Science.gov

Sample records for host cell factors

  1. Host Cell Factors in Filovirus Entry: Novel Players, New Insights

    PubMed Central

    Hofmann-Winkler, Heike; Kaup, Franziska; Pöhlmann, Stefan

    2012-01-01

    Filoviruses cause severe hemorrhagic fever in humans with high case-fatality rates. The cellular factors exploited by filoviruses for their spread constitute potential targets for intervention, but are incompletely defined. The viral glycoprotein (GP) mediates filovirus entry into host cells. Recent studies revealed important insights into the host cell molecules engaged by GP for cellular entry. The binding of GP to cellular lectins was found to concentrate virions onto susceptible cells and might contribute to the early and sustained infection of macrophages and dendritic cells, important viral targets. Tyrosine kinase receptors were shown to promote macropinocytic uptake of filoviruses into a subset of susceptible cells without binding to GP, while interactions between GP and human T cell Ig mucin 1 (TIM-1) might contribute to filovirus infection of mucosal epithelial cells. Moreover, GP engagement of the cholesterol transporter Niemann-Pick C1 was demonstrated to be essential for GP-mediated fusion of the viral envelope with a host cell membrane. Finally, mutagenic and structural analyses defined GP domains which interact with these host cell factors. Here, we will review the recent progress in elucidating the molecular interactions underlying filovirus entry and discuss their implications for our understanding of the viral cell tropism. PMID:23342362

  2. Host Cell Factors Involved in the Life Cycle of FMDV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-Mouth Disease Virus (FMDV), like other RNA viruses, recruits various host cell factors to assist in translation and replication of the virus genome. While FMDV translation has been extensively investigated, much remains unknown regarding replication of the positive-sense RNA genome. In thi...

  3. Bacterium-Generated Nitric Oxide Hijacks Host Tumor Necrosis Factor Alpha Signaling and Modulates the Host Cell Cycle In Vitro

    PubMed Central

    Mocca, Brian

    2012-01-01

    In mammalian cells, nitric oxide (NO·) is an important signal molecule with concentration-dependent and often controversial functions of promoting cell survival and inducing cell death. An inducible nitric oxide synthase (iNOS) in various mammalian cells produces higher levels of NO· from l-arginine upon infections to eliminate pathogens. In this study, we reveal novel pathogenic roles of NO· generated by bacteria in bacterium-host cell cocultures using Moraxella catarrhalis, a respiratory tract disease-causing bacterium, as a biological producer of NO·. We recently demonstrated that M. catarrhalis cells that express the nitrite reductase (AniA protein) can produce NO· by reducing nitrite. Our study suggests that, in the presence of pathophysiological levels of nitrite, this opportunistic pathogen hijacks host cell signaling and modulates host gene expression through its ability to produce NO· from nitrite. Bacterium-generated NO· significantly increases the secretion of tumor necrosis factor alpha (TNF-α) and modulates the expression of apoptotic proteins, therefore triggering host cell programmed death partially through TNF-α signaling. Furthermore, our study reveals that bacterium-generated NO· stalls host cell division and directly results in the death of dividing cells by reducing the levels of an essential regulator of cell division. This study provides unique insight into why NO· may exert more severe cytotoxic effects on fast growing cells, providing an important molecular basis for NO·-mediated pathogenesis in infections and possible therapeutic applications of NO·-releasing molecules in tumorigenesis. This study strongly suggests that bacterium-generated NO· can play important pathogenic roles during infections. PMID:22636782

  4. Industrial production of clotting factors: Challenges of expression, and choice of host cells.

    PubMed

    Kumar, Sampath R

    2015-07-01

    The development of recombinant forms of blood coagulation factors as safer alternatives to plasma derived factors marked a major advance in the treatment of common coagulation disorders. These are complex proteins, mostly enzymes or co-enzymes, involving multiple post-translational modifications, and therefore are difficult to express. This article reviews the nature of the expression challenges for the industrial production of these factors, vis-à-vis the translational and post-translational bottlenecks, as well as the choice of host cell lines for high-fidelity production. For achieving high productivities of vitamin K dependent proteins, which include factors II (prothrombin), VII, IX and X, and protein C, host cell limitation of γ-glutamyl carboxylation is a major bottleneck. Despite progress in addressing this, involvement of yet unidentified protein(s) impedes a complete cell engineering solution. Human factor VIII expresses at very low levels due to limitations at several steps in the protein secretion pathway. Protein and cell engineering, vector improvement and alternate host cells promise improvement in the productivity. Production of Von Willebrand factor is constrained by its large size, complex structure, and the need for extensive glycosylation and disulfide-bonded oligomerization. All the licensed therapeutic factors are produced in CHO, BHK or HEK293 cells. While HEK293 is a recent adoption, BHK cells appear to be disfavored. PMID:26099845

  5. Bioinformatic identification of Mycobacterium tuberculosis proteins likely to target host cell mitochondria: virulence factors?

    PubMed Central

    2012-01-01

    Background M. tuberculosis infection either induces or inhibits host cell death, depending on the bacterial strain and the cell microenvironment. There is evidence suggesting a role for mitochondria in these processes. On the other hand, it has been shown that several bacterial proteins are able to target mitochondria, playing a critical role in bacterial pathogenesis and modulation of cell death. However, mycobacteria–derived proteins able to target host cell mitochondria are less studied. Results A bioinformaic analysis based on available genomic sequences of the common laboratory virulent reference strain Mycobacterium tuberculosis H37Rv, the avirulent strain H37Ra, the clinical isolate CDC1551, and M. bovis BCG Pasteur strain 1173P2, as well as of suitable bioinformatic tools (MitoProt II, PSORT II, and SignalP) for the in silico search for proteins likely to be secreted by mycobacteria that could target host cell mitochondria, showed that at least 19 M. tuberculosis proteins could possibly target host cell mitochondria. We experimentally tested this bioinformatic prediction on four M. tuberculosis recombinant proteins chosen from this list of 19 proteins (p27, PE_PGRS1, PE_PGRS33, and MT_1866). Confocal microscopy analyses showed that p27, and PE_PGRS33 proteins colocalize with mitochondria. Conclusions Based on the bioinformatic analysis of whole M. tuberculosis genome sequences, we propose that at least 19 out of 4,246 M. tuberculosis predicted proteins would be able to target host cell mitochondria and, in turn, control mitochondrial physiology. Interestingly, such a list of 19 proteins includes five members of a mycobacteria specific family of proteins (PE/PE_PGRS) thought to be virulence factors, and p27, a well known virulence factor. P27, and PE_PGRS33 proteins experimentally showed to target mitochondria in J774 cells. Our results suggest a link between mitochondrial targeting of M. tuberculosis proteins and virulence. PMID:23259719

  6. Host and Microbial Factors in Regulation of T Cells in the Intestine

    PubMed Central

    Kim, Chang H.

    2013-01-01

    The intestine is divided into specialized tissue areas that provide distinct microenvironments for T cells. Regulation of T-cell responses in the gut has been a major focus of recent research activities in the field. T cells in the intestine are regulated by the interplay between host and microbial factors. In the small intestine, retinoic acid (RA) is a major tissue factor that plays important roles in regulation of immune responses. In the large intestine, the influence of RA diminishes, but that of commensal bacterial products increases. RA, gut microbiota, and inflammatory mediators co-regulate differentiation, distribution, and/or effector functions of T cells. Coordinated regulation of immune responses by these factors promotes well-balanced immunity and immune tolerance. Dysregulation of this process can increase infection and inflammatory diseases. PMID:23772228

  7. Uptake of Host Cell Transforming Growth Factor-β by Trypanosoma cruzi Amastigotes in Cardiomyocytes

    PubMed Central

    Waghabi, Mariana C.; Keramidas, Michelle; Bailly, Sabine; Degrave, Wim; Mendonça-Lima, Leila; Soeiro, Maria de Nazaré C.; Meirelles, Maria de Nazareth L.; Paciornik, Sidnei; Araújo-Jorge, Tania C.; Feige, Jean-Jacques

    2005-01-01

    The cytokine transforming growth factor-β (TGF-β) plays various functions in the control of Trypanosoma cruzi infectivity and in the progression of Chagas’ disease. When we immunostained T. cruzi-infected cardiomyocytes (after either in vivo or in vitro infections) for TGF-β, we observed stronger immunoreactivity in parasites than in host cells. TGF-β immunoreactivity evolved during parasite cycle progression, with intense staining in amastigotes versus very faint staining in trypomastigotes. TGF-β was present on the surface of amastigotes, in the flagellar pocket, and in intraparasitic vesicles as revealed by electron microscopy. However, no ortholog TGF-β gene could be identified in the genome of T. cruzi by in silico analysis or by extensive polymerase chain reaction and reverse transcriptase-polymerase chain reaction studies. Immunoreactive TGF-β was most probably taken up by the parasite from the host cell cytoplasm because such an internalization process of biotinylated TGF-β could be observed in axenic amastigotes in vitro. These observations represent the first example of a novel mechanism by which a primitive unicellular protozoan can use host cell TGF-β to control its own intracellular life cycle. PMID:16192635

  8. A host cell membrane microdomain is a critical factor for organelle discharge by Toxoplasma gondii.

    PubMed

    Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Matsubara, Ryuma; Aonuma, Hiroka; Nagamune, Kisaburo

    2016-10-01

    Host cell microdomains are involved in the attachment, entry, and replication of intracellular microbial pathogens. Entry into the host cell of Toxoplasma gondii and the subsequent survival of this protozoan parasite are tightly coupled with the proteins secreted from organelle called rhoptry. The rhoptry proteins are rapidly discharged into clusters of vesicles, called evacuoles, which are then delivered to parasitophorous vacuoles (PVs) or nucleus. In this study, we examined the roles of two host cell microdomain components, cholesterol and glycosylphosphatidylinositol (GPI), in evacuole formation. The acute depletion of cholesterol from the host cell plasma membrane blocked evacuole formation but not invasion. Whereas the lack of host cell GPI also altered evacuole formation but not invasion, instead inducing excess evacuole formation. The latter effect was not influenced by the evacuole-inhibiting effects of host cell cholesterol depletion, indicating the independent roles of host GPI and cholesterol in evacuole formation. In addition, the excess formation of evacuoles resulted in the enhanced recruitment of host mitochondria and endoplasmic reticulum to PVs, which in turn stimulated the growth of the parasite. PMID:27217289

  9. Differential expression and interaction of host factors augment HIV-1 gene expression in neonatal mononuclear cells

    SciTech Connect

    Sundaravaradan, Vasudha; Mehta, Roshni; Harris, David T.; Zack, Jerome A.; Ahmad, Nafees

    2010-04-25

    We have previously shown a higher level of HIV-1 replication and gene expression in neonatal (cord) blood mononuclear cells (CBMC) compared with adult blood cells (PBMC), which could be due to differential expression of host factors. We performed the gene expression profile of CBMC and PBMC and found that 8013 genes were expressed at higher levels in CBMC than PBMC and 8028 genes in PBMC than CBMC, including 1181 and 1414 genes upregulated after HIV-1 infection in CBMC and PBMC, respectively. Several transcription factors (NF-kappaB, E2F, HAT-1, TFIIE, Cdk9, Cyclin T1), signal transducers (STAT3, STAT5A) and cytokines (IL-1beta, IL-6, IL-10) were upregulated in CBMC than PBMC, which are known to influence HIV-1 replication. In addition, a repressor of HIV-1 transcription, YY1, was down regulated in CBMC than PBMC and several matrix metalloproteinase (MMP-7, -12, -14) were significantly upregulated in HIV-1 infected CBMC than PBMC. Furthermore, we show that CBMC nuclear extracts interacted with a higher extent to HIV-1 LTR cis-acting sequences, including NF-kappaB, NFAT, AP1 and NF-IL6 compared with PBMC nuclear extracts and retroviral based short hairpin RNA (shRNA) for STAT3 and IL-6 down regulated their own and HIV-1 gene expression, signifying that these factors influenced differential HIV-1 gene expression in CBMC than PBMC.

  10. Post-Transcriptional Control of LINE-1 Retrotransposition by Cellular Host Factors in Somatic Cells

    PubMed Central

    Pizarro, Javier G.; Cristofari, Gaël

    2016-01-01

    Long INterspersed Element-1 (LINE-1 or L1) retrotransposons form the only autonomously active family of transposable elements in humans. They are expressed and mobile in the germline, in embryonic stem cells and in the early embryo, but are silenced in most somatic tissues. Consistently, they play an important role in individual genome variations through insertional mutagenesis and sequence transduction, which occasionally lead to novel genetic diseases. In addition, they are reactivated in nearly half of the human epithelial cancers, contributing to tumor genome dynamics. The L1 element codes for two proteins, ORF1p and ORF2p, which are essential for its mobility. ORF1p is an RNA-binding protein with nucleic acid chaperone activity and ORF2p possesses endonuclease and reverse transcriptase activities. These proteins and the L1 RNA assemble into a ribonucleoprotein particle (L1 RNP), considered as the core of the retrotransposition machinery. The L1 RNP mediates the synthesis of new L1 copies upon cleavage of the target DNA and reverse transcription of the L1 RNA at the target site. The L1 element takes benefit of cellular host factors to complete its life cycle, however several cellular pathways also limit the cellular accumulation of L1 RNPs and their deleterious activities. Here, we review the known cellular host factors and pathways that regulate positively or negatively L1 retrotransposition at post-transcriptional level, in particular by interacting with the L1 machinery or L1 replication intermediates; and how they contribute to control L1 activity in somatic cells. PMID:27014690

  11. Risk factors for syngeneic graft-versus-host disease after adult hematopoietic cell transplantation.

    PubMed

    Adams, Kristina M; Holmberg, Leona A; Leisenring, Wendy; Fefer, Alexander; Guthrie, Katherine A; Tylee, Tracy S; McDonald, George B; Bensinger, William I; Nelson, J Lee

    2004-09-15

    Syngeneic graft-versus-host disease (sGVHD) has been described after hematopoietic cell transplantation (HCT) but remains poorly defined. We retrospectively reviewed adult syngeneic HCTs at our center (1980-2002) for sGVHD to investigate incidence, morbidity, and risk factors with a primary focus on parity. Among 119 transplantations, there were 21 cases of biopsy-proven sGVHD. The cumulative incidence was 18%, with multiorgan involvement in 6 cases and 1 death. sGVHD was more frequent when the donor was parous (32%) than nulliparous (9%) or male (13%; P =.03) and when the recipient was parous (31%) than nulliparous (7%) or male (13%; P =.02). Other univariable risk factors included older age (P <.01), busulfan/melphalan/thiotepa conditioning (P <.01), interleukin-2 (P =.02), HLA-A26 (P =.03), and more recent transplantation year (P <.01). Overall, risk factors were similar to those described in GVHD. Although an independent effect of parity could not be completely separated from other factors, donor and recipient pregnancy history merits further investigation. PMID:15117763

  12. Identification of TRAPPC8 as a Host Factor Required for Human Papillomavirus Cell Entry

    PubMed Central

    Ishii, Yoshiyuki; Nakahara, Tomomi; Kataoka, Michiyo; Kusumoto-Matsuo, Rika; Mori, Seiichiro; Takeuchi, Takamasa; Kukimoto, Iwao

    2013-01-01

    Human papillomavirus (HPV) is a non-enveloped virus composed of a circular DNA genome and two capsid proteins, L1 and L2. Multiple interactions between its capsid proteins and host cellular proteins are required for infectious HPV entry, including cell attachment and internalization, intracellular trafficking and viral genome transfer into the nucleus. Using two variants of HPV type 51, the Ma and Nu strains, we have previously reported that MaL2 is required for efficient pseudovirus (PsV) transduction. However, the cellular factors that confer this L2 dependency have not yet been identified. Here we report that the transport protein particle complex subunit 8 (TRAPPC8) specifically interacts with MaL2. TRAPPC8 knockdown in HeLa cells yielded reduced levels of reporter gene expression when inoculated with HPV51Ma, HPV16, and HPV31 PsVs. TRAPPC8 knockdown in HaCaT cells also showed reduced susceptibility to infection with authentic HPV31 virions, indicating that TRAPPC8 plays a crucial role in native HPV infection. Immunofluorescence microscopy revealed that the central region of TRAPPC8 was exposed on the cell surface and colocalized with inoculated PsVs. The entry of Ma, Nu, and L2-lacking PsVs into cells was equally impaired in TRAPPC8 knockdown HeLa cells, suggesting that TRAPPC8-dependent endocytosis plays an important role in HPV entry that is independent of L2 interaction. Finally, expression of GFP-fused L2 that can also interact with TRAPPC8 induced dispersal of the Golgi stack structure in HeLa cells, a phenotype also observed by TRAPPC8 knockdown. These results suggest that during viral intracellular trafficking, binding of L2 to TRAPPC8 inhibits its function resulting in Golgi destabilization, a process that may assist HPV genome escape from the trans-Golgi network. PMID:24244674

  13. Identification of a Transcription Factor That Regulates Host Cell Exit and Virulence of Mycobacterium tuberculosis

    PubMed Central

    Srinivasan, Lalitha; Gurses, Serdar A.; Hurley, Benjamin E.; Miller, Jessica L.; Karakousis, Petros C.; Briken, Volker

    2016-01-01

    The interaction of Mycobacterium tuberculosis (Mtb) with host cell death signaling pathways is characterized by an initial anti-apoptotic phase followed by a pro-necrotic phase to allow for host cell exit of the bacteria. The bacterial modulators regulating necrosis induction are poorly understood. Here we describe the identification of a transcriptional repressor, Rv3167c responsible for regulating the escape of Mtb from the phagosome. Increased cytosolic localization of MtbΔRv3167c was accompanied by elevated levels of mitochondrial reactive oxygen species and reduced activation of the protein kinase Akt, and these events were critical for the induction of host cell necrosis and macroautophagy. The increase in necrosis led to an increase in bacterial virulence as reflected in higher bacterial burden and reduced survival of mice infected with MtbΔRv3167c. The regulon of Rv3167c thus contains the bacterial mediators involved in escape from the phagosome and host cell necrosis induction, both of which are crucial steps in the intracellular lifecycle and virulence of Mtb. PMID:27191591

  14. Microscopy-based Assays for High-throughput Screening of Host Factors Involved in Brucella Infection of Hela Cells.

    PubMed

    Casanova, Alain; Low, Shyan H; Emmenlauer, Mario; Conde-Alvarez, Raquel; Salcedo, Suzana P; Gorvel, Jean-Pierre; Dehio, Christoph

    2016-01-01

    Brucella species are facultative intracellular pathogens that infect animals as their natural hosts. Transmission to humans is most commonly caused by direct contact with infected animals or by ingestion of contaminated food and can lead to severe chronic infections. Brucella can invade professional and non-professional phagocytic cells and replicates within endoplasmic reticulum (ER)-derived vacuoles. The host factors required for Brucella entry into host cells, avoidance of lysosomal degradation, and replication in the ER-like compartment remain largely unknown. Here we describe two assays to identify host factors involved in Brucella entry and replication in HeLa cells. The protocols describe the use of RNA interference, while alternative screening methods could be applied. The assays are based on the detection of fluorescently labeled bacteria in fluorescently labeled host cells using automated wide-field microscopy. The fluorescent images are analyzed using a standardized image analysis pipeline in CellProfiler which allows single cell-based infection scoring. In the endpoint assay, intracellular replication is measured two days after infection. This allows bacteria to traffic to their replicative niche where proliferation is initiated around 12 hr after bacterial entry. Brucella which have successfully established an intracellular niche will thus have strongly proliferated inside host cells. Since intracellular bacteria will greatly outnumber individual extracellular or intracellular non-replicative bacteria, a strain constitutively expressing GFP can be used. The strong GFP signal is then used to identify infected cells. In contrast, for the entry assay it is essential to differentiate between intracellular and extracellular bacteria. Here, a strain encoding for a tetracycline-inducible GFP is used. Induction of GFP with simultaneous inactivation of extracellular bacteria by gentamicin enables the differentiation between intracellular and extracellular

  15. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication

    PubMed Central

    Tseng, Chin-Kai; Lin, Chun-Kuang; Wu, Yu-Hsuan; Chen, Yen-Hsu; Chen, Wei-Chun; Young, Kung-Chia; Lee, Jin-Ching

    2016-01-01

    Dengue virus (DENV) infection and replication induces oxidative stress, which further contributes to the progression and pathogenesis of the DENV infection. Modulation of host antioxidant molecules may be a useful strategy for interfering with DENV replication. In this study, we showed that induction or exogenous overexpression of heme oxygenase-1 (HO-1), an antioxidant enzyme, effectively inhibited DENV replication in DENV-infected Huh-7 cells. This antiviral effect of HO-1 was attenuated by its inhibitor tin protoporphyrin (SnPP), suggesting that HO-1 was an important cellular factor against DENV replication. Biliverdin but not carbon monoxide and ferrous ions, which are products of the HO-1 on heme, mediated the HO-1-induced anti-DENV effect by non-competitively inhibiting DENV protease, with an inhibition constant (Ki) of 8.55 ± 0.38 μM. Moreover, HO-1 induction or its exogenous overexpression, rescued DENV-suppressed antiviral interferon response. Moreover, we showed that HO-1 induction by cobalt protoporphyrin (CoPP) and andrographolide, a natural product, as evidenced by a significant delay in the onset of disease and mortality, and virus load in the infected mice’s brains. These findings clearly revealed that a drug or therapy that induced the HO-1 signal pathway was a promising strategy for treating DENV infection. PMID:27553177

  16. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication.

    PubMed

    Tseng, Chin-Kai; Lin, Chun-Kuang; Wu, Yu-Hsuan; Chen, Yen-Hsu; Chen, Wei-Chun; Young, Kung-Chia; Lee, Jin-Ching

    2016-01-01

    Dengue virus (DENV) infection and replication induces oxidative stress, which further contributes to the progression and pathogenesis of the DENV infection. Modulation of host antioxidant molecules may be a useful strategy for interfering with DENV replication. In this study, we showed that induction or exogenous overexpression of heme oxygenase-1 (HO-1), an antioxidant enzyme, effectively inhibited DENV replication in DENV-infected Huh-7 cells. This antiviral effect of HO-1 was attenuated by its inhibitor tin protoporphyrin (SnPP), suggesting that HO-1 was an important cellular factor against DENV replication. Biliverdin but not carbon monoxide and ferrous ions, which are products of the HO-1 on heme, mediated the HO-1-induced anti-DENV effect by non-competitively inhibiting DENV protease, with an inhibition constant (Ki) of 8.55 ± 0.38 μM. Moreover, HO-1 induction or its exogenous overexpression, rescued DENV-suppressed antiviral interferon response. Moreover, we showed that HO-1 induction by cobalt protoporphyrin (CoPP) and andrographolide, a natural product, as evidenced by a significant delay in the onset of disease and mortality, and virus load in the infected mice's brains. These findings clearly revealed that a drug or therapy that induced the HO-1 signal pathway was a promising strategy for treating DENV infection. PMID:27553177

  17. Knockdown of specific host factors protects against influenza virus-induced cell death

    PubMed Central

    Tran, A T; Rahim, M N; Ranadheera, C; Kroeker, A; Cortens, J P; Opanubi, K J; Wilkins, J A; Coombs, K M

    2013-01-01

    Cell death is a characteristic consequence of cellular infection by influenza virus. Mounting evidence indicates the critical involvement of host-mediated cellular death pathways in promoting efficient influenza virus replication. Furthermore, it appears that many signaling pathways, such as NF-κB, formerly suspected to solely promote cell survival, can also be manipulated to induce cell death. Current understanding of the cell death pathways involved in influenza virus-mediated cytopathology and in virus replication is limited. This study was designed to identify host genes that are required for influenza-induced cell death. The approach was to perform genome-wide lentiviral-mediated human gene silencing in A549 cells and determine which genes could be silenced to provide resistance to influenza-induced cell death. The assay proved to be highly reproducible with 138 genes being identified in independent screens. The results were independently validated using siRNA to each of these candidates. Graded protection was observed in this screen with the silencing of any of 19 genes, each providing >85% protection. Three gene products, TNFSF13 (APRIL), TNFSF12-TNFSF13 (TWE-PRIL) and USP47, were selected because of the high levels of protection conferred by their silencing. Protein and mRNA silencing and protection from influenza-induced cell death was confirmed using multiple shRNA clones and siRNA, indicating the specificity of the effects. USP47 knockdown prevented proper viral entry into the host cell, whereas TNFSF12-13/TNFSF13 knockdown blocked a late stage in viral replication. This screening approach offers the means to identify a large number of potential candidates for the analysis of viral-induced cell death. These results may also have much broader applicability in defining regulatory mechanisms involved in cell survival. PMID:23949218

  18. Identification of Host Cell Factors Associated with Astrovirus Replication in Caco-2 Cells

    PubMed Central

    Murillo, Andrea; Vera-Estrella, Rosario; Barkla, Bronwyn J.; Méndez, Ernesto

    2015-01-01

    ABSTRACT Astroviruses are small, nonenveloped viruses with a single-stranded positive-sense RNA genome causing acute gastroenteritis in children and immunocompromised patients. Since positive-sense RNA viruses have frequently been found to replicate in association with membranous structures, in this work we characterized the replication of the human astrovirus serotype 8 strain Yuc8 in Caco-2 cells, using density gradient centrifugation and free-flow zonal electrophoresis (FFZE) to fractionate cellular membranes. Structural and nonstructural viral proteins, positive- and negative-sense viral RNA, and infectious virus particles were found to be associated with a distinct population of membranes separated by FFZE. The cellular proteins associated with this membrane population in infected and mock-infected cells were identified by tandem mass spectrometry. The results indicated that membranes derived from multiple cell organelles were present in the population. Gene ontology and protein-protein interaction network analysis showed that groups of proteins with roles in fatty acid synthesis and ATP biosynthesis were highly enriched in the fractions of this population in infected cells. Based on this information, we investigated by RNA interference the role that some of the identified proteins might have in the replication cycle of the virus. Silencing of the expression of genes involved in cholesterol (DHCR7, CYP51A1) and fatty acid (FASN) synthesis, phosphatidylinositol (PI4KIIIβ) and inositol phosphate (ITPR3) metabolism, and RNA helicase activity (DDX23) significantly decreased the amounts of Yuc8 genomic and antigenomic RNA, synthesis of the structural protein VP90, and virus yield. These results strongly suggest that astrovirus RNA replication and particle assembly take place in association with modified membranes potentially derived from multiple cell organelles. IMPORTANCE Astroviruses are common etiological agents of acute gastroenteritis in children and

  19. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements

    PubMed Central

    Viktorovskaya, Olga V.; Greco, Todd M.; Cristea, Ileana M.; Thompson, Sunnie R.

    2016-01-01

    Background There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication. Methodology/Principal Findings Seventy-nine novel RNA binding proteins for dengue virus (DENV) were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated. Conclusions/Significance The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with

  20. Host restriction factors for hepatitis C virus

    PubMed Central

    Zhou, Li-Ya; Zhang, Lei-Liang

    2016-01-01

    Host-hepatitis C virus (HCV) interactions have both informed fundamental concepts of viral replication and pathogenesis and provided novel insights into host cell biology. These findings are illustrated by the recent discovery of host-encoded factors that restrict HCV infection. In this review, we briefly discuss these restriction factors in different steps of HCV infection. In each case, we discuss how these restriction factors were identified, the mechanisms by which they inhibit HCV infection and their potential contribution to viral pathogenesis. PMID:26819515

  1. Dendritic Cell-Lymphocyte Cross Talk Downregulates Host Restriction Factor SAMHD1 and Stimulates HIV-1 Replication in Dendritic Cells

    PubMed Central

    Biedma, Marina Elizabeth; Lederle, Alexandre; Peressin, Maryse; Lambotin, Mélanie; Proust, Alizé; Decoville, Thomas; Schmidt, Sylvie; Laumond, Géraldine

    2014-01-01

    ABSTRACT Human immunodeficiency virus type 1 (HIV-1) replication in dendritic cells (DCs) is restricted by SAMHD1. This factor is counteracted by the viral protein Vpx; Vpx is found in HIV-2 and simian immunodeficiency virus (SIV) from sooty mangabeys (SIVsm) or from macaques (SIVmac) but is absent from HIV-1. We previously observed that HIV-1 replication in immature DCs is stimulated by cocultivation with primary T and B lymphocytes, suggesting that HIV-1 restriction in DCs may be overcome under coculture conditions. Here, we aimed to decipher the mechanism of SAMHD1-mediated restriction in DC-lymphocyte coculture. We found that coculture with lymphocytes downregulated SAMHD1 expression and was associated with increased HIV-1 replication in DCs. Moreover, in infected DC-T lymphocyte cocultures, DCs acquired maturation status and secreted type 1 interferon (alpha interferon [IFN-α]). The blockade of DC-lymphocyte cross talk by anti-ICAM-1 antibody markedly inhibited the stimulation of HIV-1 replication and prevented the downregulation of SAMHD1 expression in cocultured DCs. These results demonstrate that, in contrast to purified DCs, cross talk with lymphocytes downregulates SAMHD1 expression in DCs, triggering HIV-1 replication and an antiviral immune response. Therefore, HIV-1 replication and immune sensing by DCs should be investigated in more physiologically relevant models of DC/lymphocyte coculture. IMPORTANCE SAMHD1 restricts HIV-1 replication in dendritic cells (DCs). Here, we demonstrate that, in a coculture model of DCs and lymphocytes mimicking early mucosal HIV-1 infection, stimulation of HIV-1 replication in DCs is associated with downregulation of SAMHD1 expression and activation of innate immune sensing by DCs. We propose that DC-lymphocyte cross talk occurring in vivo modulates host restriction factor SAMHD1, promoting HIV-1 replication in cellular reservoirs and stimulating immune sensing. PMID:24574390

  2. Inhibition of host cell RNA polymerase III-mediated transcription by poliovirus: Inactivation of specific transcription factors

    SciTech Connect

    Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.; Dasgupta, A.

    1987-11-01

    The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription of RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.

  3. Binding of Host Factors Influences Internalization and Intracellular Trafficking of Streptococcus uberis in Bovine Mammary Epithelial Cells

    PubMed Central

    Almeida, Raul A.; Dunlap, John R.; Oliver, Stephen P.

    2010-01-01

    We showed that internalization of Streptococcus uberis into bovine mammary epithelial cells occurred through receptor- (RME) and caveolae-mediated endocytosis (CME). We reported also that treatment of S. uberis with host proteins including lactoferrin (LF) enhanced its internalization into host cells. Since the underlying mechanism(s) involved in such enhancement was unknown we investigated if preincubation of S. uberis with host proteins drives internalization of this pathogen into host cells through CME. Thus, experiments involving coculture of collagen-, fibronectin-, and LF-pretreated S. uberis with bovine mammary epithelial cells treated with RME and CME inhibitors were conducted. Results showed that internalization of host proteins-pretreated S. uberis into mammary epithelial cells treated with RME inhibitors was higher than that of untreated controls. These results suggest that pretreatment with selected host proteins commits S. uberis to CME, thus avoiding intracellular bactericidal mechanisms and allowing its persistence into bovine mammary epithelial cells. PMID:20614000

  4. Validation-based insertional mutagenesis for identification of Nup214 as a host factor for EV71 replication in RD cells

    SciTech Connect

    Wang, Bei; Zhang, XiaoYu; Zhao, Zhendong

    2013-08-02

    Highlights: •We introduced a new mutagenesis strategy named VBIM to the viral research. •This method can identify either host factors or host restriction factors. •Using VBIM system, we identified Nup214 as a host factor for EV71 replication in RD cells. -- Abstract: Lentiviral validation-based insertional mutagenesis (VBIM) is a sophisticated, forward genetic approach that is used for the investigation of signal transduction in mammalian cells. Using VBIM, we conducted function-based genetic screening for host genes that affect enterovirus 71 (EV71) viral replication. This included host factors that are required for the life cycle of EV71 and host restriction factors that inhibit EV71 replication. Several cell clones, resistant to EV71, were produced using EV71 infection as a selection pressure and the nuclear pore protein 214 (Nup214) was identified as a host factor required for EV71 replication. In SD2-2, the corresponding VBIM lentivirus transformed clone, the expression of endogenous Nup214 was significantly down-regulated by the reverse inserted VBIM promoter. After Cre recombinase-mediated excision of the VBIM promoter, the expression of Nup214 recovered and the clone regained sensitivity to the EV71 infection. Furthermore, over-expression of Nup214 in the cells suggested that Nup214 was promoting EV71 replication. Results of this study indicate that a successful mutagenesis strategy has been established for screening host genes related to viral replication.

  5. Nuclear Localization of the C1 Factor (Host Cell Factor) in Sensory Neurons Correlates with Reactivation of Herpes Simplex Virus from Latency

    NASA Astrophysics Data System (ADS)

    Kristie, Thomas M.; Vogel, Jodi L.; Sears, Amy E.

    1999-02-01

    After a primary infection, herpes simplex virus is maintained in a latent state in neurons of sensory ganglia until complex stimuli reactivate viral lytic replication. Although the mechanisms governing reactivation from the latent state remain unknown, the regulated expression of the viral immediate early genes represents a critical point in this process. These genes are controlled by transcription enhancer complexes whose assembly requires and is coordinated by the cellular C1 factor (host cell factor). In contrast to other tissues, the C1 factor is not detected in the nuclei of sensory neurons. Experimental conditions that induce the reactivation of herpes simplex virus in mouse model systems result in rapid nuclear localization of the protein, indicating that the C1 factor is sequestered in these cells until reactivation signals induce a redistribution of the protein. The regulated localization suggests that C1 is a critical switch determinant of the viral lytic-latent cycle.

  6. The Role of Host and Microbial Factors in the Pathogenesis of Pneumococcal Bacteraemia Arising from a Single Bacterial Cell Bottleneck

    PubMed Central

    Furi, Leonardo; Braccini, Tiziana; Manso, Ana Sousa; Pammolli, Andrea; Wang, Bo; Vivi, Antonio; Tassini, Maria; van Rooijen, Nico; Pozzi, Gianni; Ricci, Susanna; Andrew, Peter W.; Koedel, Uwe; Moxon, E. Richard; Oggioni, Marco R.

    2014-01-01

    The pathogenesis of bacteraemia after challenge with one million pneumococci of three isogenic variants was investigated. Sequential analyses of blood samples indicated that most episodes of bacteraemia were monoclonal events providing compelling evidence for a single bacterial cell bottleneck at the origin of invasive disease. With respect to host determinants, results identified novel properties of splenic macrophages and a role for neutrophils in early clearance of pneumococci. Concerning microbial factors, whole genome sequencing provided genetic evidence for the clonal origin of the bacteraemia and identified SNPs in distinct sub-units of F0/F1 ATPase in the majority of the ex vivo isolates. When compared to parental organisms of the inoculum, ex-vivo pneumococci with mutant alleles of the F0/F1 ATPase had acquired the capacity to grow at low pH at the cost of the capacity to grow at high pH. Although founded by a single cell, the genotypes of pneumococci in septicaemic mice indicate strong selective pressure for fitness, emphasising the within-host complexity of the pathogenesis of invasive disease. PMID:24651834

  7. A Granulin-Like Growth Factor Secreted by the Carcinogenic Liver Fluke, Opisthorchis viverrini, Promotes Proliferation of Host Cells

    PubMed Central

    Smout, Michael J.; Laha, Thewarach; Mulvenna, Jason; Sripa, Banchob; Suttiprapa, Sutas; Jones, Alun; Brindley, Paul J.; Loukas, Alex

    2009-01-01

    The human liver fluke, Opisthorchis viverrini, infects millions of people throughout south-east Asia and is a major cause of cholangiocarcinoma, or cancer of the bile ducts. The mechanisms by which chronic infection with O. viverrini results in cholangiocarcinogenesis are multi-factorial, but one such mechanism is the secretion of parasite proteins with mitogenic properties into the bile ducts, driving cell proliferation and creating a tumorigenic environment. Using a proteomic approach, we identified a homologue of human granulin, a potent growth factor involved in cell proliferation and wound healing, in the excretory/secretory (ES) products of the parasite. O. viverrini granulin, termed Ov-GRN-1, was expressed in most parasite tissues, particularly the gut and tegument. Furthermore, Ov-GRN-1 was detected in situ on the surface of biliary epithelial cells of hamsters experimentally infected with O. viverrini. Recombinant Ov-GRN-1 was expressed in E. coli and refolded from inclusion bodies. Refolded protein stimulated proliferation of murine fibroblasts at nanomolar concentrations, and proliferation was inhibited by the MAPK kinase inhibitor, U0126. Antibodies raised to recombinant Ov-GRN-1 inhibited the ability of O. viverrini ES products to induce proliferation of murine fibroblasts and a human cholangiocarcinoma cell line in vitro, indicating that Ov-GRN-1 is the major growth factor present in O. viverrini ES products. This is the first report of a secreted growth factor from a parasitic worm that induces proliferation of host cells, and supports a role for this fluke protein in establishment of a tumorigenic environment that may ultimately manifest as cholangiocarcinoma. PMID:19816559

  8. Interaction of MYC with host cell factor-1 is mediated by the evolutionarily conserved Myc box IV motif.

    PubMed

    Thomas, L R; Foshage, A M; Weissmiller, A M; Popay, T M; Grieb, B C; Qualls, S J; Ng, V; Carboneau, B; Lorey, S; Eischen, C M; Tansey, W P

    2016-07-01

    The MYC family of oncogenes encodes a set of three related transcription factors that are overexpressed in many human tumors and contribute to the cancer-related deaths of more than 70,000 Americans every year. MYC proteins drive tumorigenesis by interacting with co-factors that enable them to regulate the expression of thousands of genes linked to cell growth, proliferation, metabolism and genome stability. One effective way to identify critical co-factors required for MYC function has been to focus on sequence motifs within MYC that are conserved throughout evolution, on the assumption that their conservation is driven by protein-protein interactions that are vital for MYC activity. In addition to their DNA-binding domains, MYC proteins carry five regions of high sequence conservation known as Myc boxes (Mb). To date, four of the Mb motifs (MbI, MbII, MbIIIa and MbIIIb) have had a molecular function assigned to them, but the precise role of the remaining Mb, MbIV, and the reason for its preservation in vertebrate Myc proteins, is unknown. Here, we show that MbIV is required for the association of MYC with the abundant transcriptional coregulator host cell factor-1 (HCF-1). We show that the invariant core of MbIV resembles the tetrapeptide HCF-binding motif (HBM) found in many HCF-interaction partners, and demonstrate that MYC interacts with HCF-1 in a manner indistinguishable from the prototypical HBM-containing protein VP16. Finally, we show that rationalized point mutations in MYC that disrupt interaction with HCF-1 attenuate the ability of MYC to drive tumorigenesis in mice. Together, these data expose a molecular function for MbIV and indicate that HCF-1 is an important co-factor for MYC. PMID:26522729

  9. Structural Basis of the Novel S. pneumoniae Virulence Factor, GHIP, a Glycosyl Hydrolase 25 Participating in Host-Cell Invasion

    PubMed Central

    Niu, Siqiang; Luo, Miao; Tang, Jian; Zhou, Hua; Zhang, Yangli; Min, Xun; Cai, Xuefei; Zhang, Wenlu; Xu, Wenchu; Li, Defeng; Ding, Jingjin; Hu, Yonglin; Wang, Dacheng; Huang, Ailong

    2013-01-01

    Pathogenic bacteria produce a wide variety of virulence factors that are considered to be potential antibiotic targets. In this study, we report the crystal structure of a novel S. pneumoniae virulence factor, GHIP, which is a streptococcus-specific glycosyl hydrolase. This novel structure exhibits an α/β-barrel fold that slightly differs from other characterized hydrolases. The GHIP active site, located at the negatively charged groove in the barrel, is very similar to the active site in known peptidoglycan hydrolases. Functionally, GHIP exhibited weak enzymatic activity to hydrolyze the PNP-(GlcNAc)5 peptidoglycan by the general acid/base catalytic mechanism. Animal experiments demonstrated a marked attenuation of S. pneumoniae-mediated virulence in mice infected by ΔGHIP-deficient strains, suggesting that GHIP functions as a novel S. pneumoniae virulence factor. Furthermore, GHIP participates in allowing S. pneumoniae to colonize the nasopharynx and invade host epithelial cells. Taken together, these findings suggest that GHIP can potentially serve as an antibiotic target to effectively treat streptococcus-mediated infection. PMID:23874703

  10. Coagulation Factor IX Mediates Serotype-Specific Binding of Species A Adenoviruses to Host Cells ▿ †

    PubMed Central

    Lenman, Annasara; Müller, Steffen; Nygren, Mari I.; Frängsmyr, Lars; Stehle, Thilo; Arnberg, Niklas

    2011-01-01

    Human species A adenoviruses (HAdVs) comprise three serotypes: HAdV-12, -18, and -31. These viruses are common pathogens and cause systemic infections that usually involve the airways and/or intestine. In immunocompromised individuals, species A adenoviruses in general, and HAdV-31 in particular, cause life-threatening infections. By combining binding and infection experiments, we demonstrate that coagulation factor IX (FIX) efficiently enhances binding and infection by HAdV-18 and HAdV-31, but not by HAdV-12, in epithelial cells originating from the airways or intestine. This is markedly different from the mechanism for HAdV-5 and other human adenoviruses, which utilize coagulation factor X (FX) for infection of host cells. Surface plasmon resonance experiments revealed that the affinity of the HAdV-31 hexon-FIX interaction is higher than that of the HAdV-5 hexon-FX interaction and that the half-lives of these interactions are profoundly different. Moreover, both HAdV-31–FIX and HAdV-5–FX complexes bind to heparan sulfate-containing glycosaminoglycans (GAGs) on target cells, but binding studies utilizing cells expressing specific GAGs and GAG-cleaving enzymes revealed differences in GAG dependence and specificity between these two complexes. These findings add to our understanding of the intricate infection pathways used by human adenoviruses, and they may contribute to better design of HAdV-based vectors for gene and cancer therapy. Furthermore, the interaction between the HAdV-31 hexon and FIX may also serve as a target for antiviral treatment. PMID:21976659

  11. TUMOR AND HOST FACTORS THAT MAY LIMIT EFFICACY OF CHEMOTHERAPY IN NON-SMALL CELL AND SMALL CELL LUNG CANCER

    PubMed Central

    Stewart, David J.

    2010-01-01

    While chemotherapy provides useful palliation, advanced lung cancer remains incurable since those tumors that are initially sensitive to therapy rapidly develop acquired resistance. Resistance may arise from impaired drug delivery, extracellular factors, decreased drug uptake into tumor cells, increased drug efflux, drug inactivation by detoxifying factors, decreased drug activation or binding to target, altered target, increased damage repair, tolerance of damage, decreased proapoptotic factors, increased antiapoptotic factors, or altered cell cycling or transcription factors. Factors for which there is now substantial clinical evidence of a link to small cell lung cancer (SCLC) resistance to chemotherapy include MRP (for platinum-based combination chemotherapy) and MDR1/P-gp (for non-platinum agents). SPECT MIBI and Tc-TF scanning appears to predict chemotherapy benefit in SCLC. In non-small cell lung cancer (NSCLC), the strongest clinical evidence is for taxane resistance with elevated expression or mutation of class III β-tubulin (and possibly α tubulin), platinum resistance and expression of ERCC1 or BCRP, gemcitabine resistance and RRM1 expression, and resistance to several agents and COX-2 expression (although COX-2 inhibitors have had minimal impact on drug efficacy clinically). Tumors expressing high BRCA1 may have increased resistance to platinums but increased sensitivity to taxanes. Limited early clinical data suggest that chemotherapy resistance in NSCLC may also be increased with decreased expression of cyclin B1 or of Eg5, or with increased expression of ICAM, matrilysin, osteopontin, DDH, survivin, PCDGF, caveolin-1, p21WAF1/CIP1, or 14-3-3sigma, and that IGF-1R inhibitors may increase efficacy of chemotherapy, particularly in squamous cell carcinomas. Equivocal data (with some positive studies but other negative studies) suggest that NSCLC tumors with some EGFR mutations may have increased sensitivity to chemotherapy, while K-ras mutations and

  12. Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer.

    PubMed

    Stewart, David J

    2010-09-01

    While chemotherapy provides useful palliation, advanced lung cancer remains incurable since those tumors that are initially sensitive to therapy rapidly develop acquired resistance. Resistance may arise from impaired drug delivery, extracellular factors, decreased drug uptake into tumor cells, increased drug efflux, drug inactivation by detoxifying factors, decreased drug activation or binding to target, altered target, increased damage repair, tolerance of damage, decreased proapoptotic factors, increased antiapoptotic factors, or altered cell cycling or transcription factors. Factors for which there is now substantial clinical evidence of a link to small cell lung cancer (SCLC) resistance to chemotherapy include MRP (for platinum-based combination chemotherapy) and MDR1/P-gp (for non-platinum agents). SPECT MIBI and Tc-TF scanning appears to predict chemotherapy benefit in SCLC. In non-small cell lung cancer (NSCLC), the strongest clinical evidence is for taxane resistance with elevated expression or mutation of class III beta-tubulin (and possibly alpha tubulin), platinum resistance and expression of ERCC1 or BCRP, gemcitabine resistance and RRM1 expression, and resistance to several agents and COX-2 expression (although COX-2 inhibitors have had minimal impact on drug efficacy clinically). Tumors expressing high BRCA1 may have increased resistance to platinums but increased sensitivity to taxanes. Limited early clinical data suggest that chemotherapy resistance in NSCLC may also be increased with decreased expression of cyclin B1 or of Eg5, or with increased expression of ICAM, matrilysin, osteopontin, DDH, survivin, PCDGF, caveolin-1, p21WAF1/CIP1, or 14-3-3sigma, and that IGF-1R inhibitors may increase efficacy of chemotherapy, particularly in squamous cell carcinomas. Equivocal data (with some positive studies but other negative studies) suggest that NSCLC tumors with some EGFR mutations may have increased sensitivity to chemotherapy, while K-ras mutations

  13. Interaction of the human cytomegalovirus particle with the host cell induces hypoxia-inducible factor 1 alpha

    SciTech Connect

    McFarlane, Steven; Nicholl, Mary Jane; Sutherland, Jane S.; Preston, Chris M.

    2011-05-25

    The cellular protein hypoxia-inducible factor 1 alpha (HIF-1{alpha}) was induced after infection of human fibroblasts with human cytomegalovirus (HCMV). HCMV irradiated with ultraviolet light (uv-HCMV) also elicited the effect, demonstrating that the response was provoked by interaction of the infecting virion with the cell and that viral gene expression was not required. Although induction of HIF-1{alpha} was initiated by an early event, accumulation of the protein was not detected until 9 hours post infection, with levels increasing thereafter. Infection with uv-HCMV resulted in increased abundance of HIF-1{alpha}-specific RNA, indicating stimulation of transcription. In addition, greater phosphorylation of the protein kinase Akt was observed, and the activity of this enzyme was required for induction of HIF-1{alpha} to occur. HIF-1{alpha} controls the expression of many cellular gene products; therefore the findings reveal new ways in which interaction of the HCMV particle with the host cell may cause significant alterations to cellular physiology.

  14. Host cell factor-1 recruitment to E2F-bound and cell-cycle-control genes is mediated by THAP11 and ZNF143.

    PubMed

    Parker, J Brandon; Yin, Hanwei; Vinckevicius, Aurimas; Chakravarti, Debabrata

    2014-11-01

    Host cell factor-1 (HCF-1) is a metazoan transcriptional coregulator essential for cell-cycle progression and cell proliferation. Current models suggest a mechanism whereby HCF-1 functions as a direct coregulator of E2F proteins, facilitating the expression of genes necessary for cell proliferation. In this report, we show that HCF-1 recruitment to numerous E2F-bound promoters is mediated by the concerted action of zinc finger transcription factors THAP11 and ZNF143, rather than E2F proteins directly. THAP11, ZNF143, and HCF-1 form a mutually dependent complex on chromatin, which is independent of E2F occupancy. Disruption of the THAP11/ZNF143/HCF-1 complex results in altered expression of cell-cycle control genes and leads to reduced cell proliferation, cell-cycle progression, and cell viability. These data establish a model in which a THAP11/ZNF143/HCF-1 complex is a critical component of the transcriptional regulatory network governing cell proliferation. PMID:25437553

  15. Host Cell Factor-1 Recruitment to E2F-bound and Cell Cycle Control Genes is Mediated by THAP11 and ZNF143

    PubMed Central

    Parker, J. Brandon; Yin, Hanwei; Vinckevicius, Aurimas; Chakravarti, Debabrata

    2014-01-01

    Summary Host cell factor-1 (HCF-1) is a metazoan transcriptional co-regulator essential for cell cycle progression and cell proliferation. Current models suggest a mechanism whereby HCF-1 functions as a direct co-regulator of E2F proteins, facilitating the expression of genes necessary for cell proliferation. In this report, we show that HCF-1 recruitment to numerous E2F-bound promoters is mediated by the concerted action of zinc finger transcription factors THAP11 and ZNF143, rather than E2F proteins directly. THAP11, ZNF143, and HCF-1 form a mutually dependent complex on chromatin, which is independent of E2F occupancy. Disruption of the THAP11/ZNF143/HCF-1 complex results in altered expression of cell cycle control genes and leads to reduced cell proliferation, cell cycle progression, and cell viability. These data establish a new model which suggests that a THAP11/ZNF143/HCF-1 complex is a critical component of the transcriptional regulatory network governing cell proliferation. PMID:25437553

  16. [Validation of the modified algorithm for predicting host susceptibility to viruses taking into account susceptibility parameters of primary target cell cultures and natural immunity factors].

    PubMed

    Zhukov, V A; Shishkina, L N; Safatov, A S; Sergeev, A A; P'iankov, O V; Petrishchenko, V A; Zaĭtsev, B N; Toporkov, V S; Sergeev, A N; Nesvizhskiĭ, Iu V; Vorob'ev, A A

    2010-01-01

    The paper presents results of testing a modified algorithm for predicting virus ID50 values in a host of interest by extrapolation from a model host taking into account immune neutralizing factors and thermal inactivation of the virus. The method was tested for A/Aichi/2/68 influenza virus in SPF Wistar rats, SPF CD-1 mice and conventional ICR mice. Each species was used as a host of interest while the other two served as model hosts. Primary lung and trachea cells and secretory factors of the rats' airway epithelium were used to measure parameters needed for the purpose of prediction. Predicted ID50 values were not significantly different (p = 0.05) from those experimentally measured in vivo. The study was supported by ISTC/DARPA Agreement 450p. PMID:20608042

  17. Infection of human urethral epithelium with Neisseria gonorrhoeae elicits an upregulation of host anti-apoptotic factors and protects cells from staurosporine-induced apoptosis.

    PubMed

    Binnicker, Matthew J; Williams, Richard D; Apicella, Michael A

    2003-08-01

    In order to better understand the host response to an infection with Neisseria gonorrhoeae, microarray technology was used to analyse the gene expression profile between uninfected and infected human urethral epithelium. The anti-apoptotic genes bfl-1, cox-2 and c-IAP-2 were identified to be upregulated approximately eight-, four- or twofold, respectively, following infection. Subsequent assays including RT-PCR, real time RT-PCR and RNase protection confirmed the increased expression of these apoptotic regulators, and identified that a fourth anti-apoptotic factor, mcl-1, is also upregulated. RT-PCR and RNase protection also showed that key pro-apoptotic factors including bax, bad and bak do not change in expression. Furthermore, our studies demonstrated that infection with the gonococcus partially protects urethral epithelium from apoptosis induced by the protein kinase inhibitor, staurosporine (STS). This work shows that following infection with Neisseria gonorrhoeae, several host anti-apoptotic factors are upregulated. In addition, a gonococcal infection protects host cells from subsequent STS-induced death. The regulation of host cell death by the gonococcus may represent a mechanism employed by this pathogen to survive and proliferate in host epithelium. PMID:12864814

  18. Cell-host, LINE and environment

    PubMed Central

    Del Re, Brunella; Giorgi, Gianfranco

    2013-01-01

    Long interspersed nuclear elements -1 (LINEs, L1s) are retroelements occupying almost 17% of the human genome. L1 retrotransposition can cause deleterious effects on the host-cell and it is generally inhibited by suppressive mechanisms, but it can occur in some specific cells during early development as well as in some tumor cells and in the presence of several environmental factors. In a recent publication we reported that extremely low frequency pulsed magnetic field can affect L1 retrotransposition in neuroblastoma cells. In this commentary we discuss the interaction between environment and L1 activity in the light of the new emerging paradigm of host-LINE relationship. PMID:23734298

  19. A Novel, Broad-Spectrum Inhibitor of Enterovirus Replication That Targets Host Cell Factor Phosphatidylinositol 4-Kinase IIIβ

    PubMed Central

    van der Schaar, Hilde M.; Leyssen, Pieter; Thibaut, Hendrik J.; de Palma, Armando; van der Linden, Lonneke; Lanke, Kjerstin H. W.; Lacroix, Céline; Verbeken, Erik; Conrath, Katja; MacLeod, Angus M.; Mitchell, Dale R.; Palmer, Nicholas J.; van de Poël, Hervé; Andrews, Martin

    2013-01-01

    Despite their high clinical and socioeconomic impacts, there is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections. Here we report on a novel inhibitor of enterovirus replication, compound 1, 2-fluoro-4-(2-methyl-8-(3-(methylsulfonyl)benzylamino)imidazo[1,2-a]pyrazin-3-yl)phenol. This compound exhibited a broad spectrum of antiviral activity, as it inhibited all tested species of enteroviruses and rhinoviruses, with 50% effective concentrations ranging between 4 and 71 nM. After a lengthy resistance selection process, coxsackievirus mutants resistant to compound 1 were isolated that carried substitutions in their 3A protein. Remarkably, the same substitutions were recently shown to provide resistance to inhibitors of phosphatidylinositol 4-kinase IIIβ (PI4KIIIβ), a lipid kinase that is essential for enterovirus replication, suggesting that compound 1 may also target this host factor. Accordingly, compound 1 directly inhibited PI4KIIIβ in an in vitro kinase activity assay. Furthermore, the compound strongly reduced the PI 4-phosphate levels of the Golgi complex in cells. Rescue of coxsackievirus replication in the presence of compound 1 by a mutant PI4KIIIβ carrying a substitution in its ATP-binding pocket revealed that the compound directly binds the kinase at this site. Finally, we determined that an analogue of compound 1, 3-(3-fluoro-4-methoxyphenyl)-2-methyl-N-(pyridin-4-ylmethyl)imidazo[1,2-a]pyrazin-8-amine, is well tolerated in mice and has a dose-dependent protective activity in a coxsackievirus serotype B4-induced pancreatitis model. PMID:23896472

  20. Parasite calcineurin regulates host cell recognition and attachment by apicomplexans

    PubMed Central

    Paul, Aditya S.; Saha, Sudeshna; Engelberg, Klemens; Jiang, Rays H.Y.; Coleman, Bradley I.; Kosber, Aziz L.; Chen, Chun-Ti; Ganter, Markus; Espy, Nicole; Gilberger, Tim W.; Gubbels, Marc-Jan; Duraisingh, Manoj T.

    2015-01-01

    SUMMARY Apicomplexans invade a variety of metazoan host cells through mechanisms involving host cell receptor engagement and secretion of parasite factors to facilitate cellular attachment. We find that the parasite homolog of calcineurin, a calcium-regulated phosphatase complex central to signal transduction in eukaryotes, also contributes to host cell invasion by the malaria parasite Plasmodium falciparum and related Toxoplasma gondii. Using reverse genetic and chemical-genetic approaches, we determine that calcineurin critically regulates and stabilizes attachment of extracellular P. falciparum to host erythrocytes before intracellular entry and has similar functions in host cell engagement by T. gondii. Calcineurin-mediated Plasmodium invasion is strongly associated with host receptors required for host cell recognition and calcineurin function distinguishes this form of receptor-mediated attachment from a second mode of host-parasite adhesion independent of host receptors. This specific role of calcineurin in coordinating physical interactions with host cells highlights an ancestral mechanism for parasitism used by apicomplexans. PMID:26118996

  1. The Glycoproteins of All Filovirus Species Use the Same Host Factors for Entry into Bat and Human Cells but Entry Efficiency Is Species Dependent

    PubMed Central

    Hoffmann, Markus; González Hernández, Mariana; Berger, Elisabeth; Marzi, Andrea; Pöhlmann, Stefan

    2016-01-01

    Ebola and marburgviruses, members of the family Filoviridae, can cause severe hemorrhagic fever in humans. The ongoing Ebola virus (EBOV) disease epidemic in Western Africa claimed more than 11,300 lives and was associated with secondary cases outside Africa, demonstrating that filoviruses pose a global health threat. Bats constitute an important natural reservoir of filoviruses, including viruses of the recently identified Cuevavirus genus within the Filoviridae family. However, the interactions of filoviruses with bat cells are incompletely understood. Here, we investigated whether filoviruses employ different strategies to enter human and bat cells. For this, we examined host cell entry driven by glycoproteins (GP) from all filovirus species into cell lines of human and fruit bat origin. We show that all GPs were able to mediate entry into human and most fruit bat cell lines with roughly comparable efficiency. In contrast, the efficiency of entry into the cell line EidNi/41 derived from a straw-colored fruit bat varied markedly between the GPs of different filovirus species. Furthermore, inhibition studies demonstrated that filoviruses employ the same host cell factors for entry into human, non-human primate and fruit bat cell lines, including cysteine proteases, two pore channels and NPC1 (Niemann-Pick C1 molecule). Finally, processing of GP by furin and the presence of the mucin-like domain in GP were dispensable for entry into both human and bat cell lines. Collectively, these results show that filoviruses rely on the same host cell factors for entry into human and fruit bat cells, although the efficiency of the usage of these factors might differ between filovirus species. PMID:26901159

  2. The Glycoproteins of All Filovirus Species Use the Same Host Factors for Entry into Bat and Human Cells but Entry Efficiency Is Species Dependent.

    PubMed

    Hoffmann, Markus; González Hernández, Mariana; Berger, Elisabeth; Marzi, Andrea; Pöhlmann, Stefan

    2016-01-01

    Ebola and marburgviruses, members of the family Filoviridae, can cause severe hemorrhagic fever in humans. The ongoing Ebola virus (EBOV) disease epidemic in Western Africa claimed more than 11,300 lives and was associated with secondary cases outside Africa, demonstrating that filoviruses pose a global health threat. Bats constitute an important natural reservoir of filoviruses, including viruses of the recently identified Cuevavirus genus within the Filoviridae family. However, the interactions of filoviruses with bat cells are incompletely understood. Here, we investigated whether filoviruses employ different strategies to enter human and bat cells. For this, we examined host cell entry driven by glycoproteins (GP) from all filovirus species into cell lines of human and fruit bat origin. We show that all GPs were able to mediate entry into human and most fruit bat cell lines with roughly comparable efficiency. In contrast, the efficiency of entry into the cell line EidNi/41 derived from a straw-colored fruit bat varied markedly between the GPs of different filovirus species. Furthermore, inhibition studies demonstrated that filoviruses employ the same host cell factors for entry into human, non-human primate and fruit bat cell lines, including cysteine proteases, two pore channels and NPC1 (Niemann-Pick C1 molecule). Finally, processing of GP by furin and the presence of the mucin-like domain in GP were dispensable for entry into both human and bat cell lines. Collectively, these results show that filoviruses rely on the same host cell factors for entry into human and fruit bat cells, although the efficiency of the usage of these factors might differ between filovirus species. PMID:26901159

  3. Selective recruitment of host factors by HSV-1 replication centers

    PubMed Central

    LANG, Feng-Chao; LI, Xin; VLADMIROVA, Olga; LI, Zhuo-Ran; CHEN, Gui-Jun; XIAO, Yu; LI, Li-Hong; LU, Dan-Feng; HAN, Hong-Bo; ZHOU, Ju-Min

    2015-01-01

    Herpes simplex virus type 1 (HSV-1) enters productive infection after infecting epithelial cells, where it controls the host nucleus to make viral proteins, starts viral DNA synthesis and assembles infectious virions. In this process, replicating viral genomes are organized into replication centers to facilitate viral growth. HSV-1 is known to use host factors, including host chromatin and host transcription regulators, to transcribe its genes; however, the invading virus also encounters host defense and stress responses to inhibit viral growth. Recently, we found that HSV-1 replication centers recruit host factor CTCF but exclude βH2A.X. Thus, HSV-1 replication centers may selectively recruit cellular factors needed for viral growth, while excluding host factors that are deleterious for viral transcription or replication. Here we report that the viral replication centers selectively excluded modified histone H3, including heterochromatin mark H3K9me3, H3S10P and active chromatin mark H3K4me3, but not unmodified H3. We found a dynamic association between the viral replication centers and host RNA polymerase II. The centers also recruited components of the DNA damage response pathway, including 53BP1, BRCA1 and host antiviral protein SP100. Importantly, we found that ATM kinase was needed for the recruitment of CTCF to the viral centers. These results suggest that the HSV-1 replication centers took advantage of host signaling pathways to actively recruit or exclude host factors to benefit viral growth. PMID:26018857

  4. Host cells and cell banking.

    PubMed

    Stacey, Glyn N; Merten, Otto-Wilhelm

    2011-01-01

    Gene therapy based on the use of viral vectors is entirely dependent on the use of animal cell lines, mainly of mammalian origin, but also of insect origin. As for any biotechnology product for clinical use, viral -vectors have to be produced with cells derived from an extensively characterized cell bank to maintain the appropriate standard for assuring the lowest risk for the patients to be treated. Although many different cell types and lines have been used for the production of viral vectors, HEK293 cells or their derivatives have been extensively used for production of different vector types: adenovirus, oncorectrovirus, lentivirus, and AAV vectors, because of their easy handling and the possibility to grow them adherently in serum-containing medium as well as in suspension in serum-free culture medium. Despite this, these cells are not necessarily the best for the production of a given viral vector, and there are many other cell lines with significant advantages including superior growth and/or production characteristics, which have been tested and also used for the production of clinical vector batches. This chapter presents basic -considerations concerning the characterization of cell banks, in the first part, and, in the second part, practically all cell lines (at least when public information was available) established and developed for the production of the most important viral vectors (adenoviral, oncoretroviral, lentiviral, AAV, baculovirus). PMID:21590393

  5. Elongation Factor-1α Is a Novel Protein Associated with Host Cell Invasion and a Potential Protective Antigen of Cryptosporidium parvum *

    PubMed Central

    Matsubayashi, Makoto; Teramoto-Kimata, Isao; Uni, Shigehiko; Lillehoj, Hyun S.; Matsuda, Haruo; Furuya, Masaru; Tani, Hiroyuki; Sasai, Kazumi

    2013-01-01

    The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess an apical complex, a unique assembly of organelles localized to the anterior end of the cell and involved in host cell invasion. Previously, we generated a chicken monoclonal antibody (mAb), 6D-12-G10, with specificity for an antigen located in the apical cytoskeleton of Eimeria acervulina sporozoites. This antigen was highly conserved among Apicomplexan parasites, including other Eimeria spp., Toxoplasma, Neospora, and Cryptosporidium. In the present study, we identified the apical cytoskeletal antigen of Cryptosporidium parvum (C. parvum) and further characterized this antigen in C. parvum to assess its potential as a target molecule against cryptosporidiosis. Indirect immunofluorescence demonstrated that the reactivity of 6D-12-G10 with C. parvum sporozoites was similar to those of anti-β- and anti-γ-tubulins antibodies. Immunoelectron microscopy with the 6D-12-G10 mAb detected the antigen both on the sporozoite surface and underneath the inner membrane at the apical region of zoites. The 6D-12-G10 mAb significantly inhibited in vitro host cell invasion by C. parvum. MALDI-TOF/MS and LC-MS/MS analysis of tryptic peptides revealed that the mAb 6D-12-G10 target antigen was elongation factor-1α (EF-1α). These results indicate that C. parvum EF-1α plays an essential role in mediating host cell entry by the parasite and, as such, could be a candidate vaccine antigen against cryptosporidiosis. PMID:24085304

  6. Risk Factors for Steroid-Refractory Acute Graft-versus-Host Disease after Allogeneic Stem Cell Transplantation from Matched Related or Unrelated Donors.

    PubMed

    Calmettes, Claire; Vigouroux, Stéphane; Labopin, Myriam; Tabrizi, Reza; Turlure, Pascal; Lafarge, Xavier; Marit, Gérald; Pigneux, Arnaud; Leguay, Thibaut; Bouabdallah, Krimo; Dilhuydy, Marie-Sarah; Duclos, Cédric; Mohr, Catherine; Lascaux, Axelle; Dumas, Pierre-Yves; Dimicoli-Salazar, Sophie; Saint-Lézer, Arnaud; Milpied, Noël

    2015-05-01

    We performed a retrospective study to identify pretransplantation risk factors for steroid-refractory (SR) acute graft-versus host disease (aGVHD) after allogeneic stem cell transplantation from matched donors in 630 adult patients who underwent transplantation at our center between 2000 and 2012. The cumulative incidence (CI) of SR aGVHD was 11.3% ± 2.3%. The identified independent risk factors were matched unrelated donor (hazard ratio [HR], 2.52; P = .001), female donor for male recipient (HR, 1.84; P = .023) and absence of antithymocyte globulin (HR, 2.02; P = .005). Three risk groups were defined according to the presence of these risk factors. In the whole cohort, the CI of SR aGVHD was 3.5% ± 1.7% in the low-risk group (0 risk factor, n = 115), 9.3% ± 1.6% in the intermediate-risk group (1 risk factor, n = 323), and 19.3% ± 2.9% in the high-risk group (2 or 3 risk factors, n = 192). Our study suggests that pretransplantation characteristics might help identify patients at high risk for SR aGVHD. A risk adapted first-line treatment of aGVHD could be evaluated in those patients. PMID:25617807

  7. Interaction of chlamydiae and host cells in vitro.

    PubMed Central

    Moulder, J W

    1991-01-01

    The obligately intracellular bacteria of the genus Chlamydia, which is only remotely related to other eubacterial genera, cause many diseases of humans, nonhuman mammals, and birds. Interaction of chlamydiae with host cells in vitro has been studied as a model of infection in natural hosts and as an example of the adaptation of an organism to an unusual environment, the inside of another living cell. Among the novel adaptations made by chlamydiae have been the substitution of disulfide-bond-cross-linked polypeptides for peptidoglycans and the use of host-generated nucleotide triphosphates as sources of metabolic energy. The effect of contact between chlamydiae and host cells in culture varies from no effect at all to rapid destruction of either chlamydiae or host cells. When successful infection occurs, it is usually followed by production of large numbers of progeny and destruction of host cells. However, host cells containing chlamydiae sometimes continue to divide, with or without overt signs of infection, and chlamydiae may persist indefinitely in cell cultures. Some of the many factors that influence the outcome of chlamydia-host cell interaction are kind of chlamydiae, kind of host cells, mode of chlamydial entry, nutritional adequacy of the culture medium, presence of antimicrobial agents, and presence of immune cells and soluble immune factors. General characteristics of chlamydial multiplication in cells of their natural hosts are reproduced in established cell lines, but reproduction in vitro of the subtle differences in chlamydial behavior responsible for the individuality of the different chlamydial diseases will require better in vitro models. PMID:2030670

  8. A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface

    PubMed Central

    Oberli, Alexander; Slater, Leanne M.; Cutts, Erin; Brand, Françoise; Mundwiler-Pachlatko, Esther; Rusch, Sebastian; Masik, Martin F. G.; Erat, Michèle C.; Beck, Hans-Peter; Vakonakis, Ioannis

    2014-01-01

    Uniquely among malaria parasites, Plasmodium falciparum-infected erythrocytes (iRBCs) develop membrane protrusions, known as knobs, where the parasite adhesion receptor P. falciparum erythrocyte membrane protein 1 (PfEMP1) clusters. Knob formation and the associated iRBC adherence to host endothelium are directly linked to the severity of malaria and are functional manifestations of protein export from the parasite to the iRBC. A family of exported proteins featuring Plasmodium helical interspersed subtelomeric (PHIST) domains has attracted attention, with members being implicated in host-parasite protein interactions and differentially regulated in severe disease and among parasite isolates. Here, we show that PHIST member PFE1605w binds the PfEMP1 intracellular segment directly with Kd = 5 ± 0.6 μM, comigrates with PfEMP1 during export, and locates in knobs. PHIST variants that do not locate in knobs (MAL8P1.4) or bind PfEMP1 30 times more weakly (PFI1780w) used as controls did not display the same pattern. We resolved the first crystallographic structure of a PHIST protein and derived a partial model of the PHIST-PfEMP1 interaction from nuclear magnetic resonance. We propose that PFE1605w reinforces the PfEMP1-cytoskeletal connection in knobs and discuss the possible role of PHIST proteins as interaction hubs in the parasite exportome.—Oberli, A., Slater, L. M., Cutts, E., Brand, F., Mundwiler-Pachlatko, E., Rusch, S., Masik, M. F. G., Erat, M. C., Beck, H.-P., Vakonakis, I. A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. PMID:24983468

  9. Mixed Lineage Leukemia 5 (MLL5) Protein Regulates Cell Cycle Progression and E2F1-responsive Gene Expression via Association with Host Cell Factor-1 (HCF-1)*

    PubMed Central

    Zhou, Peipei; Wang, Zhilong; Yuan, Xiujie; Zhou, Cuihong; Liu, Lulu; Wan, Xiaoling; Zhang, Feng; Ding, Xiaodan; Wang, Chuangui; Xiong, Sidong; Wang, Zhen; Yuan, Jinduo; Li, Qiang; Zhang, Yan

    2013-01-01

    Trithorax group proteins methylate lysine 4 of histone 3 (H3K4) at active gene promoters. MLL5 protein, a member of the Trithorax protein family, has been implicated in the control of the cell cycle progression; however, the underlying molecular mechanism(s) have not been fully determined. In this study, we found that the MLL5 protein can associate with the cell cycle regulator “host cell factor” (HCF-1). The interaction between MLL5 and HCF-1 is mediated by the “HCF-1 binding motif” (HBM) of the MLL5 protein and the Kelch domain of the HCF-1 protein. Confocal microscopy showed that the MLL5 protein largely colocalized with HCF-1 in the nucleus. Knockdown of MLL5 resulted in reduced cell proliferation and cell cycle arrest in the G1 phase. Moreover, down-regulation of E2F1 target gene expression and decreased H3K4me3 levels at E2F1-responsive promoters were observed in MLL5 knockdown cells. Additionally, the core subunits, including ASH2L, RBBP5, and WDR5, that are necessary for effective H3K4 methyltransferase activities of the Trithorax protein complexes, were absent in the MLL5 complex, suggesting that a distinct mechanism may be used by MLL5 for exerting its H3K4 methyltransferase activity. Together, our findings demonstrate that MLL5 could associate with HCF-1 and then be recruited to E2F1-responsive promoters to stimulate H3K4 trimethylation and transcriptional activation, thereby facilitating the cell cycle G1 to S phase transition. PMID:23629655

  10. Prognostic Factors on the Graft-versus-Host Disease-Free and Relapse-Free Survival after Adult Allogeneic Hematopoietic Stem Cell Transplantation

    PubMed Central

    Liu, Yao-Chung; Chien, Sheng-Hsuan; Fan, Nai-Wen; Hu, Ming-Hung; Gau, Jyh-Pyng; Liu, Chia-Jen; Yu, Yuan-Bin; Hsiao, Liang-Tsai; Chiou, Tzeon-Jye; Tzeng, Cheng-Hwai; Chen, Po-Min; Liu, Jin-Hwang

    2016-01-01

    The cure of hematologic disorders by allogeneic hematopoietic stem cell transplantation (HSCT) is often associated with major complications resulting in poor outcome, including graft-versus-host disease (GVHD), relapse, and death. A novel composite endpoint of GVHD-free/relapse-free survival (GRFS) in which events include grades 3-4 acute GVHD, chronic GVHD requiring systemic therapy, relapse, or death is censored to completely characterize the survival without mortality or ongoing morbidity. In this regard, studies attempting to identify the prognostic factors of GRFS are quite scarce. Thus, we reviewed 377 adult patients undergoing allogeneic HSCT between 2003 and 2013. The 1- and 2-year GRFS were 40.8% and 36.5%, respectively, significantly worse than overall survival and disease-free survival (log-rank p < 0.001). European Group for Blood and Marrow Transplantation (EBMT) risk score > 2 (p < 0.001) and hematologic malignancy (p = 0.033) were poor prognostic factors for 1-year GRFS. For 2-year GRFS, EBMT risk score > 2 (p < 0.001), being male (p = 0.028), and hematologic malignancy (p = 0.010) were significant for poor outcome. The events between 1-year GRFS and 2-year GRFS predominantly increased in relapsed patients. With prognostic factors of GRFS, we could evaluate the probability of real recovery following HSCT without ongoing morbidity. PMID:27123006

  11. [Host factors and viral factors in hepatitis C treatment].

    PubMed

    Sakamoto, Minoru; Enomoto, Nobuyuki

    2015-02-01

    In the interferon-based therapy for hepatitis C, host factors such as age, gender, liver fibrosis and steatosis are important as a therapeutic effect predictor, and viral factors such as HCV genotype, HCV viral load, HCV gene (IL28B, ITPA) are also important. In addition in genotype 1b, ISDR/IRRDR and core amino acid substitution are important. Also in the DAA treatment, viral factors are also important at the view of therapeutic effect and difficulty of acquisition of drug resistance mutation. In addition, the goal of treatment of hepatitis C are suppression of liver fibrosis progression and liver cancer and improvement of quality of life due to this (quality of life: QOL) and life prognosis, it is important to understand the host factors and HCV viral factors. PMID:25764672

  12. Anthracycline inhibits recruitment of hypoxia-inducible transcription factors and suppresses tumor cell migration and cardiac angiogenic response in the host.

    PubMed

    Tanaka, Tetsuhiro; Yamaguchi, Junna; Shoji, Kumi; Nangaku, Masaomi

    2012-10-12

    Anthracycline chemotherapeutic agents of the topoisomerase inhibitor family are widely used for the treatment of various tumors. Although targeted tumor tissues are generally situated in a hypoxic environment, the connection between efficacy of anthracycline agents and cellular hypoxia response has not been investigated in depth. Here, we report that doxorubicin (DXR) impairs the transcriptional response of the hypoxia-inducible factor (HIF) by inhibiting the binding of the HIF heterodimer to the consensus -RCGTG- enhancer element. This pleiotropic effect retarded migration of von Hippel-Lindau (VHL)-defective renal cell carcinoma and that of VHL-competent renal cell carcinoma in hypoxia. This effect was accompanied by a coordinated down-regulation of HIF target lysyl oxidase (LOX) family members LOX, LOX-like2 (LOXL2), and LOXL4. Furthermore, DXR suppressed HIF target genes in tumor xenografts, inhibited cardiac induction of HIF targets in rats with acute anemia, and impaired the angiogenic response in the isoproterenol-induced heart failure model, which may account for the clinical fragility of doxorubicin cardiomyopathy. Collectively, these findings highlight the impaired hypoxia response by anthracycline agents affecting both tumors and organs of the cancer host and offer a promising opportunity to develop HIF inhibitors using DXR as a chemical template. PMID:22908232

  13. Penetration of Bdellovibrio bacteriovorus into Host Cells

    PubMed Central

    Abram, Dinah; e Melo, J. Castro; Chou, D.

    1974-01-01

    Electron microscopy reveals that, in Bdellovibrio infection, after the formation of a passage pore in the host cell wall, the differentiated parasite penetration pole is associated with the host protoplast. This firm contact persists throughout the parasite penetration and after this process is completed. In penetrated hosts this contact is also apparent by phase microscopy. The association between the walls of the parasite and the host at the passage pore, on the other hand, is transient. Bdellovibrio do not penetrate hosts whose protoplast and cell walls are separated by plasmolysis, or in which the membrane-wall relationship is affected by low turgor pressure. It is concluded, therefore, that for penetration to occur it is essential that the host protoplast be within reach of the parasite, so that a firm contact can be established between them. A penetration mechanism is proposed that is effected by forces generated by fluxes of water and solutes due to structural changes in the infected host envelope. These forces cause a differential expansion of the host protoplast and cell wall and their separation from each other around the entry site, while the parasite remains firmly anchored to the host protoplast. Consequently, the parasite ends up enclosed in the expanded host periplasm. The actual entry, therefore, is a passive act of the parasite. Images PMID:4208138

  14. Elongation Factor-1a is a novel protein associated with host cell invasion and a potential protective antigen of Cryptosporidium parvum*

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phylum Apicomplexa comprises obligate intracellular parasites that infect vertebrates. All invasive forms of Apicomplexa possess a unique complex of organelles at the anterior end, referred to as the apical complex, which is involved in host cell invasion. Previously, we generated the chicken m...

  15. Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A

    PubMed Central

    Belyi, Yury; Niggeweg, Ricarda; Opitz, Bastian; Vogelsgesang, Martin; Hippenstiel, Stefan; Wilm, Matthias; Aktories, Klaus

    2006-01-01

    Legionella pneumophila, the causal agent of Legionnaires' disease, is an intracellular parasite and invades and proliferates within different eukaryotic cells, including human alveolar macrophages. After several 100-fold multiplication within host cells, the pathogens are released for new invasion by induction of apoptosis or necrosis. Here we report that L. pneumophila produces a glucosyltransferase, which selectively modifies an ≈50-kDa mammalian protein by using UDP-glucose as a cosubstrate. MS analysis identified the protein substrate as the mammalian elongation factor (EF)1A. Legionella glucosyltransferase modifies its eukaryotic protein substrate at serine-53, which is located in the GTPase domain of the EF. Glucosylation of EF1A results in inhibition of eukaryotic protein synthesis and death of target cells. Our findings show a mode of inhibition of protein synthesis by microbial pathogens and offer a perspective for understanding of the host-pathogen interaction of L. pneumophila. PMID:17068130

  16. The chromosome localization and the HCF repeats of the human host cell factor gene (HCFC1) are conserved in the mouse homologue

    SciTech Connect

    Frattini, A.; Faranda, S.; Sacco, M.G.; Villa, A.; Vezzoni, P.

    1996-03-01

    The gene encoding the human host cell factor (HCFC1) has recently been cloned and mapped to Xq28. HCFC1 codes for a family of related polypeptides that apparently arise from posttranslational processing. Six extremely conserved 19-amino-acid (aa)-long motifs, unique to HCFC1 and located in the middle of the protein, could play a role in this processing or could be instrumental to the physiological role of the protein. Alternatively, these repeats could have arisen from recent duplications and may not have any specific function. To resolve this issue, we cloned the homologous region from the mouse Hcfc1 gene and demonstrated that the 19-aa motifs are extremely conserved in sequence, number, and genomic organization, while the {open_quotes}linker{close_quotes} region between the third and fourth repeat is not. This suggests an important function for these repeats. In addition, by RT-PCR analysis of human RNA and comparison to the human genomic sequence, an alternative transcript including a 44-aa in-frame insertion, driving from the 3{prime} nd of intron 18, was found. The significance of this alternative transcript is unknown, since it was not detectable in the mouse. The mouse Hcfc1 gene maps to a region syntenic to Xq28, and, as in human, is in close proximity to the Renin-binding protein gene, in a 100-kb region also including the L1cam and Vasopressin receptor type 2 genes. 8 refs., 2 figs.

  17. Host immune gene polymorphisms in combination with clinical and demographic factors predict late survival in diffuse large B-cell lymphoma patients in the pre-rituximab era

    PubMed Central

    Habermann, Thomas M.; Wang, Sophia S.; Maurer, Matthew J.; Morton, Lindsay M.; Lynch, Charles F.; Ansell, Stephen M.; Hartge, Patricia; Severson, Richard K.; Rothman, Nathaniel; Davis, Scott; Geyer, Susan M.; Cozen, Wendy; Chanock, Stephen J.

    2008-01-01

    To evaluate the hypothesis that host germ line variation in immune genes is associated with overall survival in diffuse large B-cell lymphoma (DLBCL), we genotyped 73 single nucleotide polymorphisms (SNPs) from 44 candidate genes in 365 DLBCL patients diagnosed from 1998 to 2000. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of SNPs with survival after adjusting for clinical factors. During follow-up, 96 (26%) patients died, and the median follow-up was 57 months for surviving patients. The observed survival of this cohort was consistent with population-based estimates conditioned on surviving 12 months. An IL10 haplotype (global P = .03) and SNPs in IL8RB (rs1126580; HRAG/GG = 2.11; CI, 1.28-3.50), IL1A (rs1800587; HRCT/TT = 1.90; CI, 1.26-2.87), TNF (rs1800629; HRAG/GG = 1.44; CI, 0.95-2.18), and IL4R (rs2107356; HRCC/CT = 1.97; CI, 1.01-3.83) were the strongest predictors of overall survival. A risk score that combined the latter 4 SNPs with clinical factors was strongly associated with survival in a Cox model (P = 6.0 × 10−11). Kaplan-Meier 5-year survival estimates for low, intermediate-low, intermediate-high, and high-risk patients were 94%, 79%, 60%, and 48%, respectively. These data support a role for germ line variation in immune genes, particularly genes associated with a proinflammatory state, as predictors of late survival in DLBCL. PMID:18633131

  18. Contrasting Lifestyles Within the Host Cell.

    PubMed

    Di Russo Case, Elizabeth; Samuel, James E

    2016-02-01

    Intracellular bacterial pathogens have evolved to exploit the protected niche provided within the boundaries of a eukaryotic host cell. Upon entering a host cell, some bacteria can evade the adaptive immune response of its host and replicate in a relatively nutrient-rich environment devoid of competition from other host flora. Growth within a host cell is not without their hazards, however. Many pathogens enter their hosts through receptor-mediated endocytosis or phagocytosis, two intracellular trafficking pathways that terminate in a highly degradative organelle, the phagolysosome. This usually deadly compartment is maintained at a low pH and contains degradative enzymes and reactive oxygen species, resulting in an environment to which few bacterial species are adapted. Some intracellular pathogens, such as Shigella, Listeria, Francisella, and Rickettsia, escape the phagosome to replicate within the cytosol of the host cell. Bacteria that remain within a vacuole either alter the trafficking of their initial phagosomal compartment or adapt to survive within the harsh environment it will soon become. In this chapter, we focus on the mechanisms by which different vacuolar pathogens either evade lysosomal fusion, as in the case of Mycobacterium and Chlamydia, or allow interaction with lysosomes to varying degrees, such as Brucella and Coxiella, and their specific adaptations to inhabit a replicative niche. PMID:26999394

  19. Contrasting Lifestyles Within the Host Cell

    PubMed Central

    Case, Elizabeth Di Russo; Samuel, James E.

    2015-01-01

    CHAPTER SUMMARY Intracellular bacterial pathogens have evolved to exploit the protected niche provided within the boundaries of a eukaryotic host cell. Upon entering a host cell, some bacteria can evade the adaptive immune response of its host, and replicate in a relatively nutrient-rich environment devoid of competition from other host flora. Growth within a host cell is not without its hazards, however. Many pathogens enter their hosts through receptor-mediated endocytosis or phagocytosis, two intracellular trafficking pathways that terminate in a highly degradative organelle, the phagolysosome. This usually deadly compartment is maintained at a low pH, and contains degradative enzymes, and reactive oxygen species resulting in an environment to which few bacterial species are adapted. Some intracellular pathogens, like Shigella, Listeria, Francisella, and Rickettsia escape the phagosome to replicate within the cytosol of the host cell. Bacteria that remain within a vacuole either alter the trafficking of their initial phagosomal compartment or adapt to survive within the harsh environment it will soon become. In this chapter, we focus on the mechanisms by which different vacuolar pathogens either evade lysosomal fusion, as in the case of Mycobacterium and Chlamydia, or allow interaction with lysosomes to varying degrees, such as Brucella and Coxiella, and their specific adaptations to inhabit a replicative niche. PMID:26999394

  20. Dynamic Regulation of Host Restriction Factor Expression over the Course of HIV-1 Infection In Vivo

    PubMed Central

    Abdel-Mohsen, Mohamed; Deng, Xutao; Hecht, Frederick M.; Pilcher, Christopher D.; Pillai, Satish K.; Nixon, Douglas F.

    2014-01-01

    In this study, we investigated the expression levels of host restriction factors in six untreated HIV-1-positive patients over the course of infection. We found that the host restriction factor gene expression profile consistently increased over time and was significantly associated with CD4+ T cell activation and viral load. Our data are among the first to demonstrate the dynamic nature of host restriction factors in vivo over time. PMID:25031350

  1. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    SciTech Connect

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-16

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP{sub 2} and PIP{sub 3} to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  2. Host Genetic Factors and Dendritic Cell Responses Associated with the Outcome of Interferon/Ribavirin Treatment in HIV-1/HCV Co-Infected Individuals

    PubMed Central

    Sehgal, Mohit; Zeremski, Marija; Talal, Andrew H.; Khan, Zafar K.; Capocasale, Renold; Philip, Ramila; Jain, Pooja

    2015-01-01

    HIV-1/HCV co-infection is a significant health problem. Highly active antiretroviral treatment (HAART) against HIV-1 has proved to be fairly successful. On the other hand, direct acting antiviral drugs against HCV have improved cure rates but high cost and development of drug resistance are important concerns. Therefore PEGylated interferon (PEG-IFN) and ribavirin (RBV) still remain essential components of HCV treatment, and identification of host factors that predict IFN/RBV treatment response is necessary for effective clinical management of HCV infection. Impaired dendritic cell (DC) and T cell responses are associated with HCV persistence. It has been shown that IFN/RBV treatment enhances HCV-specific T cell functions and it is likely that functional restoration of DCs is the underlying cause. To test this hypothesis, we utilized an antibody cocktail (consisting of DC maturation, adhesion and other surface markers) to perform comprehensive phenotypic characterization of myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in a cohort of HIV-1/HCV co-infected individuals undergoing IFN/RBV treatment. Our results show that pre-treatment frequencies of mDCs are lower in non-responders (NRs) compared to responders (SVRs) and healthy controls. Although, the treatment was able to restore the frequency of mDCs in NRs, it downregulated the frequency of CCR7+, CD54+ and CD62L+ mDCs. Pre-treatment frequencies of pDCs were lower in NRs and decreased further upon treatment. Compared to SVRs, NRs exhibited higher ratio of PD-L1+/CD86+ pDCs prior to treatment; and this ratio remained high even after treatment. These findings demonstrate that enumeration and phenotypic assessment of DCs before/during therapy can help predict the treatment outcome. We also show that before treatment, PBMCs from SVRs secrete higher amounts of IFN-γ compared to controls and NRs. Upon genotyping IFNL3 polymorphisms rs12979860, rs4803217 and ss469415590, we found rs12979860 to be a better predictor of

  3. Crosstalk between Mycobacterium tuberculosis and the host cell

    PubMed Central

    Dey, Bappaditya; Bishai, William R.

    2014-01-01

    The successful establishment and maintenance of a bacterial infection depends on the pathogen’s ability to subvert the host cell’s defense response and successfully survive, proliferate, or persist within the infected cell. To circumvent host defense systems, bacterial pathogens produce a variety of virulence factors that potentiate bacterial adherence and invasion and usurp host cell signaling cascades that regulate intracellular microbial survival and trafficking. Mycobacterium tuberculosis, probably one of the most successful pathogens on earth, has coexisted with humanity for centuries, and this intimate and persistent connection between these two organisms suggests that the pathogen has evolved extensive mechanisms to evade the human immune system at multiple levels. While some of these mechanisms are mediated by factors released by M. tuberculosis, others rely on host components that are hijacked to prevent the generation of an effective immune response thus benefiting the survival of M. tuberculosis within the host cell. Here, we describe several of these mechanisms, with an emphasis on the cyclic nucleotide signaling and subversion of host responses that occur at the intracellular level when tubercle bacilli encounter macrophages, a cell that becomes a safe-house for M. tuberculosis although it is specialized to kill most microbes. PMID:25303934

  4. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells

    PubMed Central

    Popa, Crina M.; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding. PMID:27489796

  5. Microsporidia Intracellular Development Relies on Myc Interaction Network Transcription Factors in the Host.

    PubMed

    Botts, Michael R; Cohen, Lianne B; Probert, Christopher S; Wu, Fengting; Troemel, Emily R

    2016-01-01

    Microsporidia are ubiquitous parasites that infect a wide range of animal hosts, and these fungal-related microbes undergo their entire replicative lifecycle inside of host cells. Despite being widespread in the environment and causing medical and agricultural harm, virtually nothing is known about the host factors important to facilitate their growth and development inside of host cells. Here, we perform a genetic screen to identify host transcription factors important for development of the microsporidian pathogen Nematocida parisii inside intestinal cells of its natural host, the nematode Caenorhabditis elegans Through this screen, we identified the C. elegans Myc family of transcription factors as key host regulators of microsporidia growth and development. The Mad-like transcription factor MDL-1, and the Max-like transcription factors MXL-1 and MXL-2 promote pathogen levels, while the Myc-Mondo-like transcription factor MML-1 inhibits pathogen levels. We used epistasis analysis to show that MDL-1 and MXL-1, which are thought to function as a heterodimer, appear to be acting canonically. In contrast, MXL-2 and MML-1, which are also thought to function as a heterodimer, appear to be acting in separate pathways (noncanonically) in the context of pathogen infection. We also found that both MDL-1::GFP and MML-1::GFP are expressed in intestinal cells during infection. These findings provide novel insight into the host transcription factors that regulate microsporidia development. PMID:27402359

  6. Microsporidia Intracellular Development Relies on Myc Interaction Network Transcription Factors in the Host

    PubMed Central

    Botts, Michael R.; Cohen, Lianne B.; Probert, Christopher S.; Wu, Fengting; Troemel, Emily R.

    2016-01-01

    Microsporidia are ubiquitous parasites that infect a wide range of animal hosts, and these fungal-related microbes undergo their entire replicative lifecycle inside of host cells. Despite being widespread in the environment and causing medical and agricultural harm, virtually nothing is known about the host factors important to facilitate their growth and development inside of host cells. Here, we perform a genetic screen to identify host transcription factors important for development of the microsporidian pathogen Nematocida parisii inside intestinal cells of its natural host, the nematode Caenorhabditis elegans. Through this screen, we identified the C. elegans Myc family of transcription factors as key host regulators of microsporidia growth and development. The Mad-like transcription factor MDL-1, and the Max-like transcription factors MXL-1 and MXL-2 promote pathogen levels, while the Myc-Mondo-like transcription factor MML-1 inhibits pathogen levels. We used epistasis analysis to show that MDL-1 and MXL-1, which are thought to function as a heterodimer, appear to be acting canonically. In contrast, MXL-2 and MML-1, which are also thought to function as a heterodimer, appear to be acting in separate pathways (noncanonically) in the context of pathogen infection. We also found that both MDL-1::GFP and MML-1::GFP are expressed in intestinal cells during infection. These findings provide novel insight into the host transcription factors that regulate microsporidia development. PMID:27402359

  7. siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in Toxoplasma gondii-Infected Cells

    PubMed Central

    Menendez, Matthew T.; Teygong, Crystal; Wade, Kristin; Florimond, Celia

    2015-01-01

    ABSTRACT Although it is established that oxygen availability regulates cellular metabolism and growth, little is known regarding how intracellular pathogens use host factors to grow at physiological oxygen levels. Therefore, large-scale human small interfering RNA screening was performed to identify host genes important for growth of the intracellular protozoan parasite Toxoplasma gondii at tissue oxygen tensions. Among the genes identified by this screen, we focused on the hexokinase 2 (HK2) gene because its expression is regulated by hypoxia-inducible transcription factor 1 (HIF-1), which is important for Toxoplasma growth. Toxoplasma increases host HK2 transcript and protein levels in a HIF-1-dependent manner. In addition, parasite growth at 3% oxygen is restored in HIF-1-deficient cells transfected with HK2 expression plasmids. Both HIF-1 activation and HK2 expression were accompanied by increases in host glycolytic flux, suggesting that enhanced HK2 expression in parasite-infected cells is functionally significant. Parasite dependence on host HK2 and HIF-1 expression is not restricted to transformed cell lines, as both are required for parasite growth in nontransformed C2C12 myoblasts and HK2 is upregulated in vivo following infection. While HK2 is normally associated with the cytoplasmic face of the outer mitochondrial membrane at physiological O2 levels, HK2 relocalizes to the host cytoplasm following infection, a process that is required for parasite growth at 3% oxygen. Taken together, our findings show that HIF-1-dependent expression and relocalization of HK2 represent a novel mechanism by which Toxoplasma establishes its replicative niche at tissue oxygen tensions. PMID:26106078

  8. Interaction of Mycobacterium tuberculosis with Host Cell Death Pathways

    PubMed Central

    Srinivasan, Lalitha; Ahlbrand, Sarah; Briken, Volker

    2014-01-01

    Mycobacterium tuberculosis (Mtb) has coevolved with humans for tens of thousands of years. It is thus highly adapted to its human host and has evolved multiple mechanisms to manipulate host immune responses to its advantage. One central host pathogen interaction modality is host cell death pathways. Host cell apoptosis is associated with a protective response to Mtb infection, whereas a necrotic response favors the pathogen. Consistently, Mtb inhibits host cell apoptosis signaling but promotes induction of programmed necrosis. The molecular mechanisms involved in Mtb-mediated host cell death manipulation, the consequences for host immunity, and the potential for therapeutic and preventive approaches will be discussed. PMID:24968864

  9. Host factors governing resistance to Rhizoctonia solani

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the state of Washington, USA, annual losses of wheat attributed to soilborne necrotrophic fungal pathogens, such as Rhizoctonia solani, are estimated to be over US$100 million, and global estimates exceed US$1 billion. Host genetic resistance is a sustainable means of disease control that can be ...

  10. Ongoing graft-versus-host disease is a risk factor for azoospermia after allogeneic hematopoietic stem cell transplantation: a survey of the Late Effects Working Party of the European Group for Blood and Marrow Transplantation

    PubMed Central

    Rovó, Alicia; Aljurf, Mahmoud; Chiodi, Sandra; Spinelli, Simonetta; Salooja, Nina; Sucak, Gülsan; Hunter, Ann; Kim, Tan Swee; Socié, Gérard; van Lint, Maria Teresa; Passweg, Jakob R.; Arat, Mutlu; Badoglio, Manuela; Tichelli, André

    2013-01-01

    The aim of this study was to assess the degree of spermatogenesis defects in sperm analysis in long-term male survivors after allogeneic hematopoietic stem cell transplantation in order to identify the risk factors related to potential infertility after hematopoietic stem cell transplantation and to provide data on longitudinal sperm recovery after hematopoietic stem cell transplantation. Here, the Late Effects Working Party of the European Group for Blood and Marrow Transplantation reports data of sperm analysis from 224 males who underwent hematopoietic stem cell transplantation. Median time between transplantation and sperm analysis was 63 months (8–275 months). At last sperm analysis, presence of any degree of spermatozoa was reported in 70 (31%) and complete azoospermia in 154 (69%) patients. In multivariate analysis, being conditioned with total body irradiation (RR 7.1; 95% CI: 3.4–14.8) and age over 25 years at transplantation (RR 2.4; 95% CI: 1.09–5.2) were significantly associated with higher risk for azoospermia. In patients not conditioned with total body irradiation, ongoing chronic graft-versus-host disease is the main adverse factor for sperm recovery (RR of 3.11; 95% CI: 1.02–9.47; P=0.045). Already established risk factors, such as total body irradiation and age older than 25 years at hematopoietic stem cell transplantation, were seen to be the most relevant adverse risk factor for sperm production after hematopoietic stem cell transplantation. Furthermore, for the first time, ongoing graft-versus-host disease has been shown to be the most relevant adverse factor for sperm recovery, particularly in patients conditioned without total body irradiation. We also introduce a useful scoring system to predict the probability of male long-term survivors’ azoospermia. PMID:22929982

  11. The Host Specificities of Baculovirus per os Infectivity Factors

    PubMed Central

    Song, Jingjiao; Wang, Xi; Hou, Dianhai; Huang, Huachao; Liu, Xijia; Deng, Fei; Wang, Hualin; Arif, Basil M.; Hu, Zhihong; Wang, Manli

    2016-01-01

    Baculoviruses are insect-specific pathogens with a generally narrow host ranges. Successful primary infection is initiated by the proper interaction of at least 8 conserved per os infectivity factors (PIFs) with the host’s midgut cells, a process that remains largely a mystery. In this study, we investigated the host specificities of the four core components of the PIF complex, P74, PIF1, PIF2 and PIF3 by using Helicoverpa armigera nucleopolyhedrovirus (HearNPV) backbone. The four pifs of HearNPV were replaced by their counterparts from a group I Autographa californica multiple nucleopolyhedrovirus (AcMNPV) or a group II Spodoptera litura nucleopolyhedrovirus (SpltNPV). Transfection and infection assays showed that all the recombinant viruses were able to produce infectious budded viruses (BVs) and were lethal to H. armigera larvae via intrahaemocoelic injection. However, feeding experiments using very high concentration of occlusion bodies demonstrated that all the recombinant viruses completely lost oral infectivity except SpltNPV pif3 substituted pif3-null HearNPV (vHaBacΔpif3-Sppif3-ph). Furthermore, bioassay result showed that the median lethal concentration (LC50) value of vHaBacΔpif3-Sppif3-ph was 23-fold higher than that of the control virus vHaBacΔpif3-Hapif3-ph, indicating that SpltNPV pif3 can only partially substitute the function of HearNPV pif3. These results suggested that most of PIFs tested have strict host specificities, which may account, at least in part, for the limited host ranges of baculoviruses. PMID:27454435

  12. Natural Killer Cells and Antifungal Host Response

    PubMed Central

    Schmidt, Stanislaw; Zimmermann, Stefanie-Yvonne; Tramsen, Lars; Koehl, Ulrike

    2013-01-01

    As a result of improved experimental methodologies and a better understanding of the immune system, there is increasing insight into the antifungal activity of natural killer (NK) cells. Murine and human NK cells are able to damage fungi of different genera and species in vitro, and they exert both direct and indirect antifungal activity through cytotoxic molecules such as perforin and through cytokines and interferons, respectively. On the other hand, recent data suggest that fungi exhibit immunosuppressive effects on NK cells. Whereas clear in vivo data are lacking in humans, the importance of NK cells in the host response against fungi has been demonstrated in animal models. Further knowledge of the interaction of NK cells with fungi might help to better understand the pathogenesis of invasive fungal infections and to improve treatment strategies. PMID:23365210

  13. Yersinia virulence factors - a sophisticated arsenal for combating host defences.

    PubMed

    Atkinson, Steve; Williams, Paul

    2016-01-01

    The human pathogens Yersinia pseudotuberculosis and Yersinia enterocolitica cause enterocolitis, while Yersinia pestis is responsible for pneumonic, bubonic, and septicaemic plague. All three share an infection strategy that relies on a virulence factor arsenal to enable them to enter, adhere to, and colonise the host while evading host defences to avoid untimely clearance. Their arsenal includes a number of adhesins that allow the invading pathogens to establish a foothold in the host and to adhere to specific tissues later during infection. When the host innate immune system has been activated, all three pathogens produce a structure analogous to a hypodermic needle. In conjunction with the translocon, which forms a pore in the host membrane, the channel that is formed enables the transfer of six 'effector' proteins into the host cell cytoplasm. These proteins mimic host cell proteins but are more efficient than their native counterparts at modifying the host cell cytoskeleton, triggering the host cell suicide response. Such a sophisticated arsenal ensures that yersiniae maintain the upper hand despite the best efforts of the host to counteract the infecting pathogen. PMID:27347390

  14. Yersinia virulence factors - a sophisticated arsenal for combating host defences

    PubMed Central

    Atkinson, Steve; Williams, Paul

    2016-01-01

    The human pathogens Yersinia pseudotuberculosis and Yersinia enterocolitica cause enterocolitis, while Yersinia pestis is responsible for pneumonic, bubonic, and septicaemic plague. All three share an infection strategy that relies on a virulence factor arsenal to enable them to enter, adhere to, and colonise the host while evading host defences to avoid untimely clearance. Their arsenal includes a number of adhesins that allow the invading pathogens to establish a foothold in the host and to adhere to specific tissues later during infection. When the host innate immune system has been activated, all three pathogens produce a structure analogous to a hypodermic needle. In conjunction with the translocon, which forms a pore in the host membrane, the channel that is formed enables the transfer of six ‘effector’ proteins into the host cell cytoplasm. These proteins mimic host cell proteins but are more efficient than their native counterparts at modifying the host cell cytoskeleton, triggering the host cell suicide response. Such a sophisticated arsenal ensures that yersiniae maintain the upper hand despite the best efforts of the host to counteract the infecting pathogen. PMID:27347390

  15. Cell surface-associated aggregation-promoting factor from Lactobacillus gasseri SBT2055 facilitates host colonization and competitive exclusion of Campylobacter jejuni.

    PubMed

    Nishiyama, Keita; Nakazato, Akiko; Ueno, Shintaro; Seto, Yasuyuki; Kakuda, Tsutomu; Takai, Shinji; Yamamoto, Yuji; Mukai, Takao

    2015-11-01

    Campylobacter jejuni, one of the most common causes of gastroenteritis worldwide, is transmitted to humans through poultry. We previously reported that Lactobacillus gasseri SBT2055 (LG2055) reduced C. jejuni infection in human epithelial cells in vitro and inhibited pathogen colonization of chickens in vivo. This suggested that the LG2055 adhesion and/or co-aggregation phenotype mediated by cell-surface aggregation-promoting factors (APFs) may be important for the competitive exclusion of C. jejuni. Here, we show that cell surface-associated APF1 promoted LG2055 self-aggregation and adhesion to human epithelial cells and exhibited high affinity for the extracellular matrix component fibronectin. These effects were absent in the apf1 knockout mutant, indicating the role of APF1 in LG2055-mediated inhibition of C. jejuni in epithelial cells and chicken colonization. Similar to APF1, APF2 promoted the co-aggregation of LG2055 and C. jejuni but did not inhibit C. jejuni infection. Our data suggest a pivotal role for APF1 in mediating the interaction of LG2055 with human intestinal cells and in inhibiting C. jejuni colonization of the gastrointestinal tract. We thus provide new insight into the health-promoting effects of probiotics and mechanisms of competitive exclusion in poultry. Further research is needed to determine whether the probiotic strains reach the epithelial surface. PMID:26239091

  16. Factors Predicting Graft-versus-Host Disease-Free, Relapse-Free Survival after Allogeneic Hematopoietic Cell Transplantation: Multivariable Analysis from a Single Center.

    PubMed

    Solh, Melhem; Zhang, Xu; Connor, Katelin; Brown, Stacey; Solomon, Scott R; Morris, Lawrence E; Holland, H Kent; Bashey, Asad

    2016-08-01

    The ideal outcome of allogeneic hematopoietic cell transplantation (allo-HCT) is based on survival that is free of morbidity. The most common causes of treatment failure and morbidity after HCT are relapse, graft-versus-host disease (GVHD), and nonrelapse death. A composite endpoint that measures survival free of clinically significant negative events may be a useful way to determine the success of allo-HCT. We assessed GVHD and relapse-free survival (GRFS) where the events were acute GVHD grades III to IV, chronic GVHD requiring immunosuppression, relapse, or death in 531 consecutive adult patients who received an allo-HCT between 2006 and 2014 at our center. Median follow-up of living patients was 46 months (range, 12 to 123). HLA matched related donor (MRD, n = 198, 37%), matched unrelated donor (MUD, n = 205, 39%), and haploidentical donor with post-transplant cyclophosphamide (HID, n = 128, 24%) were used. Thirty-six percent of patients had a high/very-high Dana Farber disease risk index (DRI). Estimated rates of GRFS at 1 and 2 years after MRD, MUD, and HID transplantations were 34% and 26%, 26% and 17%, and 33% and 31%, respectively, with MRD recipients having a better GRFS than MUD (P < .05). On multivariable analysis, peripheral blood stem cell source (HR, 1.34; P = .04), MUD (HR, 1.41; P = .003), and high/very high DRI (HR, 1.66; P = .001) were all associated with a worse GFRS post-HCT. These data suggest that GRFS can be predicted by patient disease risk, stem cell source, and donor type. Importantly, MUDs produce inferior GRFS to MRDs, whereas HIDs do not. PMID:27095692

  17. Concepts of papillomavirus entry into host cells.

    PubMed

    Day, Patricia M; Schelhaas, Mario

    2014-02-01

    Papillomaviruses enter basal cells of stratified epithelia. Assembly of new virions occurs in infected cells during terminal differentiation. This unique biology is reflected in the mechanism of entry. Extracellularly, the interaction of nonenveloped capsids with several host cell proteins, after binding, results in discrete conformational changes. Asynchronous internalization occurs over several hours by an endocytic mechanism related to, but distinct from macropinocytosis. Intracellular trafficking leads virions through the endosomal system, and from late endosomes to the trans-Golgi-network, before nuclear delivery. Here, we discuss the existing data with the aim to synthesize an integrated model of the stepwise process of entry, thereby highlighting key open questions. Additionally, we relate data from experiments with cultured cells to in vivo results. PMID:24525291

  18. Neuroendocrine host factors and inflammatory disease susceptibility.

    PubMed Central

    Ligier, S; Sternberg, E M

    1999-01-01

    The etiology of autoimmune diseases is multifactorial, resulting from a combination of genetically predetermined host characteristics and environmental exposures. As the term autoimmune implies, immune dysfunction and dysregulated self-tolerance are key elements in the pathophysiology of all these diseases. The neuroendocrine and sympathetic nervous systems are increasingly recognized as modulators of the immune response at the levels of both early inflammation and specific immunity. As such, alterations in their response represent a potential mechanism by which pathologic autoimmunity may develop. Animal models of autoimmune diseases show pre-existing changes in neuroendocrine responses to a variety of stimuli, and both animal and human studies have shown altered stress responses in the setting of active immune activation. The potential role of the neuroendocrine system in linking environmental exposures and autoimmune diseases is 2-fold. First, it may represent a direct target for toxic compounds. Second, its inadequate function may result in the inappropriate response of the immune system to an environmental agent with immunogenic properties. This article reviews the relationship between autoimmune diseases and the neuroendocrine system and discusses the difficulties and pitfalls of investigating a physiologic response that is sensitive to such a multiplicity of environmental exposures. PMID:10502534

  19. Counting Legionella cells within single amoeba host cells

    EPA Science Inventory

    Here we present the first attempt to quantify L. pneumophila cell numbers within individual amoebae hosts that may be released into engineered water systems. The maximum numbers of culturable L. pneumophila cells grown within Acanthamoeba polyphaga and Naegleria fowleri were 134...

  20. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry

    PubMed Central

    Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.

    2015-01-01

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702

  1. Initial adherence of EPEC, EHEC and VTEC to host cells

    PubMed Central

    Bardiau, Marjorie; Szalo, Mihai; Mainil, Jacques G.

    2010-01-01

    Initial adherence to host cells is the first step of the infection of enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic Escherichia coli (EHEC) and verotoxigenic Escherichia coli (VTEC) strains. The importance of this step in the infection resides in the fact that (1) adherence is the first contact between bacteria and intestinal cells without which the other steps cannot occur and (2) adherence is the basis of host specificity for a lot of pathogens. This review describes the initial adhesins of the EPEC, EHEC and VTEC strains. During the last few years, several new adhesins and putative colonisation factors have been described, especially in EHEC strains. Only a few adhesins (BfpA, AF/R1, AF/R2, Ral, F18 adhesins) appear to be host and pathotype specific. The others are found in more than one species and/or pathotype (EPEC, EHEC, VTEC). Initial adherence of EPEC, EHEC and VTEC strains to host cells is probably mediated by multiple mechanisms. PMID:20423697

  2. Host-Cell Survival and Death During Chlamydia Infection

    PubMed Central

    Ying, Songmin; Pettengill, Matthew; Ojcius, David M.; Häcker, Georg

    2008-01-01

    Different Chlamydia trachomatis strains are responsible for prevalent bacterial sexually-transmitted disease and represent the leading cause of preventable blindness worldwide. Factors that predispose individuals to disease and mechanisms by which chlamydiae cause inflammation and tissue damage remain unclear. Results from recent studies indicate that prolonged survival and subsequent death of infected cells and their effect on immune effector cells during chlamydial infection may be important in determining the outcome. Survival of infected cells is favored at early times of infection through inhibition of the mitochondrial pathway of apoptosis. Death at later times displays features of both apoptosis and necrosis, but pro-apoptotic caspases are not involved. Most studies on chlamydial modulation of host-cell death until now have been performed in cell lines. The consequences for pathogenesis and the immune response will require animal models of chlamydial infection, preferably mice with targeted deletions of genes that play a role in cell survival and death. PMID:18843378

  3. A Systems Survey of Progressive Host-Cell Reorganization during Rotavirus Infection.

    PubMed

    Green, Victoria A; Pelkmans, Lucas

    2016-07-13

    Pathogen invasion is often accompanied by widespread alterations in cellular physiology, which reflects the hijacking of host factors and processes for pathogen entry and replication. Although genetic perturbation screens have revealed the complexity of host factors involved for numerous pathogens, it has remained challenging to temporally define the progression of events in host cell reorganization during infection. We combine high-confidence genome-scale RNAi screening of host factors required for rotavirus infection in human intestinal cells with an innovative approach to infer the trajectory of virus infection from fixed cell populations. This approach reveals a comprehensive network of host cellular processes involved in rotavirus infection and implicates AMPK in initiating the development of a rotavirus-permissive environment. Our work provides a powerful approach that can be generalized to order complex host cellular requirements along a trajectory of cellular reorganization during pathogen invasion. PMID:27414499

  4. Host restriction factors in retroviral infection: promises in virus-host interaction

    PubMed Central

    2012-01-01

    Retroviruses have an intricate life cycle. There is much to be learned from studying retrovirus-host interactions. Among retroviruses, the primate lentiviruses have one of the more complex genome structures with three categories of viral genes: structural, regulatory, and accessory genes. Over time, we have gained increasing understanding of the lentivirus life cycle from studying host factors that support virus replication. Similarly, studies on host restriction factors that inhibit viral replication have also made significant contributions to our knowledge. Here, we review recent progress on the rapidly growing field of restriction factors, focusing on the antiretroviral activities of APOBEC3G, TRIM5, tetherin, SAMHD1, MOV10, and cellular microRNAs (miRNAs), and the counter-activities of Vif, Vpu, Vpr, Vpx, and Nef. PMID:23254112

  5. Induction of virulence factors in Giardia duodenalis independent of host attachment

    PubMed Central

    Emery, Samantha J.; Mirzaei, Mehdi; Vuong, Daniel; Pascovici, Dana; Chick, Joel M.; Lacey, Ernest; Haynes, Paul A.

    2016-01-01

    Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response. PMID:26867958

  6. Induction of virulence factors in Giardia duodenalis independent of host attachment.

    PubMed

    Emery, Samantha J; Mirzaei, Mehdi; Vuong, Daniel; Pascovici, Dana; Chick, Joel M; Lacey, Ernest; Haynes, Paul A

    2016-01-01

    Giardia duodenalis is responsible for the majority of parasitic gastroenteritis in humans worldwide. Host-parasite interaction models in vitro provide insights into disease and virulence and help us to understand pathogenesis. Using HT-29 intestinal epithelial cells (IEC) as a model we have demonstrated that initial sensitisation by host secretions reduces proclivity for trophozoite attachment, while inducing virulence factors. Host soluble factors triggered up-regulation of membrane and secreted proteins, including Tenascins, Cathepsin-B precursor, cystatin, and numerous Variant-specific Surface Proteins (VSPs). By comparison, host-cell attached trophozoites up-regulated intracellular pathways for ubiquitination, reactive oxygen species (ROS) detoxification and production of pyridoxal phosphate (PLP). We reason that these results demonstrate early pathogenesis in Giardia involves two independent host-parasite interactions. Motile trophozoites respond to soluble secreted signals, which deter attachment and induce expression of virulence factors. Trophozoites attached to host cells, in contrast, respond by up-regulating intracellular pathways involved in clearance of ROS, thus anticipating the host defence response. PMID:26867958

  7. Bacterial effectors target the plant cell nucleus to subvert host transcription

    PubMed Central

    Canonne, Joanne; Rivas, Susana

    2012-01-01

    In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) directly target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells. PMID:22353865

  8. The role of host genetic factors and host immunity in necrotic enteritis.

    PubMed

    Oh, Sung T; Lillehoj, Hyun S

    2016-06-01

    The increasing number of legislative restrictions and the voluntary withdrawal of antibiotic growth promoters worldwide will continue to impact poultry health and production. The rising incidence of Clostridium infections and development of necrotic enteritis (NE) in commercial chickens has been associated with the withdrawal of antibiotics. High-throughput genomic analysis of intestinal tissues from NE-afflicted chickens showed alterations in the local immunity and gut microbiota. Therefore, a better understanding of host- and environmentally related factors on Clostridium perfringens infections will be necessary for the development of effective sustainable strategies aimed to reduce the negative consequences of NE. In this short review, we summarize the current knowledge on the role of host genomics and immunity in NE. The limited progress in understanding the complexity of host-pathogen interactions in NE underscores the urgent need for more fundamental research in host immunity against Clostridium pathogens in order to develop effective control strategies against NE. PMID:26957203

  9. Uropathogenic Escherichia coli Epigenetically Manipulate Host Cell Death Pathways.

    PubMed

    Zhang, Zhengguo; Wang, Ming; Eisel, Florian; Tchatalbachev, Svetlin; Chakraborty, Trinad; Meinhardt, Andreas; Bhushan, Sudhanshu

    2016-04-01

    Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in human. It is well established that UPEC can subvert innate immune responses, but the role of UPEC in interfering with host cell death pathways is not known. Here, we show that UPEC abrogates activation of the host cell prosurvival protein kinase B signaling pathway, which results in the activation of mammalian forkhead box O (FOXO) transcription factors. Although FOXOs were localized in the nucleus and showed increased DNA-binding activity, no change in the expression levels of FOXO target genes were observed. UPEC can suppress BIM expression induced by LY249002, which results in attenuation of caspase 3 activation and blockage of apoptosis. Mechanistically, BIM expression appears to be epigenetically silenced by a decrease in histone 4 acetylation at the BIM promoter site. Taken together, these results suggest that UPEC can epigenetically silence BIM expression, a molecular switch that prevents apoptosis. PMID:26621912

  10. Host cell kinases and the hepatitis C virus life cycle.

    PubMed

    Colpitts, Che C; Lupberger, Joachim; Doerig, Christian; Baumert, Thomas F

    2015-10-01

    Hepatitis C virus (HCV) infection relies on virus-host interactions with human hepatocytes, a context in which host cell kinases play critical roles in every step of the HCV life cycle. During viral entry, cellular kinases, including EGFR, EphA2 and PKA, regulate the localization of host HCV entry factors and induce receptor complex assembly. Following virion internalization, viral genomes replicate on endoplasmic reticulum-derived membranous webs. The formation of membranous webs depends on interactions between the HCV NS5a protein and PI4KIIIα. The phosphorylation status of NS5a, regulated by PI4KIIIα, CKI and other kinases, also acts as a molecular switch to virion assembly, which takes place on lipid droplets. The formation of lipid droplets is enhanced by HCV activation of IKKα. In view of the multiple crucial steps in the viral life cycle that are mediated by host cell kinases, these enzymes also represent complementary targets for antiviral therapy. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. PMID:25896387

  11. Early Vertebrate Evolution of the Host Restriction Factor Tetherin

    PubMed Central

    Heusinger, Elena; Kluge, Silvia F.; Kirchhoff, Frank

    2015-01-01

    release of newly formed progeny virions from infected cells. Although tetherin targets a broad range of enveloped viruses, including retro-, filo-, herpes-, and arenaviruses, the evolutionary origin of this restriction factor and its antiviral activity remained obscure. Here, we examined diverse vertebrate genomes for genes encoding cellular proteins that share with tetherin the highly unusual combination of an N-terminal transmembrane domain and a C-terminal glycosylphosphatidylinositol anchor. We show that tetherin orthologs are found in fish, reptiles, and birds and demonstrate that alligator tetherin efficiently inhibits the release of retroviral particles. Our findings identify tetherin as an evolutionarily ancient restriction factor and provide new important insights into the continuous arms race between viruses and their hosts. PMID:26401043

  12. Virulence factors and strategies of Leptopilina spp.: selective responses in Drosophila hosts.

    PubMed

    Lee, Mark J; Kalamarz, Marta E; Paddibhatla, Indira; Small, Chiyedza; Rajwani, Roma; Govind, Shubha

    2009-01-01

    To ensure survival, parasitic wasps of Drosophila have evolved strategies to optimize host development to their advantage. They also produce virulence factors that allow them to overcome or evade host defense. Wasp infection provokes cellular and humoral defense reactions, resulting in alteration in gene expression of the host. The activation of these reactions is controlled by conserved mechanisms shared by other invertebrate and vertebrate animals. Application of genomics and bioinformatics approaches is beginning to reveal comparative host gene expression changes after infection by different parasitic wasps. We analyze this comparison in the context of host physiology and immune cells, as well as the biology of the venom factors that wasps introduce into their hosts during oviposition. We compare virulence strategies of Leptopilina boulardi and L. heterotoma, in relation to genome-wide changes in gene expression in the fly hosts after infection. This analysis highlights fundamental differences in the changes that the host undergoes in its immune and general physiology in response to the two parasitic wasps. Such a comparative approach has the potential of revealing mechanisms governing the evolution of pathogenicity and how it impacts host range. PMID:19773069

  13. Virulence Factors and Strategies of Leptopilina spp.: Selective Responses in Drosophila Hosts

    PubMed Central

    Lee, Mark J.; Kalamarz, Marta E.; Paddibhatla, Indira; Small, Chiyedza; Rajwani, Roma; Govind, Shubha

    2010-01-01

    To ensure survival, parasitic wasps of Drosophila have evolved strategies to optimize host development to their advantage. They also produce virulence factors that allow them to overcome or evade host defense. Wasp infection provokes cellular and humoral defense reactions, resulting in alteration in gene expression of the host. The activation of these reactions is controlled by conserved mechanisms shared by other invertebrate and vertebrate animals. Application of genomics and bioinformatics approaches is beginning to reveal comparative host gene expression changes after infection by different parasitic wasps. We analyze this comparison in the context of host physiology and immune cells, as well as the biology of the venom factors that wasps introduce into their hosts during oviposition. We compare virulence strategies of Leptopilina boulardi and L. heterotoma, in relation to genome-wide changes in gene expression in the fly hosts after infection. This analysis highlights fundamental differences in the changes that the host undergoes in its immune and general physiology in response to the two parasitic wasps. Such a comparative approach has the potential of revealing mechanisms governing the evolution of pathogenicity and how it impacts host range. PMID:19773069

  14. Analysis of Host Gene Expression Profile in HIV-1 and HIV-2 Infected T-Cells

    PubMed Central

    Devadas, Krishnakumar; Biswas, Santanu; Haleyurgirisetty, Mohan; Wood, Owen; Ragupathy, Viswanath; Lee, Sherwin; Hewlett, Indira

    2016-01-01

    HIV replication is closely regulated by a complex pathway of host factors, many of them being determinants of cell tropism and host susceptibility to HIV infection. These host factors are known to exert a positive or negative influence on the replication of the two major types of HIV, HIV-1 and HIV-2, thereby modulating virus infectivity, host response to infection and ultimately disease progression profiles characteristic of these two types. Understanding the differential regulation of host cellular factors in response to HIV-1 and HIV-2 infections will help us to understand the apparent differences in rates of disease progression and pathogenesis. This knowledge would aid in the discovery of new biomarkers that may serve as novel targets for therapy and diagnosis. The objective of this study was to determine the differential expression of host genes in response to HIV-1/HIV-2 infection. To achieve this, we analyzed the effects of HIV-1 (MN) and HIV-2 (ROD) infection on the expression of host factors in PBMC at the RNA level using the Agilent Whole Human Genome Oligo Microarray. Differentially expressed genes were identified and their biological functions determined. Host gene expression profiles were significantly changed. Gene expression profiling analysis identified a subset of differentially expressed genes in HIV-1 and HIV-2 infected cells. Genes involved in cellular metabolism, apoptosis, immune cell proliferation and activation, cytokines, chemokines, and transcription factors were differentially expressed in HIV-1 infected cells. Relatively few genes were differentially expressed in cells infected with HIV-2. PMID:26821323

  15. Dual Analysis of the Murine Cytomegalovirus and Host Cell Transcriptomes Reveal New Aspects of the Virus-Host Cell Interface

    PubMed Central

    Juranic Lisnic, Vanda; Babic Cac, Marina; Lisnic, Berislav; Trsan, Tihana; Mefferd, Adam; Das Mukhopadhyay, Chitrangada; Cook, Charles H.; Jonjic, Stipan; Trgovcich, Joanne

    2013-01-01

    Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq). We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus-associated diseases. PMID:24086132

  16. Identification of FAM111A as an SV40 Host Range Restriction and Adenovirus Helper Factor

    PubMed Central

    Padi, Megha; Korkhin, Anna; James, Robert L.; Adelmant, Guillaume; Yoon, Rosa; Guo, Luxuan; Berrios, Christian; Zhang, Ying; Calderwood, Michael A.; Velmurgan, Soundarapandian; Cheng, Jingwei; Marto, Jarrod A.; Hill, David E.; Cusick, Michael E.; Vidal, Marc; Florens, Laurence; Washburn, Michael P.; Litovchick, Larisa; DeCaprio, James A.

    2012-01-01

    The small genome of polyomaviruses encodes a limited number of proteins that are highly dependent on interactions with host cell proteins for efficient viral replication. The SV40 large T antigen (LT) contains several discrete functional domains including the LXCXE or RB-binding motif, the DNA binding and helicase domains that contribute to the viral life cycle. In addition, the LT C-terminal region contains the host range and adenovirus helper functions required for lytic infection in certain restrictive cell types. To understand how LT affects the host cell to facilitate viral replication, we expressed full-length or functional domains of LT in cells, identified interacting host proteins and carried out expression profiling. LT perturbed the expression of p53 target genes and subsets of cell-cycle dependent genes regulated by the DREAM and the B-Myb-MuvB complexes. Affinity purification of LT followed by mass spectrometry revealed a specific interaction between the LT C-terminal region and FAM111A, a previously uncharacterized protein. Depletion of FAM111A recapitulated the effects of heterologous expression of the LT C-terminal region, including increased viral gene expression and lytic infection of SV40 host range mutants and adenovirus replication in restrictive cells. FAM111A functions as a host range restriction factor that is specifically targeted by SV40 LT. PMID:23093934

  17. Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor.

    PubMed

    Fine, Debrah A; Rozenblatt-Rosen, Orit; Padi, Megha; Korkhin, Anna; James, Robert L; Adelmant, Guillaume; Yoon, Rosa; Guo, Luxuan; Berrios, Christian; Zhang, Ying; Calderwood, Michael A; Velmurgan, Soundarapandian; Cheng, Jingwei; Marto, Jarrod A; Hill, David E; Cusick, Michael E; Vidal, Marc; Florens, Laurence; Washburn, Michael P; Litovchick, Larisa; DeCaprio, James A

    2012-01-01

    The small genome of polyomaviruses encodes a limited number of proteins that are highly dependent on interactions with host cell proteins for efficient viral replication. The SV40 large T antigen (LT) contains several discrete functional domains including the LXCXE or RB-binding motif, the DNA binding and helicase domains that contribute to the viral life cycle. In addition, the LT C-terminal region contains the host range and adenovirus helper functions required for lytic infection in certain restrictive cell types. To understand how LT affects the host cell to facilitate viral replication, we expressed full-length or functional domains of LT in cells, identified interacting host proteins and carried out expression profiling. LT perturbed the expression of p53 target genes and subsets of cell-cycle dependent genes regulated by the DREAM and the B-Myb-MuvB complexes. Affinity purification of LT followed by mass spectrometry revealed a specific interaction between the LT C-terminal region and FAM111A, a previously uncharacterized protein. Depletion of FAM111A recapitulated the effects of heterologous expression of the LT C-terminal region, including increased viral gene expression and lytic infection of SV40 host range mutants and adenovirus replication in restrictive cells. FAM111A functions as a host range restriction factor that is specifically targeted by SV40 LT. PMID:23093934

  18. Interactions between host factors and the skin microbiome

    PubMed Central

    SanMiguel, Adam; Grice, Elizabeth A.

    2015-01-01

    The skin is colonized by an assemblage of microorganisms which, for the most part, peacefully coexist with their hosts. In some cases, these communities also provide vital functions to cutaneous health through the modulation of host factors. Recent studies have illuminated the role of anatomical skin site, gender, age, and the immune system in shaping the cutaneous ecosystem. Alterations to microbial communities have also been associated with, and likely contribute to, a number of cutaneous disorders. This review focuses on the host factors that shape and maintain skin microbial communities, and the reciprocal role of microbes in modulating skin immunity. A greater understanding of these interactions is critical to elucidating the forces that shape cutaneous populations and their contributions to skin homeostasis. This knowledge can also inform the tendency of perturbations to predispose and/or bring about certain skin disorders. PMID:25548803

  19. Interactions of Histophilus somni with Host Cells.

    PubMed

    Behling-Kelly, Erica; Rivera-Rivas, Jose; Czuprynski, Charles J

    2016-01-01

    Histophilus somni resides as part of the normal microflora in the upper respiratory tract of healthy cattle. From this site, the organism can make its way into the lower respiratory tract, where it is one of the important bacterial agents of the respiratory disease complex. If H. somni cells disseminate to the bloodstream, they frequently result in thrombus formation. A series of in vitro investigations have examined potential mechanisms that might contribute to such thrombus formation. Earlier work showed that H. somni can stimulate some bovine endothelial cells to undergo apoptosis. More recent studies indicate that H. somni stimulates endothelial cell tissue factor activity and disrupts intercellular junctions. The net effect is to enhance procoagulant activity on the endothelium surface and to make the endothelial monolayer more permeable to molecules, leukocytes, and perhaps H. somni cells. H. somni also activates bovine platelets, which also can enhance tissue factor activity on the endothelium surface. When exposed to H. somni, bovine neutrophils and mononuclear phagocytes form extracellular traps in vitro. Ongoing research is investigating how the interplay among endothelial cells, platelets, and leukocytes might contribute to the thrombus formation seen in infected cattle. PMID:26728064

  20. The Type III Secretion Translocation Pore Senses Host Cell Contact

    PubMed Central

    Armentrout, Erin I.; Rietsch, Arne

    2016-01-01

    Type III secretion systems (T3SS) are nano-syringes used by a wide range of Gram-negative pathogens to promote infection by directly injecting effector proteins into targeted host cells. Translocation of effectors is triggered by host-cell contact and requires assembly of a pore in the host-cell plasma membrane, which consists of two translocator proteins. Our understanding of the translocation pore, how it is assembled in the host cell membrane and its precise role in effector translocation, is extremely limited. Here we use a genetic technique to identify protein-protein contacts between pore-forming translocator proteins, as well as the T3SS needle-tip, that are critical for translocon function. The data help establish the orientation of the translocator proteins in the host cell membrane. Analysis of translocon function in mutants that break these contacts demonstrates that an interaction between the pore-forming translocator PopD and the needle-tip is required for sensing host cell contact. Moreover, tethering PopD at a dimer interface also specifically prevents host-cell sensing, arguing that the translocation pore is actively involved in detecting host cell contact. The work presented here therefore establishes a signal transduction pathway for sensing host cell contact that is initiated by a conformational change in the translocation pore, and is subsequently transmitted to the base of the apparatus via a specific contact between the pore and the T3SS needle-tip. PMID:27022930

  1. Salmonella – At Home in the Host Cell

    PubMed Central

    Malik-Kale, Preeti; Jolly, Carrie E.; Lathrop, Stephanie; Winfree, Seth; Luterbach, Courtney; Steele-Mortimer, Olivia

    2011-01-01

    The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic “trigger”-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on cohorts of effector proteins translocated into host cells by two type III secretion systems (T3SS), although T3SS-independent mechanisms of entry may be important for invasion of certain host cell types. Recent studies into the intracellular lifestyle of Salmonella have provided new insights into the mechanisms used by this pathogen to modulate its intracellular environment. Here we discuss current knowledge of Salmonella-host interactions including invasion and establishment of an intracellular niche within the host. PMID:21687432

  2. Mechanisms of host cell invasion by Trypanosoma cruzi.

    PubMed

    Caradonna, Kacey L; Burleigh, Barbara A

    2011-01-01

    One of the more accepted concepts in our understanding of the biology of early Trypanosoma cruzi-host cell interactions is that the mammalian-infective trypomastigote forms of the parasite must transit the host cell lysosomal compartment in order to establish a productive intracellular infection. The acidic environment of the lysosome provides the appropriate conditions for parasite-mediated disruption of the parasitophorous vacuole and release of T. cruzi into the host cell cytosol, where replication of intracellular amastigotes occurs. Recent findings indicate a level of redundancy in the lysosome-targeting process where T. cruzi trypomastigotes exploit different cellular pathways to access host cell lysosomes in non-professional phagocytic cells. In addition, the reversible nature of the host cell penetration process was recently demonstrated when conditions for fusion of the nascent parasite vacuole with the host endosomal-lysosomal system were not met. Thus, the concept of parasite retention as a critical component of the T. cruzi invasion process was introduced. Although it is clear that host cell recognition, attachment and signalling are required to initiate invasion, integration of this knowledge with our understanding of the different routes of parasite entry is largely lacking. In this chapter, we focus on current knowledge of the cellular pathways exploited by T. cruzi trypomastigotes to invade non-professional phagocytic cells and to gain access to the host cell lysosome compartment. PMID:21884886

  3. Screening for Host Factors Directly Interacting with RSV Protein: Microfluidics.

    PubMed

    Kipper, Sarit; Avrahami, Dorit; Bajorek, Monika; Gerber, Doron

    2016-01-01

    We present a high-throughput microfluidics platform to identify novel host cell binding partners of respiratory syncytial virus (RSV) matrix (M) protein. The device consists of thousands of reaction chambers controlled by micro-mechanical valves. The microfluidic device is mated to a microarray-printed custom-made gene library. These genes are then transcribed and translated on-chip, resulting in a protein array ready for binding to RSV M protein.Even small viral proteome, such as that of RSV, presents a challenge due to the fact that viral proteins are usually multifunctional and thus their interaction with the host is complex. Protein microarrays technology allows the interrogation of protein-protein interactions, which could possibly overcome obstacles by using conventional high throughput methods. Using microfluidics platform we have identified new host interactors of M involved in various cellular pathways. A number of microfluidics based assays have already provided novel insights into the virus-host interactome, and the results have important implications for future antiviral strategies aimed at targets of viral protein interactions with the host. PMID:27464694

  4. Host cells and methods for production of isobutanol

    DOEpatents

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori Ann; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2016-08-23

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  5. Methods for production of proteins in host cells

    DOEpatents

    Donnelly, Mark; Joachimiak, Andrzej

    2004-01-13

    The present invention provides methods for the production of proteins, particularly toxic proteins, in host cells. The invention provides methods which use a fusion protein comprising a chaperonin binding domain in host cells induced or regulated to have increased levels of chaperonin which binds the chaperonin binding domain.

  6. Early Bunyavirus-Host Cell Interactions

    PubMed Central

    Albornoz, Amelina; Hoffmann, Anja B.; Lozach, Pierre-Yves; Tischler, Nicole D.

    2016-01-01

    The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion. PMID:27213430

  7. Early Bunyavirus-Host Cell Interactions.

    PubMed

    Albornoz, Amelina; Hoffmann, Anja B; Lozach, Pierre-Yves; Tischler, Nicole D

    2016-01-01

    The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion. PMID:27213430

  8. In situ regeneration of skeletal muscle tissue through host cell recruitment.

    PubMed

    Ju, Young Min; Atala, Anthony; Yoo, James J; Lee, Sang Jin

    2014-10-01

    Standard reconstructive procedures for restoring normal function after skeletal muscle defects involve the use of existing host tissues such as muscular flaps. In many instances, this approach is not feasible and delays the rehabilitation process and restoration of tissue function. Currently, cell-based tissue engineering strategies have been used for reconstruction; however, donor tissue biopsy and ex vivo cell manipulation are required prior to implantation. The present study aimed to overcome these limitations by demonstrating mobilization of muscle cells into a target-specific site for in situ muscle regeneration. First, we investigated whether host muscle cells could be mobilized into an implanted scaffold. Poly(l-lactic acid) (PLLA) scaffolds were implanted in the tibialis anterior (TA) muscle of rats, and the retrieved scaffolds were characterized by examining host cell infiltration in the scaffolds. The host cell infiltrates, including Pax7+ cells, gradually increased with time. Second, we demonstrated that host muscle cells could be enriched by a myogenic factor released from the scaffolds. Gelatin-based scaffolds containing a myogenic factor were implanted in the TA muscle of rats, and the Pax7+ cell infiltration and newly formed muscle fibers were examined. By the second week after implantation, the Pax7+ cell infiltrates and muscle formation were significantly accelerated within the scaffolds containing insulin-like growth factor 1 (IGF-1). Our data suggest an ability of host stem cells to be recruited into the scaffolds with the capability of differentiating to muscle cells. In addition, the myogenic factor effectively promoted host cell recruitment, which resulted in accelerating muscle regeneration in situ. PMID:24954910

  9. Host factors in retroviral integration and the selection of integration target sites

    PubMed Central

    Craigie, Robert; Bushman, Frederic D.

    2015-01-01

    In order to replicate, a retrovirus must integrate a DNA copy of the viral RNA genome into a chromosome of the host cell. The study of retroviral integration has advanced considerably in the last few years. Here we focus on host factor interactions and the linked area of integration targeting. Genome-wide screens for cellular factors affecting HIV replication have identified a series of host cell proteins that may mediate subcellular trafficking of integration complexes, nuclear import, and integration target site selection. The cell transcriptional co-activator protein LEDGF/p75 has been identified as a tethering factor important for HIV integration, and recently, BET proteins (Brd2, 4, and 4) have been identified as tethering factors for the gammaretroviruses. A new class of HIV inhibitors has been developed targeting the HIV-1 IN-LEDGF binding site, though surprisingly these inhibitors appear to block assembly late during replication and do not act at the integration step. Going forward, genome-wide studies of HIV-host interactions offer many new starting points to investigate HIV replication and identify potential new inhibitor targets. PMID:26104434

  10. Tandem immunoprecipitation approach to identify HIV-1 Gag associated host factors.

    PubMed

    Gao, Wei; Li, Min; Zhang, Jingxin

    2014-07-01

    HIV-1 Gag by itself is able to assemble and release from host cells and thus serves as a simplified model to identify host factors involved in this stage of the HIV-1 life cycle. In this study, a tandem immunoprecipitation approach is taken to immunoprecipitate Gag-interacting host proteins from transfected 293T cells. It is demonstrated that with the tandem immunoprecipitation method Gag-interacting host factors can be precipitated more efficiently than by single-step immunoprecipitation. Gag proteins are found to interact with multiple RNA-binding proteins such as hnRNPs, nucleolin, EF1a and ribosomal proteins. Such interactions are mediated by cellular RNAs and the Gag Nuclear Capsid (NC) domain. Deletion of the NC domain results in removal of most of the RNA-binding proteins, as well as a reduction of the Gag releasing capability, which can be restored by replacing the deleted NC domain with another multimerization motif. Importantly, interactions between Gag and host factors are relevant functionally, as evidenced by significantly increased nucleolin protein in the cytoplasm where it is recruited into the Gag complex, and enhanced Gag release when nucleolin is over-expressed. PMID:24690621

  11. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response

    PubMed Central

    Hempstead, Andrew D.; Isberg, Ralph R.

    2015-01-01

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR. PMID:26598709

  12. Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle.

    PubMed

    Catta-Preta, Carolina M C; Brum, Felipe L; da Silva, Camila C; Zuma, Aline A; Elias, Maria C; de Souza, Wanderley; Schenkman, Sergio; Motta, Maria Cristina M

    2015-01-01

    Mutualism is defined as a beneficial relationship for the associated partners and usually assumes that the symbiont number is controlled. Some trypanosomatid protozoa co-evolve with a bacterial symbiont that divides in coordination with the host in a way that results in its equal distribution between daughter cells. The mechanism that controls this synchrony is largely unknown, and its comprehension might provide clues to understand how eukaryotic cells evolved when acquiring symbionts that later became organelles. Here, we approached this question by studying the effects of inhibitors that affect the host exclusively in two symbiont-bearing trypanosomatids, Strigomonas culicis and Angomonas deanei. We found that inhibiting host protein synthesis using cycloheximide or host DNA replication using aphidicolin did not affect the duplication of bacterial DNA. Although the bacteria had autonomy to duplicate their DNA when host protein synthesis was blocked by cycloheximide, they could not complete cytokinesis. Aphidicolin promoted the inhibition of the trypanosomatid cell cycle in the G1/S phase, leading to symbiont filamentation in S. culicis but not in A. deanei. Treatment with camptothecin blocked the host protozoa cell cycle in the G2 phase and induced the formation of filamentous symbionts in both species. Oryzalin, which affects host microtubule polymerization, blocked trypanosomatid mitosis and abrogated symbiont division. Our results indicate that host factors produced during the cell division cycle are essential for symbiont segregation and may control the bacterial cell number. PMID:26082757

  13. Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle

    PubMed Central

    Catta-Preta, Carolina M. C.; Brum, Felipe L.; da Silva, Camila C.; Zuma, Aline A.; Elias, Maria C.; de Souza, Wanderley; Schenkman, Sergio; Motta, Maria Cristina M.

    2015-01-01

    Mutualism is defined as a beneficial relationship for the associated partners and usually assumes that the symbiont number is controlled. Some trypanosomatid protozoa co-evolve with a bacterial symbiont that divides in coordination with the host in a way that results in its equal distribution between daughter cells. The mechanism that controls this synchrony is largely unknown, and its comprehension might provide clues to understand how eukaryotic cells evolved when acquiring symbionts that later became organelles. Here, we approached this question by studying the effects of inhibitors that affect the host exclusively in two symbiont-bearing trypanosomatids, Strigomonas culicis and Angomonas deanei. We found that inhibiting host protein synthesis using cycloheximide or host DNA replication using aphidicolin did not affect the duplication of bacterial DNA. Although the bacteria had autonomy to duplicate their DNA when host protein synthesis was blocked by cycloheximide, they could not complete cytokinesis. Aphidicolin promoted the inhibition of the trypanosomatid cell cycle in the G1/S phase, leading to symbiont filamentation in S. culicis but not in A. deanei. Treatment with camptothecin blocked the host protozoa cell cycle in the G2 phase and induced the formation of filamentous symbionts in both species. Oryzalin, which affects host microtubule polymerization, blocked trypanosomatid mitosis and abrogated symbiont division. Our results indicate that host factors produced during the cell division cycle are essential for symbiont segregation and may control the bacterial cell number. PMID:26082757

  14. Measles Virus Matrix Protein Inhibits Host Cell Transcription.

    PubMed

    Yu, Xuelian; Shahriari, Shadi; Li, Hong-Mei; Ghildyal, Reena

    2016-01-01

    Measles virus (MeV) is a highly contagious virus that still causes annual epidemics in developing countries despite the availability of a safe and effective vaccine. Additionally, importation from endemic countries causes frequent outbreaks in countries where it has been eliminated. The M protein of MeV plays a key role in virus assembly and cytopathogenesis; interestingly, M is localised in nucleus, cytoplasm and membranes of infected cells. We have used transient expression of M in transfected cells and in-cell transcription assays to show that only some MeV M localizes to the nucleus, in addition to cell membranes and the cytoplasm as previously described, and can inhibit cellular transcription via binding to nuclear factors. Additionally, MeV M was able to inhibit in vitro transcription in a dose-dependent manner. Importantly, a proportion of M is also localized to nucleus of MeV infected cells at early times in infection, correlating with inhibition of cellular transcription. Our data show, for the first time, that MeV M may play a role early in infection by inhibiting host cell transcription. PMID:27551716

  15. Measles Virus Matrix Protein Inhibits Host Cell Transcription

    PubMed Central

    Yu, Xuelian; Shahriari, Shadi; Li, Hong-Mei; Ghildyal, Reena

    2016-01-01

    Measles virus (MeV) is a highly contagious virus that still causes annual epidemics in developing countries despite the availability of a safe and effective vaccine. Additionally, importation from endemic countries causes frequent outbreaks in countries where it has been eliminated. The M protein of MeV plays a key role in virus assembly and cytopathogenesis; interestingly, M is localised in nucleus, cytoplasm and membranes of infected cells. We have used transient expression of M in transfected cells and in-cell transcription assays to show that only some MeV M localizes to the nucleus, in addition to cell membranes and the cytoplasm as previously described, and can inhibit cellular transcription via binding to nuclear factors. Additionally, MeV M was able to inhibit in vitro transcription in a dose-dependent manner. Importantly, a proportion of M is also localized to nucleus of MeV infected cells at early times in infection, correlating with inhibition of cellular transcription. Our data show, for the first time, that MeV M may play a role early in infection by inhibiting host cell transcription. PMID:27551716

  16. Innate Lymphoid Cells in Graft‐Versus‐Host Disease

    PubMed Central

    Mjösberg, J.

    2015-01-01

    Innate lymphoid cells (ILC) are lymphocytes lacking rearranged antigen receptors such as those expressed by T and B cells. ILC are important effector and regulatory cells of the innate immune system, controlling lymphoid organogenesis, tissue inflammation, and homeostasis. The family of ILC consists of cytotoxic NK cells and the more recently described noncytotoxic group 1, 2, and 3 ILC. The classification of noncytotoxic ILC—in many aspects—mirrors that of T helper cells, which is based on the expression of master transcription factors and signature cytokines specific for each subset. The IL‐22 producing RORγt+ ILC3 subset was recently found to be critical in the prevention of intestinal graft‐versus‐host disease (GVHD) following allogeneic hematopoietic cell transplantation (HCT) via strengthening the intestinal mucosal barrier. In this review, we summarize the current view of the immunological functions of human noncytotoxic ILC subsets and discuss the potentially beneficial features of IL‐22 producing ILC3 in improving allo‐HCT efficacy by attenuating susceptibility to GVHD. In addition, we explore the possibility of other ILC subsets playing a role in GVHD. PMID:26228632

  17. Interactions between Trypanosoma cruzi Secreted Proteins and Host Cell Signaling Pathways

    PubMed Central

    Watanabe Costa, Renata; da Silveira, Jose F.; Bahia, Diana

    2016-01-01

    Chagas disease is one of the prevalent neglected tropical diseases, affecting at least 6–7 million individuals in Latin America. It is caused by the protozoan parasite Trypanosoma cruzi, which is transmitted to vertebrate hosts by blood-sucking insects. After infection, the parasite invades and multiplies in the myocardium, leading to acute myocarditis that kills around 5% of untreated individuals. T. cruzi secretes proteins that manipulate multiple host cell signaling pathways to promote host cell invasion. The primary secreted lysosomal peptidase in T. cruzi is cruzipain, which has been shown to modulate the host immune response. Cruzipain hinders macrophage activation during the early stages of infection by interrupting the NF-kB P65 mediated signaling pathway. This allows the parasite to survive and replicate, and may contribute to the spread of infection in acute Chagas disease. Another secreted protein P21, which is expressed in all of the developmental stages of T. cruzi, has been shown to modulate host phagocytosis signaling pathways. The parasite also secretes soluble factors that exert effects on host extracellular matrix, such as proteolytic degradation of collagens. Finally, secreted phospholipase A from T. cruzi contributes to lipid modifications on host cells and concomitantly activates the PKC signaling pathway. Here, we present a brief review of the interaction between secreted proteins from T. cruzi and the host cells, emphasizing the manipulation of host signaling pathways during invasion. PMID:27065960

  18. Langerhans' cells are depleted in chronic graft versus host disease.

    PubMed Central

    Aractingi, S; Gluckman, E; Dauge-Geffroy, M C; Le Goué, C; Flahaut, A; Dubertret, L; Carosella, E

    1997-01-01

    AIMS: To measure Langerhans' cells in skin of patients treated by bone marrow transplantation who developed chronic graft versus host disease (GvHD); to determine whether the reduction in Langerhans' cells resulted directly from the GvHD or from other factors, such as the immunosuppressive regimens used in bone marrow transplant patients. PATIENTS AND METHODS: Lesional and nonlesional skin specimens from nine patients with lichen planus-like lesions and three patients with sclerodermoid lesions were studied. Control skin specimens were taken from three patients undergoing breast reduction surgery. The number of Langerhans' cells/mm2 and the area of Langerhans' cells as a percentage of total epidermis were measured by counting cells labelled with antihuman CD1a. RESULTS: A significant reduction in Langerhans' cell area and number were found in specimens with lesions (area 3.5%; number 507/mm2) compared with specimens without lesions (8.42%; 2375/mm2). In contrast, Langerhans' cell area and number in skin without lesions were similar to controls (10.26%; 2968/mm2). CONCLUSIONS: Langerhans' cells were significantly reduced in skin with lesions of chronic GvHD but not in skin without lesions from the same patient, suggesting that the reduction is a direct consequence of GvHD and not linked to immunosuppressive drugs or late effects of conditioning regimens. In long term bone marrow transplant recipients, Langerhans' cells are derived mainly from the donor cells; therefore, this result suggests the occurrence of autoreactive phenomenon in chronic GvHD. Images PMID:9215146

  19. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications.

    PubMed

    Tissot, Tazzio; Arnal, Audrey; Jacqueline, Camille; Poulin, Robert; Lefèvre, Thierry; Mery, Frédéric; Renaud, François; Roche, Benjamin; Massol, François; Salzet, Michel; Ewald, Paul; Tasiemski, Aurélie; Ujvari, Beata; Thomas, Frédéric

    2016-03-01

    Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research. PMID:26849295

  20. Chew on this: Amoebic trogocytosis and host cell killing by Entamoeba histolytica

    PubMed Central

    Ralston, Katherine S.

    2015-01-01

    Entamoeba histolytica was named “histolytica” (histo-: tissue; lytic-: dissolving) for its ability to destroy host tissues. Direct killing of host cells by the amoebae is likely to be the driving factor that underlies tissue destruction, but the mechanism was unclear. We recently showed that after attaching to host cells, amoebae bite off and ingest distinct host cell fragments, and that this contributes to cell killing. Here we review this process, termed “amoebic trogocytosis” (trogo-: nibble), and how this process interplays with phagocytosis, or whole cell ingestion, in this organism. “Nibbling” processes have been described in other microbes and in multicellular organisms. The discovery of amoebic trogocytosis in E. histolytica may also shed light on an evolutionarily conserved process for intercellular exchange. PMID:26070402

  1. Chlamydial Lytic Exit from Host Cells Is Plasmid Regulated

    PubMed Central

    Yang, Chunfu; Starr, Tregei; Song, Lihua; Carlson, John H.; Sturdevant, Gail L.; Beare, Paul A.; Whitmire, William M.

    2015-01-01

    ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that is a globally important human pathogen. The chlamydial plasmid is an attenuating virulence factor, but the molecular basis for attenuation is not understood. Chlamydiae replicate within a membrane-bound vacuole termed an inclusion, where they undergo a biphasic developmental growth cycle and differentiate from noninfectious into infectious organisms. Late in the developmental cycle, the fragile chlamydia-laden inclusion retains its integrity by surrounding itself with scaffolds of host cytoskeletal proteins. The ability of chlamydiae to developmentally free themselves from this cytoskeleton network is a fundamental virulence trait of the pathogen. Here, we show that plasmidless chlamydiae are incapable of disrupting their cytoskeletal entrapment and remain intracellular as stable mature inclusions that support high numbers of infectious organisms. By using deletion mutants of the eight plasmid-carried genes (Δpgp1 to Δpgp8), we show that Pgp4, a transcriptional regulator of multiple chromosomal genes, is required for exit. Exit of chlamydiae is dependent on protein synthesis and is inhibited by the compound C1, an inhibitor of the type III secretion system (T3S). Exit of plasmid-free and Δpgp4 organisms, which failed to lyse infected cells, was rescued by latrunculin B, an inhibitor of actin polymerization. Our findings describe a genetic mechanism of chlamydial exit from host cells that is dependent on an unknown pgp4-regulated chromosomal T3S effector gene. PMID:26556273

  2. Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes.

    PubMed

    Sanchez-Villamil, Javier; Navarro-Garcia, Fernando

    2015-01-01

    Pathogens are able to breach the intestinal barrier, and different bacterial species can display different abilities to colonize hosts and induce inflammation. Inflammatory response studies induced by enteropathogens as Escherichia coli are interesting since it has acquired diverse genetic mobile elements, leading to different E. coli pathotypes. Diarrheagenic E. coli secrete toxins, effectors and virulence factors that exploit the host cell functions to facilitate the bacterial colonization. Many bacterial proteins are delivered to the host cell for subverting the inflammatory response. Hereby, we have highlighted the specific processes used by E. coli pathotypes, by that subvert the inflammatory pathways. These mechanisms include an arrangement of pro- and anti-inflammatory responses to favor the appropriate environmental niche for the bacterial survival and growth. PMID:26059623

  3. Control of Host Cell Phosphorylation by Legionella Pneumophila

    PubMed Central

    Haenssler, Eva; Isberg, Ralph R.

    2011-01-01

    Phosphorylation is one of the most frequent modifications in intracellular signaling and is implicated in many processes ranging from transcriptional control to signal transduction in innate immunity. Many pathogens modulate host cell phosphorylation pathways to promote growth and establish an infectious disease. The intracellular pathogen Legionella pneumophila targets and exploits the host phosphorylation system throughout the infection cycle as part of its strategy to establish an environment beneficial for replication. Key to this manipulation is the L. pneumophila Icm/Dot type IV secretion system, which translocates bacterial proteins into the host cytosol that can act directly on phosphorylation cascades. This review will focus on the different stages of L. pneumophila infection, in which host kinases and phosphatases contribute to infection of the host cell and promote intracellular survival of the pathogen. This includes the involvement of phosphatidylinositol 3-kinases during phagocytosis as well as the role of phosphoinositide metabolism during the establishment of the replication vacuole. Furthermore, L. pneumophila infection modulates the NF-κB and mitogen-activated protein kinase pathways, two signaling pathways that are central to the host innate immune response and involved in regulation of host cell survival. Therefore, L. pneumophila infection manipulates host cell signal transduction by phosphorylation at multiple levels. PMID:21747787

  4. Select Host Restriction Factors Are Associated with HIV Persistence During Antiretroviral Therapy

    PubMed Central

    ABDEL-MOHSEN, Mohamed; WANG, Charlene; STRAIN, Matthew C.; LADA, Steven M.; DENG, Xutao; COCKERHAM, Leslie R.; PILCHER, Christopher D.; HECHT, Frederick M.; LIEGLER, Teri; RICHMAN, Douglas D.; DEEKS, Steven G.; PILLAI, Satish K.

    2015-01-01

    Objective The eradication of HIV necessitates elimination of the HIV latent reservoir. Identifying host determinants governing latency and reservoir size in the setting of antiretroviral therapy (ART) is an important step in developing strategies to cure HIV infection. We sought to determine the impact of cell-intrinsic immunity on the HIV latent reservoir. Design We investigated the relevance of a comprehensive panel of established anti-HIV-1 host restriction factors to multiple established virologic and immunologic measures of viral persistence in HIV-1-infected, ART-suppressed individuals. Methods We measured the mRNA expression of 42 anti-HIV-1 host restriction factors, levels of cell-associated HIV-1 RNA, levels of total pol and 2-LTR circle HIV-1 DNA, and immunophenotypes of CD4+ T cells in 72 HIV-1-infected subjects on suppressive ART (23 subjects initiated ART <1 year post-infection, and 49 subjects initiated ART >1 year post-infection). Correlations were analyzed using non-parametric tests. Results The enhanced expression of a few select host restriction factors, p21, schlafen 11, and PAF1, was strongly associated with reduced CD4+ T cell-associated HIV RNA during ART (p<0.001). In addition, our data suggested that ART perturbs the regulatory relationship between CD4+ T cell activation and restriction factor expression. Lastly, cell-intrinsic immune responses were significantly enhanced in subjects who initiated ART during early versus chronic infection, and may contribute to the reduced reservoir size observed in these individuals. Conclusions Intrinsic immune responses modulate HIV persistence during suppressive ART, and may be manipulated to enhance the efficacy of ART and promote viral eradication through reversal of latency in vivo. PMID:25602681

  5. Mast cell tryptases and chymases in inflammation and host defense

    PubMed Central

    Caughey, George H.

    2008-01-01

    Summary Tryptases and chymases are the major proteins stored and secreted by mast cells. The types, amounts and properties of these serine peptidases vary by mast cell subtype, tissue, and mammal of origin. Membrane-anchored γ-tryptases are tryptic, prostasin-like, type I peptidases that remain membrane-attached upon release and act locally. Soluble tryptases, including their close relatives, mastins, form inhibitor-resistant oligomers that act more remotely. Befitting their greater destructive potential, chymases are quickly inhibited after release, although some gain protection by associating with proteoglycans. Most chymase-like enzymes, including mast cell cathepsin G, hydrolyze chymotryptic substrates, an uncommon capability in the proteome. Some rodent chymases, however, have mutations resulting in elastolytic activity. Secreted tryptases and chymases promote inflammation, matrix destruction, and tissue remodeling by several mechanisms, including destroying pro-coagulant, matrix, growth and differentiation factors, and activating proteinase-activated receptors, urokinase, metalloproteinases, and angiotensin. They also modulate immune responses by hydrolyzing chemokines and cytokines. At least one chymase protects mice from intestinal worms. Tryptases and chymases also can oppose inflammation by inactivating allergens and neuropeptides causing inflammation and bronchoconstriction. Thus, like mast cells themselves, mast cell serine peptidases play multiple roles in host defense and any accounting of benefit versus harm is necessarily context-specific. PMID:17498057

  6. Process of Bipolaris sorghicola invasion of host cells.

    PubMed

    Peng, C; Ge, T T; He, X L; Huang, Y H; Xu, Z L; Zhang, D Y; Shao, H B; Guo, S W

    2016-01-01

    Target leaf spot is a sorghum leaf disease caused by Bipolaris sorghicola, a species of fungus with a global distribution. In this study, we investigated the process by which B. sorghicola invades cells of barley, onion, Arabidopsis thaliana species, and sorghum. The results showed that within 8 h of coming into contact with host cells, the hyphal ends of B. sorghicola expand and form a uniform infective penetration pegbolt-like structure; a primary infection mycelium can be formed inside host cells within 24 h after contact, which can infect closed cells after 48 h. A mycelium can grow within the gap between cells and form infective hyphae. The pathogen infection process was the same in different host cells. B. sorghicola can affect root cells through soil infection, indicating that it may also have characteristics of soil-borne pathogens. PMID:26985945

  7. HTLV-1 subgroups associated with the risk of HAM/TSP are related to viral and host gene expression in peripheral blood mononuclear cells, independent of the transactivation functions of the viral factors.

    PubMed

    Yasuma, Keiko; Matsuzaki, Toshio; Yamano, Yoshihisa; Takashima, Hiroshi; Matsuoka, Masao; Saito, Mineki

    2016-08-01

    Among human T cell leukemia virus type 1 (HTLV-1)-infected individuals, the risk of developing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) across lifetime differs between ethnic groups. There is an association between HTLV-1 tax gene subgroups (subgroup-A or subgroup-B) and the risk of HAM/TSP in the Japanese population. In this study, we investigated the full-length proviral genome sequences of various HTLV-1-infected cell lines and patient samples. The functional differences in the viral transcriptional regulators Tax and HTLV-1 bZIP factor (HBZ) between each subgroup and the relationships between subgroups and the clinical and laboratory characteristics of HAM/TSP patients were evaluated. The results of these analyses indicated the following: (1) distinct nucleotide substitutions corresponding to each subgroup were associated with nucleotide substitutions in viral structural, regulatory, and accessory genes; (2) the HBZ messenger RNA (mRNA) expression in HTLV-1-infected cells was significantly higher in HAM/TSP patients with subgroup-B than in those with subgroup-A; (3) a positive correlation was observed between the expression of HBZ mRNA and its target Foxp3 mRNA in HAM/TSP patients with subgroup-B, but not in patients with subgroup-A; (4) no clear differences were noted in clinical and laboratory characteristics between HAM/TSP patients with subgroup-A and subgroup-B; and (5) no functional differences were observed in Tax and HBZ between each subgroup based on reporter gene assays. Our results indicate that although different HTLV-1 subgroups are characterized by different patterns of viral and host gene expression in HAM/TSP patients via independent mechanisms of direct transcriptional regulation, these differences do not significantly affect the clinical and laboratory characteristics of HAM/TSP patients. PMID:26635027

  8. Malaria Sporozoites Traverse Host Cells within Transient Vacuoles.

    PubMed

    Risco-Castillo, Veronica; Topçu, Selma; Marinach, Carine; Manzoni, Giulia; Bigorgne, Amélie E; Briquet, Sylvie; Baudin, Xavier; Lebrun, Maryse; Dubremetz, Jean-François; Silvie, Olivier

    2015-11-11

    Plasmodium sporozoites are deposited in the host skin by Anopheles mosquitoes. The parasites migrate from the dermis to the liver, where they invade hepatocytes through a moving junction (MJ) to form a replicative parasitophorous vacuole (PV). Malaria sporozoites need to traverse cells during progression through host tissues, a process requiring parasite perforin-like protein 1 (PLP1). We find that sporozoites traverse cells inside transient vacuoles that precede PV formation. Sporozoites initially invade cells inside transient vacuoles by an active MJ-independent process that does not require vacuole membrane remodeling or release of parasite secretory organelles typically involved in invasion. Sporozoites use pH sensing and PLP1 to exit these vacuoles and avoid degradation by host lysosomes. Next, parasites enter the MJ-dependent PV, which has a different membrane composition, precluding lysosome fusion. The malaria parasite has thus evolved different strategies to evade host cell defense and establish an intracellular niche for replication. PMID:26607162

  9. Host cells and methods for producing isoprenyl alkanoates

    SciTech Connect

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  10. Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host

    PubMed Central

    Popoff, Michel R

    2014-01-01

    Actin cytoskeleton is a main target of many bacterial pathogens. Among the multiple regulation steps of the actin cytoskeleton, bacterial factors interact preferentially with RhoGTPases. Pathogens secrete either toxins which diffuse in the surrounding environment, or directly inject virulence factors into target cells. Bacterial toxins, which interfere with RhoGTPases, and to some extent with RasGTPases, catalyze a covalent modification (ADPribosylation, glucosylation, deamidation, adenylation, proteolysis) blocking these molecules in their active or inactive state, resulting in alteration of epithelial and/or endothelial barriers, which contributes to dissemination of bacteria in the host. Injected bacterial virulence factors preferentially manipulate the RhoGTPase signaling cascade by mimicry of eukaryotic regulatory proteins leading to local actin cytoskeleton rearrangement, which mediates bacterial entry into host cells or in contrast escape to phagocytosis and immune defense. Invasive bacteria can also manipulate RhoGTPase signaling through recognition and stimulation of cell surface receptor(s). Changes in RhoGTPase activation state is sensed by the innate immunity pathways and allows the host cell to adapt an appropriate defense response. PMID:25203748

  11. A Growth Initiation Factor for Host-Independent Derivatives of Bdellovibrio bacteriovorus

    PubMed Central

    Ishiguro, Edward E.

    1973-01-01

    Host-independent (H-I) derivatives of Bdellovibrio bacteriovorus 109 Davis could not be isolated when concentrated suspensions of host-dependent (H-D) cultures, washed free of spent medium, were plated on host-free media. However, H-I colonies did appear when spent broth was incorporated into the isolation medium, indicating the presence of a factor in the spent medium essential for the growth of H-I cells. This growth factor (GIF) was also present in cell-free extracts of Escherichia coli and a variety of other microorganisms including H-D and H-I derivatives of strain 109 Davis. GIF was heat stable, non-dialyzable, and present in both soluble and particulate fractions of extracts. Heating of extracts at 70 C for 10 min resulted in 10- to 40-fold stimulation in GIF activity, and evidence for a heat-labile inhibitor was obtained. Colonies appearing on host-free medium in these experiments were shown to be those of typical H-I derivatives by isolation and subsequent host-independent cultivation of these organisms. GIF was a conditional requirement dependent on age and size of inoculum for all H-I derivatives characterized. Although GIF stimulated the growth of washed exponential phase cells transferred to fresh medium, it was not essential for growth. However, it was essential for the initiation of growth of washed stationary phase cells from small inocula transferred to fresh medium. It is proposed that GIF is required to initiate growth of metabolically quiescent cells. Images PMID:4197902

  12. Sheep primary cells as in vitro models to investigate Mycoplasma agalactiae host cell interactions.

    PubMed

    Hegde, Shrilakshmi; Gabriel, Cordula; Kragl, Martin; Chopra-Dewasthaly, Rohini

    2015-10-01

    Appropriate infection models are imperative for the understanding of pathogens like mycoplasmas that are known for their strict host and tissue specificity, and lack of suitable cell and small animal models has hindered pathogenicity studies. This is particularly true for the economically important group of ruminant mycoplasmas whose virulence factors need to be elucidated for designing effective intervention strategies. Mycoplasma agalactiae serves as a useful role model especially because it is phylogenetically very close to M. bovis and causes similar symptoms by as yet unknown mechanisms. Here, we successfully prepared and characterized four different primary sheep cell lines, namely the epithelial and stromal cells from the mammary gland and uterus, respectively. Using immunohistochemistry, we identified vimentin and cytokeratin as specific markers to confirm the typical cell phenotypes of these primary cells. Furthermore, M. agalactiae's consistent adhesion and invasion into these primary cells proves the reliability of these cell models. Mimicking natural infections, mammary epithelial and stromal cells showed higher invasion and adhesion rates compared to the uterine cells as also seen via double immunofluorescence staining. Altogether, we have generated promising in vitro cell models to study host-pathogen interactions of M. agalactiae and related ruminant pathogens in a more authentic manner. PMID:26187893

  13. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions*

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V.; Kwon, Keehwan; Townsend, Katherine; Yu, Chenggang; Yu, Xueping; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2013-01-01

    Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin

  14. Recruitment of Host Progenitor Cells in Rat Liver Transplants

    PubMed Central

    Sun, Zhaoli; Zhang, Xiuying; Locke, Jayme E.; Zheng, Qizhi; Tachibana, Shingo; Diehl, Anna Mae; Williams, George Melville

    2015-01-01

    Despite MHC incompatibility, Lewis to DA rat liver transplants survive indefinitely without immunosuppression, and the studies we report sought the mechanism(s) responsible for this. At one year most of the liver reacted positively to host anti-DA antibody. When small (50%) grafts were transplanted, recruitment was more rapid as most of the organ assumed the host phenotype at 3 months. After transplantation the Y-chromosome was detected in the hepatocytes of XX to XY grafts by both in-situ hybridization and PCR. Further, livers from transgenic Lewis rats carrying strong GFP markers lost the marker with time after transplantation to DA, GFP− hosts. Few liver cells contained the Y chromosome in syngeneic XX to XY liver grafts or when the hosts of Lewis XX to DA XY allografts were treated with cyclosporine A (CsA) 10mgs/kg/day. This dosage also impeded enlargement of the liver at ten days. Using GFP+ XX Lewis donors transplanted to GFP− XY DA hosts, we found little Y DNA in GFP+ cells at 10 days. Host derived OV-6 and c-kit positive, albumen positive cells were present at 3-10 days, but cells with the CD34 marker were less common and some clearly still had the donor phenotype at ten days. CXCR-4 positive cells increased with time and were abundant at 1 month after transplantation. We conclude: 1. extra-hepatic cells can differentiate into liver tissues; 2. regenerative stimuli accelerate stem cell recruitment; 3. both regeneration and recruitment are impeded by CsA immunosuppression, and 4. donor GFP positive cells contained little host Y-chromosome after transplantation suggesting that cell fusion was uncommon and, therefore, unlikely to be the mechanism leading to the changes in genotype and phenotype we observed. PMID:18972402

  15. Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis.

    PubMed

    Nans, Andrea; Ford, Charlotte; Hayward, Richard D

    2015-01-01

    Chlamydia trachomatis is obligate intracellular bacterial pathogen that remains a significant public health burden worldwide. A critical early event during infection is chlamydial entry into non-phagocytic host epithelial cells. Like other Gram-negative bacteria, C. trachomatis uses a type III secretion system (T3SS) to deliver virulence effector proteins into host cells. These effectors trigger bacterial uptake and promote bacterial survival and replication within the host cell. In this review, we highlight recent cryo-electron tomography that has provided striking insights into the initial interactions between Chlamydia and its host. We describe the polarised structure of extracellular C. trachomatis elementary bodies (EBs), and the supramolecular organisation of T3SS complexes on the EB surface, in addition to the changes in host and pathogen architecture that accompany bacterial internalisation and EB encapsulation into early intracellular vacuoles. Finally, we consider the implications for further understanding the mechanism of C. trachomatis entry and how this might relate to those of other bacteria and viruses. PMID:26320027

  16. Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis

    PubMed Central

    Nans, Andrea; Ford, Charlotte; Hayward, Richard D.

    2015-01-01

    Chlamydia trachomatis is obligate intracellular bacterial pathogen that remains a significant public health burden worldwide. A critical early event during infection is chlamydial entry into non-phagocytic host epithelial cells. Like other Gram-negative bacteria, C. trachomatis uses a type III secretion system (T3SS) to deliver virulence effector proteins into host cells. These effectors trigger bacterial uptake and promote bacterial survival and replication within the host cell. In this review, we highlight recent cryo-electron tomography that has provided striking insights into the initial interactions between Chlamydia and its host. We describe the polarised structure of extracellular C. trachomatis elementary bodies (EBs), and the supramolecular organisation of T3SS complexes on the EB surface, in addition to the changes in host and pathogen architecture that accompany bacterial internalisation and EB encapsulation into early intracellular vacuoles. Finally, we consider the implications for further understanding the mechanism of C. trachomatis entry and how this might relate to those of other bacteria and viruses. PMID:26320027

  17. The Role of Viral, Host, and Secondary Bacterial Factors in Influenza Pathogenesis

    PubMed Central

    Kash, John C.; Taubenberger, Jeffery K.

    2016-01-01

    Influenza A virus infections in humans generally cause self-limited infections, but can result in severe disease, secondary bacterial pneumonias, and death. Influenza viruses can replicate in epithelial cells throughout the respiratory tree and can cause tracheitis, bronchitis, bronchiolitis, diffuse alveolar damage with pulmonary edema and hemorrhage, and interstitial and airspace inflammation. The mechanisms by which influenza infections result in enhanced disease, including development of pneumonia and acute respiratory distress, are multifactorial, involving host, viral, and bacterial factors. Host factors that enhance risk of severe influenza disease include underlying comorbidities, such as cardiac and respiratory disease, immunosuppression, and pregnancy. Viral parameters enhancing disease risk include polymerase mutations associated with host switch and adaptation, viral proteins that modulate immune and antiviral responses, and virulence factors that increase disease severity, which can be especially prominent in pandemic viruses and some zoonotic influenza viruses causing human infections. Influenza viral infections result in damage to the respiratory epithelium that facilitates secondary infection with common bacterial pneumopathogens and can lead to secondary bacterial pneumonias that greatly contribute to respiratory distress, enhanced morbidity, and death. Understanding the molecular mechanisms by which influenza and secondary bacterial infections, coupled with the role of host risk factors, contribute to enhanced morbidity and mortality is essential to develop better therapeutic strategies to treat severe influenza. PMID:25747532

  18. Cryptosporidia: epicellular parasites embraced by the host cell membrane.

    PubMed

    Valigurová, Andrea; Jirků, Miloslav; Koudela, Bretislav; Gelnar, Milan; Modrý, David; Slapeta, Jan

    2008-07-01

    The ultrastructure of two gastric cryptosporidia, Cryptosporidium muris from experimentally infected rodents (Mastomys natalensis) and Cryptosporidium sp. 'toad' from naturally infected toads (Duttaphrynus melanostictus), was studied using electron microscopy. Observations presented herein allowed us to map ultrastructural aspects of the cryptosporidian invasion process and the origin of a parasitophorous sac. Invading parasites attach to the host cell, followed by gradual envelopment, with the host's cell membrane folds, eventually forming the parasitophorous sac. Cryptosporidian developmental stages remain epicellular during the entire life cycle. The parasite development is illustrated in detail using high resolution field emission scanning electron microscopy. This provides a new insight into the ultrastructural detail of host-parasite interactions and species-specific differences manifested in frequency of detachment of the parasitophorous sac, radial folds of the parasitophorous sac and stem-formation of the parasitised host cell. PMID:18158154

  19. Quantitative Proteomics Identifies Serum Response Factor Binding Protein 1 as a Host Factor for Hepatitis C Virus Entry.

    PubMed

    Gerold, Gisa; Meissner, Felix; Bruening, Janina; Welsch, Kathrin; Perin, Paula M; Baumert, Thomas F; Vondran, Florian W; Kaderali, Lars; Marcotrigiano, Joseph; Khan, Abdul G; Mann, Matthias; Rice, Charles M; Pietschmann, Thomas

    2015-08-01

    Hepatitis C virus (HCV) enters human hepatocytes through a multistep mechanism involving, among other host proteins, the virus receptor CD81. How CD81 governs HCV entry is poorly characterized, and CD81 protein interactions after virus binding remain elusive. We have developed a quantitative proteomics protocol to identify HCV-triggered CD81 interactions and found 26 dynamic binding partners. At least six of these proteins promote HCV infection, as indicated by RNAi. We further characterized serum response factor binding protein 1 (SRFBP1), which is recruited to CD81 during HCV uptake and supports HCV infection in hepatoma cells and primary human hepatocytes. SRFBP1 facilitates host cell penetration by all seven HCV genotypes, but not of vesicular stomatitis virus and human coronavirus. Thus, SRFBP1 is an HCV-specific, pan-genotypic host entry factor. These results demonstrate the use of quantitative proteomics to elucidate pathogen entry and underscore the importance of host protein-protein interactions during HCV invasion. PMID:26212323

  20. Stem cell progeny contribute to the schistosome host-parasite interface

    PubMed Central

    Collins, James J; Wendt, George R; Iyer, Harini; Newmark, Phillip A

    2016-01-01

    Schistosomes infect more than 200 million of the world's poorest people. These parasites live in the vasculature, producing eggs that spur a variety of chronic, potentially life-threatening, pathologies exacerbated by the long lifespan of schistosomes, that can thrive in the host for decades. How schistosomes maintain their longevity in this immunologically hostile environment is unknown. Here, we demonstrate that somatic stem cells in Schistosoma mansoni are biased towards generating a population of cells expressing factors associated exclusively with the schistosome host-parasite interface, a structure called the tegument. We show cells expressing these tegumental factors are short-lived and rapidly turned over. We suggest that stem cell-driven renewal of this tegumental lineage represents an important strategy for parasite survival in the context of the host vasculature. DOI: http://dx.doi.org/10.7554/eLife.12473.001 PMID:27003592

  1. Human Genome-Wide RNAi Screen for Host Factors That Modulate Intracellular Salmonella Growth

    PubMed Central

    Thornbrough, Joshua M.; Hundley, Tom; Valdivia, Raphael; Worley, Micah J.

    2012-01-01

    Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. While much has been learned about the microbial genes that influence the infectious process through decades of intensive research, relatively little is known about the host factors that affect infection. We performed a genome-wide siRNA screen to identify host genes that Salmonella enterica serovar Typhimurium (S. typhimurium) utilizes to facilitate growth within human epithelial cells. In this screen, with siRNAs targeting every predicted gene in the human genome, we identified 252 new human-host-susceptibility factors (HSFs) for S. typhimurium. We also identified 39 genes whose silencing results in increased intracellular growth of S. typhimurium. The HSFs identified are regulated most centrally by NFκB and associate with each other through an extremely dense network of interactions that center around a group of kinases. Most genes identified were not previously appreciated as playing roles in the intracellular lifecycle of S. enterica. Numerous HSFs identified with interesting characteristics that could play plausible roles in mediating intracellular microbial growth are discussed. Importantly, this study reveals significant overlap between the host network that supports S. typhimurium growth within human epithelial cells and the one that promotes the growth of Mycobacterium tuberculosis within human macrophages. In addition to providing much new information about the molecular mechanisms underlying S. enterica-host cell interplay, all 252 HSFs identified are candidates for new anti-microbial targets for controlling S. enterica infections, and some may provide broad-spectrum anti-microbial activity. PMID:22701604

  2. CRISPR Immunological Memory Requires a Host Factor for Specificity.

    PubMed

    Nuñez, James K; Bai, Lawrence; Harrington, Lucas B; Hinder, Tracey L; Doudna, Jennifer A

    2016-06-16

    Bacteria and archaea employ adaptive immunity against foreign genetic elements using CRISPR-Cas systems. To generate immunological memory, the Cas1-Cas2 protein complex captures 30-40 base pair segments of foreign DNA and catalyzes their integration into the host genome as unique spacer sequences. Although spacers are inserted strictly at the A-T-rich leader end of CRISPR loci in vivo, the molecular mechanism of leader-specific spacer integration remains poorly understood. Here we show that the E. coli integration host factor (IHF) protein is required for spacer acquisition in vivo and for integration into linear DNA in vitro. IHF binds to the leader sequence and induces a sharp DNA bend, allowing the Cas1-Cas2 integrase to catalyze the first integration reaction at the leader-repeat border. Together, these results reveal that Cas1-Cas2-mediated spacer integration requires IHF-induced target DNA bending and explain the elusive role of CRISPR leader sequences during spacer acquisition. PMID:27211867

  3. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells

    PubMed Central

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols. PMID:27447484

  4. Interleukin-7 Modulates Anti-Tumor CD8+ T Cell Responses via Its Action on Host Cells.

    PubMed

    Deiser, Katrin; Stoycheva, Diana; Bank, Ute; Blankenstein, Thomas; Schüler, Thomas

    2016-01-01

    The adoptive transfer of antigen-specific CD8+ T cells is a promising approach for the treatment of chronic viral and malignant diseases. In order to improve adoptive T cell therapy (ATT) of cancer, recent strategies aim at the antibody-based blockade of immunosuppressive signaling pathways in CD8+ T cells. Alternatively, adjuvant effects of immunostimulatory cytokines might be exploited to improve therapeutic CD8+ T cell responses. For example, Interleukin-7 (IL-7) is a potent growth, activation and survival factor for CD8+ T cells that can be used to improve virus- and tumor-specific CD8+ T cell responses. Although direct IL-7 effects on CD8+ T cells were studied extensively in numerous models, the contribution of IL-7 receptor-competent (IL-7R+) host cells remained unclear. In the current study we provide evidence that CD8+ T cell-mediated tumor rejection in response to recombinant IL-7 (rIL-7) therapy is strictly dependent on IL-7R+ host cells. On the contrary, CD8+ T cell expansion is independent of host IL-7R expression. If, however, rIL-7 therapy and peptide vaccination are combined, host IL-7R signaling is crucial for CD8+ T cell expansion. Unexpectedly, maximum CD8+ T cell expansion relies mainly on IL-7R signaling in non-hematopoietic host cells, similar to the massive accumulation of dendritic cells and granulocytes. In summary, we provide evidence that IL-7R+ host cells are major targets of rIL-7 that modulate therapeutic CD8+ T cell responses and the outcome of rIL-7-assisted ATT. This knowledge may have important implications for the design and optimization of clinical ATT protocols. PMID:27447484

  5. [How does the apicomplexan parasite Theileria control host cell identity?].

    PubMed

    Marsolier, Justine; Weitzman, Jonathan B

    2014-01-01

    Infectious agents, like bacteria or virus, are responsible for a large number of pathologies in mammals. Microbes have developed mechanisms for interacting with host cell pathways and hijacking cellular machinery to change the phenotypic state. In this review, we focus on an interesting apicomplexan parasite called Theileria. Infection by the tick-transmitted T. annulata parasite causes Tropical Theileriosis in North Africa and Asia, and the related T. parva parasite causes East Coast Fever in Sub-Saharan Africa. This parasite is the only eukaryote known to induce the transformation of its mammalian host cells. Indeed, T. annulata and T. parva infect bovine leukocytes leading to transforming phenotypes, which partially mirror human lymphoma pathologies. Theileria infection causes hyperproliferation, invasiveness and escape from apoptosis, presumably through the manipulation of host cellular pathways. Several host-signaling mechanisms have been implicated. Here we describe the mechanisms involved in parasite-induced transformation phenotypes. PMID:25840458

  6. Ehrlichia's molecular tricks to manipulate their host cells.

    PubMed

    Moumène, Amal; Meyer, Damien F

    2016-03-01

    Ehrlichia is a large genus of obligate intracellular Gram-negative bacteria transmitted by ticks that cause several emerging infectious diseases in humans and are pathogenic on rodents, ruminants, and dogs. Ehrlichia spp. invade and replicate either in endothelial cells, white blood cells, or within midgut cells and salivary glands of their vector ticks. In this review, we discuss the insights that functional studies are providing on how this group of bacteria exploits their host by subverting host innate immunity and hijacking cellular processes. PMID:26617397

  7. Ehrlichia chaffeensis TRP32 Interacts with Host Cell Targets That Influence Intracellular Survival

    PubMed Central

    Luo, Tian

    2012-01-01

    Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes and survives by evading host cell defense mechanisms. Recently, molecular interactions of E. chaffeensis tandem repeat proteins 47 and 120 (TRP47 and -120) and the eukaryotic host cell have been described. In this investigation, yeast two-hybrid analysis demonstrated that an E. chaffeensis type 1 secretion system substrate, TRP32, interacts with a diverse group of human proteins associated with major biological processes of the host cell, including protein synthesis, trafficking, degradation, immune signaling, cell signaling, iron metabolism, and apoptosis. Eight target proteins, including translation elongation factor 1 alpha 1 (EF1A1), deleted in azoospermia (DAZ)-associated protein 2 (DAZAP2), ferritin light polypeptide (FTL), CD63, CD14, proteasome subunit beta type 1 (PSMB1), ring finger and CCCH-type domain 1 (RC3H1), and tumor protein p53-inducible protein 11 (TP53I11) interacted with TRP32 as determined by coimmunoprecipitation assays, colocalization with TRP32 in HeLa and THP-1 cells, and/or RNA interference. Interactions between TRP32 and host targets localized to the E. chaffeensis morulae or in the host cell cytoplasm adjacent to morulae. Common or closely related interacting partners of E. chaffeensis TRP32, TRP47, and TRP120 demonstrate a molecular convergence on common cellular processes and molecular cross talk between Ehrlichia TRPs and host targets. These findings further support the role of TRPs as effectors that promote intracellular survival. PMID:22547548

  8. Viral and host factors that contribute to pathogenicity of enterovirus 71.

    PubMed

    Huang, Hsing-I; Weng, Kuo-Feng; Shih, Shin-Ru

    2012-04-01

    The single-stranded RNA virus enterovirus 71 (EV71), which belongs to the Picornaviridae family, has caused epidemics worldwide, particularly in the Asia-Pacific region. Most EV71 infections result in mild clinical symptoms, including herpangina and hand, foot and mouth disease. However, serious pathological complications have also been reported, especially for young children. The mechanisms of EV71 disease progression remain unclear. The pathogenesis of adverse clinical outcomes may relate to many factors, including cell tropism, cell death and host immune responses. This article reviews the recent advances in the identification of factors determining EV71 cell tropism, the associated mechanisms of viral infection-induced cell death and the interplay between EV71 and immunity. PMID:22439724

  9. Malaria: targeting parasite and host cell kinomes.

    PubMed

    Doerig, Christian; Abdi, Abdirahman; Bland, Nicholas; Eschenlauer, Sylvain; Dorin-Semblat, Dominique; Fennell, Clare; Halbert, Jean; Holland, Zoe; Nivez, Marie-Paule; Semblat, Jean-Philippe; Sicard, Audrey; Reininger, Luc

    2010-03-01

    Malaria still remains one of the deadliest infectious diseases, and has a tremendous morbidity and mortality impact in the developing world. The propensity of the parasites to develop drug resistance, and the relative reluctance of the pharmaceutical industry to invest massively in the developments of drugs that would offer only limited marketing prospects, are major issues in antimalarial drug discovery. Protein kinases (PKs) have become a major family of targets for drug discovery research in a number of disease contexts, which has generated considerable resources such as kinase-directed libraries and high throughput kinase inhibition assays. The phylogenetic distance between malaria parasites and their human host translates into important divergences in their respective kinomes, and most Plasmodium kinases display atypical properties (as compared to mammalian PKs) that can be exploited towards selective inhibition. Here, we discuss the taxon-specific kinases possessed by malaria parasites, and give an overview of target PKs that have been validated by reverse genetics, either in the human malaria parasite Plasmodium falciparum or in the rodent model Plasmodium berghei. We also briefly allude to the possibility of attacking Plasmodium through the inhibition of human PKs that are required for survival of this obligatory intracellular parasite, and which are targets for other human diseases. PMID:19840874

  10. Chemical inhibition of RNA viruses reveals REDD1 as a host defense factor.

    PubMed

    Mata, Miguel A; Satterly, Neal; Versteeg, Gijs A; Frantz, Doug; Wei, Shuguang; Williams, Noelle; Schmolke, Mirco; Peña-Llopis, Samuel; Brugarolas, James; Forst, Christian V; White, Michael A; García-Sastre, Adolfo; Roth, Michael G; Fontoura, Beatriz M A

    2011-10-01

    A chemical genetics approach was taken to identify inhibitors of NS1, a major influenza A virus virulence factor that inhibits host gene expression. A high-throughput screen of 200,000 synthetic compounds identified small molecules that reversed NS1-mediated inhibition of host gene expression. A counterscreen for suppression of influenza virus cytotoxicity identified naphthalimides that inhibited replication of influenza virus and vesicular stomatitis virus (VSV). The mechanism of action occurs through activation of REDD1 expression and concomitant inhibition of mammalian target of rapamycin complex 1 (mTORC1) via TSC1-TSC2 complex. The antiviral activity of naphthalimides was abolished in REDD1(-/-) cells. Inhibition of REDD1 expression by viruses resulted in activation of the mTORC1 pathway. REDD1(-/-) cells prematurely upregulated viral proteins via mTORC1 activation and were permissive to virus replication. In contrast, cells conditionally expressing high concentrations of REDD1 downregulated the amount of viral protein. Thus, REDD1 is a new host defense factor, and chemical activation of REDD1 expression represents a potent antiviral intervention strategy. PMID:21909097

  11. Functional genomics approach for the identification of human host factors supporting dengue viral propagation

    PubMed Central

    Barrows, Nicholas J.; Jamison, Sharon F.; Bradrick, Shelton S.; Le Sommer, Caroline; Kim, So Young; Pearson, James; Garcia-Blanco, Mariano A.

    2014-01-01

    Dengue virus (DENV) is endemic throughout tropical regions around the world and there are no approved treatments or anti-transmission agents currently available. Consequently, there exists an enormous unmet need to treat the human diseases caused by DENV and block viral transmission by the mosquito vector. RNAi screening represents an efficient method to expand the pool of known host factors that could become viable targets for treatments or provide rationale to consider available drugs as anti-DENV treatments. We developed a high throughput siRNA-based screening protocol that can identify human DENV host factors. The protocol herein describes the materials and the procedures necessary to screen a human cell line in order to identify genes which are either necessary for or restrict DENV propagation at any stage in the viral life cycle. PMID:24696344

  12. Dissection of Francisella-Host Cell Interactions in Dictyostelium discoideum

    PubMed Central

    Lampe, Elisabeth O.; Brenz, Yannick; Herrmann, Lydia; Repnik, Urska; Griffiths, Gareth; Zingmark, Carl; Sjöstedt, Anders; Winther-Larsen, Hanne C.

    2015-01-01

    Francisella bacteria cause severe disease in both vertebrates and invertebrates and include one of the most infectious human pathogens. Mammalian cell lines have mainly been used to study the mechanisms by which Francisella manipulates its host to replicate within a large variety of hosts and cell types, including macrophages. Here, we describe the establishment of a genetically and biochemically tractable infection model: the amoeba Dictyostelium discoideum combined with the fish pathogen Francisella noatunensis subsp. noatunensis. Phagocytosed F. noatunensis subsp. noatunensis interacts with the endosomal pathway and escapes further phagosomal maturation by translocating into the host cell cytosol. F. noatunensis subsp. noatunensis lacking IglC, a known virulence determinant required for Francisella intracellular replication, follows the normal phagosomal maturation and does not grow in Dictyostelium. The attenuation of the F. noatunensis subsp. noatunensis ΔiglC mutant was confirmed in a zebrafish embryo model, where growth of F. noatunensis subsp. noatunensis ΔiglC was restricted. In Dictyostelium, F. noatunensis subsp. noatunensis interacts with the autophagic machinery. The intracellular bacteria colocalize with autophagic markers, and when autophagy is impaired (Dictyostelium Δatg1), F. noatunensis subsp. noatunensis accumulates within Dictyostelium cells. Altogether, the Dictyostelium-F. noatunensis subsp. noatunensis infection model recapitulates the course of infection described in other host systems. The genetic and biochemical tractability of the system allows new approaches to elucidate the dynamic interactions between pathogenic Francisella and its host organism. PMID:26712555

  13. Dissection of Francisella-Host Cell Interactions in Dictyostelium discoideum.

    PubMed

    Lampe, Elisabeth O; Brenz, Yannick; Herrmann, Lydia; Repnik, Urska; Griffiths, Gareth; Zingmark, Carl; Sjöstedt, Anders; Winther-Larsen, Hanne C; Hagedorn, Monica

    2016-03-01

    Francisella bacteria cause severe disease in both vertebrates and invertebrates and include one of the most infectious human pathogens. Mammalian cell lines have mainly been used to study the mechanisms by which Francisella manipulates its host to replicate within a large variety of hosts and cell types, including macrophages. Here, we describe the establishment of a genetically and biochemically tractable infection model: the amoeba Dictyostelium discoideum combined with the fish pathogen Francisella noatunensis subsp. noatunensis. Phagocytosed F. noatunensis subsp. noatunensis interacts with the endosomal pathway and escapes further phagosomal maturation by translocating into the host cell cytosol. F. noatunensis subsp. noatunensis lacking IglC, a known virulence determinant required for Francisella intracellular replication, follows the normal phagosomal maturation and does not grow in Dictyostelium. The attenuation of the F. noatunensis subsp. noatunensis ΔiglC mutant was confirmed in a zebrafish embryo model, where growth of F. noatunensis subsp. noatunensis ΔiglC was restricted. In Dictyostelium, F. noatunensis subsp. noatunensis interacts with the autophagic machinery. The intracellular bacteria colocalize with autophagic markers, and when autophagy is impaired (Dictyostelium Δatg1), F. noatunensis subsp. noatunensis accumulates within Dictyostelium cells. Altogether, the Dictyostelium-F. noatunensis subsp. noatunensis infection model recapitulates the course of infection described in other host systems. The genetic and biochemical tractability of the system allows new approaches to elucidate the dynamic interactions between pathogenic Francisella and its host organism. PMID:26712555

  14. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis

    PubMed Central

    Millet, Jean Kaoru; Whittaker, Gary R.

    2015-01-01

    Coronaviruses are a large group of enveloped, single-stranded positive-sense RNA viruses that infect a wide range of avian and mammalian species, including humans. The emergence of deadly human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) have bolstered research in these viral and often zoonotic pathogens. While coronavirus cell and tissue tropism, host range, and pathogenesis are initially controlled by interactions between the spike envelope glycoprotein and host cell receptor, it is becoming increasingly apparent that proteolytic activation of spike by host cell proteases also plays a critical role. Coronavirus spike proteins are the main determinant of entry as they possess both receptor binding and fusion functions. Whereas binding to the host cell receptor is an essential first step in establishing infection, the proteolytic activation step is often critical for the fusion function of spike, as it allows for controlled release of the fusion peptide into target cellular membranes. Coronaviruses have evolved multiple strategies for proteolytic activation of spike, and a large number of host proteases have been shown to proteolytically process the spike protein. These include, but are not limited to, endosomal cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, and trypsin. This review focuses on the diversity of strategies coronaviruses have evolved to proteolytically activate their fusion protein during spike protein biosynthesis and the critical entry step of their life cycle, and highlights important findings on how proteolytic activation of coronavirus spike influences tissue and cell tropism, host range and pathogenicity. PMID:25445340

  15. Host genetic variation is a contributable factor for imperfectly-immunizing vaccination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccine protective efficacy is determined by multiple factors including host genetics, vaccine type, vaccine dosage, challenge virus virulence, challenge virus dose, and interval between vaccination and exposure to challenge viruses. About two decades ago, studies conducted to evaluate host genetic ...

  16. Host cell infiltration into PDT-treated tumor

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Krosl, Gorazd; Dougherty, Graeme J.; Chaplin, David J.

    1992-06-01

    C3H mice bearing SCCVII squamous cell carcinoma were treated with photodynamic therapy (PDT) 24 hours after receiving Photofrin (25 mg/kg, i.v.). Single cell suspensions obtained by the enzymatic digestion of tumors excised either 30 minutes or 4 hours after PDT were analyzed for the content of host immune cells and colony forming ability of malignant cells. The results were compared to the data obtained with non-treated tumors. It is shown that there is a marked increase in the content of cells expressing Mac-1 (monocytes/macrophages or granulocytes) in the tumor 30 minutes post PDT, while a high level of other leucocytes are found within the tumors by 4 hours after PDT. As elaborated in Discussion, the infiltration rate of host immune cells, dying of malignant tumor cells, and yet unknown death rate of host cells originally present in PDT treated tumor occurring concomitantly during this time period complicates this analysis. The results of this study suggest a massive infiltration of macrophages and other leucocytes in PDT treated SCCVII tumor, supporting the suggestion that a potent immune reaction is one of the main characteristics of PDT action in solid tumors. It remains to be determined to what extent is the activity of tumor infiltrating immune cells responsible for its eradication by PDT.

  17. Lipid Exchange between Borrelia burgdorferi and Host Cells

    PubMed Central

    Crowley, Jameson T.; Toledo, Alvaro M.; LaRocca, Timothy J.; Coleman, James L.; London, Erwin; Benach, Jorge L.

    2013-01-01

    Borrelia burgdorferi, the agent of Lyme disease, has cholesterol and cholesterol-glycolipids that are essential for bacterial fitness, are antigenic, and could be important in mediating interactions with cells of the eukaryotic host. We show that the spirochetes can acquire cholesterol from plasma membranes of epithelial cells. In addition, through fluorescent and confocal microscopy combined with biochemical approaches, we demonstrated that B. burgdorferi labeled with the fluorescent cholesterol analog BODIPY-cholesterol or 3H-labeled cholesterol transfer both cholesterol and cholesterol-glycolipids to HeLa cells. The transfer occurs through two different mechanisms, by direct contact between the bacteria and eukaryotic cell and/or through release of outer membrane vesicles. Thus, two-way lipid exchange between spirochetes and host cells can occur. This lipid exchange could be an important process that contributes to the pathogenesis of Lyme disease. PMID:23326230

  18. Host Factors and Biomarkers Associated with Poor Outcomes in Adults with Invasive Pneumococcal Disease

    PubMed Central

    Hanada, Shigeo; Iwata, Satoshi; Kishi, Kazuma; Morozumi, Miyuki; Chiba, Naoko; Wajima, Takeaki; Takata, Misako; Ubukata, Kimiko

    2016-01-01

    Background Invasive pneumococcal disease (IPD) causes considerable morbidity and mortality. We aimed to identify host factors and biomarkers associated with poor outcomes in adult patients with IPD in Japan, which has a rapidly-aging population. Methods In a large-scale surveillance study of 506 Japanese adults with IPD, we investigated the role of host factors, disease severity, biomarkers based on clinical laboratory data, treatment regimens, and bacterial factors on 28-day mortality. Results Overall mortality was 24.1%, and the mortality rate increased from 10.0% in patients aged ˂50 years to 33.1% in patients aged ≥80 years. Disease severity also increased 28-day mortality, from 12.5% among patients with bacteraemia without sepsis to 35.0% in patients with severe sepsis and 56.9% with septic shock. The death rate within 48 hours after admission was high at 54.9%. Risk factors for mortality identified by multivariate analysis were as follows: white blood cell (WBC) count <4000 cells/μL (odds ratio [OR], 6.9; 95% confidence interval [CI], 3.7–12.8, p < .001); age ≥80 years (OR, 6.5; 95% CI, 2.0–21.6, p = .002); serum creatinine ≥2.0 mg/dL (OR, 4.5; 95% CI, 2.5–8.1, p < .001); underlying liver disease (OR, 3.5; 95% CI, 1.6–7.8, p = .002); mechanical ventilation (OR, 3.0; 95% CI, 1.7–5.6, p < .001); and lactate dehydrogenase ≥300 IU/L (OR, 2.4; 95% CI, 1.4–4.0, p = .001). Pneumococcal serotype and drug resistance were not associated with poor outcomes. Conclusions Host factors, disease severity, and biomarkers, especially WBC counts and serum creatinine, were more important determinants of mortality than bacterial factors. PMID:26815915

  19. Toxoplasma Co-opts Host Cells It Does Not Invade

    PubMed Central

    Koshy, Anita A.; Dietrich, Hans K.; Christian, David A.; Melehani, Jason H.; Shastri, Anjali J.; Hunter, Christopher A.; Boothroyd, John C.

    2012-01-01

    Like many intracellular microbes, the protozoan parasite Toxoplasma gondii injects effector proteins into cells it invades. One group of these effector proteins is injected from specialized organelles called the rhoptries, which have previously been described to discharge their contents only during successful invasion of a host cell. In this report, using several reporter systems, we show that in vitro the parasite injects rhoptry proteins into cells it does not productively invade and that the rhoptry effector proteins can manipulate the uninfected cell in a similar manner to infected cells. In addition, as one of the reporter systems uses a rhoptry:Cre recombinase fusion protein, we show that in Cre-reporter mice infected with an encysting Toxoplasma-Cre strain, uninfected-injected cells, which could be derived from aborted invasion or cell-intrinsic killing after invasion, are actually more common than infected-injected cells, especially in the mouse brain, where Toxoplasma encysts and persists. This phenomenon has important implications for how Toxoplasma globally affects its host and opens a new avenue for how other intracellular microbes may similarly manipulate the host environment at large. PMID:22910631

  20. Toxoplasma co-opts host cells it does not invade.

    PubMed

    Koshy, Anita A; Dietrich, Hans K; Christian, David A; Melehani, Jason H; Shastri, Anjali J; Hunter, Christopher A; Boothroyd, John C

    2012-01-01

    Like many intracellular microbes, the protozoan parasite Toxoplasma gondii injects effector proteins into cells it invades. One group of these effector proteins is injected from specialized organelles called the rhoptries, which have previously been described to discharge their contents only during successful invasion of a host cell. In this report, using several reporter systems, we show that in vitro the parasite injects rhoptry proteins into cells it does not productively invade and that the rhoptry effector proteins can manipulate the uninfected cell in a similar manner to infected cells. In addition, as one of the reporter systems uses a rhoptry:Cre recombinase fusion protein, we show that in Cre-reporter mice infected with an encysting Toxoplasma-Cre strain, uninfected-injected cells, which could be derived from aborted invasion or cell-intrinsic killing after invasion, are actually more common than infected-injected cells, especially in the mouse brain, where Toxoplasma encysts and persists. This phenomenon has important implications for how Toxoplasma globally affects its host and opens a new avenue for how other intracellular microbes may similarly manipulate the host environment at large. PMID:22910631

  1. Viral Genome Tethering to Host Cell Chromatin: Cause and Consequences.

    PubMed

    Aydin, Inci; Schelhaas, Mario

    2016-04-01

    Viruses are small infectious agents that replicate in cells of a host organism and that evolved to use cellular machineries for all stages of the viral life cycle. Here, we critically assess current knowledge on a particular mechanism of persisting viruses, namely, how they tether their genomes to host chromatin, and what consequences arise from this process. A group of persisting DNA viruses, i.e. gamma-herpesviruses and papillomaviruses (PV), uses this tethering strategy to maintain their genomes in the nuclei during cell division. Thus, these viruses face the challenge of viral genome loss during mitosis, as they are transported with the host chromosomes to the nascent daughter nuclei. Incidentally, another group of viruses, certain retroviruses and PV, have adopted this tethering strategy to deliver their genomes into the nuclei of dividing cells during cell entry. By exploiting a phase in the cell cycle when the nuclear envelope is disassembled, viruses bypass the need to engage with the nuclear import machinery. Recent reports suggest that tethering may induce severe cellular consequences that involve activation of mitotic checkpoints, causing missegregation of host chromosomes and genomic instability, which may contribute to cancer. PMID:26787361

  2. Propionibacterium acnes CAMP Factor and Host Acid Sphingomyelinase Contribute to Bacterial Virulence: Potential Targets for Inflammatory Acne Treatment

    PubMed Central

    Nakatsuji, Teruaki; Tang, De-chu C.; Zhang, Liangfang; Gallo, Richard L.; Huang, Chun-Ming

    2011-01-01

    Background In the progression of acne vulgaris, the disruption of follicular epithelia by an over-growth of Propionibacterium acnes (P. acnes) permits the bacteria to spread and become in contact with various skin and immune cells. Methodology/Principal Findings We have demonstrated in the present study that the Christie, Atkins, Munch-Peterson (CAMP) factor of P. acnes is a secretory protein with co-hemolytic activity with sphingomyelinase that can confer cytotoxicity to HaCaT keratinocytes and RAW264.7 macrophages. The CAMP factor from bacteria and acid sphingomyelinase (ASMase) from the host cells were simultaneously present in the culture supernatant only when the cells were co-cultured with P. acnes. Either anti-CAMP factor serum or desipramine, a selective ASMase inhibitor, significantly abrogated the P. acnes-induced cell death of HaCaT and RAW264.7 cells. Intradermal injection of ICR mouse ears with live P. acnes induced considerable ear inflammation, macrophage infiltration, and an increase in cellular soluble ASMase. Suppression of ASMase by systemic treatment with desipramine significantly reduced inflammatory reaction induced by intradermal injection with P. acnes, suggesting the contribution of host ASMase in P. acnes-induced inflammatory reaction in vivo. Vaccination of mice with CAMP factor elicited a protective immunity against P. acnes-induced ear inflammation, indicating the involvement of CAMP factor in P. acnes-induced inflammation. Most notably, suppression of both bacterial CAMP factor and host ASMase using vaccination and specific antibody injection, respectively, cooperatively alleviated P. acnes-induced inflammation. Conclusions/Significance These findings envision a novel infectious mechanism by which P. acnes CAMP factor may hijack host ASMase to amplify bacterial virulence to degrade and invade host cells. This work has identified both CAMP factor and ASMase as potential molecular targets for the development of drugs and vaccines against

  3. Viral and host inflammation-related factors that can predict the prognosis of hepatocellular carcinoma.

    PubMed

    Chen, Liping; Zhang, Qi; Chang, Wenjun; Du, Yan; Zhang, Hongwei; Cao, Guangwen

    2012-09-01

    Hepatocellular carcinoma (HCC), a malignancy caused mainly by chronic infection with hepatitis B virus (HBV) and/or hepatitis C virus (HCV), is a highly fatal disease. Apart from clinical parameters like venous invasion and multinodularity, viral and host inflammation-related factors are important predictors of HCC prognosis after surgical treatment. The factors of prognostic value can be detected in the specimens of HCC patients. In preoperative peripheral blood, high HBV DNA and the genotypes and mutations of HBV or HCV, high neutrophil-to-lymphocyte ratio and high concentrations of macrophage migration inhibitory factor and osteopontin predict poor prognosis. In tumours, high ratios of neutrophil-to-CD8(+) T cell and Treg-to-CD8(+) T cell, high expression of pro-angiogenic factors such as hypoxia-inducible factor-1α and cell growth/survival factors such as CD24 and activation of inflammatory signalling pathways such as Wnt/β-catenin, nuclear factor-kappa B and signal transducer and activator of transcription 3 predict early recurrence. In peritumoural hepatic tissues, high HBV DNA, HBV mutations, high densities of macrophages, activated stellates and mast cells, high expression of macrophage colony-stimulating factor/its receptor and placental growth factor, Th1/Th2-like cytokine shift, inflammation-related signature and activation of carcinogenesis-related pathways predict late recurrence. Further studies should be focused on the development of a robust strategy by integrating the viral factors, inflammatory factors and clinical factors of complementary prognostic value to ensure high validity of the assessment for postoperative HCC prognosis. PMID:22325840

  4. Autologous apoptotic cells preceding transplantation enhance survival in lethal murine graft-versus-host models

    PubMed Central

    Florek, Mareike; Sega, Emanuela I.; Leveson-Gower, Dennis B.; Baker, Jeanette; Müller, Antonia M. S.; Schneidawind, Dominik; Meyer, Everett

    2014-01-01

    Acute graft-versus-host disease (GVHD) is induced by alloreactivity of donor T cells toward host antigens presented on antigen-presenting cells (APCs). Apoptotic cells are capable of inducing tolerance by altering APC maturation. Apoptosis can be induced by extracorporeal photopheresis (ECP). We demonstrate that the use of ECP as a prophylaxis prior to conditioning significantly improves survival (P < .0001) after bone marrow transplantation (BMT) by inhibiting the initiation phase of acute GVHD in a murine BMT model. ECP-treated autologous splenocytes resulted in immune tolerance in the host, including reduced dendritic cell activation with decreased nuclear factor-κB engagement, increased regulatory T-cell (Treg) numbers with enhanced expression of cytolytic T lymphocyte-associated antigen 4, potentiating their suppressive function. The protective effect required host production of interleukin-10 and host Tregs. Conventional T cells that entered this tolerant environment experienced reduced proliferation, as well as a reduction of tissue homing and expression of activation markers. The induction of this tolerant state by ECP was obviated by cotreatment with lipopolysaccharide, suggesting that the inflammatory state of the recipient prior to treatment would play a role in potential clinical translation. The use of prophylactic ECP may provide an alternative and safe method for immunosuppression in the bone marrow transplant setting. PMID:25030062

  5. Autologous apoptotic cells preceding transplantation enhance survival in lethal murine graft-versus-host models.

    PubMed

    Florek, Mareike; Sega, Emanuela I; Leveson-Gower, Dennis B; Baker, Jeanette; Müller, Antonia M S; Schneidawind, Dominik; Meyer, Everett; Negrin, Robert S

    2014-09-11

    Acute graft-versus-host disease (GVHD) is induced by alloreactivity of donor T cells toward host antigens presented on antigen-presenting cells (APCs). Apoptotic cells are capable of inducing tolerance by altering APC maturation. Apoptosis can be induced by extracorporeal photopheresis (ECP). We demonstrate that the use of ECP as a prophylaxis prior to conditioning significantly improves survival (P < .0001) after bone marrow transplantation (BMT) by inhibiting the initiation phase of acute GVHD in a murine BMT model. ECP-treated autologous splenocytes resulted in immune tolerance in the host, including reduced dendritic cell activation with decreased nuclear factor-κB engagement, increased regulatory T-cell (Treg) numbers with enhanced expression of cytolytic T lymphocyte-associated antigen 4, potentiating their suppressive function. The protective effect required host production of interleukin-10 and host Tregs. Conventional T cells that entered this tolerant environment experienced reduced proliferation, as well as a reduction of tissue homing and expression of activation markers. The induction of this tolerant state by ECP was obviated by cotreatment with lipopolysaccharide, suggesting that the inflammatory state of the recipient prior to treatment would play a role in potential clinical translation. The use of prophylactic ECP may provide an alternative and safe method for immunosuppression in the bone marrow transplant setting. PMID:25030062

  6. Plasmodium species: master renovators of their host cells.

    PubMed

    de Koning-Ward, Tania F; Dixon, Matthew W A; Tilley, Leann; Gilson, Paul R

    2016-08-01

    Plasmodium parasites, the causative agents of malaria, have developed elaborate strategies that they use to survive and thrive within different intracellular environments. During the blood stage of infection, the parasite is a master renovator of its erythrocyte host cell, and the changes in cell morphology and function that are induced by the parasite promote survival and contribute to the pathogenesis of severe malaria. In this Review, we discuss how Plasmodium parasites use the protein trafficking motif Plasmodium export element (PEXEL), protease-mediated polypeptide processing, a novel translocon termed the Plasmodium translocon of exported proteins (PTEX) and exomembranous structures to export hundreds of proteins to discrete subcellular locations in the host erythrocytes, which enables the parasite to gain access to vital nutrients and to evade the immune defence mechanisms of the host. PMID:27374802

  7. Characterization of the Host Factors Required for Hepadnavirus Covalently Closed Circular (ccc) DNA Formation

    PubMed Central

    Zhou, Tianlun; Block, Timothy M.; Guo, Ju-Tao

    2012-01-01

    Synthesis of the covalently closed circular (ccc) DNA is a critical, but not well-understood step in the life cycle of hepadnaviruses. Our previous studies favor a model that removal of genome-linked viral DNA polymerase occurs in the cytoplasm and the resulting deproteinized relaxed circular DNA (DP-rcDNA) is subsequently transported into the nucleus and converted into cccDNA. In support of this model, our current study showed that deproteinization of viral double-stranded linear (dsl) DNA also took place in the cytoplasm. Furthermore, we demonstrated that Ku80, a component of non-homologous end joining DNA repair pathway, was essential for synthesis of cccDNA from dslDNA, but not rcDNA. In an attempt to identify additional host factors regulating cccDNA biosynthesis, we found that the DP-rcDNA was produced in all tested cell lines that supported DHBV DNA replication, but cccDNA was only synthesized in the cell lines that accumulated high levels of DP-rcDNA, except for NCI-H322M and MDBK cells, which failed to synthesize cccDNA despite of the existence of nuclear DP-rcDNA. The results thus imply that while removal of the genome-linked viral DNA polymerase is most likely catalyzed by viral or ubiquitous host function(s), nuclear factors required for the conversion of DP-rcDNA into cccDNA and/or its maintenance are deficient in the above two cell lines, which could be useful tools for identification of the elusive host factors essential for cccDNA biosynthesis or maintenance. PMID:22912842

  8. Sheep primary cells as in vitro models to investigate Mycoplasma agalactiae host cell interactions

    PubMed Central

    Hegde, Shrilakshmi; Gabriel, Cordula; Kragl, Martin; Chopra-Dewasthaly, Rohini

    2015-01-01

    Appropriate infection models are imperative for the understanding of pathogens like mycoplasmas that are known for their strict host and tissue specificity, and lack of suitable cell and small animal models has hindered pathogenicity studies. This is particularly true for the economically important group of ruminant mycoplasmas whose virulence factors need to be elucidated for designing effective intervention strategies. Mycoplasma agalactiae serves as a useful role model especially because it is phylogenetically very close to M. bovis and causes similar symptoms by as yet unknown mechanisms. Here, we successfully prepared and characterized four different primary sheep cell lines, namely the epithelial and stromal cells from the mammary gland and uterus, respectively. Using immunohistochemistry, we identified vimentin and cytokeratin as specific markers to confirm the typical cell phenotypes of these primary cells. Furthermore, M. agalactiae’s consistent adhesion and invasion into these primary cells proves the reliability of these cell models. Mimicking natural infections, mammary epithelial and stromal cells showed higher invasion and adhesion rates compared to the uterine cells as also seen via double immunofluorescence staining. Altogether, we have generated promising in vitro cell models to study host–pathogen interactions of M. agalactiae and related ruminant pathogens in a more authentic manner. PMID:26187893

  9. Clustered Intracellular Salmonella enterica Serovar Typhimurium Blocks Host Cell Cytokinesis

    PubMed Central

    Durkin, Charlotte H.; Helaine, Sophie; Boucrot, Emmanuel

    2016-01-01

    Several bacterial pathogens and viruses interfere with the cell cycle of their host cells to enhance virulence. This is especially apparent in bacteria that colonize the gut epithelium, where inhibition of the cell cycle of infected cells enhances the intestinal colonization. We found that intracellular Salmonella enterica serovar Typhimurium induced the binucleation of a large proportion of epithelial cells by 14 h postinvasion and that the effect was dependent on an intact Salmonella pathogenicity island 2 (SPI-2) type 3 secretion system. The SPI-2 effectors SseF and SseG were required to induce binucleation. SseF and SseG are known to maintain microcolonies of Salmonella-containing vacuoles close to the microtubule organizing center of infected epithelial cells. During host cell division, these clustered microcolonies prevented the correct localization of members of the chromosomal passenger complex and mitotic kinesin-like protein 1 and consequently prevented cytokinesis. Tetraploidy, arising from a cytokinesis defect, is known to have a deleterious effect on subsequent cell divisions, resulting in either chromosomal instabilities or cell cycle arrest. In infected mice, proliferation of small intestinal epithelial cells was compromised in an SseF/SseG-dependent manner, suggesting that cytokinesis failure caused by S. Typhimurium delays epithelial cell turnover in the intestine. PMID:27185791

  10. Host factors determining the efficacy of hepatitis C treatment.

    PubMed

    Chuang, Wan-Long; Yu, Ming-Lung

    2013-01-01

    Combination therapy with pegylated interferon and ribavirin is the standard of care (SOC) for the treatment of chronic hepatitis C (CHC). Treating CHC with SOC may show a sustained virological response (SVR) in approximately 50-70 % of genotype 1 CHC patients and an SVR in 70-90 % of genotype 2 CHC patients. The genotype, baseline viral load, and viral kinetics (i.e., rapid virologic response and early virologic response) can be used as predictors of response-guided therapy. Nonetheless, host factors, e.g. age, ethnicity, insulin resistance, and genetic variations, may also play important roles in the SVR in CHC patients treated with SOC. Recent genome-wide association studies have demonstrated that single-nucleotide polymorphisms near the interleukin 28B gene (IL28B) were associated with SVR to treatment with SOC in CHC patients. The IL28B polymorphisms may contribute to the viral kinetics during treatment. Asian people have favorable IL28B polymorphisms. This factor may at least partly explain the high eradication rate of hepatitis C by SOC in Asia. Combination therapy with direct-acting antivirals (DAAs) and SOC can increase the SVR rates both in treatment-naïve and treatment-experienced patients. Although the IL28B polymorphisms also affect the SVR of triple therapy with SOC and first-generation protease inhibitors, pilot studies have demonstrated that potent DAAs might overcome the influence of IL28B polymorphisms. Thus, the treatment of hepatitis C virus infection could be simplified in the near future. PMID:23104468

  11. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence.

    PubMed

    Holowka, Thomas; Castilho, Tiago M; Garcia, Alvaro Baeza; Sun, Tiffany; McMahon-Pratt, Diane; Bucala, Richard

    2016-06-01

    Leishmania major encodes 2 orthologs of the cytokine macrophage migration inhibitory factor (MIF), whose functions in parasite growth or in the host-parasite interaction are unknown. To determine the importance of Leishmania-encoded MIF, both LmMIF genes were removed to produce an mif(-/-) strain of L. major This mutant strain replicated normally in vitro but had a 2-fold increased susceptibility to clearance by macrophages. Mice infected with mif(-/-) L. major, when compared to the wild-type strain, also showed a 3-fold reduction in parasite burden. Microarray and functional analyses revealed a reduced ability of mif(-/-) L. major to activate antigen-presenting cells, resulting in a 2-fold reduction in T-cell priming. In addition, there was a reduction in inflammation and effector CD4 T-cell formation in mif(-/-) L. major-infected mice when compared to mice infected with wild-type L. major Notably, effector CD4 T cells that developed during infection with mif(-/-) L. major demonstrated statistically significant differences in markers of functional exhaustion, including increased expression of IFN-γ and IL-7R, reduced expression of programmed death-1, and decreased apoptosis. These data support a role for LmMIF in promoting parasite persistence by manipulating the host response to increase the exhaustion and depletion of protective CD4 T cells.-Holowka, T., Castilho, T. M., Baeza Garcia, A., Sun, T., McMahon-Pratt, D., Bucala, R. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence. PMID:26956417

  12. Chlamydia Infection Across Host Species Boundaries Promotes Distinct Sets of Transcribed Anti-Apoptotic Factors

    PubMed Central

    Messinger, Joshua E.; Nelton, Emmalin; Feeney, Colleen; Gondek, David C.

    2015-01-01

    Chlamydiae, obligate intracellular bacteria, cause significant human and veterinary associated diseases. Having emerged an estimated 700-million years ago, these bacteria have twice adapted to humans as a host species, causing sexually transmitted infection (C. trachomatis) and respiratory associated disease (C. pneumoniae). The principle mechanism of host cell defense against these intracellular bacteria is the induction of cell death via apoptosis. However, in the “arms race” of co-evolution, Chlamydiae have developed mechanisms to promote cell viability and inhibit cell death. Herein we examine the impact of Chlamydiae infection across multiple host species on transcription of anti-apoptotic genes. We found mostly distinct patterns of gene expression (Mcl1 and cIAPs) elicited by each pathogen-host pair indicating Chlamydiae infection across host species boundaries does not induce a universally shared host response. Understanding species specific host-pathogen interactions is paramount to deciphering how potential pathogens become emerging diseases. PMID:26779446

  13. Contribution of host-derived growth factors to in vivo growth of a transplantable murine mammary carcinoma.

    PubMed Central

    Davies, D. E.; Farmer, S.; White, J.; Senior, P. V.; Warnes, S. L.; Alexander, P.

    1994-01-01

    The contribution of host-derived growth factors to tumour growth in vivo was studied using the transplantable murine mammary carcinoma, MT1, grown in syngeneic mice. Promotion of growth of the mammary carcinoma by a factor(s) from the host was evident in experiments in which the carcinoma cells were inoculated intraperitoneally. In this environment, tumours develop as multiple solid nodules, each probably arising from an individual cell or a small cluster of cells. Tumour growth was found to occur in the peritoneal cavity following inoculation of 10(3) cells, but an inoculum of as few as ten cells grew if a leucocyte-rich exudate had first been induced. To determine which host-derived growth factors might contribute to growth of MT1, extracts of the tumour were first examined for growth factor activity. Fractionation of tumour extracts by either ion-exchange chromatography or gel filtration revealed several peaks of mitogenic activity, but none of this could be attributed to epidermal growth factor (EGF). Accordingly, an anti-EGF antibody was tested as a putative inhibitor of tumour growth as any effect of this antibody could be ascribed to removal of EGF derived from the host. The antibody was found to have potent anti-tumour activity when tested against MT1 tumours that had been inoculated into the peritoneal cavity. In contrast, the antibody had little effect on growth of the discrete tumour mass which formed when MT1 was transplanted subcutaneously. The results suggest that host-derived EGF contributes to establishment of microcolonies of MT1 carcinoma within the peritoneal cavity. This may be directly, by providing growth factors to supplement those produced by the tumour until it reaches a certain critical mass to sustain autocrine growth, or indirectly, by affecting the production of other growth-stimulatory factors or cytokines. PMID:8054274

  14. Deviance partitioning of host factors affecting parasitization in the European brown hare ( Lepus europaeus)

    NASA Astrophysics Data System (ADS)

    Alzaga, Vanesa; Tizzani, Paolo; Acevedo, Pelayo; Ruiz-Fons, Francisco; Vicente, Joaquín; Gortázar, Christian

    2009-10-01

    Deviance partitioning can provide new insights into the ecology of host-parasite interactions. We studied the host-related factors influencing parasite prevalence, abundance, and species richness in European brown hares ( Lepus europaeus) from northern Spain. We defined three groups of explanatory variables: host environment, host population, and individual factors. We hypothesised that parasite infection rates and species richness were determined by different host-related factors depending on the nature of the parasite (endo- or ectoparasite, direct or indirect life cycle). To assess the relative importance of these components, we used deviance partitioning, an innovative approach. The explained deviance (ED) was higher for parasite abundance models, followed by those of prevalence and then by species richness, suggesting that parasite abundance models may best describe the host factors influencing parasitization. Models for parasites with a direct life cycle yielded higher ED values than those for indirect life cycle ones. As a general trend, host individual factors explained the largest proportion of the ED, followed by host environmental factors and, finally, the interaction between host environmental and individual factors. Similar hierarchies were found for parasite prevalence, abundance, and species richness. Individual factors comprised the most relevant group of explanatory variables for both types of parasites. However, host environmental factors were also relevant in models for indirect life-cycle parasites. These findings are consistent with the idea of the host as the main habitat of the parasite; whereas, for indirect life-cycle parasites, transmission would be also modulated by environmental conditions. We suggest that parasitization can be used not only as an indicator of individual fitness but also as an indicator of environmental quality for the host. This research underlines the importance of monitoring parasite rates together with environmental

  15. Dynamic Behavior and Function of Foxp3+ Regulatory T Cells in Tumor Bearing Host

    PubMed Central

    Qin, F Xiao-Feng

    2009-01-01

    Regulatory T cells (Tregs) expressing forkhead/winged-helix transcription factor Foxp3 represent a distinct lineage of lymphocytes which play a central role in protecting the host from autoimmune diseases. However, Tregs also pose a major problem to anti-tumor immunity. Growing body of evidence from both laboratory and clinical investigations has demonstrated that expansion and accumulation of these immunosuppressive cells correlates with advanced tumor growth and predicts poor disease prognosis. How tumor development subverts normal self-tolerance function of Tregs thereby thwarts host anti-tumor immunity remains elusive. This review will discuss our current knowledge in understanding the dynamics and plasticity of Foxp3+ Treg activation and induction in tumor bearing hosts and their interaction with various antigen presenting cells (APCs) in tumor microenvironment leading to the establishment of active local and systemic immune suppression. PMID:19254475

  16. Selective destruction of a host blood cell type by a parasitoid wasp.

    PubMed

    Rizki, R M; Rizki, T M

    1984-10-01

    Foreign objects that enter the hemocoel of Drosophila melanogaster larvae are encapsulated by one type of blood cell, the lamellocyte, yet eggs of the parasitoid wasp Leptopilina heterotoma remain unencapsulated in D. melanogaster larval hosts that have many lamellocytes. Here we demonstrate that shortly after a female wasp oviposits in the hemocoel the lamellocytes undergo morphological changes and lose their adhesiveness. These affected blood cells are eventually destroyed as the parasitoid egg continues its development. The factor responsible for lamellocyte destruction, lamellolysin, is contained in an accessory gland of the female reproductive system and is injected along with the egg into the host hemocoel. Lamellolysin does not alter the morphology or the defense functions of the other types of blood cells in the host. PMID:6435126

  17. Actin Recruitment to the Chlamydia Inclusion Is Spatiotemporally Regulated by a Mechanism That Requires Host and Bacterial Factors

    PubMed Central

    Chin, Elizabeth; Kirker, Kelly; Zuck, Meghan; James, Garth; Hybiske, Kevin

    2012-01-01

    The ability to exit host cells at the end of their developmental growth is a critical step for the intracellular bacterium Chlamydia. One exit strategy, extrusion, is mediated by host signaling pathways involved with actin polymerization. Here, we show that actin is recruited to the chlamydial inclusion as a late event, occurring after 20 hours post-infection (hpi) and only within a subpopulation of cells. This event increases significantly in prevalence and extent from 20 to 68 hpi, and actin coats strongly correlated with extrusions. In contrast to what has been reported for other intracellular pathogens, actin nucleation on Chlamydia inclusions did not ‘flash’, but rather exhibited moderate depolymerization dynamics. By using small molecule agents to selectively disrupt host signaling pathways involved with actin nucleation, modulate actin polymerization dynamics and also to disable the synthesis and secretion of chlamydial proteins, we further show that host and bacterial proteins are required for actin coat formation. Transient disruption of either host or bacterial signaling pathways resulted in rapid loss of coats in all infected cells and a reduction in extrusion formation. Inhibition of Chlamydia type III secretion also resulted in rapid loss of actin association on inclusions, thus implicating chlamydial effector proteins(s) as being central factors for engaging with host actin nucleating factors, such as formins. In conclusion, our data illuminate the host and bacterial driven process by which a dense actin matrix is dynamically nucleated and maintained on the Chlamydia inclusion. This late stage event is not ubiquitous for all infected cells in a population, and escalates in prevalence and extent throughout the developmental cycle of Chlamydia, culminating with their exit from the host cell by extrusion. The initiation of actin recruitment by Chlamydia appears to be novel, and may serve as an upstream determinant of the extrusion mechanism. PMID

  18. Factors affecting host range in a generalist seed pathogen of semi-arid shrublands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. In weed biocontrol, the potential impact of the biocontrol organism on non-target species is a major concern traditionally addressed with laboratory experiments that measure potential or maximum host range. Several factors may operate to reduce realized host range relative to potential host rang...

  19. Virus and Host Mechanics Support Membrane Penetration and Cell Entry.

    PubMed

    Greber, Urs F

    2016-04-01

    Viruses are quasi-inert macromolecular assemblies. Their metastable conformation changes during entry into cells, when chemical and mechanical host cues expose viral membrane-interacting proteins. This leads to membrane rupture or fusion and genome uncoating. Importantly, virions tune their physical properties and enhance penetration and uncoating. For example, influenza virus softens at low pH to uncoat. The stiffness and pressure of adenovirus control uncoating and membrane penetration. Virus and host mechanics thus present new opportunities for antiviral therapy. PMID:26842477

  20. Extracellular Vesicles from Trypanosoma brucei Mediate Virulence Factor Transfer and Cause Host Anemia.

    PubMed

    Szempruch, Anthony J; Sykes, Steven E; Kieft, Rudo; Dennison, Lauren; Becker, Allison C; Gartrell, Anzio; Martin, William J; Nakayasu, Ernesto S; Almeida, Igor C; Hajduk, Stephen L; Harrington, John M

    2016-01-14

    Intercellular communication between parasites and with host cells provides mechanisms for parasite development, immune evasion, and disease pathology. Bloodstream African trypanosomes produce membranous nanotubes that originate from the flagellar membrane and disassociate into free extracellular vesicles (EVs). Trypanosome EVs contain several flagellar proteins that contribute to virulence, and Trypanosoma brucei rhodesiense EVs contain the serum resistance-associated protein (SRA) necessary for human infectivity. T. b. rhodesiense EVs transfer SRA to non-human infectious trypanosomes, allowing evasion of human innate immunity. Trypanosome EVs can also fuse with mammalian erythrocytes, resulting in rapid erythrocyte clearance and anemia. These data indicate that trypanosome EVs are organelles mediating non-hereditary virulence factor transfer and causing host erythrocyte remodeling, inducing anemia. PMID:26771494

  1. Necroptosis: The Trojan horse in cell autonomous antiviral host defense.

    PubMed

    Mocarski, Edward S; Guo, Hongyan; Kaiser, William J

    2015-05-01

    Herpesviruses suppress cell death to assure sustained infection in their natural hosts. Murine cytomegalovirus (MCMV) encodes suppressors of apoptosis as well as M45-encoded viral inhibitor of RIP activation (vIRA) to block RIP homotypic interaction motif (RHIM)-signaling and recruitment of RIP3 (also called RIPK3), to prevent necroptosis. MCMV and human cytomegalovirus encode a viral inhibitor of caspase (Casp)8 activation to block apoptosis, an activity that unleashes necroptosis. Herpes simplex virus (HSV)1 and HSV2 incorporate both RHIM and Casp8 suppression strategies within UL39-encoded ICP6 and ICP10, respectively, which are herpesvirus-conserved homologs of MCMV M45. Both HSV proteins sensitize human cells to necroptosis by blocking Casp8 activity while preventing RHIM-dependent RIP3 activation and death. In mouse cells, HSV1 ICP6 interacts with RIP3 and, surprisingly, drives necroptosis. Thus, herpesviruses have illuminated the contribution of necoptosis to host defense in the natural host as well as its potential to restrict cross-species infections in nonnatural hosts. PMID:25819165

  2. Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells.

    PubMed

    Jeon, Hyejin; Oh, Man Hwan; Jun, So Hyun; Kim, Seung Il; Choi, Chi Won; Kwon, Hyo Il; Na, Seok Hyeon; Kim, Yoo Jeong; Nicholas, Asiimwe; Selasi, Gati Noble; Lee, Je Chul

    2016-04-01

    Staphylococcus aureus secretes membrane-derived vesicles (MVs), which can deliver virulence factors to host cells and induce cytopathology. However, the cytopathology of host cells induced by MVs derived from different S. aureus strains has not yet been characterized. In the present study, the cytotoxic activity of MVs from different S. aureus isolates on host cells was compared and the proteomes of S. aureus MVs were analyzed. The MVs purified from S. aureus M060 isolated from a patient with staphylococcal scalded skin syndrome showed higher cytotoxic activity toward host cells than that shown by MVs from three other clinical S. aureus isolates. S. aureus M060 MVs induced HEp-2 cell apoptosis in a dose-dependent manner, but the cytotoxic activity of MVs was completely abolished by treatment with proteinase K. In a proteomic analysis, the MVs from three S. aureus isolates not only carry 25 common proteins, but also carry ≥60 strain-specific proteins. All S. aureus MVs contained δ-hemolysin (Hld), γ-hemolysin, leukocidin D, and exfoliative toxin C, but exfoliative toxin A (ETA) was specifically identified in S. aureus M060 MVs. ETA was delivered to HEp-2 cells via S. aureus MVs. Both rETA and rHld induced cytotoxicity in HEp-2 cells. In conclusion, MVs from clinical S. aureus isolates differ with respect to cytotoxic activity in host cells, and these differences may result from differences in the MV proteomes. Further proteogenomic analysis or mutagenesis of specific genes is necessary to identify cytotoxic factors in S. aureus MVs. PMID:26924795

  3. M062 Is a Host Range Factor Essential for Myxoma Virus Pathogenesis and Functions as an Antagonist of Host SAMD9 in Human Cells▿ †

    PubMed Central

    Liu, Jia; Wennier, Sonia; Zhang, Leiliang; McFadden, Grant

    2011-01-01

    Myxoma virus (MYXV) M062R is a functional homolog of the C7L family of host range genes from orthopoxviruses. We constructed a targeted M062R-knockout-MYXV (vMyxM062-KO) and characterized its properties in vitro and in vivo. In European rabbits, infection by vMyxM062-KO was completely asymptomatic. The surviving rabbits did not gain full protection against the subsequent lethal-dose challenge with wild-type MYXV. We also looked for cellular tropism defects in a variety of cultured cells. In all of the rabbit cells tested, vMyxM062-KO conducts an abortive infection, although it initiates viral DNA replication. In many, but not all, human cancer cells that are permissive for wild-type MYXV, vMyxM062-KO exhibited a profound replication defect. We categorized human cells tested into two groups: (i) type A, which support productive replication for wild-type MYXV but are unable to produce significant levels of progeny virus by vMyxM062-KO, and (ii) type B, which are permissive to infections by both wild-type MYXV and vMyxM062-KO. Furthermore, using proteomic strategies, we identified sterile α motif domain containing 9 (SAMD9), an interferon-regulated cellular protein implicated in human inflammatory disorders, as a unique host binding partner of M062 in human cells. Significantly, knocking down SAMD9 in type A human cancer cells led to a substantial rescue of vMyxM062-KO infection. In summary, M062 is a novel host range factor that controls productive MYXV replication in rabbit cells and in a wide variety of human cells. M062 also binds and antagonizes cellular SAMD9 in human cells, suggesting that SAMD9 is a novel innate antiviral factor against poxviruses. PMID:21248034

  4. Virus and Host Factors Affecting the Clinical Outcome of Bluetongue Virus Infection

    PubMed Central

    Caporale, Marco; Di Gialleonorado, Luigina; Janowicz, Anna; Wilkie, Gavin; Shaw, Andrew; Savini, Giovanni; Van Rijn, Piet A.; Mertens, Peter; Di Ventura, Mauro

    2014-01-01

    ABSTRACT Bluetongue is a major infectious disease of ruminants caused by bluetongue virus (BTV), an arbovirus transmitted by Culicoides. Here, we assessed virus and host factors influencing the clinical outcome of BTV infection using a single experimental framework. We investigated how mammalian host species, breed, age, BTV serotypes, and strains within a serotype affect the clinical course of bluetongue. Results obtained indicate that in small ruminants, there is a marked difference in the susceptibility to clinical disease induced by BTV at the host species level but less so at the breed level. No major differences in virulence were found between divergent serotypes (BTV-8 and BTV-2). However, we observed striking differences in virulence between closely related strains of the same serotype collected toward the beginning and the end of the European BTV-8 outbreak. As observed previously, differences in disease severity were also observed when animals were infected with either blood from a BTV-infected animal or from the same virus isolated in cell culture. Interestingly, with the exception of two silent mutations, full viral genome sequencing showed identical consensus sequences of the virus before and after cell culture isolation. However, deep sequencing analysis revealed a marked decrease in the genetic diversity of the viral population after passaging in mammalian cells. In contrast, passaging in Culicoides cells increased the overall number of low-frequency variants compared to virus never passaged in cell culture. Thus, Culicoides might be a source of new viral variants, and viral population diversity can be another factor influencing BTV virulence. IMPORTANCE Bluetongue is one of the major infectious diseases of ruminants. It is caused by an arbovirus known as bluetongue virus (BTV). The clinical outcome of BTV infection is extremely variable. We show that there are clear links between the severity of bluetongue and the mammalian host species infected

  5. Expression profile of host restriction factors in HIV-1 elite controllers

    PubMed Central

    2013-01-01

    Background Several host-encoded antiviral factors suppress HIV-1 replication in a cell-autonomous fashion in vitro. The relevance of these defenses to the control of HIV-1 in vivo remains to be elucidated. We hypothesized that cellular restriction of HIV-1 replication plays a significant role in the observed suppression of HIV-1 in "elite controllers", individuals who maintain undetectable levels of viremia in the absence of antiretroviral therapy (ART). We comprehensively compared the expression levels of 34 host restriction factors and cellular activation levels in CD4+ T cells and sorted T cell subsets between elite controllers, HIV-1-infected (untreated) non-controllers, ART-suppressed, and uninfected individuals. Results Expression of schlafen 11, a codon usage-based inhibitor of HIV-1 protein synthesis, was significantly elevated in CD4+ T cells from elite controllers as compared to both non-controllers (p = 0.048) and ART-suppressed individuals (p = 0.024), with this effect most apparent in central memory CD4+ T cells. Schlafen 11 expression levels were comparable between controllers and uninfected individuals. Cumulative restriction factor expression was positively correlated with CD4+ T cell activation (r2 = 0.597, p < 0.0001), viral load (r2 = 0.34, p = 0.015), and expression of ISG15 (r2 = 0.73, p < 0.0001), a marker of interferon exposure. APOBEC3C, APOBEC3D, CTR9, TRIM26, and TRIM32 were elevated in elite controllers with respect to ART-suppressed individuals, while levels were comparable to uninfected individuals and non-controllers. Conclusions Host restriction factor expression typically scales with cellular activation levels. However, the elevated mRNA and protein expression of schlafen 11, despite low activation and viral load, violates the global pattern and may be a signature characteristic of HIV-1 elite control. PMID:24131498

  6. Identification of RNA Helicase A (RHA) as a New Host Factor in the Replication Cycle of FMDV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease virus (FMDV) as with other RNA viruses, recruits various host cell factors to assist in the translation and replication of the virus genome. In this study we investigated the role of RNA helicase A (RHA) in the life cycle of FMDV. Immunofluorescent microscopy combined with b...

  7. Recombinant host cells and media for ethanol production

    DOEpatents

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  8. A Novel Mechanism of Bacterial Toxin Transfer within Host Blood Cell-Derived Microvesicles

    PubMed Central

    Ståhl, Anne-lie; Arvidsson, Ida; Johansson, Karl E.; Chromek, Milan; Rebetz, Johan; Loos, Sebastian; Kristoffersson, Ann-Charlotte; Békássy, Zivile D.; Mörgelin, Matthias; Karpman, Diana

    2015-01-01

    Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS), associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system. PMID:25719452

  9. Comparative Analysis of Host Cell Entry of Ebola Virus From Sierra Leone, 2014, and Zaire, 1976.

    PubMed

    Hofmann-Winkler, Heike; Gnirß, Kerstin; Wrensch, Florian; Pöhlmann, Stefan

    2015-10-01

    The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors. PMID:25840443

  10. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  11. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses.

    PubMed

    Di Genova, Bruno M; Tonelli, Renata R

    2016-01-01

    Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term complications. The cellular and molecular mechanisms underlying the pathogenesis of diarrhea associated with these three pathogens are being unraveled, with knowledge of both the strategies explored by the parasites to establish infection and the methods evolved by hosts to avoid it. Special attention is being given to molecules participating in parasite-host interaction and in the mechanisms implicated in the diseases' pathophysiologic processes. This review focuses on cell mechanisms that are modulated during infection, including gene transcription, cytoskeleton rearrangements, signal transduction pathways, and cell death. PMID:26973630

  12. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses

    PubMed Central

    Di Genova, Bruno M.; Tonelli, Renata R.

    2016-01-01

    Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term complications. The cellular and molecular mechanisms underlying the pathogenesis of diarrhea associated with these three pathogens are being unraveled, with knowledge of both the strategies explored by the parasites to establish infection and the methods evolved by hosts to avoid it. Special attention is being given to molecules participating in parasite–host interaction and in the mechanisms implicated in the diseases’ pathophysiologic processes. This review focuses on cell mechanisms that are modulated during infection, including gene transcription, cytoskeleton rearrangements, signal transduction pathways, and cell death. PMID:26973630

  13. Chlamydia trachomatis Inclusion Disrupts Host Cell Cytokinesis to Enhance Its Growth in Multinuclear Cells.

    PubMed

    Sun, He Song; Sin, Alex T-W; Poirier, Mathieu B; Harrison, Rene E

    2016-01-01

    Chlamydia trachomatis, the leading cause of bacterial sexually transmitted infections, disrupts cytokinesis and causes significant multinucleation in host cells. Here, we demonstrate that multinuclear cells that result from unsuccessful cell division contain significantly higher Golgi content, an important source of lipids for chlamydiae. Using immunofluorescence and fluorescent live cell imaging, we show that C. trachomatis in multinuclear cells indeed intercept Golgi-derived lipid faster than in mononuclear cells. Moreover, multinuclear cells enhance C. trachomatis inclusion growth and infectious particle formation. Together, these results indicate that C. trachomatis robustly position inclusions to the cell equator to disrupt host cell division in order to acquire host Golgi-derived lipids more quickly in multinucleated progeny cells. PMID:26084267

  14. Bifidobacteria-Host Interactions—An Update on Colonisation Factors

    PubMed Central

    Grimm, Verena; Westermann, Christina; Riedel, Christian U.

    2014-01-01

    Bifidobacteria are one of the predominant bacterial groups of the human intestinal microbiota and have important functional properties making them interesting for the food and dairy industries. Numerous in vitro and preclinical studies have shown beneficial effects of particular bifidobacterial strains or strain combinations on various health parameters of their hosts. This indicates the potential of bifidobacteria in alternative or supplementary therapeutic approaches in a number of diseased states. Based on these observations, bifidobacteria have attracted considerable interest by the food, dairy, and pharmaceutical industries and they are widely used as so-called probiotics. As a consequence of the rapidly increasing number of available bifidobacterial genome sequences and their analysis, there has been substantial progress in the identification of bifidobacterial structures involved in colonisation of and interaction with the host. With the present review, we aim to provide an update on the current knowledge on the mechanisms by which bifidobacteria colonise their hosts and exert health promoting effects. PMID:25295282

  15. Host co-factors of the retrovirus-like transposon Ty1

    PubMed Central

    2012-01-01

    Background Long-terminal repeat (LTR) retrotransposons have complex modes of mobility involving reverse transcription of their RNA genomes in cytoplasmic virus-like particles (VLPs) and integration of the cDNA copies into the host genome. The limited coding capacity of retrotransposons necessitates an extensive reliance on host co-factors; however, it has been challenging to identify co-factors that are required for endogenous retrotransposon mobility because retrotransposition is such a rare event. Results To circumvent the low frequency of Ty1 LTR-retrotransposon mobility in Saccharomyces cerevisiae, we used iterative synthetic genetic array (SGA) analysis to isolate host mutations that reduce retrotransposition. Query strains that harbor a chromosomal Ty1his3AI reporter element and either the rtt101Δ or med1Δ mutation, both of which confer a hypertransposition phenotype, were mated to 4,847 haploid ORF deletion strains. Retrotransposition was measured in the double mutant progeny, and a set of 275 ORF deletions that suppress the hypertransposition phenotypes of both rtt101Δ and med1Δ were identified. The corresponding set of 275 retrotransposition host factors (RHFs) includes 45 previously identified Ty1 or Ty3 co-factors. More than half of the RHF genes have statistically robust human homologs (E < 1 x 10-10). The level of unintegrated Ty1 cDNA in 181 rhfΔ single mutants was altered <2-fold, suggesting that the corresponding co-factors stimulate retrotransposition at a step after cDNA synthesis. However, deletion of 43 RHF genes, including specific ribosomal protein and ribosome biogenesis genes and RNA degradation, modification and transport genes resulted in low Ty1 cDNA levels. The level of Ty1 Gag but not RNA was reduced in ribosome biogenesis mutants bud21Δ, hcr1Δ, loc1Δ, and puf6Δ. Conclusion Ty1 retrotransposition is dependent on multiple co-factors acting at different steps in the replication cycle. Human orthologs of these RHFs are

  16. Baculovirus Infection Influences Host Protein Expression in Two Established Insect Cell Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We identified host proteins that changed in response to host cell susceptibility to baculovirus infection. We used three baculovirus–host cell systems utilizing two cell lines derived from pupal ovaries, Hz-AM1 (from Helicoverpa zea) and Hv-AM1 (from Heliothis virescens). Hv-AM1 cells are permissive...

  17. Bacterial-induced cell reprogramming to stem cell-like cells: new premise in host-pathogen interactions

    PubMed Central

    Hess, Samuel; Rambukkana, Anura

    2015-01-01

    Bacterial pathogens employ a myriad of strategies to alter host tissue cell functions for bacterial advantage during infection. Recent advances revealed a fusion of infection biology with stem cell biology by demonstrating developmental reprogramming of lineage committed host glial cells to progenitor/stem cell-like cells by an intracellular bacterial pathogen Mycobacterium leprae. Acquisition of migratory and immunomodulatory properties of such reprogrammed cells provides an added advantage for promoting bacterial spread. This presents a previously unseen sophistication of cell manipulation by hijacking the genomic plasticity of host cells by a human bacterial pathogen. The rationale for such extreme fate conversion of host cells may be directly linked to the exceedingly passive obligate life style of M. leprae with a degraded genome and host cell dependence for both bacterial survival and dissemination, particularly the use of host-derived stem cell-like cells as a vehicle for spreading infection without being detected by immune cells. Thus, this unexpected link between cell reprogramming and infection opens up a new premise in host-pathogen interactions. Furthermore, such bacterial ingenuity could also be harnessed for developing natural ways of reprogramming host cells for repairing damaged tissues from infection, injury and diseases. PMID:25541240

  18. Networks of Host Factors that Interact with NS1 Protein of Influenza A Virus

    PubMed Central

    Thulasi Raman, Sathya N.; Zhou, Yan

    2016-01-01

    Pigs are an important host of influenza A viruses due to their ability to generate reassortant viruses with pandemic potential. NS1 protein of influenza A viruses is a key virulence factor and a major antagonist of innate immune responses. It is also involved in enhancing viral mRNA translation and regulation of virus replication. Being a protein with pleiotropic functions, NS1 has a variety of cellular interaction partners. Hence, studies on swine influenza viruses (SIV) and identification of swine influenza NS1-interacting host proteins is of great interest. Here, we constructed a recombinant SIV carrying a Strep-tag in the NS1 protein and infected primary swine respiratory epithelial cells (SRECs) with this virus. The Strep-tag sequence in the NS1 protein enabled us to purify intact, the NS1 protein and its interacting protein complex specifically. We identified cellular proteins present in the purified complex by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and generated a dataset of these proteins. 445 proteins were identified by LC-MS/MS and among them 192 proteins were selected by setting up a threshold based on MS parameters. The selected proteins were analyzed by bioinformatics and were categorized as belonging to different functional groups including translation, RNA processing, cytoskeleton, innate immunity, and apoptosis. Protein interaction networks were derived using these data and the NS1 interactions with some of the specific host factors were verified by immunoprecipitation. The novel proteins and the networks revealed in our study will be the potential candidates for targeted study of the molecular interaction of NS1 with host proteins, which will provide insights into the identification of new therapeutic targets to control influenza infection and disease pathogenesis. PMID:27199973

  19. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens.

    PubMed

    Marceau, Caleb D; Puschnik, Andreas S; Majzoub, Karim; Ooi, Yaw Shin; Brewer, Susan M; Fuchs, Gabriele; Swaminathan, Kavya; Mata, Miguel A; Elias, Joshua E; Sarnow, Peter; Carette, Jan E

    2016-07-01

    The Flaviviridae are a family of viruses that cause severe human diseases. For example, dengue virus (DENV) is a rapidly emerging pathogen causing an estimated 100 million symptomatic infections annually worldwide. No approved antivirals are available to date and clinical trials with a tetravalent dengue vaccine showed disappointingly low protection rates. Hepatitis C virus (HCV) also remains a major medical problem, with 160 million chronically infected patients worldwide and only expensive treatments available. Despite distinct differences in their pathogenesis and modes of transmission, the two viruses share common replication strategies. A detailed understanding of the host functions that determine viral infection is lacking. Here we use a pooled CRISPR genetic screening strategy to comprehensively dissect host factors required for these two highly important Flaviviridae members. For DENV, we identified endoplasmic-reticulum (ER)-associated multi-protein complexes involved in signal sequence recognition, N-linked glycosylation and ER-associated degradation. DENV replication was nearly completely abrogated in cells deficient in the oligosaccharyltransferase (OST) complex. Mechanistic studies pinpointed viral RNA replication and not entry or translation as the crucial step requiring the OST complex. Moreover, we show that viral non-structural proteins bind to the OST complex. The identified ER-associated protein complexes were also important for infection by other mosquito-borne flaviviruses including Zika virus, an emerging pathogen causing severe birth defects. By contrast, the most significant genes identified in the HCV screen were distinct and included viral receptors, RNA-binding proteins and enzymes involved in metabolism. We found an unexpected link between intracellular flavin adenine dinucleotide (FAD) levels and HCV replication. This study shows notable divergence in host-depenency factors between DENV and HCV, and illuminates new host targets for

  20. Factors affecting patterns of Amblyomma triste (Acari: Ixodidae) parasitism in a rodent host.

    PubMed

    Colombo, Valeria C; Nava, Santiago; Antoniazzi, Leandro R; Monje, Lucas D; Racca, Andrea L; Guglielmone, Alberto A; Beldomenico, Pablo M

    2015-07-30

    Here we offer a multivariable analysis that explores associations of different factors (i.e., environmental, host parameters, presence of other ectoparasites) with the interaction of Amblyomma triste immature stages and one of its main hosts in Argentina, the rodent Akodon azarae. Monthly and for two years, we captured and sampled rodents at 16 points located at 4 different sites in the Parana River Delta region. The analyses were conducted with Generalized Linear Mixed Models with a negative binomial response (counts of larvae or nymphs). The independent variables assessed were: (a) environmental: trapping year, season, presence of cattle; type of vegetation (natural grassland or implanted forest); rodent abundance; (b) host parameters: body length; sex; body condition; blood cell counts; natural antibody titres; and (c) co-infestation with other ectoparasites: other stage of A. triste; Ixodes loricatus; lice; mites; and fleas. Two-way interaction terms deemed a priori as relevant were also included in the analysis. Larvae were affected by all environmental variables assessed and by the presence of other ectoparasites (lice, fleas and other tick species). Host factors significantly associated with larval count were sex and levels of natural antibodies. Nymphs were associated with season, presence of cattle, body condition, body length and with burdens of I. loricatus. In most cases, the direction and magnitude of the associations were context-dependent (many interaction terms were significant). The findings of greater significance and implications of our study are two. Firstly, as burdens of A. triste larvae and nymphs were greater where cattle were present, and larval tick burdens were higher in implanted forests, silvopastoral practices developing in the region may affect the population dynamics of A. triste, and consequently the eco-epidemiology of Rickettsia parkeri. Secondly, strong associations and numerous interactions with other ectoparasites suggest that

  1. Evidence for Host Cells as the Major Contributor of Lipids in the Intravacuolar Network of Toxoplasma-Infected Cells

    PubMed Central

    Caffaro, Carolina E.; Boothroyd, John C.

    2011-01-01

    The intracellular parasite Toxoplasma gondii develops inside a parasitophorous vacuole (PV) that derives from the host cell plasma membrane during invasion. Previous electron micrograph images have shown that the membrane of this vacuole undergoes an extraordinary remodeling with an extensive network of thin tubules and vesicles, the intravacuolar network (IVN), which fills the lumen of the PV. While dense granule proteins, secreted during and after invasion, are the main factors for the organization and tubulation of the network, little is known about the source of lipids used for this remodeling. By selectively labeling host cell or parasite membranes, we uncovered evidence that strongly supports the host cell as the primary, if not exclusive, source of lipids for parasite IVN remodeling. Fluorescence recovery after photobleaching (FRAP) microscopy experiments revealed that lipids are surprisingly dynamic within the parasitophorous vacuole and are continuously exchanged or replenished by the host cell. The results presented here suggest a new model for development of the parasitophorous vacuole whereby the host provides a continuous stream of lipids to support the growth and maturation of the PVM and IVN. PMID:21685319

  2. Host cell species-specific effect of cyclosporine A on simian immunodeficiency virus replication

    PubMed Central

    2012-01-01

    Background An understanding of host cell factors that affect viral replication contributes to elucidation of the mechanism for determination of viral tropism. Cyclophilin A (CypA), a peptidyl-prolyl cis-trans isomerase (PPIase), is a host factor essential for efficient replication of human immunodeficiency virus type 1 (HIV-1) in human cells. However, the role of cyclophilins in simian immunodeficiency virus (SIV) replication has not been determined. In the present study, we examined the effect of cyclosporine A (CsA), a PPIase inhibitor, on SIV replication. Results SIV replication in human CEM-SS T cells was not inhibited but rather enhanced by treatment with CsA, which inhibited HIV-1 replication. CsA treatment of target human cells enhanced an early step of SIV replication. CypA overexpression enhanced the early phase of HIV-1 but not SIV replication, while CypA knock-down resulted in suppression of HIV-1 but not SIV replication in CEM-SS cells, partially explaining different sensitivities of HIV-1 and SIV replication to CsA treatment. In contrast, CsA treatment inhibited SIV replication in macaque T cells; CsA treatment of either virus producer or target cells resulted in suppression of SIV replication. SIV infection was enhanced by CypA overexpression in macaque target cells. Conclusions CsA treatment enhanced SIV replication in human T cells but abrogated SIV replication in macaque T cells, implying a host cell species-specific effect of CsA on SIV replication. Further analyses indicated a positive effect of CypA on SIV infection into macaque but not into human T cells. These results suggest possible contribution of CypA to the determination of SIV tropism. PMID:22225545

  3. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion.

    PubMed

    Chopra, Martin; Biehl, Marlene; Steinfatt, Tim; Brandl, Andreas; Kums, Juliane; Amich, Jorge; Vaeth, Martin; Kuen, Janina; Holtappels, Rafaela; Podlech, Jürgen; Mottok, Anja; Kraus, Sabrina; Jordán-Garrote, Ana-Laura; Bäuerlein, Carina A; Brede, Christian; Ribechini, Eliana; Fick, Andrea; Seher, Axel; Polz, Johannes; Ottmüller, Katja J; Baker, Jeanette; Nishikii, Hidekazu; Ritz, Miriam; Mattenheimer, Katharina; Schwinn, Stefanie; Winter, Thorsten; Schäfer, Viktoria; Krappmann, Sven; Einsele, Hermann; Müller, Thomas D; Reddehase, Matthias J; Lutz, Manfred B; Männel, Daniela N; Berberich-Siebelt, Friederike; Wajant, Harald; Beilhack, Andreas

    2016-08-22

    Donor CD4(+)Foxp3(+) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT [allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2- and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo. PMID:27526711

  4. Encapsidation of Host-Derived Factors Correlates with Enhanced Infectivity of Sindbis Virus

    PubMed Central

    Sokoloski, Kevin J.; Snyder, Anthony J.; Liu, Natalia H.; Hayes, Chelsea A.

    2013-01-01

    The genus Alphavirus consists of a group of enveloped, single-stranded RNA viruses, many of which are transmitted by arthropods to a wide range of vertebrate host species. Here we report that Sindbis virus (SINV) produced from a representative mammalian cell line consists of at least two unique particle subpopulations, separable on the basis of virion density. In contrast, mosquito-derived SINV consists of a homogeneous population of particles. Our findings indicate that the denser particle subpopulation, SINVHeavy, is more infectious on a per-particle basis than SINVLight. SINV produced in mosquito cell lines (SINVC6/36) exhibited particle-to-PFU ratios similar to those observed for SINVHeavy. In mammalian cells, viral RNA was synthesized and accumulated more rapidly following infection with SINVHeavy or SINVC6/36 than following infection with SINVLight, due partly to enhanced translation of viral genomic RNA early in infection. Analysis of the individual particle subpopulations indicated that SINVHeavy and SINVC6/36 contain host-derived factors whose presence correlates with the enhanced translation, RNA synthesis, and infectivity observed for these particles. PMID:24006438

  5. Phylogeographic origin of Helicobacter pylori determines host-adaptive responses upon coculture with gastric epithelial cells.

    PubMed

    Sheh, Alexander; Chaturvedi, Rupesh; Merrell, D Scott; Correa, Pelayo; Wilson, Keith T; Fox, James G

    2013-07-01

    While Helicobacter pylori infects over 50% of the world's population, the mechanisms involved in the development of gastric disease are not fully understood. Bacterial, host, and environmental factors play a role in disease outcome. To investigate the role of bacterial factors in H. pylori pathogenesis, global gene expression of six H. pylori isolates was analyzed during coculture with gastric epithelial cells. Clustering analysis of six Colombian clinical isolates from a region with low gastric cancer risk and a region with high gastric cancer risk segregated strains based on their phylogeographic origin. One hundred forty-six genes had increased expression in European strains, while 350 genes had increased expression in African strains. Differential expression was observed in genes associated with motility, pathogenicity, and other adaptations to the host environment. European strains had greater expression of the virulence factors cagA, vacA, and babB and were associated with increased gastric histologic lesions in patients. In AGS cells, European strains promoted significantly higher interleukin-8 (IL-8) expression than did African strains. African strains significantly induced apoptosis, whereas only one European strain significantly induced apoptosis. Our data suggest that gene expression profiles of clinical isolates can discriminate strains by phylogeographic origin and that these profiles are associated with changes in expression of the proinflammatory and protumorigenic cytokine IL-8 and levels of apoptosis in host epithelial cells. These findings support the hypothesis that bacterial factors determined by the phylogeographic origin of H. pylori strains may promote increased gastric disease. PMID:23630959

  6. Dynamic Quantification of Host Schwann Cell Migration into Peripheral Nerve Allografts

    PubMed Central

    Whitlock, Elizabeth L.; Myckatyn, Terence M.; Tong, Alice Y.; Yee, Andrew; Yan, Ying; Magill, Christina K.; Johnson, Philip J.; Mackinnon, Susan E.

    2010-01-01

    Host Schwann cell (SC) migration into nerve allografts is the limiting factor in the duration of immunosuppression following peripheral nerve allotransplantation, and may be affected by different immunosuppressive regimens. Our objective was to compare SC migration patterns between clinical and experimental immunosuppression regimens both over time and at the harvest endpoint. Eighty mice that express GFP under the control of the Schwann cell specific S100 promoter were engrafted with allogeneic, nonfluorescent sciatic nerve grafts. Mice received immunosuppression with either tacrolimus (FK506), or experimental T-cell triple costimulation blockade (CSB), consisting of CTLA4-immunoglobulin fusion protein, anti-CD40 monoclonal antibody, and anti-inducible costimulator monoclonal antibody. Migration of GFP-expressing host SCs into wild-type allografts was assessed in vivo every 3 weeks until 15 weeks postoperatively, and explanted allografts were evaluated for immunohistochemical staining patterns to differentiate graft from host SCs. Immunosuppression with tacrolimus exhibited a plateau of SC migration, characterized by significant early migration (< 3 weeks) followed by a constant level of host SCs in the graft (15 weeks). At the endpoint, graft fluorescence was decreased relative to surrounding host nerve, and donor SCs persisted within the graft. CSB-treated mice displayed gradually increasing migration of host SCs into the graft, without the plateau noted in tacrolimus-treated mice, and also maintained a population of donor SCs at the 15-week endpoint. SC migration patterns are affected by immunosuppressant choice, particularly in the immediate postoperative period, and the use of a single treatment of CSB may allow for gradual population of nerve allografts with host SCs. PMID:20633557

  7. B Cells in Chronic Graft versus Host Disease

    PubMed Central

    Sarantopoulos, Stefanie; Blazar, Bruce R.; Cutler, Corey; Ritz, Jerome

    2015-01-01

    Chronic graft versus host disease (cGVHD) continues to be a common complication of allogeneic hematopoietic stem cell transplantation (HSCT). Unlike acute GVHD, which is mediated almost entirely by donor T cells, the immune pathology of cGVHD is more complex and donor B cells have also been found to play an important role. Recent studies from several laboratories have enhanced our understanding of how donor B cells contribute to this clinical syndrome and this has led to new therapeutic opportunities. Here, Dr. Sarantopoulos reviews some of the important mechanisms responsible for persistent B cell activation and loss of B cell tolerance in patients with cGVHD. Dr. Blazar describes recent studies in preclinical models that have identified novel B cell directed agents that may be effective for prevention or treatment of cGVHD. Some B cell directed therapies have already been tested in patients with cGVHD and Dr. Cutler reviews the results of these studies documenting the potential efficacy of this approach. Supported by studies mechanistic studies in patients and preclinical models, new B cell directed therapies for cGVHD will now be evaluated in clinical trials. PMID:25452031

  8. Ureaplasma parvum infection alters filamin a dynamics in host cells

    PubMed Central

    2011-01-01

    Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI), and complicated UTI. One protein that was perturbed by infection (filamin A) was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1). BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A) that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P < 0.004; ANOVA, P < 0.02). This phenomenon was independent of clinical profile (asymptomatic vs. complicated UTI). We selected filamin A as a target for additional studies. In the BPH-1 model, we confirmed that U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01), which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection

  9. Umbilical Cord Mesenchymal Stem Cells Suppress Host Rejection

    PubMed Central

    Coulson-Thomas, Vivien Jane; Gesteira, Tarsis Ferreira; Hascall, Vincent; Kao, Winston

    2014-01-01

    Umbilical cord mesenchymal stem cells (UMSCs) have unique immunosuppressive properties enabling them to evade host rejection and making them valuable tools for cell therapy. We previously showed that human UMSCs survive xenograft transplantation and successfully correct the corneal clouding defects associated with the mouse model for the congenital metabolic disorder mucopolysaccharidosis VII. However, the precise mechanism by which UMSCs suppress the immune system remains elusive. This study aimed to determine the key components involved in the ability of the UMSCs to modulate the inflammatory system and to identify the inflammatory cells that are regulated by the UMSCs. Our results show that human UMSCs transplanted into the mouse stroma 24 h after an alkali burn suppress the severe inflammatory response and enable the recovery of corneal transparency within 2 weeks. Furthermore, we demonstrated in vitro that UMSCs inhibit the adhesion and invasion of inflammatory cells and also the polarization of M1 macrophages. UMSCs also induced the maturation of T-regulatory cells and led to inflammatory cell death. Moreover, UMSCs exposed to inflammatory cells synthesize a rich extracellular glycocalyx composed of the chondroitin sulfate-proteoglycan versican bound to a heavy chain (HC)-modified hyaluronan (HA) matrix (HC-HA). This matrix also contains TNFα-stimulated gene 6 (TSG6), the enzyme that transfers HCs to HA, and pentraxin-3, which further stabilizes the matrix. Our results, both in vivo and in vitro, show that this glycocalyx confers the ability for UMSCs to survive the host immune system and to regulate the inflammatory cells. PMID:24986866

  10. Human Host Defense Peptide LL-37 Stimulates Virulence Factor Production and Adaptive Resistance in Pseudomonas aeruginosa

    PubMed Central

    Strempel, Nikola; Neidig, Anke; Nusser, Michael; Geffers, Robert; Vieillard, Julien; Lesouhaitier, Olivier; Brenner-Weiss, Gerald; Overhage, Joerg

    2013-01-01

    A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor. PMID:24349231

  11. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in Pseudomonas aeruginosa.

    PubMed

    Strempel, Nikola; Neidig, Anke; Nusser, Michael; Geffers, Robert; Vieillard, Julien; Lesouhaitier, Olivier; Brenner-Weiss, Gerald; Overhage, Joerg

    2013-01-01

    A multitude of different virulence factors as well as the ability to rapidly adapt to adverse environmental conditions are important features for the high pathogenicity of Pseudomonas aeruginosa. Both virulence and adaptive resistance are tightly controlled by a complex regulatory network and respond to external stimuli, such as host signals or antibiotic stress, in a highly specific manner. Here, we demonstrate that physiological concentrations of the human host defense peptide LL-37 promote virulence factor production as well as an adaptive resistance against fluoroquinolone and aminoglycoside antibiotics in P. aeruginosa PAO1. Microarray analyses of P. aeruginosa cells exposed to LL-37 revealed an upregulation of gene clusters involved in the production of quorum sensing molecules and secreted virulence factors (PQS, phenazine, hydrogen cyanide (HCN), elastase and rhamnolipids) and in lipopolysaccharide (LPS) modification as well as an induction of genes encoding multidrug efflux pumps MexCD-OprJ and MexGHI-OpmD. Accordingly, we detected significantly elevated levels of toxic metabolites and proteases in bacterial supernatants after LL-37 treatment. Pre-incubation of bacteria with LL-37 for 2 h led to a decreased susceptibility towards gentamicin and ciprofloxacin. Quantitative Realtime PCR results using a PAO1-pqsE mutant strain present evidence that the quinolone response protein and virulence regulator PqsE may be implicated in the regulation of the observed phenotype in response to LL-37. Further experiments with synthetic cationic antimicrobial peptides IDR-1018, 1037 and HHC-36 showed no induction of pqsE expression, suggesting a new role of PqsE as highly specific host stress sensor. PMID:24349231

  12. Identifying Francisella tularensis Genes Required for Growth in Host Cells

    PubMed Central

    Brunton, J.; Steele, S.; Miller, C.; Lovullo, E.; Taft-Benz, S.

    2015-01-01

    Francisella tularensis is a highly virulent Gram-negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cells, including, but not limited to, macrophages and epithelial cells. We developed a luminescence reporter system to facilitate a large-scale transposon mutagenesis screen to identify genes required for growth in macrophage and epithelial cell lines. We screened 7,454 individual mutants, 269 of which exhibited reduced intracellular growth. Transposon insertions in the 269 growth-defective strains mapped to 68 different genes. FTT_0924, a gene of unknown function but highly conserved among Francisella species, was identified in this screen to be defective for intracellular growth within both macrophage and epithelial cell lines. FTT_0924 was required for full Schu S4 virulence in a murine pulmonary infection model. The ΔFTT_0924 mutant bacterial membrane is permeable when replicating in hypotonic solution and within macrophages, resulting in strongly reduced viability. The permeability and reduced viability were rescued when the mutant was grown in a hypertonic solution, indicating that FTT_0924 is required for resisting osmotic stress. The ΔFTT_0924 mutant was also significantly more sensitive to β-lactam antibiotics than Schu S4. Taken together, the data strongly suggest that FTT_0924 is required for maintaining peptidoglycan integrity and virulence. PMID:25987704

  13. HIV-Induced Epigenetic Alterations in Host Cells.

    PubMed

    Abdel-Hameed, Enass A; Ji, Hong; Shata, Mohamed Tarek

    2016-01-01

    Human immunodeficiency virus (HIV), a member of the Retroviridae family, is a positive-sense, enveloped RNA virus. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS) has two major types, HIV-1 and HIV-2 In HIV-infected cells the single stranded viral RNA genome is reverse transcribed and the double-stranded viral DNA integrates into the cellular DNA, forming a provirus. The proviral HIV genome is controlled by the host epigenetic regulatory machinery. Cellular epigenetic regulators control HIV latency and reactivation by affecting the chromatin state in the vicinity of the viral promoter located to the 5' long terminal repeat (LTR) sequence. In turn, distinct HIV proteins affect the epigenotype and gene expression pattern of the host cells. HIV-1 infection of CD4(+) T cells in vitro upregulated DNMT activity and induced hypermethylation of distinct cellular promoters. In contrast, in the colon mucosa and peripheral blood mononuclear cells from HIV-infected patients demethylation of the FOXP3 promoter was observed, possibly due to the downregulation of DNA methyltransferase 1. For a curative therapy of HIV infected individuals and AIDS patients, a combination of antiretroviral drugs with epigenetic modifying compounds have been suggested for the reactivation of latent HIV-1 genomes. These epigenetic drugs include histone deacetylase inhibitors (HDACI), histone methyltransferase inhibitors (HMTI), histone demethylase inhibitors, and DNA methyltransferase inhibitors (DNMTI). PMID:26659262

  14. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

    PubMed Central

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle. PMID:27180572

  15. Staphylococcus aureus α-Toxin-Dependent Induction of Host Cell Death by Membrane-Derived Vesicles

    PubMed Central

    Thay, Bernard; Wai, Sun Nyunt; Oscarsson, Jan

    2013-01-01

    Staphylococcus aureus causes a wide spectrum of infections in humans, ranging from superficial cutaneous infections, infections in the circum-oral region, to life-threatening bacteremia. It was recently demonstrated that Gram-positive organisms such as S. aureus liberate membrane-derived vesicles (MVs), which analogously to outer membrane vesicles (OMVs) of Gram-negative bacteria can play a role in delivering virulence factors to host cells. In the present study we have shown that cholesterol-dependent fusion of S. aureus MVs with the plasma membrane represents a route for delivery of a key virulence factor, α-toxin (α-hemolysin; Hla) to human cells. Most S. aureus strains produce this 33-kDa pore-forming protein, which can lyse a wide range of human cells, and induce apoptosis in T-lymphocytes. Our results revealed a tight association of biologically active α-toxin with membrane-derived vesicles isolated from S. aureus strain 8325-4. Concomitantly, α-toxin contributed to HeLa cell cytotoxicity of MVs, and was the main vesicle-associated protein responsible for erythrocyte lysis. In contrast, MVs obtained from an isogenic hla mutant were significantly attenuated with regards to both causing lysis of erythrocytes and death of HeLa cells. This is to our knowledge the first recognition of an S. aureus MV-associated factor contributing to host cell cytotoxicity. PMID:23382935

  16. Influenza virus binds its host cell using multiple dynamic interactions

    PubMed Central

    Sieben, Christian; Kappel, Christian; Zhu, Rong; Wozniak, Anna; Rankl, Christian; Hinterdorfer, Peter; Grubmüller, Helmut; Herrmann, Andreas

    2012-01-01

    Influenza virus belongs to a wide range of enveloped viruses. The major spike protein hemagglutinin binds sialic acid residues of glycoproteins and glycolipids with dissociation constants in the millimolar range [Sauter NK, et al. (1992) Biochemistry 31:9609–9621], indicating a multivalent binding mode. Here, we characterized the attachment of influenza virus to host cell receptors using three independent approaches. Optical tweezers and atomic force microscopy-based single-molecule force spectroscopy revealed very low interaction forces. Further, the observation of sequential unbinding events strongly suggests a multivalent binding mode between virus and cell membrane. Molecular dynamics simulations reveal a variety of unbinding pathways that indicate a highly dynamic interaction between HA and its receptor, allowing rationalization of influenza virus–cell binding quantitatively at the molecular level. PMID:22869709

  17. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection

    PubMed Central

    Lee, Heather; Prince, Jessica; Stadnisky, Michael D.; Anderson, Monique; Nash, William; Rival, Claudia; Wei, Hairong; Gamache, Awndre; Farber, Charles R.; Tung, Kenneth; Brown, Michael G.

    2016-01-01

    The MHC class I Dk molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds Dk, are required to control viral spread. The extent of Dk-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust Dk-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen. PMID:26845690

  18. Adhesion and host cell modulation: critical pathogenicity determinants of Bartonella henselae.

    PubMed

    Franz, Bettina; Kempf, Volkhard A J

    2011-01-01

    Bartonella henselae, the agent of cat scratch disease and the vasculoproliferative disorders bacillary angiomatosis and peliosis hepatis, contains to date two groups of described pathogenicity factors: adhesins and type IV secretion systems. Bartonella adhesin A (BadA), the Trw system and possibly filamentous hemagglutinin act as promiscous or specific adhesins, whereas the virulence locus (Vir)B/VirD4 type IV secretion system modulates a variety of host cell functions. BadA mediates bacterial adherence to endothelial cells and extracellular matrix proteins and triggers the induction of angiogenic gene programming. The VirB/VirD4 type IV secretion system is responsible for, e.g., inhibition of host cell apoptosis, bacterial persistence in erythrocytes, and endothelial sprouting. The Trw-conjugation system of Bartonella spp. mediates host-specific adherence to erythrocytes. Filamentous hemagglutinins represent additional potential pathogenicity factors which are not yet characterized. The exact molecular functions of these pathogenicity factors and their contribution to an orchestral interplay need to be analyzed to understand B. henselae pathogenicity in detail. PMID:21489243

  19. GRA25 Is a Novel Virulence Factor of Toxoplasma gondii and Influences the Host Immune Response

    PubMed Central

    Shastri, Anjali J.; Marino, Nicole D.; Franco, Magdalena; Lodoen, Melissa B.

    2014-01-01

    The obligate intracellular parasite Toxoplasma gondii is able to infect a broad range of hosts and cell types due, in part, to the diverse arsenal of effectors it secretes into the host cell. Here, using genetic crosses between type II and type III Toxoplasma strains and quantitative trait locus (QTL) mapping of the changes they induce in macrophage gene expression, we identify a novel dense granule protein, GRA25. Encoded on chromosome IX, GRA25 is a phosphoprotein that is secreted outside the parasites and is found within the parasitophorous vacuole. In vitro experiments with a type II Δgra25 strain showed that macrophages infected with this strain secrete lower levels of CCL2 and CXCL1 than those infected with the wild-type or complemented control parasites. In vivo experiments showed that mice infected with a type II Δgra25 strain are able to survive an otherwise lethal dose of Toxoplasma tachyzoites and that complementation of the mutant with an ectopic copy of GRA25 largely rescues this phenotype. Interestingly, the type II and type III versions of GRA25 differ in endogenous expression levels; however, both are able to promote parasite expansion in vivo when expressed in a type II Δgra25 strain. These data establish GRA25 as a novel virulence factor and immune modulator. PMID:24711568

  20. Accessibility of host cell lineages to medaka stem cells depends on genetic background and irradiation of recipient embryos.

    PubMed

    Hong, Ni; Li, Mingyou; Zeng, Zhiqiang; Yi, Meisheng; Deng, Jiaorong; Gui, Jianfang; Winkler, Christoph; Schartl, Manfred; Hong, Yunhan

    2010-04-01

    Chimera formation is a powerful tool for analyzing pluripotency in vivo. It has been widely accepted that host cell lineages are generally accessible to embryonic stem (ES) cells with the actual contribution depending solely on the intrinsic pluripotency of transplanted donor cells. Here, we show in the fish medaka (Oryzias latipes) that the host accessibility to ES cell contribution exhibits dramatic differences. Specifically, of three albino host strains tested (i (1) , i (3) and af), only strain i (1) generated pigmented chimeras. Strikingly, this accessibility is completely lost in i (1) but acquired in i (3) after host gamma-irradiation. Host irradiation also differentially affected ES cell contribution to somatic organs and gonad. Therefore, the accessibility of various host cell lineages can vary considerably depending on host strains and cell lineages as well as on irradiation. Our findings underscore the importance of host genotypes for interpreting donor cell pluripotency and for improving ES-derived chimera production. PMID:20238480

  1. Bordetella pertussis adenylate cyclase inactivation by the host cell.

    PubMed Central

    Gilboa-Ron, A; Rogel, A; Hanski, E

    1989-01-01

    Bordetella pertussis produces a calmodulin-dependent adenylate cyclase (AC) which acts as a toxin capable of penetrating eukaryotic cells and generating high levels of intracellular cyclic AMP. Transfer of target cells into B. pertussis AC-free medium leads to a rapid decay in the intracellular AC activity, implying that the invasive enzyme is unstable in the host cytoplasm. We report here that treatment of human lymphocytes with a glycolysis inhibitor and an uncoupler of oxidative phosphorylation completely blocked the intracellular inactivation of B. pertussis AC. Lymphocyte lysates inactivated all forms of B. pertussis AC in the presence of exogenous ATP. This inactivation was associated with degradation of an 125I-labelled 200 kDa form of B. pertussis AC. It appears that ATP is required for the proteolytic pathway, but not as an energy source, since non-hydrolysable ATP analogues supported inactivation and complete degradation of the enzyme. The possibility that binding of ATP to B. pertussis AC renders it susceptible to degradation by the host cell protease is discussed. Images Fig. 2. Fig. 4. PMID:2554887

  2. Targeting Host Factors to Treat West Nile and Dengue Viral Infections

    PubMed Central

    Krishnan, Manoj N.; Garcia-Blanco, Mariano A.

    2014-01-01

    West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans. PMID:24517970

  3. Targeting host factors to treat West Nile and dengue viral infections.

    PubMed

    Krishnan, Manoj N; Garcia-Blanco, Mariano A

    2014-02-01

    West Nile (WNV) and Dengue (DENV) viruses are major arboviral human pathogens belonging to the genus Flavivirus. At the current time, there are no approved prophylactics (e.g., vaccines) or specific therapeutics available to prevent or treat human infections by these pathogens. Due to their minimal genome, these viruses require many host molecules for their replication and this offers a therapeutic avenue wherein host factors can be exploited as treatment targets. Since several host factors appear to be shared by many flaviviruses the strategy may result in pan-flaviviral inhibitors and may also attenuate the rapid emergence of drug resistant mutant viruses. The scope of this strategy is greatly enhanced by the recent en masse identification of host factors impacting on WNV and DENV infection. Excellent proof-of-principle experimental demonstrations for host-targeted control of infection and infection-induced pathogenesis have been reported for both WNV and DENV. These include exploiting not only those host factors supporting infection, but also targeting host processes contributing to pathogenesis and innate immune responses. While these early studies validated the host-targeting approach, extensive future investigations spanning a range of aspects are needed for a successful deployment in humans. PMID:24517970

  4. Innate immunity in HIV-1 infection: epithelial and non-specific host factors of mucosal immunity- a workshop report.

    PubMed

    Nittayananta, W; Weinberg, A; Malamud, D; Moyes, D; Webster-Cyriaque, J; Ghosh, S

    2016-04-01

    The interplay between HIV-1 and epithelial cells represents a critical aspect in mucosal HIV-1 transmission. Epithelial cells lining the oral cavity cover subepithelial tissues, which contain virus-susceptible host cells including CD4(+) T lymphocytes, monocytes/macrophages, and dendritic cells. Oral epithelia are among the sites of first exposure to both cell-free and cell-associated virus HIV-1 through breast-feeding and oral-genital contact. However, oral mucosa is considered to be naturally resistant to HIV-1 transmission. Oral epithelial cells have been shown to play a crucial role in innate host defense. Nevertheless, it is not clear to what degree these local innate immune factors contribute to HIV-1 resistance of the oral mucosa. This review paper addressed the following issues that were discussed at the 7th World Workshop on Oral Health and Disease in AIDS held in Hyderabad, India, during November 6-9, 2014: (i) What is the fate of HIV-1 after interactions with oral epithelial cells?; (ii) What are the keratinocyte and other anti-HIV effector oral factors, and how do they contribute to mucosal protection?; (iii) How can HIV-1 interactions with oral epithelium affect activation and populations of local immune cells?; (iv) How can HIV-1 interactions alter functions of oral epithelial cells? PMID:27109285

  5. Trypanosoma cruzi-induced host immune system dysfunction: a rationale for parasite immunosuppressive factor(s) encoding gene targeting

    PubMed Central

    2001-01-01

    An intense suppression of T cell proliferation to mitogens and to antigens is observed in a large number of parasitic infections. The impairment of T cell proliferation also occurred during the acute phase of Chagas' disease, caused by the intracellular protozoan parasite Trypanosoma cruzi. A wealth of evidence has accumulated that illustrates the ability of T. cruzi released molecules to influence directly a variety of diverse immunological functions. In this paper, we review the data concerning the immunoregulatory effects of T. cruzi Tc24 (a B cell activator antigen) and Tc52 (an immunosuppressive protein) released molecules on the host immune system. The gene targeting approach developed to further explore the biological function(s) of Tc52 molecule, revealed interesting unexpected functional properties. Indeed, in addition to its immunusuppressive activity a direct or indirect involvement of Tc52 gene product alone or in combination with other cellular components in T. cruzi differentiation control mechanisms have been evidenced. Moreover, targeted Tc52 replacement allowed the obtention of parasite mutants exhibiting low virulence in vitro and in vivo. Thus, the generation of a complete deficiency state of virulence factors by gene targeting should provide a means to assess the importance of these factors in the pathophysiological processes and disease progression. It is hoped that such approaches might allow rational design of tools to control T. cruzi infections. PMID:12488621

  6. The interactions of intracellular Protista and their host cells, with special reference to heterotrophic organisms.

    PubMed

    Bannister, L H

    1979-04-11

    Intracellular genera are found in all the major groups of Protista, but are particularly common among the dinoflagellates, trypanosomatid zooflagellates and suctorian ciliates; the Sporozoa are nearly all intracellular at some stage of their life, and the Microspora entirely so. Intracellular forms can dwell in the nucleus, within phagosomal or other vacuoles or may lie free in the hyaloplasm of their host cells. Organisms tend to select their hosts from a restricted taxonomic range although there are some notable exceptions. There is also great variation in the types of host cell inhabited. There are various reasons for both host and cell selectivity including recognition phenomena at the cell surfaces. Invasion of host cells is usually preceded by surface interactions with the invader. Some organisms depend upon phagocytosis for entry, but others induce host cells to engulf them by non-phagocytic means or invade by microinjection through the host plasma membrane. Protista avoid lysosomal destruction by their resistance to enzyme attack, by surrounding themselves with lysosome-inhibiting vacuoles, by escaping from the phagosomal system into the hyaloplasm and by choosing host cells which lack lysosomes. Nutrition of intracellular heterotrophic organisms involves some degree of competition with the host cell's metabolism as well as erosion of host cell cytoplasm. In Plasmodium infections, red cells are made more permeable to required nutrients by the action of the parasite on the host cell membrane. The parasite is often dependent upon the host cell for complex nutrients which it cannot synthesize for itself. Intracellular forms often profoundly modify the structure and metabolism of the host cell or interfere with its growth and multiplication. This may result in the final lysis of the host cell at the end of the intracellular phase or before the infection of other cells. Certain types of intracellular organisms may have arisen initially as forms attached to the

  7. Distinct host cell proteins incorporated by SIV replicating in CD4+ T Cells from natural disease resistant versus non-natural disease susceptible hosts

    PubMed Central

    2010-01-01

    Background Enveloped viruses including the simian immunodeficiency virus (SIV) replicating within host cells acquire host proteins upon egress from the host cells. A number of studies have catalogued such host proteins, and a few have documented the potential positive and negative biological functions of such host proteins. The studies conducted herein utilized proteomic analysis to identify differences in the spectrum of host proteins acquired by a single source of SIV replicating within CD4+ T cells from disease resistant sooty mangabeys and disease susceptible rhesus macaques. Results While a total of 202 host derived proteins were present in viral preparations from CD4+ T cells from both species, there were 4 host-derived proteins that consistently and uniquely associated with SIV replicating within CD4+ T cells from rhesus macaques but not sooty mangabeys; and, similarly, 28 host-derived proteins that uniquely associated with SIV replicating within CD4+ T cells from sooty mangabeys, but not rhesus macaques. Of interest was the finding that of the 4 proteins uniquely present in SIV preparations from rhesus macaques was a 26 S protease subunit 7 (MSS1) that was shown to enhance HIV-1 'tat" mediated transactivation. Among the 28 proteins found in SIV preparations from sooty mangabeys included several molecules associated with immune function such as CD2, CD3ε, TLR4, TLR9 and TNFR and a bioactive form of IL-13. Conclusions The finding of 4 host proteins that are uniquely associated with SIV replicating within CD4+ T cells from disease susceptible rhesus macaques and 28 host proteins that are uniquely associated with SIV replicating within CD4+ T cells from disease resistant sooty mangabeys provide the foundation for determining the potential role of each of these unique host-derived proteins in contributing to the polarized clinical outcome in these 2 species of nonhuman primates. PMID:21162735

  8. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects

    PubMed Central

    Gao, Xueqin; Usas, Arvydas; Proto, Jonathan D.; Lu, Aiping; Cummins, James H.; Proctor, Alexander; Chen, Chien-Wen; Huard, Johnny

    2014-01-01

    Murine muscle-derived stem cells (MDSCs) have been shown capable of regenerating bone in a critical size calvarial defect model when transduced with BMP 2 or 4; however, the contribution of the donor cells and their interactions with the host cells during the bone healing process have not been fully elucidated. To address this question, C57/BL/6J mice were divided into MDSC/BMP4/GFP, MDSC/GFP, and scaffold groups. After transplanting MDSCs into the critical-size calvarial defects created in normal mice, we found that mice transplanted with BMP4GFP-transduced MDSCs healed the bone defect in 4 wk, while the control groups (MDSC-GFP and scaffold) demonstrated no bone healing. The newly formed trabecular bone displayed similar biomechanical properties as the native bone, and the donor cells directly participated in endochondral bone formation via their differentiation into chondrocytes, osteoblasts, and osteocytes via the BMP4-pSMAD5 and COX-2-PGE2 signaling pathways. In contrast to the scaffold group, the MDSC groups attracted more inflammatory cells initially and incurred faster inflammation resolution, enhanced angiogenesis, and suppressed initial immune responses in the host mice. MDSCs were shown to attract macrophages via the secretion of monocyte chemotactic protein 1 and promote endothelial cell proliferation by secreting multiple growth factors. Our findings indicated that BMP4GFP-transduced MDSCs not only regenerated bone by direct differentiation, but also positively influenced the host cells to coordinate and promote bone tissue repair through paracrine effects.—Gao, X., Usas, A., Proto, J. D., Lu, A., Cummins, J. H., Proctor, A., Chen, C.-W., Huard, J. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects. PMID:24843069

  9. Structural basis for antagonizing a host restriction factor by C7 family of poxvirus host-range proteins

    PubMed Central

    Meng, Xiangzhi; Krumm, Brian; Li, Yongchao; Deng, Junpeng; Xiang, Yan

    2015-01-01

    Human sterile alpha motif domain-containing 9 (SAMD9) protein is a host restriction factor for poxviruses, but it can be overcome by some poxvirus host-range proteins that share homology with vaccinia virus C7 protein. To understand the mechanism of action for this important family of host-range factors, we determined the crystal structures of C7 and myxoma virus M64, a C7 family member that is unable to antagonize SAMD9. Despite their different functions and only 23% sequence identity, the two proteins have very similar overall structures, displaying a previously unidentified fold comprised of a compact 12-stranded antiparallel β-sandwich wrapped in two short α helices. Extensive structure-guided mutagenesis of C7 identified three loops clustered on one edge of the β sandwich as critical for viral replication and binding with SAMD9. The loops are characterized with functionally important negatively charged, positively charged, and hydrophobic residues, respectively, together forming a unique “three-fingered molecular claw.” The key residues of the claw are not conserved in two C7 family members that do not antagonize SAMD9 but are conserved in distantly related C7 family members from four poxvirus genera that infect diverse mammalian species. Indeed, we found that all in the latter group of proteins bind SAMD9. Taken together, our data indicate that diverse mammalian poxviruses use a conserved molecular claw in a C7-like protein to target SAMD9 and overcome host restriction. PMID:26578811

  10. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    SciTech Connect

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.; Burke, R.; Boraston, A.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.

  11. Identification and structural basis of binding to host lung glycogen by streptococcal virulence factors.

    PubMed

    van Bueren, Alicia Lammerts; Higgins, Melanie; Wang, Diana; Burke, Robert D; Boraston, Alisdair B

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal alpha-glucan-metabolizing machinery as virulence factors. PMID:17187076

  12. Effective delivery of chemotherapeutic nanoparticles by depleting host Kupffer cells.

    PubMed

    Ohara, Yusuke; Oda, Tatsuya; Yamada, Keiichi; Hashimoto, Shinji; Akashi, Yoshimasa; Miyamoto, Ryoichi; Kobayashi, Akihiko; Fukunaga, Kiyoshi; Sasaki, Ryoko; Ohkohchi, Nobuhiro

    2012-11-15

    Although chemotherapeutic nanoparticles would confer various advantages, the majority of administrated nanoparticles are known to be spoiled by the reticuloendothelial system (RES). Intending to more effectively deliver therapeutic nanoparticles to target regions in vivo, host RES, especially Kupffer cells in the liver, have been depleted ahead of drug administration. To demonstrate this hypothesis, clodronate liposomes were preinjected into BALB/c nude mice for depletion of Kupffer cells 2 days before, and pegylated liposomal doxorubicin (Doxil) at the doses of 1.25, 2.5 and 5.0 mg/kg was administered. As a result, doxorubicin accumulation in the liver was decreased from 36 to 26% injected dose/organ by the Kupffer cells depletion, and consequently, the plasma concentration of doxorubicin was significantly enhanced threefold (from 11 to 33 μg/mL) on day 1 at 1.25 mg/kg-dose group. Doxorubicin accumulation in the tumor was increased from 0.78 to 3.0 μg/g-tissue on day 3, and tumor growth inhibition by Doxil was significantly boosted (tumor volumes from 751 to 482 mm(3) on day 24) by the Kupffer cells depletion. In conclusion, Kupffer cells depletion by clodronate liposomes enhanced the plasma concentration and antitumor effects of Doxil, and would be widely applicable for various clinical cancer chemotherapies using nanoparticles. PMID:22362271

  13. NK cell regulation of CD4 T cell-mediated graft-versus-host disease.

    PubMed

    Noval Rivas, Magali; Hazzan, Marc; Weatherly, Kathleen; Gaudray, Florence; Salmon, Isabelle; Braun, Michel Y

    2010-06-15

    CD3-negative NK cells are granular lymphocytes capable of producing inflammatory cytokines and killing malignant, infected, or stressed cells. We have recently observed a new role for NK cells in the control of the proliferation of CD4 T cells under persistent antigenic stimulation. Monoclonal anti-male CD4 T cells transferred into Rag2-/- male recipients did not expand or were rapidly eliminated. Remarkably, T cells transferred into NK cell-deficient Rag2-/- Il-2Rgammac-/- male hosts expanded extensively and mediated tissue lesions usually observed in chronic graft-versus-host disease (GVHD). T cell failure to proliferate and to induce chronic GVHD was the result of NK cell activity, because depletion of the recipient's NK1.1+ cells by Ab treatment induced T cell expansion and chronic GVHD. T cells under chronic Ag stimulation upregulated ligands of the activating receptor NKG2D, and regulatory activity of NK cells was inhibited by the injection of Abs directed to NKG2D. On the contrary, blocking NKG2A inhibitory receptors did not increase NK cell regulatory activity. Finally, we show that NK regulation of T cell expansion did not involve perforin-mediated lytic activity of NK cells, but depended on T cell surface expression of a functional Fas molecule. These results highlight the potential role played by NK cells in controlling the Ag-specific CD4+ T cells responsible for chronic GVHD. PMID:20488796

  14. Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response.

    PubMed

    Sobotta, Katharina; Hillarius, Kirstin; Mager, Marvin; Kerner, Katharina; Heydel, Carsten; Menge, Christian

    2016-06-01

    Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains. PMID:27021246

  15. Inhibition of host cell catalase by Mycoplasma pneumoniae: a possible mechanism for cell injury.

    PubMed Central

    Almagor, M; Yatziv, S; Kahane, I

    1983-01-01

    This study demonstrates that viable Mycoplasma pneumoniae cells inhibit catalase activity in several types of intact human cells as well as in solution. Human erythrocyte catalase was inhibited up to 72%, and the inhibition of catalase in human cultured skin fibroblasts, lung carcinoma epithelial cells, and ciliated epithelial cells from human nasal polyps ranged between 75 and 80%. UV light-killed mycoplasmas failed to inhibit catalase activity both in intact cells and in vitro. After M. pneumoniae infection of human cultured skin fibroblasts, the level of malonyldialdehyde, an indicator for membrane lipid peroxidation, was 3.5 times higher than in control fibroblasts. Virulent M. pneumoniae completely inhibited catalase activity in solution, whereas the nonvirulent strains had a lesser ability to inhibit catalase activity. These findings suggest that as a result of host cell catalase inhibition by M. pneumoniae, the toxicity of the hydrogen peroxide generated by the microorganism and the affected cell is enhanced, thereby inducing host cell damage. PMID:6407999

  16. A microfluidic cell-trapping device for single-cell tracking of host-microbe interactions.

    PubMed

    Delincé, Matthieu J; Bureau, Jean-Baptiste; López-Jiménez, Ana Teresa; Cosson, Pierre; Soldati, Thierry; McKinney, John D

    2016-08-16

    The impact of cellular individuality on host-microbe interactions is increasingly appreciated but studying the temporal dynamics of single-cell behavior in this context remains technically challenging. Here we present a microfluidic platform, InfectChip, to trap motile infected cells for high-resolution time-lapse microscopy. This approach allows the direct visualization of all stages of infection, from bacterial uptake to death of the bacterium or host cell, over extended periods of time. We demonstrate the utility of this approach by co-culturing an established host-cell model, Dictyostelium discoideum, with the extracellular pathogen Klebsiella pneumoniae or the intracellular pathogen Mycobacterium marinum. We show that the outcome of such infections is surprisingly heterogeneous, ranging from abortive infection to death of the bacterium or host cell. InfectChip thus provides a simple method to dissect the time-course of host-microbe interactions at the single-cell level, yielding new insights that could not be gleaned from conventional population-based measurements. PMID:27425421

  17. Abolishing Cell Wall Glycosylphosphatidylinositol-Anchored Proteins in Candida albicans Enhances Recognition by Host Dectin-1.

    PubMed

    Shen, Hui; Chen, Si Min; Liu, Wei; Zhu, Fang; He, Li Juan; Zhang, Jun Dong; Zhang, Shi Qun; Yan, Lan; Xu, Zheng; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying

    2015-07-01

    Fungi can shield surface pathogen-associated molecular patterns (PAMPs) for evading host immune attack. The most common and opportunistic human pathogen, Candida albicans, can shield β-(1 3)-glucan on the cell wall, one of the major PAMPs, to avoid host phagocyte Dectin-1 recognition. The way to interfere in the shielding process for more effective antifungal defense is not well established. In this study, we found that deletion of the C. albicans GPI7 gene, which was responsible for adding ethanolaminephosphate to the second mannose in glycosylphosphatidylinositol (GPI) biosynthesis, could block the attachment of most GPI-anchored cell wall proteins (GPI-CWPs) to the cell wall and subsequently unmask the concealed β-(1,3)-glucan. Neutrophils could kill the uncloaked gpi7 mutant more efficiently with an augmented respiratory burst. The gpi7 mutant also stimulated Dectin-1-dependent immune responses of macrophages, including activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways and secretion of specific cytokines, such as tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-12p40. Furthermore, the gpi7 null mutant could induce an enhanced inflammatory response through promoting significant recruitment of neutrophils and monocytes and could stimulate stronger Th1 and Th17 cell responses to fungal infections in vivo. These in vivo phenotypes also were Dectin-1 dependent. Thus, we assume that GPI-CWPs are involved in the immune mechanism of C. albicans escaping from host recognition by Dectin-1. Our studies also indicate that the blockage of GPI anchor synthesis is a strategy to inhibit C. albicans evading host recognition. PMID:25895969

  18. FOXO transcription factors throughout T cell biology

    PubMed Central

    Hedrick, Stephen M.; Michelini, Rodrigo Hess; Doedens, Andrew L.; Goldrath, Ananda W.; Stone, Erica L.

    2013-01-01

    The outcome of an infection with any given pathogen varies according to the dosage and route of infection, but, in addition, the physiological state of the host can determine the efficacy of clearance, the severity of infection and the extent of immunopathology. Here we propose that the forkhead box O (FOXO) transcription factor family — which is central to the integration of growth factor signalling, oxidative stress and inflammation — provides connections between physical well-being and the form and magnitude of an immune response. We present a case that FOXO transcription factors guide T cell differentiation and function in a context-driven manner, and might provide a link between metabolism and immunity. PMID:22918467

  19. Interaction between viral RNA silencing suppressors and host factors in plant immunity.

    PubMed

    Nakahara, Kenji S; Masuta, Chikara

    2014-08-01

    To elucidate events in the molecular arms race between the host and pathogen in evaluating plant immunity, a zigzag model is useful for uncovering aspects common to different host-pathogen interactions. By analogy of the steps in virus-host interactions with the steps in the standard zigzag model outlined in recent papers, we may regard RNA silencing as pattern-triggered immunity (PTI) against viruses, RNA silencing suppressors (RSSs) as effectors to overcome host RNA silencing and resistance gene (R-gene)-mediated defense as effector-triggered immunity (ETI) recognizing RSSs as avirulence proteins. However, because the standard zigzag model does not fully apply to some unique aspects in the interactions between a plant host and virus, we here defined a model especially designed for viruses. Although we simplified the phenomena involved in the virus-host interactions in the model, certain specific interactive steps can be explained by integrating additional host factors into the model. These host factors are thought to play an important role in maintaining the efficacy of the various steps in the main pathway of defense against viruses in this model for virus-plant interactions. For example, we propose candidates that may interact with viral RSSs to induce the resistance response. PMID:24875766

  20. Modulation of host defense peptide-mediated human mast cell activation by LPS

    PubMed Central

    Gupta, Kshitij; Subramanian, Hariharan; Ali, Hydar

    2016-01-01

    Human β-defensin3 (hBD3) and the cathelicidin LL-37 are host defense peptides (HDPs) that directly kill microbes and display immunomodulatory/wound healing properties via the activation of chemokine, formylpeptide and epidermal growth factor receptors on monocytes and epithelial cells. A C-terminal 14 amino acid hBD3 peptide with all Cys residues replaced with Ser (CHRG01) and an LL-37 peptide consisting of residues 17-29 (FK-13) display antimicrobial activity but lack immunomodulatory property. Surprisingly, we found that CHRG01 and FK-13 caused Ca2+ mobilization and degranulation in human mast cells via a novel G protein coupled receptor (GPCR) known as Mas-related gene-X2 (MrgX2). At local sites of bacterial infection, the negatively charged LPS likely interacts with cationic HDPs to inhibit their activity and thus providing a mechanism for pathogens to escape the host defense mechanisms. We found that LPS caused almost complete inhibition of hBD3 and LL-37-induced Ca2+ mobilization and mast cell degranulation. In contrast, it had no effect on CHRG01 and FK-13-induced mast cell responses. These findings suggest that HDP derivatives that kill microbes, harness mast cell’s host defense and wound healing properties via the activation of MrgX2 but are resistant to inhibition by LPS could be utilized for the treatment of antibiotic-resistant microbial infections. PMID:26511058

  1. Host volatiles mediate cell invasion of honey bee brood cells by Varroa destructor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A female Varroa destructor mite parasitizes capped bee brood by invading the cell of a late 5th instar larvae just before the cell is capped, usually by transfer from a worker bee to the new larval host. Female mites must rely on chemical cues to successfully locate and transfer to an appropriate ag...

  2. Investigations of host defence in patients with sickle cell disease.

    PubMed

    Boghossian, S H; Wright, G; Webster, A D; Segal, A W

    1985-03-01

    Parameters of host defence were investigated in 30 patients with sickle cell disease (SCD). A newly devised perfusion system was used to study the kinetics in whole blood of leucocyte adherence, phagocytosis, killing and solubilization of a mixture of Staph. aureus and Str. pneumoniae, and secretion of lactoferrin. A skin window technique was used to examine the accumulation of leucocytes at inflammatory foci and their subsequent rate of movement through a filter. Serum concentrations of C3, C4, total haemolytic complement and immunoglobulins were also measured. The rate of neutrophil migration into filters was slightly reduced in patients with SCD. The proportion of monocytes that emigrated from the skin windows and their rate of migration were markedly diminished. The adhesion of neutrophils and their ability to kill staphylococci were also reduced, particularly in patients of the haemoglobin (Hb) SS and Hb S-beta-thalassaemia genotypes. Neutrophil function was mostly impaired in patients with the greatest frequency of bacterial infection. The rate of clearance of pneumococci was related to the concentration of type specific immunoglobulin G but not M. Serum concentrations of immunoglobulins and complement were normal. We were unable to define a defect of host defence of sufficient magnitude to explain the susceptibility of these patients to severe infection. PMID:3882140

  3. Cell Differentiation in a Bacillus thuringiensis Population during Planktonic Growth, Biofilm Formation, and Host Infection

    PubMed Central

    Verplaetse, Emilie; Slamti, Leyla; Gohar, Michel

    2015-01-01

    ABSTRACT Bacillus thuringiensis (Bt) is armed to complete a full cycle in its insect host. During infection, virulence factors are expressed under the control of the quorum sensor PlcR to kill the host. After the host’s death, the quorum sensor NprR controls a necrotrophic lifestyle, allowing the vegetative cells to use the insect cadaver as a bioincubator and to survive. Only a part of the Bt population sporulates in the insect cadaver, and the precise composition of the whole population and its evolution over time are unknown. Using fluorescent reporters to record gene expression at the single-cell level, we have determined the differentiation course of a Bt population and explored the lineage existing among virulent, necrotrophic, and sporulating cells. The dynamics of cell differentiation were monitored during growth in homogenized medium, biofilm formation, and colonization of insect larvae. We demonstrated that in the insect host and in planktonic culture in rich medium, the virulence, necrotrophism, and sporulation regulators are successively activated in the same cell. In contrast, in biofilms, activation of PlcR is dispensable for NprR activation and we observed a greater heterogeneity than under the other two growth conditions. We also showed that sporulating cells arise almost exclusively from necrotrophic cells. In biofilm and in the insect cadaver, we identified an as-yet-uncharacterized category of cells that do not express any of the reporters used. Overall, we showed that PlcR, NprR, and Spo0A act as interconnected integrators to allow finely tuned adaptation of the pathogen to its environment. PMID:25922389

  4. Characterization of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus

    PubMed Central

    Stam, Remco; Howden, Andrew J. M.; Delgado-Cerezo, Magdalena; M. M. Amaro, Tiago M.; Motion, Graham B.; Pham, Jasmine; Huitema, Edgar

    2013-01-01

    Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centers on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signaling. Here, we characterized three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localization of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organization, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility. PMID:24155749

  5. Silencing suppressors: viral weapons for countering host cell defenses.

    PubMed

    Song, Liping; Gao, Shijuan; Jiang, Wei; Chen, Shuai; Liu, Yanjun; Zhou, Ling; Huang, Wenlin

    2011-04-01

    RNA silencing is a conserved eukaryotic pathway involved in the suppression of gene expression via sequence-specific interactions that are mediated by 21-23 nt RNA molecules. During infection, RNAi can act as an innate immune system to defend against viruses. As a counter-defensive strategy, silencing suppressors are encoded by viruses to inhibit various stages of the silencing process. These suppressors are diverse in sequence and structure and act via different mechanisms. In this review, we discuss whether RNAi is a defensive strategy in mammalian host cells and whether silencing suppressors can be encoded by mammalian viruses. We also review the modes of action proposed for some silencing suppressors. PMID:21528352

  6. Mast cells: Versatile regulators of inflammation, tissue remodeling, host defense and homeostasis

    PubMed Central

    Galli, Stephen J.; Tsai, Mindy

    2009-01-01

    Summary The possible roles of mast cells in heath and disease have been a topic of interest for over one hundred and twenty five years. Many adaptive or pathological processes affecting the skin or other anatomical sites have been associated with morphological evidence of mast cell activation, and/or with changes in mast cell numbers or phenotype. Such observations, taken together with the known functions of the diverse mediators, cytokines and growth factors which can be secreted by mast cells, have suggested many potential functions for mast cells in health and disease. Definitively identifying the importance of mast cells in biological responses in humans is difficult. However, mutant mice which are profoundly mast cell-deficient, especially those which can undergo engraftment with wild type or genetically-altered mast cells, provide an opportunity to investigate the importance of mast cells, and specific mast cell functions or products, in various adaptive or pathological responses in mice. Such work has shown that mast cells can significantly influence multiple features of inflammatory or immune responses, through diverse effects that can either promote or, surprisingly, suppress, aspects of these responses. Through such functions, mast cells can significantly influence inflammation, tissue remodeling, host defense and homeostasis. PMID:18024086

  7. In vivo interaction of the Escherichia coli integration host factor with its specific binding sites.

    PubMed

    Engelhorn, M; Boccard, F; Murtin, C; Prentki, P; Geiselmann, J

    1995-08-11

    The histone-like protein integration host factor (IHF) of Escherichia coli binds to specific binding sites on the chromosome or on mobile genetic elements, and is involved in many cellular processes. We have analyzed the interaction of IHF with five different binding sites in vitro and in vivo using UV laser footprinting, a technique that probes the immediate environment and conformation of a segment of DNA. Using this generally applicable technique we can directly compare the binding modes and interaction strengths of a DNA binding protein in its physiological environment within the cell to measurements performed in vitro. We conclude that the interactions between IHF and its specific binding sites are identical in vitro and in vivo. The footprinting signal is consistent with the model of IHF-binding to DNA proposed by Yang and Nash (1989). The occupancy of binding sites varies with the concentration of IHF in the cell and allows to estimate the concentration of free IHF protein in the cell. PMID:7659518

  8. In vivo interaction of the Escherichia coli integration host factor with its specific binding sites.

    PubMed

    Engelhorn, M; Boccard, F; Murtin, C; Prentki, P; Geiselmann, J

    1995-09-11

    The histone-like protein integration host factor (IHF) of Escherichia coli binds to specific binding sites on the chromosome or on mobile genetic elements, and is involved in many cellular processes. We have analyzed the interaction of IHF with five different binding sites in vitro and in vivo using UV laser footprinting, a technique that probes the immediate environment and conformation of a segment of DNA. Using this generally applicable technique we can directly compare the binding modes and interaction strengths of a DNA binding protein in its physiological environment within the cell to measurements performed in vitro. We conclude that the interactions between IHF and its specific binding sites are identical in vitro and in vivo. The footprinting signal is consistent with the model of IHF-binding to DNA proposed by Yang and Nash (1989). The occupancy of binding sites varies with the concentration of IHF in the cell and allows to estimate the concentration of free IHF protein in the cell. PMID:7567442

  9. Inkjet printing of silk nest arrays for cell hosting.

    PubMed

    Suntivich, Rattanon; Drachuk, Irina; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2014-04-14

    An inkjet printing approach is presented for the facile fabrication of microscopic arrays of biocompatible silk "nests" capable of hosting live cells for prospective biosensors. The patterning of silk fibroin nests were constructed by the layer-by-layer (LbL) assembly of silk polyelectrolytes chemically modified with poly-(l-lysine) and poly-(l-glutamic acid) side chains. The inkjet-printed silk circular regions with a characteristic "nest" shape had diameters of 70-100 μm and a thickness several hundred nanometers were stabilized by ionic pairing and by the formation of the silk II crystalline secondary structure. These "locked-in" silk nests remained anchored to the substrate during incubation in cell growth media to provide a biotemplated platform for printing-in, immobilization, encapsulation and growth of cells. The process of inkjet-assisted printing is versatile and can be applied on any type of substrate, including rigid and flexible, with scalability and facile formation. PMID:24605757

  10. Infection with Toxoplasma gondii results in dysregulation of the host cell cycle

    PubMed Central

    Molestina, Robert E.; El-Guendy, Nadia; Sinai, Anthony P.

    2009-01-01

    SUMMARY Mammalian cells infected with Toxoplasma gondii are characterized by a profound reprogramming of gene expression. We examined whether such transcriptional responses were linked to changes in the cell cycle of the host. Human foreskin fibroblasts (HFF) in the G0/G1 phase of the cell cycle were infected with T. gondii and FACS analysis of DNA content was performed. Cell cycle profiles revealed a promotion into the S phase followed by an arrest towards the G2/M boundary with infection. This response was markedly different from that of growth factor stimulation which caused cell cycle entry and completion. Transcriptional profiles of T. gondii-infected HFF showed sustained increases in transcripts associated with a G1/S transition and DNA synthesis coupled to an abrogation of cell cycle regulators critical in G2/M transition relative to growth factor stimulation. These divergent responses correlated with a distinct temporal modulation of the critical cell cycle regulator kinase ERK by infection. While the kinetics of ERK phosphorylation by EGF showed rapid and sustained activation, infected cells displayed an oscillatory pattern of activation. Our results suggest that T. gondii infection induces and maintains a “proliferation response” in the infected cell which may fulfill critical growth requirements of the parasite during intracellular residence. PMID:18182087

  11. Macrophage Migration Inhibitory Factor Contributes to Host Defense against Acute Trypanosoma cruzi Infection

    PubMed Central

    Reyes, José L.; Terrazas, Luis I.; Espinoza, Bertha; Cruz-Robles, David; Soto, Virgilia; Rivera-Montoya, Irma; Gómez-García, Lorena; Snider, Heidi; Satoskar, Abhay R.; Rodríguez-Sosa, Miriam

    2006-01-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is involved in the host defense against several pathogens. Here we used MIF−/− mice to determine the role of endogenous MIF in the regulation of the host immune response against Trypanosoma cruzi infection. MIF−/− mice displayed high levels of blood and tissue parasitemia, developed severe heart and skeletal muscle immunopathology, and succumbed to T. cruzi infection faster than MIF+/+ mice. The enhanced susceptibility of MIF−/− mice to T. cruzi was associated with reduced levels of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-12 (IL-12), IL-18, gamma interferon (IFN-γ), and IL-1β, in their sera and reduced production of IL-12, IFN-γ, and IL-4 by spleen cells during the early phase of infection. At all time points, antigen-stimulated splenocytes from MIF+/+ and MIF−/− mice produced comparable levels of IL-10. MIF−/− mice also produced significantly less Th1-associated antigen-specific immunoglobulin G2a (IgG2a) throughout the infection, but both groups produced comparable levels of Th2-associated IgG1. Lastly, inflamed hearts from T. cruzi-infected MIF−/− mice expressed increased transcripts for IFN-γ, but fewer for IL-12 p35, IL-12 p40, IL-23, and inducible nitric oxide synthase, compared to MIF+/+ mice. Taken together, our findings show that MIF plays a role in controlling acute T. cruzi infection. PMID:16714544

  12. Human borna disease virus infection impacts host proteome and histone lysine acetylation in human oligodendroglia cells

    SciTech Connect

    Liu, Xia; Zhao, Libo; Yang, Yongtao; Bode, Liv; Huang, Hua; Liu, Chengyu; Huang, Rongzhong; Zhang, Liang; and others

    2014-09-15

    Background: Borna disease virus (BDV) replicates in the nucleus and establishes persistent infections in mammalian hosts. A human BDV strain was used to address the first time, how BDV infection impacts the proteome and histone lysine acetylation (Kac) of human oligodendroglial (OL) cells, thus allowing a better understanding of infection-driven pathophysiology in vitro. Methods: Proteome and histone lysine acetylation were profiled through stable isotope labeling for cell culture (SILAC)-based quantitative proteomics. The quantifiable proteome was annotated using bioinformatics. Histone acetylation changes were validated by biochemistry assays. Results: Post BDV infection, 4383 quantifiable differential proteins were identified and functionally annotated to metabolism pathways, immune response, DNA replication, DNA repair, and transcriptional regulation. Sixteen of the thirty identified Kac sites in core histones presented altered acetylation levels post infection. Conclusions: BDV infection using a human strain impacted the whole proteome and histone lysine acetylation in OL cells. - Highlights: • A human strain of BDV (BDV Hu-H1) was used to infect human oligodendroglial cells (OL cells). • This study is the first to reveal the host proteomic and histone Kac profiles in BDV-infected OL cells. • BDV infection affected the expression of many transcription factors and several HATs and HDACs.

  13. Comparative phosphoproteomics reveals components of host cell invasion and post-transcriptional regulation during Francisella infection

    SciTech Connect

    Nakayasu, Ernesto S.; Tempel, Rebecca; Cambronne, Xiaolu A.; Petyuk, Vladislav A.; Jones, Marcus B.; Gritsenko, Marina A.; Monroe, Matthew E.; Yang, Feng; Smith, Richard D.; Adkins, Joshua N.; Heffron, Fred

    2013-09-22

    Francisella tularensis is a facultative intracellular bacterium that causes the deadly disease tularemia. Most evidence suggests that Francisella is not well recognized by the innate immune system that normally leads to cytokine expression and cell death. In previous work, we identified new bacterial factors that were hyper-cytotoxic to macrophages. Four of the identified hyper-cytotoxic strains (lpcC, manB, manC and kdtA) had an impaired lipopolysaccharide (LPS) synthesis and produced an exposed lipid A lacking the O-antigen. These mutants were not only hyper-cytotoxic but also were phagocytosed at much higher rates compared to the wild type parent strain. To elucidate the cellular signaling underlying this enhanced phagocytosis and cell death, we performed a large-scale comparative phosphoproteomic analysis of cells infected with wild-type and delta-lpcC F. novicida. Our data suggest that not only actin but also intermediate filaments and microtubules are important for F. novicida entry into the host cells. In addition, we observed differential phosphorylation of tristetraprolin (TTP), a key component of the mRNA-degrading machinery that controls the expression of a variety of genes including many cytokines. Infection with the delta-lpcC mutant induced the hyper-phosphorylation and inhibition of TTP, leading to the production of cytokines such as IL-1beta and TNF-alpha which may kill the host cells by triggering apoptosis. Together, our data provide new insights for Francisella invasion and a post-transcriptional mechanism that prevents the expression of host immune response factors that controls infection by this pathogen.

  14. Equine herpesvirus type 1 modulates inflammatory host immune response genes in equine endothelial cells.

    PubMed

    Johnstone, Stephanie; Barsova, Jekaterina; Campos, Isabel; Frampton, Arthur R

    2016-08-30

    Equine herpesvirus myeloencephalopathy (EHM), a disease caused by equine herpesvirus type 1 (EHV-1), is characterized by severe inflammation, thrombosis, and hypoxia in central nervous system (CNS) endothelial cells, which can result in a spectrum of clinical signs including urinary incontinence, ataxia, and paralysis. Strains of EHV-1 that contain a single point mutation within the viral DNA polymerase (nucleotide A2254>G2254: amino acid N752→D752) are isolated from EHM afflicted horses at higher frequencies than EHV-1 strains that do not harbor this mutation. Due to the correlation between the DNA Pol mutation and EHM disease, EHV-1 strains that contain the mutation have been designated as neurologic. In this study, we measured virus replication, cell to cell spread efficacy, and host inflammatory responses in equine endothelial cells infected with 12 different strains of EHV-1. Two strains, T953 (Ohio 2003) (neurologic) and Kentucky A (KyA) (non-neurologic), have well described disease phenotypes while the remaining strains used in this study are classified as neurologic or non-neurologic based solely on the presence or absence of the DNA pol mutation, respectively. Results show that the neurologic strains do not replicate better or spread more efficiently in endothelial cells. Also, the majority of the host inflammatory genes were modulated similarly regardless of EHV-1 genotype. Analyses of host gene expression showed that a subset of pro-inflammatory cytokines, including the CXCR3 ligands CXCL9, CXCL10, and CXCL11, as well as CCL5, IL-6 and TNF-α were consistently up-regulated in endothelial cells infected with each EHV-1 strain. The identification of specific pro-inflammatory cytokines in endothelial cells that are modulated by EHV-1 provides further insight into the factors that contribute to the immunopathology observed after infection and may also reveal new targets for disease intervention. PMID:27527764

  15. Making Bunyaviruses Talk: Interrogation Tactics to Identify Host Factors Required for Infection

    PubMed Central

    Riblett, Amber M.; Doms, Robert W.

    2016-01-01

    The identification of host cellular genes that act as either proviral or antiviral factors has been aided by the development of an increasingly large number of high-throughput screening approaches. Here, we review recent advances in which these new technologies have been used to interrogate host genes for the ability to impact bunyavirus infection, both in terms of technical advances as well as a summary of biological insights gained from these studies. PMID:27187446

  16. Global translation variations in host cells upon attack of lytic and sublytic Staphylococcus aureus α-haemolysin.

    PubMed

    Clamer, Massimiliano; Tebaldi, Toma; Marchioretto, Marta; Bernabò, Paola; Bertini, Efrem; Guella, Graziano; Dalla Serra, Mauro; Quattrone, Alessandro; Viero, Gabriella

    2015-11-15

    Genome-wide analyses of translation can provide major contributions in our understanding of the complex interplay between virulent factors and host cells. So far, the activation of host translational control mechanisms by bacterial toxins, owing to specific recruitment of mRNAs, RNA-binding proteins (RBPs) and ncRNAs (non-coding RNAs), are far from being understood. In the present study, we characterize for the first time the changes experienced by the translational control system of host cells in response to the well-known Staphylococcus aureus α-haemolysin (AHL) under both sublytic and lytic conditions. By comparing variations occurring in the cellular transcriptome and translatome, we give evidence that global gene expression is primarily rewired at the translational level, with the contribution of the RBP ELAVL1 (HuR) in the sublytic response. These results reveal the importance of translational control during host-pathogen interaction, opening new approaches for AHL-induced diseases. PMID:26371376

  17. The Salmonella SPI2 Effector SseI Mediates Long-Term Systemic Infection by Modulating Host Cell Migration

    PubMed Central

    Gerke, Christiane; Gopinath, Smita; Peng, Kaitian; Laidlaw, Grace; Chien, Yueh-Hsiu; Jeong, Ha-Won; Li, Zhigang; Brown, Matthew D.; Sacks, David B.; Monack, Denise

    2009-01-01

    Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time despite the presence of a robust immune response. Chronically infected hosts are asymptomatic and transmit disease to naïve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. We show that the bacterial effector protein SseI (also called SrfH), which is translocated into host cells by the Salmonella Pathogenicity Island 2 (SPI2) type III secretion system (T3SS), is required for Salmonella typhimurium to maintain a long-term chronic systemic infection in mice. SseI inhibits normal cell migration of primary macrophages and dendritic cells (DC) in vitro, and such inhibition requires the host factor IQ motif containing GTPase activating protein 1 (IQGAP1), an important regulator of cell migration. SseI binds directly to IQGAP1 and co-localizes with this factor at the cell periphery. The C-terminal domain of SseI is similar to PMT/ToxA, a bacterial toxin that contains a cysteine residue (C1165) that is critical for activity. Mutation of the corresponding residue in SseI (C178A) eliminates SseI function in vitro and in vivo, but not binding to IQGAP1. In addition, infection with wild-type (WT) S. typhimurium suppressed DC migration to the spleen in vivo in an SseI-dependent manner. Correspondingly, examination of spleens from mice infected with WT S. typhimurium revealed fewer DC and CD4+ T lymphocytes compared to mice infected with ΔsseI S. typhimurium. Taken together, our results demonstrate that SseI inhibits normal host cell migration, which ultimately counteracts the ability of the host to clear systemic bacteria. PMID:19956712

  18. Host cell death due to enteropathogenic Escherichia coli has features of apoptosis.

    PubMed

    Crane, J K; Majumdar, S; Pickhardt, D F

    1999-05-01

    Enteropathogenic Escherichia coli (EPEC) is a cause of prolonged watery diarrhea in children in developing countries. The ability of EPEC to kill host cells was investigated in vitro in assays using two human cultured cell lines, HeLa (cervical) and T84 (colonic). EPEC killed epithelial cells as assessed by permeability to the vital dyes trypan blue and propidium iodide. In addition, EPEC triggered changes in the host cell, suggesting apoptosis as the mode of death; such changes included early expression of phosphatidylserine on the host cell surface and internucleosomal cleavage of host cell DNA. Genistein, an inhibitor of tyrosine kinases, and wortmannin, an inhibitor of host phosphatidylinositol 3-kinase, markedly increased EPEC-induced cell death and enhanced the features of apoptosis. EPEC-induced cell death was contact dependent and required adherence of live bacteria to the host cell. A quantitative assay for EPEC-induced cell death was developed by using the propidium iodide uptake method adapted to a fluorescence plate reader. With EPEC, the rate and extent of host cell death were less that what has been reported for Salmonella, Shigella, and Yersinia, three other genera of enteric bacteria known to cause apoptosis. However, rapid apoptosis of the host cell may not favor the pathogenic strategy of EPEC, a mucosa-adhering, noninvasive pathogen. PMID:10225923

  19. Host and microbiological factors related to dental caries development.

    PubMed

    De Soet, J J; van Gemert-Schriks, M C M; Laine, M L; van Amerongen, W E; Morré, S A; van Winkelhoff, A J

    2008-01-01

    Studies on dental caries suggest that in severe cases it may induce a systemic immune response. This occurs particularly when caries progresses into pulpal inflammation and results in abscess or fistula formation (AFF). We hypothesized that severe dental caries will affect the general health of children. The acute phase proteins alpha-1-acid glycoprotein (AGP), C-reactive protein (CRP) and the cytokine neopterin were chosen as parameters to monitor general health. Also, a polymorphism in the bacterial ligand CD14 (-260) was studied to investigate the relationship between genotype sensitivity for bacterial infections and AFF. In Suriname, children aged 6 years were recruited and enrolled into a dental care scheme, randomly assigned to 4 groups with different treatment strategies and monitored longitudinally. 348 children were included in the present study. Blood and saliva samples were taken at baseline and 1 year, and concentrations of serum AGP, CRP, neopterin, salivary Streptococcus mutans and CD14-260 C>T polymorphism were determined. There was no significant association between different treatment strategies and the serum parameters. Binary logistic regression analyses revealed a significant association between AFF as the outcome variable and the CD14 genotype and the concentrations of CRP and of neopterin as factors (p < 0.05). A significant negative association was found between the CD14-260 TT and AFF (p = 0.035, OR = 3.3) for the whole population. For children who had 4 or more carious lesions at baseline, the significance increased (p = 0.005, OR = 4.8), suggesting that the CD14-260 TT genotype was protective for AFF as a consequence of dental caries. PMID:18701824

  20. Host Genetic Factors Associated with Symptomatic Primary HIV Infection and Disease Progression among Argentinean Seroconverters

    PubMed Central

    Coloccini, Romina Soledad; Dilernia, Dario; Ghiglione, Yanina; Turk, Gabriela; Laufer, Natalia; Rubio, Andrea; Socías, María Eugenia; Figueroa, María Inés; Sued, Omar; Cahn, Pedro; Salomón, Horacio; Mangano, Andrea; Pando, María Ángeles

    2014-01-01

    Background Variants in HIV-coreceptor C-C chemokine receptor type 5 (CCR5) and Human leukocyte antigen (HLA) genes are the most important host genetic factors associated with HIV infection and disease progression. Our aim was to analyze the association of these genetic factors in the presence of clinical symptoms during Primary HIV Infection (PHI) and disease progression within the first year. Methods Seventy subjects diagnosed during PHI were studied (55 symptomatic and 15 asymptomatic). Viral load (VL) and CD4 T-cell count were evaluated. HIV progression was defined by presence of B or C events and/or CD4 T-cell counts <350 cell/mm3. CCR5 haplotypes were characterized by polymerase chain reaction and SDM-PCR-RFLP. HLA-I characterization was performed by Sequencing. Results Symptoms during PHI were significantly associated with lower frequency of CCR5-CF1 (1.8% vs. 26.7%, p = 0.006). Rapid progression was significantly associated with higher frequency of CCR5-CF2 (16.7% vs. 0%, p = 0.024) and HLA-A*11 (16.7% vs. 1.2%, p = 0.003) and lower frequency of HLA-C*3 (2.8% vs. 17.5%, p = 0.035). Higher baseline VL was significantly associated with presence of HLA-A*11, HLA-A*24, and absence of HLA-A*31 and HLA-B*57. Higher 6-month VL was significantly associated with presence of CCR5-HHE, HLA-A*24, HLA-B*53, and absence of HLA-A*31 and CCR5-CF1. Lower baseline CD4 T-cell count was significantly associated with presence of HLA-A*24/*33, HLA-B*53, CCR5-CF2 and absence of HLA-A*01/*23 and CCR5-HHA. Lower 6-month CD4 T-cell count was associated with presence of HLA-A*24 and HLA-B*53, and absence of HLA-A*01 and HLA-B*07/*39. Moreover, lower 12-month CD4 T-cell count was significantly associated with presence of HLA-A*33, HLA-B*14, HLA-C*08, CCR5-CF2, and absence of HLA-B*07 and HLA-C*07. Conclusion Several host factors were significantly associated with disease progression in PHI subjects. Most results agree with previous studies performed in other groups

  1. The effect of enterohemorrhagic E. coli infection on the cell mechanics of host cells.

    PubMed

    Chen, Yin-Quan; Su, Pin-Tzu; Chen, Yu-Hsuan; Wei, Ming-Tzo; Huang, Chien-Hsiu; Osterday, Kathryn; del Álamo, Juan C; Syu, Wan-Jr; Chiou, Arthur

    2014-01-01

    Enterohaemorrhagic E. coli (EHEC) is a type of human pathogenic bacteria. The main virulence characteristics of EHEC include the formation of attaching and effacing lesions (A/E lesions) and the production of one or more Shiga-like toxins, which may induce human uremic complications. When EHEC infects host cells, it releases translocated intimin receptor (Tir) and effector proteins inside the host cells, inducing the rearrangement and accumulation of the F-actin cytoskeleton, a phenotype leading to the formation of pedestals in the apical cell surface, and the growth of stress fibers at the base of the cells. To examine the effect of EHEC infection on cell mechanics, we carried out a series of experiments to examine HeLa cells with and without EHEC infection to quantify the changes in (1) focal adhesion area, visualized by anti-vinculin staining; (2) the distribution and orientation of stress fibers; and (3) the intracellular viscoelasticity, via directional video particle tracking microrheology. Our results indicated that in EHEC-infected HeLa cells, the focal adhesion area increased and the actin stress fibers became thicker and more aligned. The cytoskeletal reorganization induced by EHEC infection mediated a dramatic increase in the cytoplasmic elastic shear modulus of the infected cells, and a transition in the viscoelastic behavior of the cells from viscous-like to elastic-like. These changes in mechanobiological characteristics might modulate the attachments between EHEC and the host cell to withstand exfoliation, and between the host cell and the extracellular matrix, and might also alter epithelial integrity. PMID:25369259

  2. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation.

    PubMed

    Agler, Matthew T; Ruhe, Jonas; Kroll, Samuel; Morhenn, Constanze; Kim, Sang-Tae; Weigel, Detlef; Kemen, Eric M

    2016-01-01

    Plant-associated microorganisms have been shown to critically affect host physiology and performance, suggesting that evolution and ecology of plants and animals can only be understood in a holobiont (host and its associated organisms) context. Host-associated microbial community structures are affected by abiotic and host factors, and increased attention is given to the role of the microbiome in interactions such as pathogen inhibition. However, little is known about how these factors act on the microbial community, and especially what role microbe-microbe interaction dynamics play. We have begun to address this knowledge gap for phyllosphere microbiomes of plants by simultaneously studying three major groups of Arabidopsis thaliana symbionts (bacteria, fungi and oomycetes) using a systems biology approach. We evaluated multiple potential factors of microbial community control: we sampled various wild A. thaliana populations at different times, performed field plantings with different host genotypes, and implemented successive host colonization experiments under lab conditions where abiotic factors, host genotype, and pathogen colonization was manipulated. Our results indicate that both abiotic factors and host genotype interact to affect plant colonization by all three groups of microbes. Considering microbe-microbe interactions, however, uncovered a network of interkingdom interactions with significant contributions to community structure. As in other scale-free networks, a small number of taxa, which we call microbial "hubs," are strongly interconnected and have a severe effect on communities. By documenting these microbe-microbe interactions, we uncover an important mechanism explaining how abiotic factors and host genotypic signatures control microbial communities. In short, they act directly on "hub" microbes, which, via microbe-microbe interactions, transmit the effects to the microbial community. We analyzed two "hub" microbes (the obligate biotrophic

  3. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation

    PubMed Central

    Agler, Matthew T.; Ruhe, Jonas; Kroll, Samuel; Morhenn, Constanze; Kim, Sang-Tae; Weigel, Detlef; Kemen, Eric M.

    2016-01-01

    Plant-associated microorganisms have been shown to critically affect host physiology and performance, suggesting that evolution and ecology of plants and animals can only be understood in a holobiont (host and its associated organisms) context. Host-associated microbial community structures are affected by abiotic and host factors, and increased attention is given to the role of the microbiome in interactions such as pathogen inhibition. However, little is known about how these factors act on the microbial community, and especially what role microbe–microbe interaction dynamics play. We have begun to address this knowledge gap for phyllosphere microbiomes of plants by simultaneously studying three major groups of Arabidopsis thaliana symbionts (bacteria, fungi and oomycetes) using a systems biology approach. We evaluated multiple potential factors of microbial community control: we sampled various wild A. thaliana populations at different times, performed field plantings with different host genotypes, and implemented successive host colonization experiments under lab conditions where abiotic factors, host genotype, and pathogen colonization was manipulated. Our results indicate that both abiotic factors and host genotype interact to affect plant colonization by all three groups of microbes. Considering microbe–microbe interactions, however, uncovered a network of interkingdom interactions with significant contributions to community structure. As in other scale-free networks, a small number of taxa, which we call microbial “hubs,” are strongly interconnected and have a severe effect on communities. By documenting these microbe–microbe interactions, we uncover an important mechanism explaining how abiotic factors and host genotypic signatures control microbial communities. In short, they act directly on “hub” microbes, which, via microbe–microbe interactions, transmit the effects to the microbial community. We analyzed two “hub” microbes (the

  4. Genome-wide host responses against infectious laryngotracheitis virus vaccine infection in chicken embryo lung cells

    PubMed Central

    2012-01-01

    Background Infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) infection causes high mortality and huge economic losses in the poultry industry. To protect chickens against ILTV infection, chicken-embryo origin (CEO) and tissue-culture origin (TCO) vaccines have been used. However, the transmission of vaccine ILTV from vaccinated- to unvaccinated chickens can cause severe respiratory disease. Previously, host cell responses against virulent ILTV infections were determined by microarray analysis. In this study, a microarray analysis was performed to understand host-vaccine ILTV interactions at the host gene transcription level. Results The 44 K chicken oligo microarrays were used, and the results were compared to those found in virulent ILTV infection. Total RNAs extracted from vaccine ILTV infected chicken embryo lung cells at 1, 2, 3 and 4 days post infection (dpi), compared to 0 dpi, were subjected to microarray assay using the two color hybridization method. Data analysis using JMP Genomics 5.0 and the Ingenuity Pathway Analysis (IPA) program showed that 213 differentially expressed genes could be grouped into a number of functional categories including tissue development, cellular growth and proliferation, cellular movement, and inflammatory responses. Moreover, 10 possible gene networks were created by the IPA program to show intermolecular connections. Interestingly, of 213 differentially expressed genes, BMP2, C8orf79, F10, and NPY were expressed distinctly in vaccine ILTV infection when compared to virulent ILTV infection. Conclusions Comprehensive knowledge of gene expression and biological functionalities of host factors during vaccine ILTV infection can provide insight into host cellular defense mechanisms compared to those of virulent ILTV. PMID:22530940

  5. Hypomethylation of host cell DNA synthesized after infection or transformation of cells by herpes simplex virus

    SciTech Connect

    Macnab, J.C.M.; Adams, R.L.P.; Rinaldi, A.; Orr, A.; Clark, L.

    1988-04-01

    Infection of rat embryo cells with herpes simplex virus type 2 caused undermethylation of host cell DNA synthesized during infection. DNA made prior to infection was not demethylated, but some of its degradation products, including methyl dCMP, were incorporated into viral DNA. The use of mutant virus showed that some viral DNA synthesis appears to be required for the inhibition of methylation. Inhibition of methylation cannot be explained by an absence of DNA methyltransferase as the activity of this enzyme did not change during the early period of infection. Inhibition of host cell DNA methylation may be an important step in the transformation of cells by herpesviruses, and various transformed cell lines tested showed reduced levels of DNA methylation.

  6. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    SciTech Connect

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  7. Malignant progression of a mouse fibrosarcoma by host cells reactive to a foreign body (gelatin sponge).

    PubMed Central

    Okada, F.; Hosokawa, M.; Hamada, J. I.; Hasegawa, J.; Kato, M.; Mizutani, M.; Ren, J.; Takeichi, N.; Kobayashi, H.

    1992-01-01

    The QR regressor tumour (QR-32), a fibrosarcoma which is unable to grow progressively in normal syngeneic C57BL/6 mice, was able to grow progressively in 13 out of 22 mice (59%) when it was subcutaneously coimplanted with gelatin sponge. We established four culture tumour lines from the resultant tumours (QRsP tumour lines). These QRsP tumour lines were able to grow progressively in mice even in the absence of gelatin sponge. The ability of QRsP tumour cells to colonise the lungs after intravenous injection and to produce high amounts of prostaglandin E2 (PGE2) during in vitro cell culture was much greater than that of parent QR-32 cells. These biological characteristics of QR-32 cells and QRsP tumour cells were found to be stable for at least 6 months when they were maintained in culture. We also observed that QR-32 cells were able to grow progressively in five out of 12 (42%) mice after coimplantation with plastic non-adherent peritoneal cells obtained from mice which had been intraperitoneally implanted with gelatin sponge. These host cells reactive to gelatin sponge increased the production of high amounts of PGE2 by QR-32 cells during 48 h coculture. Preliminary in vitro studies implicated the involvement of hydrogen peroxide and hydroxyl radical as some of the factors necessary to induce QR-32 cells to produce high amounts of PGE2 and to accelerate tumour progression. PMID:1419599

  8. Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells

    PubMed Central

    2010-01-01

    Background Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated strain-specific differences in adhesion, invasion and intracellular survival and analyzed formation of pili in different isolates. Results Adhesion of different C. diphtheriae strains to epithelial cells and invasion of these cells are not strictly coupled processes. Using ultrastructure analyses by atomic force microscopy, significant differences in macromolecular surface structures were found between the investigated C. diphtheriae strains in respect to number and length of pili. Interestingly, adhesion and pili formation are not coupled processes and also no correlation between invasion and pili formation was found. Using RNA hybridization and Western blotting experiments, strain-specific pili expression patterns were observed. None of the studied C. diphtheriae strains had a dramatic detrimental effect on host cell viability as indicated by measurements of transepithelial resistance of Detroit 562 cell monolayers and fluorescence microscopy, leading to the assumption that C. diphtheriae strains might use epithelial cells as an environmental niche supplying protection against antibodies and macrophages. Conclusions The results obtained suggest that it is necessary to investigate various isolates on a molecular level to understand and to predict the colonization process of different C. diphtheriae strains. PMID:20942914

  9. Propagation of pSC101 plasmids defective in binding of integration host factor.

    PubMed Central

    Biek, D P; Cohen, S N

    1992-01-01

    Integration host factor (IHF), a multifunctional protein of E. coli, normally is required for the replication of plasmid pSC101. T. T. Stenzel, P. Patel, and D. Bastia (Cell 49:709-717, 1987) have reported that IHF binds to a DNA locus near the pSC101 replication origin and enhances a static bend present in this region; mutation of the IHF binding site affects the plasmid's ability to replicate. We report here studies indicating that the requirement for IHF binding near the pSC101 replication origin is circumvented partially or completely by (i) mutation of the plasmid-encoded repA (replicase) gene or the chromosomally encoded topA gene, (ii) the presence on the plasmid of the pSC101 partition (par) locus, or (iii) replacement of the par locus by a strong transcriptional promoter. With the exception of the repA mutation, the factors that substitute for a functional origin region IHF binding site are known to alter plasmid topology by increasing negative DNA supercoiling, as does IHF itself. These results are consistent with the proposal that IHF binding near the pSC101 replication origin promotes plasmid replication by inducing a conformational change leading to formation of a repA-dependent DNA-protein complex. A variety of IHF-independent mechanisms can facilitate formation of the putative replication-initiation complex. PMID:1310092

  10. Cutaneous graft-versus-host disease after hematopoietic stem cell transplant - a review*

    PubMed Central

    Villarreal, Cesar Daniel Villarreal; Alanis, Julio Cesar Salas; Pérez, Jose Carlos Jaime; Candiani, Jorge Ocampo

    2016-01-01

    Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplants (allo-HSCT) associated with significant morbidity and mortality. The earliest and most common manifestation is cutaneous graft-versus-host disease. This review focuses on the pathophysiology, clinical features, prevention and treatment of cutaneous graft-versus-host disease. We discuss various insights into the disease's mechanisms and the different treatments for acute and chronic skin graft-versus-host disease. PMID:27438202

  11. How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases

    PubMed Central

    Pluchino, Stefano; Cossetti, Chiara

    2014-01-01

    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288

  12. Gonococcal porin IB activates NF-kappaB in human urethral epithelium and increases the expression of host antiapoptotic factors.

    PubMed

    Binnicker, Matthew J; Williams, Richard D; Apicella, Michael A

    2004-11-01

    Infection of human urethral epithelial cells (UECs) with Neisseria gonorrhoeae increases the transcription of several host antiapoptotic genes, including bfl-1, cox-2, and c-IAP-2. In order to identify the bacterial factor(s) responsible for eliciting these changes, the transcriptional status of apoptotic machinery was monitored in UECs challenged with certain gonococcal membrane components. Initially, we observed that infection of UECs with gentamicin-killed gonococci increased the expression of the antiapoptotic Bcl-2 family member, bfl-1. This observation indicated that viable, replicating bacteria are not required for induction of antiapoptotic gene expression. Confirming this observation, treatment of UECs with purified gonococcal membrane increased the expression of bfl-1, cox-2, and c-IAP-2. This finding suggested that a factor or multiple factors present in the outer membrane (OM) are responsible for altering UEC antiapoptotic gene expression. Interestingly, treatment of UECs with gonococcal porin IB (PorB IB), a major constituent of the OM, significantly increased the transcription of bfl-1, cox-2, and c-IAP-2. The upregulation of these genes by PorB IB was determined to be dependent on NF-kappaB activation, as inhibiting NF-kappaB blocked induced expression of these genes. This work demonstrates the altered expression of host apoptotic factors in response to gonococcal PorB IB and supports a model whereby UEC cell death may be modulated as a potential mechanism of bacterial survival and proliferation. PMID:15501771

  13. Strain-Specific Interactions of Listeria monocytogenes with the Autophagy System in Host Cells

    PubMed Central

    Stöckli, Martina; Higgins, Darren E.; Brumell, John H.

    2015-01-01

    Listeria monocytogenes is an intracellular bacterial pathogen that can replicate in the cytosol of host cells. These bacteria undergo actin-based motility in the cytosol via expression of ActA, which recruits host actin-regulatory proteins to the bacterial surface. L. monocytogenes is thought to evade killing by autophagy using ActA-dependent mechanisms. ActA-independent mechanisms of autophagy evasion have also been proposed, but remain poorly understood. Here we examined autophagy of non-motile (ΔactA) mutants of L. monocytogenes strains 10403S and EGD-e, two commonly studied strains of this pathogen. The ΔactA mutants displayed accumulation of ubiquitinated proteins and p62/SQSTM1 on their surface. However, only strain EGD-e ΔactA displayed colocalization with the autophagy marker LC3 at 8 hours post infection. A bacteriostatic agent (chloramphenicol) was required for LC3 recruitment to 10403S ΔactA, suggesting that these bacteria produce a factor for autophagy evasion. Internalin K was proposed to block autophagy of L. monocytogenes in the cytosol of host cells. However, deletion of inlK in either the wild-type or ΔactA background of strain 10403S had no impact on autophagy evasion by bacteria, indicating it does not play an essential role in evading autophagy. Replication of ΔactA mutants of strain EGD-e and 10403S was comparable to their parent wild-type strain in macrophages. Thus, ΔactA mutants of L. monocytogenes can block killing by autophagy at a step downstream of protein ubiquitination and, in the case of strain EGD-e, downstream of LC3 recruitment to bacteria. Our findings highlight the strain-specific differences in the mechanisms that L. monocytogenes uses to evade killing by autophagy in host cells. PMID:25970638

  14. Microglial activation mediates host neuronal survival induced by neural stem cells.

    PubMed

    Wu, Hui-Mei; Zhang, Li-Feng; Ding, Pei-Shang; Liu, Ya-Jing; Wu, Xu; Zhou, Jiang-Ning

    2014-07-01

    The rational of neural stem cells (NSCs) in the therapy of neurological disease is either to replace dead neurons or to improve host neuronal survival, the latter of which has got less attention and the underlying mechanism is as yet little known. Using a transwell co-culture system, we reported that, in organotypic brain slice cultures, NSCs significantly improved host neuronal viability. Interestingly, this beneficial effect of NSCs was abrogated by a microglial inhibitor minocycline, while it was mimicked by a microglial agonist, Toll-like receptor 9 (TLR9) ligand CpG-ODN, which supports the pro-vital mediation by microglia on this NSCs-improved neuronal survival. Moreover, we showed that NSCs significantly induced host microglial movement and higher expression of a microglial marker IBA-1, the latter of which was positively correlated with TLR9 or extracellular-regulated protein kinases 1/2 (ERK1/2) activation. Real-time PCR revealed that NSCs inhibited the expression of pro-inflammatory molecules, but significantly increased the expression of molecules associated with a neuroprotective phenotype such as CX3CR1, triggering receptor expressed on myeloid cells-2 (TREM2) and insulin growth factor 1 (IGF-1). Similarly, in the microglia cells, NSCs induced the same microglial response as that in the slices. Further treatment with TLR9 ligand CpG-ODN, TLR9 inhibitor chloroquine (CQ) or ERK1/2 inhibitor U0126 demonstrated that TLR9-ERK1/2 pathway was involved in the NSCs-induced microglial activation. Collectively, this study indicated that NSCs improve host neuronal survival by switching microglia from a detrimental to a neuroprotective phenotype in adult mouse brain, and the microglial TLR9-ERK1/2 pathway seems to participate in this NSCs-mediated rescue action. PMID:24725889

  15. Metabolic Reprogramming of Host Cells by Virulent Francisella tularensis for Optimal Replication and Modulation of Inflammation.

    PubMed

    Wyatt, Elliott V; Diaz, Karina; Griffin, Amanda J; Rasmussen, Jed A; Crane, Deborah D; Jones, Bradley D; Bosio, Catharine M

    2016-05-15

    A shift in macrophage metabolism from oxidative phosphorylation to aerobic glycolysis is a requirement for activation to effectively combat invading pathogens. Francisella tularensis is a facultative intracellular bacterium that causes an acute, fatal disease called tularemia. Its primary mechanism of virulence is its ability to evade and suppress inflammatory responses while replicating in the cytosol of macrophages. The means by which F. tularensis modulates macrophage activation are not fully elucidated. In this study, we demonstrate that virulent F. tularensis impairs production of inflammatory cytokines in primary macrophages by preventing their shift to aerobic glycolysis, as evidenced by the downregulation of hypoxia inducible factor 1α and failure to upregulate pfkfb3 We also show that Francisella capsule is required for this process. In addition to modulating inflammatory responses, inhibition of glycolysis in host cells is also required for early replication of virulent Francisella Taken together, our data demonstrate that metabolic reprogramming of host cells by F. tularensis is a key component of both inhibition of host defense mechanisms and replication of the bacterium. PMID:27029588

  16. Implementation of a Permeable Membrane Insert-based Infection System to Study the Effects of Secreted Bacterial Toxins on Mammalian Host Cells.

    PubMed

    Flaherty, Rebecca A; Lee, Shaun W

    2016-01-01

    Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection. PMID:27585035

  17. Selective alterations of the host cell architecture upon infection with parvovirus minute virus of mice

    SciTech Connect

    Nueesch, Juerg P.F. . E-mail: jpf.nuesch@dkfz-heidelberg.de; Lachmann, Sylvie; Rommelaere, Jean

    2005-01-05

    During a productive infection, the prototype strain of parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations to the fibroblast host cell A9, resulting in cell lysis and progeny virus release. In order to understand the mechanisms underlying these changes, we characterized the fate of various cytoskeletal filaments and investigated the nuclear/cytoplasmic compartmentalization of infected cells. While most pronounced effects could be seen on micro- and intermediate filaments, manifest in dramatic rearrangements and degradation of filamentous (F-)actin and vimentin structures, only little impact could be seen on microtubules or the nuclear envelope during the entire monitored time of infection. To further analyze the disruption of the cytoskeletal structures, we investigated the viral impact on selective regulatory pathways. Thereby, we found a correlation between microtubule stability and MVM-induced phosphorylation of {alpha}/{beta} tubulin. In contrast, disassembly of actin filaments late in infection could be traced back to the disregulation of two F-actin associated proteins gelsolin and Wiscott-Aldrich Syndrome Protein (WASP). Thereby, an increase in the amount of gelsolin, an F-actin severing protein was observed during infection, accounting for the disruption of stress fibers upon infection. Concomitantly, the actin polymerization activity also diminished due to a loss of WASP, the activator protein of the actin polymerization machinery the Arp2/3 complex. No effects could be seen in amount and distribution of other F-actin regulatory factors such as cortactin, cofilin, and profilin. In summary, the selective attack of MVM towards distinct host cell cytoskeletal structures argues for a regulatory feature during infection, rather than a collapse of the host cell as a mere side effect of virus production.

  18. Host Factors Modulating RSV Infection: Use of Small Interfering RNAs to Probe Functional Importance.

    PubMed

    Caly, Leon; Li, Hong-Mei; Jans, David

    2016-01-01

    Although respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in infants and the elderly worldwide [1], the protein-protein interactions between the host cell and virus remain poorly understood. We have used a focused small interfering RNA (siRNA) approach to knock-down and examine the role(s) of various host cell proteins. Here, we describe approaches for casein kinase 2α (CK2α) as a key example. We show how to study the effect of host gene (CK2α) knockdown using siRNA on cell-associated and released virus titers, using both quantitative RT-PCR, which measures the level of viral RNA, and plaque assay, which measures infectious virus directly. Both assays identified reduced viral titers with CK2α gene knock-down, indicating that it is likely required for efficient viral assembly and/or release. Effects were confirmed in RSV infected cells using the specific CK2α inhibitor 4,5,6,7-tetrabromobenzotriazole, revealing a similar reduction in viral titers as CK2α specific siRNA. This demonstrates that siRNA can be used to characterize critical host cell-RSV protein-protein interactions, and establishes CK2α as a future druggable target. PMID:27464690

  19. Structural Requirements for Recognition of the Human Immunodeficiency Virus Type 1 Core during Host Restriction in Owl Monkey Cells

    PubMed Central

    Forshey, Brett M.; Shi, Jiong; Aiken, Christopher

    2005-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection of simian cells is restricted at an early postentry step by host factors whose mechanism of action is unclear. These factors target the viral capsid protein (CA) and attenuate reverse transcription, suggesting that they bind to the HIV-1 core and interfere with its uncoating. To identify the relevant binding determinants in the capsid, we tested the capacity of viruses containing Gag cleavage site mutations and amino acid substitutions in CA to inhibit restriction of a wild type HIV-1 reporter virus in owl monkey cells. The results demonstrated that a stable, polymeric capsid and a correctly folded amino-terminal CA subunit interface are essential for saturation of host restriction in target cells by HIV-1 cores. We conclude that the owl monkey cellular restriction machinery recognizes a polymeric array of CA molecules, most likely via direct engagement of the HIV-1 capsid in target cells prior to uncoating. PMID:15613315

  20. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification.

    PubMed

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the Metacore(TM) database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection. PMID:27406444

  1. Profiling of Host Cell Response to Successive Canine Parvovirus Infection Based on Kinetic Proteomic Change Identification

    PubMed Central

    Zhao, Hang; Cheng, Yuening; Wang, Jianke; Lin, Peng; Yi, Li; Sun, Yaru; Ren, Jingqiang; Tong, Mingwei; Cao, Zhigang; Li, Jiawei; Deng, Jinliang; Cheng, Shipeng

    2016-01-01

    Canine parvovirus (CPV) reproduces by co-opting the resources of host cells, inevitably causing cytotoxic effects to the host cells. Feline kidney F81 cells are sensitive to CPV infection and show disparate growing statuses at different time points post-infection. This study analysed the response of F81 cells to CPV infection at successive infection time points by iTRAQ-based quantitative proteomics. Differentially expressed proteins (DEPs) during 60 h of infection and at selected time points post-infection were identified by an analysis of variance test and a two-tailed unpaired t test, respectively. DEPs with similar quantitative changes were clustered by hierarchical clustering and analysed by gene ontology enrichment, revealing that 12 h and 60 h post-infection were the optimal times to analyse the autonomous parvovirus replication and apoptosis processes, respectively. Using the MetacoreTM database, 29 DEPs were enriched in a network involved in p53 regulation. Besides, a significantly enriched pathway suggests that the CPV-induced cytopathic effect was probably due to the deficiency of functional CFTR caused by CPV infection. This study uncovered the systemic changes in key cellular factors involved in CPV infection and help to understand the molecular mechanisms of the anti-cancer activity of CPV and the cytopathic effects induced by CPV infection. PMID:27406444

  2. Identifying Francisella tularensis genes required for growth in host cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: Francisella tularensis is a highly virulent Gram negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cel...

  3. Intrinsic host restriction factors of human cytomegalovirus replication and mechanisms of viral escape.

    PubMed

    Landolfo, Santo; De Andrea, Marco; Dell'Oste, Valentina; Gugliesi, Francesca

    2016-08-12

    Before a pathogen even enters a cell, intrinsic immune defenses are active. This first-line defense is mediated by a variety of constitutively expressed cell proteins collectively termed "restriction factors" (RFs), and they form a vital element of the immune response to virus infections. Over time, however, viruses have evolved in a variety ways so that they are able to overcome these RF defenses via mechanisms that are specific for each virus. This review provides a summary of the universal characteristics of RFs, and goes on to focus on the strategies employed by some of the most important RFs in their attempt to control human cytomegalovirus (HCMV) infection. This is followed by a discussion of the counter-restriction mechanisms evolved by viruses to circumvent the host cell's intrinsic immune defenses. RFs include nuclear proteins IFN-γ inducible protein 16 (IFI16) (a Pyrin/HIN domain protein), Sp100, promyelocytic leukemia, and hDaxx; the latter three being the keys elements of nuclear domain 10 (ND10). IFI16 inhibits the synthesis of virus DNA by down-regulating UL54 transcription - a gene encoding a CMV DNA polymerase; in response, the virus antagonizes IFI16 via a process involving viral proteins UL97 and pp65 (pUL83), which results in the mislocalizing of IFI16 into the cytoplasm. In contrast, viral regulatory proteins, including pp71 and IE1, seek to modify or disrupt the ND10 proteins and thus block or reverse their inhibitory effects upon virus replication. All in all, detailed knowledge of these HCMV counter-restriction mechanisms will be fundamental for the future development of new strategies for combating HCMV infection and for identifying novel therapeutic agents. PMID:27563536

  4. Baculovirus DNA Replication-Specific Expression Factors Trigger Apoptosis and Shutoff of Host Protein Synthesis during Infection▿

    PubMed Central

    Schultz, Kimberly L. W.; Friesen, Paul D.

    2009-01-01

    Apoptosis is an important antivirus defense. To define the poorly understood pathways by which invertebrates respond to viruses by inducing apoptosis, we have identified replication events that trigger apoptosis in baculovirus-infected cells. We used RNA silencing to ablate factors required for multiplication of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). Transfection with double-stranded RNA (dsRNA) complementary to the AcMNPV late expression factors (lefs) that are designated as replicative lefs (lef-1, lef-2, lef-3, lef-11, p143, dnapol, and ie-1/ie-0) blocked virus DNA synthesis and late gene expression in permissive Spodoptera frugiperda cells. dsRNAs specific to designated nonreplicative lefs (lef-8, lef-9, p47, and pp31) blocked late gene expression without affecting virus DNA replication. Thus, both classes of lefs functioned during infection as defined. Silencing the replicative lefs prevented AcMNPV-induced apoptosis of Spodoptera cells, whereas silencing the nonreplicative lefs did not. Thus, the activity of replicative lefs or virus DNA replication is sufficient to trigger apoptosis. Confirming this conclusion, AcMNPV-induced apoptosis was suppressed by silencing the replicative lefs in cells from a divergent species, Drosophila melanogaster. Silencing replicative but not nonreplicative lefs also abrogated AcMNPV-induced shutdown of host protein synthesis, suggesting that virus DNA replication triggers inhibition of host biosynthetic processes and that apoptosis and translational arrest are linked. Our findings suggest that baculovirus DNA replication triggers a host cell response similar to the DNA damage response in vertebrates, which causes translational arrest and apoptosis. Pathways for detecting virus invasion and triggering apoptosis may therefore be conserved between insects and mammals. PMID:19706708

  5. Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures

    DOEpatents

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2014-09-30

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  6. Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures

    DOEpatents

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2016-04-19

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  7. Host cell reactivation studies with epidermal cells of mice sensitive and resistant to carcinogenesis

    SciTech Connect

    Strickland, J.E.; Strickland, A.G.

    1984-03-01

    Primary epidermal cells from AKR, BALB/c, CD-1, and SENCAR mice, listed in order of least to most sensitive to epidermal carcinogenesis by initiation and promotion protocols, were found to be equally competent to ''reactivate'' herpes simplex virus type 1 irradiated by germicidal ultraviolet radiation. Nontumorigenic BALB/c epidermal cell lines selected in vitro for resistance to terminal differentiation after in vivo or in vitro treatment with initiating doses of carcinogens showed virus survival curves similar to those of primary cells. Similarly, primary cultures which were allowed to grow to confluency following a single treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (100 ng/ml) retained normal host cell reactivation. Host cell reactivation studies with mouse dermal fibroblasts could not be done because of the failure of the herpes simplex virus to infect these cells and produce plaques. These results demonstrate that survival of ultraviolet light-damaged virus in primary epidermal cells in culture is unrelated to whether the cells are derived from mice sensitive or resistant to epidermal carcinogenesis. Furthermore, virus survival is not changed by tumor promoter treatment or by treatment with initiating doses of carcinogens which results in differentiation-resistant cells.

  8. Remote Activation of Host Cell DNA Synthesis in Uninfected Cells Signaled by Infected Cells in Advance of Virus Transmission

    PubMed Central

    Schmidt, Nora; Hennig, Thomas; Serwa, Remigiusz A.; Marchetti, Magda

    2015-01-01

    ABSTRACT Viruses modulate cellular processes and metabolism in diverse ways, but these are almost universally studied in the infected cell itself. Here, we study spatial organization of DNA synthesis during multiround transmission of herpes simplex virus (HSV) using pulse-labeling with ethynyl nucleotides and cycloaddition of azide fluorophores. We report a hitherto unknown and unexpected outcome of virus-host interaction. Consistent with the current understanding of the single-step growth cycle, HSV suppresses host DNA synthesis and promotes viral DNA synthesis in spatially segregated compartments within the cell. In striking contrast, during progressive rounds of infection initiated at a single cell, we observe that infection induces a clear and pronounced stimulation of cellular DNA replication in remote uninfected cells. This induced DNA synthesis was observed in hundreds of uninfected cells at the extended border, outside the perimeter of the progressing infection. Moreover, using pulse-chase analysis, we show that this activation is maintained, resulting in a propagating wave of host DNA synthesis continually in advance of infection. As the virus reaches and infects these activated cells, host DNA synthesis is then shut off and replaced with virus DNA synthesis. Using nonpropagating viruses or conditioned medium, we demonstrate a paracrine effector of uninfected cell DNA synthesis in remote cells continually in advance of infection. These findings have significant implications, likely with broad applicability, for our understanding of the ways in which virus infection manipulates cell processes not only in the infected cell itself but also now in remote uninfected cells, as well as of mechanisms governing host DNA synthesis. IMPORTANCE We show that during infection initiated by a single particle with progressive cell-cell virus transmission (i.e., the normal situation), HSV induces host DNA synthesis in uninfected cells, mediated by a virus-induced paracrine

  9. Distinct immunoregulatory properties of macrophage migration inhibitory factors encoded by Eimeria parasites and their chicken host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays an important role in host defense against a variety of microorganisms including protozoan parasites. Interestingly, some microbial pathogens also express a MIF-like protein, although its role in disease pathogenesi...

  10. From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell.

    PubMed

    McCutcheon, John P

    2016-08-01

    Mitochondria and chloroplasts are now called organelles, but they used to be bacteria. As they transitioned from endosymbionts to organelles, they became more and more integrated into the biochemistry and cell biology of their hosts. Work over the last 15 years has shown that other symbioses show striking similarities to mitochondria and chloroplasts. In particular, many sap-feeding insects house intracellular bacteria that have genomes that overlap mitochondria and chloroplasts in terms of size and coding capacity. The massive levels of gene loss in some of these bacteria suggest that they, too, are becoming highly integrated with their host cells. Understanding these bacteria will require inspiration from eukaryotic cell biology, because a traditional microbiological framework is insufficient for understanding how they work. PMID:27267617

  11. Tumor necrosis factor-alpha deficiency impairs host defense against Streptococcus pneumoniae

    PubMed Central

    Jeong, Dong-Gu; Seo, Jin-Hee; Heo, Seung-Ho; Choi, Yang-Kyu

    2015-01-01

    Streptococcus pneumoniae is a major human pathogen that is involved in community-acquired pneumonia. Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine that activates immune responses against infection, invasion, injury, or inflammation. To study the role of TNF-α during S. pneumoniae infection, a murine pneumococcal pneumonia model was used. We intranasally infected C57BL/6J wild-type (WT) and TNF-α knockout (KO) mice with S. pneumoniae D39 serotype 2. In TNF-α KO mice, continuous and distinct loss of body weight, and low survival rates were observed. Bacterial counts in the lungs and blood of TNF-α KO mice were significantly higher than those in WT mice. Histopathological lesions in the spleen of TNF-α KO mice were more severe than those in WT mice. In TNF-α KO mice, severe depletion of white pulp was observed and the number of apoptotic cells was significantly increased. Interferon-gamma (IFN-γ), IL-12p70 and IL-10 levels in serum were significantly increased in TNF-α KO mice. TNF-α is clearly involved in the regulation of S. pneumoniae infections. Early death and low survival rates of TNF-α KO mice were likely caused by a combination of impaired bacterial clearance and damage to the spleen. Our findings suggest that TNF-α plays a critical role in protecting the host from systemic S. pneumoniae infection. PMID:26155202

  12. Elimination of allogeneic multipotent stromal cells by host macrophages in different models of regeneration

    PubMed Central

    Arutyunyan, Irina; Elchaninov, Andrey; Fatkhudinov, Timur; Makarov, Andrey; Kananykhina, Evgeniya; Usman, Natalia; Bolshakova, Galina; Glinkina, Valeria; Goldshtein, Dmitry; Sukhikh, Gennady

    2015-01-01

    Allogeneic multipotent stromal cells were previously thought to be poorly recognized by host immune system; the prolonged survival in host environments was explained by their immune privileged status. As long as the concept is currently reconsidered, the routes of elimination of allogeneic multipotent stromal cells by host immunity must be taken into account. This is necessary for correct comprehension of their therapeutic action. The study was focused upon survival of umbilical cord-derived allogeneic multipotent stromal cells in different rat models of tissue regeneration induced by partial hepatectomy or by critical limb ischemia. The observations were carried out by means of vital labeling of the cells with PKH26 prior to injection, in combination with differential immunostaining of host macrophages with anti-CD68 antibody. According to the results, allogeneic multipotent stromal cells are specifically eliminated by host immune system; the efficacy can reach 100%. Massive clearance of transplanted cells by host macrophages is accompanied by appropriation of the label by the latter, and this is a pronounced case of misleading presentation of exogenous label by host cells. The study emphasizes the role of macrophages in host response and also the need of additional criteria for correct data interpretation. PMID:26191137

  13. Elimination of allogeneic multipotent stromal cells by host macrophages in different models of regeneration.

    PubMed

    Arutyunyan, Irina; Elchaninov, Andrey; Fatkhudinov, Timur; Makarov, Andrey; Kananykhina, Evgeniya; Usman, Natalia; Bolshakova, Galina; Glinkina, Valeria; Goldshtein, Dmitry; Sukhikh, Gennady

    2015-01-01

    Allogeneic multipotent stromal cells were previously thought to be poorly recognized by host immune system; the prolonged survival in host environments was explained by their immune privileged status. As long as the concept is currently reconsidered, the routes of elimination of allogeneic multipotent stromal cells by host immunity must be taken into account. This is necessary for correct comprehension of their therapeutic action. The study was focused upon survival of umbilical cord-derived allogeneic multipotent stromal cells in different rat models of tissue regeneration induced by partial hepatectomy or by critical limb ischemia. The observations were carried out by means of vital labeling of the cells with PKH26 prior to injection, in combination with differential immunostaining of host macrophages with anti-CD68 antibody. According to the results, allogeneic multipotent stromal cells are specifically eliminated by host immune system; the efficacy can reach 100%. Massive clearance of transplanted cells by host macrophages is accompanied by appropriation of the label by the latter, and this is a pronounced case of misleading presentation of exogenous label by host cells. The study emphasizes the role of macrophages in host response and also the need of additional criteria for correct data interpretation. PMID:26191137

  14. Bright Fluorescent Streptococcus pneumoniae for Live-Cell Imaging of Host-Pathogen Interactions

    PubMed Central

    Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E.; Andrew, Peter W.; van Strijp, Jos A. G.; Nijland, Reindert

    2014-01-01

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the major limitations for research on pneumococcal-host interactions is the lack of suitable tools for live-cell imaging. To address this issue, we developed a generally applicable strategy to create genetically stable, highly fluorescent bacteria. Our strategy relies on fusing superfolder green fluorescent protein (GFP) or a far-red fluorescent protein (RFP) to the abundant histone-like protein HlpA. Due to efficient translation and limited cellular diffusion of these fusions, the cells are 25-fold brighter than those of the currently best available imaging S. pneumoniae strain. These novel bright pneumococcal strains are fully virulent, and the GFP reporter can be used for in situ imaging in mouse tissue. We used our reporter strains to study the effect of the polysaccharide capsule, a major pneumococcal virulence factor, on different stages of infection. By dual-color live-cell imaging experiments, we show that unencapsulated pneumococci adhere significantly better to human lung epithelial cells than encapsulated strains, in line with previous data obtained by classical approaches. We also confirm with live-cell imaging that the capsule protects pneumococci from neutrophil phagocytosis, demonstrating the versatility and usability of our reporters. The described imaging tools will pave the way for live-cell imaging of pneumococcal infection and help further understanding of the mechanisms of pneumococcal pathogenesis. PMID:25512311

  15. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria

    PubMed Central

    Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2016-01-01

    Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens. DOI: http://dx.doi.org/10.7554/eLife.19605.001 PMID:27472897

  16. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria.

    PubMed

    Yuan, Meng; Ke, Yinggen; Huang, Renyan; Ma, Ling; Yang, Zeyu; Chu, Zhaohui; Xiao, Jinghua; Li, Xianghua; Wang, Shiping

    2016-01-01

    Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens. PMID:27472897

  17. Listeria monocytogenes Exploits Normal Host Cell Processes to Spread from Cell to Cell✪

    PubMed Central

    Robbins, Jennifer R.; Barth, Angela I.; Marquis, Hélène; de Hostos, Eugenio L.; Nelson, W. James; Theriot, Julie A.

    1999-01-01

    The bacterial pathogen, Listeria monocytogenes, grows in the cytoplasm of host cells and spreads intercellularly using a form of actin-based motility mediated by the bacterial protein ActA. Tightly adherent monolayers of MDCK cells that constitutively express GFP-actin were infected with L. monocytogenes, and intercellular spread of bacteria was observed by video microscopy. The probability of formation of membrane-bound protrusions containing bacteria decreased with host cell monolayer age and the establishment of extensive cell-cell contacts. After their extension into a recipient cell, intercellular membrane-bound protrusions underwent a period of bacterium-dependent fitful movement, followed by their collapse into a vacuole and rapid vacuolar lysis. Actin filaments in protrusions exhibited decreased turnover rates compared with bacterially associated cytoplasmic actin comet tails. Recovery of motility in the recipient cell required 1–2 bacterial generations. This delay may be explained by acid-dependent cleavage of ActA by the bacterial metalloprotease, Mpl. Importantly, we have observed that low levels of endocytosis of neighboring MDCK cell surface fragments occurs in the absence of bacteria, implying that intercellular spread of bacteria may exploit an endogenous process of paracytophagy. PMID:10491395

  18. Chemical Genetics Reveals Bacterial and Host Cell Functions Critical for Type IV Effector Translocation by Legionella pneumophila

    PubMed Central

    Charpentier, Xavier; Gabay, Joëlle E.; Reyes, Moraima; Zhu, Jing W.; Weiss, Arthur; Shuman, Howard A.

    2009-01-01

    Delivery of effector proteins is a process widely used by bacterial pathogens to subvert host cell functions and cause disease. Effector delivery is achieved by elaborate injection devices and can often be triggered by environmental stimuli. However, effector export by the L. pneumophila Icm/Dot Type IVB secretion system cannot be detected until the bacterium encounters a target host cell. We used chemical genetics, a perturbation strategy that utilizes small molecule inhibitors, to determine the mechanisms critical for L. pneumophila Icm/Dot activity. From a collection of more than 2,500 annotated molecules we identified specific inhibitors of effector translocation. We found that L. pneumophila effector translocation in macrophages requires host cell factors known to be involved in phagocytosis such as phosphoinositide 3-kinases, actin and tubulin. Moreover, we found that L. pneumophila phagocytosis and effector translocation also specifically require the receptor protein tyrosine phosphate phosphatases CD45 and CD148. We further show that phagocytosis is required to trigger effector delivery unless intimate contact between the bacteria and the host is artificially generated. In addition, real-time analysis of effector translocation suggests that effector export is rate-limited by phagocytosis. We propose a model in which L. pneumophila utilizes phagocytosis to initiate an intimate contact event required for the translocation of pre-synthesized effector molecules. We discuss the need for host cell participation in the initial step of the infection and its implications in the L. pneumophila lifestyle. Chemical genetic screening provides a novel approach to probe the host cell functions and factors involved in host–pathogen interactions. PMID:19578436

  19. Inhibition of host cell protein synthesis by UV-inactivated poliovirus.

    PubMed Central

    Helentjaris, T; Ehrenfeld, E

    1977-01-01

    The ability of poliovirus that was irradiated with UV light at energies up to 2,160 ergs/mm2 to subsequently inhibit host cell protein synthesis was measured. The inactivation of the host cell shutoff function followed one-hit kinetics. Increasing irradiation did not affect the rate of inhibition until the multiplicity of infection after irradiation was reduced to approximately 1 PFU/cell. At higher functional multiplicities, the rate was unchanged, but an increasing lag before the onset of inhibition was observed with increasing irradiation. The energy levels required to inactivate virus-induced inhibition of host cell protein synthesis suggest that damage to virus RNA rather than to virus capsid proteins is responsible for the loss of function. When the inactivation of host cell shutoff was compared with the inactivation of other viral functions by UV irradiation, it correlated exactly with the loss of infectivity but not with other viral functions measured. Guanidine treatment, which prevents detectable viral RNA and protein synthesis, completely inhibited host cell shutoff by low multiplicities of unirradiated virus infection but not higher multiplicities. When a high multiplicity of virus was first reduced to a low titer by irradiation, host cell shutoff was still evident in the presence of guanidine. The results demonstrate that the complete inhibition of host cell protein synthesis can be accomplished by one infectious viral genome per cell. Images PMID:189067

  20. Mycobacterium leprae–host-cell interactions and genetic determinants in leprosy: an overview

    PubMed Central

    Pinheiro, Roberta Olmo; de Souza Salles, Jorgenilce; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2011-01-01

    Leprosy, also known as Hansen’s disease, is a chronic infectious disease caused by Mycobacterium leprae in which susceptibility to the mycobacteria and its clinical manifestations are attributed to the host immune response. Even though leprosy prevalence has decreased dramatically, the high number of new cases indicates active transmission. Owing to its singular features, M. leprae infection is an attractive model for investigating the regulation of human immune responses to pathogen-induced disease. Leprosy is one of the most common causes of nontraumatic peripheral neuropathy worldwide. The proportion of patients with disabilities is affected by the type of leprosy and delay in diagnosis. This article briefly reviews the clinical features as well as the immunopathological mechanisms related to the establishment of the different polar forms of leprosy, the mechanisms related to M. leprae–host cell interactions and prophylaxis and diagnosis of this complex disease. Host genetic factors are summarized and the impact of the development of interventions that prevent, reverse or limit leprosy-related nerve impairments are discussed. PMID:21366421

  1. Host-Derived Smooth Muscle Cells Accumulate in Cardiac Allografts: Role of Inflammation and Monocyte Chemoattractant Protein 1

    PubMed Central

    Bojakowski, Krzysztof; Soin, Joanna; Nozynski, Jerzy; Zakliczynski, Michal; Gaciong, Zbigniew; Zembala, Marian; Söderberg-Nauclér, Cecilia

    2009-01-01

    Transplant arteriosclerosis is characterized by inflammation and intimal thickening caused by accumulation of smooth muscle cells (SMCs) both from donor and recipient. We assessed the relationship between clinical factors and the presence of host-derived SMCs in 124 myocardial biopsies from 26 consecutive patients who received hearts from opposite-sex donors. Clinical and demographic information was obtained from the patients' medical records. Host-derived SMCs accounted for 3.35±2.3% of cells in arterioles (range, 0.08–12.51%). As shown by linear regression analysis, an increased number of SMCs was associated with rejection grade (mean, 1.41±1.03, p = 0.034) and the number of leukocytes (19.1±12.7 per 20 high-power fields, p = 0.01). The accumulation of host-derived SMCs was associated with an increased number of leukocytes in the allografts. In vitro, monocyte chemoattractant protein 1 (MCP-1) released from leukocytes was crucial for SMC migration. After heart allotransplantion, mice treated with MCP-1-specific antibodies had significantly fewer host-derived SMCs in the grafts than mice treated with isotypic antibody controls. We conclude that the number of host-derived SMCs in human cardiac allografts is associated with the rejection grade and that MCP-1 may play pivotal role in recruiting host-derived SMCs into cardiac allografts. PMID:19142231

  2. Role of skin immune cells on the host susceptibility to mosquito-borne viruses.

    PubMed

    Briant, Laurence; Desprès, Philippe; Choumet, Valérie; Missé, Dorothée

    2014-09-01

    Due to climate change and the propagation of competent arthropods worldwide, arboviruses have become pathogens of major medical importance. Early transmission to vertebrates is initiated by skin puncture and deposition of virus together with arthropod saliva in the epidermis and dermis. Saliva components have the capacity to modulate skin cell responses by enhancing and/or counteracting initial replication and establishment of systemic viral infection. Here, we review the nature of the cells targeted by arboviruses at the skin level and discuss the type of cellular responses elicited by these pathogens in light of the immunomodulatory properties of arthropod vector-derived salivary factors injected at the inoculation site. Understanding cutaneous arbovirus-host interactions may provide new clues for the design of future therapeutics. PMID:25043586

  3. Two pore channels control Ebolavirus host cell entry and are drug targets for disease treatment

    PubMed Central

    Sakurai, Yasuteru; Kolokoltsov, Andrey A.; Chen, Cheng-Chang; Tidwell, Michael W.; Bauta, William E.; Klugbauer, Norbert; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Davey, Robert A.

    2015-01-01

    Ebolavirus causes sporadic outbreaks of lethal hemorrhagic fever in humans with no currently approved therapy. Cells take up Ebolavirus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebolavirus entry into host cells requires the endosomal calcium channels called two pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs or small molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule we tested, inhibited infection of human macrophages, the primary target of Ebolavirus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebolavirus infection and may be effective targets for antiviral therapy. PMID:25722412

  4. African Swine Fever Virus Uses Macropinocytosis to Enter Host Cells

    PubMed Central

    Sánchez, Elena G.; Quintas, Ana; Pérez-Núñez, Daniel; Nogal, Marisa; Barroso, Susana; Carrascosa, Ángel L.; Revilla, Yolanda

    2012-01-01

    African swine fever (ASF) is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV), which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V), and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na+/H+ exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved. PMID:22719252

  5. Heterologously Expressed Staphylococcus aureus Fibronectin-Binding Proteins Are Sufficient for Invasion of Host Cells

    PubMed Central

    Sinha, Bhanu; Francois, Patrice; Que, Yok-Ai; Hussain, Muzaffar; Heilmann, Christine; Moreillon, Philippe; Lew, Daniel; Krause, Karl-Heinz; Peters, Georg; Herrmann, Mathias

    2000-01-01

    Staphylococcus aureus invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, critically depends on fibronectin bridging between S. aureus fibronectin-binding proteins (FnBPs) and the host fibronectin receptor integrin α5β1 (B. Sinha et al., Cell. Microbiol. 1:101–117, 1999). However, it is unknown whether this mechanism is sufficient for S. aureus invasion. To address this question, various S. aureus adhesins (FnBPA, FnBPB, and clumping factor [ClfA]) were expressed in Staphylococcus carnosus and Lactococcus lactis subsp. cremoris. Both noninvasive gram-positive microorganisms are genetically distinct from S. aureus, lack any known S. aureus surface protein, and do not bind fibronectin. Transformants of S. carnosus and L. lactis harboring plasmids coding for various S. aureus surface proteins (FnBPA, FnBPB, and ClfA) functionally expressed adhesins (as determined by bacterial clumping in plasma, specific latex agglutination, Western ligand blotting, and binding to immobilized and soluble fibronectin). FnBPA or FnBPB but not of ClfA conferred invasiveness to S. carnosus and L. lactis. Invasion of 293 cells by transformants was comparable to that of strongly invasive S. aureus strain Cowan 1. Binding of soluble and immobilized fibronectin paralleled invasiveness, demonstrating that the amount of accessible surface FnBPs is rate limiting. Thus, S. aureus FnBPs confer invasiveness to noninvasive, apathogenic gram-positive cocci. Furthermore, FnBP-coated polystyrene beads were internalized by 293 cells, demonstrating that FnBPs are sufficient for invasion of host cells without the need for (S. aureus-specific) coreceptors. PMID:11083807

  6. Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria.

    PubMed

    Daurelio, Lucas D; Romero, María S; Petrocelli, Silvana; Merelo, Paz; Cortadi, Adriana A; Talón, Manuel; Tadeo, Francisco R; Orellano, Elena G

    2013-07-01

    Plants, when exposed to certain pathogens, may display a form of genotype-independent resistance, known as non-host response. In this study, the response of Citrus sinensis (sweet orange) leaves to Xanthomonas campestris pv. vesicatoria (Xcv), a pepper and tomato pathogenic bacterium, was analyzed through biochemical assays and cDNA microarray hybridization and compared with Asiatic citrus canker infection caused by Xanthomonas citri subsp. citri. Citrus leaves exposed to the non-host bacterium Xcv showed hypersensitive response (HR) symptoms (cell death), a defense mechanism common in plants but poorly understood in citrus. The HR response was accompanied by differentially expressed genes that are associated with biotic stress and cell death. Moreover, 58 transcription factors (TFs) were differentially regulated by Xcv in citrus leaves, including 26 TFs from the stress-associated families AP2-EREBP, bZip, Myb and WRKY. Remarkably, in silico analysis of the distribution of expressed sequence tags revealed that 10 of the 58 TFs, belonging to C2C2-GATA, C2H2, CCAAT, HSF, NAC and WRKY gene families, were specifically over-represented in citrus stress cDNA libraries. This study identified candidate TF genes for the regulation of key steps during the citrus non-host HR. Furthermore, these TFs might be useful in future strategies of molecular breeding for citrus disease resistance. PMID:23453188

  7. Coordinated Destruction of Cellular Messages in Translation Complexes by the Gammaherpesvirus Host Shutoff Factor and the Mammalian Exonuclease Xrn1

    PubMed Central

    Kumar, G. Renuka; Wong, Wesley; Jackson, Andrew O.; Glaunsinger, Britt A.

    2011-01-01

    Several viruses encode factors that promote host mRNA degradation to silence gene expression. It is unclear, however, whether cellular mRNA turnover pathways are engaged to assist in this process. In Kaposi's sarcoma-associated herpesvirus this phenotype is enacted by the host shutoff factor SOX. Here we show that SOX-induced mRNA turnover is a two-step process, in which mRNAs are first cleaved internally by SOX itself then degraded by the cellular exonuclease Xrn1. SOX therefore bypasses the regulatory steps of deadenylation and decapping normally required for Xrn1 activation. SOX is likely recruited to translating mRNAs, as it cosediments with translation initiation complexes and depletes polysomes. Cleaved mRNA intermediates accumulate in the 40S fraction, indicating that recognition occurs at an early stage of translation. This is the first example of a viral protein commandeering cellular mRNA turnover pathways to destroy host mRNAs, and suggests that Xrn1 is poised to deplete messages undergoing translation in mammalian cells. PMID:22046136

  8. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion

    PubMed Central

    Rennoll-Bankert, Kristen E.; Rahman, M. Sayeedur; Gillespie, Joseph J.; Guillotte, Mark L.; Kaur, Simran J.; Lehman, Stephanie S.; Beier-Sexton, Magda; Azad, Abdu F.

    2015-01-01

    Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for Ral

  9. DNA repair in cells sensitive and resistant to cis-diamminedichloroplatinum(II): Host cell reactivation of damaged plasmid DNA

    SciTech Connect

    Sheibani, N.; Jennerwein, M.M.; Eastman, A. )

    1989-04-04

    cis-Diamminedichloroplatinum(II) (cis-DDP) has a broad clinical application as an effective anticancer drug. However, development of resistance to the cytotoxic effects is a limiting factor. In an attempt to understand the mechanism of resistance, the authors have employed a host cell reactivation assay of DNA repair using a cis-DDP-damaged plasmid vector. The efficiency of DNA repair was assayed by measuring the activity of an enzyme coded for by the plasmid vector. The plasmid expression vector pRSV cat contains the bacterial gene coding for chloramphenicol acetyltransferase (CAT) in a configuration which permits expression in mammalian cells. The plasmid was transfected into repair-proficient and -deficient Chinese hamster ovary cells, and CAT activity was subsequently measured in cell lysates. In the repair-deficient cells, one cis-DDP adduct per cat gene was sufficient to eliminate expression. An equivalent inhibition of CAT expression in the repair-proficient cells did not occur until about 8 times the amount of damage was introduced into the plasmid. These results implicate DNA intrastrand cross-links as the lesions responsible for the inhibition of CAT expression. This assay was used to investigate the potential role of DNA repair in mediating cis-DDP resistance in murine leukemia L1210 cells. The assay readily detects the presence or absence of repair and confirms that these resistant L1210 cells have an enhanced capacity for repair of cis-DDP-induced intrastrand cross-links.

  10. Host Transcription Factors in the Immediate Pro-Inflammatory Response to the Parasitic Mite Psoroptes ovis

    PubMed Central

    Burgess, Stewart T. G.; McNeilly, Tom N.; Watkins, Craig A.; Nisbet, Alasdair J.; Huntley, John F.

    2011-01-01

    Background Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. Results Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. Conclusions Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen. PMID:21915322

  11. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes

    PubMed Central

    Killackey, Samuel A.; Sorbara, Matthew T.; Girardin, Stephen E.

    2016-01-01

    Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general. PMID:27066460

  12. Identification of stem cell transcriptional programs normally expressed in embryonic and neural stem cells in alloreactive CD8+ T cells mediating graft-versus-host disease

    PubMed Central

    Kato, Koji; Cui, Shuaiying; Kuick, Rork; Mineishi, Shin; Hexner, Elizabeth; Ferrara, James LM; Emerson, Stephen G.; Zhang, Yi

    2010-01-01

    A hallmark of graft-versus-host-disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem cell transplantation, is the cytopathic injury of host tissues mediated by persistent alloreactive effector T cells (TE). However, the mechanisms that regulate the persistence of alloreactive TE during GVHD remain largely unknown. Using mouse GVHD models, we demonstrate that alloreactive CD8+ TE rapidly diminished in vivo when adoptively transferred into irradiated secondary congenic recipient mice. In contrast, although alloreactive CD8+ TE underwent massive apoptosis upon chronic exposure to alloantigens, they proliferated in vivo in secondary allogeneic recipients, persisted and caused severe GVHD. Thus, the continuous proliferation of alloreactive CD8+ TE, which is mediated by alloantigenic stimuli rather than homeostatic factors, is critical to maintaining their persistence. Gene expression profile analysis revealed that while alloreactive CD8+ TE increased the expression of genes associated with cell death, they activated a group of stem cell genes normally expressed in embryonic and neural stem cells. Most of these stem cell genes are associated with cell cycle regulation, DNA replication, chromatin modification and transcription. One of these genes, Ezh2, which encodes a chromatin modifying enzyme, was abundantly expressed in CD8+ TE. Silencing Ezh2 significantly reduced the proliferation of alloantigen-activated CD8+ T cells. Thus, these findings identify that a group of stem cell genes could play important roles in sustaining terminally differentiated alloreactive CD8+ TE and may be therapeutic targets for controlling GVHD. PMID:20116439

  13. Graft-infiltrating host dendritic cells play a key role in organ transplant rejection.

    PubMed

    Zhuang, Quan; Liu, Quan; Divito, Sherrie J; Zeng, Qiang; Yatim, Karim M; Hughes, Andrew D; Rojas-Canales, Darling M; Nakao, A; Shufesky, William J; Williams, Amanda L; Humar, Rishab; Hoffman, Rosemary A; Shlomchik, Warren D; Oberbarnscheidt, Martin H; Lakkis, Fadi G; Morelli, Adrian E

    2016-01-01

    Successful engraftment of organ transplants has traditionally relied on preventing the activation of recipient (host) T cells. Once T-cell activation has occurred, however, stalling the rejection process becomes increasingly difficult, leading to graft failure. Here we demonstrate that graft-infiltrating, recipient (host) dendritic cells (DCs) play a key role in driving the rejection of transplanted organs by activated (effector) T cells. We show that donor DCs that accompany heart or kidney grafts are rapidly replaced by recipient DCs. The DCs originate from non-classical monocytes and form stable, cognate interactions with effector T cells in the graft. Eliminating recipient DCs reduces the proliferation and survival of graft-infiltrating T cells and abrogates ongoing rejection or rejection mediated by transferred effector T cells. Therefore, host DCs that infiltrate transplanted organs sustain the alloimmune response after T-cell activation has already occurred. Targeting these cells provides a means for preventing or treating rejection. PMID:27554168

  14. Graft-infiltrating host dendritic cells play a key role in organ transplant rejection

    PubMed Central

    Zhuang, Quan; Liu, Quan; Divito, Sherrie J.; Zeng, Qiang; Yatim, Karim M.; Hughes, Andrew D.; Rojas-Canales, Darling M.; Nakao, A.; Shufesky, William J.; Williams, Amanda L.; Humar, Rishab; Hoffman, Rosemary A.; Shlomchik, Warren D.; Oberbarnscheidt, Martin H.; Lakkis, Fadi G.; Morelli, Adrian E.

    2016-01-01

    Successful engraftment of organ transplants has traditionally relied on preventing the activation of recipient (host) T cells. Once T-cell activation has occurred, however, stalling the rejection process becomes increasingly difficult, leading to graft failure. Here we demonstrate that graft-infiltrating, recipient (host) dendritic cells (DCs) play a key role in driving the rejection of transplanted organs by activated (effector) T cells. We show that donor DCs that accompany heart or kidney grafts are rapidly replaced by recipient DCs. The DCs originate from non-classical monocytes and form stable, cognate interactions with effector T cells in the graft. Eliminating recipient DCs reduces the proliferation and survival of graft-infiltrating T cells and abrogates ongoing rejection or rejection mediated by transferred effector T cells. Therefore, host DCs that infiltrate transplanted organs sustain the alloimmune response after T-cell activation has already occurred. Targeting these cells provides a means for preventing or treating rejection. PMID:27554168

  15. Effects of Host Plant Factors on the Bacterial Communities Associated with Two Whitefly Sibling Species

    PubMed Central

    Su, Ming-Ming; Guo, Lei; Tao, Yun-Li; Zhang, You-Jun; Wan, Fang-Hao; Chu, Dong

    2016-01-01

    Background Although discrepancy in the specific traits and ecological characteristics of Bemisia tabaci between species are partially attributed to the B. tabaci-associated bacteria, the factors that affect the diversity of B. tabaci-associated bacteria are not well-understood. We used the metagenomic approach to characterize the B. tabaci-associated bacterial community because the approach is an effective tool to identify the bacteria. Methodology and Results To investigate the effects of the host plant and a virus, tomato yellow leaf curl virus (TYLCV), on the bacterial communities of B. tabaci sibling species B and Q, we analyzed the bacterial communities associated with whitefly B and Q collected from healthy cotton, healthy tomato, and TYLCV-infected tomato. The analysis used miseq-based sequencing of a variable region of the bacterial 16S rDNA gene. For the bacteria associated with B. tabaci, we found that the influence of the host plant species was greater than that of the whitefly cryptic species. With further analysis of host plants infected with the TYLCV, the virus had no significant effects on the B. tabaci-associated bacterial community. Conclusions The effects of different plant hosts and TYLCV-infection on the diversity of B. tabaci-associated bacterial communities were successfully analyzed in this study. To explain why B. tabaci sibling species with different host ranges differ in performance, the analysis of the bacterial community may be essential to the explanation. PMID:27008327

  16. A Host-Specific Factor is Necessary for Efficient Folding of the Autotransporter Plasmid-Encoded Toxin

    PubMed Central

    Nemec, Kathleen N.; Scaglione, Patricia; Navarro-García, Fernando; Huerta, Jazmín; Tatulian, Suren A.; Teter, Ken

    2010-01-01

    Autotransporters are the most common virulence factors secreted from Gram-negative pathogens. Until recently, autotransporter folding and outer membrane translocation were thought to be self-mediated events that did not require accessory factors. Here, we report that two variants of the autotransporter plasmid-encoded toxin are secreted by a lab strain of Escherichia coli. Biophysical analysis and cell-based toxicity assays demonstrated that only one of the two variants was in a folded, active conformation. The misfolded variant was not produced by a pathogenic strain of enteroaggregative E. coli and did not result from protein overproduction in the lab strain of E. coli. Our data suggest a host-specific factor is required for efficient folding of plasmid-encoded toxin. PMID:19944129

  17. Novel insights into human respiratory syncytial virus-host factor interactions through integrated proteomics and transcriptomics analysis

    PubMed Central

    Dapat, Clyde; Oshitani, Hitoshi

    2016-01-01

    ABSTRACT The lack of vaccine and limited antiviral options against respiratory syncytial virus (RSV) highlights the need for novel therapeutic strategies. One alternative is to develop drugs that target host factors required for viral replication. Several microarray and proteomics studies had been published to identify possible host factors that are affected during RSV replication. In order to obtain a comprehensive understanding of RSV-host interaction, we integrated available proteome and transcriptome datasets and used it to construct a virus-host interaction network. Then, we interrogated the network to identify host factors that are targeted by the virus and we searched for drugs from the DrugBank database that interact with these host factors, which may have potential applications in repositioning for future treatment options of RSV infection. PMID:26760927

  18. A Sequential Model of Host Cell Killing and Phagocytosis by Entamoeba histolytica

    PubMed Central

    Sateriale, Adam; Huston, Christopher D.

    2011-01-01

    The protozoan parasite Entamoeba histolytica is responsible for invasive intestinal and extraintestinal amebiasis. The virulence of Entamoeba histolytica is strongly correlated with the parasite's capacity to effectively kill and phagocytose host cells. The process by which host cells are killed and phagocytosed follows a sequential model of adherence, cell killing, initiation of phagocytosis, and engulfment. This paper presents recent advances in the cytolytic and phagocytic processes of Entamoeba histolytica in context of the sequential model. PMID:21331284

  19. Genetic and immunological host factors associated with susceptibility to HIV-1 infection.

    PubMed

    Buchacz, K A; Wilkinson, D A; Krowka, J F; Koup, R A; Padian, N S

    1998-01-01

    The probability of HIV transmission depends on the interplay of many different factors related to infectiousness of the HIV-infected partner, susceptibility of the HIV-uninfected partner, and biological characteristics of HIV strains. Here, we review recent studies of host immunological and genetic factors which may affect susceptibility to HIV-1 infection. These factors are summarized in Table 1. We propose how to explore biological correlates of susceptibility to HIV-1 infection in epidemiological studies, discuss the strengths and limitations of this research, and address the implications for public health. PMID:9632989

  20. CryoEM analysis of capsid assembly and structural changes upon interactions with a host restriction factor, TRIM5α.

    PubMed

    Zhao, Gongpu; Zhang, Peijun

    2014-01-01

    After virus fusion with a target cell, the viral core is released into the host cell cytoplasm and undergoes a controlled disassembly process, termed uncoating, before or as reverse transcription takes place. The cellular protein TRIM5α is a host cell restriction factor that blocks HIV-1 infection in rhesus macaque cells by targeting the viral capsid and inducing premature uncoating. The molecular mechanism of the interaction between capsid and TRIM5α remains unclear. Here, we describe an approach that utilizes cryo-electron microscopy (cryoEM) to examine the structural changes exerted on HIV-1 capsid (CA) assembly by TRIM5α binding. The TRIM5α interaction sites on CA assembly were further dissected by combining cryoEM with pair-wise cysteine mutations that crosslink CA either within a CA hexamer or between CA hexamers. Based on the structural information from cryoEM and crosslinking results from in vitro CA assemblies and purified intact HIV-1 cores, we demonstrate that direct binding of TRIM5α CC-SPRY domains to the viral capsid results in disruption and fragmentation of the surface lattice of HIV-1 capsid, specifically at inter-hexamer interfaces. The method described here can be easily adopted to study other important interactions in multi-protein complexes. PMID:24158810

  1. Host parasite communications-Messages from helminths for the immune system: Parasite communication and cell-cell interactions.

    PubMed

    Coakley, Gillian; Buck, Amy H; Maizels, Rick M

    2016-07-01

    Helminths are metazoan organisms many of which have evolved parasitic life styles dependent on sophisticated manipulation of the host environment. Most notably, they down-regulate host immune responses to ensure their own survival, by exporting a range of immuno-modulatory mediators that interact with host cells and tissues. While a number of secreted immunoregulatory parasite proteins have been defined, new work also points to the release of extracellular vesicles, or exosomes, that interact with and manipulate host gene expression. These recent results are discussed in the overall context of how helminths communicate effectively with the host organism. PMID:27297184

  2. EHFPI: a database and analysis resource of essential host factors for pathogenic infection.

    PubMed

    Liu, Yang; Xie, Dafei; Han, Lu; Bai, Hui; Li, Fei; Wang, Shengqi; Bo, Xiaochen

    2015-01-01

    High-throughput screening and computational technology has greatly changed the face of microbiology in better understanding pathogen-host interactions. Genome-wide RNA interference (RNAi) screens have given rise to a new class of host genes designated as Essential Host Factors (EHFs), whose knockdown effects significantly influence pathogenic infections. Therefore, we present the first release of a manually-curated bioinformatics database and analysis resource EHFPI (Essential Host Factors for Pathogenic Infection, http://biotech.bmi.ac.cn/ehfpi). EHFPI captures detailed article, screen, pathogen and phenotype annotation information for a total of 4634 EHF genes of 25 clinically important pathogenic species. Notably, EHFPI also provides six powerful and data-integrative analysis tools, i.e. EHF Overlap Analysis, EHF-pathogen Network Analysis, Gene Enrichment Analysis, Pathogen Interacting Proteins (PIPs) Analysis, Drug Target Analysis and GWAS Candidate Gene Analysis, which advance the comprehensive understanding of the biological roles of EHF genes, as in diverse perspectives of protein-protein interaction network, drug targets and diseases/traits. The EHFPI web interface provides appropriate tools that allow efficient query of EHF data and visualization of custom-made analysis results. EHFPI data and tools shall keep available without charge and serve the microbiology, biomedicine and pharmaceutics research communities, to finally facilitate the development of diagnostics, prophylactics and therapeutics for human pathogens. PMID:25414353

  3. EHFPI: a database and analysis resource of essential host factors for pathogenic infection

    PubMed Central

    Liu, Yang; Xie, Dafei; Han, Lu; Bai, Hui; Li, Fei; Wang, Shengqi; Bo, Xiaochen

    2015-01-01

    High-throughput screening and computational technology has greatly changed the face of microbiology in better understanding pathogen–host interactions. Genome-wide RNA interference (RNAi) screens have given rise to a new class of host genes designated as Essential Host Factors (EHFs), whose knockdown effects significantly influence pathogenic infections. Therefore, we present the first release of a manually-curated bioinformatics database and analysis resource EHFPI (Essential Host Factors for Pathogenic Infection, http://biotech.bmi.ac.cn/ehfpi). EHFPI captures detailed article, screen, pathogen and phenotype annotation information for a total of 4634 EHF genes of 25 clinically important pathogenic species. Notably, EHFPI also provides six powerful and data-integrative analysis tools, i.e. EHF Overlap Analysis, EHF-pathogen Network Analysis, Gene Enrichment Analysis, Pathogen Interacting Proteins (PIPs) Analysis, Drug Target Analysis and GWAS Candidate Gene Analysis, which advance the comprehensive understanding of the biological roles of EHF genes, as in diverse perspectives of protein–protein interaction network, drug targets and diseases/traits. The EHFPI web interface provides appropriate tools that allow efficient query of EHF data and visualization of custom-made analysis results. EHFPI data and tools shall keep available without charge and serve the microbiology, biomedicine and pharmaceutics research communities, to finally facilitate the development of diagnostics, prophylactics and therapeutics for human pathogens. PMID:25414353

  4. The Host Plant Metabolite Glucose Is the Precursor of Diffusible Signal Factor (DSF) Family Signals in Xanthomonas campestris

    PubMed Central

    Liu, Xiaoling; Wu, Ji'en; Lee, Jasmine; Chen, Shaohua; Cheng, Yingying; Zhang, Chunyan

    2015-01-01

    Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium of X. campestris pv. campestris could significantly boost DSF family signal production. It was subsequently revealed that X. campestris pv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified in Burkholderia cenocepacia to be involved in regulation of motility, biofilm formation, and virulence in B. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production in X. campestris pv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis in X. campestris pv. campestris. 13C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate that X. campestris pv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence. PMID:25681189

  5. The host plant metabolite glucose is the precursor of diffusible signal factor (DSF) family signals in Xanthomonas campestris.

    PubMed

    Deng, Yinyue; Liu, Xiaoling; Wu, Ji'en; Lee, Jasmine; Chen, Shaohua; Cheng, Yingying; Zhang, Chunyan; Zhang, Lian-Hui

    2015-04-01

    Plant pathogen Xanthomonas campestris pv. campestris produces cis-11-methyl-2-dodecenoic acid (diffusible signal factor [DSF]) as a cell-cell communication signal to regulate biofilm dispersal and virulence factor production. Previous studies have demonstrated that DSF biosynthesis is dependent on the presence of RpfF, an enoyl-coenzyme A (CoA) hydratase, but the DSF synthetic mechanism and the influence of the host plant on DSF biosynthesis are still not clear. We show here that exogenous addition of host plant juice or ethanol extract to the growth medium of X. campestris pv. campestris could significantly boost DSF family signal production. It was subsequently revealed that X. campestris pv. campestris produces not only DSF but also BDSF (cis-2-dodecenoic acid) and another novel DSF family signal, which was designated DSF-II. BDSF was originally identified in Burkholderia cenocepacia to be involved in regulation of motility, biofilm formation, and virulence in B. cenocepacia. Functional analysis suggested that DSF-II plays a role equal to that of DSF in regulation of biofilm dispersion and virulence factor production in X. campestris pv. campestris. Furthermore, chromatographic separation led to identification of glucose as a specific molecule stimulating DSF family signal biosynthesis in X. campestris pv. campestris. (13)C-labeling experiments demonstrated that glucose acts as a substrate to provide a carbon element for DSF biosynthesis. The results of this study indicate that X. campestris pv. campestris could utilize a common metabolite of the host plant to enhance DSF family signal synthesis and therefore promote virulence. PMID:25681189

  6. Dissecting the membrane cholesterol requirement for mycobacterial entry into host cells.

    PubMed

    Viswanathan, Gopinath; Jafurulla, Md; Kumar, G Aditya; Raghunand, Tirumalai R; Chattopadhyay, Amitabha

    2015-07-01

    Mycobacteria are intracellular pathogens that can invade and survive within host macrophages, and are a major cause of mortality and morbidity worldwide. The molecular mechanism involved in the internalization of mycobacteria is poorly understood. In this work, we have explored the role of host membrane cholesterol in the entry of the avirulent surrogate mycobacterial strain Mycobacterium smegmatis into THP-1 macrophages. Our results show that depletion of host membrane cholesterol using methyl-β-cyclodextrin results in a significant reduction in the entry of M. smegmatis into host cells. More importantly, we show that the inhibition in the ability of M. smegmatis to enter host macrophages could be reversed upon replenishment of membrane cholesterol. To the best of our knowledge, these results constitute the first report showing that membrane cholesterol replenishment can reverse the inhibition in the entry of mycobacteria into host cells. In addition, we demonstrate that cholesterol complexation using amphotericin B (without physical depletion) is sufficient to inhibit mycobacterial entry. Importantly, we observed a significant reduction in mycobacterial entry upon enrichment of host membrane cholesterol. Taken together, our results demonstrate, for the first time, that an optimum host plasma membrane cholesterol is necessary for the entry of mycobacteria. These results assume relevance in the context of developing novel therapeutic strategies targeting cholesterol-mediated mycobacterial host cell entry. PMID:26021693

  7. Phosphorylation of Merkel Cell Polyomavirus Large Tumor Antigen at Serine 816 by ATM Kinase Induces Apoptosis in Host Cells*

    PubMed Central

    Li, Jing; Diaz, Jason; Wang, Xin; Tsang, Sabrina H.; You, Jianxin

    2015-01-01

    Merkel cell carcinoma is a highly aggressive form of skin cancer. Merkel cell polyomavirus (MCV) infection and DNA integration into the host genome correlate with 80% of all Merkel cell carcinoma cases. Integration of the MCV genome frequently results in mutations in the large tumor antigen (LT), leading to expression of a truncated LT that retains pRB binding but with a deletion of the C-terminal domain. Studies from our laboratory and others have shown that the MCV LT C-terminal helicase domain contains growth-inhibiting properties. Additionally, we have shown that host DNA damage response factors are recruited to viral replication centers. In this study, we identified a novel MCV LT phosphorylation site at Ser-816 in the C-terminal domain. We demonstrate that activation of the ATM pathway stimulated MCV LT phosphorylation at Ser-816, whereas inhibition of ATM kinase activity prevented LT phosphorylation at this site. In vitro phosphorylation experiments confirmed that ATM kinase is responsible for phosphorylating MCV LT at Ser-816. Finally, we show that ATM kinase-mediated MCV LT Ser-816 phosphorylation may contribute to the anti-tumorigenic properties of the MCV LT C-terminal domain. PMID:25480786

  8. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    PubMed Central

    Sun, Di; Chen, Shun; Cheng, Anchun; Wang, Mingshu

    2016-01-01

    The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros) of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized. PMID:26999188

  9. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells.

    PubMed

    Sun, Di; Chen, Shun; Cheng, Anchun; Wang, Mingshu

    2016-01-01

    The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3C(pro)s) of picornaviruses share similar spatial structures and it is becoming apparent that 3C(pro) plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3C(pro) are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3C(pro) can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3C(pro) and these essential factors, 3C(pro) is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3C(pro) are ongoing and a better understanding of the roles played by 3C(pro) may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3C(pro) is summarized. PMID:26999188

  10. Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis.

    PubMed Central

    Henderson, B; Poole, S; Wilson, M

    1996-01-01

    Cytokines are a diverse group of proteins and glycoproteins which have potent and wide-ranging effects on eukaryotic cell function and are now recognized as important mediators of tissue pathology in infectious diseases. It is increasingly recognized that for many bacterial species, cytokine induction is a major virulence mechanism. Until recent years, the only bacterial component known to stimulate cytokine synthesis was lipopolysaccharide (LPS). It is only within the past decade that it has been clearly shown that many components associated with the bacterial cell wall, including proteins, glycoproteins, lipoproteins, carbohydrates, and lipids, have the capacity to stimulate mammalian cells to produce a diverse array of cytokines. It has been established that many of these cytokine-inducing molecules act by mechanisms distinct from that of LPS, and thus their activities are not due to LPS contamination. Bacteria produce a wide range of virulence factors which cause host tissue pathology, and these diverse factors have been grouped into four families: adhesins, aggressins, impedins, and invasins. We suggest that the array of bacterial cytokine-inducing molecules represents a new class of bacterial virulence factor, and, by analogy with the known virulence families, we suggest the term "modulin" to describe these molecules, because the action of cytokines is to modulate eukaryotic cell behavior. This review summarizes our current understanding of cytokine biology in relation to tissue homeostasis and disease and concisely reviews the current literature on the cytokine-inducing molecules produced by gram-negative and gram-positive bacteria, with an emphasis on the cellular mechanisms responsible for cytokine induction. We propose that modulins, by controlling the host immune and inflammatory responses, maintain the large commensal flora that all multicellular organisms support. PMID:8801436

  11. CTXϕ: Exploring new alternatives in host factor-mediated filamentous phage replications.

    PubMed

    Martínez, Eriel; Campos-Gómez, Javier; Barre, François-Xavier

    2016-01-01

    For a long time Ff phages from Escherichia coli provided the majority of the knowledge about the rolling circle replication mechanism of filamentous phages. Host factors involved in coliphages replication have been fully identified. Based on these studies, the function of Rep protein as the accessory helicase directly implicated in filamentous phage replication was considered a paradigm. We recently reported that the replication of some filamentous phages from Vibrio cholerae, including the cholera toxin phage CTXϕ, depended on the accessory helicase UvrD instead of Rep. We also identified HU protein as one of the host factors involved in CTXϕ and VGJϕ replication. The requirement of UvrD and HU for rolling circle replication was previously reported in some family of plasmids but had no precedent in filamentous phages. Here, we enrich the discussion of our results and present new preliminary data highlighting remarkable divergence in the lifestyle of filamentous phages. PMID:27607139

  12. Host Range Expansion of Honey Bee Black Queen Cell Virus in the Bumble Bee, Bombus huntii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Honey bee viruses display a host range that is not restricted to their original host, European honey bees, Apis mellifera. Here we provide the first evidence that Black Queen Cell Virus (BQCV), one of the most prevalent honey bee viruses, can cause an infection in both laboratory-reared and field-co...

  13. Enteropathogenic E. coli-induced barrier function alteration is not a consequence of host cell apoptosis

    PubMed Central

    Viswanathan, V. K.; Weflen, Andrew; Koutsouris, Athanasia; Roxas, Jennifer L.; Hecht, Gail

    2012-01-01

    Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic pathogen that perturbs intestinal epithelial function. Many of the alterations in the host cells are mediated by effector molecules that are secreted directly into epithelial cells by the EPEC type III secretion system. The secreted effector molecule EspF plays a key role in redistributing tight junction proteins and altering epithelial barrier function. EspF has also been shown to localize to mitochondria and trigger membrane depolarization and eventual host cell death. The relationship, if any, between EspF-induced host cell death and epithelial barrier disruption is presently not known. Site-directed mutation of leucine 16 (L16E) of EspF impairs both mitochondrial localization and consequent host cell death. Although the mutation lies within a region critical for type III secretion, EspF(L16E) is secreted efficiently from EPEC. Despite its inability to promote cell death, EspF(L16E) was not impaired for tight junction alteration or barrier disruption. Consistent with this, the pan-caspase inhibitor Q-VD-OPH, despite reducing EPEC-induced host cell death, had no effect on infection-mediated barrier function alteration. Thus EPEC alters the epithelial barrier independent of its ability to induce host cell death. PMID:18356531

  14. Genome-wide CRISPR screen reveals novel host factors required for Staphylococcus aureus α-hemolysin-mediated toxicity

    PubMed Central

    Virreira Winter, Sebastian; Zychlinsky, Arturo; Bardoel, Bart W.

    2016-01-01

    Staphylococcus aureus causes a wide variety of infections and antibiotic resistant strains are a major problem in hospitals. One of the best studied virulence factors of S. aureus is the pore-forming toxin alpha hemolysin (αHL) whose mechanism of action is incompletely understood. We performed a genome-wide loss-of-function screen using CRISPR/Cas9 technology to identify host targets required for αHL susceptibility in human myeloid cells. We found gRNAs for ten genes enriched after intoxication with αHL and focused on the top five hits. Besides a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), the host receptor for αHL, we identified three proteins, Sys1 golgi trafficking protein (SYS1), ADP-ribosylation factor 1 (ARFRP1), and tetraspanin-14 (TSPAN14) which regulate the presentation of ADAM10 on the plasma membrane post-translationally. Interestingly, we also showed that cells lacking sphingomyelin synthase 1 (SGMS1) resist αHL intoxication, but have only a slightly reduced ADAM10 surface expression. SGMS1 regulates lipid raft formation, suggesting that αHL requires these membrane microdomains for attachment and cytotoxicity. PMID:27066838

  15. CXCL1 Contributes to Host Defense in Polymicrobial Sepsis via Modulating T cell and Neutrophil Functions

    PubMed Central

    Liliang, Jin; Batra, Sanjay; Douda, David Nobuhiro; Palaniyar, Nades; Jeyaseelan, Samithamby

    2014-01-01

    Severe bacterial sepsis leads to a pro-inflammatory condition that can manifest as septic shock, multiple organ failure, and death. Neutrophils are critical for the rapid elimination of bacteria, however, the role of neutrophil chemoattractant CXCL1 in bacterial clearance during sepsis remains elusive. To test the hypothesis that CXCL1 is critical to host defense during sepsis. We used CXCL1-deficient mice and bone marrow chimeras to demonstrate the importance of this molecule in sepsis. We demonstrate that CXCL1 plays a pivotal role in mediating host defense to polymicrobial sepsis following cecal ligation and puncture (CLP) in gene-deficient mice. CXCL1 appears to be essential for restricting bacterial outgrowth and death in mice. CXCL1 derived from both hematopoietic and resident cells contributed to bacterial clearance. Moreover, CXCL1 is essential for neutrophil migration, expression of pro-inflammatory mediators, activation of Nuclear-Factor-κ-B (NF-κB) and Mitogen-Activated Protein (MAP) kinases and upregulation of adhesion molecule Intercellular Adhesion Molecule-1 (ICAM-1). Recombinant interleukin 17 (IL-17) rescued impaired host defenses in cxcl1−/− mice. CXCL1 is important for IL-17A production via Th17 differentiation. CXCL1 is essential for Nicotinamide Adenine Dinucleotide Phosphate (NADPH) oxidase-mediated reactive oxygen species production and neutrophil extracellular trap (NET) formation. This study reveals a novel role for CXCL1 in neutrophil recruitment via modulating T cell function and neutrophil-related bactericidal functions. These studies suggest that modulation of CXCL1 levels in tissues and blood could reduce bacterial burden in sepsis. PMID:25172493

  16. Microinjection of Francisella tularensis and Listeria monocytogenes reveals the importance of bacterial and host factors for successful replication.

    PubMed

    Meyer, Lena; Bröms, Jeanette E; Liu, Xijia; Rottenberg, Martin E; Sjöstedt, Anders

    2015-08-01

    Certain intracellular bacteria use the host cell cytosol as the replicative niche. Although it has been hypothesized that the successful exploitation of this compartment requires a unique metabolic adaptation, supportive evidence is lacking. For Francisella tularensis, many genes of the Francisella pathogenicity island (FPI) are essential for intracellular growth, and therefore, FPI mutants are useful tools for understanding the prerequisites of intracytosolic replication. We compared the growth of bacteria taken up by phagocytic or nonphagocytic cells with that of bacteria microinjected directly into the host cytosol, using the live vaccine strain (LVS) of F. tularensis; five selected FPI mutants thereof, i.e., ΔiglA, ΔiglÇ ΔiglG, ΔiglI, and ΔpdpE strains; and Listeria monocytogenes. After uptake in bone marrow-derived macrophages (BMDM), ASC(-/-) BMDM, MyD88(-/-) BMDM, J774 cells, or HeLa cells, LVS, ΔpdpE and ΔiglG mutants, and L. monocytogenes replicated efficiently in all five cell types, whereas the ΔiglA and ΔiglC mutants showed no replication. After microinjection, all 7 strains showed effective replication in J774 macrophages, ASC(-/-) BMDM, and HeLa cells. In contrast to the rapid replication in other cell types, L. monocytogenes showed no replication in MyD88(-/-) BMDM and LVS showed no replication in either BMDM or MyD88(-/-) BMDM after microinjection. Our data suggest that the mechanisms of bacterial uptake as well as the permissiveness of the cytosolic compartment per se are important factors for the intracytosolic replication. Notably, none of the investigated FPI proteins was found to be essential for intracytosolic replication after microinjection. PMID:26034213

  17. Microinjection of Francisella tularensis and Listeria monocytogenes Reveals the Importance of Bacterial and Host Factors for Successful Replication

    PubMed Central

    Meyer, Lena; Bröms, Jeanette E.; Liu, Xijia; Rottenberg, Martin E.

    2015-01-01

    Certain intracellular bacteria use the host cell cytosol as the replicative niche. Although it has been hypothesized that the successful exploitation of this compartment requires a unique metabolic adaptation, supportive evidence is lacking. For Francisella tularensis, many genes of the Francisella pathogenicity island (FPI) are essential for intracellular growth, and therefore, FPI mutants are useful tools for understanding the prerequisites of intracytosolic replication. We compared the growth of bacteria taken up by phagocytic or nonphagocytic cells with that of bacteria microinjected directly into the host cytosol, using the live vaccine strain (LVS) of F. tularensis; five selected FPI mutants thereof, i.e., ΔiglA, ΔiglÇ ΔiglG, ΔiglI, and ΔpdpE strains; and Listeria monocytogenes. After uptake in bone marrow-derived macrophages (BMDM), ASC−/− BMDM, MyD88−/− BMDM, J774 cells, or HeLa cells, LVS, ΔpdpE and ΔiglG mutants, and L. monocytogenes replicated efficiently in all five cell types, whereas the ΔiglA and ΔiglC mutants showed no replication. After microinjection, all 7 strains showed effective replication in J774 macrophages, ASC−/− BMDM, and HeLa cells. In contrast to the rapid replication in other cell types, L. monocytogenes showed no replication in MyD88−/− BMDM and LVS showed no replication in either BMDM or MyD88−/− BMDM after microinjection. Our data suggest that the mechanisms of bacterial uptake as well as the permissiveness of the cytosolic compartment per se are important factors for the intracytosolic replication. Notably, none of the investigated FPI proteins was found to be essential for intracytosolic replication after microinjection. PMID:26034213

  18. Genetic and environmental factors affecting host response to drugs and other chemical compounds in our environment.

    PubMed Central

    Vesell, E S; Passananti, G T

    1977-01-01

    Compared to laboratory animals, humans are extremely heterogenous with respect to the many factors that can influence the distribution and biological effects of toxic chemicals. This heterogeneity can prevent an accurate assessment of the impact of a particular toxic compound on the health of an individual subject. Some of the factors that can significantly modify the host response to certain drugs, which serve in this review as a model for environmental chemicals, are enumerated and discussed. Although the mechanisms by which many of these factors modify the biological effects of certain environmental chemicals and drugs have been determined in some cases, better definition of the nature of interactions between these factors and environmental chemicals in a particular individual is required at a biochemical and molecular level. Recommendations are offered for the further development of our knowledge concerning interactions between environmental chemicals and such factors in a particular individual. PMID:598349

  19. Epigenetics: A New Model for Intracellular Parasite-Host Cell Regulation.

    PubMed

    Robert McMaster, W; Morrison, Charlotte J; Kobor, Michael S

    2016-07-01

    Intracellular protozoan parasites are an extremely important class of pathogens that cause a spectrum of diseases in human and animal hosts. There is a growing body of evidence suggesting that protozoan parasites, like other prokaryotic and viral pathogens, manipulate host cells via epigenetic modifications of the host genome that alter transcription and corresponding signaling pathways. In light of these data, we examine the role of epigenetics in downregulation of host macrophages by Leishmania that could potentially lead to a permanent state of inactivation, thus favoring pathogen survival and disease progression. PMID:27142564

  20. Diversity in host clone performance within a Chinese hamster ovary cell line.

    PubMed

    O'Callaghan, Peter M; Berthelot, Maud E; Young, Robert J; Graham, James W A; Racher, Andrew J; Aldana, Dulce

    2015-01-01

    Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc-fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool-produced Mab and etanercept (by N-glycan ultra performance liquid chromatography (UPLC) and liquid chromatography - tandem mass spectrometry (LC-MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N-glycan micro-heterogeneity and etanercept N and O-linked macro-heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics. PMID:25918883

  1. KAP1 Is a Host Restriction Factor That Promotes Human Adenovirus E1B-55K SUMO Modification

    PubMed Central

    Bürck, Carolin; Mund, Andreas; Berscheminski, Julia; Kieweg, Lisa; Müncheberg, Sarah

    2015-01-01

    ABSTRACT Once transported to the replication sites, human adenoviruses (HAdVs) need to ensure decondensation and transcriptional activation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These early stages during adenoviral infection are poorly characterized but represent a decisive moment in the establishment of a productive infection. Here, we identify a novel host viral restriction factor, KAP1. This heterochromatin-associated transcription factor regulates the dynamic organization of the host chromatin structure via its ability to influence epigenetic marks and chromatin compaction. In response to DNA damage, KAP1 is phosphorylated and functionally inactive, resulting in chromatin relaxation. We discovered that KAP1 posttranslational modification is dramatically altered during HAdV infection to limit the antiviral capacity of this host restriction factor, which represents an essential step required for efficient viral replication. Conversely, we also observed during infection an HAdV-mediated decrease of KAP1 SUMO moieties, known to promote chromatin decondensation events. Based on our findings, we provide evidence that HAdV induces KAP1 deSUMOylation to minimize epigenetic gene silencing and to promote SUMO modification of E1B-55K by a so far unknown mechanism. IMPORTANCE Here we describe a novel cellular restriction factor for human adenovirus (HAdV) that sheds light on very early modulation processes in viral infection. We reported that chromatin formation and cellular SWI/SNF chromatin remodeling play key roles in HAdV transcriptional regulation. We observed that the cellular chromatin-associated factor and epigenetic reader SPOC1 represses HAdV infection and gene expression. Here, we illustrate the role of the SPOC1-interacting factor KAP1 during productive HAdV growth. KAP1 binds to the viral E1B-55K protein, promoting its SUMO modification, therefore illustrating a crucial step for

  2. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  3. Bacterial Cell-Cell Communication in the Host via RRNPP Peptide-Binding Regulators.

    PubMed

    Perez-Pascual, David; Monnet, Véronique; Gardan, Rozenn

    2016-01-01

    Human microbiomes are composed of complex and dense bacterial consortia. In these environments, bacteria are able to react quickly to change by coordinating their gene expression at the population level via small signaling molecules. In Gram-positive bacteria, cell-cell communication is mostly mediated by peptides that are released into the extracellular environment. Cell-cell communication based on these peptides is especially widespread in the group Firmicutes, in which they regulate a wide array of biological processes, including functions related to host-microbe interactions. Among the different agents of communication, the RRNPP family of cytoplasmic transcriptional regulators, together with their cognate re-internalized signaling peptides, represents a group of emerging importance. RRNPP members that have been studied so far are found mainly in species of bacilli, streptococci, and enterococci. These bacteria are characterized as both human commensal and pathogenic, and share different niches in the human body with other microorganisms. The goal of this mini-review is to present the current state of research on the biological relevance of RRNPP mechanisms in the context of the host, highlighting their specific roles in commensalism or virulence. PMID:27242728

  4. Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor beta1.

    PubMed

    Gohongi, T; Fukumura, D; Boucher, Y; Yun, C O; Soff, G A; Compton, C; Todoroki, T; Jain, R K

    1999-10-01

    Angiogenesis inhibitors produced by a primary tumor can create a systemic anti-angiogenic environment and maintain metastatic tumor cells in a state of dormancy. We show here that the gallbladder microenvironment modulates the production of transforming growth factor (TGF)-beta1, a multifunctional cytokine that functions as an endogenous anti-angiogenic and anti-tumor factor in a cranial window preparation. We found that a wide variety of human gallbladder tumors express TGF-beta1 irrespective of histologic type. We implanted a gel impregnated with basic fibroblast growth factor or Mz-ChA-2 tumor in the cranial windows of mice without tumors or mice with subcutaneous or gallbladder tumors to study angiogenesis and tumor growth at a secondary site. Angiogenesis, leukocyte-endothelial interaction in vessels and tumor growth in the cranial window were substantially inhibited in mice with gallbladder tumors. The concentration of TGF-beta1 in the plasma of mice with gallbladder tumors was 300% higher than that in the plasma of mice without tumors or with subcutaneous tumors. In contrast, there was no difference in the plasma levels of other anti- and pro-angiogenic factors. Treatment with neutralizing antibody against TGF-beta1 reversed both angiogenesis suppression and inhibition of leukocyte rolling induced by gallbladder tumors. TGF-beta1 also inhibited Mz-ChA-2 tumor cell proliferation. Our results indicate that the production of anti-angiogenesis/proliferation factors is regulated by tumor-host interactions. PMID:10502827

  5. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    SciTech Connect

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.

    2014-02-21

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.

  6. Energy transfer between a nanosystem and its host fluid: A multiscale factorization approach

    NASA Astrophysics Data System (ADS)

    Sereda, Yuriy V.; Espinosa-Duran, John M.; Ortoleva, Peter J.

    2014-02-01

    Energy transfer between a macromolecule or supramolecular assembly and a host medium is considered from the perspective of Newton's equations and Lie-Trotter factorization. The development starts by demonstrating that the energy of the molecule evolves slowly relative to the time scale of atomic collisions-vibrations. The energy is envisioned to be a coarse-grained variable that coevolves with the rapidly fluctuating atomistic degrees of freedom. Lie-Trotter factorization is shown to be a natural framework for expressing this coevolution. A mathematical formalism and workflow for efficient multiscale simulation of energy transfer is presented. Lactoferrin and human papilloma virus capsid-like structure are used for validation.

  7. Involvement of DNA polymerase alpha in host cell reactivation of UV-irradiated herpes simplex virus

    SciTech Connect

    Nishiyama, Y.; Yoshida, S.; Maeno, K.

    1984-02-01

    Aphidicolin is a potent inhibitor of both host cell DNA polymerase alpha and herpes simplex virus (HSV)-induced DNA polymerase but has no effect on DNA polymerases beta and gamma of host cells. By using an aphidicolin-resistant mutant (Aphr) of HSV, a possible involvement of DNA polymerase alpha in host cell reactivation of UV-damaged HSV was studied. Plaque formation by UV-irradiated Aphr was markedly inhibited by 1 microgram of aphidicolin per ml, which did not affect the plating efficiency of nonirradiated Aphr. Aphidicolin added before 12 h postinfection inhibited plaque formation by irradiated Aphr, which became aphidicolin insensitive after 36 h postinfection. The results strongly suggest that host cell DNA polymerase alpha is involved in the repair of UV-irradiated HSV DNA.

  8. Stealing the Keys to the Kitchen: Viral Manipulation of the Host Cell Metabolic Network.

    PubMed

    Goodwin, Christopher M; Xu, Shihao; Munger, Joshua

    2015-12-01

    Host cells possess the metabolic assets required for viral infection. Recent studies indicate that control of the host's metabolic resources is a core host-pathogen interaction. Viruses have evolved mechanisms to usurp the host's metabolic resources, funneling them towards the production of virion components as well as the organization of specialized compartments for replication, maturation, and dissemination. Consequently, hosts have developed a variety of metabolic countermeasures to sense and resist these viral changes. The complex interplay between virus and host over metabolic control has only just begun to be deconvoluted. However, it is clear that virally induced metabolic reprogramming can substantially impact infectious outcomes, highlighting the promise of targeting these processes for antiviral therapeutic development. PMID:26439298

  9. Regulatory Variation in HIV-1 Dependency Factor ZNRD1 Associates with Host Resistance to HIV-1 Acquisition

    PubMed Central

    An, Ping; Goedert, James J.; Donfield, Sharyne; Buchbinder, Susan; Kirk, Gregory D.; Detels, Roger; Winkler, Cheryl A.

    2014-01-01

    Background. ZNRD1 was identified as a host protein required for the completion of the human immunodeficiency virus (HIV) lifecycle in a genome-wide screen using small interfering RNA gene silencing. Subsequently, a genome-wide association study (GWAS) of host determinants for HIV-1 disease identified an association of single nucleotide polymorphisms (SNPs) in the ZNRD1 region with CD4+ T-cell depletion. Methods. We investigated the effects of SNPs in the ZNRD1 region on human immunodeficiency virus type 1 (HIV-1) infection and progression to clinical outcomes in 5 US-based HIV-1 longitudinal cohorts consisting of men who have sex with men, males with hemophilia, and injection drug users (IDUs) (n = 1865). SNP function was evaluated by electrophoretic mobility shift assay and promoter luciferase assay. Results. A haplotype in the ZNRD1 gene showed significant association with a 35% decreased risk of HIV-1 acquisition (OR = 0.65, 95% CI, .47–.89), independent of HLA-C rs9264942, in European Americans. The SNP rs3132130 tagging this haplotype, located in the ZNRD1 5′ upstream region, caused a loss of nuclear factor binding and decrease in ZNRD1 promoter activity. ZNRD1 variants also affected HIV-1 disease progression in European- and African-American cohorts. Conclusions. This study provides novel evidence that ZNRD1 polymorphism may confer host resistance to HIV-1 acquisition. PMID:24842830

  10. Perturbation of Host Cell Cytoskeleton by Cranberry Proanthocyanidins and Their Effect on Enteric Infections

    PubMed Central

    Harmidy, Kevin; Tufenkji, Nathalie; Gruenheid, Samantha

    2011-01-01

    Cranberry-derived compounds, including a fraction known as proanthocyanidins (PACs) exhibit anti-microbial, anti-infective, and anti-adhesive properties against a number of disease-causing organisms. In this study, the effect of cranberry proanthocyanidins (CPACs) on the infection of epithelial cells by two enteric bacterial pathogens, enteropathogenic Escherichia coli (EPEC) and Salmonella Typhimurium was investigated. Immunofluorescence data showed that actin pedestal formation, required for infection by enteropathogenic Escherichia coli (EPEC), was disrupted in the presence of CPACs. In addition, invasion of HeLa cells by Salmonella Typhimurium was significantly reduced, as verified by gentamicin protection assay and immunofluorescence. CPACs had no effect on bacterial growth, nor any detectable effect on the production of bacterial effector proteins of the type III secretion system. Furthermore, CPACs did not affect the viability of host cells. Interestingly, we found that CPACs had a potent and dose-dependent effect on the host cell cytoskeleton that was evident even in uninfected cells. CPACs inhibited the phagocytosis of inert particles by a macrophage cell line, providing further evidence that actin-mediated host cell functions are disrupted in the presence of cranberry CPACs. Thus, although CPAC treatment inhibited Salmonella invasion and EPEC pedestal formation, our results suggest that this is likely primarily because of the perturbation of the host cell cytoskeleton by CPACs rather than an effect on bacterial virulence itself. These findings have significant implications for the interpretation of experiments on the effects of CPACs on bacteria-host cell interactions. PMID:22076143

  11. Fibroblasts—a key host cell type in tumor initiation, progression, and metastasis

    PubMed Central

    Strell, Carina; Rundqvist, Helene

    2012-01-01

    Tumor initiation, growth, invasion, and metastasis occur as a consequence of a complex interplay between the host environment and cancer cells. Fibroblasts are now recognized as a key host cell type involved in host–cancer signaling. This review discusses some recent studies that highlight the roles of fibroblasts in tumor initiation, early progression, invasion, and metastasis. Some clinical studies describing the prognostic significance of fibroblast-derived markers and signatures are also discussed. PMID:22509805

  12. HIV–host interactome revealed directly from infected cells

    PubMed Central

    Luo, Yang; Jacobs, Erica Y.; Greco, Todd M.; Mohammed, Kevin D.; Tong, Tommy; Keegan, Sarah; Binley, James M.; Cristea, Ileana M.; Fenyö, David; Rout, Michael P.; Chait, Brian T.; Muesing, Mark A.

    2016-01-01

    Although genetically compact, HIV-1 commandeers vast arrays of cellular machinery to sustain and protect it during cycles of viral outgrowth. Transposon-mediated saturation linker scanning mutagenesis was used to isolate fully replication-competent viruses harbouring a potent foreign epitope tag. Using these viral isolates, we performed differential isotopic labelling and affinity-capture mass spectrometric analyses on samples obtained from cultures of human lymphocytes to classify the vicinal interactomes of the viral Env and Vif proteins as they occur during natural infection. Importantly, interacting proteins were recovered without bias, regardless of their potential for positive, negative or neutral impact on viral replication. We identified specific host associations made with trimerized Env during its biosynthesis, at virological synapses, with innate immune effectors (such as HLA-E) and with certain cellular signalling pathways (for example, Notch1). We also defined Vif associations with host proteins involved in the control of nuclear transcription and nucleoside biosynthesis as well as those interacting stably or transiently with the cytoplasmic protein degradation apparatus. Our approach is broadly applicable to elucidating pathogen–host interactomes, providing high-certainty identification of interactors by their direct access during cycling infection. Understanding the pathophysiological consequences of these associations is likely to provide strategic targets for antiviral intervention. PMID:27375898

  13. HIV-host interactome revealed directly from infected cells.

    PubMed

    Luo, Yang; Jacobs, Erica Y; Greco, Todd M; Mohammed, Kevin D; Tong, Tommy; Keegan, Sarah; Binley, James M; Cristea, Ileana M; Fenyö, David; Rout, Michael P; Chait, Brian T; Muesing, Mark A

    2016-01-01

    Although genetically compact, HIV-1 commandeers vast arrays of cellular machinery to sustain and protect it during cycles of viral outgrowth. Transposon-mediated saturation linker scanning mutagenesis was used to isolate fully replication-competent viruses harbouring a potent foreign epitope tag. Using these viral isolates, we performed differential isotopic labelling and affinity-capture mass spectrometric analyses on samples obtained from cultures of human lymphocytes to classify the vicinal interactomes of the viral Env and Vif proteins as they occur during natural infection. Importantly, interacting proteins were recovered without bias, regardless of their potential for positive, negative or neutral impact on viral replication. We identified specific host associations made with trimerized Env during its biosynthesis, at virological synapses, with innate immune effectors (such as HLA-E) and with certain cellular signalling pathways (for example, Notch1). We also defined Vif associations with host proteins involved in the control of nuclear transcription and nucleoside biosynthesis as well as those interacting stably or transiently with the cytoplasmic protein degradation apparatus. Our approach is broadly applicable to elucidating pathogen-host interactomes, providing high-certainty identification of interactors by their direct access during cycling infection. Understanding the pathophysiological consequences of these associations is likely to provide strategic targets for antiviral intervention. PMID:27572969

  14. Transplantation of Human Neural Stem Cells in a Parkinsonian Model Exerts Neuroprotection via Regulation of the Host Microenvironment

    PubMed Central

    Zuo, Fu-Xing; Bao, Xin-Jie; Sun, Xi-Cai; Wu, Jun; Bai, Qing-Ran; Chen, Guo; Li, Xue-Yuan; Zhou, Qiang-Yi; Yang, Yuan-Fan; Shen, Qin; Wang, Ren-Zhi

    2015-01-01

    Parkinson’s disease (PD) is characterized by a progressive loss of dopaminergic neurons and consequent dopamine (DA) deficit, and current treatment still remains a challenge. Although neural stem cells (NSCs) have been evaluated as appealing graft sources, mechanisms underlying the beneficial phenomena are not well understood. Here, we investigate whether human NSCs (hNSCs) transplantation could provide neuroprotection against DA depletion by recruiting endogenous cells to establish a favorable niche. Adult mice subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were transplanted with hNSCs or vehicle into the striatum. Behavioral and histological analyses demonstrated significant neurorescue response observed in hNSCs-treated animals compared with the control mice. In transplanted animals, grafted cells survived, proliferated, and migrated within the astrocytic scaffold. Notably, more local astrocytes underwent de-differentiation, acquiring the properties of NSCs or neural precursor cells (NPCs) in mice given hNSCs. Additionally, we also detected significantly higher expression of host-derived growth factors in hNSCs-transplanted mice compared with the control animals, together with inhibition of local microglia and proinflammatory cytokines. Overall, our results indicate that hNSCs transplantation exerts neuroprotection in MPTP-insulted mice via regulating the host niche. Harnessing synergistic interaction between the grafts and host cells may help optimize cell-based therapies for PD. PMID:26556344

  15. Preparation of functional human factor V111 in mammalian cells using methotrexate based selection

    SciTech Connect

    Capon, D.J.; Lawn, R.M.; Levinson, A.D.; Vehar, G.A.; Wood, W.I.

    1990-10-23

    This patent describes a process for producing factor VII. It comprises: cotransfecting a mammalian host cell with a DNA sequence encoding factor VIII, a second DNA sequence encoding an amplifiable marker, and a third DNA sequence encoding a selectable marker; growing the transfected cell in a non-selection medium and selecting for such selectable marker resistant cells; and amplifying the amplifiable marker DNA sequence by culturing the selected cells in media containing increasing amounts of selection agent, wherein the host cell is not deficient in the amplifiable marker.

  16. Modulation of host cell signalling by enteropathogenic and Shiga toxin-producing Escherichia coli.

    PubMed

    Kresse, A U; Guzmán, C A; Ebel, F

    2001-09-01

    The majority of Escherichia coli strains are harmless symbionts in the intestinal tract. However, there are several pathogenic forms, which are responsible for various diseases in humans and live stock. In this review we discuss the interactions between Shiga toxin-producing E. coli and enteropathogenic E. coli and their target host cells, describing their strategies to activate specific cellular signalling pathways which lead to subversion of critical physiological functions. We mainly concentrate on those pathogenic mechanisms that are dependent on a functional type III secretion system, but we also briefly discuss additional factors that contribute to the specific pathogenic profiles of Shiga toxin-producing E. coli and enreropathogenic E. coli. PMID:11680788

  17. Identification of Host Proteins Involved in Rickettsial Invasion of Tick Cells

    PubMed Central

    Sunyakumthorn, Piyanate; Banajee, Kaikhushroo H.; Verhoeve, Victoria I.; Kearney, Michael T.; Macaluso, Kevin R.

    2014-01-01

    Tick-borne spotted fever group (SFG) Rickettsia species are obligate intracellular bacteria capable of infecting both vertebrate and invertebrate host cells, an essential process for subsequent bacterial survival in distinct hosts. The host cell signaling molecules involved in the uptake of Rickettsia into mammalian and Drosophila cells have been identified; however, invasion into tick cells is understudied. Considering the movement of SFG Rickettsia between vertebrate and invertebrate hosts, the hypothesis is that conserved mechanisms are utilized for host cell invasion. The current study employed biochemical inhibition assays to determine the tick proteins involved in Rickettsia montanensis infection of tick-derived cells from a natural host, Dermacentor variabilis. The results revealed several tick proteins important for rickettsial invasion, including actin filaments, actin-related protein 2/3 complex, phosphatidylinositol-3′-kinase, protein tyrosine kinases (PTKs), Src family PTK, focal adhesion kinase, Rho GTPase Rac1, and neural Wiskott-Aldrich syndrome protein. Delineating the molecular mechanisms of rickettsial infection is critical to a thorough understanding of rickettsial transmission in tick populations and the ecology of tick-borne rickettsial diseases. PMID:25547795

  18. Identification of host proteins involved in rickettsial invasion of tick cells.

    PubMed

    Petchampai, Natthida; Sunyakumthorn, Piyanate; Banajee, Kaikhushroo H; Verhoeve, Victoria I; Kearney, Michael T; Macaluso, Kevin R

    2015-03-01

    Tick-borne spotted fever group (SFG) Rickettsia species are obligate intracellular bacteria capable of infecting both vertebrate and invertebrate host cells, an essential process for subsequent bacterial survival in distinct hosts. The host cell signaling molecules involved in the uptake of Rickettsia into mammalian and Drosophila cells have been identified; however, invasion into tick cells is understudied. Considering the movement of SFG Rickettsia between vertebrate and invertebrate hosts, the hypothesis is that conserved mechanisms are utilized for host cell invasion. The current study employed biochemical inhibition assays to determine the tick proteins involved in Rickettsia montanensis infection of tick-derived cells from a natural host, Dermacentor variabilis. The results revealed several tick proteins important for rickettsial invasion, including actin filaments, actin-related protein 2/3 complex, phosphatidylinositol-3'-kinase, protein tyrosine kinases (PTKs), Src family PTK, focal adhesion kinase, Rho GTPase Rac1, and neural Wiskott-Aldrich syndrome protein. Delineating the molecular mechanisms of rickettsial infection is critical to a thorough understanding of rickettsial transmission in tick populations and the ecology of tick-borne rickettsial diseases. PMID:25547795

  19. Intestinal epithelial cells as mediators of the commensal–host immune crosstalk

    PubMed Central

    Goto, Yoshiyuki; Ivanov, Ivaylo I

    2014-01-01

    Commensal bacteria regulate the homeostasis of host effector immune cell subsets. The mechanisms involved in this commensal–host crosstalk are not well understood. Intestinal epithelial cells (IECs) not only create a physical barrier between the commensals and immune cells in host tissues, but also facilitate interactions between them. Perturbations of epithelial homeostasis or function lead to the development of intestinal disorders such as inflammatory bowel diseases (IBD) and intestinal cancer. IECs receive signals from commensals and produce effector immune molecules. IECs also affect the function of immune cells in the lamina propria. Here we discuss some of these properties of IECs that define them as innate immune cells. We focus on how IECs may integrate and transmit signals from individual commensal bacteria to mucosal innate and adaptive immune cells for the establishment of the unique mucosal immunological equilibrium. PMID:23318659

  20. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection by a variety of viruses alters the nuclear-cytoplasmic trafficking of certain host cell proteins. In our continued search for interacting factors, we reported the re-localization of RNA helicase A (RHA) from the nucleus to the cytoplasm in cells infected with foot-and-mouth disease virus ...

  1. Endogenous growth factor stimulation of hemocyte proliferation induces resistance to Schistosoma mansoni challenge in the snail host.

    PubMed

    Pila, Emmanuel A; Gordy, Michelle A; Phillips, Valerie K; Kabore, Alethe L; Rudko, Sydney P; Hanington, Patrick C

    2016-05-10

    Digenean trematodes are a large, complex group of parasitic flatworms that infect an incredible diversity of organisms, including humans. Larval development of most digeneans takes place within a snail (Gastropoda). Compatibility between snails and digeneans is often very specific, such that suitable snail hosts define the geographical ranges of diseases caused by these worms. The immune cells (hemocytes) of a snail are sentinels that act as a crucial barrier to infection by larval digeneans. Hemocytes coordinate a robust and specific immunological response, participating directly in parasite killing by encapsulating and clearing the infection. Hemocyte proliferation and differentiation are influenced by unknown digenean-specific exogenous factors. However, we know nothing about the endogenous control of hemocyte development in any gastropod model. Here, we identify and functionally characterize a progranulin [Biomphalaria glabrata granulin (BgGRN)] from the snail B. glabrata, a natural host for the human blood fluke Schistosoma mansoni Granulins are growth factors that drive proliferation of immune cells in organisms, spanning the animal kingdom. We demonstrate that BgGRN induces proliferation of B. glabrata hemocytes, and specifically drives the production of an adherent hemocyte subset that participates centrally in the anti-digenean defense response. Additionally, we demonstrate that susceptible B. glabrata snails can be made resistant to infection with S. mansoni by first inducing hemocyte proliferation with BgGRN. This marks the functional characterization of an endogenous growth factor of a gastropod mollusc, and provides direct evidence of gain of resistance in a snail-digenean infection model using a defined factor to induce snail resistance to infection. PMID:27114544

  2. Influenza A virus nucleoprotein induces apoptosis in human airway epithelial cells: implications of a novel interaction between nucleoprotein and host protein Clusterin

    PubMed Central

    Tripathi, S; Batra, J; Cao, W; Sharma, K; Patel, J R; Ranjan, P; Kumar, A; Katz, J M; Cox, N J; Lal, R B; Sambhara, S; Lal, S K

    2013-01-01

    Apoptosis induction is an antiviral host response, however, influenza A virus (IAV) infection promotes host cell death. The nucleoprotein (NP) of IAV is known to contribute to viral pathogenesis, but its role in virus-induced host cell death was hitherto unknown. We observed that NP contributes to IAV infection induced cell death and heterologous expression of NP alone can induce apoptosis in human airway epithelial cells. The apoptotic effect of IAV NP was significant when compared with other known proapoptotic proteins of IAV. The cell death induced by IAV NP was executed through the intrinsic apoptosis pathway. We screened host cellular factors for those that may be targeted by NP for inducing apoptosis and identified human antiapoptotic protein Clusterin (CLU) as a novel interacting partner. The interaction between IAV NP and CLU was highly conserved and mediated through β-chain of the CLU protein. Also CLU was found to interact specifically with IAV NP and not with any other known apoptosis modulatory protein of IAV. CLU prevents induction of the intrinsic apoptosis pathway by binding to Bax and inhibiting its movement into the mitochondria. We found that the expression of IAV NP reduced the association between CLU and Bax in mammalian cells. Further, we observed that CLU overexpression attenuated NP-induced cell death and had a negative effect on IAV replication. Collectively, these findings indicate a new function for IAV NP in inducing host cell death and suggest a role for the host antiapoptotic protein CLU in this process. PMID:23538443

  3. Avian necrotic enteritis: experimental models, host immunity, pathogenesis, risk factors, and vaccine development.

    PubMed

    Lee, K W; Lillehoj, H S; Jeong, W; Jeoung, H Y; An, D J

    2011-07-01

    The increasing trends of legislative restrictions and voluntary removal of antibiotic growth promoters worldwide has already affected, and will continue to affect, poultry production and animal health. Necrotic enteritis (NE) is being considered among the most important infectious diseases in the current poultry production system globally, with an estimated annual economic loss of more than $2 billion, largely attributable to medical treatments and impaired growth performance. Thus, there is an urgent need to develop rational, alternative, and integrated management strategies not only to control NE, but also to prevent it. In both humans and many warm-blooded animals and birds, NE is caused by Clostridium perfringens, a gram-positive, anaerobic, spore-forming bacterium. To accomplish these goals, better understanding of host- and environmentally related factors on the development of NE and potential vaccination strategies against C. perfringens infection will be necessary. Furthermore, a reliable and reproducible NE disease model is needed for characterization of C. perfringens pathogenesis and host protective immunity. This review summarizes recent developments in NE disease models, pathogenesis, host immunity, risk factors, and vaccine development for C. perfringens-associated NE in poultry. PMID:21673152

  4. Host cell autophagy modulates early stages of adenovirus infections in airway epithelial cells.

    PubMed

    Zeng, Xuehuo; Carlin, Cathleen R

    2013-02-01

    Human adenoviruses typically cause mild infections in the upper or lower respiratory tract, gastrointestinal tract, or ocular epithelium. However, adenoviruses may be life-threatening in patients with impaired immunity and some serotypes cause epidemic outbreaks. Attachment to host cell receptors activates cell signaling and virus uptake by endocytosis. At present, it is unclear how vital cellular homeostatic mechanisms affect these early steps in the adenovirus life cycle. Autophagy is a lysosomal degradation pathway for recycling intracellular components that is upregulated during periods of cell stress. Autophagic cargo is sequestered in double-membrane structures called autophagosomes that fuse with endosomes to form amphisomes which then deliver their content to lysosomes. Autophagy is an important adaptive response in airway epithelial cells targeted by many common adenovirus serotypes. Using two established tissue culture models, we demonstrate here that adaptive autophagy enhances expression of the early region 1 adenovirus protein, induction of mitogen-activated protein kinase signaling, and production of new viral progeny in airway epithelial cells infected with adenovirus type 2. We have also discovered that adenovirus infections are tightly regulated by endosome maturation, a process characterized by abrupt exchange of Rab5 and Rab7 GTPases, associated with early and late endosomes, respectively. Moreover, endosome maturation appears to control a pool of early endosomes capable of fusing with autophagosomes which enhance adenovirus infection. Many viruses have evolved mechanisms to induce autophagy in order to aid their own replication. Our studies reveal a novel role for host cell autophagy that could have a significant impact on the outcome of respiratory infections. PMID:23236070

  5. Dissecting host factors that regulate the early stages of tuberculosis infection.

    PubMed

    Agrawal, Neha; Bhattacharyya, Chandrika; Mukherjee, Ankur; Ullah, Ubaid; Pandit, Bhaswati; Rao, Kanury V S; Majumder, Partha P

    2016-09-01

    Incomplete understanding of mechanisms involved in the host-pathogen interactions constrains our efforts to eliminate tuberculosis. In many individuals, resulting from immune response to mycobacterial infection organised structures called granulomas are formed. To identify host responses that may control at least the early stages of infection, we employed an in vitro granuloma model. Here, human PBMCs were infected with live Mycobacterium tuberculosis in culture, and the appearance of granuloma-like structures was monitored over the next several days. Production of cytokines and chemokines in culture supernatants was monitored at various times, and the resulting temporal profiles were examined for possible correlations with either granuloma formation, or bacterial growth. While a positive association of TNF-α and IFN-γ secretion levels with extent of granuloma formation could clearly be identified, we were, however, unable to detect any statistically significant relationship between any cytokine/chemokine and bacterial growth. Examination of specific host cellular biochemical pathways revealed that either modulation of neutral lipid homeostasis through inhibition of the Gi-protein coupled receptor GPR109A, or regulation of host metabolic pathways through addition of vitamin D, provided a more effective means of controlling infection. A subsequent genotypic analysis for a select subset of genes belonging to pathways known to be significant for TB pathology revealed associations of polymorphisms with cytokine secretions and bacterial growth independently. Collectively therefore, the present study supports that key metabolic pathways of the host cell, rather than levels of relevant cytokines/chemokines might be more critical for regulating the intracellular mycobacterial load, in the context of granuloma formation. PMID:27553417

  6. Implications for risk assessment of host factors causing large pharmacokinetic variations

    SciTech Connect

    Vesell, E.S.

    1985-12-01

    Normal human subjects vary widely in their capacity to eliminate many drugs and environmental chemicals. These variations range in magnitude from fourfold to fortyfold depending on the drug and the population studied. Pharmacogenetics deals with only one of many host factors responsible for these large pharmacokinetic differences. Age, sex, diet and exposure to other drugs and chemicals, including oral contraceptives, ethanol and cigarette smoking, can alter the genetically determined rate at which a particular subject eliminates drugs and environmental chemicals. These elimination rates, therefore, are dynamic and change even in the same subject with time and condition. Regulatory legislation has only recently begun to recognize this very broad spectrum of human susceptibility and the existence of multiple special subgroups of particularly sensitive subjects. In setting standards for environmental chemicals, EPA and NIOSH have attempted to protect the most sensitive humans and should be encouraged to continue this policy. For some drugs and environmental chemicals, the commonly used safety factor of 100 may be too low; for these chemicals large, interindividual pharmacokinetic variations produced by pharmacogenetic and other host factors may make a safety factor of 400 or 500 more adequate.

  7. A statistical approach to determining criticality of residual host cell DNA.

    PubMed

    Yang, Harry; Wei, Ziping; Schenerman, Mark

    2015-01-01

    We propose a method for determining the criticality of residual host cell DNA, which is characterized through two attributes, namely the size and amount of residual DNA in biopharmaceutical product. By applying a mechanistic modeling approach to the problem, we establish the linkage between residual DNA and product safety measured in terms of immunogenicity, oncogenicity, and infectivity. Such a link makes it possible to establish acceptable ranges of residual DNA size and amount. Application of the method is illustrated through two real-life examples related to a vaccine manufactured in Madin Darby Canine Kidney cell line and a monoclonal antibody using Chinese hamster ovary (CHO) cell line as host cells. PMID:25358029

  8. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    PubMed Central

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  9. Mycobacterium tuberculosis PPE68 and Rv2626c genes contribute to the host cell necrosis and bacterial escape from macrophages.

    PubMed

    Danelishvili, Lia; Everman, Jamie; Bermudez, Luiz E

    2016-01-01

    Alveolar macrophages are the main line of innate immune response against M. tuberculosis (Mtb) infection. However, these cells serve as the major intracellular niche for Mtb enhancing its survival, replication and, later on, cell-to-cell spread. Mtb-associated cytotoxicity of macrophages has been well documented, but limited information exists about mechanisms by which the pathogen induces cell necrosis. To identify virulence factors involved in the induction of necrosis, we screened 5,000 transposon mutants of Mtb for clones that failed to promote the host cell necrosis in a similar manner as the wild-type bacterium. Five Mtb mutants were identified as potential candidates inducing significantly lower levels of THP-1 cell damage in contrast to the H37Rv wild-type infection. Reduced levels of the cell damage by necrosis deficient mutants (NDMs) were also associated with delayed damage of mitochondrial membrane permeability when compared with the wild-type infection over time. Two knockout mutants of the Rv3873 gene, encoding a cell wall PPE68 protein of RD1 region, were identified out of 5 NDMs. Further investigation lead to the observation that PPE68 protein interacts and exports several unknown or known surface/secreted proteins, among them Rv2626c is associated with the host cell necrosis. When the Rv2626c gene is deleted from the genome of Mtb, the bacterium displays significantly less necrosis in THP-1 cells and, conversely, the overexpression of Rv2626c promotes the host cell necrosis at early time points of infections in contrast to the wild-type strain. PMID:26605666

  10. Coxiella burnetii Nine Mile II proteins modulate gene expression of monocytic host cells during infection

    PubMed Central

    2010-01-01

    Background Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV) of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection. Results We have identified 36 host cell genes that are specifically regulated when de novo C. burnetii protein synthesis occurs during infection using comparative microarray analysis. Two parallel sets of infected and uninfected THP-1 cells were grown for 48 h followed by the addition of chloramphenicol (CAM) to 10 μg/ml in one set. Total RNA was harvested at 72 hpi from all conditions, and microarrays performed using Phalanx Human OneArray™ slides. A total of 784 (mock treated) and 901 (CAM treated) THP-1 genes were up or down regulated ≥2 fold in the C. burnetii infected vs. uninfected cell sets, respectively. Comparisons between the complementary data sets (using >0 fold), eliminated the common gene expression changes. A stringent comparison (≥2 fold) between the separate microarrays revealed 36 host cell genes modulated by C. burnetii protein synthesis. Ontological analysis of these genes identified the innate immune response, cell death and proliferation, vesicle trafficking and development, lipid homeostasis, and cytoskeletal organization as predominant cellular functions modulated by C. burnetii protein synthesis. Conclusions Collectively, these data indicate that C. burnetii proteins actively regulate the expression of specific host cell genes and pathways. This is in addition to host cell genes that respond to the presence of the pathogen whether or not

  11. Human immunodeficiency virus and host cell lipids. Interesting pathways in research for a new HIV therapy.

    PubMed

    Raulin, Jeanine

    2002-01-01

    It has been reported in the literature that biological membranes arising from HIV-induced cell fusion, as well as syncytium formation between infected and non-infected cells and those involved in transduction, viral DNA nuclear import and virion budding from the host cell, are all made of proteins, a phospholipid (P) bilayer and cholesterol (C). However, the P/C molar ratio is higher in the retroviral envelope than in the plasma membrane where they originate, and higher than in the nuclear envelope. Mechanisms are described which elucidate this puzzling fact, as well as cholesterol-dependent leakage and pore formation during cell fusion. Fatty acylation of viral and host cell proteins is required to direct them to membranes. Detergent-insoluble microdomains enriched in cholesterol and sphingolipids, termed either DIGs (detergent-insoluble glycolipid-enriched complexes), DRMs (detergent resistant membranes), TIFFs (Triton-insoluble floating fractions) or GEMs (glycolipid-enriched membranes), function as platforms for attachment of proteins in the process of signal transduction. HIV-SUgp120 (HIV-surface glycoprotein), T-cell receptor (TCR)-CD4+ and co-receptors promote aggregation of these lipid "rafts" which concentrate the Src family tyrosine kinases SFKs (PTK, Lyn, Fyn, Lck), GPI (glycosyl phosphatidylinositol)-anchored proteins, and phosphatidylinositol kinases PI(3)K and PI(4)K, inducing cell signalling. HIV-SUgp120 transduces the activation signal and provokes the formation of polyunsaturated fatty acid (PUFA) metabolites, i.e. the prostaglandin PGE2 suppressor of immune function and inhibitor of cytotoxic T-lymphocyte (CTL) proliferation, while PGB2 activates SFKs and increases mRNA expression, as well as NFkappaB (nuclear transcription factor) translocation to nucleus. HIV nuclear import, DNA integration, chromatin template capacity may be mediated by the lipid environment. The lipid-enriched microdomains from which HIV-1 buds, may explain the high level of

  12. ANK, a Host Cytoplasmic Receptor for the Tobacco mosaic virus Cell-to-Cell Movement Protein, Facilitates Intercellular Transport through Plasmodesmata

    PubMed Central

    Ueki, Shoko; Spektor, Roman; Natale, Danielle M.; Citovsky, Vitaly

    2010-01-01

    Plasmodesma (PD) is a channel structure that spans the cell wall and provides symplastic connection between adjacent cells. Various macromolecules are known to be transported through PD in a highly regulated manner, and plant viruses utilize their movement proteins (MPs) to gate the PD to spread cell-to-cell. The mechanism by which MP modifies PD to enable intercelluar traffic remains obscure, due to the lack of knowledge about the host factors that mediate the process. Here, we describe the functional interaction between Tobacco mosaic virus (TMV) MP and a plant factor, an ankyrin repeat containing protein (ANK), during the viral cell-to-cell movement. We utilized a reverse genetics approach to gain insight into the possible involvement of ANK in viral movement. To this end, ANK overexpressor and suppressor lines were generated, and the movement of MP was tested. MP movement was facilitated in the ANK-overexpressing plants, and reduced in the ANK-suppressing plants, demonstrating that ANK is a host factor that facilitates MP cell-to-cell movement. Also, the TMV local infection was largely delayed in the ANK-suppressing lines, while enhanced in the ANK-overexpressing lines, showing that ANK is crucially involved in the infection process. Importantly, MP interacted with ANK at PD. Finally, simultaneous expression of MP and ANK markedly decreased the PD levels of callose, β-1,3-glucan, which is known to act as a molecular sphincter for PD. Thus, the MP-ANK interaction results in the downregulation of callose and increased cell-to-cell movement of the viral protein. These findings suggest that ANK represents a host cellular receptor exploited by MP to aid viral movement by gating PD through relaxation of their callose sphincters. PMID:21124937

  13. The interplay of host genetic factors and Epstein-Barr virus in the development of nasopharyngeal carcinoma

    PubMed Central

    Lung, Maria Li; Cheung, Arthur Kwok Leung; Ko, Josephine Mun Yee; Lung, Hong Lok; Cheng, Yue; Dai, Wei

    2014-01-01

    The interplay between host cell genetics and Epstein-Barr virus (EBV) infection contributes to the development of nasopharyngeal carcinoma (NPC). Understanding the host genetic and epigenetic alterations and the influence of EBV on cell signaling and host gene regulation will aid in understanding the molecular pathogenesis of NPC and provide useful biomarkers and targets for diagnosis and therapy. In this review, we provide an update of the oncogenes and tumor suppressor genes associated with NPC, as well as genes associated with NPC risk including those involved in carcinogen detoxification and DNA repair. We also describe the importance of host genetics that govern the human leukocyte antigen (HLA) complex and immune responses, and we describe the impact of EBV infection on host cell signaling changes and epigenetic regulation of gene expression. High-power genomic sequencing approaches are needed to elucidate the genetic basis for inherited susceptibility to NPC and to identify the genes and pathways driving its molecular pathogenesis. PMID:25367335

  14. Mesenchymal Stem Cell Therapy Stimulates Endogenous Host Progenitor Cells to Improve Colonic Epithelial Regeneration

    PubMed Central

    Sémont, Alexandra; Demarquay, Christelle; Bessout, Raphaëlle; Durand, Christelle; Benderitter, Marc; Mathieu, Noëlle

    2013-01-01

    Patients who undergo pelvic radiotherapy may develop severe and chronic complications resulting from gastrointestinal alterations. The lack of curative treatment highlights the importance of novel and effective therapeutic strategies. We thus tested the therapeutic benefit of mesenchymal stem cells (MSC) treatment and proposed molecular mechanisms of action. MSC efficacy was tested in an experimental model of radiation-induced severe colonic ulceration histologically similar to that observed in patients. In this model, MSC from bone marrow were administered intravenously, immediately or three weeks (established lesions) after irradiation. MSC therapy reduces radiation-induced colonic ulceration and increases animal survival. MSC treatment induces therapeutic efficacy whatever the time of cell infusion. Infused-MSC engraft in the colon but also increase endogenous MSC mobilization in blood that have lasting benefits over time. In vitro analysis demonstrates that the MSC effect is mediated by paracrine mechanisms through the non-canonical WNT (Wingless integration site) pathway. In irradiated rat colons, MSC treatment increases the expression of the non-canonical WNT4 ligand by epithelial cells. The epithelial regenerative process is improved after MSC injection by stimulation of colonic epithelial cells positive for SOX9 (SRY-box containing gene 9) progenitor/stem cell markers. This study demonstrates that MSC treatment induces stimulation of endogenous host progenitor cells to improve the regenerative process and constitutes an initial approach to arguing in favor of the use of MSC to limit/reduce colorectal damage induced by radiation. PMID:23922953

  15. Trypanosoma cruzi: Entry into Mammalian Host Cells and Parasitophorous Vacuole Formation

    PubMed Central

    Barrias, Emile Santos; de Carvalho, Tecia Maria Ulisses; De Souza, Wanderley

    2013-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes, and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T. cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T. cruzi with phagocytic or non-phagocytic cell types, plasma membrane (PM) protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis, and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes, and lysosomes, participate in the formation of the nascent parasitophorous vacuole (PV). Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the PV release from the host cell PM. This review focuses on the multiple pathways that T. cruzi can use to enter the host cells until complete PV formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, and endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss others mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair. PMID:23914186

  16. Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics.

    PubMed

    Cardoso, Rita; Soares, Helena; Hemphill, Andrew; Leitão, Alexandre

    2016-07-01

    Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies. PMID:27041483

  17. Environment-related and host-related factors affecting the occurrence of lice on rodents in Central Europe.

    PubMed

    Stanko, Michal; Fričová, Jana; Miklisová, Dana; Khokhlova, Irina S; Krasnov, Boris R

    2015-06-01

    We studied the effects of environment- (habitat, season) and host-related (sex, body mass) factors on the occurrence of four species of lice (Insecta:Phthiraptera:Anoplura) on six rodent species (Rodentia:Muridae). We asked how these factors influence the occurrence of lice on an individual host and whether different rodent-louse associations demonstrate consistent trends in these effects. We found significant effects of at least one environment-related and at least one host-related factor on the louse occurrence in five of six host-louse associations. The effect of habitat was significant in two associations with the occurrence of lice being more frequent in lowland than in mountain habitats. The effect of season was significant in five associations with a higher occurrence of infestation during the warm season in four associations and the cold season in one association. Host sex affected significantly the infestation by lice in three associations with a higher frequency of infestation in males. Host body mass affected the occurrence of lice in all five associations, being negative in wood mice and positive in voles. In conclusion, lice were influenced not only by the host- but also by environment-related factors. The effects of the latter could be mediated via life history parameters of a host. PMID:25651932

  18. Reciprocal expression of integration host factor and HU in the developmental cycle and infectivity of Legionella pneumophila.

    PubMed

    Morash, Michael G; Brassinga, Ann Karen C; Warthan, Michelle; Gourabathini, Poornima; Garduño, Rafael A; Goodman, Steven D; Hoffman, Paul S

    2009-04-01

    Legionella pneumophila is an intracellular parasite of protozoa that differentiates late in infection into metabolically dormant cysts that are highly infectious. Regulation of this process is poorly understood. Here we report that the small DNA binding regulatory proteins integration host factor (IHF) and HU are reciprocally expressed over the developmental cycle, with HU expressed during exponential phase and IHF expressed postexponentially. To assess the role of these regulatory proteins in development, chromosomal deletions were constructed. Single (ihfA or ihfB) and double deletion (Deltaihf) IHF mutants failed to grow in Acanthamoeba castellanii unless complemented in trans when expressed temporally from the ihfA promoter but not under P(tac) (isopropyl-beta-d-thiogalactopyranoside). In contrast, IHF mutants were infectious for HeLa cells, though electron microscopic examination revealed defects in late-stage cyst morphogenesis (thickened cell wall, intracytoplasmic membranes, and inclusions of poly-beta-hydroxybutyrate), and were depressed for the developmental marker MagA. Green fluorescent protein promoter fusion assays indicated that IHF and the stationary-phase sigma factor RpoS were required for full postexponential expression of magA. Finally, defects in cyst morphogenesis noted for Deltaihf mutants in HeLa cells correlated with a loss of both detergent resistance and hyperinfectivity compared with results for wild-type cysts. These studies establish IHF and HU as markers of developmental stages and show that IHF function is required for both differentiation and full virulence of L. pneumophila in natural amoebic hosts. PMID:19201975

  19. NK cells and type 1 innate lymphoid cells: partners in host defense.

    PubMed

    Spits, Hergen; Bernink, Jochem H; Lanier, Lewis

    2016-06-21

    Innate lymphoid cells (ILCs) are effectors and regulators of innate immunity and tissue modeling and repair. Researchers have identified subsets of ILCs with differing functional activities, capacities to produce cytokines and transcription factors required for development and function. Natural killer (NK) cells represent the prototypical member of the ILC family. Together with ILC1s, NK cells constitute group 1 ILCs, which are characterized by their capacity to produce interferon-γ and their functional dependence on the transcription factor T-bet. NK cells and ILC1s are developmentally distinct but share so many features that they are difficult to distinguish, particularly under conditions of infection and inflammation. Here we review current knowledge of NK cells and the various ILC1 subsets. PMID:27328005

  20. Insect Gut Symbiont Susceptibility to Host Antimicrobial Peptides Caused by Alteration of the Bacterial Cell Envelope*

    PubMed Central

    Kim, Jiyeun Kate; Son, Dae Woo; Kim, Chan-Hee; Cho, Jae Hyun; Marchetti, Roberta; Silipo, Alba; Sturiale, Luisa; Park, Ha Young; Huh, Ye Rang; Nakayama, Hiroshi; Fukatsu, Takema; Molinaro, Antonio; Lee, Bok Luel

    2015-01-01

    The molecular characterization of symbionts is pivotal for understanding the cross-talk between symbionts and hosts. In addition to valuable knowledge obtained from symbiont genomic studies, the biochemical characterization of symbionts is important to fully understand symbiotic interactions. The bean bug (Riptortus pedestris) has been recognized as a useful experimental insect gut symbiosis model system because of its cultivatable Burkholderia symbionts. This system is greatly advantageous because it allows the acquisition of a large quantity of homogeneous symbionts from the host midgut. Using these naïve gut symbionts, it is possible to directly compare in vivo symbiotic cells with in vitro cultured cells using biochemical approaches. With the goal of understanding molecular changes that occur in Burkholderia cells as they adapt to the Riptortus gut environment, we first elucidated that symbiotic Burkholderia cells are highly susceptible to purified Riptortus antimicrobial peptides. In search of the mechanisms of the increased immunosusceptibility of symbionts, we found striking differences in cell envelope structures between cultured and symbiotic Burkholderia cells. The bacterial lipopolysaccharide O antigen was absent from symbiotic cells examined by gel electrophoretic and mass spectrometric analyses, and their membranes were more sensitive to detergent lysis. These changes in the cell envelope were responsible for the increased susceptibility of the Burkholderia symbionts to host innate immunity. Our results suggest that the symbiotic interactions between the Riptortus host and Burkholderia gut symbionts induce bacterial cell envelope changes to achieve successful gut symbiosis. PMID:26116716

  1. A Multi-Host Approach for the Systematic Analysis of Virulence Factors in Cryptococcus neoformans

    PubMed Central

    Desalermos, Athanasios; Tan, Xiaojiang; Rajamuthiah, Rajmohan; Arvanitis, Marios; Wang, Yan; Li, Dedong; Kourkoumpetis, Themistoklis K.; Fuchs, Beth Burgwyn; Mylonakis, Eleftherios

    2015-01-01

    A multi-host approach was followed to screen a library of 1201 signature-tagged deletion strains of Cryptococcus neoformans mutants to identify previously unknown virulence factors. The primary screen was performed using a Caenorhabditis elegans–C. neoformans infection assay. The hits among these strains were reconfirmed as less virulent than the wild type in the insect Galleria mellonella–C. neoformans infection assay. After this 2-stage screen, and to prioritize hits, we performed serial evaluations of the selected strains, using the C. elegans model. All hit strains identified through these studies were validated in a murine model of systemic cryptococcosis. Twelve strains were identified through a stepwise screening assay. Among them, 4 (CSN1201, SRE1, RDI1, and YLR243W) were previously discovered, providing proof of principle for this approach, while the role of the remaining 8 genes (CKS101, CNC5600, YOL003C, CND1850, MLH3, HAP502, MSL5, and CNA2580) were not previously described in cryptococcal virulence. The multi-host approach is an efficient method of studying the pathogenesis of C. neoformans. We used diverse model hosts, C. elegans, G. mellonella, and mice, with physiological differences and identified 12 genes associated with mammalian infection. Our approach may be suitable for large pathogenesis screens. PMID:25114160

  2. Delivery of host cell-directed therapeutics for intracellular pathogen clearance

    PubMed Central

    Collier, Michael A.; Gallovic, Matthew D.; Peine, Kevin J.; Duong, Anthony D.; Bachelder, Eric M.; Gunn, John S.; Schlesinger, Larry S.; Ainslie, Kristy M.

    2014-01-01

    Intracellular pathogens present a major health risk because of their innate ability to evade clearance. Their location within host cells and ability to react to the host environment by mutation or transcriptional changes often enables survival mechanisms to resist standard therapies. Host-directed drugs do not target the pathogen, minimizing the potential development of drug resistance; however, they can be difficult to deliver efficiently to intracellular sites. Vehicle delivery of host-mediated response drugs not only improves drug distribution and toxicity profiles, but can reduce the total amount of drug necessary to clear infection. In this article, we will review some host-directed drugs and current drug delivery techniques that can be used to efficiently clear intracellular infections. PMID:24134600

  3. Traversing the Cell: Agrobacterium T-DNA’s Journey to the Host Genome

    PubMed Central

    Gelvin, Stanton B.

    2012-01-01

    The genus Agrobacterium is unique in its ability to conduct interkingdom genetic exchange. Virulent Agrobacterium strains transfer single-strand forms of T-DNA (T-strands) and several Virulence effector proteins through a bacterial type IV secretion system into plant host cells. T-strands must traverse the plant wall and plasma membrane, traffic through the cytoplasm, enter the nucleus, and ultimately target host chromatin for stable integration. Because any DNA sequence placed between T-DNA “borders” can be transferred to plants and integrated into the plant genome, the transfer and intracellular trafficking processes must be mediated by bacterial and host proteins that form complexes with T-strands. This review summarizes current knowledge of proteins that interact with T-strands in the plant cell, and discusses several models of T-complex (T-strand and associated proteins) trafficking. A detailed understanding of how these macromolecular complexes enter the host cell and traverse the plant cytoplasm will require development of novel technologies to follow molecules from their bacterial site of synthesis into the plant cell, and how these transferred molecules interact with host proteins and sub-cellular structures within the host cytoplasm and nucleus. PMID:22645590

  4. An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell

    PubMed Central

    Coffey, Michael J; Sleebs, Brad E; Uboldi, Alessandro D; Garnham, Alexandra; Franco, Magdalena; Marino, Nicole D; Panas, Michael W; Ferguson, David JP; Enciso, Marta; O'Neill, Matthew T; Lopaticki, Sash; Stewart, Rebecca J; Dewson, Grant; Smyth, Gordon K; Smith, Brian J; Masters, Seth L; Boothroyd, John C; Boddey, Justin A; Tonkin, Christopher J

    2015-01-01

    Infection by Toxoplasma gondii leads to massive changes to the host cell. Here, we identify a novel host cell effector export pathway that requires the Golgi-resident aspartyl protease 5 (ASP5). We demonstrate that ASP5 cleaves a highly constrained amino acid motif that has similarity to the PEXEL-motif of Plasmodium parasites. We show that ASP5 matures substrates at both the N- and C-terminal ends of proteins and also controls trafficking of effectors without this motif. Furthermore, ASP5 controls establishment of the nanotubular network and is required for the efficient recruitment of host mitochondria to the vacuole. Assessment of host gene expression reveals that the ASP5-dependent pathway influences thousands of the transcriptional changes that Toxoplasma imparts on its host cell. All these changes result in attenuation of virulence of Δasp5 tachyzoites in vivo. This work characterizes the first identified machinery required for export of Toxoplasma effectors into the infected host cell. DOI: http://dx.doi.org/10.7554/eLife.10809.001 PMID:26576949

  5. Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes.

    PubMed Central

    Aloia, R C; Tian, H; Jensen, F C

    1993-01-01

    Previous studies have indicated that human immunodeficiency virus (HIV) is enclosed with a lipid envelope similar in composition to cell plasma membranes and to other viruses. Further, the fluidity, as measured by spin resonance spectroscopy, is low and the viral envelope is among the most highly ordered membranes analyzed. However, the relationship between viral envelope lipids and those of the host cell is not known. Here we demonstrate that the phospholipids within the envelopes of HIV-1RF and HIV-2-L are similar to each other but significantly different from their respective host cell surface membranes. Further, we demonstrate that the cholesterol-to-phospholipid molar ratio of the viral envelope is approximately 2.5 times that of the host cell surface membranes. Consistent with the elevated cholesterol-to-phospholipid molar ratio, the viral envelopes of HIV-1RF and HIV-2-L were shown to be 7.5% and 10.5% more ordered than the plasma membranes of their respective host cells. These data demonstrate that HIV-1 and HIV-2-L select specific lipid domains within the surface membrane of their host cells through which to emerge during viral maturation. Images Fig. 1 PMID:8389472

  6. Permissive expansion and homing of adoptively transferred T cells in tumor-bearing hosts.

    PubMed

    Perez, C; Jukica, A; Listopad, J J; Anders, K; Kühl, A A; Loddenkemper, C; Blankenstein, T; Charo, J

    2015-07-15

    Activated T cells expressing endogenous or transduced TCRs are two cell types currently used in clinical adoptive T-cell therapy. The ability of these cells to recognize their antigen, expand and traffic to the tumor site are the initial steps necessary for successful therapy. In this study, we used in vivo bioluminescent imaging (BLI) of Renilla luciferase (RLuc) expressing T cells to evaluate the ability of adoptively transferred T cells to survive, expand and home to tumor site in vivo. Using this method, termed RT-Rack (Rluc T cell tracking), we followed T-cell response against tumors in vivo. Expansion and homing of adoptively transferred T cells were antigen dependent, but independent of the host immune status. Moreover, we successfully detected T-cell response to small and large tumors, including autochthonous liver tumors. The adoptively transferred T cells were not ignorant or excluded in a partially tolerant host, which expressed low level of the target in the periphery. Using T cell receptor (TCR)-engineered T cells, we showed the ability of these cells to respond in tumor-bearing hosts by expanding and homing to the tumor site. In all these models, the host immune status, the nature of the tumor or of the antigen, the tumor size and the presence of the targeted antigen in the periphery did not prevent the adoptively transferred T cells from responding by expanding and homing to the tumor. However, T cells had higher expression of the inhibitory receptor PD1 and reduced functional activity when a self-antigen was targeted. PMID:25530110

  7. Delineating the Requirement for the Borrelia burgdorferi Virulence Factor OspC in the Mammalian Host

    PubMed Central

    Stewart, Philip E.; Wang, Xiaohui; Bueschel, Dawn M.; Clifton, Dawn R.; Grimm, Dorothee; Tilly, Kit; Carroll, James A.; Weis, Janis J.; Rosa, Patricia A.

    2006-01-01

    We previously demonstrated that outer surface protein C (OspC) of Borrelia burgdorferi is essential for establishing mammalian infection. However, the role of OspC in mammalian infection is unknown. Here, we report experiments designed to distinguish between two models of OspC function in the mammalian host: (i) OspC fulfills an essential physiological role for growth and host adaptation or (ii) OspC provides a protective role for evasion of components of the innate immune response. We found that a B. burgdorferi ospC mutant, previously demonstrated to be noninfectious in both immunocompetent and SCID mice, could survive in the relatively immune-privileged environment of dialysis membrane chambers implanted within the peritoneum of a rat. The ospC mutant also adapts to the mammalian environment, as determined by the protein profiles of the chamber-cultivated spirochetes. Therefore, OspC does not appear to provide a physiological function for the survival of B. burgdorferi within the mammalian host. The second model, evasion of the innate immune system, was tested by assessing the infectivity of the ospC mutant in mice deficient for myeloid differentiation protein 88 (MyD88). Recent studies have shown that B. burgdorferi is prevented from reaching high cell numbers in the mammalian host by MyD88-dependent signaling pathways. The ospC mutant was incapable of infecting MyD88-deficient mice, suggesting that the role of OspC cannot be related solely to evasion of MyD88-mediated innate immunity. These results reiterate the importance of OspC in mammalian infection and eliminate simple models of function for this enigmatic protein. PMID:16714587

  8. An siRNA Screen Identifies the U2 snRNP Spliceosome as a Host Restriction Factor for Recombinant Adeno-associated Viruses

    PubMed Central

    Schreiber, Claire A.; Sakuma, Toshie; Izumiya, Yoshihiro; Holditch, Sara J.; Hickey, Raymond D.; Bressin, Robert K.; Basu, Upamanyu; Koide, Kazunori; Asokan, Aravind; Ikeda, Yasuhiro

    2015-01-01

    Adeno-associated viruses (AAV) have evolved to exploit the dynamic reorganization of host cell machinery during co-infection by adenoviruses and other helper viruses. In the absence of helper viruses, host factors such as the proteasome and DNA damage response machinery have been shown to effectively inhibit AAV transduction by restricting processes ranging from nuclear entry to second-strand DNA synthesis. To identify host factors that might affect other key steps in AAV infection, we screened an siRNA library that revealed several candidate genes including the PHD finger-like domain protein 5A (PHF5A), a U2 snRNP-associated protein. Disruption of PHF5A expression selectively enhanced transgene expression from AAV by increasing transcript levels and appears to influence a step after second-strand synthesis in a serotype and cell type-independent manner. Genetic disruption of U2 snRNP and associated proteins, such as SF3B1 and U2AF1, also increased expression from AAV vector, suggesting the critical role of U2 snRNP spliceosome complex in this host-mediated restriction. Notably, adenoviral co-infection and U2 snRNP inhibition appeared to target a common pathway in increasing expression from AAV vectors. Moreover, pharmacological inhibition of U2 snRNP by meayamycin B, a potent SF3B1 inhibitor, substantially enhanced AAV vector transduction of clinically relevant cell types. Further analysis suggested that U2 snRNP proteins suppress AAV vector transgene expression through direct recognition of intact AAV capsids. In summary, we identify U2 snRNP and associated splicing factors, which are known to be affected during adenoviral infection, as novel host restriction factors that effectively limit AAV transgene expression. Concurrently, we postulate that pharmacological/genetic manipulation of components of the spliceosomal machinery might enable more effective gene transfer modalities with recombinant AAV vectors. PMID:26244496

  9. Rapid Functional Decline of Activated and Memory Graft-versus-Host-Reactive T Cells Encountering Host Antigens in the Absence of Inflammation.

    PubMed

    Li, Hao Wei; Andreola, Giovanna; Carlson, Alicia L; Shao, Steven; Lin, Charles P; Zhao, Guiling; Sykes, Megan

    2015-08-01

    Inflammation in the priming host environment has critical effects on the graft-versus-host (GVH) responses mediated by naive donor T cells. However, it is unclear how a quiescent or inflammatory environment impacts the activity of GVH-reactive primed T and memory cells. We show in this article that GVH-reactive primed donor T cells generated in irradiated recipients had diminished ability compared with naive T cells to increase donor chimerism when transferred to quiescent mixed allogeneic chimeras. GVH-reactive primed T cells showed marked loss of cytotoxic function and activation, and delayed but not decreased proliferation or accumulation in lymphoid tissues when transferred to quiescent mixed chimeras compared with freshly irradiated secondary recipients. Primed CD4 and CD8 T cells provided mutual help to sustain these functions in both subsets. CD8 help for CD4 cells was largely IFN-γ dependent. TLR stimulation after transfer of GVH-reactive primed T cells to mixed chimeras restored their cytotoxic effector function and permitted the generation of more effective T cell memory in association with reduced PD-1 expression on CD4 memory cells. Our data indicate that an inflammatory host environment is required for the maintenance of GVH-reactive primed T cell functions and the generation of memory T cells that can rapidly acquire effector functions. These findings have important implications for graft-versus-host disease and T cell-mediated immunotherapies. PMID:26085679

  10. Integration host factor and LuxR synergistically bind DNA to coactivate quorum-sensing genes in Vibrio harveyi.

    PubMed

    Chaparian, Ryan R; Olney, Stephen G; Hustmyer, Christine M; Rowe-Magnus, Dean A; van Kessel, Julia C

    2016-09-01

    The cell-cell signaling process called quorum sensing allows bacteria to control behaviors in response to changes in population density. In Vibrio harveyi, the master quorum-sensing transcription factor LuxR is a member of the TetR family of transcription factors that both activates and represses genes to coordinate group behaviors, including bioluminescence. Here, we show that integration host factor (IHF) is a key coactivator of the luxCDABE bioluminescence genes that is required together with LuxR for precise timing and expression levels of bioluminescence during quorum sensing. IHF binds to multiple sites in the luxCDABE promoter and bends the DNA in vitro. IHF and LuxR synergistically bind luxCDABE promoter DNA at overlapping, essential binding sites that are required for maximal gene expression in vivo. RNA-seq analysis demonstrated that IHF regulates 300 genes in V. harveyi, and among these are a core set of 19 genes that are also directly bound and regulated by LuxR. We validated these global analyses by demonstrating that both IHF and LuxR are required for transcriptional activation of the osmotic stress response genes betIBA-proXWV. These data suggest that IHF plays an integral role in one mechanism of transcriptional activation by the LuxR-type family of quorum-sensing regulators in vibrios. PMID:27191515

  11. Active penetration of Trypanosoma cruzi into host cells: historical considerations and current concepts

    PubMed Central

    de Souza, Wanderley; de Carvalho, Tecia M. Ulisses

    2013-01-01

    In the present short review, we analyze past experiments that addressed the interactions of intracellular pathogenic protozoa (Trypanosoma cruzi, Toxoplasma gondii, and Plasmodium) with host cells and the initial use of the term active penetration to indicate that a protozoan “crossed the host cell membrane, penetrating into the cytoplasm.” However, the subsequent use of transmission electron microscopy showed that, for all of the protozoans and cell types examined, endocytosis, classically defined as involving the formation of a membrane-bound vacuole, took place during the interaction process. As a consequence, the recently penetrated parasites are always within a vacuole, designated the parasitophorous vacuole (PV). PMID:23355838

  12. 2-D Western blotting for evaluation of antibodies developed for detection of host cell protein.

    PubMed

    Berkelman, Tom; Harbers, Adriana; Bandhakavi, Sricharan

    2015-01-01

    Recombinant proteins generated for therapeutic use must be substantially free of residual host cell protein (HCP). The presence of host cell protein (HCP) is usually assayed by ELISA using a polyclonal antibody mixture raised against a population of proteins derived from the host cell background. This antibody should recognize as high a proportion as possible of the potential HCPs in a given sample. A recommended method for evaluating the assay involves two-dimensional electrophoretic separation followed by Western blotting.We present here a method using commercial anti-HCP antibody and samples derived from Chinese Hamster Ovary (CHO) cells. The 2-D electrophoresis procedure gives highly reproducible spot patterns and entire procedure can be completed in less than 2 days. Software analysis enables the straightforward generation of percent coverage values for the antibody when used to probe HCP-containing samples. PMID:25820736

  13. Multi-Faceted Proteomic Characterization of Host Protein Complement of Rift Valley Fever Virus Virions and Identification of Specific Heat Shock Proteins, Including HSP90, as Important Viral Host Factors

    PubMed Central

    Nuss, Jonathan E.; Kehn-Hall, Kylene; Benedict, Ashwini; Costantino, Julie; Ward, Michael; Peyser, Brian D.; Retterer, Cary J.; Tressler, Lyal E.; Wanner, Laura M.; McGovern, Hugh F.; Zaidi, Anum; Anthony, Scott M.; Kota, Krishna P.; Bavari, Sina; Hakami, Ramin M.

    2014-01-01

    Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV). Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry) with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90), as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF. PMID:24809507

  14. Relationship between Eimeria tenella development and host cell apoptosis in chickens.

    PubMed

    Zhang, Yan; Zheng, Ming-xue; Xu, Zhi-yong; Xu, Huan-cheng; Cui, Xiao-zhen; Yang, Sha-sha; Zhao, Wen-long; Li, Shan; Lv, Qiang-hua; Bai, Rui

    2015-12-01

    Coccidiosis causes considerable economic losses in the poultry industry. At present, the pathology of coccidiosis is preventable with anticoccidials and vaccination, although at considerable cost to the international poultry industry. The purpose of the present study was to elucidate the relationship between Eimeria tenella development and host cell apoptosis in chickens, which provides a theoretical basis for further study of the injury mechanism of E. tenella and the prevention and treatment of coccidiosis. Cecal epithelial cells from chick embryo were used as host cells in vitro. In addition, flow cytometry, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labeling, and histopathological assays were used to detect the dynamic changes in E. tenella infection rates, DNA injury rates, and apoptosis rates in groups treated with and without the caspase-9 inhibitor Z-LEHD-FMK. Following E. tenella infection, we demonstrated that untreated cells had less apoptosis at 4 h and, inversely, more apoptosis at 24 to 120 h compared with control cells. Furthermore, after the application of Z-LEHD-FMK, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays, and translation of phosphatidyl serines to the host cell plasma membrane surface, the treated group chick embryo cecal epithelial cells exhibited decreased apoptosis and DNA injuries (P<0.01) at 24 to 120 h. However, light microscopy showed that E. tenella infection rates of treated cells were higher (P<0.01) than untreated cells during the whole experimental period. Together, these observations suggest that E. tenella can protect host cells from apoptosis at early stages of development but can promote apoptosis during the middle to late stages. In addition, the inhibition of host cell apoptosis can be beneficial to the intracellular growth and development of E. tenella. PMID:26467006

  15. Recruitment of BAD by the Chlamydia trachomatis Vacuole Correlates with Host-Cell Survival

    PubMed Central

    Verbeke, Philippe; Welter-Stahl, Lynn; Ying, Songmin; Hansen, Jon; Häcker, Georg; Darville, Toni; Ojcius, David M

    2006-01-01

    Chlamydiae replicate intracellularly in a vacuole called an inclusion. Chlamydial-infected host cells are protected from mitochondrion-dependent apoptosis, partly due to degradation of BH3-only proteins. The host-cell adapter protein 14-3-3β can interact with host-cell apoptotic signaling pathways in a phosphorylation-dependent manner. In Chlamydia trachomatis-infected cells, 14-3-3β co-localizes to the inclusion via direct interaction with a C. trachomatis-encoded inclusion membrane protein. We therefore explored the possibility that the phosphatidylinositol-3 kinase (PI3K) pathway may contribute to resistance of infected cells to apoptosis. We found that inhibition of PI3K renders C. trachomatis-infected cells sensitive to staurosporine-induced apoptosis, which is accompanied by mitochondrial cytochrome c release. 14-3-3β does not associate with the Chlamydia pneumoniae inclusion, and inhibition of PI3K does not affect protection against apoptosis of C. pneumoniae-infected cells. In C. trachomatis-infected cells, the PI3K pathway activates AKT/protein kinase B, which leads to maintenance of the pro-apoptotic protein BAD in a phosphorylated state. Phosphorylated BAD is sequestered via 14-3-3β to the inclusion, but it is released when PI3K is inhibited. Depletion of AKT through short-interfering RNA reverses the resistance to apoptosis of C. trachomatis-infected cells. BAD phosphorylation is not maintained and it is not recruited to the inclusion of Chlamydia muridarum, which protects poorly against apoptosis. Thus, sequestration of BAD away from mitochondria provides C. trachomatis with a mechanism to protect the host cell from apoptosis via the interaction of a C. trachomatis-encoded inclusion protein with a host-cell phosphoserine-binding protein. PMID:16710454

  16. Global analysis of fungal morphology exposes mechanisms of host cell escape

    PubMed Central

    O’Meara, Teresa R.; Veri, Amanda O.; Ketela, Troy; Jiang, Bo; Roemer, Terry; Cowen, Leah E.

    2015-01-01

    Developmental transitions between single-cell yeast and multicellular filaments underpin virulence of diverse fungal pathogens. For the leading human fungal pathogen Candida albicans, filamentation is thought to be required for immune cell escape via induction of an inflammatory programmed cell death. Here we perform a genome-scale analysis of C. albicans morphogenesis and identify 102 negative morphogenetic regulators and 872 positive regulators, highlighting key roles for ergosterol biosynthesis and N-linked glycosylation. We demonstrate that C. albicans filamentation is not required for escape from host immune cells; instead, macrophage pyroptosis is driven by fungal cell-wall remodelling and exposure of glycosylated proteins in response to the macrophage phagosome. The capacity of killed, previously phagocytized cells to drive macrophage lysis is also observed with the distantly related fungal pathogen Cryptococcus neoformans. This study provides a global view of morphogenetic circuitry governing a key virulence trait, and illuminates a new mechanism by which fungi trigger host cell death. PMID:25824284

  17. Release of Severe Acute Respiratory Syndrome Coronavirus Nuclear Import Block Enhances Host Transcription in Human Lung Cells

    PubMed Central

    Tilton, Susan C.; Menachery, Vineet D.; Gralinski, Lisa E.; Schäfer, Alexandra; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Chang, Jean; Luna, Maria L.; Long, Casey E.; Shukla, Anil K.; Bankhead, Armand R.; Burkett, Susan E.; Zornetzer, Gregory; Tseng, Chien-Te Kent; Metz, Thomas O.; Pickles, Raymond; McWeeney, Shannon; Smith, Richard D.; Katze, Michael G.; Waters, Katrina M.; Baric, Ralph S.

    2013-01-01

    The severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein. Microarray analysis revealed significant changes in differential gene expression, with approximately twice as many upregulated genes in the mutant virus samples by 48 h postinfection, despite identical viral titers. Our data demonstrated that ORF6 protein expression attenuates the activity of numerous karyopherin-dependent host transcription factors (VDR, CREB1, SMAD4, p53, EpasI, and Oct3/4) that are critical for establishing antiviral responses and regulating key host responses during virus infection. Results were confirmed by proteomic and chromatin immunoprecipitation assay analyses and in parallel microarray studies using infected primary human airway epithelial cell cultures. The data strongly support the hypothesis that viral antagonists of nuclear import actively manipulate host responses in specific hierarchical patterns, contributing to the viral pathogenic potential in vivo. Importantly, these studies and modeling approaches not only provide templates for evaluating virus antagonism of nuclear import processes but also can reveal candidate cellular genes and pathways that may significantly influence disease outcomes following severe acute respiratory syndrome coronavirus infection in vivo. PMID:23365422

  18. A High Throughput Assay for Screening Host Restriction Factors and Antivirals Targeting Influenza A Virus

    PubMed Central

    Wang, Lingyan; Li, Wenjun; Li, Shitao

    2016-01-01

    Influenza A virus (IAV) is a human respiratory pathogen that causes seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. Currently approved treatments against influenza are losing effectiveness, as new viral strains are often refractory to conventional treatments. Thus, there is an urgent need to find new therapeutic targets with which to develop novel antiviral drugs. The common strategy to discover new drug targets and antivirals is high throughput screening. However, most current screenings for IAV rely on the engineered virus carrying a reporter, which prevents the application to newly emerging wild type flu viruses, such as 2009 pandemic H1N1 flu. Here we developed a simple and sensitive screening assay for wild type IAV by quantitatively analyzing viral protein levels using a Dot Blot Assay in combination with the LI-COR Imaging System (DBALIS). We first validated DBALIS in overexpression and RNAi assays, which are suitable methods for screening host factors regulating viral infection. More importantly, we also validated and initiated drug screening using DBALIS. A pilot compound screening identified a small molecule that inhibited IAV infection. Taken together, our method represents a reliable and convenient high throughput assay for screening novel host factors and antiviral compounds. PMID:27375580

  19. A High Throughput Assay for Screening Host Restriction Factors and Antivirals Targeting Influenza A Virus.

    PubMed

    Wang, Lingyan; Li, Wenjun; Li, Shitao

    2016-01-01

    Influenza A virus (IAV) is a human respiratory pathogen that causes seasonal epidemics and occasional global pandemics with devastating levels of morbidity and mortality. Currently approved treatments against influenza are losing effectiveness, as new viral strains are often refractory to conventional treatments. Thus, there is an urgent need to find new therapeutic targets with which to develop novel antiviral drugs. The common strategy to discover new drug targets and antivirals is high throughput screening. However, most current screenings for IAV rely on the engineered virus carrying a reporter, which prevents the application to newly emerging wild type flu viruses, such as 2009 pandemic H1N1 flu. Here we developed a simple and sensitive screening assay for wild type IAV by quantitatively analyzing viral protein levels using a Dot Blot Assay in combination with the LI-COR Imaging System (DBALIS). We first validated DBALIS in overexpression and RNAi assays, which are suitable methods for screening host factors regulating viral infection. More importantly, we also validated and initiated drug screening using DBALIS. A pilot compound screening identified a small molecule that inhibited IAV infection. Taken together, our method represents a reliable and convenient high throughput assay for screening novel host factors and antiviral compounds. PMID:27375580

  20. Host factors are dominant in the development of post-liver transplant non-alcoholic steatohepatitis

    PubMed Central

    Boga, Salih; Munoz-Abraham, Armando Salim; Rodriguez-Davalos, Manuel I; Emre, Sukru H; Jain, Dhanpat; Schilsky, Michael L

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a recognized problem in patients after orthotopic liver transplantation and may lead to recurrent graft injury. As the increased demand for liver allografts fail to match the available supply of donor organs, split liver transplantation (SLT) has emerged as an important technique to increase the supply of liver grafts. SLT allows two transplants to occur from one donor organ, and provides a unique model for observing the pathogenesis of NAFLD with respect to the role of recipient environmental and genetic factors. Here we report on two recipients of a SLT from the same deceased donor where only one developed non-alcoholic steatohepatitis (NASH), suggesting that host factors are critical for the development of NASH. PMID:27239259

  1. Influence of Host Factors on Immunoglobulin G Concentration in Oral Fluid Specimens

    PubMed Central

    Granade, Timothy C.; Phillips, Susan K.; Kitson-Piggott, Wendy; Gomez, Perry; Mahabir, Bisram; Oleander, Herbert; George, J. Richard; Baggs, James; Parekh, Bharat

    2002-01-01

    The influence of host factors (tobacco use, dentition, bleeding gums, oral rinsing, nasal medications, and time since the last meal) on immunoglobulin G (IgG) concentration in oral fluids (OF) was determined by univariate and multivariate analysis. Significant differences in IgG concentration were found to be associated with human immunodeficiency virus (HIV) status (HIV antibody positive, +16.60 μg/ml, P = 0.0001), sex (female, +1.23 μg/ml, P = 0.004), dentition (+2.83 μg/ml, edentulous versus dentulous, P = 0.0001), bleeding gums (+6.35 μg/ml, P = 0.0001), and time since the last meal (+3.55 μg/ml, >6 h, P = 0.0001). These factors could impact diagnostic methods that rely on the immunoglobulin concentration in OF specimens. PMID:11777855

  2. Host factors are dominant in the development of post-liver transplant non-alcoholic steatohepatitis.

    PubMed

    Boga, Salih; Munoz-Abraham, Armando Salim; Rodriguez-Davalos, Manuel I; Emre, Sukru H; Jain, Dhanpat; Schilsky, Michael L

    2016-05-28

    Non-alcoholic fatty liver disease (NAFLD) is a recognized problem in patients after orthotopic liver transplantation and may lead to recurrent graft injury. As the increased demand for liver allografts fail to match the available supply of donor organs, split liver transplantation (SLT) has emerged as an important technique to increase the supply of liver grafts. SLT allows two transplants to occur from one donor organ, and provides a unique model for observing the pathogenesis of NAFLD with respect to the role of recipient environmental and genetic factors. Here we report on two recipients of a SLT from the same deceased donor where only one developed non-alcoholic steatohepatitis (NASH), suggesting that host factors are critical for the development of NASH. PMID:27239259

  3. Hepatitis C: viral and host factors associated with non-response to pegylated interferon plus ribavirin

    PubMed Central

    Asselah, Tarik; Estrabaud, Emilie; Bieche, Ivan; Lapalus, Martine; De Muynck, Simon; Vidaud, Michel; Saadoun, David; Soumelis, Vassili; Marcellin, Patrick

    2010-01-01

    Treatment for chronic hepatitis C virus (HCV) infection has evolved considerably in the last years. The standard of care (SOC) for HCV infection consists in the combination of pegylated interferon (PEG-IFN) plus ribavirin. However, it only induces a sustained virological response (SVR) in half of genotype 1-infected patients. Several viral and host factors have been associated with non-response: steatosis, obesity, insulin resistance, age, male sex, ethnicity and genotypes. Many studies have demonstrated that in non-responders, some interferon-stimulated genes were upregulated before treatment. Those findings associated to clinical, biochemical and histological data may help detect responders before starting any treatment. This is a very important issue because the standard treatment is physically and economically demanding. The future of HCV treatment would probably consist in the addition of specifically targeted antiviral therapy for HCV such as protease and/or polymerase inhibitors to the SOC. In genotype 1 patients, very promising results have been reported when the protease inhibitor telaprevir or boceprevir is added to the SOC. It increases the SVR rates from approximately 50% (PEG-IFN plus ribavirin) to 70% (for patients treated with a combination of PEG-IFN plus ribavirin plus telaprevir). Different elements are associated with non-response: (i) viral factors, (ii) host factors and (iii) molecular mechanisms induced by HCV proteins to inhibit the IFN signalling pathway. The goal of this review is to present the mechanisms of non-response, to overcome it and to identify factors that can help to predict the response to anti-HCV therapy. PMID:20633102

  4. HtrA chaperone activity contributes to host cell binding in Campylobacter jejuni

    PubMed Central

    2011-01-01

    Background Acute gastroenteritis caused by the food-borne pathogen Campylobacter jejuni is associated with attachment of bacteria to the intestinal epithelium and subsequent invasion of epithelial cells. In C. jejuni, the periplasmic protein HtrA is required for efficient binding to epithelial cells. HtrA has both protease and chaperone activity, and is important for virulence of several bacterial pathogens. Results The aim of this study was to determine the role of the dual activities of HtrA in host cell interaction of C. jejuni by comparing an htrA mutant lacking protease activity, but retaining chaperone activity, with a ΔhtrA mutant and the wild type strain. Binding of C. jejuni to both epithelial cells and macrophages was facilitated mainly by HtrA chaperone activity that may be involved in folding of outer membrane adhesins. In contrast, HtrA protease activity played only a minor role in interaction with host cells. Conclusion We show that HtrA protease and chaperone activities contribute differently to C. jejuni's interaction with mammalian host cells, with the chaperone activity playing the major role in host cell binding. PMID:21939552

  5. 2', 3'-Cyclic nucleotide 3'-phosphodiesterase cells derived from transplanted marrow stromal cells and host tissue contribute to perineurial compartment formation in injured rat spinal cord.

    PubMed

    Cao, Qiong; Ding, Peng; Lu, Jia; Dheen, S Thameem; Moochhala, Shabbir; Ling, Eng-Ang

    2007-01-01

    Transdifferentiation of transplanted marrow stromal cells (MSCs) and reactive changes of glial cells in a completely transected rat spinal cord were examined. Marrow stromal cells exhibited 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) at the plasma membrane and this has allowed their identification after transplantation by immunoelectron microscopy. In the control rats, the lesion site showed activated microglia/neural macrophages and some elongated cells, whose cytoplasm was immunoreactive for CNP. Cells designated as CNP1 and apparently host-derived expressed CXCR4. In experimental rats receiving MSCs transplantation, CNP1 cells were increased noticeably. This was coupled with the occurrence of a different subset of CNP cells whose plasma membrane was CNP-immunoreactive and expressed CXCR4. These cells, designated as CNP2, enclosed both myelinated and unmyelinated neurites thus assuming a spatial configuration resembling that of Schwann cells. A remarkable feature was the extensive ramifications of CNP1 cells with long filopodia processes delineating the CNP2 cells and their associated neurites, forming many perineurial-like compartments. Present results have shown that CNP2 cells considered to be MSCs-derived can transform into cells resembling Schwann cells based on their spatial relation with the regenerating nerve fibers, whereas the CNP1 glial cells participate in formation of perineurial compartments, probably serving as conduits to guide the nerve fiber growth. The chemotactic migration of CNP cells either derived from host tissue or MSCs bearing CXCR4 may be attracted by stromal derived factor-1alpha (SDF-1alpha) produced locally. The coordinated cellular interaction between transplanted MSCs and local glial cells may promote the growth of nerve fibers through the lesion site. PMID:17061258

  6. Stem cell factors in plants: chromatin connections.

    PubMed

    Kornet, N; Scheres, B

    2008-01-01

    The progression of pluripotent stem cells to differentiated cell lineages requires major shifts in cell differentiation programs. In both mammals and higher plants, this process appears to be controlled by a dedicated set of transcription factors, many of which are kingdom specific. These divergent transcription factors appear to operate, however, together with a shared suite of factors that affect the chromatin state. It is of major importance to investigate whether such shared global control mechanisms indicate a common mechanistic basis for preservation of the stem cell state, initiation of differentiation programs, and coordination of cell state transitions. PMID:19150963

  7. Immune Reconstitution and Graft-Versus-Host Reactions in Rat Models of Allogeneic Hematopoietic Cell Transplantation

    PubMed Central

    Zinöcker, Severin; Dressel, Ralf; Wang, Xiao-Nong; Dickinson, Anne M.; Rolstad, Bent

    2012-01-01

    Allogeneic hematopoietic cell transplantation (alloHCT) extends the lives of thousands of patients who would otherwise succumb to hematopoietic malignancies such as leukemias and lymphomas, aplastic anemia, and disorders of the immune system. In alloHCT, different immune cell types mediate beneficial graft-versus-tumor (GvT) effects, regulate detrimental graft-versus-host disease (GvHD), and are required for protection against infections. Today, the “good” (GvT effector cells and memory cells conferring protection) cannot be easily separated from the “bad” (GvHD-causing cells), and alloHCT remains a hazardous medical modality. The transplantation of hematopoietic stem cells into an immunosuppressed patient creates a delicate environment for the reconstitution of donor blood and immune cells in co-existence with host cells. Immunological reconstitution determines to a large extent the immune status of the allo-transplanted host against infections and the recurrence of cancer, and is critical for long-term protection and survival after clinical alloHCT. Animal models continue to be extremely valuable experimental tools that widen our understanding of, for example, the dynamics of post-transplant hematopoiesis and the complexity of immune reconstitution with multiple ways of interaction between host and donor cells. In this review, we discuss the rat as an experimental model of HCT between allogeneic individuals. We summarize our findings on lymphocyte reconstitution in transplanted rats and illustrate the disease pathology of this particular model. We also introduce the rat skin explant assay, a feasible alternative to in vivo transplantation studies. The skin explant assay can be used to elucidate the biology of graft-versus-host reactions, which are known to have a major impact on immune reconstitution, and to perform genome-wide gene expression studies using controlled combinations of minor and major histocompatibility between the donor and the recipient

  8. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells.

    PubMed

    Isberg, Ralph R; O'Connor, Tamara J; Heidtman, Matthew

    2009-01-01

    The pathogenesis of Legionella pneumophila is derived from its growth within lung macrophages after aerosols are inhaled from contaminated water sources. Interest in this bacterium stems from its ability to manipulate host cell vesicular-trafficking pathways and establish a membrane-bound replication vacuole, making it a model for intravacuolar pathogens. Establishment of the replication compartment requires a specialized translocation system that transports a large cadre of protein substrates across the vacuolar membrane. These substrates regulate vesicle traffic and survival pathways in the host cell. This Review focuses on the strategies that L. pneumophila uses to establish intracellular growth and evaluates why this microorganism has accumulated an unprecedented number of translocated substrates that are targeted at host cells. PMID:19011659

  9. Host-parasite interactions that guide red blood cell invasion by malaria parasites

    PubMed Central

    Paul, Aditya S.; Egan, Elizabeth S.; Duraisingh, Manoj T.

    2015-01-01

    Purpose of Review Malaria is caused by the infection and proliferation of parasites from the genus Plasmodium in red blood cells (RBCs). A free Plasmodium parasite, or merozoite, released from an infected RBC must invade another RBC host cell to sustain a blood-stage infection. Here, we review recent advances on RBC invasion by Plasmodium merozoites, focusing on specific molecular interactions between host and parasite. Recent findings Recent work highlights the central role of host-parasite interactions at virtually every stage of RBC invasion by merozoites. Biophysical experiments have for the first time measured the strength of merozoite-RBC attachment during invasion. For P. falciparum, there have been many key insights regarding the invasion ligand PfRh5 in particular, including its influence on host species tropism, a co-crystal structure with its RBC receptor basigin, and its suitability as a vaccine target. For P. vivax, researchers identified the origin and emergence of the parasite from Africa, demonstrating a natural link to the Duffy-negative RBC variant in African populations. For the simian parasite P. knowlesi, zoonotic invasion into human cells is linked to RBC age, which has implications for parasitemia during an infection and thus malaria. Summary New studies of the molecular and cellular mechanisms governing RBC invasion by Plasmodium parasites have shed light on various aspects of parasite biology and host cell tropism; and indicate opportunities for malaria control. PMID:25767956

  10. Reduced Simian Immunodeficiency Virus Replication in Macrophages of Sooty Mangabeys Is Associated with Increased Expression of Host Restriction Factors

    PubMed Central

    Mir, Kiran D.; Mavigner, Maud; Wang, Charlene; Paiardini, Mirko; Sodora, Donald L.; Chahroudi, Ann M.; Bosinger, Steven E.

    2015-01-01

    ABSTRACT Macrophages are target cells of HIV/SIV infection that may play a role in AIDS pathogenesis and contribute to the long-lived reservoir of latently infected cells during antiretroviral therapy (ART). In previous work, we and others have shown that during pathogenic SIV infection of rhesus macaques (RMs), rapid disease progression is associated with high levels of in vivo macrophage infection. In contrast, during nonpathogenic SIV infection of sooty mangabeys (SMs), neither spontaneous nor experimental CD4+ T cell depletion results in substantial levels of in vivo macrophage infection. To test the hypothesis that SM macrophages are intrinsically more resistant to SIV infection than RM macrophages, we undertook an in vitro comparative assessment of monocyte-derived macrophages (MDMs) from both nonhuman primate species. Using the primary isolate SIVM949, which replicates well in lymphocytes from both RMs and SMs, we found that infection of RM macrophages resulted in persistent SIV-RNA production while SIV-RNA levels in SM macrophage cultures decreased 10- to 100-fold over a similar temporal course of in vitro infection. To explore potential mechanisms responsible for the lower levels of SIV replication and/or production in macrophages from SMs we comparatively assessed, in the two studied species, the expression of the SIV coreceptor as well as the expression of a number of host restriction factors. While previous studies showed that SM monocytes express lower levels of CCR5 (but not CD4) than RM monocytes, the level of CCR5 expression in MDMs was similar in the two species. Interestingly, we found that SM macrophages exhibited a significantly greater increase in the expression of tetherin (P = 0.003) and TRIM22 (P = 0.0006) in response to alpha interferon stimulation and increased expression of multiple host restriction factors in response to lipopolysaccharide stimulation and exposure to SIV. Overall, these findings confirm, in an in vitro infection system

  11. Role of B Cells in Host Defense against Primary Coxiella burnetii Infection

    PubMed Central

    Schoenlaub, Laura; Elliott, Alexandra; Freches, Danielle; Mitchell, William J.

    2015-01-01

    Despite Coxiella burnetii being an obligate intracellular bacterial pathogen, our recent study demonstrated that B cells play a critical role in vaccine-induced immunity to C. burnetii infection by producing protective antibodies. However, the role of B cells in host defense against primary C. burnetii infection remains unclear. In this study, we investigated whether B cells play an important role in host defense against primary C. burnetii infection. The results showed that peritoneal B cells were able to phagocytose virulent C. burnetii bacteria and form Coxiella-containing vacuoles (CCVs) and that C. burnetii can infect and replicate in peritoneal B1a subset B cells in vitro, demonstrating a potential role for peritoneal B cells in host defense against C. burnetii infection in vivo. In addition, the results showing that B1a cells secreted a high level of interleukin-10 (IL-10) in response to C. burnetii infection in vitro suggest that B1a cells may play an important role in inhibiting the C. burnetii infection-induced inflammatory response. The observation that adoptive transfer of peritoneal B cells did not significantly affect the severity of C. burnetii infection-induced diseases in both severe combined immunity-deficient (SCID) and μMT mice indicates that peritoneal B cells alone may not be able to control C. burnetii infection. In contrast, our finding that C. burnetii infection induced more-severe splenomegaly and a higher bacterial burden in the spleens of B1a cell-deficient Bruton's tyrosine kinase x-linked immunity-deficient (BTKxid) mice than in their wild-type counterparts further suggests that B1a cells play an important role in host defense against primary C. burnetii infection. PMID:26438792

  12. Role of B cells in host defense against primary Coxiella burnetii infection.

    PubMed

    Schoenlaub, Laura; Elliott, Alexandra; Freches, Danielle; Mitchell, William J; Zhang, Guoquan

    2015-12-01

    Despite Coxiella burnetii being an obligate intracellular bacterial pathogen, our recent study demonstrated that B cells play a critical role in vaccine-induced immunity to C. burnetii infection by producing protective antibodies. However, the role of B cells in host defense against primary C. burnetii infection remains unclear. In this study, we investigated whether B cells play an important role in host defense against primary C. burnetii infection. The results showed that peritoneal B cells were able to phagocytose virulent C. burnetii bacteria and form Coxiella-containing vacuoles (CCVs) and that C. burnetii can infect and replicate in peritoneal B1a subset B cells in vitro, demonstrating a potential role for peritoneal B cells in host defense against C. burnetii infection in vivo. In addition, the results showing that B1a cells secreted a high level of interleukin-10 (IL-10) in response to C. burnetii infection in vitro suggest that B1a cells may play an important role in inhibiting the C. burnetii infection-induced inflammatory response. The observation that adoptive transfer of peritoneal B cells did not significantly affect the severity of C. burnetii infection-induced diseases in both severe combined immunity-deficient (SCID) and μMT mice indicates that peritoneal B cells alone may not be able to control C. burnetii infection. In contrast, our finding that C. burnetii infection induced more-severe splenomegaly and a higher bacterial burden in the spleens of B1a cell-deficient Bruton's tyrosine kinase x-linked immunity-deficient (BTK(xid)) mice than in their wild-type counterparts further suggests that B1a cells play an important role in host defense against primary C. burnetii infection. PMID:26438792

  13. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands.

    PubMed

    Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A; van der Linden, Giel T J; Schaminée, Joop H J; Siepel, Henk; Kleijn, David

    2014-12-01

    Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species. PMID:25422416

  14. Relationships between host and symbiont cell cycles in sea anemones and their symbiotic dinoflagellates.

    PubMed

    Dimond, James L; Pineda, Rea R; Ramos-Ascherl, Zullaylee; Bingham, Brian L

    2013-10-01

    The processes by which cnidarians and their algal endosymbionts achieve balanced growth and biomass could include coordination of host and symbiont cell cycles. We evaluated this theory with natural populations of sea anemones hosting symbiotic dinoflagellates, focusing on the temperate sea anemone Anthopleura elegantissima symbiotic with Symbiodinium muscatinei in Washington State, USA, and the tropical anemone Stichodactyla helianthus associating with unknown Symbiodinium spp. in Belize. By extruding symbiont-containing gastrodermal cells from the relatively large tentacles of these species and using nuclear staining and flow cytometry, we selectively analyzed cell cycle distributions of the symbionts and the host gastrodermal cells that house them. We found no indications of diel synchrony in host and symbiont G2/M phases, and we observed evidence of diel periodicity only in Symbiodinium spp. associated with S. helianthus but not in the anemone itself. Seasonally, S. muscatinei showed considerable G2/M phase variability among samples collected quarterly over an annual period, while the G2/M phase of its host varied much less. Within samples taken at different times of the year, correlations between host and symbiont G2/M phases ranged from very weakly to very strongly positive, with significant correlations in only half of the samples (two of four A. elegantissima samples and one of two S. helianthus samples). Overall, the G2/M phase relationships across species and sampling periods were positive. Thus, while we found no evidence of close cell cycle coupling, our results suggest a loose, positive relationship between cell cycle processes of the symbiotic partners. PMID:24243963

  15. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction

    PubMed Central

    Anand, Namrata; Kanwar, Rupinder K; Dubey, Mohan Lal; Vahishta, R K; Sehgal, Rakesh; Verma, Anita K; Kanwar, Jagat R

    2015-01-01

    Background Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs) and macrophages (human monocytic cell line-derived macrophages THP1 cells). Methods Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections. Results The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene expression and cellular activity depending on the degree of iron saturation of lactoferrin. A significant increase (P<0.05) in production of reactive oxygen species, phagocytic activity, and Toll-like receptor expression was observed in host cells incubated with iron-saturated lactoferrin when compared with an untreated control group. However, there was no significant (P>0.05) change in percentage viability in the different groups of host cells treated, and no downregulation of survivin gene expression was found at 48 hours post-incubation. Upregulation of the Toll-like receptor and downregulation of the P-gp gene confirmed the immunomodulatory potential of lactoferrin protein. Conclusion The present study

  16. Parasitophorous vacuoles of Leishmania mexicana acquire macromolecules from the host cell cytosol via two independent routes.

    PubMed

    Schaible, U E; Schlesinger, P H; Steinberg, T H; Mangel, W F; Kobayashi, T; Russell, D G

    1999-03-01

    The intracellular parasite Leishmania survives and proliferates in host macrophages. In this study we show that parasitophorous vacuoles of L. mexicana gain access to cytosolic material via two different routes. (1) Small anionic molecules such as Lucifer Yellow are rapidly transported into the vacuoles by an active transport mechanism that is sensitive to inhibitors of the host cell's organic anion transporter. (2) Larger molecules such as fluorescent dextrans introduced into the host cell cytosol are also delivered to parasitophorous vacuoles. This transport is slower and sensitive to modulators of autophagy. Infected macrophages were examined by two novel assays to visualize and quantify this process. Immunoelectron microscopy of cells loaded with digoxigenin-dextran revealed label in multivesicular endosomes, which appeared to fuse with parasitophorous vacuoles. The inner membranes of the multivesicular vesicles label strongly with antibodies against lysobisphosphatidic acid, suggesting that they represent a point of confluence between the endosomal and autophagosomal pathways. Although the rate of autophagous transfer was comparable in infected and uninfected cells, infected cells retained hydrolyzed cysteine proteinase substrate to a greater degree. These data suggest that L. mexicana-containing vacuoles have access to potential nutrients in the host cell cytosol via at least two independent mechanisms. PMID:9973603

  17. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton.

    PubMed

    Labonté, Jessica M; Swan, Brandon K; Poulos, Bonnie; Luo, Haiwei; Koren, Sergey; Hallam, Steven J; Sullivan, Matthew B; Woyke, Tanja; Wommack, K Eric; Stepanauskas, Ramunas

    2015-11-01

    Viral infections dynamically alter the composition and metabolic potential of marine microbial communities and the evolutionary trajectories of host populations with resulting feedback on biogeochemical cycles. It is quite possible that all microbial populations in the ocean are impacted by viral infections. Our knowledge of virus-host relationships, however, has been limited to a minute fraction of cultivated host groups. Here, we utilized single-cell sequencing to obtain genomic blueprints of viruses inside or attached to individual bacterial and archaeal cells captured in their native environment, circumventing the need for host and virus cultivation. A combination of comparative genomics, metagenomic fragment recruitment, sequence anomalies and irregularities in sequence coverage depth and genome recovery were utilized to detect viruses and to decipher modes of virus-host interactions. Members of all three tailed phage families were identified in 20 out of 58 phylogenetically and geographically diverse single amplified genomes (SAGs) of marine bacteria and archaea. At least four phage-host interactions had the characteristics of late lytic infections, all of which were found in metabolically active cells. One virus had genetic potential for lysogeny. Our findings include first known viruses of Thaumarchaeota, Marinimicrobia, Verrucomicrobia and Gammaproteobacteria clusters SAR86 and SAR92. Viruses were also found in SAGs of Alphaproteobacteria and Bacteroidetes. A high fragment recruitment of viral metagenomic reads confirmed that most of the SAG-associated viruses are abundant in the ocean. Our study demonstrates that single-cell genomics, in conjunction with sequence-based computational tools, enable in situ, cultivation-independent insights into host-virus interactions in complex microbial communities. PMID:25848873

  18. The graft-versus-host reaction and immune function. I. T helper cell immunodeficiency associated with graft-versus-host-induced thymic epithelial cell damage

    SciTech Connect

    Seddik, M.; Seemayer, T.A.; Lapp, W.S.

    1984-03-01

    The injection of parental A strain lymphoid cells into adrenalectomized CBAxA F1 (BAF1) mice induced a chronic graft-versus-host (GVH) reaction resulting in T cell and B cell immunosuppression as well as thymic epithelial cell injury, but not stress-related thymic involution. Thymocytes from BAF1 mice undergoing a GVH reaction were studied for their ability to reconstitute T helper cell (TH) function and phytohemagglutinin (PHA) and concanavalin A (Con A) mitogen responses in thymectomized, irradiated, BAF1 mice reconstituted with normal syngeneic bone marrow (ATxBM). Thymocytes from BAF1 mice early after the induction of a GVH reaction (days 10-12) were as effective as normal thymocytes in reconstituting TH and mitogen responses. Thymocytes from BAF1 mice 40 or more days after the induction of a GVH reaction did not reconstitute either the TH function or PHA and Con A responses in ATxBM mice. The inability to reconstitute ATxBM mice was not due to the presence of suppressor cells contained in the thymocyte inoculum. It is proposed that GVH-induced thymic epithelial cell injury blocks or arrests normal T cell differentiation, resulting in a population of thymocytes that lack the potential to become competent T helper cells or mitogen-responsive cells when transferred into ATxBM mice. This thymic functional defect results in a permanent TH immunodeficiency in mice experiencing a chronic GVH reaction.

  19. More similar than different: Host cell protein production using three null CHO cell lines.

    PubMed

    Yuk, Inn H; Nishihara, Julie; Walker, Donald; Huang, Eric; Gunawan, Feny; Subramanian, Jayashree; Pynn, Abigail F J; Yu, X Christopher; Zhu-Shimoni, Judith; Vanderlaan, Martin; Krawitz, Denise C

    2015-10-01

    To understand the diversity in the cell culture harvest (i.e., feedstock) provided for downstream processing, we compared host cell protein (HCP) profiles using three Chinese Hamster Ovary (CHO) cell lines in null runs which did not generate any recombinant product. Despite differences in CHO lineage, upstream process, and culture performance, the cell lines yielded similar cell-specific productivities for immunogenic HCPs. To compare the dynamics of HCP production, we searched for correlations between the time-course profiles of HCP (as measured by multi-analyte ELISA) and those of two intracellular HCP species, phospholipase B-like 2 (PLBL2) and lactate dehydrogenase (LDH). Across the cell lines, proteins in the day 14 supernatants analyzed by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) showed different spot patterns. However, subsequent analysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) indicated otherwise: the total number of peptides and proteins identified were comparable, and 80% of the top 1,000 proteins identified were common to all three lines. Finally, to assess the impact of culture viability on extracellular HCP profiles, we analyzed supernatants from a cell line whose viability dropped after day 10. The amounts of HCP and PLBL2 (quantified by their respective ELISAs) as well as the numbers and major populations of HCPs (identified by LC-MS/MS) were similar across days 10, 14, and 17, during which viabilities declined from ∼80% to <20% and extracellular LDH levels increased several-fold. Our findings indicate that the CHO-derived HCPs in the feedstock for downstream processing may not be as diverse across cell lines and upstream processes, or change as dramatically upon viability decline as originally expected. In addition, our findings show that high density CHO cultures (>10(7) cells/mL)-operated in fed-batch mode and exhibiting high viabilities (>70%) throughout the culture duration-can accumulate a

  20. FbsC, a Novel Fibrinogen-binding Protein, Promotes Streptococcus agalactiae-Host Cell Interactions*

    PubMed Central

    Buscetta, Marco; Papasergi, Salvatore; Firon, Arnaud; Pietrocola, Giampiero; Biondo, Carmelo; Mancuso, Giuseppe; Midiri, Angelina; Romeo, Letizia; Teti, Giuseppe; Speziale, Pietro; Trieu-Cuot, Patrick; Beninati, Concetta

    2014-01-01

    Streptococcus agalactiae (group B Streptococcus or GBS) is a common cause of invasive infections in newborn infants and adults. The ability of GBS to bind human fibrinogen is of crucial importance in promoting colonization and invasion of host barriers. We characterized here a novel fibrinogen-binding protein of GBS, designated FbsC (Gbs0791), which is encoded by the prototype GBS strain NEM316. FbsC, which bears two bacterial immunoglobulin-like tandem repeat domains and a C-terminal cell wall-anchoring motif (LPXTG), was found to be covalently linked to the cell wall by the housekeeping sortase A. Studies using recombinant FbsC indicated that it binds fibrinogen in a dose-dependent and saturable manner, and with moderate affinity. Expression of FbsC was detected in all clinical GBS isolates, except those belonging to the hypervirulent lineage ST17. Deletion of fbsC decreases NEM316 abilities to adhere to and invade human epithelial and endothelial cells, and to form biofilm in vitro. Notably, bacterial adhesion to fibrinogen and fibrinogen binding to bacterial cells were abolished following fbsC deletion in NEM316. Moreover, the virulence of the fbsC deletion mutant and its ability to colonize the brain were impaired in murine models of infection. Finally, immunization with recombinant FbsC significantly protected mice from lethal GBS challenge. In conclusion, FbsC is a novel fibrinogen-binding protein expressed by most GBS isolates that functions as a virulence factor by promoting invasion of epithelial and endothelial barriers. In addition, the protein has significant immunoprotective activity and may be a useful component of an anti-GBS vaccine. PMID:24904056

  1. Systems approach to characterizing cell signaling in host-pathogen response to staphylococcus toxin.

    SciTech Connect

    Ambrosiano, J. J.; Gupta, G.; Gray, P. C.; Hush, D. R.; Fugate, M. L.; Cleland, T. J.; Roberts, R. M.; Hlavacek, W. S.; Smith, J. L.

    2002-01-01

    The mammalian immune system is capable of highly sensitive and specific responses when challenged by pathogens. It is believed that the human immune repertoire - the total number of distinct antigens that can be recognized - is between 10{sup 9} and 10{sup 11}. The most specific responses are cell mediated and involve complex and subtle communications among the immune cells via small proteins known as cytokines. The details of host-pathogen response are exceedingly complex, involving both intracellular and extracellular mechanisms. These include the presentation of antigen by B cells to helper T cells and subsequent stimulation of signal transduction pathways and gene expression within both B and T-cell populations. These in turn lead to the secretion of cytokines and receptor expression. Intercellular cytokine signaling can trigger a host of immune responses including the proliferation and specialization of naive immune cells and the marshaling of effector cells to combat infection. In the ever-evolving game of threat and countermeasure played out by pathogens and their intended hosts, there are direct assaults aimed at subverting the immune system's ability to recognize antigens and respond effectively to challenge by pathogens. Staphylococcus is one of these. Staph bacteria secrete a variety of toxins known generically as superantigens. Superantigen molecules bind simultaneously to the MHC receptors of antigen presenting cells and the TCR receptors of helper T cells, locking them in place and leading to overstimulation. This strategy can effectively burn out the immune system in a matter of days.

  2. Leishmania donovani Exploits Myeloid Cell Leukemia 1 (MCL-1) Protein to Prevent Mitochondria-dependent Host Cell Apoptosis.

    PubMed

    Giri, Jayeeta; Srivastav, Supriya; Basu, Moumita; Palit, Shreyasi; Gupta, Purnima; Ukil, Anindita

    2016-02-12

    Apoptosis is one of the mechanisms used by host cells to remove unwanted intracellular organisms, and often found to be subverted by pathogens through use of host anti-apoptotic proteins. In the present study, with the help of in vitro and in vivo approaches, we documented that the macrophage anti-apoptotic protein myeloid cell leukemia 1 (MCL-1) is exploited by the intra-macrophage parasite Leishmania donovani to protect their "home" from actinomycin D-induced mitochondria-dependent apoptosis. Among all the anti-apoptotic BCL-2 family members, infection preferentially up-regulated expression of MCL-1 at both the mRNA and protein levels and compared with infected control, MCL-1-silenced infected macrophages documented enhanced caspase activity and increased apoptosis when subjected to actinomycin D treatment. Phosphorylation kinetics and ChIP assay demonstrated that infection-induced MCL-1 expression was regulated by transcription factor CREB (cAMP-response element-binding protein) and silencing of CREB resulted in reduced expression of MCL-1 and increased apoptosis. During infection, MCL-1 was found to be localized in mitochondria and this was significantly reduced in Tom70-silenced macrophages, suggesting the active role of TOM70 in MCL-1 transport. In the mitochondria, MCL-1 interacts with the major pro-apoptotic protein BAK and prevents BAK-BAK homo-oligomer formation thereby preventing cytochrome c release-mediated mitochondrial dysfunction. Silencing of MCL-1 in the spleen of infected mice showed decreased parasite burden and increased induction of splenocyte apoptosis. Collectively our results showed that L. donovani exploited the macrophage anti-apoptotic protein MCL-1 to prevent BAK-mediated mitochondria-dependent apoptosis thereby protecting its niche, which is essential for disease progression. PMID:26670606

  3. Knockdown of Five Genes Encoding Uncharacterized Proteins Inhibits Entamoeba histolytica Phagocytosis of Dead Host Cells.

    PubMed

    Sateriale, Adam; Miller, Peter; Huston, Christopher D

    2016-04-01

    Entamoeba histolytica is the protozoan parasite that causes invasive amebiasis, which is endemic to many developing countries and characterized by dysentery and liver abscesses. The virulence of E. histolytica correlates with the degree of host cell engulfment, or phagocytosis, and E. histolytica phagocytosis alters amebic gene expression in a feed-forward manner that results in an increased phagocytic ability. Here, we used a streamlined RNA interference screen to silence the expression of 15 genes whose expression was upregulated in phagocytic E. histolytica trophozoites to determine whether these genes actually function in the phagocytic process. When five of these genes were silenced, amebic strains with significant decreases in the ability to phagocytose apoptotic host cells were produced. Phagocytosis of live host cells, however, was largely unchanged, and the defects were surprisingly specific for phagocytosis. Two of the five encoded proteins, which we named E. histolytica ILWEQ (EhILWEQ) and E. histolytica BAR (EhBAR), were chosen for localization via SNAP tag labeling and localized to the site of partially formed phagosomes. Therefore, both EhILWEQ and EhBAR appear to contribute to E. histolytica virulence through their function in phagocytosis, and the large proportion (5/15 [33%]) of gene-silenced strains with a reduced ability to phagocytose host cells validates the previously published microarray data set demonstrating feed-forward control of E. histolytica phagocytosis. Finally, although only limited conclusions can be drawn from studies using the virulence-deficient G3 Entamoeba strain, the relative specificity of the defects induced for phagocytosis of apoptotic cells but not healthy cells suggests that cell killing may play a rate-limiting role in the process of Entamoeba histolytica host cell engulfment. PMID:26810036

  4. A modified host-cell reactivation assay to quantify DNA repair capacity in cryopreserved peripheral lymphocytes.

    PubMed

    Mendez, Pedro; Taron, Miquel; Moran, Teresa; Fernandez, Marco A; Requena, Gerard; Rosell, Rafael

    2011-06-10

    The host-cell reactivation assay (HCRA) is a functional assay that allows the identification of the genes responsible for DNA repair-deficient syndromes, such as Xeroderma pigmentosum, by cross-complementation experiments. It has also been used in molecular epidemiology studies to correlate the low nucleotide excision repair pathway function in peripheral blood lymphocytes with an increased risk of bladder, head and neck, skin and lung cancers. Herein, we present the technical validation of a newly modified HCRA, where nucleofection is used for the transfection of the pmaxGFP plasmid into cryopreserved peripheral blood lymphocytes (PBLs) or lymphoblastoid cell lines. In each sample, 20-24h after transfection, the relative DNA repair capacity (DRC) was quantified by flow cytometry, comparing the transfection efficiency of nucleoporated cells with undamaged plasmid to those transfected with UV-light damaged plasmid in the seven cell lines that were characterized by different DNA repair phenotypes. Dead cells were excluded from the analysis. We observed a high reproducibility of the relative DRC, transfection efficiency and cell viability. The inter-experimental normalization of the flow cytometry resulted in an increased data accuracy and reproducibility. The amount of cells required for each transfection reaction was reduced fourfold, without affecting the final relative DRC. Furthermore, our HCRA demonstrated strong discrimination power in the UV-light dose-response, both in lymphoblastoid cell lines and cryopreserved PBLs. We also observed a strong correlation of the relative DRC data, when samples were measured against two independent batches of both damaged and undamaged plasmid DNA. The relative DRC variable shows a normal distribution when analyzed in the cryopreserved PBLs from a cohort of 35 lung cancer patients and a 5.59-fold variation in the relative DRC is identified among our patients. The mitotic dynamic was discarded as a confounding factor for the

  5. Venom of Euplectrus separatae causes hyperlipidemia by lysis of host fat body cells.

    PubMed

    Nakamatsu, Y; Tanaka, T

    2004-04-01

    Although the lepidopteran larva Pseudaletia separata is attacked by the gregarious ectoparasitoid Euplectrus separatae, it continues to feed and grow. Lipid concentration in the hemolymph of the parasitized host was higher than that of the nonparasitized host from 3 to 8 days after parasitization. Artificial injection of parasitoid venom also elevated lipid concentration in the host hemolymph. One day after venom injection the host's fat body contained many lipid particles, but most of the lipid particles disappeared 7 days later. Light microscopy and transmission electron microscopy showed the lipid particles leaving the fat body cells as a result of the lysis of the fat body cells. These results suggest that the venom elevated the lipid concentration in the host hemolymph by provoking the release of lipid particles from the fat body. Though most of the lipid particles were freely floating in the host hemolymph, a portion of the released lipid particles were phagocytized by hemocytes. The amount of lipid that was loaded to lipophorin in the hemolymph of the venom-injected host was measured, but it was not sufficient to explain the high lipid titer in the hemolymph of parasitized and venom-injected host larvae. The fact that parasitoid larva consumed many hemocytes as evidenced by their presence in the midgut supported the hypothesis that the parasitoid larvae fed on the host hemolymph containing the free lipid particles, the hemocytes phagocytizing the lipid particles, and the lipid-loaded lipophorin. The possibility of the venom contribution to the disruption of the intercellular matrix was examined. The venom showed high activity of matrix metalloproteinase (MMP), especially when it was mixed with the hemolymph of non-parasitized 5th instar larvae. We suggest that the MMP in the venom was activated by some components of the host hemolymph. On the other hand, the venom mixed with hemolymph could not decompose gelatin on zymography, suggesting that the venom

  6. New ex vivo reporter assay system reveals that σ factors of an unculturable pathogen control gene regulation involved in the host switching between insects and plants

    PubMed Central

    Ishii, Yoshiko; Kakizawa, Shigeyuki; Oshima, Kenro

    2013-01-01

    Abstract Analysis of the environmental regulation of bacterial gene expression is important for understanding the nature, pathogenicity, and infection route of many pathogens. “Candidatus Phytoplasma asteris”, onion yellows strain M (OY-M), is a phytopathogenic bacterium that is able to adapt to quite different host environments, including plants and insects, with a relatively small ∼850 kb genome. The OY-M genome encodes two sigma (σ) factors, RpoD and FliA, that are homologous to Escherichia coli σ70 and σ28, respectively. Previous studies show that gene expression of OY-M dramatically changes upon the response to insect and plant hosts. However, very little is known about the relationship between the two σ factors and gene regulatory systems in OY-M, because phytoplasma cannot currently be cultured in vitro. Here, we developed an Escherichia coli-based ex vivo reporter assay (EcERA) system to evaluate the transcriptional induction of phytoplasmal genes by the OY-M-derived σ factors. EcERA revealed that highly expressed genes in insect and plant hosts were regulated by RpoD and FliA, respectively. We also demonstrated that rpoD expression was significantly higher in insect than in plant hosts and fliA expression was similar between the hosts. These data indicate that phytoplasma-derived RpoD and FliA play key roles in the transcriptional switching mechanism during host switching between insects and plants. Our study will be invaluable to understand phytoplasmal transmission, virulence expression in plants, and the effect of infection on insect fitness. In addition, the novel EcERA system could be broadly applied to reveal transcriptional regulation mechanisms in other unculturable bacteria. Phytoplasma, an unculturable plant pathogen, could infect plant and insect cells, and dramatically changes their genes upon the response to these hosts. By a new system developed in this study, interactions between phytoplasma promoters and sigma factors were

  7. Know your neighbor: Microbiota and host epithelial cells interact locally to control intestinal function and physiology.

    PubMed

    Sommer, Felix; Bäckhed, Fredrik

    2016-05-01

    Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology. PMID:26990415

  8. Tracking single viruses infecting their host cells using quantum dots.

    PubMed

    Liu, Shu-Lin; Wang, Zhi-Gang; Zhang, Zhi-Ling; Pang, Dai-Wen

    2016-03-01

    Single-virus tracking (SVT) technique, which uses microscopy to monitor the behaviors of viruses, is a vital tool to study the real-time and in situ infection dynamics and virus-related interactions in live cells. To make SVT a more versatile tool in biological research, the researchers have developed a quantum dot (QD)-based SVT technique, which can be utilized for long-term and highly sensitive tracking in live cells. In this review, we describe the development of a QD-based SVT technique and its biological applications. We first discuss the advantage of QDs as tags in the SVT field by comparing the conventional tags, and then focus on the implementation of QD-based SVT experiments, including the QD labeling strategy, instrumentation, and image analysis method. Next, we elaborate the recent advances of QD-based SVT in the biological field, and mainly emphasize the representative examples to show how to use this technique to acquire more meaningful biological information. PMID:26695711

  9. Host and donor risk factors before and after liver transplantation that impact HCV recurrence.

    PubMed

    Berenguer, Marina

    2003-11-01

    1. The natural history of hepatitis C after liver transplantation is variable. Several factors, including those related to the virus, the host, the environment and the donor, are probably implicated in the outcome. 2. The immune status per se likely represents the main significant variable in influencing disease severity in hepatitis C virus-infected patients. Findings that support this statement include the higher aggressivity of hepatitis C in immunocompromised liver transplant recipients as compared with that observed in immunocompetent patients, both before and after the development of compensated cirrhosis, and the significant association described between the degree of immunosuppression and disease severity. 3. Similar to that observed in the immunocompetent population, the age at the time of infection (age of the donor) strongly affects posttransplantation hepatitis C virus-related disease progression. 4. Hepatitis C-related disease progression is faster in patients who underwent transplantation in recent years as compared with those who underwent transplantation in earlier cohorts. The increasing age of the donor and the use of stronger immunosuppression may, in part, explain the worse outcomes seen in recent years. 5. Additional host-related variables predictive of outcome include the immunogenetic background, the timing of recurrence, and the early histologic findings. PMID:14586894

  10. The correlated factors of the uneven performances of the CDM host countries

    NASA Astrophysics Data System (ADS)

    Zhu, Jinshan

    2012-03-01

    The Kyoto Protocol’s Clean Development Mechanism (CDM) has experienced a rapid growth. Up to 2010, 2763 projects have been registered, standing for about 433 million ton CO2 equivalent (CO2-eq.) of annual carbon credits. However, the performances of CDM host countries are remarkably unbalanced. Previous literature suggested that economic and investment conditions, energy intensity, energy structure, the share of annual carbon credits from high global warming potential (GWP) green house gas (GHG), capacity and institutional buildings of domestic CDM governance can play important roles in promoting CDM. This quantitative analysis shows that domestic economic and investment conditions are the most decisive factors determining the performance of the CDM host countries. Additionally, the influence of carbon intensity of energy consumption is relatively modest, and energy intensity of GDP as well as the share of annual carbon credits from high GWP GHG is less significant. Moreover, several leading CDM countries are not as successful as they seem to be, when the influences of their vast territories, distinguished economic and investment conditions are excluded. Therefore, to simply transplant the CDM governances of these countries can hardly guarantee that other countries will boost their carbon credit outputs.

  11. Bacterial Adhesion of Streptococcus suis to Host Cells and Its Inhibition by Carbohydrate Ligands

    PubMed Central

    Kouki, Annika; Pieters, Roland J.; Nilsson, Ulf J.; Loimaranta, Vuokko; Finne, Jukka; Haataja, Sauli

    2013-01-01

    Streptococcus suis is a Gram-positive bacterium, which causes sepsis and meningitis in pigs and humans. This review examines the role of known S. suis virulence factors in adhesion and S. suis carbohydrate-based adhesion mechanisms, as well as the inhibition of S. suis adhesion by anti-adhesion compounds in in vitro assays. Carbohydrate-binding specificities of S. suis have been identified, and these studies have shown that many strains recognize Galα1-4Gal-containing oligosaccharides present in host glycolipids. In the era of increasing antibiotic resistance, new means to treat infections are needed. Since microbial adhesion to carbohydrates is important to establish disease, compounds blocking adhesion could be an alternative to antibiotics. The use of oligosaccharides as drugs is generally hampered by their relatively low affinity (micromolar) to compete with multivalent binding to host receptors. However, screening of a library of chemically modified Galα1-4Gal derivatives has identified compounds that inhibit S. suis adhesion in nanomolar range. Also, design of multivalent Galα1-4Gal-containing dendrimers has resulted in a significant increase of the inhibitory potency of the disaccharide. The S. suis adhesin binding to Galα1-4Gal-oligosaccharides, Streptococcal adhesin P (SadP), was recently identified. It has a Galα1-4Gal-binding N-terminal domain and a C-terminal LPNTG-motif for cell wall anchoring. The carbohydrate-binding domain has no homology to E. coli P fimbrial adhesin, which suggests that these Gram-positive and Gram-negative bacterial adhesins recognizing the same receptor have evolved by convergent evolution. SadP adhesin may represent a promising target for the design of anti-adhesion ligands for the prevention and treatment of S. suis infections. PMID:24833053

  12. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration

    PubMed Central

    McLaughlin, Laura M.; Xu, Hui; Carden, Sarah E.; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C.; Monack, Denise M.

    2014-01-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involved in modulating migration towards a chemical signal are limited because they do not employ stable, precisely controlled chemical gradients. Here, we develop a positive selection microfluidic-based genetic screen that allows us to identify Salmonella virulence factors that manipulate DC migration within stable, linear chemokine gradients. Our screen identified 7 Salmonella effectors (SseF, SifA, SspH2, SlrP, PipB2, SpiC and SseI) that inhibit DC chemotaxis toward CCL19. This method is widely applicable for identifying novel microbial factors that influence normal host cell chemotaxis as well as revealing new mammalian genes involved in directed cell migration. PMID:24599496

  13. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration.

    PubMed

    McLaughlin, Laura M; Xu, Hui; Carden, Sarah E; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C; Monack, Denise M

    2014-04-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involved in modulating migration towards a chemical signal are limited because they do not employ stable, precisely controlled chemical gradients. Here, we develop a positive selection microfluidic-based genetic screen that allows us to identify Salmonella virulence factors that manipulate DC migration within stable, linear chemokine gradients. Our screen identified 7 Salmonella effectors (SseF, SifA, SspH2, SlrP, PipB2, SpiC and SseI) that inhibit DC chemotaxis toward CCL19. This method is widely applicable for identifying novel microbial factors that influence normal host cell chemotaxis as well as revealing new mammalian genes involved in directed cell migration. PMID:24599496

  14. MiR-22 promotes porcine reproductive and respiratory syndrome virus replication by targeting the host factor HO-1.

    PubMed

    Xiao, Shuqi; Du, Taofeng; Wang, Xue; Ni, Huaibao; Yan, Yunhuan; Li, Na; Zhang, Chong; Zhang, Angke; Gao, Jiming; Liu, Hongliang; Pu, Fengxing; Zhang, Gaiping; Zhou, En-Min

    2016-08-30

    Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viruses affecting the swine industry worldwide. MicroRNAs (miRNAs) play vital roles in virus-host interactions by regulating the expression of viral or host gene at posttranscriptional level. Our previous research showed that PRRSV infection down-regulates the expression of heme oxygenase-1 (HO-1), a pivotal cytoprotective enzyme, and overexpression of HO-1 inhibits PRRSV replication. In this study, we demonstrate that host miRNA miR-22 can downregulate HO-1 expression by directly targeting its 3' untranslated region. Suppression of HO-1 expression by miR-22 facilitates PRRSV replication. This work suggests that PRRSV may utilize cellular miRNA to modify antiviral host factor expression, enabling viral replication, which not only provides new insights into virus-host interactions during PRRSV infection, but also suggests potential therapies for PRRSV infection. PMID:27527787

  15. Mg2Si As Li-Intercalation Host For Li Cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Surampudi, Subbarao; Attia, Alan; Halpert, Gerald

    1993-01-01

    Compound Mg2Si shows promise as lithium-intercalation host for ambient-temperature rechargeable lithium electrochemical cells. As anode reactant material, LiXMg2Si chemically stable in presence of organic electrolyte used in such cells and stores large amounts of lithium. Intercalation reactions highly reversible at room temperature. Also retains sufficient mechanical strength during charge/discharge cycling. Lithium cells containing LixMg2Si anodes prove useful in spacecraft, military, communications, automotive, and other applications in which high energy-storage densities of lithium cells in general and rechargeability of cells needed.

  16. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB)

    PubMed Central

    Pamp, Sünje J.; Harrington, Eoghan D.; Quake, Stephen R.; Relman, David A.; Blainey, Paul C.

    2012-01-01

    Segmented filamentous bacteria (SFB) are host-specific intestinal symbionts that comprise a distinct clade within the Clostridiaceae, designated Candidatus Arthromitus. SFB display a unique life cycle within the host, involving differentiation into multiple cell types. The latter include filaments that attach intimately to intestinal epithelial cells, and from which “holdfasts” and spores develop. SFB induce a multifaceted immune response, leading to host protection from intestinal pathogens. Cultivation resistance has hindered characterization of these enigmatic bacteria. In the present study, we isolated five SFB filaments from a mouse using a microfluidic device equipped with laser tweezers, generated genome sequences from each, and compared these sequences with each other, as well as to recently published SFB genome sequences. Based on the resulting analyses, SFB appear to be dependent on the host for a variety of essential nutrients. SFB have a relatively high abundance of predicted proteins devoted to cell cycle control and to envelope biogenesis, and have a group of SFB-specific autolysins and a dynamin-like protein. Among the five filament genomes, an average of 8.6% of predicted proteins were novel, including a family of secreted SFB-specific proteins. Four ADP-ribosyltransferase (ADPRT) sequence types, and a myosin-cross-reactive antigen (MCRA) protein were discovered; we hypothesize that they are involved in modulation of host responses. The presence of polymorphisms among mouse SFB genomes suggests the evolution of distinct SFB lineages. Overall, our results reveal several aspects of SFB adaptation to the mammalian intestinal tract. PMID:22434425

  17. Role of Fibronectin in the Adhesion of Acinetobacter baumannii to Host Cells

    PubMed Central

    Smani, Younes; McConnell, Michael J.; Pachón, Jerónimo

    2012-01-01

    Adhesion to host cells is an initial and important step in Acinetobacter baumannii pathogenesis. However, there is relatively little information on the mechanisms by which A. baumannii binds to and interacts with host cells. Adherence to extracellular matrix proteins, such as fibronectin, affords pathogens with a mechanism to invade epithelial cells. Here, we found that A. baumannii adheres more avidly to immobilized fibronectin than to control protein. Free fibronectin used as a competitor resulted in dose-dependent decreased binding of A. baumannii to fibronectin. Three outer membrane preparations (OMPs) were identified as fibronectin binding proteins (FBPs): OMPA, TonB-dependent copper receptor, and 34 kDa OMP. Moreover, we demonstrated that fibronectin inhibition and neutralization by specific antibody prevented significantly the adhesion of A. baumannii to human lung epithelial cells (A549 cells). Similarly, A. baumannii OMPA neutralization by specific antibody decreased significantly the adhesion of A. baumannii to A549 cells. These data indicate that FBPs are key adhesins that mediate binding of A. baumannii to human lung epithelial cells through interaction with fibronectin on the surface of these host cells. PMID:22514602

  18. Apical membrane antigen 1 mediates apicomplexan parasite attachment but is dispensable for host cell invasion

    PubMed Central

    Bargieri, Daniel Y.; Andenmatten, Nicole; Lagal, Vanessa; Thiberge, Sabine; Whitelaw, Jamie A.; Tardieux, Isabelle; Meissner, Markus; Ménard, Robert

    2013-01-01

    Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface and actively sliding through the junction inside an intracellular vacuole. Apical membrane antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is considered to have multiple important roles during host cell penetration, primarily in structuring the junction by interacting with the rhoptry neck 2 protein and transducing the force generated by the parasite motor during internalization. Here, we generate Plasmodium sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1, and find that the latter two are impaired in host cell attachment but the three display normal host cell penetration through the junction. Therefore, apical membrane antigen 1, rather than an essential invasin, is a dispensable adhesin of apicomplexan zoites. These genetic data have implications on the use of apical membrane antigen 1 or the apical membrane antigen 1–rhoptry neck 2 interaction as targets of intervention strategies against malaria or other diseases caused by apicomplexans. PMID:24108241

  19. The mechanism of HCV entry into host cells.

    PubMed

    Douam, Florian; Lavillette, Dimitri; Cosset, François-Loïc

    2015-01-01

    Hepatitis C virus (HCV) is an enveloped, positive strand RNA virus classified within the Flaviviridae family and is a major cause of liver disease worldwide. HCV life cycle and propagation are tightly linked to several aspects of lipid metabolism. HCV propagation depends on and also shapes several aspects of lipid metabolism such as cholesterol uptake and efflux through different lipoprotein receptors during its entry into cells, lipid metabolism modulating HCV genome replication, lipid droplets acting as a platform for recruitment of viral components, and very low density lipoprotein assembly pathway resulting in incorporation of neutral lipids and apolipoproteins into viral particles. During the first steps of infection, HCV enters hepatocytes through a multistep and slow process. The initial capture of HCV particles by glycosaminoglycans and/or lipoprotein receptors is followed by coordinated interactions with the scavenger receptor class B type I, a major receptor of high-density lipoprotein, the CD81 tetraspanin, and the tight junction proteins Claudin-1 and Occludin. This tight concert of receptor interactions ultimately leads to uptake and cellular internalization of HCV through a process of clathrin-dependent endocytosis. Over the years, the identification of the HCV entry receptors and cofactors has led to a better understanding of HCV entry and of the narrow tropism of HCV for the liver. Yet, the role of the two HCV envelope glycoproteins, E1 and E2, remains ill-defined, particularly concerning their involvement in the membrane fusion process. Here, we review the current knowledge and advances addressing the mechanism of HCV cell entry within hepatocytes and we highlight the challenges that remain to be addressed. PMID:25595801

  20. A Novel Secreted Protein, MYR1, Is Central to Toxoplasma’s Manipulation of Host Cells

    PubMed Central

    Franco, Magdalena; Panas, Michael W.; Marino, Nicole D.; Lee, Mei-Chong Wendy; Buchholz, Kerry R.; Kelly, Felice D.; Bednarski, Jeffrey J.; Sleckman, Barry P.; Pourmand, Nader

    2016-01-01

    ABSTRACT The intracellular protozoan Toxoplasma gondii dramatically reprograms the transcriptome of host cells it infects, including substantially up-regulating the host oncogene c-myc. By applying a flow cytometry-based selection to infected mouse cells expressing green fluorescent protein fused to c-Myc (c-Myc–GFP), we isolated mutant tachyzoites defective in this host c-Myc up-regulation. Whole-genome sequencing of three such mutants led to the identification of MYR1 (Myc regulation 1; TGGT1_254470) as essential for c-Myc induction. MYR1 is a secreted protein that requires TgASP5 to be cleaved into two stable portions, both of which are ultimately found within the parasitophorous vacuole and at the parasitophorous vacuole membrane. Deletion of MYR1 revealed that in addition to its requirement for c-Myc up-regulation, the MYR1 protein is needed for the ability of Toxoplasma tachyzoites to modulate several other important host pathways, including those mediated by the dense granule effectors GRA16 and GRA24. This result, combined with its location at the parasitophorous vacuole membrane, suggested that MYR1 might be a component of the machinery that translocates Toxoplasma effectors from the parasitophorous vacuole into the host cytosol. Support for this possibility was obtained by showing that transit of GRA24 to the host nucleus is indeed MYR1-dependent. As predicted by this pleiotropic phenotype, parasites deficient in MYR1 were found to be severely attenuated in a mouse model of infection. We conclude, therefore, that MYR1 is a novel protein that plays a critical role in how Toxoplasma delivers effector proteins to the infected host cell and that this is crucial to virulence. PMID:26838724

  1. The gut microbiota composition in dichorionic triplet sets suggests a role for host genetic factors.

    PubMed

    Murphy, Kiera; O' Shea, Carol Anne; Ryan, C Anthony; Dempsey, Eugene M; O' Toole, Paul W; Stanton, Catherine; Ross, R Paul

    2015-01-01

    Monozygotic and dizygotic twin studies investigating the relative roles of host genetics and environmental factors in shaping gut microbiota composition have produced conflicting results. In this study, we investigated the gut microbiota composition of a healthy dichorionic triplet set. The dichorionic triplet set contained a pair of monozygotic twins and a fraternal sibling, with similar pre- and post-natal environmental conditions including feeding regime. V4 16S rRNA and rpoB amplicon pyrosequencing was employed to investigate microbiota composition, and the species and strain diversity of the culturable bifidobacterial population was also examined. At month 1, the monozygotic pair shared a similar microbiota distinct to the fraternal sibling. By month 12 however, the profile was more uniform between the three infants. Principal coordinate analysis (PCoA) of the microbiota composition revealed strong clustering of the monozygotic pair at month 1 and a separation of the fraternal infant. At months 2 and 3 the phylogenetic distance between the monozygotic pair and the fraternal sibling has greatly reduced and by month 12 the monozygotic pair no longer clustered separately from the fraternal infant. Pulse field gel electrophoresis (PFGE) analysis of the bifidobacterial population revealed a lack of strain diversity, with identical strains identified in all three infants at month 1 and 12. The microbiota of two antibiotic-treated dichorionic triplet sets was also investigated. Not surprisingly, in both triplet sets early life antibiotic administration appeared to be a major determinant of microbiota composition at month 1, irrespective of zygosity. By month 12, early antibiotic administration appeared to no longer exert such a strong influence on gut microbiota composition. We hypothesize that initially host genetics play a significant role in the composition of an individual's gut microbiota, unless an antibiotic intervention is given, but by month 12 environmental

  2. Highlights Regarding Host Predisposing Factors to Recurrent Vulvovaginal Candidiasis: Chronic Stress and Reduced Antioxidant Capacity.

    PubMed

    Akimoto-Gunther, Luciene; Bonfim-Mendonça, Patrícia de Souza; Takahachi, Gisele; Irie, Mary Mayumi T; Miyamoto, Sônia; Consolaro, Márcia Edilaine Lopes; Svidzinsk, Terezinha I Estivalet

    2016-01-01

    We studied host factors that could predispose women to develop recurrent vulvovaginal candidiasis (RVVC), including glycemia, insulin resistance, chronic stress, antioxidant capacity, overall immune status, local inflammation and vaginal microbiota. The presence of yeasts in vaginal culture was screened in 277 women, with or without signs and symptoms of VVC and RVVC. The presence of an inflammatory process and microbiota were analyzed through vaginal bacterioscopy and cervical-vaginal cytology, respectively. Fasting-blood samples were collected by standard venipuncture for biochemical analyses. Flow cytometry was employed to obtain the T helper/T cytotoxic lymphocyte ratio, and insulin resistance was assessed by the HOMA index (HI). Yeasts were isolated from 71 (26%) women: 23 (32.4%) with a positive culture but without symptoms (COL), 22 (31%) in an acute episode (VVC), and 26 (36.6%) with RVVC. C. albicans was the main yeast isolated in all clinical profiles. The control group (negative culture) comprised 206 women. Diabetes mellitus and insulin resistance were more associated with the positive-culture groups (COL, VVC and RVVC) than with negative ones. The RVVC group showed lower mean levels of cortisol than the control group and lower antioxidant capacity than all other groups. The T Helper/T cytotoxic lymphocyte ratio was similar in all groups. The RVVC group showed a similar level of vaginal inflammation to the control group, and lower than in the COL and VVC groups. Only the CVV group showed a reduction in vaginal lactobacillus microbiota. Our data suggest that both chronic stress (decreased early-morning cortisol levels) and reduced antioxidant capacity can be host predisposing factors to RVVC. PMID:27415762

  3. Role of viral and host factors in interferon based therapy of hepatitis C virus infection.

    PubMed

    Imran, Muhammad; Manzoor, Sobia; Ashraf, Javed; Khalid, Madiha; Tariq, Muqddas; Khaliq, Hafiza Madeha; Azam, Sikandar

    2013-01-01

    The current standard of care (SOC) for hepatitis C virus (HCV) infection is the combination of pegylated interferon (PEG-IFN), Ribavirin and protease inhibitor for HCV genotype 1. Nevertheless, this treatment is successful only in 70-80% of the patients. In addition, the treatment is not economical and is of immense physical burden for the subject. It has been established now, that virus-host interactions play a significant role in determining treatment outcomes. Therefore identifying biological markers that may predict the treatment response and hence treatment outcome would be useful. Both IFN and Ribavirin mainly act by modulating the immune system of the patient. Therefore, the treatment response is influenced by genetic variations of the human as well as the HCV genome. The goal of this review article is to summarize the impact of recent scientific advances in this area regarding the understanding of human and HCV genetic variations and their effect on treatment outcomes. Google scholar and PubMed have been used for literature research. Among the host factors, the most prominent associations are polymorphisms within the region of the interleukin 28B (IL28B) gene, but variations in other cytokine genes have also been linked with the treatment outcome. Among the viral factors, HCV genotypes are noteworthy. Moreover, for sustained virological responses (SVR), variations in core, p7, non-structural 2 (NS2), NS3 and NS5A genes are also important. However, all considered single nucleotide polymorphisms (SNPs) of IL28B and viral genotypes are the most important predictors for interferon based therapy of HCV infection. PMID:24079723

  4. Highlights Regarding Host Predisposing Factors to Recurrent Vulvovaginal Candidiasis: Chronic Stress and Reduced Antioxidant Capacity

    PubMed Central

    Akimoto-Gunther, Luciene; Bonfim-Mendonça, Patrícia de Souza; Takahachi, Gisele; Irie, Mary Mayumi T.; Miyamoto, Sônia; Consolaro, Márcia Edilaine Lopes; Svidzinsk, Terezinha I. Estivalet

    2016-01-01

    We studied host factors that could predispose women to develop recurrent vulvovaginal candidiasis (RVVC), including glycemia, insulin resistance, chronic stress, antioxidant capacity, overall immune status, local inflammation and vaginal microbiota. The presence of yeasts in vaginal culture was screened in 277 women, with or without signs and symptoms of VVC and RVVC. The presence of an inflammatory process and microbiota were analyzed through vaginal bacterioscopy and cervical-vaginal cytology, respectively. Fasting-blood samples were collected by standard venipuncture for biochemical analyses. Flow cytometry was employed to obtain the T helper/T cytotoxic lymphocyte ratio, and insulin resistance was assessed by the HOMA index (HI). Yeasts were isolated from 71 (26%) women: 23 (32.4%) with a positive culture but without symptoms (COL), 22 (31%) in an acute episode (VVC), and 26 (36.6%) with RVVC. C. albicans was the main yeast isolated in all clinical profiles. The control group (negative culture) comprised 206 women. Diabetes mellitus and insulin resistance were more associated with the positive-culture groups (COL, VVC and RVVC) than with negative ones. The RVVC group showed lower mean levels of cortisol than the control group and lower antioxidant capacity than all other groups. The T Helper/T cytotoxic lymphocyte ratio was similar in all groups. The RVVC group showed a similar level of vaginal inflammation to the control group, and lower than in the COL and VVC groups. Only the CVV group showed a reduction in vaginal lactobacillus microbiota. Our data suggest that both chronic stress (decreased early-morning cortisol levels) and reduced antioxidant capacity can be host predisposing