Science.gov

Sample records for host cell translational

  1. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response

    PubMed Central

    Hempstead, Andrew D.; Isberg, Ralph R.

    2015-01-01

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR. PMID:26598709

  2. Global translation variations in host cells upon attack of lytic and sublytic Staphylococcus aureus α-haemolysin.

    PubMed

    Clamer, Massimiliano; Tebaldi, Toma; Marchioretto, Marta; Bernabò, Paola; Bertini, Efrem; Guella, Graziano; Dalla Serra, Mauro; Quattrone, Alessandro; Viero, Gabriella

    2015-11-15

    Genome-wide analyses of translation can provide major contributions in our understanding of the complex interplay between virulent factors and host cells. So far, the activation of host translational control mechanisms by bacterial toxins, owing to specific recruitment of mRNAs, RNA-binding proteins (RBPs) and ncRNAs (non-coding RNAs), are far from being understood. In the present study, we characterize for the first time the changes experienced by the translational control system of host cells in response to the well-known Staphylococcus aureus α-haemolysin (AHL) under both sublytic and lytic conditions. By comparing variations occurring in the cellular transcriptome and translatome, we give evidence that global gene expression is primarily rewired at the translational level, with the contribution of the RBP ELAVL1 (HuR) in the sublytic response. These results reveal the importance of translational control during host-pathogen interaction, opening new approaches for AHL-induced diseases. PMID:26371376

  3. Protein Translation Activity: A New Measure of Host Immune Cell Activation.

    PubMed

    Seedhom, Mina O; Hickman, Heather D; Wei, Jiajie; David, Alexandre; Yewdell, Jonathan W

    2016-08-15

    We describe the in vivo ribopuromycylation (RPM) method, which uses a puromycin-specific Ab to fluorescently label ribosome-bound puromycylated nascent chains, enabling measurement of translational activity via immunohistochemistry or flow cytometry. Tissue staining provides a unique view of virus-induced activation of adaptive, innate, and stromal immune cells. RPM flow precisely quantitates virus-induced activation of lymphocytes and innate immune cells, and it provides a unique measure of immune cell deactivation and quiescence. Using RPM we find that high endothelial cells in draining lymph nodes rapidly increase translation in the first day of vaccinia virus infection. We also find a population of constitutively activated splenic T cells in naive mice and further that most bone marrow T cells activate 3 d after vaccinia virus infection. Bone marrow T cell activation is nonspecific, IL-12-dependent, and induces innate memory T cell phenotypic markers. Thus, RPM measures translational activity to uniquely identify cell populations that participate in the immune response to pathogens, other foreign substances, and autoantigens. PMID:27385780

  4. Hijacked then lost in translation: the plight of the recombinant host cell in membrane protein structural biology projects.

    PubMed

    Bill, Roslyn M; von der Haar, Tobias

    2015-06-01

    Membrane protein structural biology is critically dependent upon the supply of high-quality protein. Over the last few years, the value of crystallising biochemically characterised, recombinant targets that incorporate stabilising mutations has been established. Nonetheless, obtaining sufficient yields of many recombinant membrane proteins is still a major challenge. Solutions are now emerging based on an improved understanding of recombinant host cells; as a 'cell factory' each cell is tasked with managing limited resources to simultaneously balance its own growth demands with those imposed by an expression plasmid. This review examines emerging insights into the role of translation and protein folding in defining high-yielding recombinant membrane protein production in a range of host cells. PMID:26037971

  5. Requirements for eIF4A and eIF2 during translation of Sindbis virus subgenomic mRNA in vertebrate and invertebrate host cells.

    PubMed

    Garcia-Moreno, Manuel; Sanz, Miguel Angel; Pelletier, Jerry; Carrasco, Luis

    2013-05-01

    We have examined the requirements for the initiation factors (eIFs) eIF4A and eIF2 to translate Sindbis virus (SV) subgenomic mRNA (sgmRNA) in the natural hosts of SV: vertebrate and arthropod cells. Notably, this viral mRNA does not utilize eIF4A in SV-infected mammalian cells. However, eIF4A is required to translate this mRNA in transfected cells. Therefore, SV sgmRNA exhibits a dual mechanism for translation with respect to the use of eIF4A. Interestingly, SV genomic mRNA requires eIF4A for translation during the early phase of infection. In sharp contrast to what is observed in mammalian cells, active eIF2 is necessary to translate SV sgmRNA in mosquito cells. However, eIF4A is not necessary for SV sgmRNA translation in this cell line. In the SV sgmRNA coding region, proximal to the initiation codon is a hairpin structure that confers eIF2 independence only in mammalian cells infected by SV. Strikingly, this structure does not provide independence for eIF4A neither in mammalian nor in mosquito cells. These findings provide the first evidence of different eIF requirements for translation of SV sgmRNA in vertebrate and invertebrate cells. These observations can help to understand the interaction of SV with its host cells. PMID:23189929

  6. Virus-Mediated Compartmentalization of the Host Translational Machinery

    PubMed Central

    Desmet, Emily A.; Anguish, Lynne J.

    2014-01-01

    ABSTRACT Viruses require the host translational apparatus to synthesize viral proteins. Host stress response mechanisms that suppress translation, therefore, represent a significant obstacle that viruses must overcome. Here, we report a strategy whereby the mammalian orthoreoviruses compartmentalize the translational machinery within virus-induced inclusions known as viral factories (VF). VF are the sites of reovirus replication and assembly but were thought not to contain ribosomes. It was assumed viral mRNAs exited the VF to undergo translation by the cellular machinery, and proteins reentered the factory to participate in assembly. Here, we used ribopuromycylation to visualize active translation in infected cells. These studies revealed that active translation occurs within VF and that ribosomal subunits and proteins required for translation initiation, elongation, termination, and recycling localize to the factory. Interestingly, we observed components of the 43S preinitiation complex (PIC) concentrating primarily at factory margins, suggesting a spatial and/or dynamic organization of translation within the VF. Similarly, the viral single-stranded RNA binding protein σNS localized to the factory margins and had a tubulovesicular staining pattern that extended a short distance from the margins of the factories and colocalized with endoplasmic reticulum (ER) markers. Consistent with these colocalization studies, σNS was found to associate with both eukaryotic translation initiation factor 3 subunit A (eIF3A) and the ribosomal subunit pS6R. Together, these findings indicate that σNS functions to recruit 43S PIC machinery to the primary site of viral translation within the viral factory. Pathogen-mediated compartmentalization of the translational apparatus provides a novel mechanism by which viruses might avoid host translational suppression. PMID:25227463

  7. Regulation of de novo translation of host cells by manipulation of PERK/PKR and GADD34-PP1 activity during Newcastle disease virus infection.

    PubMed

    Liao, Ying; Gu, Feng; Mao, Xiang; Niu, Qiaona; Wang, Huaxia; Sun, Yingjie; Song, Cuiping; Qiu, Xusheng; Tan, Lei; Ding, Chan

    2016-04-01

    Viral infections result in cellular stress responses, which can trigger protein translation shutoff via phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α). Newcastle disease virus (NDV) causes severe disease in poultry and selectively kills human tumour cells. In this report, we determined that infection of HeLa human cervical cancer cells and DF-1 chicken fibroblast cells with NDV maintained protein at early infection times, 0-12 h post-infection (p.i.), and gradually inhibited global protein translation at late infection times, 12-24 h p.i. Mechanistic studies showed that translation inhibition at late infection times was accompanied by phosphorylation of eIF2α, a checkpoint of translation initiation. Meanwhile, the eIF2α kinase, PKR, was upregulated and activated by phosphorylation and another eIF2α kinase, PERK, was phosphorylated and cleaved into two fragments. Pharmacological inhibition experiments revealed that only PKR activity was required for eIF2α phosphorylation, suggesting that recognition of viral dsRNA by PKR was responsible for translation shutoff. High levels of phospho-eIF2α led to preferential translation of the transcription factor ATF4 and an increase in GADD34 expression. Functionally, GADD34, in conjunction with PP1, dephosphorylated eIF2a and restored protein translation, benefiting virus protein synthesis. However, PP1 was degraded at late infection times, functionally counteracting the upregulation of GADD34. Taken together, our data support that NDV-induced translation shutoff at late infection times was attributed to sustaining phosphorylation of eIF2α, which is mediated by continual activation of PKR and degradation of PP1. PMID:26869028

  8. Dysbiosis May Trigger Autoimmune Diseases via Inappropriate Post-Translational Modification of Host Proteins

    PubMed Central

    Lerner, Aaron; Aminov, Rustam; Matthias, Torsten

    2016-01-01

    The gut ecosystem with myriads of microorganisms and the high concentration of immune system cells can be considered as a separate organ on its own. The balanced interaction between the host and microbial cells has been shaped during the long co-evolutionary process. In dysbiotic conditions, however, this balance is compromised and results in abnormal interaction between the host and microbiota. It is hypothesize here that the changed spectrum of microbial enzymes involved in post-translational modification of proteins (PTMP) may contribute to the aberrant modification of host proteins thus generating autoimmune responses by the host, resulting in autoimmune diseases. PMID:26903965

  9. Influenza A Virus Host Shutoff Disables Antiviral Stress-Induced Translation Arrest

    PubMed Central

    Khaperskyy, Denys A.; Emara, Mohamed M.; Johnston, Benjamin P.; Anderson, Paul; Hatchette, Todd F.; McCormick, Craig

    2014-01-01

    Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5′ caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication. PMID:25010204

  10. Tinkering with Translation: Protein Synthesis in Virus-Infected Cells

    PubMed Central

    Walsh, Derek; Mathews, Michael B.; Mohr, Ian

    2013-01-01

    Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus. PMID:23209131

  11. Host Cell Factors Involved in the Life Cycle of FMDV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-Mouth Disease Virus (FMDV), like other RNA viruses, recruits various host cell factors to assist in translation and replication of the virus genome. While FMDV translation has been extensively investigated, much remains unknown regarding replication of the positive-sense RNA genome. In thi...

  12. Host cells and cell banking.

    PubMed

    Stacey, Glyn N; Merten, Otto-Wilhelm

    2011-01-01

    Gene therapy based on the use of viral vectors is entirely dependent on the use of animal cell lines, mainly of mammalian origin, but also of insect origin. As for any biotechnology product for clinical use, viral -vectors have to be produced with cells derived from an extensively characterized cell bank to maintain the appropriate standard for assuring the lowest risk for the patients to be treated. Although many different cell types and lines have been used for the production of viral vectors, HEK293 cells or their derivatives have been extensively used for production of different vector types: adenovirus, oncorectrovirus, lentivirus, and AAV vectors, because of their easy handling and the possibility to grow them adherently in serum-containing medium as well as in suspension in serum-free culture medium. Despite this, these cells are not necessarily the best for the production of a given viral vector, and there are many other cell lines with significant advantages including superior growth and/or production characteristics, which have been tested and also used for the production of clinical vector batches. This chapter presents basic -considerations concerning the characterization of cell banks, in the first part, and, in the second part, practically all cell lines (at least when public information was available) established and developed for the production of the most important viral vectors (adenoviral, oncoretroviral, lentiviral, AAV, baculovirus). PMID:21590393

  13. Host translational control of a polydnavirus, Cotesia plutellae bracovirus, by sequestering host eIF4A to prevent formation of a translation initiation complex.

    PubMed

    Surakasi, V P; Nalini, M; Kim, Yonggyun

    2011-10-01

    Host translational control is a viral strategy to exploit host cellular resources. Parasitization by some endoparasitoids containing polydnaviruses inhibits the synthesis of specific host proteins at post-transcriptional level. Two host translation inhibitory factors (HTIFs) have been proposed in Cotesia plutellae bracovirus (CpBV). Parasitization by C. plutellae inhibited storage protein 1 (SP1) synthesis of Plutella xylostella at post-transcriptional level. One HTIF, CpBV15β, inhibited the translation of SP1 mRNA in an in vitro translation assay using rabbit reticulocyte lysate, but did not inhibit its own mRNA. To further analyse the discrimination of target and nontarget mRNAs of the inhibitory effect of HTIF, 5' untranslated regions (UTRs) of SP1 and CpBV15β mRNA were reciprocally exchanged. In the presence of HTIFs, the chimeric CpBV15β mRNA that contained SP1 5' UTR was not translated, whereas the chimeric SP1 mRNA that contained CpBV15β 5' UTR was translated. There was a difference in the 5' UTR secondary structures between target (SP1) and nontarget (CpBV15α and CpBV15β) mRNAs in terms of thermal stability. Different mutant 5' UTRs of SP1 mRNA were prepared by point mutations to modify their secondary structures. The constructs containing 5' UTRs of high thermal stability in their secondary structures were inhibited by HTIF, but those of low thermal stability were not. Immunoprecipitation with CpBV15β antibody coprecipitated eIF4A, which would be required for unwinding the secondary structure of the 5' UTR. These results indicate that the viral HTIF discriminates between host mRNAs according to their dependency on eIF4A to form a functional initiation complex for translation. PMID:21699595

  14. Repressive translational control in germ cells.

    PubMed

    Lai, Fangfang; King, Mary Lou

    2013-08-01

    The earliest stages of embryonic development in many animals proceed without zygotic transcription. Genetic control is executed by maternally inherited mRNAs that are under translational control. To set aside the future germ cell lineage, it is pivotal to both exert translational regulation of maternal germline mRNAs and to repress maternal signals in those same cells that drive somatic cell-fate determination. Here we review repressive translational regulation in the germline from the perspective of the conserved RNA binding proteins Pumilio and Nanos, and discuss common themes that have emerged. PMID:23408501

  15. To translate, or not to translate: viral and host mRNA regulation by interferon-stimulated genes.

    PubMed

    Li, Melody M H; MacDonald, Margaret R; Rice, Charles M

    2015-06-01

    Type I interferon (IFN) is one of the first lines of cellular defense against viral pathogens. As a result of IFN signaling, a wide array of IFN-stimulated gene (ISG) products is upregulated to target different stages of the viral life cycle. We review recent findings implicating a subset of ISGs in translational regulation of viral and host mRNAs. Translation inhibition is mediated either by binding to viral RNA or by disrupting physiological interactions or levels of the translation complex components. In addition, many of these ISGs localize to translationally silent cytoplasmic granules, such as stress granules and processing bodies, and intersect with the microRNA (miRNA)-mediated silencing pathway to regulate translation of cellular mRNAs. PMID:25748385

  16. Progeria: translational insights from cell biology.

    PubMed

    Gordon, Leslie B; Cao, Kan; Collins, Francis S

    2012-10-01

    Cell biologists love to think outside the box, pursuing many surprising twists and unexpected turns in their quest to unravel the mysteries of how cells work. But can cell biologists think outside the bench? We are certain that they can, and clearly some already do. To encourage more cell biologists to venture into the realm of translational research on a regular basis, we would like to share a handful of the many lessons that we have learned in our effort to develop experimental treatments for Hutchinson-Gilford progeria syndrome (HGPS), an endeavor that many view as a "poster child" for how basic cell biology can be translated to the clinic. PMID:23027899

  17. The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions

    PubMed Central

    Shitrit, Alina; Shani, Odem; Le-Trilling, Vu Thuy Khanh; Trilling, Mirko; Friedlander, Gilgi; Tanenbaum, Marvin; Stern-Ginossar, Noam

    2015-01-01

    Viruses are by definition fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt this machinery for their own benefit. Unlike many viruses, human cytomegalovirus (HCMV) does suppress the host translation machinery, and the extent to which translation machinery contributes to the overall pattern of viral replication and pathogenesis remains elusive. Here, we combine RNA sequencing and ribosomal profiling analyses to systematically address this question. By simultaneously examining the changes in transcription and translation along HCMV infection, we uncover extensive transcriptional control that dominates the response to infection, but also diverse and dynamic translational regulation for subsets of host genes. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, integration of our translation measurements with recent measurements of protein abundance enabled comprehensive identification of dozens of host proteins that are targeted for degradation during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus. PMID:26599541

  18. The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions.

    PubMed

    Tirosh, Osnat; Cohen, Yifat; Shitrit, Alina; Shani, Odem; Le-Trilling, Vu Thuy Khanh; Trilling, Mirko; Friedlander, Gilgi; Tanenbaum, Marvin; Stern-Ginossar, Noam

    2015-01-01

    Viruses are by definition fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt this machinery for their own benefit. Unlike many viruses, human cytomegalovirus (HCMV) does suppress the host translation machinery, and the extent to which translation machinery contributes to the overall pattern of viral replication and pathogenesis remains elusive. Here, we combine RNA sequencing and ribosomal profiling analyses to systematically address this question. By simultaneously examining the changes in transcription and translation along HCMV infection, we uncover extensive transcriptional control that dominates the response to infection, but also diverse and dynamic translational regulation for subsets of host genes. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, integration of our translation measurements with recent measurements of protein abundance enabled comprehensive identification of dozens of host proteins that are targeted for degradation during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus. PMID:26599541

  19. Breaking ground on translational stem cell research.

    PubMed

    Hall, Zach W; Kahler, David; Manganiello, Michael; Egli, Dieter; James, Daylon; Marolt, Darja; Marlot, Darja; Fasano, Christopher; Ichida, Justin; Noggle, Scott; Solomon, Susan L; McKeon, David; Smith, Kristin; Marshall, Caroline

    2010-03-01

    Sponsored by the New York Stem Cell Foundation (NYSCF), the "Fourth Annual Translational Stem Cell Research Conference: Breaking Ground" convened October 13-14, 2009 at The Rockefeller University in New York City to discuss translational stem cell research. Attracting over 400 scientists, patient advocates, and stem cell research supporters from fifteen countries, the two-day conference featured an afternoon of panel discussions, intended for a broad audience, followed by a second day of scientific talks and poster presentations. This report summarizes both days of this exciting conference. PMID:20233361

  20. Adipose-derived stem cells: selecting for translational success

    PubMed Central

    Johal, Kavan S; Lees, Vivien C; Reid, Adam J

    2016-01-01

    We have witnessed a rapid expansion of in vitro characterization and differentiation of adipose-derived stem cells, with increasing translation to both in vivo models and a breadth of clinical specialties. However, an appreciation of the truly heterogeneous nature of this unique stem cell group has identified a need to more accurately delineate subpopulations by any of a host of methods, to include functional properties or surface marker expression. Cells selected for improved proliferative, differentiative, angiogenic or ischemia-resistant properties are but a few attributes that could prove beneficial for targeted treatments or therapies. Optimizing cell culture conditions to permit re-introduction to patients is critical for clinical translation. PMID:25562354

  1. Translational environmental biology: cell biology informing conservation.

    PubMed

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. PMID:24766840

  2. Coordinated Destruction of Cellular Messages in Translation Complexes by the Gammaherpesvirus Host Shutoff Factor and the Mammalian Exonuclease Xrn1

    PubMed Central

    Kumar, G. Renuka; Wong, Wesley; Jackson, Andrew O.; Glaunsinger, Britt A.

    2011-01-01

    Several viruses encode factors that promote host mRNA degradation to silence gene expression. It is unclear, however, whether cellular mRNA turnover pathways are engaged to assist in this process. In Kaposi's sarcoma-associated herpesvirus this phenotype is enacted by the host shutoff factor SOX. Here we show that SOX-induced mRNA turnover is a two-step process, in which mRNAs are first cleaved internally by SOX itself then degraded by the cellular exonuclease Xrn1. SOX therefore bypasses the regulatory steps of deadenylation and decapping normally required for Xrn1 activation. SOX is likely recruited to translating mRNAs, as it cosediments with translation initiation complexes and depletes polysomes. Cleaved mRNA intermediates accumulate in the 40S fraction, indicating that recognition occurs at an early stage of translation. This is the first example of a viral protein commandeering cellular mRNA turnover pathways to destroy host mRNAs, and suggests that Xrn1 is poised to deplete messages undergoing translation in mammalian cells. PMID:22046136

  3. Progeria: Translational insights from cell biology

    PubMed Central

    Gordon, Leslie B.; Cao, Kan

    2012-01-01

    Cell biologists love to think outside the box, pursuing many surprising twists and unexpected turns in their quest to unravel the mysteries of how cells work. But can cell biologists think outside the bench? We are certain that they can, and clearly some already do. To encourage more cell biologists to venture into the realm of translational research on a regular basis, we would like to share a handful of the many lessons that we have learned in our effort to develop experimental treatments for Hutchinson-Gilford progeria syndrome (HGPS), an endeavor that many view as a “poster child” for how basic cell biology can be translated to the clinic. PMID:23027899

  4. Translation in cell-free systems

    SciTech Connect

    Jagus, R.

    1987-01-01

    The simplest, unambiguous identification of a particular mRNA is the identification of its protein product. This can be established by translation of the mRNA of interest in a cell-free protein-synthesizing system. Messenger RNA protein product identification is important in the isolation of a particular mRNA species for cDNA cloning and in the identification of positive cDNA clones. The two high-activity translation systems in common use are those prepared from rabbit reticulocytes and from wheat germ. Both systems are easy to prepare, and both are available commercially. Each has advantages and disadvantages over the other and a choice between the two will depend on the type of mRNAs to be translated, the prejudices of experience, and availability. The main disadvantage of the reticulocyte system is that it requires removal of endogenous mRNA. However, this is a relatively simple procedure. The wheat germ system does not require removal of endogenous mRNA and may translate weakly initiating mRNAs more efficiently. However, ionic optima for translation in the wheat germ system are more sensitive to the nature and concentration of mRNA and may need to be determined for each template. The biggest problem with the use of the wheat germ system is its tendency to produce incomplete translation products due to premature termination.

  5. Translational Control of Host Gene Expression by a Cys-Motif Protein Encoded in a Bracovirus.

    PubMed

    Kim, Eunseong; Kim, Yonggyun

    2016-01-01

    Translational control is a strategy that various viruses use to manipulate their hosts to suppress acute antiviral response. Polydnaviruses, a group of insect double-stranded DNA viruses symbiotic to some endoparasitoid wasps, are divided into two genera: ichnovirus (IV) and bracovirus (BV). In IV, some Cys-motif genes are known as host translation-inhibitory factors (HTIF). The genome of endoparasitoid wasp Cotesia plutellae contains a Cys-motif gene (Cp-TSP13) homologous to an HTIF known as teratocyte-secretory protein 14 (TSP14) of Microplitis croceipes. Cp-TSP13 consists of 129 amino acid residues with a predicted molecular weight of 13.987 kDa and pI value of 7.928. Genomic DNA region encoding its open reading frame has three introns. Cp-TSP13 possesses six conserved cysteine residues as other Cys-motif genes functioning as HTIF. Cp-TSP13 was expressed in Plutella xylostella larvae parasitized by C. plutellae. C. plutellae bracovirus (CpBV) was purified and injected into non-parasitized P. xylostella that expressed Cp-TSP13. Cp-TSP13 was cloned into a eukaryotic expression vector and used to infect Sf9 cells to transiently express Cp-TSP13. The synthesized Cp-TSP13 protein was detected in culture broth. An overlaying experiment showed that the purified Cp-TSP13 entered hemocytes. It was localized in the cytosol. Recombinant Cp-TSP13 significantly inhibited protein synthesis of secretory proteins when it was added to in vitro cultured fat body. In addition, the recombinant Cp-TSP13 directly inhibited the translation of fat body mRNAs in in vitro translation assay using rabbit reticulocyte lysate. Moreover, the recombinant Cp-TSP13 significantly suppressed cellular immune responses by inhibiting hemocyte-spreading behavior. It also exhibited significant insecticidal activities by both injection and feeding routes. These results indicate that Cp-TSP13 is a viral HTIF. PMID:27598941

  6. Noncoding RNAs of Plant Viruses and Viroids: Sponges of Host Translation and RNA Interference Machinery.

    PubMed

    Miller, W Allen; Shen, Ruizhong; Staplin, William; Kanodia, Pulkit

    2016-03-01

    Noncoding sequences in plant viral genomes are well-known to control viral replication and gene expression in cis. However, plant viral and viroid noncoding (nc)RNA sequences can also regulate gene expression acting in trans, often acting like 'sponges' that bind and sequester host cellular machinery to favor viral infection. Noncoding sequences of small subgenomic (sg)RNAs of Barley yellow dwarf virus (BYDV) and Red clover necrotic mosaic virus (RCNMV) contain a cap-independent translation element that binds translation initiation factor eIF4G. We provide new evidence that a sgRNA of BYDV can globally attenuate host translation, probably by sponging eIF4G. Subgenomic ncRNA of RCNMV is generated via 5' to 3' degradation by a host exonuclease. The similar noncoding subgenomic flavivirus (sf)RNA, inhibits the innate immune response, enhancing viral pathogenesis. Cauliflower mosaic virus transcribes massive amounts of a 600-nt ncRNA, which is processed into small RNAs that overwhelm the host's RNA interference (RNAi) system. Viroids use the host RNAi machinery to generate viroid-derived ncRNAs that inhibit expression of host defense genes by mimicking a microRNA. More examples of plant viral and viroid ncRNAs are likely to be discovered, revealing fascinating new weaponry in the host-virus arms race. PMID:26900786

  7. Differential regulation of host mRNA translation during obligate pathogen-plant interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virus infection reprograms the plant messenger RNA (mRNA) transcriptome by activating or interfering with a variety of signaling pathways, but the effects on host mRNA translation have not been explored on a genome-wide scale. To address this issue, Arabidopsis thaliana mRNA transcripts were quantif...

  8. Tombusvirus recruitment of host translational machinery via the 3′ UTR

    PubMed Central

    Nicholson, Beth L.; Wu, Baodong; Chevtchenko, Irina; White, K. Andrew

    2010-01-01

    RNA viruses recruit the host translational machinery by different mechanisms that depend partly on the structure of their genomes. In this regard, the plus-strand RNA genomes of several different pathogenic plant viruses do not contain traditional translation-stimulating elements, i.e., a 5′-cap structure and a 3′-poly(A) tail, and instead rely on a 3′-cap-independent translational enhancer (3′CITE) located in their 3′ untranslated regions (UTRs) for efficient synthesis of viral proteins. We investigated the structure and function of the I-shaped class of 3′CITE in tombusviruses—also present in aureusviruses and carmoviruses—using biochemical and molecular approaches and we determined that it adopts a complex higher-order RNA structure that facilitates translation by binding simultaneously to both eukaryotic initiation factor (eIF) 4F and the 5′ UTR of the viral genome. The specificity of 3′CITE binding to eIF4F is mediated, at least in part, through a direct interaction with its eIF4E subunit, whereas its association with the viral 5′ UTR relies on complementary RNA–RNA base-pairing. We show for the first time that this tripartite 5′ UTR/3′CITE/eIF4F complex forms in vitro in a translationally relevant environment and is required for recruitment of ribosomes to the 5′ end of the viral RNA genome by a mechanism that shares some fundamental features with cap-dependent translation. Notably, our results demonstrate that the 3′CITE facilitates the initiation step of translation and validate a molecular model that has been proposed to explain how several different classes of 3′CITE function. Moreover, the virus–host interplay defined in this study provides insights into natural host resistance mechanisms that have been linked to 3′CITE activity. PMID:20507975

  9. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells

    PubMed Central

    Popa, Crina M.; Tabuchi, Mitsuaki; Valls, Marc

    2016-01-01

    Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding. PMID:27489796

  10. Penetration of Bdellovibrio bacteriovorus into Host Cells

    PubMed Central

    Abram, Dinah; e Melo, J. Castro; Chou, D.

    1974-01-01

    Electron microscopy reveals that, in Bdellovibrio infection, after the formation of a passage pore in the host cell wall, the differentiated parasite penetration pole is associated with the host protoplast. This firm contact persists throughout the parasite penetration and after this process is completed. In penetrated hosts this contact is also apparent by phase microscopy. The association between the walls of the parasite and the host at the passage pore, on the other hand, is transient. Bdellovibrio do not penetrate hosts whose protoplast and cell walls are separated by plasmolysis, or in which the membrane-wall relationship is affected by low turgor pressure. It is concluded, therefore, that for penetration to occur it is essential that the host protoplast be within reach of the parasite, so that a firm contact can be established between them. A penetration mechanism is proposed that is effected by forces generated by fluxes of water and solutes due to structural changes in the infected host envelope. These forces cause a differential expansion of the host protoplast and cell wall and their separation from each other around the entry site, while the parasite remains firmly anchored to the host protoplast. Consequently, the parasite ends up enclosed in the expanded host periplasm. The actual entry, therefore, is a passive act of the parasite. Images PMID:4208138

  11. Clinical translation of human neural stem cells

    PubMed Central

    2013-01-01

    Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development. PMID:23987648

  12. Clinical translation of human neural stem cells.

    PubMed

    Tsukamoto, Ann; Uchida, Nobuko; Capela, Alexandra; Gorba, Thorsten; Huhn, Stephen

    2013-01-01

    Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development. PMID:23987648

  13. Contrasting Lifestyles Within the Host Cell

    PubMed Central

    Case, Elizabeth Di Russo; Samuel, James E.

    2015-01-01

    CHAPTER SUMMARY Intracellular bacterial pathogens have evolved to exploit the protected niche provided within the boundaries of a eukaryotic host cell. Upon entering a host cell, some bacteria can evade the adaptive immune response of its host, and replicate in a relatively nutrient-rich environment devoid of competition from other host flora. Growth within a host cell is not without its hazards, however. Many pathogens enter their hosts through receptor-mediated endocytosis or phagocytosis, two intracellular trafficking pathways that terminate in a highly degradative organelle, the phagolysosome. This usually deadly compartment is maintained at a low pH, and contains degradative enzymes, and reactive oxygen species resulting in an environment to which few bacterial species are adapted. Some intracellular pathogens, like Shigella, Listeria, Francisella, and Rickettsia escape the phagosome to replicate within the cytosol of the host cell. Bacteria that remain within a vacuole either alter the trafficking of their initial phagosomal compartment or adapt to survive within the harsh environment it will soon become. In this chapter, we focus on the mechanisms by which different vacuolar pathogens either evade lysosomal fusion, as in the case of Mycobacterium and Chlamydia, or allow interaction with lysosomes to varying degrees, such as Brucella and Coxiella, and their specific adaptations to inhabit a replicative niche. PMID:26999394

  14. Contrasting Lifestyles Within the Host Cell.

    PubMed

    Di Russo Case, Elizabeth; Samuel, James E

    2016-02-01

    Intracellular bacterial pathogens have evolved to exploit the protected niche provided within the boundaries of a eukaryotic host cell. Upon entering a host cell, some bacteria can evade the adaptive immune response of its host and replicate in a relatively nutrient-rich environment devoid of competition from other host flora. Growth within a host cell is not without their hazards, however. Many pathogens enter their hosts through receptor-mediated endocytosis or phagocytosis, two intracellular trafficking pathways that terminate in a highly degradative organelle, the phagolysosome. This usually deadly compartment is maintained at a low pH and contains degradative enzymes and reactive oxygen species, resulting in an environment to which few bacterial species are adapted. Some intracellular pathogens, such as Shigella, Listeria, Francisella, and Rickettsia, escape the phagosome to replicate within the cytosol of the host cell. Bacteria that remain within a vacuole either alter the trafficking of their initial phagosomal compartment or adapt to survive within the harsh environment it will soon become. In this chapter, we focus on the mechanisms by which different vacuolar pathogens either evade lysosomal fusion, as in the case of Mycobacterium and Chlamydia, or allow interaction with lysosomes to varying degrees, such as Brucella and Coxiella, and their specific adaptations to inhabit a replicative niche. PMID:26999394

  15. Cell-host, LINE and environment

    PubMed Central

    Del Re, Brunella; Giorgi, Gianfranco

    2013-01-01

    Long interspersed nuclear elements -1 (LINEs, L1s) are retroelements occupying almost 17% of the human genome. L1 retrotransposition can cause deleterious effects on the host-cell and it is generally inhibited by suppressive mechanisms, but it can occur in some specific cells during early development as well as in some tumor cells and in the presence of several environmental factors. In a recent publication we reported that extremely low frequency pulsed magnetic field can affect L1 retrotransposition in neuroblastoma cells. In this commentary we discuss the interaction between environment and L1 activity in the light of the new emerging paradigm of host-LINE relationship. PMID:23734298

  16. Alphacoronavirus transmissible gastroenteritis virus nsp1 protein suppresses protein translation in mammalian cells and in cell-free HeLa cell extracts but not in rabbit reticulocyte lysate.

    PubMed

    Huang, Cheng; Lokugamage, Kumari G; Rozovics, Janet M; Narayanan, Krishna; Semler, Bert L; Makino, Shinji

    2011-01-01

    The nsp1 protein of transmissible gastroenteritis virus (TGEV), an alphacoronavirus, efficiently suppressed protein synthesis in mammalian cells. Unlike the nsp1 protein of severe acute respiratory syndrome coronavirus, a betacoronavirus, the TGEV nsp1 protein was unable to bind 40S ribosomal subunits or promote host mRNA degradation. TGEV nsp1 also suppressed protein translation in cell-free HeLa cell extract; however, it did not affect translation in rabbit reticulocyte lysate (RRL). Our data suggested that HeLa cell extracts and cultured host cells, but not RRL, contain a host factor(s) that is essential for TGEV nsp1-induced translational suppression. PMID:21047955

  17. An Update on Translating Stem Cell Therapy for Stroke from Bench to Bedside

    PubMed Central

    Dailey, Travis; Metcalf, Christopher; Mosley, Yusef I.; Sullivan, Robert; Shinozuka, Kazutaka; Tajiri, Naoki; Pabon, Mibel; Acosta, Sandra; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesar V.

    2013-01-01

    With a constellation of stem cell sources available, researchers hope to utilize their potential for cellular repair as a therapeutic target for disease. However, many lab-to-clinic translational considerations must be given in determining their efficacy, variables such as the host response, effects on native tissue, and potential for generating tumors. This review will discuss the current knowledge of stem cell research in neurological disease, mainly stroke, with a focus on the benefits, limitations, and clinical potential. PMID:25177494

  18. Interaction of Mycobacterium tuberculosis with Host Cell Death Pathways

    PubMed Central

    Srinivasan, Lalitha; Ahlbrand, Sarah; Briken, Volker

    2014-01-01

    Mycobacterium tuberculosis (Mtb) has coevolved with humans for tens of thousands of years. It is thus highly adapted to its human host and has evolved multiple mechanisms to manipulate host immune responses to its advantage. One central host pathogen interaction modality is host cell death pathways. Host cell apoptosis is associated with a protective response to Mtb infection, whereas a necrotic response favors the pathogen. Consistently, Mtb inhibits host cell apoptosis signaling but promotes induction of programmed necrosis. The molecular mechanisms involved in Mtb-mediated host cell death manipulation, the consequences for host immunity, and the potential for therapeutic and preventive approaches will be discussed. PMID:24968864

  19. Host-Mediated Post-Translational Prenylation of Novel Dot/Icm-Translocated Effectors of Legionella Pneumophila

    PubMed Central

    Price, Christopher T. D.; Jones, Snake C.; Amundson, Karen E.; Kwaik, Yousef Abu

    2010-01-01

    The Dot/Icm type IV translocated Ankyrin B (AnkB) effector of Legionella pneumophila is modified by the host prenylation machinery that anchors it into the outer leaflet of the Legionella-containing vacuole (LCV), which is essential for biological function of the effector in vitro and in vivo. Prenylation involves the covalent linkage of an isoprenoid lipid moiety to a C-terminal CaaX motif in eukaryotic proteins enabling their anchoring into membranes. We show here that the LCV harboring an ankB null mutant is decorated with prenylated proteins in a Dot/Icm-dependent manner, indicating that other LCV membrane-anchored proteins are prenylated. In silico analyses of four sequenced L. pneumophila genomes revealed the presence of eleven other genes that encode proteins with a C-terminal eukaryotic CaaX prenylation motif. Of these eleven designated Prenylated effectors of Legionella (Pel), seven are also found in L. pneumophila AA100. We show that six L. pneumophila AA100 Pel proteins exhibit distinct cellular localization when ectopically expressed in mammalian cells and this is dependent on action of the host prenylation machinery and the conserved cysteine residue of the CaaX motif. Although inhibition of the host prenylation machinery completely blocks intra-vacuolar proliferation of L. pneumophila, it only had a modest effect on intracellular trafficking of the LCV. Five of the Pel proteins are injected into human macrophages by the Dot/Icm type IV translocation system of L. pneumophila. Taken together, the Pel proteins are novel Dot/Icm-translocated effectors of L. pneumophila that are post-translationally modified by the host prenylation machinery, which enables their anchoring into cellular membranes, and the prenylated effectors contribute to evasion of lysosomal fusion by the LCV. PMID:21687755

  20. Structural basis of suppression of host translation termination by Moloney Murine Leukemia Virus

    NASA Astrophysics Data System (ADS)

    Tang, Xuhua; Zhu, Yiping; Baker, Stacey L.; Bowler, Matthew W.; Chen, Benjamin Jieming; Chen, Chen; Hogg, J. Robert; Goff, Stephen P.; Song, Haiwei

    2016-06-01

    Retroviral reverse transcriptase (RT) of Moloney murine leukemia virus (MoMLV) is expressed in the form of a large Gag-Pol precursor protein by suppression of translational termination in which the maximal efficiency of stop codon read-through depends on the interaction between MoMLV RT and peptidyl release factor 1 (eRF1). Here, we report the crystal structure of MoMLV RT in complex with eRF1. The MoMLV RT interacts with the C-terminal domain of eRF1 via its RNase H domain to sterically occlude the binding of peptidyl release factor 3 (eRF3) to eRF1. Promotion of read-through by MoMLV RNase H prevents nonsense-mediated mRNA decay (NMD) of mRNAs. Comparison of our structure with that of HIV RT explains why HIV RT cannot interact with eRF1. Our results provide a mechanistic view of how MoMLV manipulates the host translation termination machinery for the synthesis of its own proteins.

  1. Structural basis of suppression of host translation termination by Moloney Murine Leukemia Virus.

    PubMed

    Tang, Xuhua; Zhu, Yiping; Baker, Stacey L; Bowler, Matthew W; Chen, Benjamin Jieming; Chen, Chen; Hogg, J Robert; Goff, Stephen P; Song, Haiwei

    2016-01-01

    Retroviral reverse transcriptase (RT) of Moloney murine leukemia virus (MoMLV) is expressed in the form of a large Gag-Pol precursor protein by suppression of translational termination in which the maximal efficiency of stop codon read-through depends on the interaction between MoMLV RT and peptidyl release factor 1 (eRF1). Here, we report the crystal structure of MoMLV RT in complex with eRF1. The MoMLV RT interacts with the C-terminal domain of eRF1 via its RNase H domain to sterically occlude the binding of peptidyl release factor 3 (eRF3) to eRF1. Promotion of read-through by MoMLV RNase H prevents nonsense-mediated mRNA decay (NMD) of mRNAs. Comparison of our structure with that of HIV RT explains why HIV RT cannot interact with eRF1. Our results provide a mechanistic view of how MoMLV manipulates the host translation termination machinery for the synthesis of its own proteins. PMID:27329342

  2. Structural basis of suppression of host translation termination by Moloney Murine Leukemia Virus

    PubMed Central

    Tang, Xuhua; Zhu, Yiping; Baker, Stacey L.; Bowler, Matthew W.; Chen, Benjamin Jieming; Chen, Chen; Hogg, J. Robert; Goff, Stephen P.; Song, Haiwei

    2016-01-01

    Retroviral reverse transcriptase (RT) of Moloney murine leukemia virus (MoMLV) is expressed in the form of a large Gag–Pol precursor protein by suppression of translational termination in which the maximal efficiency of stop codon read-through depends on the interaction between MoMLV RT and peptidyl release factor 1 (eRF1). Here, we report the crystal structure of MoMLV RT in complex with eRF1. The MoMLV RT interacts with the C-terminal domain of eRF1 via its RNase H domain to sterically occlude the binding of peptidyl release factor 3 (eRF3) to eRF1. Promotion of read-through by MoMLV RNase H prevents nonsense-mediated mRNA decay (NMD) of mRNAs. Comparison of our structure with that of HIV RT explains why HIV RT cannot interact with eRF1. Our results provide a mechanistic view of how MoMLV manipulates the host translation termination machinery for the synthesis of its own proteins. PMID:27329342

  3. Tissue morphodynamics: Translating planar polarity cues into polarized cell behaviors.

    PubMed

    Devenport, Danelle

    2016-07-01

    The ability of cells to collectively orient and align their behaviors is essential in multicellular organisms for unidirectional cilia beating, collective cell movements, oriented cell divisions, and asymmetric cell fate specification. The planar cell polarity pathway coordinates a vast and diverse array of collective cell behaviors by intersecting with downstream pathways that regulate cytoskeletal dynamics and intercellular signaling. How the planar polarity pathway translates directional cues to produce polarized cell behaviors is the focus of this review. PMID:26994528

  4. Parasite calcineurin regulates host cell recognition and attachment by apicomplexans

    PubMed Central

    Paul, Aditya S.; Saha, Sudeshna; Engelberg, Klemens; Jiang, Rays H.Y.; Coleman, Bradley I.; Kosber, Aziz L.; Chen, Chun-Ti; Ganter, Markus; Espy, Nicole; Gilberger, Tim W.; Gubbels, Marc-Jan; Duraisingh, Manoj T.

    2015-01-01

    SUMMARY Apicomplexans invade a variety of metazoan host cells through mechanisms involving host cell receptor engagement and secretion of parasite factors to facilitate cellular attachment. We find that the parasite homolog of calcineurin, a calcium-regulated phosphatase complex central to signal transduction in eukaryotes, also contributes to host cell invasion by the malaria parasite Plasmodium falciparum and related Toxoplasma gondii. Using reverse genetic and chemical-genetic approaches, we determine that calcineurin critically regulates and stabilizes attachment of extracellular P. falciparum to host erythrocytes before intracellular entry and has similar functions in host cell engagement by T. gondii. Calcineurin-mediated Plasmodium invasion is strongly associated with host receptors required for host cell recognition and calcineurin function distinguishes this form of receptor-mediated attachment from a second mode of host-parasite adhesion independent of host receptors. This specific role of calcineurin in coordinating physical interactions with host cells highlights an ancestral mechanism for parasitism used by apicomplexans. PMID:26118996

  5. Distinct Translational Control in CD4+ T Cell Subsets

    PubMed Central

    Yurchenko, Ekaterina; Zheng, Lei; Gandin, Valentina; Topisirovic, Ivan; Li, Shui; Wagner, Carston R.; Sonenberg, Nahum; Piccirillo, Ciriaco A.

    2013-01-01

    Regulatory T cells expressing the transcription factor Foxp3 play indispensable roles for the induction and maintenance of immunological self-tolerance and immune homeostasis. Genome-wide mRNA expression studies have defined canonical signatures of T cell subsets. Changes in steady-state mRNA levels, however, often do not reflect those of corresponding proteins due to post-transcriptional mechanisms including mRNA translation. Here, we unveil a unique translational signature, contrasting CD4+Foxp3+ regulatory T (TFoxp3+) and CD4+Foxp3− non-regulatory T (TFoxp3−) cells, which imprints subset-specific protein expression. We further show that translation of eukaryotic translation initiation factor 4E (eIF4E) is induced during T cell activation and, in turn, regulates translation of cell cycle related mRNAs and proliferation in both TFoxp3− and TFoxp3+ cells. Unexpectedly, eIF4E also affects Foxp3 expression and thereby lineage identity. Thus, mRNA–specific translational control directs both common and distinct cellular processes in CD4+ T cell subsets. PMID:23658533

  6. Stem cell hype: media portrayal of therapy translation.

    PubMed

    Kamenova, Kalina; Caulfield, Timothy

    2015-03-11

    In this Perspective, we examine the portrayal of translational stem cell research in major daily newspapers in Canada, the United States, and the United Kingdom between 2010 and 2013, focusing on how timelines for stem cell therapies were represented before and after Geron terminated its pioneering stem cell program. Our content analysis reveals that press coverage has shifted from ethical, legal, and social issues to clinical translation issues, and highly optimistic timelines were provided with no substantial change in representation over time. Scientists were the dominant voice with respect to translation timelines. The findings raise questions about the degree to which the media's overly optimistic slant fosters unrealistic expectations regarding the speed of clinical translation and highlight the ethical responsibility of stem cell researchers as public communicators. PMID:25761887

  7. Poly(A) binding protein abundance regulates eukaryotic translation initiation factor 4F assembly in human cytomegalovirus-infected cells.

    PubMed

    McKinney, Caleb; Perez, Cesar; Mohr, Ian

    2012-04-10

    By commandeering cellular translation initiation factors, or destroying those dispensable for viral mRNA translation, viruses often suppress host protein synthesis. In contrast, cellular protein synthesis proceeds in human cytomegalovirus (HCMV)-infected cells, forcing viral and cellular mRNAs to compete for limiting translation initiation factors. Curiously, inactivating the host translational repressor 4E-BP1 in HCMV-infected cells stimulates synthesis of the cellular poly(A) binding protein (PABP), significantly increasing PABP abundance. Here, we establish that new PABP synthesis is translationally controlled by the HCMV-encoded UL38 mammalian target of rapamycin complex 1-activator. The 5' UTR within the mRNA encoding PABP contains a terminal oligopyrimidine (TOP) element found in mRNAs, the translation of which is stimulated in response to mitogenic, growth, and nutritional stimuli, and proteins encoded by TOP-containing mRNAs accumulated in HCMV-infected cells. Furthermore, UL38 expression was necessary and sufficient to regulate expression of a PABP TOP-containing reporter. Remarkably, preventing the rise in PABP abundance by RNAi impaired eIF4E binding to eIF4G, thereby reducing assembly of the multisubunit initiation factor eIF4F, viral protein production, and replication. This finding demonstrates that viruses can increase host translation initiation factor concentration to foster their replication and defines a unique mechanism whereby control of PABP abundance regulates eIF4F assembly. PMID:22431630

  8. Natural Killer Cells and Antifungal Host Response

    PubMed Central

    Schmidt, Stanislaw; Zimmermann, Stefanie-Yvonne; Tramsen, Lars; Koehl, Ulrike

    2013-01-01

    As a result of improved experimental methodologies and a better understanding of the immune system, there is increasing insight into the antifungal activity of natural killer (NK) cells. Murine and human NK cells are able to damage fungi of different genera and species in vitro, and they exert both direct and indirect antifungal activity through cytotoxic molecules such as perforin and through cytokines and interferons, respectively. On the other hand, recent data suggest that fungi exhibit immunosuppressive effects on NK cells. Whereas clear in vivo data are lacking in humans, the importance of NK cells in the host response against fungi has been demonstrated in animal models. Further knowledge of the interaction of NK cells with fungi might help to better understand the pathogenesis of invasive fungal infections and to improve treatment strategies. PMID:23365210

  9. Concepts of papillomavirus entry into host cells.

    PubMed

    Day, Patricia M; Schelhaas, Mario

    2014-02-01

    Papillomaviruses enter basal cells of stratified epithelia. Assembly of new virions occurs in infected cells during terminal differentiation. This unique biology is reflected in the mechanism of entry. Extracellularly, the interaction of nonenveloped capsids with several host cell proteins, after binding, results in discrete conformational changes. Asynchronous internalization occurs over several hours by an endocytic mechanism related to, but distinct from macropinocytosis. Intracellular trafficking leads virions through the endosomal system, and from late endosomes to the trans-Golgi-network, before nuclear delivery. Here, we discuss the existing data with the aim to synthesize an integrated model of the stepwise process of entry, thereby highlighting key open questions. Additionally, we relate data from experiments with cultured cells to in vivo results. PMID:24525291

  10. Our Fat Future: Translating Adipose Stem Cell Therapy

    PubMed Central

    Nordberg, Rachel C.

    2015-01-01

    Summary Human adipose stem cells (hASCs) have the potential to treat patients with a variety of clinical conditions. Recent advancements in translational research, regulatory policy, and industry have positioned hASCs on the threshold of clinical translation. We discuss the progress and challenges of bringing adipose stem cell therapy into mainstream clinical use. Significance This article details the advances made in recent years that have helped move human adipose stem cell therapy toward mainstream clinical use from a translational research, regulatory policy, and industrial standpoint. Four recurrent themes in translational technology as they pertain to human adipose stem cells are discussed: automated closed-system operations, biosensors and real-time monitoring, biomimetics, and rapid manufacturing. In light of recent FDA guidance documents, regulatory concerns about adipose stem cell therapy are discussed. Finally, an update is provided on the current state of clinical trials and the emerging industry that uses human adipose stem cells. This article is expected to stimulate future studies in translational adipose stem cell research. PMID:26185256

  11. At the Edge of Translation – Materials to Program Cells for Directed Differentiation

    PubMed Central

    Arany, Praveen R; Mooney, David J

    2010-01-01

    The rapid advancement in basic biology knowledge, especially in the stem cell field, has created new opportunities to develop biomaterials capable of orchestrating the behavior of transplanted and host cells. Based on our current understanding of cellular differentiation, a conceptual framework for the use of materials to program cells in situ is presented, namely a domino versus a switchboard model, to highlight the use of single versus multiple cues in a controlled manner to modulate biological processes. Further, specific design principles of material systems to present soluble and insoluble cues that are capable of recruiting, programming and deploying host cells for various applications are presented. The evolution of biomaterials from simple inert substances used to fill defects, to the recent development of sophisticated material systems capable of programming cells in situ is providing a platform to translate our understanding of basic biological mechanisms to clinical care. PMID:20860763

  12. Electroporation of Alphavirus RNA Translational Reporters into Fibroblastic and Myeloid Cells as a Tool to Study the Innate Immune System.

    PubMed

    Gardner, Christina L; Trobaugh, Derek W; Ryman, Kate D; Klimstra, William B

    2016-01-01

    The ability to transfect synthetic mRNAs into cells to measure processes such as translation efficiency or mRNA decay has been an invaluable tool in cell biology. The use of electroporation over other methods of transfection is an easy, inexpensive, highly efficient, and scalable method to introduce synthetic mRNA into a wide range of cell types. More recently, coupling of noncoding RNA sequences or protein coding regions from viral pathogens to fluorescent or bioluminescence proteins in RNA "reporters" has permitted study of host-pathogen interactions. These can range from virus infection of cells to translation of the viral genome, replication and stability of viral RNAs, or the efficacy of host antiviral responses. In this chapter, we describe a method for electroporating viral RNA reporters into both fibroblastic and myeloid cells that encode firefly or Renilla luciferase, whose reaction with specific substrates and light emitting activity is a measure of viral RNA translation efficiency. We have used this method to examine host interferon-dependent responses that inhibit viral translation along with identifying secondary structures in the 5' nontranslated region (NTR) and microRNA binding sites in the 3' NTR that are responsible for antagonizing the host innate immune responses and restricting viral cell tropism. PMID:27236796

  13. Translational aspects of cardiac cell therapy

    PubMed Central

    Chen, Cheng-Han; Sereti, Konstantina-Ioanna; Wu, Benjamin M; Ardehali, Reza

    2015-01-01

    Cell therapy has been intensely studied for over a decade as a potential treatment for ischaemic heart disease. While initial trials using skeletal myoblasts, bone marrow cells and peripheral blood stem cells showed promise in improving cardiac function, benefits were found to be short-lived likely related to limited survival and engraftment of the delivered cells. The discovery of putative cardiac ‘progenitor’ cells as well as the creation of induced pluripotent stem cells has led to the delivery of cells potentially capable of electromechanical integration into existing tissue. An alternative strategy involving either direct reprogramming of endogenous cardiac fibroblasts or stimulation of resident cardiomyocytes to regenerate new myocytes can potentially overcome the limitations of exogenous cell delivery. Complimentary approaches utilizing combination cell therapy and bioengineering techniques may be necessary to provide the proper milieu for clinically significant regeneration. Clinical trials employing bone marrow cells, mesenchymal stem cells and cardiac progenitor cells have demonstrated safety of catheter based cell delivery, with suggestion of limited improvement in ventricular function and reduction in infarct size. Ongoing trials are investigating potential benefits to outcome such as morbidity and mortality. These and future trials will clarify the optimal cell types and delivery conditions for therapeutic effect. PMID:26119413

  14. Counting Legionella cells within single amoeba host cells

    EPA Science Inventory

    Here we present the first attempt to quantify L. pneumophila cell numbers within individual amoebae hosts that may be released into engineered water systems. The maximum numbers of culturable L. pneumophila cells grown within Acanthamoeba polyphaga and Naegleria fowleri were 134...

  15. Malaria: targeting parasite and host cell kinomes.

    PubMed

    Doerig, Christian; Abdi, Abdirahman; Bland, Nicholas; Eschenlauer, Sylvain; Dorin-Semblat, Dominique; Fennell, Clare; Halbert, Jean; Holland, Zoe; Nivez, Marie-Paule; Semblat, Jean-Philippe; Sicard, Audrey; Reininger, Luc

    2010-03-01

    Malaria still remains one of the deadliest infectious diseases, and has a tremendous morbidity and mortality impact in the developing world. The propensity of the parasites to develop drug resistance, and the relative reluctance of the pharmaceutical industry to invest massively in the developments of drugs that would offer only limited marketing prospects, are major issues in antimalarial drug discovery. Protein kinases (PKs) have become a major family of targets for drug discovery research in a number of disease contexts, which has generated considerable resources such as kinase-directed libraries and high throughput kinase inhibition assays. The phylogenetic distance between malaria parasites and their human host translates into important divergences in their respective kinomes, and most Plasmodium kinases display atypical properties (as compared to mammalian PKs) that can be exploited towards selective inhibition. Here, we discuss the taxon-specific kinases possessed by malaria parasites, and give an overview of target PKs that have been validated by reverse genetics, either in the human malaria parasite Plasmodium falciparum or in the rodent model Plasmodium berghei. We also briefly allude to the possibility of attacking Plasmodium through the inhibition of human PKs that are required for survival of this obligatory intracellular parasite, and which are targets for other human diseases. PMID:19840874

  16. Industrial production of clotting factors: Challenges of expression, and choice of host cells.

    PubMed

    Kumar, Sampath R

    2015-07-01

    The development of recombinant forms of blood coagulation factors as safer alternatives to plasma derived factors marked a major advance in the treatment of common coagulation disorders. These are complex proteins, mostly enzymes or co-enzymes, involving multiple post-translational modifications, and therefore are difficult to express. This article reviews the nature of the expression challenges for the industrial production of these factors, vis-à-vis the translational and post-translational bottlenecks, as well as the choice of host cell lines for high-fidelity production. For achieving high productivities of vitamin K dependent proteins, which include factors II (prothrombin), VII, IX and X, and protein C, host cell limitation of γ-glutamyl carboxylation is a major bottleneck. Despite progress in addressing this, involvement of yet unidentified protein(s) impedes a complete cell engineering solution. Human factor VIII expresses at very low levels due to limitations at several steps in the protein secretion pathway. Protein and cell engineering, vector improvement and alternate host cells promise improvement in the productivity. Production of Von Willebrand factor is constrained by its large size, complex structure, and the need for extensive glycosylation and disulfide-bonded oligomerization. All the licensed therapeutic factors are produced in CHO, BHK or HEK293 cells. While HEK293 is a recent adoption, BHK cells appear to be disfavored. PMID:26099845

  17. Infrastructure development for human cell therapy translation.

    PubMed

    Dietz, A B; Padley, D J; Gastineau, D A

    2007-09-01

    The common conception of a drug is that of a chemical with defined medicinal effect. However, cells used as drugs remain critical to patient care. Cell therapy's origins began with the realization that complex tissues such as blood can retain function when transplanted to the patient. More complex transplantation followed, culminating with the understanding that transplantation of some tissues such as bone marrow may act medicinally. Administration of cells with an intended therapeutic effect is a hallmark of cellular therapy. While cells have been used as drugs for decades, testing a specific therapeutic effect of cells has begun clinical testing relatively recently. Lessons learned during the establishment of blood banking (including the importance of quality control, process control, sterility, and product tracking) are key components in the assurance of the safety and potency of cell therapy preparations. As more academic medical centers and private companies move toward exploiting the full potential of cells as drugs, needs arise for the development of the infrastructure necessary to support these investigations. Careful consideration of the design of the structure used to manufacture is important in terms of the significant capital outlay involved and the facility's role in achieving regulatory compliance. This development perspective describes the regulatory environment surrounding the infrastructure support for cell therapy and practical aspects for design consideration with particular focus on those activities associated with early clinical trials. PMID:17637785

  18. Pathogenesis mediated by proviral host factors involved in translation and replication of plant positive-strand RNA viruses.

    PubMed

    Hyodo, Kiwamu; Okuno, Tetsuro

    2016-04-01

    Viral pathogenesis comes from complex interactions between viruses and hosts. All the processes of viral infection, including translation of viral factors and replication of viral genomes, define viral pathogenesis; therefore, molecular insights into the mechanisms underlying viral replication strategies unambiguously pave the way for our comprehensive understanding of viral pathogenesis and disease outcome, as well as for developing new antiviral strategies against plant virus disease. Recent studies of plant positive-strand RNA [(+)RNA] viruses have advanced our understanding of co-opted host factors and their roles in viral translation and replication. It is becoming clear that plant (+)RNA viruses harness host factors involved in membrane trafficking and lipid metabolism to establish the viral replication complex (VRC). In this review, we aim to discuss the contribution of co-opted host factors in translation and genome replication of plant (+)RNA viruses mainly focusing on those involved in the biogenesis of the VRC, which may act as a central hub in almost all the processes of viral infection as well as viral pathogenesis. PMID:26651023

  19. Cell-based therapy technology classifications and translational challenges

    PubMed Central

    Mount, Natalie M.; Ward, Stephen J.; Kefalas, Panos; Hyllner, Johan

    2015-01-01

    Cell therapies offer the promise of treating and altering the course of diseases which cannot be addressed adequately by existing pharmaceuticals. Cell therapies are a diverse group across cell types and therapeutic indications and have been an active area of research for many years but are now strongly emerging through translation and towards successful commercial development and patient access. In this article, we present a description of a classification of cell therapies on the basis of their underlying technologies rather than the more commonly used classification by cell type because the regulatory path and manufacturing solutions are often similar within a technology area due to the nature of the methods used. We analyse the progress of new cell therapies towards clinical translation, examine how they are addressing the clinical, regulatory, manufacturing and reimbursement requirements, describe some of the remaining challenges and provide perspectives on how the field may progress for the future. PMID:26416686

  20. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell.

    PubMed

    Herbert, Kristina M; Nag, Anita

    2016-01-01

    Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage. PMID:27271653

  1. A Tale of Two RNAs during Viral Infection: How Viruses Antagonize mRNAs and Small Non-Coding RNAs in The Host Cell

    PubMed Central

    Herbert, Kristina M.; Nag, Anita

    2016-01-01

    Viral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs. Besides mRNAs, host cells also express a variety of noncoding RNAs, including small RNAs, that may also be subject to inhibition upon viral infection. In this review we focused on different ways viruses antagonize coding and noncoding RNAs in the host cell to its advantage. PMID:27271653

  2. Preclinical models of acute and chronic graft-versus-host disease: how predictive are they for a successful clinical translation?

    PubMed

    Zeiser, Robert; Blazar, Bruce R

    2016-06-23

    Despite major advances in recent years, graft-versus-host disease (GVHD) remains a major life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). To improve our therapeutic armory against GVHD, preclinical evidence is most frequently generated in mouse and large animal models of GVHD. However, because every model has shortcomings, it is important to understand how predictive the different models are and why certain findings in these models could not be translated into the clinic. Weaknesses of the animal GVHD models include the irradiation only-based conditioning regimen, the homogenous donor/recipient genetics in mice, canine or non-human primates (NHP), anatomic site of T cells used for transfer in mice, the homogenous microbial environment in mice housed under specific pathogen-free conditions, and the lack of pharmacologic GVHD prevention in control groups. Despite these major differences toward clinical allo-HCT, findings generated in animal models of GVHD have led to the current gold standards for GVHD prophylaxis and therapy. The homogenous nature of the preclinical models allows for reproducibility, which is key for the characterization of the role of a new cytokine, chemokine, transcription factor, microRNA, kinase, or immune cell population in the context of GVHD. Therefore, when carefully balancing reasons to apply small and large animal models, it becomes evident that they are valuable tools to generate preclinical hypotheses, which then have to be rigorously evaluated in the clinical setting. In this study, we discuss several clinical approaches that were motivated by preclinical evidence, novel NHP models and their advantages, and highlight the recent advances in understanding the pathophysiology of GVHD. PMID:26994149

  3. Head and neck squamous cell carcinoma: new translational therapies.

    PubMed

    Prince, Anthony; Aguirre-Ghizo, Julio; Genden, Eric; Posner, Marshall; Sikora, Andrew

    2010-01-01

    Head and neck squamous cell carcinoma includes cancers of the mouth, throat, larynx, and lymph nodes of the neck. Although early disease is amenable to single-modality treatment with surgery or radiation, patients with advanced disease have a dramatically worse prognosis, despite potentially morbid/toxic treatment regimens involving surgery, radiation, chemotherapy, or all 3 modalities. The present review seeks to provide an overview of current understanding and treatment of head and neck squamous cell carcinoma for the nonspecialist clinician or basic/translational researcher, followed by an overview of major translational approaches to the treatment of head and neck squamous cell carcinoma. Translational research topics addressed include targeted molecular therapy, immunotherapy, minimally invasive robotic surgery, and ablation of dormant/residual tumor cells. Despite the many potentially promising avenues of head and neck squamous cell carcinoma research, only 2 new treatment approaches (antiepidermal growth factor receptor therapy and robotic surgery) have been approved by the US Food and Drug Administration in the past 30 years. Focused research programs involving integrated teams of clinicians, basic scientists, and translational clinician-researchers have the potential to accelerate discovery and change treatment paradigms for patients with head and neck cancer. PMID:21105129

  4. Cell-specific translational profiling in acute kidney injury

    PubMed Central

    Liu, Jing; Krautzberger, A. Michaela; Sui, Shannan H.; Hofmann, Oliver M.; Chen, Ying; Baetscher, Manfred; Grgic, Ivica; Kumar, Sanjeev; Humphreys, Benjamin; Hide, Winston A.; McMahon, Andrew P.

    2014-01-01

    Acute kidney injury (AKI) promotes an abrupt loss of kidney function that results in substantial morbidity and mortality. Considerable effort has gone toward identification of diagnostic biomarkers and analysis of AKI-associated molecular events; however, most studies have adopted organ-wide approaches and have not elucidated the interplay among different cell types involved in AKI pathophysiology. To better characterize AKI-associated molecular and cellular events, we developed a mouse line that enables the identification of translational profiles in specific cell types. This strategy relies on CRE recombinase–dependent activation of an EGFP-tagged L10a ribosomal protein subunit, which allows translating ribosome affinity purification (TRAP) of mRNA populations in CRE-expressing cells. Combining this mouse line with cell type–specific CRE-driver lines, we identified distinct cellular responses in an ischemia reperfusion injury (IRI) model of AKI. Twenty-four hours following IRI, distinct translational signatures were identified in the nephron, kidney interstitial cell populations, vascular endothelium, and macrophages/monocytes. Furthermore, TRAP captured known IRI-associated markers, validating this approach. Biological function annotation, canonical pathway analysis, and in situ analysis of identified response genes provided insight into cell-specific injury signatures. Our study provides a deep, cell-based view of early injury-associated molecular events in AKI and documents a versatile, genetic tool to monitor cell-specific and temporal-specific biological processes in disease modeling. PMID:24569379

  5. Ehrlichia chaffeensis TRP32 Interacts with Host Cell Targets That Influence Intracellular Survival

    PubMed Central

    Luo, Tian

    2012-01-01

    Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes and survives by evading host cell defense mechanisms. Recently, molecular interactions of E. chaffeensis tandem repeat proteins 47 and 120 (TRP47 and -120) and the eukaryotic host cell have been described. In this investigation, yeast two-hybrid analysis demonstrated that an E. chaffeensis type 1 secretion system substrate, TRP32, interacts with a diverse group of human proteins associated with major biological processes of the host cell, including protein synthesis, trafficking, degradation, immune signaling, cell signaling, iron metabolism, and apoptosis. Eight target proteins, including translation elongation factor 1 alpha 1 (EF1A1), deleted in azoospermia (DAZ)-associated protein 2 (DAZAP2), ferritin light polypeptide (FTL), CD63, CD14, proteasome subunit beta type 1 (PSMB1), ring finger and CCCH-type domain 1 (RC3H1), and tumor protein p53-inducible protein 11 (TP53I11) interacted with TRP32 as determined by coimmunoprecipitation assays, colocalization with TRP32 in HeLa and THP-1 cells, and/or RNA interference. Interactions between TRP32 and host targets localized to the E. chaffeensis morulae or in the host cell cytoplasm adjacent to morulae. Common or closely related interacting partners of E. chaffeensis TRP32, TRP47, and TRP120 demonstrate a molecular convergence on common cellular processes and molecular cross talk between Ehrlichia TRPs and host targets. These findings further support the role of TRPs as effectors that promote intracellular survival. PMID:22547548

  6. Cell fate determination by ubiquitin-dependent regulation of translation

    PubMed Central

    Werner, Achim; Iwasaki, Shintaro; McGourty, Colleen; Medina-Ruiz, Sofia; Teerikorpi, Nia; Fedrigo, Indro; Ingolia, Nicholas T.; Rape, Michael

    2015-01-01

    Metazoan development depends on accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates 1. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell fate determination is less well understood. Here, we have identified the vertebrate-specific ubiquitin ligase CUL3KBTBD8 as an essential regulator of neural crest specification. CUL3KBTBD8 monoubiquitylates NOLC1 and its paralog TCOF1, whose mutation underlies the neurocristopathy Treacher Collins Syndrome 2,3. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favor of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell fate determination. PMID:26399832

  7. The Type III Secretion Translocation Pore Senses Host Cell Contact

    PubMed Central

    Armentrout, Erin I.; Rietsch, Arne

    2016-01-01

    Type III secretion systems (T3SS) are nano-syringes used by a wide range of Gram-negative pathogens to promote infection by directly injecting effector proteins into targeted host cells. Translocation of effectors is triggered by host-cell contact and requires assembly of a pore in the host-cell plasma membrane, which consists of two translocator proteins. Our understanding of the translocation pore, how it is assembled in the host cell membrane and its precise role in effector translocation, is extremely limited. Here we use a genetic technique to identify protein-protein contacts between pore-forming translocator proteins, as well as the T3SS needle-tip, that are critical for translocon function. The data help establish the orientation of the translocator proteins in the host cell membrane. Analysis of translocon function in mutants that break these contacts demonstrates that an interaction between the pore-forming translocator PopD and the needle-tip is required for sensing host cell contact. Moreover, tethering PopD at a dimer interface also specifically prevents host-cell sensing, arguing that the translocation pore is actively involved in detecting host cell contact. The work presented here therefore establishes a signal transduction pathway for sensing host cell contact that is initiated by a conformational change in the translocation pore, and is subsequently transmitted to the base of the apparatus via a specific contact between the pore and the T3SS needle-tip. PMID:27022930

  8. Control of Cell Migration Through Mrna Localization and Local Translation

    PubMed Central

    Liao, Guoning; Mingle, Lisa; Van De Water, Livingston; Liu, Gang

    2014-01-01

    Cell migration plays an important role in many normal and pathological functions such as development, wound healing, immune defense and tumor metastasis. Polarized migrating cells exhibit asymmetric distribution of many cytoskeletal proteins which is believed to be critical for establishing and maintaining cell polarity and directional cell migration. To target these proteins to the site of function, cells use a variety of mechanisms such as protein transport and mRNA localization-mediated local protein synthesis. In contrast to the former which is intensively investigated and relatively well understood, the latter has been under-studied and relatively poorly understood. However, recent advances in the study of mRNA localization and local translation have demonstrated that mRNA localization and local translation are specific and effective ways for protein localization and are crucial for embryo development, neuronal function and many other cellular processes. There are excellent reviews on mRNA localization, transport and translation during development and other cellular processes. This review will focus on mRNA localization-mediated local protein biogenesis and its impact on somatic cell migration. PMID:25264217

  9. Salmonella – At Home in the Host Cell

    PubMed Central

    Malik-Kale, Preeti; Jolly, Carrie E.; Lathrop, Stephanie; Winfree, Seth; Luterbach, Courtney; Steele-Mortimer, Olivia

    2011-01-01

    The Gram-negative bacterium Salmonella enterica has developed an array of sophisticated tools to manipulate the host cell and establish an intracellular niche, for successful propagation as a facultative intracellular pathogen. While Salmonella exerts diverse effects on its host cell, only the cell biology of the classic “trigger”-mediated invasion process and the subsequent development of the Salmonella-containing vacuole have been investigated extensively. These processes are dependent on cohorts of effector proteins translocated into host cells by two type III secretion systems (T3SS), although T3SS-independent mechanisms of entry may be important for invasion of certain host cell types. Recent studies into the intracellular lifestyle of Salmonella have provided new insights into the mechanisms used by this pathogen to modulate its intracellular environment. Here we discuss current knowledge of Salmonella-host interactions including invasion and establishment of an intracellular niche within the host. PMID:21687432

  10. Challenges in the Translation of Cardiovascular Cell Therapy

    PubMed Central

    Gupta, Rajesh; Losordo, Douglas W.

    2011-01-01

    Ischemic cardiovascular diseases cause a significant burden of morbidity and mortality throughout the world. Over the past decade, we have learned a tremendous amount about the biology of various stem and progenitor cells. Multiple preclinical experiments have demonstrated significant bioactivity in a wide variety of stem and progenitor cells. Early clinical trials have also shown some promising results. This review will focus on the current challenges in the translation of cell therapy to a viable clinical therapy. Additionally, we will highlight the role of cardiovascular imaging and molecular imaging in the future of stem cell therapy. PMID:20395342

  11. Staphylococcus aureus Cell Extract Transcription-Translation Assay: Firefly Luciferase Reporter System for Evaluating Protein Translation Inhibitors

    PubMed Central

    Murray, Robert W.; Melchior, Earline P.; Hagadorn, Jeanne C.; Marotti, Keith R.

    2001-01-01

    The promoter for the Staphylococcus aureus capsule polysaccharide synthesis gene (cap1A) was cloned in front of the firefly luciferase gene for use in a cell extract S. aureus transcription-translation system. The assay is rapid, reproducible, and sensitive and has a lower background level than the radiolabeled amino acid incorporation translation assays. We present data evaluating a transcription inhibitor and a number of protein translation inhibitors in this system. PMID:11353649

  12. Mechanisms of host cell invasion by Trypanosoma cruzi.

    PubMed

    Caradonna, Kacey L; Burleigh, Barbara A

    2011-01-01

    One of the more accepted concepts in our understanding of the biology of early Trypanosoma cruzi-host cell interactions is that the mammalian-infective trypomastigote forms of the parasite must transit the host cell lysosomal compartment in order to establish a productive intracellular infection. The acidic environment of the lysosome provides the appropriate conditions for parasite-mediated disruption of the parasitophorous vacuole and release of T. cruzi into the host cell cytosol, where replication of intracellular amastigotes occurs. Recent findings indicate a level of redundancy in the lysosome-targeting process where T. cruzi trypomastigotes exploit different cellular pathways to access host cell lysosomes in non-professional phagocytic cells. In addition, the reversible nature of the host cell penetration process was recently demonstrated when conditions for fusion of the nascent parasite vacuole with the host endosomal-lysosomal system were not met. Thus, the concept of parasite retention as a critical component of the T. cruzi invasion process was introduced. Although it is clear that host cell recognition, attachment and signalling are required to initiate invasion, integration of this knowledge with our understanding of the different routes of parasite entry is largely lacking. In this chapter, we focus on current knowledge of the cellular pathways exploited by T. cruzi trypomastigotes to invade non-professional phagocytic cells and to gain access to the host cell lysosome compartment. PMID:21884886

  13. Interaction of chlamydiae and host cells in vitro.

    PubMed Central

    Moulder, J W

    1991-01-01

    The obligately intracellular bacteria of the genus Chlamydia, which is only remotely related to other eubacterial genera, cause many diseases of humans, nonhuman mammals, and birds. Interaction of chlamydiae with host cells in vitro has been studied as a model of infection in natural hosts and as an example of the adaptation of an organism to an unusual environment, the inside of another living cell. Among the novel adaptations made by chlamydiae have been the substitution of disulfide-bond-cross-linked polypeptides for peptidoglycans and the use of host-generated nucleotide triphosphates as sources of metabolic energy. The effect of contact between chlamydiae and host cells in culture varies from no effect at all to rapid destruction of either chlamydiae or host cells. When successful infection occurs, it is usually followed by production of large numbers of progeny and destruction of host cells. However, host cells containing chlamydiae sometimes continue to divide, with or without overt signs of infection, and chlamydiae may persist indefinitely in cell cultures. Some of the many factors that influence the outcome of chlamydia-host cell interaction are kind of chlamydiae, kind of host cells, mode of chlamydial entry, nutritional adequacy of the culture medium, presence of antimicrobial agents, and presence of immune cells and soluble immune factors. General characteristics of chlamydial multiplication in cells of their natural hosts are reproduced in established cell lines, but reproduction in vitro of the subtle differences in chlamydial behavior responsible for the individuality of the different chlamydial diseases will require better in vitro models. PMID:2030670

  14. Aminoglycoside resistance 16S rRNA methyltransferases block endogenous methylation, affect translation efficiency and fitness of the host

    PubMed Central

    Lioy, Virginia S.; Goussard, Sylvie; Guerineau, Vincent; Yoon, Eun-Jeong; Courvalin, Patrice; Galimand, Marc; Grillot-Courvalin, Catherine

    2014-01-01

    In Gram-negative bacteria, acquired 16S rRNA methyltransferases ArmA and NpmA confer high-level resistance to all clinically useful aminoglycosides by modifying, respectively, G1405 and A1408 in the A-site. These enzymes must coexist with several endogenous methyltransferases that are essential for fine-tuning of the decoding center, such as RsmH and RsmI in Escherichia coli, which methylate C1402 and RsmF C1407. The resistance methyltransferases have a contrasting distribution—ArmA has spread worldwide, whereas a single clinical isolate producing NpmA has been reported. The rate of dissemination of resistance depends on the fitness cost associated with its expression. We have compared ArmA and NpmA in isogenic Escherichia coli harboring the corresponding structural genes and their inactive point mutants cloned under the control of their native constitutive promoter in the stable plasmid pGB2. Growth rate determination and competition experiments showed that ArmA had a fitness cost due to methylation of G1405, whereas NpmA conferred only a slight disadvantage to the host due to production of the enzyme. MALDI MS indicated that ArmA impeded one of the methylations at C1402 by RsmI, and not at C1407 as previously proposed, whereas NpmA blocked the activity of RsmF at C1407. A dual luciferase assay showed that methylation at G1405 and A1408 and lack of methylation at C1407 affect translation accuracy. These results indicate that resistance methyltransferases impair endogenous methylation with different consequences on cell fitness. PMID:24398977

  15. Methods for production of proteins in host cells

    DOEpatents

    Donnelly, Mark; Joachimiak, Andrzej

    2004-01-13

    The present invention provides methods for the production of proteins, particularly toxic proteins, in host cells. The invention provides methods which use a fusion protein comprising a chaperonin binding domain in host cells induced or regulated to have increased levels of chaperonin which binds the chaperonin binding domain.

  16. Host cells and methods for production of isobutanol

    DOEpatents

    Anthony, Larry Cameron; He, Hongxian; Huang, Lixuan Lisa; Okeefe, Daniel P.; Kruckeberg, Arthur Leo; Li, Yougen; Maggio-Hall, Lori Ann; McElvain, Jessica; Nelson, Mark J.; Patnaik, Ranjan; Rothman, Steven Cary

    2016-08-23

    Provided herein are recombinant yeast host cells and methods for their use for production of isobutanol. Yeast host cells provided comprise an isobutanol biosynthetic pathway and at least one of reduced or eliminated aldehyde dehydrogenase activity, reduced or eliminated acetolactate reductase activity; or a heterologous polynucleotide encoding a polypeptide having ketol-acid reductoisomerase activity.

  17. Autologous apoptotic cells preceding transplantation enhance survival in lethal murine graft-versus-host models

    PubMed Central

    Florek, Mareike; Sega, Emanuela I.; Leveson-Gower, Dennis B.; Baker, Jeanette; Müller, Antonia M. S.; Schneidawind, Dominik; Meyer, Everett

    2014-01-01

    Acute graft-versus-host disease (GVHD) is induced by alloreactivity of donor T cells toward host antigens presented on antigen-presenting cells (APCs). Apoptotic cells are capable of inducing tolerance by altering APC maturation. Apoptosis can be induced by extracorporeal photopheresis (ECP). We demonstrate that the use of ECP as a prophylaxis prior to conditioning significantly improves survival (P < .0001) after bone marrow transplantation (BMT) by inhibiting the initiation phase of acute GVHD in a murine BMT model. ECP-treated autologous splenocytes resulted in immune tolerance in the host, including reduced dendritic cell activation with decreased nuclear factor-κB engagement, increased regulatory T-cell (Treg) numbers with enhanced expression of cytolytic T lymphocyte-associated antigen 4, potentiating their suppressive function. The protective effect required host production of interleukin-10 and host Tregs. Conventional T cells that entered this tolerant environment experienced reduced proliferation, as well as a reduction of tissue homing and expression of activation markers. The induction of this tolerant state by ECP was obviated by cotreatment with lipopolysaccharide, suggesting that the inflammatory state of the recipient prior to treatment would play a role in potential clinical translation. The use of prophylactic ECP may provide an alternative and safe method for immunosuppression in the bone marrow transplant setting. PMID:25030062

  18. Autologous apoptotic cells preceding transplantation enhance survival in lethal murine graft-versus-host models.

    PubMed

    Florek, Mareike; Sega, Emanuela I; Leveson-Gower, Dennis B; Baker, Jeanette; Müller, Antonia M S; Schneidawind, Dominik; Meyer, Everett; Negrin, Robert S

    2014-09-11

    Acute graft-versus-host disease (GVHD) is induced by alloreactivity of donor T cells toward host antigens presented on antigen-presenting cells (APCs). Apoptotic cells are capable of inducing tolerance by altering APC maturation. Apoptosis can be induced by extracorporeal photopheresis (ECP). We demonstrate that the use of ECP as a prophylaxis prior to conditioning significantly improves survival (P < .0001) after bone marrow transplantation (BMT) by inhibiting the initiation phase of acute GVHD in a murine BMT model. ECP-treated autologous splenocytes resulted in immune tolerance in the host, including reduced dendritic cell activation with decreased nuclear factor-κB engagement, increased regulatory T-cell (Treg) numbers with enhanced expression of cytolytic T lymphocyte-associated antigen 4, potentiating their suppressive function. The protective effect required host production of interleukin-10 and host Tregs. Conventional T cells that entered this tolerant environment experienced reduced proliferation, as well as a reduction of tissue homing and expression of activation markers. The induction of this tolerant state by ECP was obviated by cotreatment with lipopolysaccharide, suggesting that the inflammatory state of the recipient prior to treatment would play a role in potential clinical translation. The use of prophylactic ECP may provide an alternative and safe method for immunosuppression in the bone marrow transplant setting. PMID:25030062

  19. The cis-acting replication element of the Hepatitis C virus genome recruits host factors that influence viral replication and translation.

    PubMed

    Ríos-Marco, Pablo; Romero-López, Cristina; Berzal-Herranz, Alfredo

    2016-01-01

    The cis-acting replication element (CRE) of the hepatitis C virus (HCV) RNA genome is a region of conserved sequence and structure at the 3' end of the open reading frame. It participates in a complex and dynamic RNA-RNA interaction network involving, among others, essential functional domains of the 3' untranslated region and the internal ribosome entry site located at the 5' terminus of the viral genome. A proper balance between all these contacts is critical for the control of viral replication and translation, and is likely dependent on host factors. Proteomic analyses identified a collection of proteins from a hepatoma cell line as CRE-interacting candidates. A large fraction of these were RNA-binding proteins sharing highly conserved RNA recognition motifs. The vast majority of these proteins were validated by bioinformatics tools that consider RNA-protein secondary structure. Further characterization of representative proteins indicated that hnRNPA1 and HMGB1 exerted negative effects on viral replication in a subgenomic HCV replication system. Furthermore DDX5 and PARP1 knockdown reduced the HCV IRES activity, suggesting an involvement of these proteins in HCV translation. The identification of all these host factors provides new clues regarding the function of the CRE during viral cycle progression. PMID:27165399

  20. The cis-acting replication element of the Hepatitis C virus genome recruits host factors that influence viral replication and translation

    PubMed Central

    Ríos-Marco, Pablo; Romero-López, Cristina; Berzal-Herranz, Alfredo

    2016-01-01

    The cis-acting replication element (CRE) of the hepatitis C virus (HCV) RNA genome is a region of conserved sequence and structure at the 3′ end of the open reading frame. It participates in a complex and dynamic RNA-RNA interaction network involving, among others, essential functional domains of the 3′ untranslated region and the internal ribosome entry site located at the 5′ terminus of the viral genome. A proper balance between all these contacts is critical for the control of viral replication and translation, and is likely dependent on host factors. Proteomic analyses identified a collection of proteins from a hepatoma cell line as CRE-interacting candidates. A large fraction of these were RNA-binding proteins sharing highly conserved RNA recognition motifs. The vast majority of these proteins were validated by bioinformatics tools that consider RNA-protein secondary structure. Further characterization of representative proteins indicated that hnRNPA1 and HMGB1 exerted negative effects on viral replication in a subgenomic HCV replication system. Furthermore DDX5 and PARP1 knockdown reduced the HCV IRES activity, suggesting an involvement of these proteins in HCV translation. The identification of all these host factors provides new clues regarding the function of the CRE during viral cycle progression. PMID:27165399

  1. Protein folding. Translational tuning optimizes nascent protein folding in cells.

    PubMed

    Kim, Soo Jung; Yoon, Jae Seok; Shishido, Hideki; Yang, Zhongying; Rooney, LeeAnn A; Barral, Jose M; Skach, William R

    2015-04-24

    In cells, biosynthetic machinery coordinates protein synthesis and folding to optimize efficiency and minimize off-pathway outcomes. However, it has been difficult to delineate experimentally the mechanisms responsible. Using fluorescence resonance energy transfer, we studied cotranslational folding of the first nucleotide-binding domain from the cystic fibrosis transmembrane conductance regulator. During synthesis, folding occurred discretely via sequential compaction of N-terminal, α-helical, and α/β-core subdomains. Moreover, the timing of these events was critical; premature α-subdomain folding prevented subsequent core formation. This process was facilitated by modulating intrinsic folding propensity in three distinct ways: delaying α-subdomain compaction, facilitating β-strand intercalation, and optimizing translation kinetics via codon usage. Thus, de novo folding is translationally tuned by an integrated cellular response that shapes the cotranslational folding landscape at critical stages of synthesis. PMID:25908822

  2. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications.

    PubMed

    Tissot, Tazzio; Arnal, Audrey; Jacqueline, Camille; Poulin, Robert; Lefèvre, Thierry; Mery, Frédéric; Renaud, François; Roche, Benjamin; Massol, François; Salzet, Michel; Ewald, Paul; Tasiemski, Aurélie; Ujvari, Beata; Thomas, Frédéric

    2016-03-01

    Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research. PMID:26849295

  3. Relationship between Eimeria tenella development and host cell apoptosis in chickens.

    PubMed

    Zhang, Yan; Zheng, Ming-xue; Xu, Zhi-yong; Xu, Huan-cheng; Cui, Xiao-zhen; Yang, Sha-sha; Zhao, Wen-long; Li, Shan; Lv, Qiang-hua; Bai, Rui

    2015-12-01

    Coccidiosis causes considerable economic losses in the poultry industry. At present, the pathology of coccidiosis is preventable with anticoccidials and vaccination, although at considerable cost to the international poultry industry. The purpose of the present study was to elucidate the relationship between Eimeria tenella development and host cell apoptosis in chickens, which provides a theoretical basis for further study of the injury mechanism of E. tenella and the prevention and treatment of coccidiosis. Cecal epithelial cells from chick embryo were used as host cells in vitro. In addition, flow cytometry, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labeling, and histopathological assays were used to detect the dynamic changes in E. tenella infection rates, DNA injury rates, and apoptosis rates in groups treated with and without the caspase-9 inhibitor Z-LEHD-FMK. Following E. tenella infection, we demonstrated that untreated cells had less apoptosis at 4 h and, inversely, more apoptosis at 24 to 120 h compared with control cells. Furthermore, after the application of Z-LEHD-FMK, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assays, and translation of phosphatidyl serines to the host cell plasma membrane surface, the treated group chick embryo cecal epithelial cells exhibited decreased apoptosis and DNA injuries (P<0.01) at 24 to 120 h. However, light microscopy showed that E. tenella infection rates of treated cells were higher (P<0.01) than untreated cells during the whole experimental period. Together, these observations suggest that E. tenella can protect host cells from apoptosis at early stages of development but can promote apoptosis during the middle to late stages. In addition, the inhibition of host cell apoptosis can be beneficial to the intracellular growth and development of E. tenella. PMID:26467006

  4. Control of Host Cell Phosphorylation by Legionella Pneumophila

    PubMed Central

    Haenssler, Eva; Isberg, Ralph R.

    2011-01-01

    Phosphorylation is one of the most frequent modifications in intracellular signaling and is implicated in many processes ranging from transcriptional control to signal transduction in innate immunity. Many pathogens modulate host cell phosphorylation pathways to promote growth and establish an infectious disease. The intracellular pathogen Legionella pneumophila targets and exploits the host phosphorylation system throughout the infection cycle as part of its strategy to establish an environment beneficial for replication. Key to this manipulation is the L. pneumophila Icm/Dot type IV secretion system, which translocates bacterial proteins into the host cytosol that can act directly on phosphorylation cascades. This review will focus on the different stages of L. pneumophila infection, in which host kinases and phosphatases contribute to infection of the host cell and promote intracellular survival of the pathogen. This includes the involvement of phosphatidylinositol 3-kinases during phagocytosis as well as the role of phosphoinositide metabolism during the establishment of the replication vacuole. Furthermore, L. pneumophila infection modulates the NF-κB and mitogen-activated protein kinase pathways, two signaling pathways that are central to the host innate immune response and involved in regulation of host cell survival. Therefore, L. pneumophila infection manipulates host cell signal transduction by phosphorylation at multiple levels. PMID:21747787

  5. Long live the stem cell: the use of stem cells isolated from post mortem tissues for translational strategies.

    PubMed

    Hodgetts, Stuart I; Stagg, Kelda; Sturm, Marian; Edel, Michael; Blancafort, Pilar

    2014-11-01

    The "stem cell" has become arguably one of the most important biological tools in the arsenal of translational research directed at regeneration and repair. It remains to be seen whether every tissue has its own stem cell niche, although relatively recently a large amount of research has focused on isolating and characterizing tissue-specific stem cell populations, as well as those that are able to be directed to transdifferentiate into a variety of different lineages. Traditionally, stem cells are isolated from the viable tissue of embryonic, fetal, or adult living hosts; from "fresh" donated tissues that have been surgically or otherwise removed (biopsies), or obtained directly from tissues within minutes to several hours post mortem (PM). These human progenitor/stem cell sources remain potentially highly controversial, since they are accompanied by various still-unresolved ethical, social, moral and legal challenges. Due to the limited number of "live" donors, the small amount of material obtained from biopsies and difficulties during purification processes, harvesting from cadaveric material presents itself as an alternative strategy that could provide a hitherto untapped source of stem cells. However, PM stem cells are not without their own unique set of limitations including difficulty of obtaining samples, limited supply of material, variations in delay between death and sample collection, possible lack of medication history and suboptimal retrospective assignment of diagnostic and demographic data. This article is part of a Directed Issue entitled: Regenerative Medicine: The challenge of translation. PMID:25300917

  6. Global Analysis of mRNA, Translation, and Protein Localization: Local Translation Is a Key Regulator of Cell Protrusions

    PubMed Central

    Mardakheh, Faraz K.; Paul, Angela; Kümper, Sandra; Sadok, Amine; Paterson, Hugh; Mccarthy, Afshan; Yuan, Yinyin; Marshall, Christopher J.

    2015-01-01

    Summary Polarization of cells into a protrusive front and a retracting cell body is the hallmark of mesenchymal-like cell migration. Many mRNAs are localized to protrusions, but it is unclear to what degree mRNA localization contributes toward protrusion formation. We performed global quantitative analysis of the distributions of mRNAs, proteins, and translation rates between protrusions and the cell body by RNA sequencing (RNA-seq) and quantitative proteomics. Our results reveal local translation as a key determinant of protein localization to protrusions. Accordingly, inhibition of local translation destabilizes protrusions and inhibits mesenchymal-like morphology. Interestingly, many mRNAs localized to protrusions are translationally repressed. Specific cis-regulatory elements within mRNA UTRs define whether mRNAs are locally translated or repressed. Finally, RNAi screening of RNA-binding proteins (RBPs) enriched in protrusions revealed trans-regulators of localized translation that are functionally important for protrusions. We propose that by deciphering the localized mRNA UTR code, these proteins regulate protrusion stability and mesenchymal-like morphology. PMID:26555054

  7. Process of Bipolaris sorghicola invasion of host cells.

    PubMed

    Peng, C; Ge, T T; He, X L; Huang, Y H; Xu, Z L; Zhang, D Y; Shao, H B; Guo, S W

    2016-01-01

    Target leaf spot is a sorghum leaf disease caused by Bipolaris sorghicola, a species of fungus with a global distribution. In this study, we investigated the process by which B. sorghicola invades cells of barley, onion, Arabidopsis thaliana species, and sorghum. The results showed that within 8 h of coming into contact with host cells, the hyphal ends of B. sorghicola expand and form a uniform infective penetration pegbolt-like structure; a primary infection mycelium can be formed inside host cells within 24 h after contact, which can infect closed cells after 48 h. A mycelium can grow within the gap between cells and form infective hyphae. The pathogen infection process was the same in different host cells. B. sorghicola can affect root cells through soil infection, indicating that it may also have characteristics of soil-borne pathogens. PMID:26985945

  8. Improving translation success of cell-based therapies in orthopaedics.

    PubMed

    Bara, Jennifer J; Herrmann, Marietta; Evans, Christopher H; Miclau, Theodore; Ratcliffe, Anthony; Richards, R Geoff

    2016-01-01

    There is a clear discrepancy between the growth of cell therapy and tissue engineering research in orthopaedics over the last two decades and the number of approved clinical therapies and products available to patients. At the 2015 annual meeting of the Orthopaedic Research Society, a workshop was held to highlight important considerations from the perspectives of an academic scientist, clinical researcher, and industry representative with the aim of helping researchers to successfully translate their ideas into clinical and commercial reality. Survey data acquired from workshop participants indicated an overall positive opinion on the future potential of cell-based therapies to make a significant contribution to orthopaedic medicine. The survey also indicated an agreement on areas requiring improvement in the development of new therapies, specifically; increased support for fundamental research and education and improved transparency of regulatory processes. This perspectives article summarises the content and conclusions of the workshop and puts forward suggestions on how translational success of cell-based therapies in orthopaedics may be achieved. PMID:26403666

  9. Malaria Sporozoites Traverse Host Cells within Transient Vacuoles.

    PubMed

    Risco-Castillo, Veronica; Topçu, Selma; Marinach, Carine; Manzoni, Giulia; Bigorgne, Amélie E; Briquet, Sylvie; Baudin, Xavier; Lebrun, Maryse; Dubremetz, Jean-François; Silvie, Olivier

    2015-11-11

    Plasmodium sporozoites are deposited in the host skin by Anopheles mosquitoes. The parasites migrate from the dermis to the liver, where they invade hepatocytes through a moving junction (MJ) to form a replicative parasitophorous vacuole (PV). Malaria sporozoites need to traverse cells during progression through host tissues, a process requiring parasite perforin-like protein 1 (PLP1). We find that sporozoites traverse cells inside transient vacuoles that precede PV formation. Sporozoites initially invade cells inside transient vacuoles by an active MJ-independent process that does not require vacuole membrane remodeling or release of parasite secretory organelles typically involved in invasion. Sporozoites use pH sensing and PLP1 to exit these vacuoles and avoid degradation by host lysosomes. Next, parasites enter the MJ-dependent PV, which has a different membrane composition, precluding lysosome fusion. The malaria parasite has thus evolved different strategies to evade host cell defense and establish an intracellular niche for replication. PMID:26607162

  10. Host cells and methods for producing isoprenyl alkanoates

    SciTech Connect

    Lee, Taek Soon; Fortman, Jeffrey L.; Keasling, Jay D.

    2015-12-01

    The invention provides for a method of producing an isoprenyl alkanoate in a genetically modified host cell. In one embodiment, the method comprises culturing a genetically modified host cell which expresses an enzyme capable of catalyzing the esterification of an isoprenol and a straight-chain fatty acid, such as an alcohol acetyltransferase (AAT), wax ester synthase/diacylglycerol acyltransferase (WS/DGAT) or lipase, under a suitable condition so that the isoprenyl alkanoate is produced.

  11. The role of models in translating within-host dynamics to parasite evolution.

    PubMed

    Greischar, Megan A; Reece, Sarah E; Mideo, Nicole

    2016-06-01

    Mathematical modelling provides an effective way to challenge conventional wisdom about parasite evolution and investigate why parasites 'do what they do' within the host. Models can reveal when intuition cannot explain observed patterns, when more complicated biology must be considered, and when experimental and statistical methods are likely to mislead. We describe how models of within-host infection dynamics can refine experimental design, and focus on the case study of malaria to highlight how integration between models and data can guide understanding of parasite fitness in three areas: (1) the adaptive significance of chronic infections; (2) the potential for tradeoffs between virulence and transmission; and (3) the implications of within-vector dynamics. We emphasize that models are often useful when they highlight unexpected patterns in parasite evolution, revealing instead why intuition yields the wrong answer and what combination of theory and data are needed to advance understanding. PMID:26399436

  12. Post-translational control of RIPK3 and MLKL mediated necroptotic cell death

    PubMed Central

    2015-01-01

    Several programmed lytic and necrotic-like cell death mechanisms have now been uncovered, including the recently described receptor interacting protein kinase-3 (RIPK3)-mixed lineage kinase domain-like (MLKL)-dependent necroptosis pathway. Genetic experiments have shown that programmed necrosis, including necroptosis, can play a pivotal role in regulating host-resistance against microbial infections. Alternatively, excess or unwarranted necroptosis may be pathological in autoimmune and autoinflammatory diseases. This review highlights the recent advances in our understanding of the post-translational control of RIPK3-MLKL necroptotic signaling. We discuss the critical function of phosphorylation in the execution of necroptosis, and highlight the emerging regulatory roles for several ubiquitin ligases and deubiquitinating enzymes. Finally, based on current evidence, we discuss the potential mechanisms by which the essential, and possibly terminal, necroptotic effector, MLKL, triggers the disruption of cellular membranes to cause cell lysis. PMID:27158445

  13. Recruitment of Host Progenitor Cells in Rat Liver Transplants

    PubMed Central

    Sun, Zhaoli; Zhang, Xiuying; Locke, Jayme E.; Zheng, Qizhi; Tachibana, Shingo; Diehl, Anna Mae; Williams, George Melville

    2015-01-01

    Despite MHC incompatibility, Lewis to DA rat liver transplants survive indefinitely without immunosuppression, and the studies we report sought the mechanism(s) responsible for this. At one year most of the liver reacted positively to host anti-DA antibody. When small (50%) grafts were transplanted, recruitment was more rapid as most of the organ assumed the host phenotype at 3 months. After transplantation the Y-chromosome was detected in the hepatocytes of XX to XY grafts by both in-situ hybridization and PCR. Further, livers from transgenic Lewis rats carrying strong GFP markers lost the marker with time after transplantation to DA, GFP− hosts. Few liver cells contained the Y chromosome in syngeneic XX to XY liver grafts or when the hosts of Lewis XX to DA XY allografts were treated with cyclosporine A (CsA) 10mgs/kg/day. This dosage also impeded enlargement of the liver at ten days. Using GFP+ XX Lewis donors transplanted to GFP− XY DA hosts, we found little Y DNA in GFP+ cells at 10 days. Host derived OV-6 and c-kit positive, albumen positive cells were present at 3-10 days, but cells with the CD34 marker were less common and some clearly still had the donor phenotype at ten days. CXCR-4 positive cells increased with time and were abundant at 1 month after transplantation. We conclude: 1. extra-hepatic cells can differentiate into liver tissues; 2. regenerative stimuli accelerate stem cell recruitment; 3. both regeneration and recruitment are impeded by CsA immunosuppression, and 4. donor GFP positive cells contained little host Y-chromosome after transplantation suggesting that cell fusion was uncommon and, therefore, unlikely to be the mechanism leading to the changes in genotype and phenotype we observed. PMID:18972402

  14. Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis

    PubMed Central

    Nans, Andrea; Ford, Charlotte; Hayward, Richard D.

    2015-01-01

    Chlamydia trachomatis is obligate intracellular bacterial pathogen that remains a significant public health burden worldwide. A critical early event during infection is chlamydial entry into non-phagocytic host epithelial cells. Like other Gram-negative bacteria, C. trachomatis uses a type III secretion system (T3SS) to deliver virulence effector proteins into host cells. These effectors trigger bacterial uptake and promote bacterial survival and replication within the host cell. In this review, we highlight recent cryo-electron tomography that has provided striking insights into the initial interactions between Chlamydia and its host. We describe the polarised structure of extracellular C. trachomatis elementary bodies (EBs), and the supramolecular organisation of T3SS complexes on the EB surface, in addition to the changes in host and pathogen architecture that accompany bacterial internalisation and EB encapsulation into early intracellular vacuoles. Finally, we consider the implications for further understanding the mechanism of C. trachomatis entry and how this might relate to those of other bacteria and viruses. PMID:26320027

  15. Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis.

    PubMed

    Nans, Andrea; Ford, Charlotte; Hayward, Richard D

    2015-01-01

    Chlamydia trachomatis is obligate intracellular bacterial pathogen that remains a significant public health burden worldwide. A critical early event during infection is chlamydial entry into non-phagocytic host epithelial cells. Like other Gram-negative bacteria, C. trachomatis uses a type III secretion system (T3SS) to deliver virulence effector proteins into host cells. These effectors trigger bacterial uptake and promote bacterial survival and replication within the host cell. In this review, we highlight recent cryo-electron tomography that has provided striking insights into the initial interactions between Chlamydia and its host. We describe the polarised structure of extracellular C. trachomatis elementary bodies (EBs), and the supramolecular organisation of T3SS complexes on the EB surface, in addition to the changes in host and pathogen architecture that accompany bacterial internalisation and EB encapsulation into early intracellular vacuoles. Finally, we consider the implications for further understanding the mechanism of C. trachomatis entry and how this might relate to those of other bacteria and viruses. PMID:26320027

  16. Combinatorial biomatrix/cell-based therapies for restoration of host tissue architecture and function

    PubMed Central

    Cantu, David Antonio; Kao, W. John

    2014-01-01

    This Progress Report reviews recent advances in the utility of extracellular matrix (ECM)-mimic biomaterials in presenting and delivering therapeutic cells to promote tissue healing. This overview gives a brief introduction of different cell types being used in regenerative medicine and tissue engineering while addressing critical issues that must be overcome before cell-based approaches can be routinely employed in the clinic. A selection of 5 commonly used cell-associated, biomaterial platforms (collagen, hyaluronic acid, fibrin, alginate, and poly(ethylene glycol)) are reviewed for treatment of a number of acute injury or diseases with emphasis on animal models and clinical trials. This article concludes with current challenges and future perspectives regarding foreign body host response to biomaterials and immunological reactions to allogeneic or xenogeneic cells, vascularization and angiogenesis, matching mechanical strength and anisotropy of native tissues, as well as other non-technical issues regarding the clinical translation of biomatrix/cell-based therapies. PMID:23828863

  17. Cryptosporidia: epicellular parasites embraced by the host cell membrane.

    PubMed

    Valigurová, Andrea; Jirků, Miloslav; Koudela, Bretislav; Gelnar, Milan; Modrý, David; Slapeta, Jan

    2008-07-01

    The ultrastructure of two gastric cryptosporidia, Cryptosporidium muris from experimentally infected rodents (Mastomys natalensis) and Cryptosporidium sp. 'toad' from naturally infected toads (Duttaphrynus melanostictus), was studied using electron microscopy. Observations presented herein allowed us to map ultrastructural aspects of the cryptosporidian invasion process and the origin of a parasitophorous sac. Invading parasites attach to the host cell, followed by gradual envelopment, with the host's cell membrane folds, eventually forming the parasitophorous sac. Cryptosporidian developmental stages remain epicellular during the entire life cycle. The parasite development is illustrated in detail using high resolution field emission scanning electron microscopy. This provides a new insight into the ultrastructural detail of host-parasite interactions and species-specific differences manifested in frequency of detachment of the parasitophorous sac, radial folds of the parasitophorous sac and stem-formation of the parasitised host cell. PMID:18158154

  18. Clinical translation for endometrial cancer stem cells hypothesis.

    PubMed

    Carvalho, Maria João; Laranjo, Mafalda; Abrantes, Ana Margarida; Torgal, Isabel; Botelho, Maria Filomena; Oliveira, Carlos Freire

    2015-09-01

    Endometrial cancer is the most frequent gynecological malignancy in developed world. Cancer stem cells (CSC) are recognized as a small proportion of cells among the tumor cell population that are capable of self-renewal, aberrant differentiation, and escape homeostasis. This review aims to systematize the existing evidence of CSC of endometrial cancer and its clinical translation. In endometrial cancer, the cancer stem cell hypothesis has been studied in vitro using the isolation of colony forming units, side population with dye efflux capacity, and tumorospheres. The stem cell markers for endometrial cancer do not have uniform characteristics, albeit CD133 and aldehyde dehydrogenase (ALDH) were being associated with CSC phenotype. The application of endometrial CSC on xenograft models proves the tumorigenic capacity of this small group of cells. The metastatic process has been explained due to epithelial-mesenchymal transition (EMT) in which CSC seems to have a critical role. The chemoresistance is characteristic of CSC that in endometrial cancer has been shown in CSC phenotype and associated with CSC markers. The most ambitious potential for CSC is the development of targeted therapies. Its application on endometrial cancer is still poor, being a future perspective for research. PMID:26224131

  19. Host Cell Factors in Filovirus Entry: Novel Players, New Insights

    PubMed Central

    Hofmann-Winkler, Heike; Kaup, Franziska; Pöhlmann, Stefan

    2012-01-01

    Filoviruses cause severe hemorrhagic fever in humans with high case-fatality rates. The cellular factors exploited by filoviruses for their spread constitute potential targets for intervention, but are incompletely defined. The viral glycoprotein (GP) mediates filovirus entry into host cells. Recent studies revealed important insights into the host cell molecules engaged by GP for cellular entry. The binding of GP to cellular lectins was found to concentrate virions onto susceptible cells and might contribute to the early and sustained infection of macrophages and dendritic cells, important viral targets. Tyrosine kinase receptors were shown to promote macropinocytic uptake of filoviruses into a subset of susceptible cells without binding to GP, while interactions between GP and human T cell Ig mucin 1 (TIM-1) might contribute to filovirus infection of mucosal epithelial cells. Moreover, GP engagement of the cholesterol transporter Niemann-Pick C1 was demonstrated to be essential for GP-mediated fusion of the viral envelope with a host cell membrane. Finally, mutagenic and structural analyses defined GP domains which interact with these host cell factors. Here, we will review the recent progress in elucidating the molecular interactions underlying filovirus entry and discuss their implications for our understanding of the viral cell tropism. PMID:23342362

  20. Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells.

    PubMed

    Wang, Chong; Han, Boran; Zhou, Ruobo; Zhuang, Xiaowei

    2016-05-01

    Translation is under tight spatial and temporal controls to ensure protein production in the right time and place in cells. Methods that allow real-time, high-resolution visualization of translation in live cells are essential for understanding the spatiotemporal dynamics of translation regulation. Based on multivalent fluorescence amplification of the nascent polypeptide signal, we develop a method to image translation on individual mRNA molecules in real time in live cells, allowing direct visualization of translation events at the translation sites. Using this approach, we monitor transient changes of translation dynamics in responses to environmental stresses, capture distinct mobilities of individual polysomes in different subcellular compartments, and detect 3' UTR-dependent local translation and active transport of polysomes in dendrites of primary neurons. PMID:27153499

  1. Translation dynamics of single mRNAs in live cells and neurons

    PubMed Central

    Wu, Bin; Eliscovich, Carolina; Yoon, Young J.; Singer, Robert H.

    2016-01-01

    Translation is the fundamental biological process converting mRNA information into proteins. Single-molecule imaging in live cells has illuminated the dynamics of RNA transcription; however, it is not yet applicable to translation. Here, we report single-molecule imaging of nascent peptides (SINAPS) to assess translation in live cells. The approach provides direct readout of initiation, elongation, and location of translation. We show that mRNAs coding for endoplasmic reticulum (ER) proteins are translated when they encounter the ER membrane. Single-molecule fluorescence recovery after photobleaching provides direct measurement of elongation speed (5 amino acids per second). In primary neurons, mRNAs are translated in proximal dendrites but repressed in distal dendrites and display “bursting” translation. This technology provides a tool with which to address the spatiotemporal translation mechanism of single mRNAs in living cells. PMID:27313041

  2. Translation dynamics of single mRNAs in live cells and neurons.

    PubMed

    Wu, Bin; Eliscovich, Carolina; Yoon, Young J; Singer, Robert H

    2016-06-17

    Translation is the fundamental biological process converting mRNA information into proteins. Single-molecule imaging in live cells has illuminated the dynamics of RNA transcription; however, it is not yet applicable to translation. Here, we report single-molecule imaging of nascent peptides (SINAPS) to assess translation in live cells. The approach provides direct readout of initiation, elongation, and location of translation. We show that mRNAs coding for endoplasmic reticulum (ER) proteins are translated when they encounter the ER membrane. Single-molecule fluorescence recovery after photobleaching provides direct measurement of elongation speed (5 amino acids per second). In primary neurons, mRNAs are translated in proximal dendrites but repressed in distal dendrites and display "bursting" translation. This technology provides a tool with which to address the spatiotemporal translation mechanism of single mRNAs in living cells. PMID:27313041

  3. Crosstalk between Mycobacterium tuberculosis and the host cell

    PubMed Central

    Dey, Bappaditya; Bishai, William R.

    2014-01-01

    The successful establishment and maintenance of a bacterial infection depends on the pathogen’s ability to subvert the host cell’s defense response and successfully survive, proliferate, or persist within the infected cell. To circumvent host defense systems, bacterial pathogens produce a variety of virulence factors that potentiate bacterial adherence and invasion and usurp host cell signaling cascades that regulate intracellular microbial survival and trafficking. Mycobacterium tuberculosis, probably one of the most successful pathogens on earth, has coexisted with humanity for centuries, and this intimate and persistent connection between these two organisms suggests that the pathogen has evolved extensive mechanisms to evade the human immune system at multiple levels. While some of these mechanisms are mediated by factors released by M. tuberculosis, others rely on host components that are hijacked to prevent the generation of an effective immune response thus benefiting the survival of M. tuberculosis within the host cell. Here, we describe several of these mechanisms, with an emphasis on the cyclic nucleotide signaling and subversion of host responses that occur at the intracellular level when tubercle bacilli encounter macrophages, a cell that becomes a safe-house for M. tuberculosis although it is specialized to kill most microbes. PMID:25303934

  4. Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution.

    PubMed

    Vynnytska-Myronovska, Bozhena O; Kurlishchuk, Yuliya; Chen, Oleh; Bobak, Yaroslav; Dittfeld, Claudia; Hüther, Melanie; Kunz-Schughart, Leoni A; Stasyk, Oleh V

    2016-02-01

    Tumor cells rely on a continued exogenous nutrient supply in order to maintain a high proliferative activity. Although a strong dependence of some tumor types on exogenous arginine sources has been reported, the mechanisms of arginine sensing by tumor cells and the impact of changes in arginine availability on translation and cell cycle regulation are not fully understood. The results presented herein state that human colorectal carcinoma cells rapidly exhaust the internal arginine sources in the absence of exogenous arginine and repress global translation by activation of the GCN2-mediated pathway and inhibition of mTOR signaling. Tumor suppressor protein p53 activation and G1/G0 cell cycle arrest support cell survival upon prolonged arginine starvation. Cells with the mutant or deleted TP53 fail to stop cell cycle progression at defined cell cycle checkpoints which appears to be associated with reduced recovery after durable metabolic stress triggered by arginine withdrawal. PMID:26751966

  5. Picornavirus Molecular Pathology - Translating 50 Years of Molecular Biology to the Host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1951 a resident at the Johns Hopkins Hospital in Baltimore, removed cancerous cells from the cervix of Henrietta Lacks and brought them to George Gey, the head of tissue culture research at Hopkins. Gey thought he could use these cells to study cancer in vitro. Eight months later Henrietta Lack...

  6. Host translation shutoff mediated by non-structural protein 2 is a critical factor in the antiviral state resistance of Venezuelan equine encephalitis virus.

    PubMed

    Bhalla, Nishank; Sun, Chengqun; Metthew Lam, L K; Gardner, Christina L; Ryman, Kate D; Klimstra, William B

    2016-09-01

    Most previous studies of interferon-alpha/beta (IFN-α/β) response antagonism by alphaviruses have focused upon interruption of IFN-α/β induction and/or receptor signaling cascades. Infection of mice with Venezuelan equine encephalitis alphavirus (VEEV) or Sindbis virus (SINV) induces serum IFN-α/β, that elicits a systemic antiviral state in uninfected cells successfully controlling SINV but not VEEV replication. Furthermore, VEEV replication is more resistant than that of SINV to a pre-existing antiviral state in vitro. While host macromolecular shutoff is proposed as a major antagonist of IFN-α/β induction, the underlying mechanisms of alphavirus resistance to a pre-existing antiviral state are not fully defined, nor is the mechanism for the greater resistance of VEEV. Here, we have separated viral transcription and translation shutoff with multiple alphaviruses, identified the viral proteins that induce each activity, and demonstrated that VEEV nonstructural protein 2-induced translation shutoff is likely a critical factor in enhanced antiviral state resistance of this alphavirus. PMID:27318152

  7. Ehrlichia's molecular tricks to manipulate their host cells.

    PubMed

    Moumène, Amal; Meyer, Damien F

    2016-03-01

    Ehrlichia is a large genus of obligate intracellular Gram-negative bacteria transmitted by ticks that cause several emerging infectious diseases in humans and are pathogenic on rodents, ruminants, and dogs. Ehrlichia spp. invade and replicate either in endothelial cells, white blood cells, or within midgut cells and salivary glands of their vector ticks. In this review, we discuss the insights that functional studies are providing on how this group of bacteria exploits their host by subverting host innate immunity and hijacking cellular processes. PMID:26617397

  8. [How does the apicomplexan parasite Theileria control host cell identity?].

    PubMed

    Marsolier, Justine; Weitzman, Jonathan B

    2014-01-01

    Infectious agents, like bacteria or virus, are responsible for a large number of pathologies in mammals. Microbes have developed mechanisms for interacting with host cell pathways and hijacking cellular machinery to change the phenotypic state. In this review, we focus on an interesting apicomplexan parasite called Theileria. Infection by the tick-transmitted T. annulata parasite causes Tropical Theileriosis in North Africa and Asia, and the related T. parva parasite causes East Coast Fever in Sub-Saharan Africa. This parasite is the only eukaryote known to induce the transformation of its mammalian host cells. Indeed, T. annulata and T. parva infect bovine leukocytes leading to transforming phenotypes, which partially mirror human lymphoma pathologies. Theileria infection causes hyperproliferation, invasiveness and escape from apoptosis, presumably through the manipulation of host cellular pathways. Several host-signaling mechanisms have been implicated. Here we describe the mechanisms involved in parasite-induced transformation phenotypes. PMID:25840458

  9. Translating Research into Clinical Scale Manufacturing of Mesenchymal Stromal Cells

    PubMed Central

    Bieback, Karen; Kinzebach, Sven; Karagianni, Marianna

    2010-01-01

    It sounds simple to obtain sufficient numbers of cells derived from fetal or adult human tissues, isolate and/or expand the stem cells, and then transplant an appropriate number of these cells into the patient at the correct location. However, translating basic research into routine therapies is a complex multistep process which necessitates product regulation. The challenge relates to managing the expected therapeutic benefits with the potential risks and to balance the fast move to clinical trials with time-consuming cautious risk assessment. This paper will focus on the definition of mesenchymal stromal cells (MSCs), and challenges and achievements in the manufacturing process enabling their use in clinical studies. It will allude to different cellular sources, special capacities of MSCs, but also to current regulations, with a special focus on accessory material of human or animal origin, like media supplements. As cellular integrity and purity, formulation and lot release testing of the final product, validation of all procedures, and quality assurance are of utmost necessity, these topics will be addressed. PMID:21318154

  10. Murine norovirus 1 (MNV1) replication induces translational control of the host by regulating eIF4E activity during infection.

    PubMed

    Royall, Elizabeth; Doyle, Nicole; Abdul-Wahab, Azimah; Emmott, Ed; Morley, Simon J; Goodfellow, Ian; Roberts, Lisa O; Locker, Nicolas

    2015-02-20

    Protein synthesis is a tightly controlled process responding to several stimuli, including viral infection. As obligate intracellular parasites, viruses depend on the translation machinery of the host and can manipulate it by affecting the availability and function of specific eukaryotic initiation factors (eIFs). Human norovirus is a member of the Caliciviridae family and is responsible for gastroenteritis outbreaks. Previous studies on feline calicivirus and murine norovirus 1 (MNV1) demonstrated that the viral protein, genome-linked (VPg), acts to direct translation by hijacking the host protein synthesis machinery. Here we report that MNV1 infection modulates the MAPK pathway to activate eIF4E phosphorylation. Our results show that the activation of p38 and Mnk during MNV1 infection is important for MNV1 replication. Furthermore, phosphorylated eIF4E relocates to the polysomes, and this contributes to changes in the translational state of specific host mRNAs. We propose that global translational control of the host by eIF4E phosphorylation is a key component of the host-pathogen interaction. PMID:25561727

  11. Mesenchymal stem cells secretomes' affect multiple myeloma translation initiation.

    PubMed

    Marcus, H; Attar-Schneider, O; Dabbah, M; Zismanov, V; Tartakover-Matalon, S; Lishner, M; Drucker, L

    2016-06-01

    Bone marrow mesenchymal stem cells' (BM-MSCs) role in multiple myeloma (MM) pathogenesis is recognized. Recently, we have published that co-culture of MM cell lines with BM-MSCs results in mutual modulation of phenotype and proteome (via translation initiation (TI) factors eIF4E/eIF4GI) and that there are differences between normal donor BM-MSCs (ND-MSCs) and MM BM-MSCs (MM-MSCs) in this crosstalk. Here, we aimed to assess the involvement of soluble BM-MSCs' (ND, MM) components, more easily targeted, in manipulation of MM cell lines phenotype and TI with specific focus on microvesicles (MVs) capable of transferring critical biological material. We applied ND and MM-MSCs 72h secretomes to MM cell lines (U266 and ARP-1) for 12-72h and then assayed the cells' (viability, cell count, cell death, proliferation, cell cycle, autophagy) and TI (factors: eIF4E, teIF4GI; regulators: mTOR, MNK1/2, 4EBP; targets: cyclin D1, NFκB, SMAD5, cMyc, HIF1α). Furthermore, we dissected the secretome into >100kDa and <100kDa fractions and repeated the experiments. Finally, MVs were isolated from the ND and MM-MSCs secretomes and applied to MM cell lines. Phenotype and TI were assessed. Secretomes of BM-MSCs (ND, MM) significantly stimulated MM cell lines' TI, autophagy and proliferation. The dissected secretome yielded different effects on MM cell lines phenotype and TI according to fraction (>100kDa- repressed; <100kDa- stimulated) but with no association to source (ND, MM). Finally, in analyses of MVs extracted from BM-MSCs (ND, MM) we witnessed differences in accordance with source: ND-MSCs MVs inhibited proliferation, autophagy and TI whereas MM-MSCs MVs stimulated them. These observations highlight the very complex communication between MM and BM-MSCs and underscore its significance to major processes in the malignant cells. Studies into the influential MVs cargo are underway and expected to uncover targetable signals in the regulation of the TI/proliferation/autophagy cascade

  12. Interactions of Histophilus somni with Host Cells.

    PubMed

    Behling-Kelly, Erica; Rivera-Rivas, Jose; Czuprynski, Charles J

    2016-01-01

    Histophilus somni resides as part of the normal microflora in the upper respiratory tract of healthy cattle. From this site, the organism can make its way into the lower respiratory tract, where it is one of the important bacterial agents of the respiratory disease complex. If H. somni cells disseminate to the bloodstream, they frequently result in thrombus formation. A series of in vitro investigations have examined potential mechanisms that might contribute to such thrombus formation. Earlier work showed that H. somni can stimulate some bovine endothelial cells to undergo apoptosis. More recent studies indicate that H. somni stimulates endothelial cell tissue factor activity and disrupts intercellular junctions. The net effect is to enhance procoagulant activity on the endothelium surface and to make the endothelial monolayer more permeable to molecules, leukocytes, and perhaps H. somni cells. H. somni also activates bovine platelets, which also can enhance tissue factor activity on the endothelium surface. When exposed to H. somni, bovine neutrophils and mononuclear phagocytes form extracellular traps in vitro. Ongoing research is investigating how the interplay among endothelial cells, platelets, and leukocytes might contribute to the thrombus formation seen in infected cattle. PMID:26728064

  13. Dissection of Francisella-Host Cell Interactions in Dictyostelium discoideum.

    PubMed

    Lampe, Elisabeth O; Brenz, Yannick; Herrmann, Lydia; Repnik, Urska; Griffiths, Gareth; Zingmark, Carl; Sjöstedt, Anders; Winther-Larsen, Hanne C; Hagedorn, Monica

    2016-03-01

    Francisella bacteria cause severe disease in both vertebrates and invertebrates and include one of the most infectious human pathogens. Mammalian cell lines have mainly been used to study the mechanisms by which Francisella manipulates its host to replicate within a large variety of hosts and cell types, including macrophages. Here, we describe the establishment of a genetically and biochemically tractable infection model: the amoeba Dictyostelium discoideum combined with the fish pathogen Francisella noatunensis subsp. noatunensis. Phagocytosed F. noatunensis subsp. noatunensis interacts with the endosomal pathway and escapes further phagosomal maturation by translocating into the host cell cytosol. F. noatunensis subsp. noatunensis lacking IglC, a known virulence determinant required for Francisella intracellular replication, follows the normal phagosomal maturation and does not grow in Dictyostelium. The attenuation of the F. noatunensis subsp. noatunensis ΔiglC mutant was confirmed in a zebrafish embryo model, where growth of F. noatunensis subsp. noatunensis ΔiglC was restricted. In Dictyostelium, F. noatunensis subsp. noatunensis interacts with the autophagic machinery. The intracellular bacteria colocalize with autophagic markers, and when autophagy is impaired (Dictyostelium Δatg1), F. noatunensis subsp. noatunensis accumulates within Dictyostelium cells. Altogether, the Dictyostelium-F. noatunensis subsp. noatunensis infection model recapitulates the course of infection described in other host systems. The genetic and biochemical tractability of the system allows new approaches to elucidate the dynamic interactions between pathogenic Francisella and its host organism. PMID:26712555

  14. Dissection of Francisella-Host Cell Interactions in Dictyostelium discoideum

    PubMed Central

    Lampe, Elisabeth O.; Brenz, Yannick; Herrmann, Lydia; Repnik, Urska; Griffiths, Gareth; Zingmark, Carl; Sjöstedt, Anders; Winther-Larsen, Hanne C.

    2015-01-01

    Francisella bacteria cause severe disease in both vertebrates and invertebrates and include one of the most infectious human pathogens. Mammalian cell lines have mainly been used to study the mechanisms by which Francisella manipulates its host to replicate within a large variety of hosts and cell types, including macrophages. Here, we describe the establishment of a genetically and biochemically tractable infection model: the amoeba Dictyostelium discoideum combined with the fish pathogen Francisella noatunensis subsp. noatunensis. Phagocytosed F. noatunensis subsp. noatunensis interacts with the endosomal pathway and escapes further phagosomal maturation by translocating into the host cell cytosol. F. noatunensis subsp. noatunensis lacking IglC, a known virulence determinant required for Francisella intracellular replication, follows the normal phagosomal maturation and does not grow in Dictyostelium. The attenuation of the F. noatunensis subsp. noatunensis ΔiglC mutant was confirmed in a zebrafish embryo model, where growth of F. noatunensis subsp. noatunensis ΔiglC was restricted. In Dictyostelium, F. noatunensis subsp. noatunensis interacts with the autophagic machinery. The intracellular bacteria colocalize with autophagic markers, and when autophagy is impaired (Dictyostelium Δatg1), F. noatunensis subsp. noatunensis accumulates within Dictyostelium cells. Altogether, the Dictyostelium-F. noatunensis subsp. noatunensis infection model recapitulates the course of infection described in other host systems. The genetic and biochemical tractability of the system allows new approaches to elucidate the dynamic interactions between pathogenic Francisella and its host organism. PMID:26712555

  15. High avidity autoreactive CD4+ T cells induce host CTL, overcome Tregs and mediate tumor destruction

    PubMed Central

    Brandmaier, Andrew G.; Leitner, Wolfgang W.; Ha, Sung P.; Sidney, John; Restifo, Nicholas P.; Touloukian, Christopher E.

    2009-01-01

    Despite progress made over the past 25 years, existing immunotherapies have limited clinical effectiveness in patients with cancer. Immune tolerance consistently blunts the generated immune response, and the largely solitary focus on CD8+ T cell immunity has proven ineffective in the absence of CD4+ T cell help. To address these twin-tier deficiencies, we developed a translational model of melanoma immunotherapy focused on the exploitation of high avidity CD4+ T cells that become generated in germline antigen deficient mice. We had previously identified a TRP-1 specific HLA-DRB1*0401-restricted epitope. Using this epitope in conjunction with a newly described TRP-1 germline-knockout, we demonstrate that endogenous TRP-1 expression alters the functionality of the auto-reactive T cell repertoire. More importantly, we show, by using MHC-mismatched combinations, that CD4+ T cells derived from the self-antigen deficient host indirectly triggers the eradication of established B16 lung metastases. We demonstrate that the treatment effect is mediated entirely by endogenous CD8+ T cells and is not affected by the depletion of host Tregs. These findings suggest that high avidity CD4+ T cells can overcome endogenous conditions and mediate their anti-tumor effects exclusively through the elicitation of CD8+ T cell immunity. PMID:19561540

  16. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis

    PubMed Central

    Millet, Jean Kaoru; Whittaker, Gary R.

    2015-01-01

    Coronaviruses are a large group of enveloped, single-stranded positive-sense RNA viruses that infect a wide range of avian and mammalian species, including humans. The emergence of deadly human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) have bolstered research in these viral and often zoonotic pathogens. While coronavirus cell and tissue tropism, host range, and pathogenesis are initially controlled by interactions between the spike envelope glycoprotein and host cell receptor, it is becoming increasingly apparent that proteolytic activation of spike by host cell proteases also plays a critical role. Coronavirus spike proteins are the main determinant of entry as they possess both receptor binding and fusion functions. Whereas binding to the host cell receptor is an essential first step in establishing infection, the proteolytic activation step is often critical for the fusion function of spike, as it allows for controlled release of the fusion peptide into target cellular membranes. Coronaviruses have evolved multiple strategies for proteolytic activation of spike, and a large number of host proteases have been shown to proteolytically process the spike protein. These include, but are not limited to, endosomal cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, and trypsin. This review focuses on the diversity of strategies coronaviruses have evolved to proteolytically activate their fusion protein during spike protein biosynthesis and the critical entry step of their life cycle, and highlights important findings on how proteolytic activation of coronavirus spike influences tissue and cell tropism, host range and pathogenicity. PMID:25445340

  17. Host cell infiltration into PDT-treated tumor

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Krosl, Gorazd; Dougherty, Graeme J.; Chaplin, David J.

    1992-06-01

    C3H mice bearing SCCVII squamous cell carcinoma were treated with photodynamic therapy (PDT) 24 hours after receiving Photofrin (25 mg/kg, i.v.). Single cell suspensions obtained by the enzymatic digestion of tumors excised either 30 minutes or 4 hours after PDT were analyzed for the content of host immune cells and colony forming ability of malignant cells. The results were compared to the data obtained with non-treated tumors. It is shown that there is a marked increase in the content of cells expressing Mac-1 (monocytes/macrophages or granulocytes) in the tumor 30 minutes post PDT, while a high level of other leucocytes are found within the tumors by 4 hours after PDT. As elaborated in Discussion, the infiltration rate of host immune cells, dying of malignant tumor cells, and yet unknown death rate of host cells originally present in PDT treated tumor occurring concomitantly during this time period complicates this analysis. The results of this study suggest a massive infiltration of macrophages and other leucocytes in PDT treated SCCVII tumor, supporting the suggestion that a potent immune reaction is one of the main characteristics of PDT action in solid tumors. It remains to be determined to what extent is the activity of tumor infiltrating immune cells responsible for its eradication by PDT.

  18. Early Bunyavirus-Host Cell Interactions

    PubMed Central

    Albornoz, Amelina; Hoffmann, Anja B.; Lozach, Pierre-Yves; Tischler, Nicole D.

    2016-01-01

    The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion. PMID:27213430

  19. Early Bunyavirus-Host Cell Interactions.

    PubMed

    Albornoz, Amelina; Hoffmann, Anja B; Lozach, Pierre-Yves; Tischler, Nicole D

    2016-01-01

    The Bunyaviridae is the largest family of RNA viruses, with over 350 members worldwide. Several of these viruses cause severe diseases in livestock and humans. With an increasing number and frequency of outbreaks, bunyaviruses represent a growing threat to public health and agricultural productivity globally. Yet, the receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely uncharacterized. The focus of this review is on the early steps of bunyavirus infection, from virus binding to penetration from endosomes. We address current knowledge and advances for members from each genus in the Bunyaviridae family regarding virus receptors, uptake, intracellular trafficking and fusion. PMID:27213430

  20. ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion

    SciTech Connect

    Vieira da Silva, Claudio; Alves da Silva, Erika; Costa Cruz, Mario; Chavrier, Philippe; Arruda Mortara, Renato

    2009-01-16

    Toxoplasma gondii infects a variety of different cell types in a range of different hosts. Host cell invasion by T. gondii occurs by active penetration of the host cell, a process previously described as independent of host actin polymerization. Also, the parasitophorous vacuole has been shown to resist fusion with endocytic and exocytic pathways of the host cell. ADP-ribosylation factor-6 (ARF6) belongs to the ARF family of small GTP-binding proteins. ARF6 regulates membrane trafficking and actin cytoskeleton rearrangements at the plasma membrane. Here, we have observed that ARF6 is recruited to the parasitophorous vacuole of tachyzoites of T. gondii RH strain and it also plays an important role in the parasite cell invasion with activation of PI3-kinase and recruitment of PIP{sub 2} and PIP{sub 3} to the parasitophorous vacuole of invading parasites. Moreover, it was verified that maintenance of host cell actin cytoskeleton integrity is important to parasite invasion.

  1. Lipid Exchange between Borrelia burgdorferi and Host Cells

    PubMed Central

    Crowley, Jameson T.; Toledo, Alvaro M.; LaRocca, Timothy J.; Coleman, James L.; London, Erwin; Benach, Jorge L.

    2013-01-01

    Borrelia burgdorferi, the agent of Lyme disease, has cholesterol and cholesterol-glycolipids that are essential for bacterial fitness, are antigenic, and could be important in mediating interactions with cells of the eukaryotic host. We show that the spirochetes can acquire cholesterol from plasma membranes of epithelial cells. In addition, through fluorescent and confocal microscopy combined with biochemical approaches, we demonstrated that B. burgdorferi labeled with the fluorescent cholesterol analog BODIPY-cholesterol or 3H-labeled cholesterol transfer both cholesterol and cholesterol-glycolipids to HeLa cells. The transfer occurs through two different mechanisms, by direct contact between the bacteria and eukaryotic cell and/or through release of outer membrane vesicles. Thus, two-way lipid exchange between spirochetes and host cells can occur. This lipid exchange could be an important process that contributes to the pathogenesis of Lyme disease. PMID:23326230

  2. Alphavirus Infection: Host Cell Shut-Off and Inhibition of Antiviral Responses.

    PubMed

    Fros, Jelke J; Pijlman, Gorben P

    2016-01-01

    Alphaviruses cause debilitating disease in humans and animals and are transmitted by blood-feeding arthropods, typically mosquitoes. With a traditional focus on two models, Sindbis virus and Semliki Forest virus, alphavirus research has significantly intensified in the last decade partly due to the re-emergence and dramatic expansion of chikungunya virus in Asia, Europe, and the Americas. As a consequence, alphavirus-host interactions are now understood in much more molecular detail, and important novel mechanisms have been elucidated. It has become clear that alphaviruses not only cause a general host shut-off in infected vertebrate cells, but also specifically suppress different host antiviral pathways using their viral nonstructural proteins, nsP2 and nsP3. Here we review the current state of the art of alphavirus host cell shut-off of viral transcription and translation, and describe recent insights in viral subversion of interferon induction and signaling, the unfolded protein response, and stress granule assembly. PMID:27294951

  3. Alphavirus Infection: Host Cell Shut-Off and Inhibition of Antiviral Responses

    PubMed Central

    Fros, Jelke J.; Pijlman, Gorben P.

    2016-01-01

    Alphaviruses cause debilitating disease in humans and animals and are transmitted by blood-feeding arthropods, typically mosquitoes. With a traditional focus on two models, Sindbis virus and Semliki Forest virus, alphavirus research has significantly intensified in the last decade partly due to the re-emergence and dramatic expansion of chikungunya virus in Asia, Europe, and the Americas. As a consequence, alphavirus–host interactions are now understood in much more molecular detail, and important novel mechanisms have been elucidated. It has become clear that alphaviruses not only cause a general host shut-off in infected vertebrate cells, but also specifically suppress different host antiviral pathways using their viral nonstructural proteins, nsP2 and nsP3. Here we review the current state of the art of alphavirus host cell shut-off of viral transcription and translation, and describe recent insights in viral subversion of interferon induction and signaling, the unfolded protein response, and stress granule assembly. PMID:27294951

  4. Toxoplasma Co-opts Host Cells It Does Not Invade

    PubMed Central

    Koshy, Anita A.; Dietrich, Hans K.; Christian, David A.; Melehani, Jason H.; Shastri, Anjali J.; Hunter, Christopher A.; Boothroyd, John C.

    2012-01-01

    Like many intracellular microbes, the protozoan parasite Toxoplasma gondii injects effector proteins into cells it invades. One group of these effector proteins is injected from specialized organelles called the rhoptries, which have previously been described to discharge their contents only during successful invasion of a host cell. In this report, using several reporter systems, we show that in vitro the parasite injects rhoptry proteins into cells it does not productively invade and that the rhoptry effector proteins can manipulate the uninfected cell in a similar manner to infected cells. In addition, as one of the reporter systems uses a rhoptry:Cre recombinase fusion protein, we show that in Cre-reporter mice infected with an encysting Toxoplasma-Cre strain, uninfected-injected cells, which could be derived from aborted invasion or cell-intrinsic killing after invasion, are actually more common than infected-injected cells, especially in the mouse brain, where Toxoplasma encysts and persists. This phenomenon has important implications for how Toxoplasma globally affects its host and opens a new avenue for how other intracellular microbes may similarly manipulate the host environment at large. PMID:22910631

  5. Toxoplasma co-opts host cells it does not invade.

    PubMed

    Koshy, Anita A; Dietrich, Hans K; Christian, David A; Melehani, Jason H; Shastri, Anjali J; Hunter, Christopher A; Boothroyd, John C

    2012-01-01

    Like many intracellular microbes, the protozoan parasite Toxoplasma gondii injects effector proteins into cells it invades. One group of these effector proteins is injected from specialized organelles called the rhoptries, which have previously been described to discharge their contents only during successful invasion of a host cell. In this report, using several reporter systems, we show that in vitro the parasite injects rhoptry proteins into cells it does not productively invade and that the rhoptry effector proteins can manipulate the uninfected cell in a similar manner to infected cells. In addition, as one of the reporter systems uses a rhoptry:Cre recombinase fusion protein, we show that in Cre-reporter mice infected with an encysting Toxoplasma-Cre strain, uninfected-injected cells, which could be derived from aborted invasion or cell-intrinsic killing after invasion, are actually more common than infected-injected cells, especially in the mouse brain, where Toxoplasma encysts and persists. This phenomenon has important implications for how Toxoplasma globally affects its host and opens a new avenue for how other intracellular microbes may similarly manipulate the host environment at large. PMID:22910631

  6. Viral Genome Tethering to Host Cell Chromatin: Cause and Consequences.

    PubMed

    Aydin, Inci; Schelhaas, Mario

    2016-04-01

    Viruses are small infectious agents that replicate in cells of a host organism and that evolved to use cellular machineries for all stages of the viral life cycle. Here, we critically assess current knowledge on a particular mechanism of persisting viruses, namely, how they tether their genomes to host chromatin, and what consequences arise from this process. A group of persisting DNA viruses, i.e. gamma-herpesviruses and papillomaviruses (PV), uses this tethering strategy to maintain their genomes in the nuclei during cell division. Thus, these viruses face the challenge of viral genome loss during mitosis, as they are transported with the host chromosomes to the nascent daughter nuclei. Incidentally, another group of viruses, certain retroviruses and PV, have adopted this tethering strategy to deliver their genomes into the nuclei of dividing cells during cell entry. By exploiting a phase in the cell cycle when the nuclear envelope is disassembled, viruses bypass the need to engage with the nuclear import machinery. Recent reports suggest that tethering may induce severe cellular consequences that involve activation of mitotic checkpoints, causing missegregation of host chromosomes and genomic instability, which may contribute to cancer. PMID:26787361

  7. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    PubMed Central

    Barrantes, Francisco J.

    2014-01-01

    Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain. PMID

  8. DAZL regulates Tet1 translation in murine embryonic stem cells

    PubMed Central

    Welling, Maaike; Chen, Hsu-Hsin; Muñoz, Javier; Musheev, Michael U; Kester, Lennart; Junker, Jan Philipp; Mischerikow, Nikolai; Arbab, Mandana; Kuijk, Ewart; Silberstein, Lev; Kharchenko, Peter V; Geens, Mieke; Niehrs, Christof; van de Velde, Hilde; van Oudenaarden, Alexander; Heck, Albert JR; Geijsen, Niels

    2015-01-01

    Embryonic stem cell (ESC) cultures display a heterogeneous gene expression profile, ranging from a pristine naïve pluripotent state to a primed epiblast state. Addition of inhibitors of GSK3β and MEK (so-called 2i conditions) pushes ESC cultures toward a more homogeneous naïve pluripotent state, but the molecular underpinnings of this naïve transition are not completely understood. Here, we demonstrate that DAZL, an RNA-binding protein known to play a key role in germ-cell development, marks a subpopulation of ESCs that is actively transitioning toward naïve pluripotency. Moreover, DAZL plays an essential role in the active reprogramming of cytosine methylation. We demonstrate that DAZL associates with mRNA of Tet1, a catalyst of 5-hydroxylation of methyl-cytosine, and enhances Tet1 mRNA translation. Overexpression of DAZL in heterogeneous ESC cultures results in elevated TET1 protein levels as well as increased global hydroxymethylation. Conversely, null mutation of Dazl severely stunts 2i-mediated TET1 induction and hydroxymethylation. Our results provide insight into the regulation of the acquisition of naïve pluripotency and demonstrate that DAZL enhances TET1-mediated cytosine hydroxymethylation in ESCs that are actively reprogramming to a pluripotent ground state. PMID:26077710

  9. Translating stem cell research to the clinic: a primer on translational considerations for your first stem cell protocol.

    PubMed

    O'Brien, Timothy; Creane, Michael; Windebank, Anthony J; Terzic, Andre; Dietz, Allan B

    2015-01-01

    Over the last two decades, a new therapeutic paradigm has emerged which has changed the way debilitating diseases may be treated in the future. Instead of using small-molecule drugs and devices to ameliorate the symptoms of disease, clinicians may harness the therapeutic power of cells to regenerate and cure diseases which currently represent a major unmet medical need. Advancements in the scientific knowledge of stem cell biology, along with highly encouraging preclinical proof-of-concept studies, in the last several years have served as a launch pad for testing such therapeutics in humans with life-threatening diseases. However, translating basic research findings into human therapy has not been straightforward and has presented many scientific, clinical, and regulatory challenges for scientists and clinicians. In this article, we provide a guidance framework for investigators for the design of early-phase clinical studies using stem cell-based therapeutics. Furthermore, important trial parameters and design features which must be considered before regulatory submission of such studies are highlighted. PMID:26296990

  10. Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response.

    PubMed

    Sobotta, Katharina; Hillarius, Kirstin; Mager, Marvin; Kerner, Katharina; Heydel, Carsten; Menge, Christian

    2016-06-01

    Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains. PMID:27021246

  11. Plasmodium species: master renovators of their host cells.

    PubMed

    de Koning-Ward, Tania F; Dixon, Matthew W A; Tilley, Leann; Gilson, Paul R

    2016-08-01

    Plasmodium parasites, the causative agents of malaria, have developed elaborate strategies that they use to survive and thrive within different intracellular environments. During the blood stage of infection, the parasite is a master renovator of its erythrocyte host cell, and the changes in cell morphology and function that are induced by the parasite promote survival and contribute to the pathogenesis of severe malaria. In this Review, we discuss how Plasmodium parasites use the protein trafficking motif Plasmodium export element (PEXEL), protease-mediated polypeptide processing, a novel translocon termed the Plasmodium translocon of exported proteins (PTEX) and exomembranous structures to export hundreds of proteins to discrete subcellular locations in the host erythrocytes, which enables the parasite to gain access to vital nutrients and to evade the immune defence mechanisms of the host. PMID:27374802

  12. Clustered Intracellular Salmonella enterica Serovar Typhimurium Blocks Host Cell Cytokinesis

    PubMed Central

    Durkin, Charlotte H.; Helaine, Sophie; Boucrot, Emmanuel

    2016-01-01

    Several bacterial pathogens and viruses interfere with the cell cycle of their host cells to enhance virulence. This is especially apparent in bacteria that colonize the gut epithelium, where inhibition of the cell cycle of infected cells enhances the intestinal colonization. We found that intracellular Salmonella enterica serovar Typhimurium induced the binucleation of a large proportion of epithelial cells by 14 h postinvasion and that the effect was dependent on an intact Salmonella pathogenicity island 2 (SPI-2) type 3 secretion system. The SPI-2 effectors SseF and SseG were required to induce binucleation. SseF and SseG are known to maintain microcolonies of Salmonella-containing vacuoles close to the microtubule organizing center of infected epithelial cells. During host cell division, these clustered microcolonies prevented the correct localization of members of the chromosomal passenger complex and mitotic kinesin-like protein 1 and consequently prevented cytokinesis. Tetraploidy, arising from a cytokinesis defect, is known to have a deleterious effect on subsequent cell divisions, resulting in either chromosomal instabilities or cell cycle arrest. In infected mice, proliferation of small intestinal epithelial cells was compromised in an SseF/SseG-dependent manner, suggesting that cytokinesis failure caused by S. Typhimurium delays epithelial cell turnover in the intestine. PMID:27185791

  13. Translational Control of UIS4 Protein of the Host-Parasite Interface Is Mediated by the RNA Binding Protein Puf2 in Plasmodium berghei Sporozoites

    PubMed Central

    Silva, Patrícia A. G. C.; Guerreiro, Ana; Santos, Jorge M.; Braks, Joanna A. M.; Janse, Chris J.; Mair, Gunnar R.

    2016-01-01

    UIS4 is a key protein component of the host-parasite interface in the liver stage of the rodent malaria parasite Plasmodium berghei and required for parasite survival after invasion. In the infectious sporozoite, UIS4 protein has variably been shown to be translated but also been reported to be translationally repressed. Here we show that uis4 mRNA translation is regulated by the P. berghei RNA binding protein Pumilio-2 (PbPuf2 or Puf2 from here on forward) in infectious salivary gland sporozoites in the mosquito vector. Using RNA immunoprecipitation we show that uis4 mRNA is bound by Puf2 in salivary gland sporozoites. In the absence of Puf2, uis4 mRNA translation is de-regulated and UIS4 protein expression upregulated in salivary gland sporozoites. Here, using RNA immunoprecipitation, we reveal the first Puf2-regulated mRNA in this parasite. PMID:26808677

  14. Understanding the yeast host cell response to recombinant membrane protein production.

    PubMed

    Bawa, Zharain; Bland, Charlotte E; Bonander, Nicklas; Bora, Nagamani; Cartwright, Stephanie P; Clare, Michelle; Conner, Matthew T; Darby, Richard A J; Dilworth, Marvin V; Holmes, William J; Jamshad, Mohammed; Routledge, Sarah J; Gross, Stephane R; Bill, Roslyn M

    2011-06-01

    Membrane proteins are drug targets for a wide range of diseases. Having access to appropriate samples for further research underpins the pharmaceutical industry's strategy for developing new drugs. This is typically achieved by synthesizing a protein of interest in host cells that can be cultured on a large scale, allowing the isolation of the pure protein in quantities much higher than those found in the protein's native source. Yeast is a popular host as it is a eukaryote with similar synthetic machinery to that of the native human source cells of many proteins of interest, while also being quick, easy and cheap to grow and process. Even in these cells, the production of human membrane proteins can be plagued by low functional yields; we wish to understand why. We have identified molecular mechanisms and culture parameters underpinning high yields and have consolidated our findings to engineer improved yeast host strains. By relieving the bottlenecks to recombinant membrane protein production in yeast, we aim to contribute to the drug discovery pipeline, while providing insight into translational processes. PMID:21599640

  15. Virus and Host Mechanics Support Membrane Penetration and Cell Entry.

    PubMed

    Greber, Urs F

    2016-04-01

    Viruses are quasi-inert macromolecular assemblies. Their metastable conformation changes during entry into cells, when chemical and mechanical host cues expose viral membrane-interacting proteins. This leads to membrane rupture or fusion and genome uncoating. Importantly, virions tune their physical properties and enhance penetration and uncoating. For example, influenza virus softens at low pH to uncoat. The stiffness and pressure of adenovirus control uncoating and membrane penetration. Virus and host mechanics thus present new opportunities for antiviral therapy. PMID:26842477

  16. Hypoxia Induces Autophagy through Translational Up-Regulation of Lysosomal Proteins in Human Colon Cancer Cells

    PubMed Central

    Lai, Ming-Chih; Chang, Chiao-May; Sun, H. Sunny

    2016-01-01

    Hypoxia occurs in a wide variety of physiological and pathological conditions, including tumorigenesis. Tumor cells have to adapt to hypoxia by altering their gene expression and protein synthesis. Here, we showed that hypoxia inhibits translation through activation of PERK and inactivation of mTOR in human colon cancer HCT116 cells. Prolonged hypoxia (1% O2, 16 h) dramatically inhibits general translation in HCT116 cells, yet selected mRNAs remain efficiently translated under such a condition. Using microarray analysis of polysome- associated mRNAs, we identified a large number of hypoxia-regulated genes at the translational level. Efficiently translated mRNAs during hypoxia were validated by polysome profiling and quantitative real-time RT-PCR. Pathway enrichment analysis showed that many of the up-regulated genes are involved in lysosome, glycan and lipid metabolism, antigen presentation, cell adhesion, and remodeling of the extracellular matrix and cytoskeleton. The majority of down-regulated genes are involved in apoptosis, ubiquitin-mediated proteolysis, and oxidative phosphorylation. Further investigation showed that hypoxia induces lysosomal autophagy and mitochondrial dysfunction through translational regulation in HCT116 cells. The abundance of several translation factors and the mTOR kinase activity are involved in hypoxia-induced mitochondrial autophagy in HCT116 cells. Our studies highlight the importance of translational regulation for tumor cell adaptation to hypoxia. PMID:27078027

  17. Necroptosis: The Trojan horse in cell autonomous antiviral host defense.

    PubMed

    Mocarski, Edward S; Guo, Hongyan; Kaiser, William J

    2015-05-01

    Herpesviruses suppress cell death to assure sustained infection in their natural hosts. Murine cytomegalovirus (MCMV) encodes suppressors of apoptosis as well as M45-encoded viral inhibitor of RIP activation (vIRA) to block RIP homotypic interaction motif (RHIM)-signaling and recruitment of RIP3 (also called RIPK3), to prevent necroptosis. MCMV and human cytomegalovirus encode a viral inhibitor of caspase (Casp)8 activation to block apoptosis, an activity that unleashes necroptosis. Herpes simplex virus (HSV)1 and HSV2 incorporate both RHIM and Casp8 suppression strategies within UL39-encoded ICP6 and ICP10, respectively, which are herpesvirus-conserved homologs of MCMV M45. Both HSV proteins sensitize human cells to necroptosis by blocking Casp8 activity while preventing RHIM-dependent RIP3 activation and death. In mouse cells, HSV1 ICP6 interacts with RIP3 and, surprisingly, drives necroptosis. Thus, herpesviruses have illuminated the contribution of necoptosis to host defense in the natural host as well as its potential to restrict cross-species infections in nonnatural hosts. PMID:25819165

  18. Initial adherence of EPEC, EHEC and VTEC to host cells

    PubMed Central

    Bardiau, Marjorie; Szalo, Mihai; Mainil, Jacques G.

    2010-01-01

    Initial adherence to host cells is the first step of the infection of enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic Escherichia coli (EHEC) and verotoxigenic Escherichia coli (VTEC) strains. The importance of this step in the infection resides in the fact that (1) adherence is the first contact between bacteria and intestinal cells without which the other steps cannot occur and (2) adherence is the basis of host specificity for a lot of pathogens. This review describes the initial adhesins of the EPEC, EHEC and VTEC strains. During the last few years, several new adhesins and putative colonisation factors have been described, especially in EHEC strains. Only a few adhesins (BfpA, AF/R1, AF/R2, Ral, F18 adhesins) appear to be host and pathotype specific. The others are found in more than one species and/or pathotype (EPEC, EHEC, VTEC). Initial adherence of EPEC, EHEC and VTEC strains to host cells is probably mediated by multiple mechanisms. PMID:20423697

  19. Rosuvastatin Modulates the Post-Translational Acetylome in Endothelial Cells

    PubMed Central

    Lin, Ming Chung; Hsing, Chung Hsi; Li, Fu An; Wu, Chien Hsing; Fu, Yaw Syan; Cheng, Jen Kun; Huang, Bin

    2014-01-01

    Background Statins are lipid-lowering drugs that can simultaneously evoke pleiotropic effects on cardioprotection, vasodilation, and diabetes prevention. Recently, statins have been reported to be able to activate the AMP-activated protein kinase, thereby up-regulating sirtuin (SIRT) that functions as non-histone deacetylases. Therefore, it is essential to investigate the post-translational acetylome that might explain the mechanism of statin-modulated pleiotropic effects. Methods Endothelial cells EAhy 926 treated with rosuvastatin were used to monitor the expression of SIRTs proteins. The protein lysates of both mock- and rosuvastatin-treated cells were further separated by two- dimensional gel electrophoresis coupled with western blotting analysis. The significantly changed acetyl- containing proteins detected by using an anti-acetyl lysine antibody were collected from another preparative gel for mass spectrometric assay to identify the acetylated site in the proteins. Results Rosuvastatin treatment was shown to increase the SIRT1 expression when compared with SIRT2. Among 100 detected proteins with acetylated signal, 12 showed an increased level of acetylation, whereas 6 showed a decreased level of acetylation (deacetylation). The acetylated lysine (K) sites of 3 heat shock proteins, i.e., HSP47/K165, HSP70/K380, and heat shock-inducible protein/K417, were determined. We also found that beta-filamin, elongation factor, galectin and hCG22067 have 2 acetylated lysine sites in their peptide sequences. These dynamic acetylations might alter the protein’s function and are thought to be important in regulating statin-mediated pleiotropic effect. Conclusions Our study provided a feasible methodology for detecting acetylated proteins. This acetylome information may be utilized to explain, at least partially, the mechanisms of statin-derived pleiotropic effects. PMID:27122770

  20. Parallel measurement of dynamic changes in translation rates in single cells

    PubMed Central

    Han, Kyuho; Jaimovich, Ariel; Dey, Gautam; Ruggero, Davide; Meyuhas, Oded; Sonenberg, Nahum; Meyer, Tobias

    2014-01-01

    Protein concentrations are often regulated by dynamic changes in translation rates. Nevertheless, it has been challenging to directly monitor changes in translation in living cells. We have developed a reporter system to measure real-time changes of translation rates in human or mouse individual cells by conjugating translation regulatory motifs to sequences encoding a nuclear targeted fluorescent protein and a controllable destabilization domain. Application of the method showed that individual cells undergo marked fluctuations in the translation rate of mRNAs whose 5′ terminal oligopyrimidine (5′ TOP) motif regulates the synthesis of ribosomal proteins. Furthermore, we show that small reductions in amino acid levels signal through different mTOR-dependent pathways to control TOP mRNA translation, whereas larger reductions in amino acid levels control translation through eIF2A. Our study demonstrates that dynamic measurements of single-cell activities of translation regulatory motifs can be used to identify and investigate fundamental principles of translation. PMID:24213167

  1. Host-Cell Survival and Death During Chlamydia Infection

    PubMed Central

    Ying, Songmin; Pettengill, Matthew; Ojcius, David M.; Häcker, Georg

    2008-01-01

    Different Chlamydia trachomatis strains are responsible for prevalent bacterial sexually-transmitted disease and represent the leading cause of preventable blindness worldwide. Factors that predispose individuals to disease and mechanisms by which chlamydiae cause inflammation and tissue damage remain unclear. Results from recent studies indicate that prolonged survival and subsequent death of infected cells and their effect on immune effector cells during chlamydial infection may be important in determining the outcome. Survival of infected cells is favored at early times of infection through inhibition of the mitochondrial pathway of apoptosis. Death at later times displays features of both apoptosis and necrosis, but pro-apoptotic caspases are not involved. Most studies on chlamydial modulation of host-cell death until now have been performed in cell lines. The consequences for pathogenesis and the immune response will require animal models of chlamydial infection, preferably mice with targeted deletions of genes that play a role in cell survival and death. PMID:18843378

  2. Host cell kinases and the hepatitis C virus life cycle.

    PubMed

    Colpitts, Che C; Lupberger, Joachim; Doerig, Christian; Baumert, Thomas F

    2015-10-01

    Hepatitis C virus (HCV) infection relies on virus-host interactions with human hepatocytes, a context in which host cell kinases play critical roles in every step of the HCV life cycle. During viral entry, cellular kinases, including EGFR, EphA2 and PKA, regulate the localization of host HCV entry factors and induce receptor complex assembly. Following virion internalization, viral genomes replicate on endoplasmic reticulum-derived membranous webs. The formation of membranous webs depends on interactions between the HCV NS5a protein and PI4KIIIα. The phosphorylation status of NS5a, regulated by PI4KIIIα, CKI and other kinases, also acts as a molecular switch to virion assembly, which takes place on lipid droplets. The formation of lipid droplets is enhanced by HCV activation of IKKα. In view of the multiple crucial steps in the viral life cycle that are mediated by host cell kinases, these enzymes also represent complementary targets for antiviral therapy. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. PMID:25896387

  3. Recombinant host cells and media for ethanol production

    DOEpatents

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  4. Arginase II Restricts Host Defense to Helicobacter pylori by Attenuating Inducible Nitric Oxide Synthase Translation in Macrophages

    PubMed Central

    Lewis, Nuruddeen D.; Asim, Mohammad; Barry, Daniel P.; Singh, Kshipra; de Sablet, Thibaut; Boucher, Jean-Luc; Gobert, Alain P.; Chaturvedi, Rupesh; Wilson, Keith T.

    2010-01-01

    Helicobacter pylori infection of the stomach causes peptic ulcer disease and gastric cancer. Despite eliciting a vigorous immune response, the bacterium persists for the life of the host. An important antimicrobial mechanism is the production of NO derived from inducible NO synthase (iNOS). We have reported that macrophages can kill H. pylori in vitro by an NO-dependent mechanism, but supraphysiologic levels of the iNOS substrate L-arginine are required. Because H. pylori induces arginase activity in macrophages, we determined if this restricts NO generation by reducing L-arginine availability. Inhibition of arginase with S-(2-boronoethyl)-L-cysteine (BEC) significantly enhanced NO generation in H. pylori-stimulated RAW 264.7 macrophages by enhancing iNOS protein translation but not iNOS mRNA levels. This effect resulted in increased killing of H. pylori that was attenuated with an NO scavenger. In contrast, inhibition of arginase in macrophages activated by the colitis-inducing bacterium Citrobacter rodentium increased NO without affecting iNOS levels. H. pylori upregulated levels of arginase II (Arg2) mRNA and protein, which localized to mitochondria, whereas arginase I was not induced. Increased iNOS protein and NO levels were also demonstrated by small interfering RNA knockdown of Arg2 and in peritoneal macrophages from C57BL/6 Arg2−/− mice. In H. pylori-infected mice, treatment with BEC or deletion of Arg2 increased iNOS protein levels and NO generation in gastric macrophages, but treatment of Arg2−/− mice with BEC had no additional effect. These studies implicate Arg2 in the immune evasion of H. pylori by causing intracellular depletion of L-arginine and thus reduction of NO-dependent bactericidal activity. PMID:20097867

  5. Dual Analysis of the Murine Cytomegalovirus and Host Cell Transcriptomes Reveal New Aspects of the Virus-Host Cell Interface

    PubMed Central

    Juranic Lisnic, Vanda; Babic Cac, Marina; Lisnic, Berislav; Trsan, Tihana; Mefferd, Adam; Das Mukhopadhyay, Chitrangada; Cook, Charles H.; Jonjic, Stipan; Trgovcich, Joanne

    2013-01-01

    Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq). We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus-associated diseases. PMID:24086132

  6. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses.

    PubMed

    Di Genova, Bruno M; Tonelli, Renata R

    2016-01-01

    Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term complications. The cellular and molecular mechanisms underlying the pathogenesis of diarrhea associated with these three pathogens are being unraveled, with knowledge of both the strategies explored by the parasites to establish infection and the methods evolved by hosts to avoid it. Special attention is being given to molecules participating in parasite-host interaction and in the mechanisms implicated in the diseases' pathophysiologic processes. This review focuses on cell mechanisms that are modulated during infection, including gene transcription, cytoskeleton rearrangements, signal transduction pathways, and cell death. PMID:26973630

  7. Uropathogenic Escherichia coli Epigenetically Manipulate Host Cell Death Pathways.

    PubMed

    Zhang, Zhengguo; Wang, Ming; Eisel, Florian; Tchatalbachev, Svetlin; Chakraborty, Trinad; Meinhardt, Andreas; Bhushan, Sudhanshu

    2016-04-01

    Urinary tract infections caused by uropathogenic Escherichia coli (UPEC) pathovars belong to the most frequent infections in human. It is well established that UPEC can subvert innate immune responses, but the role of UPEC in interfering with host cell death pathways is not known. Here, we show that UPEC abrogates activation of the host cell prosurvival protein kinase B signaling pathway, which results in the activation of mammalian forkhead box O (FOXO) transcription factors. Although FOXOs were localized in the nucleus and showed increased DNA-binding activity, no change in the expression levels of FOXO target genes were observed. UPEC can suppress BIM expression induced by LY249002, which results in attenuation of caspase 3 activation and blockage of apoptosis. Mechanistically, BIM expression appears to be epigenetically silenced by a decrease in histone 4 acetylation at the BIM promoter site. Taken together, these results suggest that UPEC can epigenetically silence BIM expression, a molecular switch that prevents apoptosis. PMID:26621912

  8. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses

    PubMed Central

    Di Genova, Bruno M.; Tonelli, Renata R.

    2016-01-01

    Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term complications. The cellular and molecular mechanisms underlying the pathogenesis of diarrhea associated with these three pathogens are being unraveled, with knowledge of both the strategies explored by the parasites to establish infection and the methods evolved by hosts to avoid it. Special attention is being given to molecules participating in parasite–host interaction and in the mechanisms implicated in the diseases’ pathophysiologic processes. This review focuses on cell mechanisms that are modulated during infection, including gene transcription, cytoskeleton rearrangements, signal transduction pathways, and cell death. PMID:26973630

  9. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  10. Chlamydia trachomatis Inclusion Disrupts Host Cell Cytokinesis to Enhance Its Growth in Multinuclear Cells.

    PubMed

    Sun, He Song; Sin, Alex T-W; Poirier, Mathieu B; Harrison, Rene E

    2016-01-01

    Chlamydia trachomatis, the leading cause of bacterial sexually transmitted infections, disrupts cytokinesis and causes significant multinucleation in host cells. Here, we demonstrate that multinuclear cells that result from unsuccessful cell division contain significantly higher Golgi content, an important source of lipids for chlamydiae. Using immunofluorescence and fluorescent live cell imaging, we show that C. trachomatis in multinuclear cells indeed intercept Golgi-derived lipid faster than in mononuclear cells. Moreover, multinuclear cells enhance C. trachomatis inclusion growth and infectious particle formation. Together, these results indicate that C. trachomatis robustly position inclusions to the cell equator to disrupt host cell division in order to acquire host Golgi-derived lipids more quickly in multinucleated progeny cells. PMID:26084267

  11. Baculovirus Infection Influences Host Protein Expression in Two Established Insect Cell Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We identified host proteins that changed in response to host cell susceptibility to baculovirus infection. We used three baculovirus–host cell systems utilizing two cell lines derived from pupal ovaries, Hz-AM1 (from Helicoverpa zea) and Hv-AM1 (from Heliothis virescens). Hv-AM1 cells are permissive...

  12. Vesicular stomatitis virus matrix protein inhibits host cell-directed transcription of target genes in vivo.

    PubMed Central

    Black, B L; Lyles, D S

    1992-01-01

    Infection by vesicular stomatitis virus (VSV) results in a rapid inhibition of host cell transcription and translation. To determine whether the viral matrix (M) protein was involved in this inhibition of host cell gene expression, an M protein expression vector was cotransfected with a target gene vector, encoding the target gene, encoding chloramphenicol acetyltransferase (CAT). Expression of M protein caused a decrease in CAT activity in a gene dosage-dependent manner, and inhibition was apparent by 12 h posttransfection. The inhibitory effect of M protein was quite potent. The level of M protein required for a 10-fold inhibition of CAT activity was less than 1% of the level of M protein produced during the sixth hour of VSV infection. Northern (RNA) analysis of cotransfected cells showed that expression of M protein caused a reduction in the steady-state level of the vector-encoded mRNAs. Expression of both CAT and M mRNAs was reduced in cells cotransfected with a plasmid encoding M protein, indicating that expression of small amounts of M protein from plasmid DNA inhibits further expression of both M and CAT mRNAs. Nuclear runoff transcription analysis demonstrated that expression of M protein inhibited transcription of the target genes. This is the first report of a viral gene product which is capable of inhibiting transcription in vivo in the absence of any other viral component. Images PMID:1318397

  13. Bacterial-induced cell reprogramming to stem cell-like cells: new premise in host-pathogen interactions

    PubMed Central

    Hess, Samuel; Rambukkana, Anura

    2015-01-01

    Bacterial pathogens employ a myriad of strategies to alter host tissue cell functions for bacterial advantage during infection. Recent advances revealed a fusion of infection biology with stem cell biology by demonstrating developmental reprogramming of lineage committed host glial cells to progenitor/stem cell-like cells by an intracellular bacterial pathogen Mycobacterium leprae. Acquisition of migratory and immunomodulatory properties of such reprogrammed cells provides an added advantage for promoting bacterial spread. This presents a previously unseen sophistication of cell manipulation by hijacking the genomic plasticity of host cells by a human bacterial pathogen. The rationale for such extreme fate conversion of host cells may be directly linked to the exceedingly passive obligate life style of M. leprae with a degraded genome and host cell dependence for both bacterial survival and dissemination, particularly the use of host-derived stem cell-like cells as a vehicle for spreading infection without being detected by immune cells. Thus, this unexpected link between cell reprogramming and infection opens up a new premise in host-pathogen interactions. Furthermore, such bacterial ingenuity could also be harnessed for developing natural ways of reprogramming host cells for repairing damaged tissues from infection, injury and diseases. PMID:25541240

  14. Autogenous Translational Regulation of the Borna Disease Virus Negative Control Factor X from Polycistronic mRNA Using Host RNA Helicases

    PubMed Central

    Watanabe, Yohei; Ohtaki, Naohiro; Hayashi, Yohei; Ikuta, Kazuyoshi; Tomonaga, Keizo

    2009-01-01

    Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that employs several unique strategies for gene expression. The shortest transcript of BDV, X/P mRNA, encodes at least three open reading frames (ORFs): upstream ORF (uORF), X, and P in the 5′ to 3′ direction. The X is a negative regulator of viral polymerase activity, while the P phosphoprotein is a necessary cofactor of the polymerase complex, suggesting that the translation of X is controlled rigorously, depending on viral replication. However, the translation mechanism used by the X/P polycistronic mRNA has not been determined in detail. Here we demonstrate that the X/P mRNA autogenously regulates the translation of X via interaction with host factors. Transient transfection of cDNA clones corresponding to the X/P mRNA revealed that the X ORF is translated predominantly by uORF-termination-coupled reinitiation, the efficiency of which is upregulated by expression of P. We found that P may enhance ribosomal reinitiation at the X ORF by inhibition of the interaction of the DEAD-box RNA helicase DDX21 with the 5′ untranslated region of X/P mRNA, via interference with its phosphorylation. Our results not only demonstrate a unique translational control of viral regulatory protein, but also elucidate a previously unknown mechanism of regulation of polycistronic mRNA translation using RNA helicases. PMID:19893625

  15. The Plasmodium falciparum Translationally Controlled Tumor Protein (TCTP) Is Incorporated More Efficiently into B Cells than Its Human Homologue

    PubMed Central

    Calderón-Pérez, Berenice; Xoconostle-Cázares, Beatriz; Lira-Carmona, Rosalía; Hernández-Rivas, Rosaura; Ortega-López, Jaime; Ruiz-Medrano, Roberto

    2014-01-01

    Plasmodium falciparum secretes a homologue of the translationally controlled tumor protein (TCTP) into serum of infected individuals, although its role in pathogenesis or virulence is unknown. To determine the effect of P. falciparum TCTP on B cells as compared to human TCTP, fluorescently labeled proteins were incubated on primary cultures of mouse splenic B cells and analyzed by flow cytometry and confocal microscopy. Our results indicate that both recombinant proteins are incorporated into B cells, but differ significantly in their rate and percentage of incorporation, being significantly higher for P. falciparum TCTP. Furthermore, P. falciparum TCTP showed a lower B cell proliferative effect than human TCTP, suggesting a mechanism through which the former could interfere in the host's immune response. PMID:24465583

  16. Fluorescent Polymer-Based Post-Translational Differentiation and Subtyping of Breast Cancer Cells

    PubMed Central

    Scott, Michael D.; Dutta, Rinku; Haldar, Manas K.; Wagh, Anil; Gustad, Thomas R.; Law, Benedict; Friesner, Daniel L.

    2012-01-01

    Herein, we report the application of synthesized fluorescent, water soluble polymers for post-translational subtyping and differentiation of breast cancer cells in vitro. The fluorescence emission spectra from these polymers were differently modulated in the presence of conditioned cell culture media from various breast cancer cells. These polymers differentiate at a post-translation level possibly due to their ability to interact with extracellular enzymes that are over-expressed in cancerous conditions. PMID:23061092

  17. Unsynchronized Translational and Rotational Diffusion of Nanocargo on a Living Cell Membrane

    SciTech Connect

    Xiao, Lehui; Wei, Lin; Liu, Chang; He, Yan; Yeung, Edward

    2012-03-16

    A robust high-speed and high-precision single nanoparticle translational and rotational tracking method has been developed to directly monitor the interactions between transferrin-modified nanocargos (gold nanorods) and the membrane proteins prior to endocytosis. This approach shows that the translational and rotational diffusions of nanocargos on living cell membranes are unsynchronized in space and in time.

  18. Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors

    PubMed Central

    Gonzalez, Christian; Sims, Jennifer S.; Hornstein, Nicholas; Mela, Angeliki; Garcia, Franklin; Lei, Liang; Gass, David A.; Amendolara, Benjamin; Bruce, Jeffrey N.

    2014-01-01

    Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5′-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation. PMID:25122893

  19. B Cells in Chronic Graft versus Host Disease

    PubMed Central

    Sarantopoulos, Stefanie; Blazar, Bruce R.; Cutler, Corey; Ritz, Jerome

    2015-01-01

    Chronic graft versus host disease (cGVHD) continues to be a common complication of allogeneic hematopoietic stem cell transplantation (HSCT). Unlike acute GVHD, which is mediated almost entirely by donor T cells, the immune pathology of cGVHD is more complex and donor B cells have also been found to play an important role. Recent studies from several laboratories have enhanced our understanding of how donor B cells contribute to this clinical syndrome and this has led to new therapeutic opportunities. Here, Dr. Sarantopoulos reviews some of the important mechanisms responsible for persistent B cell activation and loss of B cell tolerance in patients with cGVHD. Dr. Blazar describes recent studies in preclinical models that have identified novel B cell directed agents that may be effective for prevention or treatment of cGVHD. Some B cell directed therapies have already been tested in patients with cGVHD and Dr. Cutler reviews the results of these studies documenting the potential efficacy of this approach. Supported by studies mechanistic studies in patients and preclinical models, new B cell directed therapies for cGVHD will now be evaluated in clinical trials. PMID:25452031

  20. Ureaplasma parvum infection alters filamin a dynamics in host cells

    PubMed Central

    2011-01-01

    Background Ureaplasmas are among the most common bacteria isolated from the human urogenital tract. Ureaplasmas can produce asymptomatic infections or disease characterized by an exaggerated inflammatory response. Most investigations have focused on elucidating the pathogenic potential of Ureaplasma species, but little attention has been paid to understanding the mechanisms by which these organisms are capable of establishing asymptomatic infection. Methods We employed differential proteome profiling of bladder tissues from rats experimentally infected with U. parvum in order to identify host cell processes perturbed by colonization with the microbe. Tissues were grouped into four categories: sham inoculated controls, animals that spontaneously cleared infection, asymptomatic urinary tract infection (UTI), and complicated UTI. One protein that was perturbed by infection (filamin A) was used to further elucidate the mechanism of U. parvum-induced disruption in human benign prostate cells (BPH-1). BPH-1 cells were evaluated by confocal microscopy, immunoblotting and ELISA. Results Bladder tissue from animals actively colonized with U. parvum displayed significant alterations in actin binding proteins (profilin 1, vinculin, α actinin, and filamin A) that regulate both actin polymerization and cell cytoskeletal function pertaining to focal adhesion formation and signal transduction (Fisher's exact test, P < 0.004; ANOVA, P < 0.02). This phenomenon was independent of clinical profile (asymptomatic vs. complicated UTI). We selected filamin A as a target for additional studies. In the BPH-1 model, we confirmed that U. parvum perturbed the regulation of filamin A. Specifically, infected BPH-1 cells exhibited a significant increase in filamin A phosphorylated at serine2152 (P ≤ 0.01), which correlated with impaired proteolysis of the protein and its normal intracellular distribution. Conclusion Filamin A dynamics were perturbed in both models of infection

  1. Umbilical Cord Mesenchymal Stem Cells Suppress Host Rejection

    PubMed Central

    Coulson-Thomas, Vivien Jane; Gesteira, Tarsis Ferreira; Hascall, Vincent; Kao, Winston

    2014-01-01

    Umbilical cord mesenchymal stem cells (UMSCs) have unique immunosuppressive properties enabling them to evade host rejection and making them valuable tools for cell therapy. We previously showed that human UMSCs survive xenograft transplantation and successfully correct the corneal clouding defects associated with the mouse model for the congenital metabolic disorder mucopolysaccharidosis VII. However, the precise mechanism by which UMSCs suppress the immune system remains elusive. This study aimed to determine the key components involved in the ability of the UMSCs to modulate the inflammatory system and to identify the inflammatory cells that are regulated by the UMSCs. Our results show that human UMSCs transplanted into the mouse stroma 24 h after an alkali burn suppress the severe inflammatory response and enable the recovery of corneal transparency within 2 weeks. Furthermore, we demonstrated in vitro that UMSCs inhibit the adhesion and invasion of inflammatory cells and also the polarization of M1 macrophages. UMSCs also induced the maturation of T-regulatory cells and led to inflammatory cell death. Moreover, UMSCs exposed to inflammatory cells synthesize a rich extracellular glycocalyx composed of the chondroitin sulfate-proteoglycan versican bound to a heavy chain (HC)-modified hyaluronan (HA) matrix (HC-HA). This matrix also contains TNFα-stimulated gene 6 (TSG6), the enzyme that transfers HCs to HA, and pentraxin-3, which further stabilizes the matrix. Our results, both in vivo and in vitro, show that this glycocalyx confers the ability for UMSCs to survive the host immune system and to regulate the inflammatory cells. PMID:24986866

  2. The influence of viral RNA secondary structure on interactions with innate host cell defences

    PubMed Central

    Witteveldt, Jeroen; Blundell, Richard; Maarleveld, Joris J.; McFadden, Nora; Evans, David J.; Simmonds, Peter

    2014-01-01

    RNA viruses infecting vertebrates differ fundamentally in their ability to establish persistent infections with markedly different patterns of transmission, disease mechanisms and evolutionary relationships with their hosts. Although interactions with host innate and adaptive responses are complex and persistence mechanisms likely multi-factorial, we previously observed associations between bioinformatically predicted RNA secondary formation in genomes of positive-stranded RNA viruses with their in vivo fitness and persistence. To analyse this interactions functionally, we transfected fibroblasts with non-replicating, non-translated RNA transcripts from RNA viral genomes with differing degrees of genome-scale ordered RNA structure (GORS). Single-stranded RNA transcripts induced interferon-β mediated though RIG-I and PKR activation, the latter associated with rapid induction of antiviral stress granules. A striking inverse correlation was observed between induction of both cellular responses with transcript RNA structure formation that was independent of both nucleotide composition and sequence length. The consistent inability of cells to recognize RNA transcripts possessing GORS extended to downstream differences from unstructured transcripts in expression of TNF-α, other interferon-stimulated genes and induction of apoptosis. This functional association provides novel insights into interactions between virus and host early after infection and provides evidence for a novel mechanism for evading intrinsic and innate immune responses. PMID:24335283

  3. Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs.

    PubMed Central

    Kwong, A D; Frenkel, N

    1987-01-01

    The herpes simplex virus virion contains a function that mediates the shutoff of host-protein synthesis and the degradation of host mRNA. Viral mutants affected in this function (vhs mutants) have previously been derived. Cells infected with these mutants exhibit a more stable synthesis of host as well as the immediate early (alpha)-viral proteins. We now show that a function associated with purified virions of the wild-type virus reduces the half-life of host and alpha mRNAs, whereas purified vhs-1 mutant virions lack this activity. The functional half-life of many early (beta)- and late (gamma)-viral mRNAs is also prolonged in mutant virus infections. These studies suggest that the wild-type virion brings into cells a function that indiscriminately reduces the half-life of both host and viral transcripts and that the early translational shutoff of the host is a consequence of this function. This function may facilitate rapid transitions in the expression of groups of genes that are transcriptionally turned on at different times after infection. Images PMID:3031658

  4. Identifying Francisella tularensis Genes Required for Growth in Host Cells

    PubMed Central

    Brunton, J.; Steele, S.; Miller, C.; Lovullo, E.; Taft-Benz, S.

    2015-01-01

    Francisella tularensis is a highly virulent Gram-negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cells, including, but not limited to, macrophages and epithelial cells. We developed a luminescence reporter system to facilitate a large-scale transposon mutagenesis screen to identify genes required for growth in macrophage and epithelial cell lines. We screened 7,454 individual mutants, 269 of which exhibited reduced intracellular growth. Transposon insertions in the 269 growth-defective strains mapped to 68 different genes. FTT_0924, a gene of unknown function but highly conserved among Francisella species, was identified in this screen to be defective for intracellular growth within both macrophage and epithelial cell lines. FTT_0924 was required for full Schu S4 virulence in a murine pulmonary infection model. The ΔFTT_0924 mutant bacterial membrane is permeable when replicating in hypotonic solution and within macrophages, resulting in strongly reduced viability. The permeability and reduced viability were rescued when the mutant was grown in a hypertonic solution, indicating that FTT_0924 is required for resisting osmotic stress. The ΔFTT_0924 mutant was also significantly more sensitive to β-lactam antibiotics than Schu S4. Taken together, the data strongly suggest that FTT_0924 is required for maintaining peptidoglycan integrity and virulence. PMID:25987704

  5. HIV-Induced Epigenetic Alterations in Host Cells.

    PubMed

    Abdel-Hameed, Enass A; Ji, Hong; Shata, Mohamed Tarek

    2016-01-01

    Human immunodeficiency virus (HIV), a member of the Retroviridae family, is a positive-sense, enveloped RNA virus. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS) has two major types, HIV-1 and HIV-2 In HIV-infected cells the single stranded viral RNA genome is reverse transcribed and the double-stranded viral DNA integrates into the cellular DNA, forming a provirus. The proviral HIV genome is controlled by the host epigenetic regulatory machinery. Cellular epigenetic regulators control HIV latency and reactivation by affecting the chromatin state in the vicinity of the viral promoter located to the 5' long terminal repeat (LTR) sequence. In turn, distinct HIV proteins affect the epigenotype and gene expression pattern of the host cells. HIV-1 infection of CD4(+) T cells in vitro upregulated DNMT activity and induced hypermethylation of distinct cellular promoters. In contrast, in the colon mucosa and peripheral blood mononuclear cells from HIV-infected patients demethylation of the FOXP3 promoter was observed, possibly due to the downregulation of DNA methyltransferase 1. For a curative therapy of HIV infected individuals and AIDS patients, a combination of antiretroviral drugs with epigenetic modifying compounds have been suggested for the reactivation of latent HIV-1 genomes. These epigenetic drugs include histone deacetylase inhibitors (HDACI), histone methyltransferase inhibitors (HMTI), histone demethylase inhibitors, and DNA methyltransferase inhibitors (DNMTI). PMID:26659262

  6. Exosomes Secreted by Toxoplasma gondii-Infected L6 Cells: Their Effects on Host Cell Proliferation and Cell Cycle Changes

    PubMed Central

    Kim, Min Jae; Jung, Bong-Kwang; Cho, Jaeeun; Song, Hyemi; Pyo, Kyung-Ho; Lee, Ji Min; Kim, Min-Kyung; Chai, Jong-Yil

    2016-01-01

    Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle. PMID:27180572

  7. Bright Fluorescent Streptococcus pneumoniae for Live-Cell Imaging of Host-Pathogen Interactions

    PubMed Central

    Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E.; Andrew, Peter W.; van Strijp, Jos A. G.; Nijland, Reindert

    2014-01-01

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the major limitations for research on pneumococcal-host interactions is the lack of suitable tools for live-cell imaging. To address this issue, we developed a generally applicable strategy to create genetically stable, highly fluorescent bacteria. Our strategy relies on fusing superfolder green fluorescent protein (GFP) or a far-red fluorescent protein (RFP) to the abundant histone-like protein HlpA. Due to efficient translation and limited cellular diffusion of these fusions, the cells are 25-fold brighter than those of the currently best available imaging S. pneumoniae strain. These novel bright pneumococcal strains are fully virulent, and the GFP reporter can be used for in situ imaging in mouse tissue. We used our reporter strains to study the effect of the polysaccharide capsule, a major pneumococcal virulence factor, on different stages of infection. By dual-color live-cell imaging experiments, we show that unencapsulated pneumococci adhere significantly better to human lung epithelial cells than encapsulated strains, in line with previous data obtained by classical approaches. We also confirm with live-cell imaging that the capsule protects pneumococci from neutrophil phagocytosis, demonstrating the versatility and usability of our reporters. The described imaging tools will pave the way for live-cell imaging of pneumococcal infection and help further understanding of the mechanisms of pneumococcal pathogenesis. PMID:25512311

  8. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression

    SciTech Connect

    Kim, Felix J.; Schrock, Joel M.; Spino, Christina M.; Marino, Jacqueline C.; Pasternak, Gavril W.

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer Sigma1 ligand treatment mediates decrease in tumor cell mass. Black-Right-Pointing-Pointer Identification of a Sigma1 ligand with reversible translational repressor actions. Black-Right-Pointing-Pointer Demonstration of a role for Sigma1 in cellular protein synthesis. -- Abstract: Treatment with sigma1 receptor (Sigma1) ligands can inhibit cell proliferation in vitro and tumor growth in vivo. However, the cellular pathways engaged in response to Sigma1 ligand treatment that contribute to these outcomes remain largely undefined. Here, we show that treatment with putative antagonists of Sigma1 decreases cell mass. This effect corresponds with repressed cap-dependent translation initiation in multiple breast and prostate cancer cell lines. Sigma1 antagonist treatment suppresses phosphorylation of translational regulator proteins p70S6K, S6, and 4E-BP1. RNAi-mediated knockdown of Sigma1 also results in translational repression, consistent with the effects of antagonist treatment. Sigma1 antagonist mediated translational repression and decreased cell size are both reversible. Together, these data reveal a role for Sigma1 in tumor cell protein synthesis, and demonstrate that small molecule Sigma1 ligands can be used as modulators of protein translation.

  9. Influenza virus binds its host cell using multiple dynamic interactions

    PubMed Central

    Sieben, Christian; Kappel, Christian; Zhu, Rong; Wozniak, Anna; Rankl, Christian; Hinterdorfer, Peter; Grubmüller, Helmut; Herrmann, Andreas

    2012-01-01

    Influenza virus belongs to a wide range of enveloped viruses. The major spike protein hemagglutinin binds sialic acid residues of glycoproteins and glycolipids with dissociation constants in the millimolar range [Sauter NK, et al. (1992) Biochemistry 31:9609–9621], indicating a multivalent binding mode. Here, we characterized the attachment of influenza virus to host cell receptors using three independent approaches. Optical tweezers and atomic force microscopy-based single-molecule force spectroscopy revealed very low interaction forces. Further, the observation of sequential unbinding events strongly suggests a multivalent binding mode between virus and cell membrane. Molecular dynamics simulations reveal a variety of unbinding pathways that indicate a highly dynamic interaction between HA and its receptor, allowing rationalization of influenza virus–cell binding quantitatively at the molecular level. PMID:22869709

  10. Cell signaling, post-translational protein modifications and NMR spectroscopy

    PubMed Central

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy

    2016-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy. PMID:23011410

  11. Accessibility of host cell lineages to medaka stem cells depends on genetic background and irradiation of recipient embryos.

    PubMed

    Hong, Ni; Li, Mingyou; Zeng, Zhiqiang; Yi, Meisheng; Deng, Jiaorong; Gui, Jianfang; Winkler, Christoph; Schartl, Manfred; Hong, Yunhan

    2010-04-01

    Chimera formation is a powerful tool for analyzing pluripotency in vivo. It has been widely accepted that host cell lineages are generally accessible to embryonic stem (ES) cells with the actual contribution depending solely on the intrinsic pluripotency of transplanted donor cells. Here, we show in the fish medaka (Oryzias latipes) that the host accessibility to ES cell contribution exhibits dramatic differences. Specifically, of three albino host strains tested (i (1) , i (3) and af), only strain i (1) generated pigmented chimeras. Strikingly, this accessibility is completely lost in i (1) but acquired in i (3) after host gamma-irradiation. Host irradiation also differentially affected ES cell contribution to somatic organs and gonad. Therefore, the accessibility of various host cell lineages can vary considerably depending on host strains and cell lineages as well as on irradiation. Our findings underscore the importance of host genotypes for interpreting donor cell pluripotency and for improving ES-derived chimera production. PMID:20238480

  12. Bordetella pertussis adenylate cyclase inactivation by the host cell.

    PubMed Central

    Gilboa-Ron, A; Rogel, A; Hanski, E

    1989-01-01

    Bordetella pertussis produces a calmodulin-dependent adenylate cyclase (AC) which acts as a toxin capable of penetrating eukaryotic cells and generating high levels of intracellular cyclic AMP. Transfer of target cells into B. pertussis AC-free medium leads to a rapid decay in the intracellular AC activity, implying that the invasive enzyme is unstable in the host cytoplasm. We report here that treatment of human lymphocytes with a glycolysis inhibitor and an uncoupler of oxidative phosphorylation completely blocked the intracellular inactivation of B. pertussis AC. Lymphocyte lysates inactivated all forms of B. pertussis AC in the presence of exogenous ATP. This inactivation was associated with degradation of an 125I-labelled 200 kDa form of B. pertussis AC. It appears that ATP is required for the proteolytic pathway, but not as an energy source, since non-hydrolysable ATP analogues supported inactivation and complete degradation of the enzyme. The possibility that binding of ATP to B. pertussis AC renders it susceptible to degradation by the host cell protease is discussed. Images Fig. 2. Fig. 4. PMID:2554887

  13. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions.

    PubMed

    Kim, Janice; Hall, Robert R; Lesniak, Maciej S; Ahmed, Atique U

    2015-12-01

    Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis-all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting. PMID:26633462

  14. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions

    PubMed Central

    Kim, Janice; Hall, Robert R.; Lesniak, Maciej S.; Ahmed, Atique U.

    2015-01-01

    Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis—all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting. PMID:26633462

  15. Interaction of Human Tumor Viruses with Host Cell Surface Receptors and Cell Entry

    PubMed Central

    Schäfer, Georgia; Blumenthal, Melissa J.; Katz, Arieh A.

    2015-01-01

    Currently, seven viruses, namely Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV), high-risk human papillomaviruses (HPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV) and human T cell lymphotropic virus type 1 (HTLV-1), have been described to be consistently associated with different types of human cancer. These oncogenic viruses belong to distinct viral families, display diverse cell tropism and cause different malignancies. A key to their pathogenicity is attachment to the host cell and entry in order to replicate and complete their life cycle. Interaction with the host cell during viral entry is characterized by a sequence of events, involving viral envelope and/or capsid molecules as well as cellular entry factors that are critical in target cell recognition, thereby determining cell tropism. Most oncogenic viruses initially attach to cell surface heparan sulfate proteoglycans, followed by conformational change and transfer of the viral particle to secondary high-affinity cell- and virus-specific receptors. This review summarizes the current knowledge of the host cell surface factors and molecular mechanisms underlying oncogenic virus binding and uptake by their cognate host cell(s) with the aim to provide a concise overview of potential target molecules for prevention and/or treatment of oncogenic virus infection. PMID:26008702

  16. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells.

    PubMed

    Dowling, Ryan J O; Zakikhani, Mahvash; Fantus, I George; Pollak, Michael; Sonenberg, Nahum

    2007-11-15

    Metformin is used for the treatment of type 2 diabetes because of its ability to lower blood glucose. The effects of metformin are explained by the activation of AMP-activated protein kinase (AMPK), which regulates cellular energy metabolism. Recently, we showed that metformin inhibits the growth of breast cancer cells through the activation of AMPK. Here, we show that metformin inhibits translation initiation. In MCF-7 breast cancer cells, metformin treatment led to a 30% decrease in global protein synthesis. Metformin caused a dose-dependent specific decrease in cap-dependent translation, with a maximal inhibition of 40%. Polysome profile analysis showed an inhibition of translation initiation as metformin treatment of MCF-7 cells led to a shift of mRNAs from heavy to light polysomes and a concomitant increase in the amount of 80S ribosomes. The decrease in translation caused by metformin was associated with mammalian target of rapamycin (mTOR) inhibition, and a decrease in the phosphorylation of S6 kinase, ribosomal protein S6, and eIF4E-binding protein 1. The effects of metformin on translation were mediated by AMPK, as treatment of cells with the AMPK inhibitor compound C prevented the inhibition of translation. Furthermore, translation in MDA-MB-231 cells, which lack the AMPK kinase LKB1, and in tuberous sclerosis complex 2 null (TSC2(-/-)) mouse embryonic fibroblasts was unaffected by metformin, indicating that LKB1 and TSC2 are involved in the mechanism of action of metformin. These results show that metformin-mediated AMPK activation leads to inhibition of mTOR and a reduction in translation initiation, thus providing a possible mechanism of action of metformin in the inhibition of cancer cell growth. PMID:18006825

  17. The interactions of intracellular Protista and their host cells, with special reference to heterotrophic organisms.

    PubMed

    Bannister, L H

    1979-04-11

    Intracellular genera are found in all the major groups of Protista, but are particularly common among the dinoflagellates, trypanosomatid zooflagellates and suctorian ciliates; the Sporozoa are nearly all intracellular at some stage of their life, and the Microspora entirely so. Intracellular forms can dwell in the nucleus, within phagosomal or other vacuoles or may lie free in the hyaloplasm of their host cells. Organisms tend to select their hosts from a restricted taxonomic range although there are some notable exceptions. There is also great variation in the types of host cell inhabited. There are various reasons for both host and cell selectivity including recognition phenomena at the cell surfaces. Invasion of host cells is usually preceded by surface interactions with the invader. Some organisms depend upon phagocytosis for entry, but others induce host cells to engulf them by non-phagocytic means or invade by microinjection through the host plasma membrane. Protista avoid lysosomal destruction by their resistance to enzyme attack, by surrounding themselves with lysosome-inhibiting vacuoles, by escaping from the phagosomal system into the hyaloplasm and by choosing host cells which lack lysosomes. Nutrition of intracellular heterotrophic organisms involves some degree of competition with the host cell's metabolism as well as erosion of host cell cytoplasm. In Plasmodium infections, red cells are made more permeable to required nutrients by the action of the parasite on the host cell membrane. The parasite is often dependent upon the host cell for complex nutrients which it cannot synthesize for itself. Intracellular forms often profoundly modify the structure and metabolism of the host cell or interfere with its growth and multiplication. This may result in the final lysis of the host cell at the end of the intracellular phase or before the infection of other cells. Certain types of intracellular organisms may have arisen initially as forms attached to the

  18. Langerhans' cells are depleted in chronic graft versus host disease.

    PubMed Central

    Aractingi, S; Gluckman, E; Dauge-Geffroy, M C; Le Goué, C; Flahaut, A; Dubertret, L; Carosella, E

    1997-01-01

    AIMS: To measure Langerhans' cells in skin of patients treated by bone marrow transplantation who developed chronic graft versus host disease (GvHD); to determine whether the reduction in Langerhans' cells resulted directly from the GvHD or from other factors, such as the immunosuppressive regimens used in bone marrow transplant patients. PATIENTS AND METHODS: Lesional and nonlesional skin specimens from nine patients with lichen planus-like lesions and three patients with sclerodermoid lesions were studied. Control skin specimens were taken from three patients undergoing breast reduction surgery. The number of Langerhans' cells/mm2 and the area of Langerhans' cells as a percentage of total epidermis were measured by counting cells labelled with antihuman CD1a. RESULTS: A significant reduction in Langerhans' cell area and number were found in specimens with lesions (area 3.5%; number 507/mm2) compared with specimens without lesions (8.42%; 2375/mm2). In contrast, Langerhans' cell area and number in skin without lesions were similar to controls (10.26%; 2968/mm2). CONCLUSIONS: Langerhans' cells were significantly reduced in skin with lesions of chronic GvHD but not in skin without lesions from the same patient, suggesting that the reduction is a direct consequence of GvHD and not linked to immunosuppressive drugs or late effects of conditioning regimens. In long term bone marrow transplant recipients, Langerhans' cells are derived mainly from the donor cells; therefore, this result suggests the occurrence of autoreactive phenomenon in chronic GvHD. Images PMID:9215146

  19. Lost in translation: pluripotent stem cell-derived hematopoiesis

    PubMed Central

    Ackermann, Mania; Liebhaber, Steffi; Klusmann, Jan-Henning; Lachmann, Nico

    2015-01-01

    Pluripotent stem cells (PSCs) such as embryonic stem cells or induced pluripotent stem cells represent a promising cell type to gain novel insights into human biology. Understanding the differentiation process of PSCs in vitro may allow for the identification of cell extrinsic/intrinsic factors, driving the specification process toward all cell types of the three germ layers, which may be similar to the human in vivo scenario. This would not only lay the ground for an improved understanding of human embryonic development but would also contribute toward the generation of novel cell types used in cell replacement therapies. In this line, especially the developmental process of mesodermal cells toward the hematopoietic lineage is of great interest. Therefore, this review highlights recent progress in the field of hematopoietic specification of pluripotent stem cell sources. In addition, we would like to shed light on emerging factors controlling primitive and definitive hematopoietic development and to highlight recent approaches to improve the differentiation potential of PSC sources toward hematopoietic stem/progenitor cells. While the generation of fully defined hematopoietic stem cells from PSCs remains challenging in vitro, we here underline the instructive role of cell extrinsic factors such as cytokines for the generation of PSC-derived mature hematopoietic cells. Thus, we have comprehensively examined the role of cytokines for the derivation of mature hematopoietic cell types such as macrophages, granulocytes, megakaryocytes, erythrocytes, dendritic cells, and cells of the B- and T-cell lineage. PMID:26174486

  20. A Viral mRNA Motif at the 3'-Untranslated Region that Confers Translatability in a Cell-Specific Manner. Implications for Virus Evolution.

    PubMed

    Garcia-Moreno, Manuel; Sanz, Miguel Angel; Carrasco, Luis

    2016-01-01

    Sindbis virus (SINV) mRNAs contain several motifs that participate in the regulation of their translation. We have discovered a motif at the 3' untranslated region (UTR) of viral mRNAs, constituted by three repeated sequences, which is involved in the translation of both SINV genomic and subgenomic mRNAs in insect, but not in mammalian cells. These data illustrate for the first time that an element present at the 3'-UTR confers translatability to mRNAs from an animal virus in a cell-specific manner. Sequences located at the beginning of the 5'-UTR may also regulate SINV subgenomic mRNA translation in both cell lines in a context of infection. Moreover, a replicon derived from Sleeping disease virus, an alphavirus that have no known arthropod vector for transmission, is much more efficient in insect cells when the repeated sequences from SINV are inserted at its 3'-UTR, due to the enhanced translatability of its mRNAs. Thus, these findings provide a clue to understand, at the molecular level, the evolution of alphaviruses and their host range. PMID:26755446

  1. A Viral mRNA Motif at the 3′-Untranslated Region that Confers Translatability in a Cell-Specific Manner. Implications for Virus Evolution

    PubMed Central

    Garcia-Moreno, Manuel; Sanz, Miguel Angel; Carrasco, Luis

    2016-01-01

    Sindbis virus (SINV) mRNAs contain several motifs that participate in the regulation of their translation. We have discovered a motif at the 3′ untranslated region (UTR) of viral mRNAs, constituted by three repeated sequences, which is involved in the translation of both SINV genomic and subgenomic mRNAs in insect, but not in mammalian cells. These data illustrate for the first time that an element present at the 3′-UTR confers translatability to mRNAs from an animal virus in a cell-specific manner. Sequences located at the beginning of the 5′-UTR may also regulate SINV subgenomic mRNA translation in both cell lines in a context of infection. Moreover, a replicon derived from Sleeping disease virus, an alphavirus that have no known arthropod vector for transmission, is much more efficient in insect cells when the repeated sequences from SINV are inserted at its 3′-UTR, due to the enhanced translatability of its mRNAs. Thus, these findings provide a clue to understand, at the molecular level, the evolution of alphaviruses and their host range. PMID:26755446

  2. Measles Virus Matrix Protein Inhibits Host Cell Transcription

    PubMed Central

    Yu, Xuelian; Shahriari, Shadi; Li, Hong-Mei; Ghildyal, Reena

    2016-01-01

    Measles virus (MeV) is a highly contagious virus that still causes annual epidemics in developing countries despite the availability of a safe and effective vaccine. Additionally, importation from endemic countries causes frequent outbreaks in countries where it has been eliminated. The M protein of MeV plays a key role in virus assembly and cytopathogenesis; interestingly, M is localised in nucleus, cytoplasm and membranes of infected cells. We have used transient expression of M in transfected cells and in-cell transcription assays to show that only some MeV M localizes to the nucleus, in addition to cell membranes and the cytoplasm as previously described, and can inhibit cellular transcription via binding to nuclear factors. Additionally, MeV M was able to inhibit in vitro transcription in a dose-dependent manner. Importantly, a proportion of M is also localized to nucleus of MeV infected cells at early times in infection, correlating with inhibition of cellular transcription. Our data show, for the first time, that MeV M may play a role early in infection by inhibiting host cell transcription. PMID:27551716

  3. Innate Lymphoid Cells in Graft‐Versus‐Host Disease

    PubMed Central

    Mjösberg, J.

    2015-01-01

    Innate lymphoid cells (ILC) are lymphocytes lacking rearranged antigen receptors such as those expressed by T and B cells. ILC are important effector and regulatory cells of the innate immune system, controlling lymphoid organogenesis, tissue inflammation, and homeostasis. The family of ILC consists of cytotoxic NK cells and the more recently described noncytotoxic group 1, 2, and 3 ILC. The classification of noncytotoxic ILC—in many aspects—mirrors that of T helper cells, which is based on the expression of master transcription factors and signature cytokines specific for each subset. The IL‐22 producing RORγt+ ILC3 subset was recently found to be critical in the prevention of intestinal graft‐versus‐host disease (GVHD) following allogeneic hematopoietic cell transplantation (HCT) via strengthening the intestinal mucosal barrier. In this review, we summarize the current view of the immunological functions of human noncytotoxic ILC subsets and discuss the potentially beneficial features of IL‐22 producing ILC3 in improving allo‐HCT efficacy by attenuating susceptibility to GVHD. In addition, we explore the possibility of other ILC subsets playing a role in GVHD. PMID:26228632

  4. Measles Virus Matrix Protein Inhibits Host Cell Transcription.

    PubMed

    Yu, Xuelian; Shahriari, Shadi; Li, Hong-Mei; Ghildyal, Reena

    2016-01-01

    Measles virus (MeV) is a highly contagious virus that still causes annual epidemics in developing countries despite the availability of a safe and effective vaccine. Additionally, importation from endemic countries causes frequent outbreaks in countries where it has been eliminated. The M protein of MeV plays a key role in virus assembly and cytopathogenesis; interestingly, M is localised in nucleus, cytoplasm and membranes of infected cells. We have used transient expression of M in transfected cells and in-cell transcription assays to show that only some MeV M localizes to the nucleus, in addition to cell membranes and the cytoplasm as previously described, and can inhibit cellular transcription via binding to nuclear factors. Additionally, MeV M was able to inhibit in vitro transcription in a dose-dependent manner. Importantly, a proportion of M is also localized to nucleus of MeV infected cells at early times in infection, correlating with inhibition of cellular transcription. Our data show, for the first time, that MeV M may play a role early in infection by inhibiting host cell transcription. PMID:27551716

  5. Biological insights into the expression of translation initiation factors from recombinant CHOK1SV cell lines and their relationship to enhanced productivity.

    PubMed

    Mead, Emma J; Masterton, Rosalyn J; Feary, Marc; Obrezanova, Olga; Zhang, Lin; Young, Robert; Smales, C Mark

    2015-12-15

    Translation initiation is on the critical pathway for the production of monoclonal antibodies (mAbs) by mammalian cells. Formation of a closed loop structure comprised of mRNA, a number of eukaryotic initiation factors (eIFs) and ribosomal proteins has been proposed to aid re-initiation of translation and therefore increase global translational efficiency. We have determined mRNA and protein levels of the key components of the closed loop, eIFs (eIF3a, eIF3b, eIF3c, eIF3h, eIF3i and eIF4G1), poly(A)-binding protein (PABP) 1 and PABP-interacting protein 1 (PAIP1), across a panel of 30 recombinant mAb-producing GS-CHOK1SV cell lines with a broad range of growth characteristics and production levels of a model recombinant mAb. We have used a multi-level statistical approach to investigate the relationship between key performance indicators (cell growth and recombinant antibody productivity) and the intracellular amounts of target translation initiation factor proteins and the mRNAs encoding them. We show that high-producing cell lines maintain amounts of the translation initiation factors involved in the formation of the closed loop mRNA, maintaining these proteins at appropriate levels to deliver enhanced recombinant protein production. We then utilize knowledge of the amounts of these factors to build predictive models for and use cluster analysis to identify, high-producing cell lines. The present study therefore defines the translation initiation factor amounts that are associated with highly productive recombinant GS-CHOK1SV cell lines that may be targets for screening highly productive cell lines or to engineer new host cell lines with the potential for enhanced recombinant antibody productivity. PMID:26420881

  6. Distinct host cell proteins incorporated by SIV replicating in CD4+ T Cells from natural disease resistant versus non-natural disease susceptible hosts

    PubMed Central

    2010-01-01

    Background Enveloped viruses including the simian immunodeficiency virus (SIV) replicating within host cells acquire host proteins upon egress from the host cells. A number of studies have catalogued such host proteins, and a few have documented the potential positive and negative biological functions of such host proteins. The studies conducted herein utilized proteomic analysis to identify differences in the spectrum of host proteins acquired by a single source of SIV replicating within CD4+ T cells from disease resistant sooty mangabeys and disease susceptible rhesus macaques. Results While a total of 202 host derived proteins were present in viral preparations from CD4+ T cells from both species, there were 4 host-derived proteins that consistently and uniquely associated with SIV replicating within CD4+ T cells from rhesus macaques but not sooty mangabeys; and, similarly, 28 host-derived proteins that uniquely associated with SIV replicating within CD4+ T cells from sooty mangabeys, but not rhesus macaques. Of interest was the finding that of the 4 proteins uniquely present in SIV preparations from rhesus macaques was a 26 S protease subunit 7 (MSS1) that was shown to enhance HIV-1 'tat" mediated transactivation. Among the 28 proteins found in SIV preparations from sooty mangabeys included several molecules associated with immune function such as CD2, CD3ε, TLR4, TLR9 and TNFR and a bioactive form of IL-13. Conclusions The finding of 4 host proteins that are uniquely associated with SIV replicating within CD4+ T cells from disease susceptible rhesus macaques and 28 host proteins that are uniquely associated with SIV replicating within CD4+ T cells from disease resistant sooty mangabeys provide the foundation for determining the potential role of each of these unique host-derived proteins in contributing to the polarized clinical outcome in these 2 species of nonhuman primates. PMID:21162735

  7. Host Cell-catalyzed S-Palmitoylation Mediates Golgi Targeting of the Legionella Ubiquitin Ligase GobX.

    PubMed

    Lin, Yi-Han; Doms, Alexandra G; Cheng, Eric; Kim, Byoungkwan; Evans, Timothy R; Machner, Matthias P

    2015-10-16

    The facultative intracellular pathogen Legionella pneumophila, the causative agent of Legionnaires disease, infects and replicates within human alveolar macrophages. L. pneumophila delivers almost 300 effector proteins into the besieged host cell that alter signaling cascades and create conditions that favor intracellular bacterial survival. In order for the effectors to accomplish their intracellular mission, their activity needs to be specifically directed toward the correct host cell protein or target organelle. Here, we show that the L. pneumophila effector GobX possesses E3 ubiquitin ligase activity that is mediated by a central region homologous to mammalian U-box domains. Furthermore, we demonstrate that GobX exploits host cell S-palmitoylation to specifically localize to Golgi membranes. The hydrophobic palmitate moiety is covalently attached to a cysteine residue at position 175, which is part of an amphipathic α-helix within the C-terminal region of GobX. Site-directed mutagenesis of cysteine 175 or residues on the hydrophobic face of the amphipathic helix strongly attenuated palmitoylation and Golgi localization of GobX. Together, our study provides evidence that the L. pneumophila effector GobX exploits two post-translational modification pathways of host cells, ubiquitination and S-palmitoylation. PMID:26316537

  8. Implementation of a Permeable Membrane Insert-based Infection System to Study the Effects of Secreted Bacterial Toxins on Mammalian Host Cells.

    PubMed

    Flaherty, Rebecca A; Lee, Shaun W

    2016-01-01

    Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection. PMID:27585035

  9. Chlamydial Lytic Exit from Host Cells Is Plasmid Regulated

    PubMed Central

    Yang, Chunfu; Starr, Tregei; Song, Lihua; Carlson, John H.; Sturdevant, Gail L.; Beare, Paul A.; Whitmire, William M.

    2015-01-01

    ABSTRACT Chlamydia trachomatis is an obligate intracellular bacterium that is a globally important human pathogen. The chlamydial plasmid is an attenuating virulence factor, but the molecular basis for attenuation is not understood. Chlamydiae replicate within a membrane-bound vacuole termed an inclusion, where they undergo a biphasic developmental growth cycle and differentiate from noninfectious into infectious organisms. Late in the developmental cycle, the fragile chlamydia-laden inclusion retains its integrity by surrounding itself with scaffolds of host cytoskeletal proteins. The ability of chlamydiae to developmentally free themselves from this cytoskeleton network is a fundamental virulence trait of the pathogen. Here, we show that plasmidless chlamydiae are incapable of disrupting their cytoskeletal entrapment and remain intracellular as stable mature inclusions that support high numbers of infectious organisms. By using deletion mutants of the eight plasmid-carried genes (Δpgp1 to Δpgp8), we show that Pgp4, a transcriptional regulator of multiple chromosomal genes, is required for exit. Exit of chlamydiae is dependent on protein synthesis and is inhibited by the compound C1, an inhibitor of the type III secretion system (T3S). Exit of plasmid-free and Δpgp4 organisms, which failed to lyse infected cells, was rescued by latrunculin B, an inhibitor of actin polymerization. Our findings describe a genetic mechanism of chlamydial exit from host cells that is dependent on an unknown pgp4-regulated chromosomal T3S effector gene. PMID:26556273

  10. Inter-polysomal coupling of termination and initiation during translation in eukaryotic cell-free system.

    PubMed

    Sogorin, Evgeny A; Agalarov, Sultan Ch; Spirin, Alexander S

    2016-01-01

    The recording of the luciferase-generated luminescence in the eukaryotic cell-free translation system programmed with mRNA encoding firefly luciferase (Luc-mRNA) showed that the addition of free exogenous mRNAs into the translation reactor induces the immediate release of the functionally active protein from the polyribosomes of the translation system. The phenomenon did not depend on the coding specificity of the added free mRNA. At the same time it depended on the "initiation potential" of the added mRNA (including the features that ensure the successful initiation of translation, such as the presence of the cap structure and the sufficient concentration of the added mRNA in the translation mixture). The phenomenon also strictly depended on the presence of the stop codon in the translated mRNA. As the above-mentioned features of the added mRNA imply its activity in initiation of a new translation, the experimental data are found in agreement with the scenario where the molecules of the added mRNA interact by their 5'-ends with terminating and recycling ribosomes, stimulating the release of the complete polypeptides and providing for the initiation of a new translation. PMID:27075299

  11. Inter-polysomal coupling of termination and initiation during translation in eukaryotic cell-free system

    PubMed Central

    Sogorin, Evgeny A.; Agalarov, Sultan Ch.; Spirin, Alexander S.

    2016-01-01

    The recording of the luciferase-generated luminescence in the eukaryotic cell-free translation system programmed with mRNA encoding firefly luciferase (Luc-mRNA) showed that the addition of free exogenous mRNAs into the translation reactor induces the immediate release of the functionally active protein from the polyribosomes of the translation system. The phenomenon did not depend on the coding specificity of the added free mRNA. At the same time it depended on the “initiation potential” of the added mRNA (including the features that ensure the successful initiation of translation, such as the presence of the cap structure and the sufficient concentration of the added mRNA in the translation mixture). The phenomenon also strictly depended on the presence of the stop codon in the translated mRNA. As the above-mentioned features of the added mRNA imply its activity in initiation of a new translation, the experimental data are found in agreement with the scenario where the molecules of the added mRNA interact by their 5′-ends with terminating and recycling ribosomes, stimulating the release of the complete polypeptides and providing for the initiation of a new translation. PMID:27075299

  12. Bacterium-Generated Nitric Oxide Hijacks Host Tumor Necrosis Factor Alpha Signaling and Modulates the Host Cell Cycle In Vitro

    PubMed Central

    Mocca, Brian

    2012-01-01

    In mammalian cells, nitric oxide (NO·) is an important signal molecule with concentration-dependent and often controversial functions of promoting cell survival and inducing cell death. An inducible nitric oxide synthase (iNOS) in various mammalian cells produces higher levels of NO· from l-arginine upon infections to eliminate pathogens. In this study, we reveal novel pathogenic roles of NO· generated by bacteria in bacterium-host cell cocultures using Moraxella catarrhalis, a respiratory tract disease-causing bacterium, as a biological producer of NO·. We recently demonstrated that M. catarrhalis cells that express the nitrite reductase (AniA protein) can produce NO· by reducing nitrite. Our study suggests that, in the presence of pathophysiological levels of nitrite, this opportunistic pathogen hijacks host cell signaling and modulates host gene expression through its ability to produce NO· from nitrite. Bacterium-generated NO· significantly increases the secretion of tumor necrosis factor alpha (TNF-α) and modulates the expression of apoptotic proteins, therefore triggering host cell programmed death partially through TNF-α signaling. Furthermore, our study reveals that bacterium-generated NO· stalls host cell division and directly results in the death of dividing cells by reducing the levels of an essential regulator of cell division. This study provides unique insight into why NO· may exert more severe cytotoxic effects on fast growing cells, providing an important molecular basis for NO·-mediated pathogenesis in infections and possible therapeutic applications of NO·-releasing molecules in tumorigenesis. This study strongly suggests that bacterium-generated NO· can play important pathogenic roles during infections. PMID:22636782

  13. Effective delivery of chemotherapeutic nanoparticles by depleting host Kupffer cells.

    PubMed

    Ohara, Yusuke; Oda, Tatsuya; Yamada, Keiichi; Hashimoto, Shinji; Akashi, Yoshimasa; Miyamoto, Ryoichi; Kobayashi, Akihiko; Fukunaga, Kiyoshi; Sasaki, Ryoko; Ohkohchi, Nobuhiro

    2012-11-15

    Although chemotherapeutic nanoparticles would confer various advantages, the majority of administrated nanoparticles are known to be spoiled by the reticuloendothelial system (RES). Intending to more effectively deliver therapeutic nanoparticles to target regions in vivo, host RES, especially Kupffer cells in the liver, have been depleted ahead of drug administration. To demonstrate this hypothesis, clodronate liposomes were preinjected into BALB/c nude mice for depletion of Kupffer cells 2 days before, and pegylated liposomal doxorubicin (Doxil) at the doses of 1.25, 2.5 and 5.0 mg/kg was administered. As a result, doxorubicin accumulation in the liver was decreased from 36 to 26% injected dose/organ by the Kupffer cells depletion, and consequently, the plasma concentration of doxorubicin was significantly enhanced threefold (from 11 to 33 μg/mL) on day 1 at 1.25 mg/kg-dose group. Doxorubicin accumulation in the tumor was increased from 0.78 to 3.0 μg/g-tissue on day 3, and tumor growth inhibition by Doxil was significantly boosted (tumor volumes from 751 to 482 mm(3) on day 24) by the Kupffer cells depletion. In conclusion, Kupffer cells depletion by clodronate liposomes enhanced the plasma concentration and antitumor effects of Doxil, and would be widely applicable for various clinical cancer chemotherapies using nanoparticles. PMID:22362271

  14. Mast cell tryptases and chymases in inflammation and host defense

    PubMed Central

    Caughey, George H.

    2008-01-01

    Summary Tryptases and chymases are the major proteins stored and secreted by mast cells. The types, amounts and properties of these serine peptidases vary by mast cell subtype, tissue, and mammal of origin. Membrane-anchored γ-tryptases are tryptic, prostasin-like, type I peptidases that remain membrane-attached upon release and act locally. Soluble tryptases, including their close relatives, mastins, form inhibitor-resistant oligomers that act more remotely. Befitting their greater destructive potential, chymases are quickly inhibited after release, although some gain protection by associating with proteoglycans. Most chymase-like enzymes, including mast cell cathepsin G, hydrolyze chymotryptic substrates, an uncommon capability in the proteome. Some rodent chymases, however, have mutations resulting in elastolytic activity. Secreted tryptases and chymases promote inflammation, matrix destruction, and tissue remodeling by several mechanisms, including destroying pro-coagulant, matrix, growth and differentiation factors, and activating proteinase-activated receptors, urokinase, metalloproteinases, and angiotensin. They also modulate immune responses by hydrolyzing chemokines and cytokines. At least one chymase protects mice from intestinal worms. Tryptases and chymases also can oppose inflammation by inactivating allergens and neuropeptides causing inflammation and bronchoconstriction. Thus, like mast cells themselves, mast cell serine peptidases play multiple roles in host defense and any accounting of benefit versus harm is necessarily context-specific. PMID:17498057

  15. NK cell regulation of CD4 T cell-mediated graft-versus-host disease.

    PubMed

    Noval Rivas, Magali; Hazzan, Marc; Weatherly, Kathleen; Gaudray, Florence; Salmon, Isabelle; Braun, Michel Y

    2010-06-15

    CD3-negative NK cells are granular lymphocytes capable of producing inflammatory cytokines and killing malignant, infected, or stressed cells. We have recently observed a new role for NK cells in the control of the proliferation of CD4 T cells under persistent antigenic stimulation. Monoclonal anti-male CD4 T cells transferred into Rag2-/- male recipients did not expand or were rapidly eliminated. Remarkably, T cells transferred into NK cell-deficient Rag2-/- Il-2Rgammac-/- male hosts expanded extensively and mediated tissue lesions usually observed in chronic graft-versus-host disease (GVHD). T cell failure to proliferate and to induce chronic GVHD was the result of NK cell activity, because depletion of the recipient's NK1.1+ cells by Ab treatment induced T cell expansion and chronic GVHD. T cells under chronic Ag stimulation upregulated ligands of the activating receptor NKG2D, and regulatory activity of NK cells was inhibited by the injection of Abs directed to NKG2D. On the contrary, blocking NKG2A inhibitory receptors did not increase NK cell regulatory activity. Finally, we show that NK regulation of T cell expansion did not involve perforin-mediated lytic activity of NK cells, but depended on T cell surface expression of a functional Fas molecule. These results highlight the potential role played by NK cells in controlling the Ag-specific CD4+ T cells responsible for chronic GVHD. PMID:20488796

  16. A double filtering method for measuring the translational velocity of fluorescently stained cells

    SciTech Connect

    Yasokawa, Toshiki; Ishimaru, Ichirou; Kuriyama, Shigeki; Masaki, Tsutomu; Takegawa, Kaoru; Tanaka, Naotaka

    2007-09-24

    The authors propose a double filtering method to measure translational velocity for tracking fluorescently stained cells. This method employs two diffraction gratings installed in the infinity space through which the parallel pencil beam of the fluorescence passes. With this method, the change in light intensity whose period is proportional to the translational velocity of the sample can be obtained at the imaging surface. By using a sample that has a random distribution of fluorescence intensity, the authors verified that translational velocity measurements could be achieved using the proposed method.

  17. Inhibition of host cell catalase by Mycoplasma pneumoniae: a possible mechanism for cell injury.

    PubMed Central

    Almagor, M; Yatziv, S; Kahane, I

    1983-01-01

    This study demonstrates that viable Mycoplasma pneumoniae cells inhibit catalase activity in several types of intact human cells as well as in solution. Human erythrocyte catalase was inhibited up to 72%, and the inhibition of catalase in human cultured skin fibroblasts, lung carcinoma epithelial cells, and ciliated epithelial cells from human nasal polyps ranged between 75 and 80%. UV light-killed mycoplasmas failed to inhibit catalase activity both in intact cells and in vitro. After M. pneumoniae infection of human cultured skin fibroblasts, the level of malonyldialdehyde, an indicator for membrane lipid peroxidation, was 3.5 times higher than in control fibroblasts. Virulent M. pneumoniae completely inhibited catalase activity in solution, whereas the nonvirulent strains had a lesser ability to inhibit catalase activity. These findings suggest that as a result of host cell catalase inhibition by M. pneumoniae, the toxicity of the hydrogen peroxide generated by the microorganism and the affected cell is enhanced, thereby inducing host cell damage. PMID:6407999

  18. A microfluidic cell-trapping device for single-cell tracking of host-microbe interactions.

    PubMed

    Delincé, Matthieu J; Bureau, Jean-Baptiste; López-Jiménez, Ana Teresa; Cosson, Pierre; Soldati, Thierry; McKinney, John D

    2016-08-16

    The impact of cellular individuality on host-microbe interactions is increasingly appreciated but studying the temporal dynamics of single-cell behavior in this context remains technically challenging. Here we present a microfluidic platform, InfectChip, to trap motile infected cells for high-resolution time-lapse microscopy. This approach allows the direct visualization of all stages of infection, from bacterial uptake to death of the bacterium or host cell, over extended periods of time. We demonstrate the utility of this approach by co-culturing an established host-cell model, Dictyostelium discoideum, with the extracellular pathogen Klebsiella pneumoniae or the intracellular pathogen Mycobacterium marinum. We show that the outcome of such infections is surprisingly heterogeneous, ranging from abortive infection to death of the bacterium or host cell. InfectChip thus provides a simple method to dissect the time-course of host-microbe interactions at the single-cell level, yielding new insights that could not be gleaned from conventional population-based measurements. PMID:27425421

  19. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma.

    PubMed

    Ambrosio, Maria R; Rocca, Bruno J; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T; Tripodi, Sergio A; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis. PMID:26425551

  20. Progenitor cell therapies for traumatic brain injury: barriers and opportunities in translation

    PubMed Central

    Walker, Peter A.; Shah, Shinil K.; Harting, Matthew T.; Cox, Charles S.

    2009-01-01

    Traumatic brain injury (TBI) directly affects nearly 1.5 million new patients per year in the USA, adding to the almost 6 million cases in patients who are permanently affected by the irreversible physical, cognitive and psychosocial deficits from a prior injury. Adult stem cell therapy has shown preliminary promise as an option for treatment, much of which is limited currently to supportive care. Preclinical research focused on cell therapy has grown significantly over the last decade. One of the challenges in the translation of this burgeoning field is interpretation of the promising experimental results obtained from a variety of cell types, injury models and techniques. Although these variables can become barriers to a collective understanding and to evidence-based translation, they provide crucial information that, when correctly placed, offers the opportunity for discovery. Here, we review the preclinical evidence that is currently guiding the translation of adult stem cell therapy for TBI. PMID:19132123

  1. Expression of Translationally Controlled Tumor Protein in Human Kidney and in Renal Cell Carcinoma

    PubMed Central

    Ambrosio, Maria R.; Rocca, Bruno J.; Barone, Aurora; Onorati, Monica; Mundo, Lucia; Crivelli, Filippo; Di Nuovo, Franca; De Falco, Giulia; del Vecchio, Maria T.; Tripodi, Sergio A.; Tosi, Piero

    2015-01-01

    Translationally controlled tumor protein is a multifaceted protein involved in several physiological and biological functions. Its expression in normal kidney and in renal carcinomas, once corroborated by functional data, may add elements to elucidate renal physiology and carcinogenesis. In this study, translationally controlled tumor protein expression was evaluated by quantitative real time polymerase chain reaction and western blotting, and its localization was examined by immunohistochemistry on 84 nephrectomies for cancer. In normal kidney protein expression was found in the cytoplasm of proximal and distal tubular cells, in cells of the thick segment of the loop of Henle, and in urothelial cells of the pelvis. It was also detectable in cells of renal carcinoma with different pattern of localization (membranous and cytoplasmic) depending on tumor histotype. Our data may suggest an involvement of translationally controlled tumor protein in normal physiology and carcinogenesis. However, functional in vitro and in vivo studies are needed to verify this hypothesis. PMID:26425551

  2. Host volatiles mediate cell invasion of honey bee brood cells by Varroa destructor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A female Varroa destructor mite parasitizes capped bee brood by invading the cell of a late 5th instar larvae just before the cell is capped, usually by transfer from a worker bee to the new larval host. Female mites must rely on chemical cues to successfully locate and transfer to an appropriate ag...

  3. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    PubMed Central

    Sun, Di; Chen, Shun; Cheng, Anchun; Wang, Mingshu

    2016-01-01

    The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros) of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized. PMID:26999188

  4. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells.

    PubMed

    Sun, Di; Chen, Shun; Cheng, Anchun; Wang, Mingshu

    2016-01-01

    The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3C(pro)s) of picornaviruses share similar spatial structures and it is becoming apparent that 3C(pro) plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3C(pro) are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3C(pro) can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3C(pro) and these essential factors, 3C(pro) is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3C(pro) are ongoing and a better understanding of the roles played by 3C(pro) may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3C(pro) is summarized. PMID:26999188

  5. Investigations of host defence in patients with sickle cell disease.

    PubMed

    Boghossian, S H; Wright, G; Webster, A D; Segal, A W

    1985-03-01

    Parameters of host defence were investigated in 30 patients with sickle cell disease (SCD). A newly devised perfusion system was used to study the kinetics in whole blood of leucocyte adherence, phagocytosis, killing and solubilization of a mixture of Staph. aureus and Str. pneumoniae, and secretion of lactoferrin. A skin window technique was used to examine the accumulation of leucocytes at inflammatory foci and their subsequent rate of movement through a filter. Serum concentrations of C3, C4, total haemolytic complement and immunoglobulins were also measured. The rate of neutrophil migration into filters was slightly reduced in patients with SCD. The proportion of monocytes that emigrated from the skin windows and their rate of migration were markedly diminished. The adhesion of neutrophils and their ability to kill staphylococci were also reduced, particularly in patients of the haemoglobin (Hb) SS and Hb S-beta-thalassaemia genotypes. Neutrophil function was mostly impaired in patients with the greatest frequency of bacterial infection. The rate of clearance of pneumococci was related to the concentration of type specific immunoglobulin G but not M. Serum concentrations of immunoglobulins and complement were normal. We were unable to define a defect of host defence of sufficient magnitude to explain the susceptibility of these patients to severe infection. PMID:3882140

  6. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death

    PubMed Central

    Garg, Abhishek D.; Galluzzi, Lorenzo; Apetoh, Lionel; Baert, Thais; Birge, Raymond B.; Bravo-San Pedro, José Manuel; Breckpot, Karine; Brough, David; Chaurio, Ricardo; Cirone, Mara; Coosemans, An; Coulie, Pierre G.; De Ruysscher, Dirk; Dini, Luciana; de Witte, Peter; Dudek-Peric, Aleksandra M.; Faggioni, Alberto; Fucikova, Jitka; Gaipl, Udo S.; Golab, Jakub; Gougeon, Marie-Lise; Hamblin, Michael R.; Hemminki, Akseli; Herrmann, Martin; Hodge, James W.; Kepp, Oliver; Kroemer, Guido; Krysko, Dmitri V.; Land, Walter G.; Madeo, Frank; Manfredi, Angelo A.; Mattarollo, Stephen R.; Maueroder, Christian; Merendino, Nicolò; Multhoff, Gabriele; Pabst, Thomas; Ricci, Jean-Ehrland; Riganti, Chiara; Romano, Erminia; Rufo, Nicole; Smyth, Mark J.; Sonnemann, Jürgen; Spisek, Radek; Stagg, John; Vacchelli, Erika; Vandenabeele, Peter; Vandenberk, Lien; Van den Eynde, Benoit J.; Van Gool, Stefaan; Velotti, Francesca; Zitvogel, Laurence; Agostinis, Patrizia

    2015-01-01

    The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called “damage-associated molecular patterns” (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation. PMID:26635802

  7. Silencing suppressors: viral weapons for countering host cell defenses.

    PubMed

    Song, Liping; Gao, Shijuan; Jiang, Wei; Chen, Shuai; Liu, Yanjun; Zhou, Ling; Huang, Wenlin

    2011-04-01

    RNA silencing is a conserved eukaryotic pathway involved in the suppression of gene expression via sequence-specific interactions that are mediated by 21-23 nt RNA molecules. During infection, RNAi can act as an innate immune system to defend against viruses. As a counter-defensive strategy, silencing suppressors are encoded by viruses to inhibit various stages of the silencing process. These suppressors are diverse in sequence and structure and act via different mechanisms. In this review, we discuss whether RNAi is a defensive strategy in mammalian host cells and whether silencing suppressors can be encoded by mammalian viruses. We also review the modes of action proposed for some silencing suppressors. PMID:21528352

  8. Translational Implications of the β Cell Epigenome in Diabetes Mellitus

    PubMed Central

    Johnson, Justin S.; Evans-Molina, Carmella

    2014-01-01

    Diabetes mellitus is a disorder of glucose homeostasis that affects over 24 million Americans and 382 million individuals worldwide. Dysregulated insulin secretion from the pancreatic β cells plays a central role in the pathophysiology of all forms of diabetes mellitus. Therefore an enhanced understanding of the pathways that contribute to β cell failure is imperative. Epigenetics refers to heritable changes in DNA transcription that occur in the absence of changes to the linear DNA nucleotide sequence. Recent evidence suggests an expanding role of the β cell epigenome in the regulation of metabolic health. The goal of this review is to discuss maladaptive changes in β cell DNA methylation patterns and chromatin architecture and their contribution to diabetes pathophysiology. Efforts to modulate the β cell epigenome as a means to prevent, diagnose, and treat diabetes will also be discussed. PMID:24686035

  9. Hurdles to clinical translation of human induced pluripotent stem cells.

    PubMed

    Neofytou, Evgenios; O'Brien, Connor Galen; Couture, Larry A; Wu, Joseph C

    2015-07-01

    Human pluripotent stem cells are known to have the capacity to renew indefinitely, being intrinsically able to differentiate into many different cell types. These characteristics have generated tremendous enthusiasm about the potential applications of these cells in regenerative medicine. However, major challenges remain with the development and testing of novel experimental stem cell therapeutics in the field. In this Review, we focus on the nature of the preclinical challenges and discuss potential solutions that could help overcome them. Furthermore, we discuss the use of allogeneic versus autologous stem cell products, including a review of their respective advantages and disadvantages, major clinical requirements, quality standards, time lines, and costs of clinical grade development. PMID:26132109

  10. Hurdles to clinical translation of human induced pluripotent stem cells

    PubMed Central

    Neofytou, Evgenios; O’Brien, Connor Galen; Couture, Larry A.; Wu, Joseph C.

    2015-01-01

    Human pluripotent stem cells are known to have the capacity to renew indefinitely, being intrinsically able to differentiate into many different cell types. These characteristics have generated tremendous enthusiasm about the potential applications of these cells in regenerative medicine. However, major challenges remain with the development and testing of novel experimental stem cell therapeutics in the field. In this Review, we focus on the nature of the preclinical challenges and discuss potential solutions that could help overcome them. Furthermore, we discuss the use of allogeneic versus autologous stem cell products, including a review of their respective advantages and disadvantages, major clinical requirements, quality standards, time lines, and costs of clinical grade development. PMID:26132109

  11. Translation suppression promotes stress granule formation and cell survival in response to cold shock

    PubMed Central

    Hofmann, Sarah; Cherkasova, Valeria; Bankhead, Peter; Bukau, Bernd; Stoecklin, Georg

    2012-01-01

    Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia. PMID:22875991

  12. Embryonic Stem Cells Exhibit mRNA Isoform Specific Translational Regulation

    PubMed Central

    Lee, Qian Yi; Zhao, Tian Yun; Luo, Raymond; Archer, Stuart K.; Preiss, Thomas; Tanavde, Vivek; Vardy, Leah A.

    2016-01-01

    The presence of multiple variants for many mRNAs is a major contributor to protein diversity. The processing of these variants is tightly controlled in a cell-type specific manner and has a significant impact on gene expression control. Here we investigate the differential translation rates of individual mRNA variants in embryonic stem cells (ESCs) and in ESC derived Neural Precursor Cells (NPCs) using polysome profiling coupled to RNA sequencing. We show that there are a significant number of detectable mRNA variants in ESCs and NPCs and that many of them show variant specific translation rates. This is correlated with differences in the UTRs of the variants with the 5’UTR playing a predominant role. We suggest that mRNA variants that contain alternate UTRs are under different post-transcriptional controls. This is likely due to the presence or absence of miRNA and protein binding sites that regulate translation rate. This highlights the importance of addressing translation rate when using mRNA levels as a read out of protein abundance. Additional analysis shows that many annotated non-coding mRNAs are present on the polysome fractions in ESCs and NPCs. We believe that the use of polysome fractionation coupled to RNA sequencing is a useful method for analysis of the translation state of many different RNAs in the cell. PMID:26799392

  13. Inkjet printing of silk nest arrays for cell hosting.

    PubMed

    Suntivich, Rattanon; Drachuk, Irina; Calabrese, Rossella; Kaplan, David L; Tsukruk, Vladimir V

    2014-04-14

    An inkjet printing approach is presented for the facile fabrication of microscopic arrays of biocompatible silk "nests" capable of hosting live cells for prospective biosensors. The patterning of silk fibroin nests were constructed by the layer-by-layer (LbL) assembly of silk polyelectrolytes chemically modified with poly-(l-lysine) and poly-(l-glutamic acid) side chains. The inkjet-printed silk circular regions with a characteristic "nest" shape had diameters of 70-100 μm and a thickness several hundred nanometers were stabilized by ionic pairing and by the formation of the silk II crystalline secondary structure. These "locked-in" silk nests remained anchored to the substrate during incubation in cell growth media to provide a biotemplated platform for printing-in, immobilization, encapsulation and growth of cells. The process of inkjet-assisted printing is versatile and can be applied on any type of substrate, including rigid and flexible, with scalability and facile formation. PMID:24605757

  14. Transcription and translation are primary targets of Pim kinase inhibitor SGI-1776 in mantle cell lymphoma

    PubMed Central

    Yang, Qingshan; Chen, Lisa S.; Neelapu, Sattva S.; Miranda, Roberto N.; Medeiros, L. Jeffrey

    2012-01-01

    Proviral integration site for Moloney murine leukemia virus (Pim) kinases are serine/threonine/tyrosine kinases and oncoproteins that promote tumor progression. Three isoforms of Pim kinases have been identified and are known to phosphorylate numerous substrates, with regulatory functions in transcription, translation, cell cycle, and survival pathways. These kinases are involved in production, proliferation, and survival of normal B cells and are overexpressed in B-cell malignancies such as mantle cell lymphoma (MCL). SGI-1776 is a small mol-ecule and Pim kinase inhibitor with selectivity for Pim-1. We hypothesize that Pim kinase function can be inhibited by SGI-1776 in MCL and that inhibition of phosphorylation of downstream substrates will disrupt transcriptional, translational, and cell cycle processes and promote cell death. SGI-1776 treatment in 4 MCL cell lines resulted in apoptosis induction. Phosphorylation of transcription (c-Myc) and translation targets (4E-BP1), tested in Jeko-1 and Mino, was declined. Consistent with these data, Mcl-1 and cyclin D1 protein levels were decreased. Importantly, similar to cell line data, MCL primary cells but not normal cells showed similar inhibition of substrate phosphorylation and cytotoxicity from SGI-1776 treatment. Genetic knockdown of Pim-1/Pim-2 affected similar proteins in MCL cell lines. Collectively these data demonstrate Pim kinases as therapeutic targets in MCL. PMID:22955922

  15. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    PubMed

    Brödel, Andreas K; Sonnabend, Andrei; Roberts, Lisa O; Stech, Marlitt; Wüstenhagen, Doreen A; Kubick, Stefan

    2013-01-01

    Internal ribosome entry site (IRES) elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems. PMID

  16. Positive mRNA Translational Control in Germ Cells by Initiation Factor Selectivity

    PubMed Central

    Friday, Andrew J.; Keiper, Brett D.

    2015-01-01

    Ultimately, the production of new proteins in undetermined cells pushes them to new fates. Other proteins hold a stem cell in a mode of self-renewal. In germ cells, these decision-making proteins are produced largely from translational control of preexisting mRNAs. To date, all of the regulation has been attributed to RNA binding proteins (RBPs) that repress mRNAs in many models of germ cell development (Drosophila, mouse, C. elegans, and Xenopus). In this review, we focus on the selective, positive function of translation initiation factors eIF4E and eIF4G, which recruit mRNAs to ribosomes upon derepression. Evidence now shows that the two events are not separate but rather are coordinated through composite complexes of repressors and germ cell isoforms of eIF4 factors. Strikingly, the initiation factor isoforms are themselves mRNA selective. The mRNP complexes of translation factors and RBPs are built on specific populations of mRNAs to prime them for subsequent translation initiation. Simple rearrangement of the partners causes a dormant mRNP to become synthetically active in germ cells when and where they are required to support gametogenesis. PMID:26357652

  17. Vimentin and post-translational modifications in cell motility during cancer - a review.

    PubMed

    Shi, A-M; Tao, Z-Q; Li, R; Wang, Y-Q; Wang, X; Zhao, J

    2016-07-01

    The post-translational modifications (PTMs) are defined as the covalent modification or enzymatic modification of proteins during or after protein biosynthesis. Proteins are synthesized by ribosomes translating mRNA into polypeptide chains, which may then undergo PTM to form the mature protein product. PTMs are important components in cell signaling. Moreover, it is a known fact that PTM regulation offers an immense array and depth of regulatory possibilities. The present review article will focus on their possible role in cancer cell motility with special reference to vimentin, an intermediate filament (IF), as the later is an important process responsible for life-threatening state viz. cancer metastasis. PMID:27383311

  18. Host cell death due to enteropathogenic Escherichia coli has features of apoptosis.

    PubMed

    Crane, J K; Majumdar, S; Pickhardt, D F

    1999-05-01

    Enteropathogenic Escherichia coli (EPEC) is a cause of prolonged watery diarrhea in children in developing countries. The ability of EPEC to kill host cells was investigated in vitro in assays using two human cultured cell lines, HeLa (cervical) and T84 (colonic). EPEC killed epithelial cells as assessed by permeability to the vital dyes trypan blue and propidium iodide. In addition, EPEC triggered changes in the host cell, suggesting apoptosis as the mode of death; such changes included early expression of phosphatidylserine on the host cell surface and internucleosomal cleavage of host cell DNA. Genistein, an inhibitor of tyrosine kinases, and wortmannin, an inhibitor of host phosphatidylinositol 3-kinase, markedly increased EPEC-induced cell death and enhanced the features of apoptosis. EPEC-induced cell death was contact dependent and required adherence of live bacteria to the host cell. A quantitative assay for EPEC-induced cell death was developed by using the propidium iodide uptake method adapted to a fluorescence plate reader. With EPEC, the rate and extent of host cell death were less that what has been reported for Salmonella, Shigella, and Yersinia, three other genera of enteric bacteria known to cause apoptosis. However, rapid apoptosis of the host cell may not favor the pathogenic strategy of EPEC, a mucosa-adhering, noninvasive pathogen. PMID:10225923

  19. The effect of enterohemorrhagic E. coli infection on the cell mechanics of host cells.

    PubMed

    Chen, Yin-Quan; Su, Pin-Tzu; Chen, Yu-Hsuan; Wei, Ming-Tzo; Huang, Chien-Hsiu; Osterday, Kathryn; del Álamo, Juan C; Syu, Wan-Jr; Chiou, Arthur

    2014-01-01

    Enterohaemorrhagic E. coli (EHEC) is a type of human pathogenic bacteria. The main virulence characteristics of EHEC include the formation of attaching and effacing lesions (A/E lesions) and the production of one or more Shiga-like toxins, which may induce human uremic complications. When EHEC infects host cells, it releases translocated intimin receptor (Tir) and effector proteins inside the host cells, inducing the rearrangement and accumulation of the F-actin cytoskeleton, a phenotype leading to the formation of pedestals in the apical cell surface, and the growth of stress fibers at the base of the cells. To examine the effect of EHEC infection on cell mechanics, we carried out a series of experiments to examine HeLa cells with and without EHEC infection to quantify the changes in (1) focal adhesion area, visualized by anti-vinculin staining; (2) the distribution and orientation of stress fibers; and (3) the intracellular viscoelasticity, via directional video particle tracking microrheology. Our results indicated that in EHEC-infected HeLa cells, the focal adhesion area increased and the actin stress fibers became thicker and more aligned. The cytoskeletal reorganization induced by EHEC infection mediated a dramatic increase in the cytoplasmic elastic shear modulus of the infected cells, and a transition in the viscoelastic behavior of the cells from viscous-like to elastic-like. These changes in mechanobiological characteristics might modulate the attachments between EHEC and the host cell to withstand exfoliation, and between the host cell and the extracellular matrix, and might also alter epithelial integrity. PMID:25369259

  20. Translation of adenovirus 2 late mRNAs microinjected into cultured African green monkey kidney cells

    SciTech Connect

    Richardson, W.D.; Anderson, C.W.

    1984-08-01

    Adenovirus 2-infected monkey cells fail to synthesize fiber, a 62,000 M/sub r/ virion polypeptide expressed at late times in productively infected cells. Yet these cells contain fiber mRNA that, after isolation, can be translated in vitro. The reason for the failure of monkey cells to translate fiber mRNA has been approached by microinjecting adenovirus mRNA into the cytoplasm of cultured monkey cells. Late adenovirus 2 mRNA, isolated from infected HeLa cells, was efficiently expressed when microinjected into the African green monkey kidney cell line CV-C. Expressed viral proteins identified by immunoprecipitation included the adenovirus fiber polypeptide. This result demonstrates that the monkey cell translational apparatus is capable of recognizing and expressing functional adenovirus mRNA. Microinjection of late virus mRNA into cells previously infected with wild-type adenovirus 2 failed to increase significantly the yield of infectious virus. 26 references, 2 figures, 1 table.

  1. Hypomethylation of host cell DNA synthesized after infection or transformation of cells by herpes simplex virus

    SciTech Connect

    Macnab, J.C.M.; Adams, R.L.P.; Rinaldi, A.; Orr, A.; Clark, L.

    1988-04-01

    Infection of rat embryo cells with herpes simplex virus type 2 caused undermethylation of host cell DNA synthesized during infection. DNA made prior to infection was not demethylated, but some of its degradation products, including methyl dCMP, were incorporated into viral DNA. The use of mutant virus showed that some viral DNA synthesis appears to be required for the inhibition of methylation. Inhibition of methylation cannot be explained by an absence of DNA methyltransferase as the activity of this enzyme did not change during the early period of infection. Inhibition of host cell DNA methylation may be an important step in the transformation of cells by herpesviruses, and various transformed cell lines tested showed reduced levels of DNA methylation.

  2. Host cell capable of producing enzymes useful for degradation of lignocellulosic material

    SciTech Connect

    Los, Alrik Pieter; Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a host cell comprising at least four different heterologous polynucleotides chosen from the group of polynucleotides encoding cellulases, hemicellulases and pectinases, wherein the host cell is capable of producing the at least four different enzymes chosen from the group of cellulases, hemicellulases and pectinases, wherein the host cell is a filamentous fungus and is capable of secretion of the at least four different enzymes. This host cell can suitably be used for the production of an enzyme composition that can be used in a process for the saccharification of cellulosic material.

  3. Funding translational work in cell-based therapy.

    PubMed

    Rao, Mahendra S

    2011-07-01

    The cell therapy branch of the regenerative medicine field has been innovative in developing new models of delivery and development and identifying alternative sources of funding. We discuss the implications of these changes for pharmaceutical companies and the opportunities they offer to a new entrepreneur. PMID:21726828

  4. Mechanical insights into ribosomal progression overcoming RNA G-quadruplex from periodical translation suppression in cells.

    PubMed

    Endoh, Tamaki; Sugimoto, Naoki

    2016-01-01

    G-quadruplexes formed on DNA and RNA can be roadblocks to movement of polymerases and ribosome on template nucleotides. Although folding and unfolding processes of the G-quadruplexes are deliberately studied in vitro, how the mechanical and physical properties of the G-quadruplexes affect intracellular biological systems is still unclear. In this study, mRNAs with G-quadruplex forming sequences located either in the 5' untranslated region (UTR) or in the open reading frame (ORF) were constructed to evaluate positional effects of the G-quadruplex on translation suppression in cells. Periodic fluctuation of translation suppression was observed at every three nucleotides within the ORF but not within the 5' UTR. The results suggested that difference in motion of ribosome at the 5' UTR and the ORF determined the ability of the G-quadruplex structure to act as a roadblock to translation in cells and provided mechanical insights into ribosomal progression to overcome the roadblock. PMID:26948955

  5. Cutaneous graft-versus-host disease after hematopoietic stem cell transplant - a review*

    PubMed Central

    Villarreal, Cesar Daniel Villarreal; Alanis, Julio Cesar Salas; Pérez, Jose Carlos Jaime; Candiani, Jorge Ocampo

    2016-01-01

    Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplants (allo-HSCT) associated with significant morbidity and mortality. The earliest and most common manifestation is cutaneous graft-versus-host disease. This review focuses on the pathophysiology, clinical features, prevention and treatment of cutaneous graft-versus-host disease. We discuss various insights into the disease's mechanisms and the different treatments for acute and chronic skin graft-versus-host disease. PMID:27438202

  6. Cbk1 regulation of the RNA binding protein Ssd1 integrates cell fate with translational control

    PubMed Central

    Jansen, Jaclyn M.; Wanless, Antony G.; Seidel, Christopher W.; Weiss, Eric L.

    2009-01-01

    Summary Spatial control of gene expression, at the level of both transcription and translation, is critical for cellular differentiation [1-4]. In budding yeast, the conserved Ndr/warts kinase Cbk1 localizes to the new daughter cell where it acts as a cell fate determinant. Cbk1 both induces a daughter-specific transcriptional program and promotes morphogenesis in a less well-defined role [5-8]. Cbk1 is essential in cells expressing functional Ssd1, an RNA binding protein of unknown function [9-11]. We show that Cbk1 inhibits Ssd1 in vivo. Loss of this regulation dramatically slows bud expansion, leading to highly aberrant cell wall organization at the site of cell growth. Ssd1 associates with specific mRNAs, a significant number of which encode cell wall remodeling proteins. Translation of these messages is rapidly and specifically suppressed when Cbk1 is inhibited; this suppression requires Ssd1. Transcription of several of these Ssd1-associated mRNAs is also regulated by Cbk1, indicating that the kinase controls both the transcription and translation of daughter-specific mRNAs. This work suggests a novel system by which cells coordinate localized expression of genes involved in processes critical for cell growth and division. PMID:19962308

  7. Multiple myeloma and bone marrow mesenchymal stem cells' crosstalk: Effect on translation initiation.

    PubMed

    Attar-Schneider, Oshrat; Zismanov, Victoria; Dabbah, Mahmoud; Tartakover-Matalon, Shelly; Drucker, Liat; Lishner, Michael

    2016-09-01

    Multiple myeloma (MM) malignant plasma cells reside in the bone marrow (BM) and convert it into a specialized pre-neoplastic niche that promotes the proliferation and survival of the cancer cells. BM resident mesenchymal stem cells (BM-MSCs) are altered in MM and in vitro studies indicate their transformation by MM proximity is within hours. The response time frame suggested that protein translation may be implicated. Thus, we assembled a co-culture model of MM cell lines with MSCs from normal donors (ND) and MM patients to test our hypothesis. The cell lines (U266, ARP-1) and BM-MSCs (ND, MM) were harvested separately after 72 h of co-culture and assayed for proliferation, death, levels of major translation initiation factors (eIF4E, eIF4GI), their targets, and regulators. Significant changes were observed: BM-MSCs (ND and MM) co-cultured with MM cell lines displayed elevated proliferation and death as well as increased expression/activity of eIF4E/eIF4GI; MM cell lines co-cultured with MM-MSCs also displayed higher proliferation and death rates coupled with augmented translation initiation factors; in contrast, MM cell lines co-cultured with ND-MSCs did not display elevated proliferation only death and had no changes in eIF4GI levels/activity. eIF4E expression was increased in one of the cell lines. Our study demonstrates that there is direct dialogue between the MM and BM-MSCs populations that includes translation initiation manipulation and critically affects cell fate. Future research should be aimed at identifying therapeutic targets that may be used to minimize the collateral damage to the cancer microenvironment and limit its recruitment into the malignant process. © 2015 Wiley Periodicals, Inc. PMID:26293751

  8. Post-translational regulation of the 54K cellular tumor antigen in normal and transformed cells.

    PubMed Central

    Oren, M; Maltzman, W; Levine, A J

    1981-01-01

    The 54K cellular tumor antigen has been translated in vitro, using messenger ribonucleic acids from simian virus 40 (SV40)-transformed cells or 3T3 cells. The in vitro 54K product could be immunoprecipitated with SV40 tumor serum and had a peptide map that was similar, but not identical, to the in vivo product. The levels of this 54K protein in SV3T3 cells were significantly higher than those detected in 3T3 cells (D. I. H. Linzer, W. Maltzman, and A. J. Levine, Virology 98:308-318, 1979). In spite of this, the levels of translatable 54K messenger ribonucleic acid from 3T3 and SV3T3 cells were roughly equivalent or often greater in 3T3 cells. Pulse-chase experiments with the 54K protein from 3T3 or SV3T3 cells demonstrated that this protein, once synthesized, was rapidly degraded in 3T3 cells but was extremely stable in SV3T3 cells. Similarly, in an SV40 tsA-transformed cell line, temperature sensitive for the SV40 T-antigen, the 54K protein was rapidly turned over at the nonpermissive temperature and stable at the permissive temperature, whereas the levels of translatable 54K messenger ribonucleic acid at each temperature were roughly equal. These results demonstrate a post-translational regulation of the 54K cellular tumor antigen and suggest that this control is mediated by the SV40 large T-antigen. Images PMID:6100960

  9. How Stem Cells Speak with Host Immune Cells in Inflammatory Brain Diseases

    PubMed Central

    Pluchino, Stefano; Cossetti, Chiara

    2014-01-01

    Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases. PMID:23633288

  10. Translational control of regA, a key gene controlling cell differentiation in Volvox carteri.

    PubMed

    Babinger, Karin; Hallmann, Armin; Schmitt, Rüdiger

    2006-10-01

    The complete division of labour between the reproductive and somatic cells of the green alga Volvox carteri is controlled by three types of genes. One of these is the regA gene, which controls terminal differentiation of the somatic cells. Here, we examined translational control elements located in the 5' UTR of regA, particularly the eight upstream start codons (AUGs) that have to be bypassed by the translation machinery before regA can be translated. The results of our systematic mutational, structural and functional analysis of the 5' UTR led us to conclude that a ribosome-shunting mechanism--rather than leaky scanning, ribosomal reinitiation, or internal ribosome entry site (IRES)-mediated initiation--controls the translation of regA mRNA. This mechanism, which involves dissociation of the 40S initiation complex from the message, followed by reattachment downstream, in order to bypass a secondary structure block in the mRNA, was validated by deleting the predicted ;landing site' (which prevented regA expression) and inserting a stable 64 nucleotide hairpin just upstream of this site (which did not prevent regA expression). We believe that this is the first report suggesting that translation of an mRNA in a green eukaryote is controlled by ribosome shunting. PMID:16971469

  11. The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation

    PubMed Central

    Ding, Xavier C.; Slack, Frank J.; Großhans, Helge

    2010-01-01

    MicroRNAs (miRNAs) are noncoding RNAs that regulate numerous target genes through a posttranscriptional mechanism and thus control major developmental pathways. The phylogenetically conserved let-7 miRNA regulates cell proliferation and differentiation, thus functioning as a key regulator of developmental timing in C. elegans and a tumor suppressor gene in humans. Using a reverse genetic screen, we have identified genetic interaction partners of C. elegans let-7, including known and novel potential target genes. Initial identification of several translation initiation factors as suppressors of a let-7 mutation led us to systematically examine genetic interaction between let-7 and the translational machinery, which we found to be widespread. In the presence of wild-type let-7, depletion of the translation initiation factor eIF3 resulted in precocious cell differentiation, suggesting that developmental timing is translationally regulated, possibly by let-7. As overexpression of eIF3 in humans promotes translation of mRNAs that are also targets of let-7-mediated repression, we suggest that eIF3 may directly or indirectly oppose let-7 activity. This might provide an explanation for the opposite functions of let-7 and eIF3 in regulating tumorigenesis. PMID:18818519

  12. Inhibition of Non-ATG Translational Events in Cells via Covalent Small Molecules Targeting RNA

    PubMed Central

    Yang, Wang-Yong; Wilson, Henry D.; Velagapudi, Sai Pradeep

    2016-01-01

    One major class of disease-causing RNAs is expanded repeating transcripts. These RNAs cause diseases via multiple mechanisms, including: (i) gain-of-function, in which repeating RNAs bind and sequester proteins involved in RNA biogenesis and (ii) repeat associated non-ATG (RAN) translation, in which repeating transcripts are translated into toxic proteins without use of a canonical, AUG, start codon. Herein, we develop and study chemical probes that bind and react with an expanded r(CGG) repeat (r(CGG)exp) present in a 5′ untranslated region that causes fragile X-associated tremor/ataxia syndrome (FXTAS). Reactive compounds bind to r(CGG)exp in cellulo as shown with Chem-CLIP-Map, an approach to map small molecule binding sites within RNAs in cells. Compounds also potently improve FXTAS-associated pre-mRNA splicing and RAN translational defects, while not affecting translation of the downstream open reading frame. In contrast, oligonucleotides affect both RAN and canonical translation when they bind to r(CGG)exp, which is mechanistically traced to a decrease in polysome loading. Thus, designer small molecules that react with RNA targets can be used to profile the RNAs to which they bind in cells, including identification of binding sites, and can modulate several aspects of RNA-mediated disease pathology in a manner that may be more beneficial than oligonucleotides. PMID:25825793

  13. Inhibition of Non-ATG Translational Events in Cells via Covalent Small Molecules Targeting RNA.

    PubMed

    Yang, Wang-Yong; Wilson, Henry D; Velagapudi, Sai Pradeep; Disney, Matthew D

    2015-04-29

    One major class of disease-causing RNAs is expanded repeating transcripts. These RNAs cause diseases via multiple mechanisms, including: (i) gain-of-function, in which repeating RNAs bind and sequester proteins involved in RNA biogenesis and (ii) repeat associated non-ATG (RAN) translation, in which repeating transcripts are translated into toxic proteins without use of a canonical, AUG, start codon. Herein, we develop and study chemical probes that bind and react with an expanded r(CGG) repeat (r(CGG)(exp)) present in a 5' untranslated region that causes fragile X-associated tremor/ataxia syndrome (FXTAS). Reactive compounds bind to r(CGG)(exp) in cellulo as shown with Chem-CLIP-Map, an approach to map small molecule binding sites within RNAs in cells. Compounds also potently improve FXTAS-associated pre-mRNA splicing and RAN translational defects, while not affecting translation of the downstream open reading frame. In contrast, oligonucleotides affect both RAN and canonical translation when they bind to r(CGG)(exp), which is mechanistically traced to a decrease in polysome loading. Thus, designer small molecules that react with RNA targets can be used to profile the RNAs to which they bind in cells, including identification of binding sites, and can modulate several aspects of RNA-mediated disease pathology in a manner that may be more beneficial than oligonucleotides. PMID:25825793

  14. Validation of a Cell-Free Translation Assay for Detecting Shiga Toxin 2 in Bacterial Culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have validated a cell-free translation (CFT) assay for detecting Shiga toxin (Stx). The limit of detection (LOD) for pure Stx2 (PStx2) and partially pure Stx2 (PPStx2) in water reached 20 pg/µl and 3.5 pg/µL respectively without the artificial process of proteolytic activation and reduction of th...

  15. Stem cells and their derivatives: a renaissance in cardiovascular translational research.

    PubMed

    Kattman, Steven J; Koonce, Chad H; Swanson, Bradley J; Anson, Blake D

    2011-02-01

    Moving from the bench to the bedside is an expensive and arduous journey with a high risk of failure. One roadblock on the path of translational medicine is the paucity of predictive in vitro models available during preclinical drug development. The ability of human embryonic stem (ES) and induced pluripotent stem (iPS) cells to generate virtually any tissue of the body, in vitro, makes these cells an obvious choice for use in drug discovery and translational medicine. Technological advancements in the production of stem cells and their differentiation into relevant cell types, such as cardiomyocytes, has permitted the utility of these cells in the translational medicine setting. In particular, the derivation and differentiation of patient-specific iPS cells will facilitate an understanding of basic disease etiology, enable better drug efficacy and safety screens, and ultimately lead to personalized patient therapies. This review will focus on recent advancements in the derivation and differentiation of human ES and iPS cells into cardiomyocytes and their uses in safety testing and modeling human disease. PMID:21061105

  16. Bacterial effectors target the plant cell nucleus to subvert host transcription

    PubMed Central

    Canonne, Joanne; Rivas, Susana

    2012-01-01

    In order to promote virulence, Gram-negative bacteria have evolved the ability to inject so-called type III effector proteins into host cells. The plant cell nucleus appears to be a subcellular compartment repeatedly targeted by bacterial effectors. In agreement with this observation, mounting evidence suggests that manipulation of host transcription is a major strategy developed by bacteria to counteract plant defense responses. It has been suggested that bacterial effectors may adopt at least three alternative, although not mutually exclusive, strategies to subvert host transcription. T3Es may (1) act as transcription factors that directly activate transcription in host cells, (2) affect histone packing and chromatin configuration, and/or (3) directly target host transcription factor activity. Here, we provide an overview on how all these strategies may lead to host transcriptional re-programming and, as a result, to improved bacterial multiplication inside plant cells. PMID:22353865

  17. A translational profiling approach for the molecular characterization of CNS cell types.

    PubMed

    Heiman, Myriam; Schaefer, Anne; Gong, Shiaoching; Peterson, Jayms D; Day, Michelle; Ramsey, Keri E; Suárez-Fariñas, Mayte; Schwarz, Cordelia; Stephan, Dietrich A; Surmeier, D James; Greengard, Paul; Heintz, Nathaniel

    2008-11-14

    The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations. Using bacterial artificial chromosome (BAC) transgenic mice that express EGFP-tagged ribosomal protein L10a in defined cell populations, we have developed a methodology for affinity purification of polysomal mRNAs from genetically defined cell populations in the brain. The utility of this approach is illustrated by the comparative analysis of four types of neurons, revealing hundreds of genes that distinguish these four cell populations. We find that even two morphologically indistinguishable, intermixed subclasses of medium spiny neurons display vastly different translational profiles and present examples of the physiological significance of such differences. This genetically targeted translating ribosome affinity purification (TRAP) methodology is a generalizable method useful for the identification of molecular changes in any genetically defined cell type in response to genetic alterations, disease, or pharmacological perturbations. PMID:19013281

  18. Darwinian evolution in a translation-coupled RNA replication system within a cell-like compartment.

    PubMed

    Ichihashi, Norikazu; Usui, Kimihito; Kazuta, Yasuaki; Sunami, Takeshi; Matsuura, Tomoaki; Yomo, Tetsuya

    2013-01-01

    The ability to evolve is a key characteristic that distinguishes living things from non-living chemical compounds. The construction of an evolvable cell-like system entirely from non-living molecules has been a major challenge. Here we construct an evolvable artificial cell model from an assembly of biochemical molecules. The artificial cell model contains artificial genomic RNA that replicates through the translation of its encoded RNA replicase. We perform a long-term (600-generation) replication experiment using this system, in which mutations are spontaneously introduced into the RNA by replication error, and highly replicable mutants dominate the population according to Darwinian principles. During evolution, the genomic RNA gradually reinforces its interaction with the translated replicase, thereby acquiring competitiveness against selfish (parasitic) RNAs. This study provides the first experimental evidence that replicating systems can be developed through Darwinian evolution in a cell-like compartment, even in the presence of parasitic replicators. PMID:24088711

  19. Setting Global Standards for Stem Cell Research and Clinical Translation: The 2016 ISSCR Guidelines.

    PubMed

    Daley, George Q; Hyun, Insoo; Apperley, Jane F; Barker, Roger A; Benvenisty, Nissim; Bredenoord, Annelien L; Breuer, Christopher K; Caulfield, Timothy; Cedars, Marcelle I; Frey-Vasconcells, Joyce; Heslop, Helen E; Jin, Ying; Lee, Richard T; McCabe, Christopher; Munsie, Megan; Murry, Charles E; Piantadosi, Steven; Rao, Mahendra; Rooke, Heather M; Sipp, Douglas; Studer, Lorenz; Sugarman, Jeremy; Takahashi, Masayo; Zimmerman, Mark; Kimmelman, Jonathan

    2016-06-14

    The International Society for Stem Cell Research (ISSCR) presents its 2016 Guidelines for Stem Cell Research and Clinical Translation (ISSCR, 2016). The 2016 guidelines reflect the revision and extension of two past sets of guidelines (ISSCR, 2006; ISSCR, 2008) to address new and emerging areas of stem cell discovery and application and evolving ethical, social, and policy challenges. These guidelines provide an integrated set of principles and best practices to drive progress in basic, translational, and clinical research. The guidelines demand rigor, oversight, and transparency in all aspects of practice, providing confidence to practitioners and public alike that stem cell science can proceed efficiently and remain responsive to public and patient interests. Here, we highlight key elements and recommendations in the guidelines and summarize the recommendations and deliberations behind them. PMID:27185282

  20. Sheep primary cells as in vitro models to investigate Mycoplasma agalactiae host cell interactions.

    PubMed

    Hegde, Shrilakshmi; Gabriel, Cordula; Kragl, Martin; Chopra-Dewasthaly, Rohini

    2015-10-01

    Appropriate infection models are imperative for the understanding of pathogens like mycoplasmas that are known for their strict host and tissue specificity, and lack of suitable cell and small animal models has hindered pathogenicity studies. This is particularly true for the economically important group of ruminant mycoplasmas whose virulence factors need to be elucidated for designing effective intervention strategies. Mycoplasma agalactiae serves as a useful role model especially because it is phylogenetically very close to M. bovis and causes similar symptoms by as yet unknown mechanisms. Here, we successfully prepared and characterized four different primary sheep cell lines, namely the epithelial and stromal cells from the mammary gland and uterus, respectively. Using immunohistochemistry, we identified vimentin and cytokeratin as specific markers to confirm the typical cell phenotypes of these primary cells. Furthermore, M. agalactiae's consistent adhesion and invasion into these primary cells proves the reliability of these cell models. Mimicking natural infections, mammary epithelial and stromal cells showed higher invasion and adhesion rates compared to the uterine cells as also seen via double immunofluorescence staining. Altogether, we have generated promising in vitro cell models to study host-pathogen interactions of M. agalactiae and related ruminant pathogens in a more authentic manner. PMID:26187893

  1. Identifying Francisella tularensis genes required for growth in host cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: Francisella tularensis is a highly virulent Gram negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cel...

  2. Radiation Therapy Oncology Group Translational Research Program Stem Cell Symposium: Incorporating Stem Cell Hypotheses into Clinical Trials

    SciTech Connect

    Woodward, Wendy A. Bristow, Robert G.; Clarke, Michael F.; Coppes, Robert P.; Cristofanilli, Massimo; Duda, Dan G.; Fike, John R.; Hambardzumyan, Dolores; Hill, Richard P.; Jordan, Craig T.; Milas, Luka; Pajonk, Frank; Curran, Walter J.; Dicker, Adam P.; Chen Yuhchyau

    2009-08-01

    At a meeting of the Translation Research Program of the Radiation Therapy Oncology Group held in early 2008, attendees focused on updating the current state of knowledge in cancer stem cell research and discussing ways in which this knowledge can be translated into clinical use across all disease sites. This report summarizes the major topics discussed and the future directions that research should take. Major conclusions of the symposium were that the flow cytometry of multiple markers in fresh tissue would remain the standard technique of evaluating cancer-initiating cells and that surrogates need to be developed for both experimental and clinical use.

  3. Th17 Pathway As a Target for Multipotent Stromal Cell Therapy in Dogs: Implications for Translational Research

    PubMed Central

    Kol, A.; Walker, N. J.; Nordstrom, M.; Borjesson, D. L.

    2016-01-01

    Detrimental Th17 driven inflammatory and autoimmune disease such as Crohn’s disease, graft versus host disease and multiple sclerosis remain a significant cause of morbidity and mortality worldwide. Multipotent stromal/stem cell (MSC) inhibit Th17 polarization and activation in vitro and in rodent models. As such, MSC based therapeutic approaches are being investigated as novel therapeutic approaches to treat Th17 driven diseases in humans. The significance of naturally occurring diseases in dogs is increasingly recognized as a realistic platform to conduct pre-clinical testing of novel therapeutics. Full characterization of Th17 cells in dogs has not been completed. We have developed and validated a flow-cytometric method to detect Th17 cells in canine blood. We further demonstrate that Th17 and other IL17 producing cells are present in tissues of dogs with naturally occurring chronic inflammatory diseases. Finally, we have determined the kinetics of a canine specific Th17 polarization in vitro and demonstrate that canine MSC inhibit Th17 polarization in vitro, in a PGE2 independent mechanism. Our findings provide fundamental research tools and suggest that naturally occurring diseases in dogs, such as inflammatory bowel disease, may be harnessed to translate novel MSC based therapeutic strategies that target the Th17 pathway. PMID:26872054

  4. Th17 Pathway As a Target for Multipotent Stromal Cell Therapy in Dogs: Implications for Translational Research.

    PubMed

    Kol, A; Walker, N J; Nordstrom, M; Borjesson, D L

    2016-01-01

    Detrimental Th17 driven inflammatory and autoimmune disease such as Crohn's disease, graft versus host disease and multiple sclerosis remain a significant cause of morbidity and mortality worldwide. Multipotent stromal/stem cell (MSC) inhibit Th17 polarization and activation in vitro and in rodent models. As such, MSC based therapeutic approaches are being investigated as novel therapeutic approaches to treat Th17 driven diseases in humans. The significance of naturally occurring diseases in dogs is increasingly recognized as a realistic platform to conduct pre-clinical testing of novel therapeutics. Full characterization of Th17 cells in dogs has not been completed. We have developed and validated a flow-cytometric method to detect Th17 cells in canine blood. We further demonstrate that Th17 and other IL17 producing cells are present in tissues of dogs with naturally occurring chronic inflammatory diseases. Finally, we have determined the kinetics of a canine specific Th17 polarization in vitro and demonstrate that canine MSC inhibit Th17 polarization in vitro, in a PGE2 independent mechanism. Our findings provide fundamental research tools and suggest that naturally occurring diseases in dogs, such as inflammatory bowel disease, may be harnessed to translate novel MSC based therapeutic strategies that target the Th17 pathway. PMID:26872054

  5. Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures

    DOEpatents

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2014-09-30

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  6. Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures

    DOEpatents

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2016-04-19

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  7. Host cell reactivation studies with epidermal cells of mice sensitive and resistant to carcinogenesis

    SciTech Connect

    Strickland, J.E.; Strickland, A.G.

    1984-03-01

    Primary epidermal cells from AKR, BALB/c, CD-1, and SENCAR mice, listed in order of least to most sensitive to epidermal carcinogenesis by initiation and promotion protocols, were found to be equally competent to ''reactivate'' herpes simplex virus type 1 irradiated by germicidal ultraviolet radiation. Nontumorigenic BALB/c epidermal cell lines selected in vitro for resistance to terminal differentiation after in vivo or in vitro treatment with initiating doses of carcinogens showed virus survival curves similar to those of primary cells. Similarly, primary cultures which were allowed to grow to confluency following a single treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (100 ng/ml) retained normal host cell reactivation. Host cell reactivation studies with mouse dermal fibroblasts could not be done because of the failure of the herpes simplex virus to infect these cells and produce plaques. These results demonstrate that survival of ultraviolet light-damaged virus in primary epidermal cells in culture is unrelated to whether the cells are derived from mice sensitive or resistant to epidermal carcinogenesis. Furthermore, virus survival is not changed by tumor promoter treatment or by treatment with initiating doses of carcinogens which results in differentiation-resistant cells.

  8. Improved transgene expression fine-tuning in mammalian cells using a novel transcription-translation network.

    PubMed

    Malphettes, Laetitia; Fussenegger, Martin

    2006-08-01

    Following the discovery of RNA interference (RNAi) and related phenomena, novel regulatory processes, attributable to small non-protein-coding RNAs, continue to emerge. Capitalizing on the ability of artificial short interfering RNAs (siRNAs) to trigger degradation of specific target transcripts, and thereby silence desired gene expression, we designed and characterized a generic transcription-translation network in which it is possible to fine-tune heterologous protein production by coordinated transcription and translation interventions using macrolide and tetracycline antibiotics. Integration of siRNA-specific target sequences (TAGs) into the 5' or 3' untranslated regions (5'UTR, 3'UTR) of a desired constitutive transcription unit rendered transgene-encoded protein (erythropoietin, EPO; human placental alkaline phosphatase, SEAP; human vascular endothelial growth factor 121, VEGF(121)) production in mammalian cells responsive to siRNA levels that can be fine-tuned by macrolide-adjustable RNA polymerase II- or III-dependent promoters. Coupling of such macrolide-responsive siRNA-triggered translation control with tetracycline-responsive transcription of tagged transgene mRNAs created an antibiotic-adjustable two-input transcription-translation network characterized by elimination of detectable leaky expression with no reduction in maximum protein production levels. This transcription-translation network revealed transgene mRNA depletion to be dependent on siRNA and mRNA levels and that translation control was able to eliminate basal expression inherent to current transcription control modalities. Coupled transcription-translation circuitries have the potential to lead the way towards composite artificial regulatory networks, to enable complex therapeutic interventions in future biopharmaceutical manufacturing, gene therapy and tissue engineering initiatives. PMID:16488500

  9. Remote Activation of Host Cell DNA Synthesis in Uninfected Cells Signaled by Infected Cells in Advance of Virus Transmission

    PubMed Central

    Schmidt, Nora; Hennig, Thomas; Serwa, Remigiusz A.; Marchetti, Magda

    2015-01-01

    ABSTRACT Viruses modulate cellular processes and metabolism in diverse ways, but these are almost universally studied in the infected cell itself. Here, we study spatial organization of DNA synthesis during multiround transmission of herpes simplex virus (HSV) using pulse-labeling with ethynyl nucleotides and cycloaddition of azide fluorophores. We report a hitherto unknown and unexpected outcome of virus-host interaction. Consistent with the current understanding of the single-step growth cycle, HSV suppresses host DNA synthesis and promotes viral DNA synthesis in spatially segregated compartments within the cell. In striking contrast, during progressive rounds of infection initiated at a single cell, we observe that infection induces a clear and pronounced stimulation of cellular DNA replication in remote uninfected cells. This induced DNA synthesis was observed in hundreds of uninfected cells at the extended border, outside the perimeter of the progressing infection. Moreover, using pulse-chase analysis, we show that this activation is maintained, resulting in a propagating wave of host DNA synthesis continually in advance of infection. As the virus reaches and infects these activated cells, host DNA synthesis is then shut off and replaced with virus DNA synthesis. Using nonpropagating viruses or conditioned medium, we demonstrate a paracrine effector of uninfected cell DNA synthesis in remote cells continually in advance of infection. These findings have significant implications, likely with broad applicability, for our understanding of the ways in which virus infection manipulates cell processes not only in the infected cell itself but also now in remote uninfected cells, as well as of mechanisms governing host DNA synthesis. IMPORTANCE We show that during infection initiated by a single particle with progressive cell-cell virus transmission (i.e., the normal situation), HSV induces host DNA synthesis in uninfected cells, mediated by a virus-induced paracrine

  10. From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell.

    PubMed

    McCutcheon, John P

    2016-08-01

    Mitochondria and chloroplasts are now called organelles, but they used to be bacteria. As they transitioned from endosymbionts to organelles, they became more and more integrated into the biochemistry and cell biology of their hosts. Work over the last 15 years has shown that other symbioses show striking similarities to mitochondria and chloroplasts. In particular, many sap-feeding insects house intracellular bacteria that have genomes that overlap mitochondria and chloroplasts in terms of size and coding capacity. The massive levels of gene loss in some of these bacteria suggest that they, too, are becoming highly integrated with their host cells. Understanding these bacteria will require inspiration from eukaryotic cell biology, because a traditional microbiological framework is insufficient for understanding how they work. PMID:27267617