with growth hormone for at least 40% of their lifespan. They had no history of scoliosis. PWS standardized growth curves were developed for 7 percentile ranges using the LMS method for weight, height, head circumference, weight/length, and BMI along with normative 3rd, 50th, and 97th percentiles plotted using control data from the literature and growth databases. Percentiles were plotted on growth charts for comparison purposes. Growth hormone treatment appears to normalize stature and markedly improves weight in PWS compared with standardized curves for non-growth hormone-treated PWS individuals. Growth chart implications and recommended usage are discussed. PMID:26842920

  9. Growth factors in critical illness: regulation and therapeutic aspects.

    PubMed

    Frost, R A; Lang, C H

    1998-03-01

    The erosion of lean body mass observed during catabolic illness is still a major cause of morbidity and mortality. The known anabolic actions of growth hormone and insulin-like growth factor-I have stimulated interest in the use of these agents to mitigate the loss of muscle protein after injury. This review summarizes advances in our understanding of how nutrition, hormones and proinflammatory cytokines regulate the somatotropic axis in health and disease, and recent studies involving the use of growth hormone or insulin-like growth factor-I in the treatment of critically ill patients. PMID:10565348

  10. Growth hormone-releasing hormone (GHRH) polymorphisms associated with carcass traits of meat in Korean cattle

    PubMed Central

    Cheong, Hyun Sub; Yoon, Du-Hak; Kim, Lyoung Hyo; Park, Byung Lae; Choi, Yoo Hyun; Chung, Eui Ryong; Cho, Yong Min; Park, Eng Woo; Cheong, Il-Cheong; Oh, Sung-Jong; Yi, Sung-Gon; Park, Taesung; Shin, Hyoung Doo

    2006-01-01

    Background Cold carcass weight (CW) and longissimus muscle area (EMA) are the major quantitative traits in beef cattle. In this study, we found several polymorphisms of growth hormone-releasing hormone (GHRH) gene and examined the association of polymorphisms with carcass traits (CW and EMA) in Korean native cattle (Hanwoo). Results By direct DNA sequencing in 24 unrelated Korean cattle, we identified 12 single nucleotide polymorphisms within the 9 kb full gene region, including the 1.5 kb promoter region. Among them, six polymorphic sites were selected for genotyping in our beef cattle (n = 428) and five marker haplotypes (frequency > 0.1) were identified. Statistical analysis revealed that -4241A>T showed significant associations with CW and EMA. Conclusion Our findings suggest that polymorphisms in GHRH might be one of the important genetic factors that influence carcass yield in beef cattle. Sequence variation/haplotype information identified in this study would provide valuable information for the production of a commercial line of beef cattle. PMID:16749938