Sample records for host cytokine response

  1. Legionella: virulence factors and host response.

    PubMed

    Misch, Elizabeth Ann

    2016-06-01

    Legionella pneumophila is a facultative intracellular pathogen and an important cause of community-acquired and nosocomial pneumonia. This review focuses on the latest literature examining Legionella's virulence strategies and the mammalian host response. Recent studies identify novel virulence strategies used by L. pneumophila and new aspects of the host immune response to this pathogen. Legionella prevents acidification of the phagosome by recruiting Rab1, a host protein. Legionella also blocks a conserved endoplasmic reticulum stress response. To access iron from host stores, L. pneumophila upregulates more regions allowing vacuolar colocalization N. In response to Legionella, the host cell may activate caspase-1, caspase-11 (mice) or caspase-4 (humans). Caspase-3 and apoptosis are activated by a secreted, bacterial effector. Infected cells send signals to their uninfected neighbors, allowing the elaboration of inflammatory cytokines in trans. Antibody subclasses provide robust protection against Legionella. L. pneumophila is a significant human pathogen that lives in amoebae in the environment but may opportunistically infect the alveolar macrophage. To maintain its intracellular lifestyle, Legionella extracts essential iron from the cell, blocks inflammatory responses and manipulates trafficking to avoid fusion with the lysosome. The mammalian host has counter strategies, which include the release of proinflammatory cytokines, the activation of caspases and antibody-mediated immunity.

  2. The Frustrated Host Response to Legionella pneumophila Is Bypassed by MyD88-Dependent Translation of Pro-inflammatory Cytokines

    PubMed Central

    Asrat, Seblewongel; Dugan, Aisling S.; Isberg, Ralph R.

    2014-01-01

    Many pathogens, particularly those that require their host for survival, have devised mechanisms to subvert the host immune response in order to survive and replicate intracellularly. Legionella pneumophila, the causative agent of Legionnaires' disease, promotes intracellular growth by translocating proteins into its host cytosol through its type IV protein secretion machinery. At least 5 of the bacterial translocated effectors interfere with the function of host cell elongation factors, blocking translation and causing the induction of a unique host cell transcriptional profile. In addition, L. pneumophila also interferes with translation initiation, by preventing cap-dependent translation in host cells. We demonstrate here that protein translation inhibition by L. pneumophila leads to a frustrated host MAP kinase response, where genes involved in the pathway are transcribed but fail to be translated due to the bacterium-induced protein synthesis inhibition. Surprisingly, few pro-inflammatory cytokines, such as IL-1α and IL-1β, bypass this inhibition and get synthesized in the presence of Legionella effectors. We show that the selective synthesis of these genes requires MyD88 signaling and takes place in both infected cells that harbor bacteria and neighboring bystander cells. Our findings offer a perspective of how host cells are able to cope with pathogen-encoded activities that disrupt normal cellular process and initiate a successful inflammatory response. PMID:25058342

  3. Genome-Wide Analysis of Polymorphisms Associated with Cytokine Responses in Smallpox Vaccine Recipients

    PubMed Central

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Pankratz, V. Shane; Haralambieva, Iana H.; Vierkant, Robert A.; Poland, Gregory A.

    2014-01-01

    The role that genetics plays in response to infection or disease is becoming increasingly clear as we learn more about immunogenetics and host-pathogen interactions. Here we report a genome-wide analysis of the effects of host genetic variation on cytokine responses to vaccinia virus stimulation in smallpox vaccine recipients. Our data show that vaccinia stimulation of immune individuals results in secretion of inflammatory and Th1 cytokines. We identified multiple SNPs significantly associated with variations in cytokine secretion. These SNPs are found in genes with known immune function, as well as in genes encoding for proteins involved in signal transduction, cytoskeleton, membrane channels and ion transport, as well as others with no previously identified connection to immune responses. The large number of significant SNP associations implies that cytokine secretion in response to vaccinia virus is a complex process controlled by multiple genes and gene families. Follow-up studies to replicate these findings and then pursue mechanistic studies will provide a greater understanding of how genetic variation influences vaccine responses. PMID:22610502

  4. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins

    PubMed Central

    Yano, Junko; Noverr, Mairi C.; Fidel, Paul L.

    2011-01-01

    Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects a significant number of women during their reproductive years. More than two decades of research have been focused on the mechanisms associated with susceptibility or resistance to symptomatic infection. Adaptive immunity by Th1-type CD4+ T cells and downstream cytokine responses are considered the predominant host defense mechanisms against mucosal Candida infections. However, numerous clinical and animal studies have indicated no or limited protective role of cells and cytokines of the Th1 or Th2 lineage against vaginal infection. The role for Th17 is only now begun to be investigated in-depth for VVC with results already showing significant controversy. On the other hand, a clinical live-challenge study and an established animal model have shown that a symptomatic condition is intimately associated with the vaginal infiltration of polymorphonuclear leukocytes (PMNs) but with no effect on vaginal fungal burden. Subsequent studies identified S100A8 and S100A9 Alarmins as key chemotactic mediators of the acute PMN response. These chemotactic danger signals appear to be secreted by vaginal epithelial cells upon interaction and early adherence of Candida. Thus, instead of a putative immunodeficiency against Candida involving classical immune cells and cytokines of the adaptive response, the pathological inflammation in VVC is now considered a consequence of a non-productive innate response initiated by non-classical immune mediators. PMID:22182685

  5. Th17 cell cytokine secretion profile in host defense and autoimmunity.

    PubMed

    Graeber, Kristen E; Olsen, Nancy J

    2012-02-01

    The goal of this review is to examine the effector functions of Th17 cells in host defense and autoimmunity. Published literature on Th17 cells was reviewed with a focus on the secreted products that mediate effector activities of these cells. Th17 cells secrete an array of cytokines that contribute to host defense and that bridge the innate and adaptive arms of the immune response. When this subset of T cells is dysregulated, autoimmune phenomena develop that contribute to the manifestations of many autoimmune diseases. Th17 cells are positioned at a crossroads between innate and adaptive immunity and provide mediators that are essential for host defense. Current interest in harnessing this system for treatment of autoimmune disease will be challenged by the need to avoid abrogating these many protective functions.

  6. Cytokine Responses to the Anti-schistosome Vaccine Candidate Antigen Glutathione-S-transferase Vary with Host Age and Are Boosted by Praziquantel Treatment

    PubMed Central

    Bourke, Claire D.; Nausch, Norman; Rujeni, Nadine; Appleby, Laura J.; Trottein, François; Midzi, Nicholas; Mduluza, Takafira; Mutapi, Francisca

    2014-01-01

    Background Improved helminth control is required to alleviate the global burden of schistosomiasis and schistosome-associated pathologies. Current control efforts rely on the anti-helminthic drug praziquantel (PZQ), which enhances immune responses to crude schistosome antigens but does not prevent re-infection. An anti-schistosome vaccine based on Schistosoma haematobium glutathione-S-transferase (GST) is currently in Phase III clinical trials, but little is known about the immune responses directed against this antigen in humans naturally exposed to schistosomes or how these responses change following PZQ treatment. Methodology Blood samples from inhabitants of a Schistosoma haematobium-endemic area were incubated for 48 hours with or without GST before (n = 195) and six weeks after PZQ treatment (n = 107). Concentrations of cytokines associated with innate inflammatory (TNFα, IL-6, IL-8), type 1 (Th1; IFNγ, IL-2, IL-12p70), type 2 (IL-4, IL-5, IL-13), type 17 (IL-17A, IL-21, IL-23p19) and regulatory (IL-10) responses were quantified in culture supernatants via enzyme-linked immunosorbent assay (ELISA). Factor analysis and multidimensional scaling were used to analyse multiple cytokines simultaneously. Principal Findings A combination of GST-specific type 2 (IL-5 and IL-13) and regulatory (IL-10) cytokines was significantly lower in 10–12 year olds, the age group at which S. haematobium infection intensity and prevalence peak, than in 4–9 or 13+ year olds. Following PZQ treatment there was an increase in the number of participants producing detectable levels of GST-specific cytokines (TNFα, IL-6, IL-8, IFNγ, IL-12p70, IL-13 and IL-23p19) and also a shift in the GST-specific cytokine response towards a more pro-inflammatory phenotype than that observed before treatment. Participant age and pre-treatment infection status significantly influenced post-treatment cytokine profiles. Conclusions/Significance In areas where schistosomiasis is endemic host

  7. Nanovesicles from Malassezia sympodialis and Host Exosomes Induce Cytokine Responses – Novel Mechanisms for Host-Microbe Interactions in Atopic Eczema

    PubMed Central

    Gehrmann, Ulf; Qazi, Khaleda Rahman; Johansson, Catharina; Hultenby, Kjell; Karlsson, Maria; Lundeberg, Lena

    2011-01-01

    Background Intercellular communication can occur via the release of membrane vesicles. Exosomes are nanovesicles released from the endosomal compartment of cells. Depending on their cell of origin and their cargo they can exert different immunoregulatory functions. Recently, fungi were found to produce extracellular vesicles that can influence host-microbe interactions. The yeast Malassezia sympodialis which belongs to our normal cutaneous microbial flora elicits specific IgE- and T-cell reactivity in approximately 50% of adult patients with atopic eczema (AE). Whether exosomes or other vesicles contribute to the inflammation has not yet been investigated. Objective To investigate if M. sympodialis can release nanovesicles and whether they or endogenous exosomes can activate PBMC from AE patients sensitized to M. sympodialis. Methods Extracellular nanovesicles isolated from M. sympodialis, co-cultures of M. sympodialis and dendritic cells, and from plasma of patients with AE and healthy controls (HC) were characterised using flow cytometry, sucrose gradient centrifugation, Western blot and electron microscopy. Their ability to stimulate IL-4 and TNF-alpha responses in autologous CD14, CD34 depleted PBMC was determined using ELISPOT and ELISA, respectively. Results We show for the first time that M. sympodialis releases extracellular vesicles carrying allergen. These vesicles can induce IL-4 and TNF-α responses with a significantly higher IL-4 production in patients compared to HC. Exosomes from dendritic cell and M. sympodialis co-cultures induced IL-4 and TNF-α responses in autologous CD14, CD34 depleted PBMC of AE patients and HC while plasma exosomes induced TNF-α but not IL-4 in undepleted PBMC. Conclusions Extracellular vesicles from M. sympodialis, dendritic cells and plasma can contribute to cytokine responses in CD14, CD34 depleted and undepleted PBMC of AE patients and HC. These novel observations have implications for understanding host

  8. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity

    PubMed Central

    Smith, Judith A.

    2018-01-01

    Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defense against pathogens, but when aberrantly produced, may also drive pathologic inflammation. The UPR influences cytokine production on multiple levels, from stimulation of pattern recognition receptors, to modulation of inflammatory signaling pathways, and the regulation of cytokine transcription factors. This review will focus on the mechanisms underlying cytokine regulation by the UPR, and the repercussions of this relationship for infection and autoimmune/autoinflammatory diseases. Interrogation of viral and bacterial infections has revealed increasing numbers of examples where pathogens induce or modulate the UPR and implicated UPR-modulated cytokines in host response. The flip side of this coin, the UPR/ER stress responses have been increasingly recognized in a variety of autoimmune and inflammatory diseases. Examples include monogenic disorders of ER function, diseases linked to misfolding protein (HLA-B27 and spondyloarthritis), diseases directly implicating UPR and autophagy genes (inflammatory bowel disease), and autoimmune diseases targeting highly secretory cells (e.g., diabetes). Given the burgeoning interest in pharmacologically targeting the UPR, greater discernment is needed regarding how the UPR regulates cytokine production during specific infections and autoimmune processes, and the relative place of this interaction in pathogenesis. PMID:29556237

  9. Cytokines and their STATs in cutaneous and visceral leishmaniasis.

    PubMed

    Cummings, Hannah E; Tuladhar, Rashmi; Satoskar, Abhay R

    2010-01-01

    Cytokines play a critical role in shaping the host immune response to Leishmania infection and directing the development of protective and non-protective immunities during infection. Cytokines exert their biological activities through the activation and translocation of transcription factors into the nucleus whether they drive the expression of specific cytokine-responsive genes. Signal transducer and activator of transcription (STATs) are transcription factors which play a critical role in mediating signaling downstream of cytokine receptors and are important for shaping the host immune response during Leishmania infection. Here we discuss the signature cytokines and their associated STATs involved in the host immune response during cutaneous and visceral leishmaniasis.

  10. Differing House Finch Cytokine Expression Responses to Original and Evolved Isolates of Mycoplasma gallisepticum.

    PubMed

    Vinkler, Michal; Leon, Ariel E; Kirkpatrick, Laila; Dalloul, Rami A; Hawley, Dana M

    2018-01-01

    The recent emergence of the poultry bacterial pathogen Mycoplasma gallisepticum (MG) in free-living house finches ( Haemorhous mexicanus ), which causes mycoplasmal conjunctivitis in this passerine bird species, resulted in a rapid coevolutionary arms-race between MG and its novel avian host. Despite extensive research on the ecological and evolutionary dynamics of this host-pathogen system over the past two decades, the immunological responses of house finches to MG infection remain poorly understood. We developed seven new probe-based one-step quantitative reverse transcription polymerase chain reaction assays to investigate mRNA expression of house finch cytokine genes ( IL1B, IL6, IL10, IL18, TGFB2, TNFSF15 , and CXCLi2 , syn. IL8L ). These assays were then used to describe cytokine transcription profiles in a panel of 15 house finch tissues collected at three distinct time points during MG infection. Based on initial screening that indicated strong pro-inflammatory cytokine expression during MG infection at the periorbital sites in particular, we selected two key house finch tissues for further characterization: the nictitating membrane, i.e., the internal eyelid in direct contact with MG, and the Harderian gland, the secondary lymphoid tissue responsible for regulation of periorbital immunity. We characterized cytokine responses in these two tissues for 60 house finches experimentally inoculated either with media alone (sham) or one of two MG isolates: the earliest known pathogen isolate from house finches (VA1994) or an evolutionarily more derived isolate collected in 2006 (NC2006), which is known to be more virulent. We show that the more derived and virulent isolate NC2006, relative to VA1994, triggers stronger local inflammatory cytokine signaling, with peak cytokine expression generally occurring 3-6 days following MG inoculation. We also found that the extent of pro-inflammatory interleukin 1 beta signaling was correlated with conjunctival MG loads

  11. Host immune response in returning travellers infected with malaria.

    PubMed

    MacMullin, Gregory; Mackenzie, Ronald; Lau, Rachel; Khang, Julie; Zhang, Haibo; Rajwans, Nimerta; Liles, W Conrad; Pillai, Dylan R

    2012-05-03

    Clinical observations suggest that Canadian-born (CB) travellers are prone to more severe malaria, characterized by higher parasite density in the blood, and severe symptoms, such as cerebral malaria and renal failure, than foreign-born travellers (FB) from areas of malaria endemicity. It was hypothesized that host cytokine and chemokine responses differ significantly in CB versus FB patients returning with malaria, contributing to the courses of severity. A more detailed understanding of the profiles of cytokines, chemokines, and endothelial activation may be useful in developing biomarkers and novel therapeutic approaches for malaria. The patient population for the study (n = 186) was comprised of travellers returning to Toronto, Canada between 2007 and 2011. The patient blood samples' cytokine, chemokine and angiopoietin concentrations were determined using cytokine multiplex assays, and ELISA assays. Significantly higher plasma cytokine levels of IL-12 (p40) were observed in CB compared to FB travellers, while epidermal growth factor (EGF) was observed to be higher in FB than CB travellers. Older travellers (55 years old or greater) with Plasmodium vivax infections had significantly higher mean cytokine levels for IL-6 and macrophage colony-stimulating factor (M-CSF) than other adults with P. vivax (ages 18-55). Patients with P. vivax infections had significantly higher mean cytokine levels for monocyte chemotactic protein-1 (MCP-1), and M-CSF than patients with Plasmodium falciparum. Angiopoietin 2 (Ang-2) was higher for patients infected with P. falciparum than P. vivax, especially when comparing just the FB groups. IL-12 (p40) was higher in FB patients with P. vivax compared to P. falciparum. Il-12 (p40) was also higher in patients infected with P. vivax than those infected with Plasmodium ovale. For patients travelling to West Africa, IFN-γ and IL-6 was lower than for patients who were in other regions of Africa. Significantly higher levels of IL-12 (p40

  12. Rotavirus intestinal infection induces an oral mucosa cytokine response.

    PubMed

    Gómez-Rial, José; Curras-Tuala, María José; Rivero-Calle, Irene; Rodríguez-Tenreiro, Carmen; Redondo-Collazo, Lorenzo; Gómez-Carballa, Alberto; Pardo-Seco, Jacobo; Salas, Antonio; Martinón-Torres, Federico

    2018-01-01

    Salivary glands are known immune effector sites and considered to be part of the whole mucosal immune system. The aim of the present study was to assess the salivary immune response to rotavirus (RV) infection through the analysis of the cytokine immune profile in saliva. A prospective comparative study of serial saliva samples from 27 RV-infected patients (sampled upon admission to the hospital during acute phase and at convalescence-i.e. at least three months after recovery) and 36 healthy controls was performed. Concentrations of 11 salivary cytokines (IFN-γ, IFN-α2, IL-1β, IL-6, IL-8, IL-10, IL-15, IL12p70, TNF-α, IFN-λ1, IL-22) were determined. Cytokine levels were compared between healthy controls acute infection and convalescence. The correlation between clinical data and salivary cytokine profile in infected children was assessed. The salivary cytokine profile changes significantly in response to acute RV infection. In RV-infected patients, IL-22 levels were increased in the acute phase with respect to convalescence (P-value < 0.001). Comparisons between infected and control group showed significant differences in salivary IFN-α2, IL-1β, IL-6, IL-8, IL-10 and IL-22. Although acute-phase levels of IL-12, IL-10, IL-6 and IFN-γ showed nominal association with Vesikari's severity, this trend did not reach statistical significance after multiple test adjustment. RV infection induces a host salivary immune response, indicating that immune mucosal response to RV infection is not confined to the intestinal mucosa. Our data point to a whole mucosal implication in the RV infection as a result of the integrative mucosal immune response, and suggest the salivary gland as effector site for RV infection.

  13. Rotavirus intestinal infection induces an oral mucosa cytokine response

    PubMed Central

    Curras-Tuala, María José; Rivero-Calle, Irene; Rodríguez-Tenreiro, Carmen; Redondo-Collazo, Lorenzo; Gómez-Carballa, Alberto; Pardo-Seco, Jacobo

    2018-01-01

    Introduction Salivary glands are known immune effector sites and considered to be part of the whole mucosal immune system. The aim of the present study was to assess the salivary immune response to rotavirus (RV) infection through the analysis of the cytokine immune profile in saliva. Material and methods A prospective comparative study of serial saliva samples from 27 RV-infected patients (sampled upon admission to the hospital during acute phase and at convalescence—i.e. at least three months after recovery) and 36 healthy controls was performed. Concentrations of 11 salivary cytokines (IFN-γ, IFN-α2, IL-1β, IL-6, IL-8, IL-10, IL-15, IL12p70, TNF-α, IFN-λ1, IL-22) were determined. Cytokine levels were compared between healthy controls acute infection and convalescence. The correlation between clinical data and salivary cytokine profile in infected children was assessed. Results The salivary cytokine profile changes significantly in response to acute RV infection. In RV-infected patients, IL-22 levels were increased in the acute phase with respect to convalescence (P-value < 0.001). Comparisons between infected and control group showed significant differences in salivary IFN-α2, IL-1β, IL-6, IL-8, IL-10 and IL-22. Although acute-phase levels of IL-12, IL-10, IL-6 and IFN-γ showed nominal association with Vesikari’s severity, this trend did not reach statistical significance after multiple test adjustment. Conclusions RV infection induces a host salivary immune response, indicating that immune mucosal response to RV infection is not confined to the intestinal mucosa. Our data point to a whole mucosal implication in the RV infection as a result of the integrative mucosal immune response, and suggest the salivary gland as effector site for RV infection. PMID:29621276

  14. The Role of Cytokine PF4 in the Antiviral Immune Response of Shrimp

    PubMed Central

    Chen, Yulei; Cao, Jiao; Zhang, Xiaobo

    2016-01-01

    During viral infection in vertebrates, cytokines play important roles in the host defense against the virus. However, the function of cytokines in invertebrates has not been well characterized. In this study, shrimp cytokines involved in viral infection were screened using a cytokine antibody microarray. The results showed that three cytokines, the Fas receptor (Fas), platelet factor 4 (PF4) and interleukin-22 (IL-22), were significantly upregulated in the white spot syndrome virus (WSSV)-challenged shrimp, suggesting that these cytokines played positive regulatory roles in the immune response of shrimp against the virus. Further experiments revealed that PF4 had positive effects on the antiviral immunity of shrimp by enhancing the shrimp phagocytic activity and inhibiting the apoptotic activity of virus-infected hemocytes. Therefore, our study presented a novel mechanism of cytokines in the innate immunity of invertebrates. PMID:27631372

  15. Cytokines in Drosophila immunity.

    PubMed

    Vanha-Aho, Leena-Maija; Valanne, Susanna; Rämet, Mika

    2016-02-01

    Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  16. Human cytokine responses induced by Gram-positive cell walls of normal intestinal microbiota

    PubMed Central

    Chen, T; Isomäki, P; Rimpiläinen, M; Toivanen, P

    1999-01-01

    The normal microbiota plays an important role in the health of the host, but little is known of how the human immune system recognizes and responds to Gram-positive indigenous bacteria. We have investigated cytokine responses of peripheral blood mononuclear cells (PBMC) to Gram-positive cell walls (CW) derived from four common intestinal indigenous bacteria, Eubacterium aerofaciens (Eu.a.), Eubacterium limosum(Eu.l.), Lactobacillus casei(L.c.), and Lactobacillus fermentum (L.f.). Our results indicate that Gram-positive CW of the normal intestinal microbiota can induce cytokine responses of the human PBMC. The profile, level and kinetics of these responses are similar to those induced by lipopolysaccharide (LPS) or CW derived from a pathogen, Streptococcus pyogenes (S.p.). Bacterial CW are capable of inducing production of a proinflammatory cytokine, tumour necrosis factor-alpha (TNF-α), and an anti-inflammatory cytokine, IL-10, but not that of IL-4 or interferon-gamma (IFN-γ). Monocytes are the main cell population in PBMC to produce TNF-α and IL-10. Induction of cytokine secretion is serum-dependent; both CD14-dependent and -independent pathways are involved. These findings suggest that the human cytokine responses induced by Gram-positive CW of the normal intestinal microbiota are similar to those induced by LPS or Gram-positive CW of the pathogens. PMID:10540188

  17. Host immune response in returning travellers infected with malaria

    PubMed Central

    2012-01-01

    Background Clinical observations suggest that Canadian-born (CB) travellers are prone to more severe malaria, characterized by higher parasite density in the blood, and severe symptoms, such as cerebral malaria and renal failure, than foreign-born travellers (FB) from areas of malaria endemicity. It was hypothesized that host cytokine and chemokine responses differ significantly in CB versus FB patients returning with malaria, contributing to the courses of severity. A more detailed understanding of the profiles of cytokines, chemokines, and endothelial activation may be useful in developing biomarkers and novel therapeutic approaches for malaria. Materials and methods The patient population for the study (n = 186) was comprised of travellers returning to Toronto, Canada between 2007 and 2011. The patient blood samples’ cytokine, chemokine and angiopoietin concentrations were determined using cytokine multiplex assays, and ELISA assays. Results Significantly higher plasma cytokine levels of IL-12 (p40) were observed in CB compared to FB travellers, while epidermal growth factor (EGF) was observed to be higher in FB than CB travellers. Older travellers (55 years old or greater) with Plasmodium vivax infections had significantly higher mean cytokine levels for IL-6 and macrophage colony-stimulating factor (M-CSF) than other adults with P. vivax (ages 18–55). Patients with P. vivax infections had significantly higher mean cytokine levels for monocyte chemotactic protein-1 (MCP-1), and M-CSF than patients with Plasmodium falciparum. Angiopoietin 2 (Ang-2) was higher for patients infected with P. falciparum than P. vivax, especially when comparing just the FB groups. IL-12 (p40) was higher in FB patients with P. vivax compared to P. falciparum. Il-12 (p40) was also higher in patients infected with P. vivax than those infected with Plasmodium ovale. For patients travelling to West Africa, IFN-γ and IL-6 was lower than for patients who were in other regions of Africa

  18. Ex Vivo Host and Parasite Response to Antileishmanial Drugs and Immunomodulators

    PubMed Central

    McMahon-Pratt, Diane; Saravia, Nancy Gore

    2015-01-01

    Background Therapeutic response in infectious disease involves host as well as microbial determinants. Because the immune and inflammatory response to Leishmania (Viannia) species defines the outcome of infection and efficacy of treatment, immunomodulation is considered a promising therapeutic strategy. However, since Leishmania infection and antileishmanial drugs can themselves modulate drug transport, metabolism and/or immune responses, immunotherapeutic approaches require integrated assessment of host and parasite responses. Methodology To achieve an integrated assessment of current and innovative therapeutic strategies, we determined host and parasite responses to miltefosine and meglumine antimoniate alone and in combination with pentoxifylline or CpG 2006 in peripheral blood mononuclear cells (PBMCs) of cutaneous leishmaniasis patients. Parasite survival and secretion of TNF-α, IFN-γ, IL-10 and IL-13 were evaluated concomitantly in PBMCs infected with Luc-L. (V.) panamensis exposed to meglumine antimoniate (4, 8, 16, 32 and 64 μg SbV/mL) or miltefosine (2, 4, 8, 16 and 32 μM HePC). Concentrations of 4 μM of miltefosine and 8 μg SbV/mL were selected for evaluation in combination with immunomodulators based on the high but partial reduction of parasite burden by these antileishmanial concentrations without affecting cytokine secretion of infected PBMCs. Intracellular parasite survival was determined by luminometry and cytokine secretion measured by ELISA and multiplex assays. Principal Findings Anti- and pro-inflammatory cytokines characteristic of L. (V.) panamensis infection were evaluable concomitantly with viability of Leishmania within monocyte-derived macrophages present in PBMC cultures. Both antileishmanial drugs reduced the parasite load of macrophages; miltefosine also suppressed IL-10 and IL-13 secretion in a dose dependent manner. Pentoxifylline did not affect parasite survival or alter antileishmanial effects of miltefosine or meglumine

  19. Host response mechanisms in periodontal diseases

    PubMed Central

    SILVA, Nora; ABUSLEME, Loreto; BRAVO, Denisse; DUTZAN, Nicolás; GARCIA-SESNICH, Jocelyn; VERNAL, Rolando; HERNÁNDEZ, Marcela; GAMONAL, Jorge

    2015-01-01

    Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that

  20. Host Response Signature to Staphylococcus aureus Alpha-Hemolysin Implicates Pulmonary Th17 Response

    PubMed Central

    Zhou, Tong; Moreno-Vinasco, Liliana; Hollett, Brian; Garcia, Joe G. N.

    2012-01-01

    Staphylococcus aureus pneumonia causes significant morbidity and mortality. Alpha-hemolysin (Hla), a pore-forming cytotoxin of S. aureus, has been identified through animal models of pneumonia as a critical virulence factor that induces lung injury. In spite of considerable molecular knowledge of how this cytotoxin injures the host, the precise host response to Hla in the context of infection remains poorly understood. We employed whole-genome expression profiling of infected lungs to define the host response to wild-type S. aureus compared with the response to an Hla-deficient isogenic mutant in experimental pneumonia. These data provide a complete expression profile at 4 and at 24 h postinfection, revealing a unique response to the toxin-expressing strain. Gene ontogeny analysis revealed significant differences in the extracellular matrix and cardiomyopathy pathways, both of which govern cellular interactions in the tissue microenvironment. Evaluation of individual transcript responses to Hla-secreting staphylococci was notable for upregulation of host cytokine and chemokine genes, including the p19 subunit of interleukin-23. Consistent with this observation, the cellular immune response to infection was characterized by a prominent Th17 response to the wild-type pathogen. These findings define specific host mRNA responses to Hla-producing S. aureus, coupling the pulmonary Th17 response to the secretion of this cytotoxin. Expression profiling to define the host response to a single virulence factor proved to be a valuable tool in identifying pathways for further investigation in S. aureus pneumonia. This approach may be broadly applicable to the study of bacterial toxins, defining host pathways that can be targeted to mitigate toxin-induced disease. PMID:22733574

  1. Modeling Systems-Level Regulation of Host Immune Responses

    PubMed Central

    Thakar, Juilee; Pilione, Mylisa; Kirimanjeswara, Girish; Harvill, Eric T; Albert, Réka

    2007-01-01

    Many pathogens are able to manipulate the signaling pathways responsible for the generation of host immune responses. Here we examine and model a respiratory infection system in which disruption of host immune functions or of bacterial factors changes the dynamics of the infection. We synthesize the network of interactions between host immune components and two closely related bacteria in the genus Bordetellae. We incorporate existing experimental information on the timing of immune regulatory events into a discrete dynamic model, and verify the model by comparing the effects of simulated disruptions to the experimental outcome of knockout mutations. Our model indicates that the infection time course of both Bordetellae can be separated into three distinct phases based on the most active immune processes. We compare and discuss the effect of the species-specific virulence factors on disrupting the immune response during their infection of naive, antibody-treated, diseased, or convalescent hosts. Our model offers predictions regarding cytokine regulation, key immune components, and clearance of secondary infections; we experimentally validate two of these predictions. This type of modeling provides new insights into the virulence, pathogenesis, and host adaptation of disease-causing microorganisms and allows systems-level analysis that is not always possible using traditional methods. PMID:17559300

  2. Trichuris suis ova therapy for allergic rhinitis does not affect allergen-specific cytokine responses despite a parasite-specific cytokine response.

    PubMed

    Bourke, C D; Mutapi, F; Nausch, N; Photiou, D M F; Poulsen, L K; Kristensen, B; Arnved, J; Rønborg, S; Roepstorff, A; Thamsborg, S; Kapel, C; Melbye, M; Bager, P

    2012-11-01

    Parasitic helminths have been shown to reduce inflammation in most experimental models of allergic disease, and this effect is mediated via cytokine responses. However, in humans, the effects of controlled helminth infection on cytokine responses during allergy have not been studied. The aim was to investigate whether infection with the nematode parasite Trichuris suis alters systemic cytokine levels, cellular cytokine responses to parasite antigens and pollen allergens and/or the cytokine profile of allergic individuals. In a randomized double-blinded placebo-controlled clinical trial (UMIN trial registry, Registration no. R000001298, Trial ID UMIN000001070, URL: http://www.umin.ac.jp/map/english), adults with grass pollen-induced allergic rhinitis received three weekly doses of 2500 Trichuris suis ova (n = 45) or placebo (n = 44) over 6 months. IFN-γ, TNF-α, IL-4, IL-5, IL-10 and IL-13 were quantified via cytometric bead array in plasma. Cytokines, including active TGF-β, were also quantified in supernatants from peripheral blood mononuclear cells cultured with parasite antigens or pollen allergens before, during and after the grass pollen season for a sub-cohort of randomized participants (T. suis ova-treated, n = 12, Placebo-treated, n = 10). Helminth infection induced a Th2-polarized cytokine response comprising elevated plasma IL-5 and parasite-specific IL-4, IL-5 and IL-13, and a global shift in the profile of systemic cytokine responses. Infection also elicited high levels of the regulatory cytokine IL-10 in response to T. suis antigens. Despite increased production of T. suis-specific cytokines in T. suis ova-treated participants, allergen-specific cytokine responses during the grass pollen season and the global profile of PBMC cytokine responses were not affected by T. suis ova treatment. This study suggests that cytokines induced by Trichuris suis ova treatment do not alter allergic reactivity to pollen during the peak of allergic rhinitis

  3. Beneficial effects of cytokine induced hyperlipidemia.

    PubMed

    Feingold, K R; Hardardóttir, I; Grunfeld, C

    1998-01-01

    Infection, inflammation and trauma induce marked changes in the plasma levels of a wide variety of proteins (acute phase response), and these changes are mediated by cytokines. The acute phase response is thought to be beneficial to the host. The host's response to injury also results in dramatic alterations in lipid metabolism and circulating lipoprotein levels which are mediated by cytokines. A large number of cytokines including TNF, the interleukins, and the interferons increase serum triglyceride levels. This rapid increase (1-2 h) is predominantly due to an increase in hepatic VLDL secretion while the late increase may be due to a variety of factors including increased hepatic production of VLDL or delayed clearance secondary to a decrease in lipoprotein lipase activity and/or apolipoprotein E levels on VLDL. In animals other than primates, cytokines also increase serum cholesterol levels, most likely by increasing hepatic cholesterol. Cytokines increase hepatic cholesterol synthesis by stimulating HMG CoA reductase gene expression and decrease hepatic cholesterol catabolism by inhibiting cholesterol 7 alpha-hydroxylase, the key enzyme in bile acid synthesis. Injury and/or cytokines also decrease HDL cholesterol levels and induce alterations in the composition of HDL. The content of SAA and apolipoprotein J increase, apolipoprotein A1 may decrease, and the cholesterol ester content decreases while free cholesterol increases. Additionally, key proteins involved in HDL metabolism are altered by cytokines; LCAT activity, hepatic lipase activity, and CETP levels decrease. These changes in lipid and lipoprotein metabolism may be beneficial in a number of ways including: lipoproteins competing with viruses for cellular receptors, apolipoproteins neutralizing viruses, lipoproteins binding and targeting parasites for destruction, apolipoproteins lysing parasites, redistribution of nutrients to cells involved in the immune response and/or tissue repair, and

  4. Resiniferatoxin modulates the Th1 immune response and protects the host during intestinal nematode infection.

    PubMed

    Muñoz-Carrillo, J L; Contreras-Cordero, J F; Muñoz-López, J L; Maldonado-Tapia, C H; Muñoz-Escobedo, J J; Moreno-García, M A

    2017-09-01

    In the early stage of the intestinal phase of Trichinella spiralis infection, the host triggers a Th1-type immune response with the aim of eliminating the parasite. However, this response damages the host which favours the survival of the parasite. In the search for novel pharmacological strategies that inhibit the Th1 immune response and assist the host against T. spiralis infection, a recent study showed that resiniferatoxin had anti-inflammatory activity contributed to the host in T. spiralis infection. In this study, we evaluated whether RTX modulates the host immune response through the inhibition of Th1 cytokines in the intestinal phase. In addition, it was determined whether the treatment with RTX affects the infectivity of T. spiralis-L1 and the development of the T. spiralis life cycle. Our results show that RTX decreased serum levels of IL-12, INF-γ, IL-1β, TNF-α and parasite burden on muscle tissue. It was observed that T. spiralis-L1 treated with RTX decreased their infectivity affecting the development of the T. spiralis life cycle in mouse. These results demonstrate that RTX is able to inhibit the production of Th1 cytokines, contributing to the defence against T. spiralis, which places it as a potential drug modulator of the immune response. © 2017 John Wiley & Sons Ltd.

  5. Pathogenesis and host defence against Mucorales: the role of cytokines and interaction with antifungal drugs.

    PubMed

    Roilides, Emmanuel; Antachopoulos, Charalampos; Simitsopoulou, Maria

    2014-12-01

    Innate immune response, including macrophages, neutrophils and dendritic cells and their respective receptors, plays an important role in host defences against Mucorales with differential activity against specific fungal species, while adaptive immunity is not the first line of defence. A number of endogenous and exogenous factors, such as cytokines and growth factors as well as certain antifungal agents have been found that they influence innate immune response to these organisms. Used alone or especially in combination have been shown to exert antifungal effects against Mucorales species. These findings suggest novel ways of adjunctive therapy for patients with invasive mucormycosis. © 2014 Blackwell Verlag GmbH.

  6. The host immune response to Clostridium difficile infection

    PubMed Central

    2013-01-01

    Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future. PMID:25165542

  7. Leptospirosis in human: Biomarkers in host immune responses.

    PubMed

    Vk, Chin; Ty, Lee; Wf, Lim; Ywy, Wan Shahriman; An, Syafinaz; S, Zamberi; A, Maha

    2018-03-01

    Leptospirosis remains one of the most widespread zoonotic diseases caused by spirochetes of the genus Leptospira, which accounts for high morbidity and mortality globally. Leptospiral infections are often found in tropical and subtropical regions, with people exposed to contaminated environments or animal reservoirs are at high risk of getting the infection. Leptospirosis has a wide range of clinical manifestations with non-specific signs and symptoms and often misdiagnosed with other acute febrile illnesses at early stage of infection. Despite being one of the leading causes of zoonotic morbidity worldwide, there is still a gap between pathogenesis and human immune responses during leptospiral infection. It still remains obscure whether the severity of the infection is caused by the pathogenic properties of the Leptospira itself, or it is a consequence of imbalance host immune factors. Hence, in this review, we seek to summarize the past and present milestone findings on the biomarkers of host immune response aspects during human leptospiral infection, including cytokine and other immune mediators. A profound understanding of the interlink between virulence factors and host immune responses during human leptospirosis is imperative to identify potential biomarkers for diagnostic and prognostic applications as well as designing novel immunotherapeutic strategies in future. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Proteomic analysis of Fasciola hepatica excretory and secretory products (FhESPs) involved in interacting with host PBMCs and cytokines by shotgun LC-MS/MS.

    PubMed

    Liu, Qing; Huang, Si-Yang; Yue, Dong-Mei; Wang, Jin-Lei; Wang, Yujian; Li, Xiangrui; Zhu, Xing-Quan

    2017-02-01

    Fasciola hepatica is a helminth parasite with a worldwide distribution, which can cause chronic liver disease, fasciolosis, leading to economic losses in the livestock and public health in many countries. Control is mostly reliant on the use of drugs, and as a result, drug resistance has now emerged. The identification of F. hepatica genes involved in interaction between the parasite and host immune system is utmost important to elucidate the evasion mechanisms of the parasite and develop more effective strategies against fasciolosis. In this study, we aimed to identify molecules in F. hepatica excretory and secretory products (FhESPs) interacting with the host peripheral blood mononuclear cells (PBMCs), Th1-like cytokines (IL2 and IFN-γ), and Th17-like cytokines (IL17) by Co-IP combined with tandem mass spectrometry. The results showed that 14, 16, and 9 proteins in FhESPs could bind with IL2, IL17, and IFN-γ, respectively, which indicated that adult F. hepatica may evade the host immune responses through directly interplaying with cytokines. In addition, nine proteins in FhESPs could adhere to PBMCs. Our findings provided potential targets as immuno-regulators, and will be helpful to elucidate the molecular basis of host-parasite interactions and search for new potential proteins as vaccine and drug target candidates.

  9. Review of osteoimmunology and the host response in endodontic and periodontal lesions

    PubMed Central

    Graves, Dana T.; Oates, Thomas; Garlet, Gustavo P.

    2011-01-01

    Both lesions of endodontic origin and periodontal diseases involve the host response to bacteria and the formation of osteolytic lesions. Important for both is the upregulation of inflammatory cytokines that initiate and sustain the inflammatory response. Also important are chemokines that induce recruitment of leukocyte subsets and bone-resorptive factors that are largely produced by recruited inflammatory cells. However, there are differences also. Lesions of endodontic origin pose a particular challenge since that bacteria persist in a protected reservoir that is not readily accessible to the immune defenses. Thus, experiments in which the host response is inhibited in endodontic lesions tend to aggravate the formation of osteolytic lesions. In contrast, bacteria that invade the periodontium appear to be less problematic so that blocking arms of the host response tend to reduce the disease process. Interestingly, both lesions of endodontic origin and periodontitis exhibit inflammation that appears to inhibit bone formation. In periodontitis, the spatial location of the inflammation is likely to be important so that a host response that is restricted to a subepithelial space is associated with gingivitis, while a host response closer to bone is linked to bone resorption and periodontitis. However, the persistence of inflammation is also thought to be important in periodontitis since inflammation present during coupled bone formation may limit the capacity to repair the resorbed bone. PMID:21547019

  10. Inhibition of plasmin attenuates murine acute graft-versus-host disease mortality by suppressing the matrix metalloproteinase-9-dependent inflammatory cytokine storm and effector cell trafficking.

    PubMed

    Sato, A; Nishida, C; Sato-Kusubata, K; Ishihara, M; Tashiro, Y; Gritli, I; Shimazu, H; Munakata, S; Yagita, H; Okumura, K; Tsuda, Y; Okada, Y; Tojo, A; Nakauchi, H; Takahashi, S; Heissig, B; Hattori, K

    2015-01-01

    The systemic inflammatory response observed during acute graft-versus-host disease (aGVHD) is driven by proinflammatory cytokines, a 'cytokine storm'. The function of plasmin in regulating the inflammatory response is not fully understood, and its role in the development of aGVHD remains unresolved. Here we show that plasmin is activated during the early phase of aGVHD in mice, and its activation correlated with aGVHD severity in humans. Pharmacological plasmin inhibition protected against aGVHD-associated lethality in mice. Mechanistically, plasmin inhibition impaired the infiltration of inflammatory cells, the release of membrane-associated proinflammatory cytokines including tumor necrosis factor-α (TNF-α) and Fas-ligand directly, or indirectly via matrix metalloproteinases (MMPs) and alters monocyte chemoattractant protein-1 (MCP-1) signaling. We propose that plasmin and potentially MMP-9 inhibition offers a novel therapeutic strategy to control the deadly cytokine storm in patients with aGVHD, thereby preventing tissue destruction.

  11. Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities.

    PubMed

    Wang, Jianlin; Cao, Zhiwei; Guo, Xuejin; Zhang, Yi; Wang, Dongdong; Xu, Shouzheng; Yin, Yanbo

    2016-12-01

    SD/818 and SD/196 are H9N2 influenza virus strains isolated from chickens from the same farm at different times that exhibited similar genetic evolution. However, strain SD/818 exhibited higher pathogenicity in chickens than strain SD/196 and other H9N2 influenza virus epidemic strains from China. The expression of cytokines is an important host defence mechanism following viral infection and their intensity is a major determinant of viral pathogenicity. To elucidate the mechanism underlying the increased pathogenicity of strain SD/818 from the host's perspective, viral replication and cytokine expression were dynamically studied using real-time quantitative reverse transcription PCR in chickens infected with strain SD/818 compared with chickens infected with strain SD/196 in this study. The results showed that the replication of strain SD/818 and the expressions of IL-1β, IL-6, TNF-α, IFN-α and IFN-β induced by strain SD/818 were higher than those induced by strain SD/196 in the chicken host system. Expression of these cytokines in chickens coincided with or followed virus replication. These results suggested that high-level viral replication and pro-inflammatory cytokine expression (but not decreased type I IFN expression) were associated with the higher pathogenicity of strain SD/818 in chickens.

  12. Cytokine responses in acute and persistent human parvovirus B19 infection

    PubMed Central

    Isa, A; Lundqvist, A; Lindblom, A; Tolfvenstam, T; Broliden, K

    2007-01-01

    The aim of this study was to characterize the proinflammatory and T helper (Th)1/Th2 cytokine responses during acute parvovirus B19 (B19) infection and determine whether an imbalance of the Th1/Th2 cytokine pattern is related to persistent B19 infection. Cytokines were quantified by multiplex beads immunoassay in serum from B19-infected patients and controls. The cytokine responses were correlated with B19 serology, quantitative B19 DNA levels and clinical symptoms. In addition to a proinflammatory response, elevated levels of the Th1 type of cytokines interleukin (IL)-2, IL-12 and IL-15 were evident at time of the initial peak of B19 viral load in a few patients during acute infection. This pattern was seen in the absence of an interferon (IFN)-γ response. During follow-up (20–130 weeks post-acute infection) some of these patients had a sustained Th1 cytokine response. The Th1 cytokine response correlated with the previously identified sustained CD8+ T cell response and viraemia. A cross-sectional study on patients with persistent B19 infection showed no apparent imbalance of their cytokine pattern, except for an elevated level of IFN-γ response. No general immunodeficiency was diagnosed as an explanation for the viral persistence in this later group. Neither the acutely infected nor the persistently infected patients demonstrated a Th2 cytokine response. In conclusion, the acutely infected patients demonstrated a sustained Th1 cytokine response whereas the persistently infected patients did not exhibit an apparent imbalance of their cytokine pattern except for an elevated IFN-γ response. PMID:17302890

  13. Host Immune Response to Influenza A Virus Infection.

    PubMed

    Chen, Xiaoyong; Liu, Shasha; Goraya, Mohsan Ullah; Maarouf, Mohamed; Huang, Shile; Chen, Ji-Long

    2018-01-01

    Influenza A viruses (IAVs) are contagious pathogens responsible for severe respiratory infection in humans and animals worldwide. Upon detection of IAV infection, host immune system aims to defend against and clear the viral infection. Innate immune system is comprised of physical barriers (mucus and collectins), various phagocytic cells, group of cytokines, interferons (IFNs), and IFN-stimulated genes, which provide first line of defense against IAV infection. The adaptive immunity is mediated by B cells and T cells, characterized with antigen-specific memory cells, capturing and neutralizing the pathogen. The humoral immune response functions through hemagglutinin-specific circulating antibodies to neutralize IAV. In addition, antibodies can bind to the surface of infected cells and induce antibody-dependent cell-mediated cytotoxicity or complement activation. Although there are neutralizing antibodies against the virus, cellular immunity also plays a crucial role in the fight against IAVs. On the other hand, IAVs have developed multiple strategies to escape from host immune surveillance for successful replication. In this review, we discuss how immune system, especially innate immune system and critical molecules are involved in the antiviral defense against IAVs. In addition, we highlight how IAVs antagonize different immune responses to achieve a successful infection.

  14. Effect of space flight on cytokine production

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald

    Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.

  15. Yersinia type III effectors perturb host innate immune responses

    PubMed Central

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  16. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response.

    PubMed

    Rodríguez Pulido, Miguel; Sáiz, Margarita

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.

  17. Cytokines and immune surveillance in humans

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to further explore the effects of space flight on cytokines and cytokine-directed immunological function.

  18. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    PubMed Central

    Gillette, Devyn D.; Curry, Heather M.; Cremer, Thomas; Ravneberg, David; Fatehchand, Kavin; Shah, Prexy A.; Wewers, Mark D.; Schlesinger, Larry S.; Butchar, Jonathan P.; Tridandapani, Susheela; Gavrilin, Mikhail A.

    2014-01-01

    Background: Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. Results: A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. Conclusion: F. tularensis dampens inflammatory response by an active process. Significance: This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity. PMID:24783062

  19. Th9 cytokines response and its possible implications in the immunopathogenesis of leprosy.

    PubMed

    de Sousa, Jorge Rodrigues; Pagliari, Carla; de Almeida, Dandara Simone Maia; Barros, Luiz Fernando Lima; Carneiro, Francisca Regina Oliveira; Dias, Leonidas Braga; de Souza Aarão, Tinara Leila; Quaresma, Juarez Antonio Simões

    2017-06-01

    Leprosy is an infectious-contagious disease whose clinical evolution depends on the interaction of the infectious agent with the immune response of the host, leading to a clinical spectrum that ranges from lepromatous leprosy (susceptibility, LL) to tuberculoid leprosy (resistance, TT). The immune response profile will depend on the pattern of cytokine production and on the activity of macrophages during infection. Classically, the clinical evolution of leprosy has been associated with Th1/Th2 cytokine profiles, but the role of new cytokine profiles such as T helper 9 (Th9) remains to be elucidated. To evaluate the tissue expression profile of these cytokines, a cross-sectional study was conducted using a sample of 30 leprosy skin lesion biopsies obtained from patients with leprosy, 16 TT and 14 lepromatous LL. Immunohistochemical analysis revealed a significant difference in interleukin (IL)-9, IL-4 transforming growth factor (TGF)-β and IL-10 levels between the two groups. IL-9 was more expressed in TT lesions compared with LL lesions. Higher expression of IL-4, IL-10 and TGF-β was observed in LL compared with TT. IL-4, IL-10 and TGF-β tended to be negatively correlated with the expression of IL-9, indicating a possible antagonistic activity in tissue. The results suggest that Th9 lymphocytes may be involved in the response to Mycobacterium leprae , positively or negatively regulating microbicidal activity of the local immune system in the disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Relation between stress and cytokine responses in inner-city mothers.

    PubMed

    Gruenberg, David A; Wright, Rosalind J; Visness, Cynthia M; Jaffee, Katy F; Bloomberg, Gordon R; Cruikshank, William W; Kattan, Meyer; Sandel, Megan T; Wood, Robert A; Gern, James E

    2015-11-01

    Women in poor urban neighborhoods have high rates of stress and allergic diseases, but whether stress or stress correlates such as depression promote inflammatory and type 2 cytokine responses is unknown. To examine associations among external stressors, perceived stress, depression, and peripheral blood mononuclear cell cytokine responses of mothers enrolled in the Urban Environment and Childhood Asthma Study and test the hypothesis that stress would be positively associated with type 2 and selected proinflammatory (tumor necrosis factor-α and interleukin-8) responses. Questionnaire data from mothers living in 4 inner cities included information about external stress, stress perception, and depression. The external stress domains (interpersonal problems, housing, and neighborhood stress) were combined into a Composite Stressor score. Peripheral blood mononuclear cells were stimulated ex vivo and cytokine responses to innate, adaptive, and polyclonal immune stimuli were compared with stress and depression scores for 469 of the 606 study participants. There were no significant positive associations between Composite Stressor scores, perceived stress, or depression scores and proinflammatory or type 2 cytokine responses, and these findings were not modified by allergy or asthma status. There were some modest associations with individual stressors and cytokine responses, but no consistent relations were noted. Depression was associated with decreased responses to some stimuli, particularly dust mite. Composite measurements of stressors, perceived stress, or depression were not positively related to proinflammatory or type 2 cytokine responses in these young urban women. These data do not support the hypothesis that these factors promote cytokine responses associated with allergy. ClinicalTrials.gov, identifier NCT00114881. Copyright © 2015. Published by Elsevier Inc.

  1. Inhibition of host cell translation elongation by Legionella pneumophila blocks the host cell unfolded protein response.

    PubMed

    Hempstead, Andrew D; Isberg, Ralph R

    2015-12-08

    Cells of the innate immune system recognize bacterial pathogens by detecting common microbial patterns as well as pathogen-specific activities. One system that responds to these stimuli is the IRE1 branch of the unfolded protein response (UPR), a sensor of endoplasmic reticulum (ER) stress. Activation of IRE1, in the context of Toll-like receptor (TLR) signaling, induces strong proinflammatory cytokine induction. We show here that Legionella pneumophila, an intravacuolar pathogen that replicates in an ER-associated compartment, blocks activation of the IRE1 pathway despite presenting pathogen products that stimulate this response. L. pneumophila TLR ligands induced the splicing of mRNA encoding XBP1s, the main target of IRE1 activity. L. pneumophila was able to inhibit both chemical and bacterial induction of XBP1 splicing via bacterial translocated proteins that interfere with host protein translation. A strain lacking five translocated translation elongation inhibitors was unable to block XBP1 splicing, but this could be rescued by expression of a single such inhibitor, consistent with limitation of the response by translation elongation inhibitors. Chemical inhibition of translation elongation blocked pattern recognition receptor-mediated XBP1 splicing, mimicking the effects of the bacterial translation inhibitors. In contrast, host cell-promoted inhibition of translation initiation in response to the pathogen was ineffective in blocking XBP1 splicing, demonstrating the need for the elongation inhibitors for protection from the UPR. The inhibition of host translation elongation may be a common strategy used by pathogens to limit the innate immune response by interfering with signaling via the UPR.

  2. Recombinant Brugia malayi pepsin inhibitor (rBm33) exploits host signaling events to regulate inflammatory responses associated with lymphatic filarial infections.

    PubMed

    Sreenivas, Kirthika; Kalyanaraman, Haripriya; Babu, Subash; Narayanan, Rangarajan Badri

    2017-11-01

    Prolonged existence of filarial parasites and their molecules within the host modulate the host immune system to instigate their survival and induce inflammatory responses that contribute to disease progression. Recombinant Brugia malayi pepsin inhibitor (rBm33) modulates the host immune responses by skewing towards Th1 responses characterized by secretion of inflammatory molecules such as TNF-α, IL-6, nitric oxide (NO). Here we also specified the molecular signaling events triggered by rBm33 in peripheral blood mononuclear cells (PBMCs) of filarial endemic normals (EN). rBm33 predominantly enhanced the levels of nitric oxide in cultured PBMCs but did not result in oxidative stress to the host cells. Further, rBm33 treatment of human PBMCs resulted in higher GSH/GSSG levels. MYD88 dependent activation was found to be associated with rBm33 specific inflammatory cytokine production. rBm33 triggered intracellular signaling events also involved JNK activation in host PBMCs. In addition, c-Fos and not NF-κB was identified as the transcription factor regulating the expression of inflammatory cytokines in rBm33 stimulated PBMCs. rBm33 marked its role in filarial pathology by altered levels of growth factors but did not have a significant impact on matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs) activity of host PBMCs. Thus, the study outlines the signaling network of rBm33 induced inflammatory responses within the host immune cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Association of O-Antigen Serotype with the Magnitude of Initial Systemic Cytokine Responses and Persistence in the Urinary Tract

    PubMed Central

    Horvath, Dennis J.; Patel, Ashay S.; Mohamed, Ahmad; Storm, Douglas W.; Singh, Chandra; Li, Birong; Zhang, Jingwen; Koff, Stephen A.; Jayanthi, Venkata R.; Mason, Kevin M.

    2016-01-01

    ABSTRACT Urinary tract infection (UTI) is one of the most common ailments requiring both short-term and prophylactic antibiotic therapies. Progression of infection from the bladder to the kidney is associated with more severe clinical symptoms (e.g., fever and vomiting) as well as with dangerous disease sequelae (e.g., renal scaring and sepsis). Host-pathogen interactions that promote bacterial ascent to the kidney are not completely understood. Prior studies indicate that the magnitude of proinflammatory cytokine elicitation in vitro by clinical isolates of uropathogenic Escherichia coli (UPEC) inversely correlates with the severity of clinical disease. Therefore, we hypothesize that the magnitude of initial proinflammatory responses during infection defines the course and severity of disease. Clinical UPEC isolates obtained from patients with a nonfebrile UTI elicited high systemic proinflammatory responses early during experimental UTI in a murine model and were attenuated in bladder and kidney persistence. Conversely, UPEC isolates obtained from patients with febrile UTI elicited low systemic proinflammatory responses early during experimental UTI and exhibited prolonged persistence in the bladder and kidney. Soluble factors in the supernatant from saturated cultures as well as the lipopolysaccharide (LPS) serotype correlated with the magnitude of proinflammatory responses in vitro. Our data suggest that the structure of the O-antigen sugar moiety of the LPS may determine the strength of cytokine induction by epithelial cells. Moreover, the course and severity of disease appear to be the consequence of the magnitude of initial cytokines produced by the bladder epithelium during infection. IMPORTANCE The specific host-pathogen interactions that determine the extent and course of disease are not completely understood. Our studies demonstrate that modest changes in the magnitude of cytokine production observed using in vitro models of infection translate into

  4. Role of an Iron-Dependent Transcriptional Regulator in the Pathogenesis and Host Response to Infection with Streptococcus pneumoniae

    PubMed Central

    Gupta, Radha; Bhatty, Minny; Swiatlo, Edwin; Nanduri, Bindu

    2013-01-01

    Iron is a critical cofactor for many enzymes and is known to regulate gene expression in many bacterial pathogens. Streptococcus pneumoniae normally inhabits the upper respiratory mucosa but can also invade and replicate in lungs and blood. These anatomic sites vary considerably in both the quantity and form of available iron. The genome of serotype 4 pneumococcal strain TIGR4 encodes a putative iron-dependent transcriptional regulator (IDTR). A mutant deleted at idtr (Δidtr) exhibited growth kinetics similar to parent strain TIGR4 in vitro and in mouse blood for up to 48 hours following infection. However, Δidtr was significantly attenuated in a murine model of sepsis. IDTR down-regulates the expression of ten characterized and putative virulence genes in nasopharyngeal colonization and pneumonia. The host cytokine response was significantly suppressed in sepsis with Δidtr. Since an exaggerated inflammatory response is associated with a poor prognosis in sepsis, the decreased inflammatory response could explain the increased survival with Δidtr. Our results suggest that IDTR, which is dispensable for pneumococcal growth in vitro, is associated with regulation of pneumococcal virulence in specific host environments. Additionally, IDTR ultimately modulates the host cytokine response and systemic inflammation that contributes to morbidity and mortality of invasive pneumococcal disease. PMID:23437050

  5. Mycobacterium tuberculosis strains induce strain-specific cytokine and chemokine response in pulmonary epithelial cells.

    PubMed

    Mvubu, Nontobeko E; Pillay, Balakrishna; McKinnon, Lyle R; Pillay, Manormoney

    2018-04-01

    M. tuberculosis F15/LAM4/KZN has been associated with high transmission rates of drug resistant tuberculosis in the KwaZulu-Natal province of South Africa. The current study elucidated the cytokine/chemokine responses induced by representatives of the F15/LAM4/KZN and other dominant strain families in pulmonary epithelial cells. Multiplex cytokine analyses were performed at 24, 48 and 72h post infection of the A549 pulmonary epithelial cell line with the F15/LAM4/KZN, F28, F11, Beijing, Unique and H37Rv strains at an MOI of ∼10:1. Twenty-three anti- and pro-inflammatory cytokines/chemokines were detected at all-time intervals. Significantly high concentrations of IL-6, IFN-γ, TNF-α and G-CSF at 48h, and IL-8, IFN-γ, TNF-α, G-CSF and GM-CSF at 72h, were induced by the F28 and F15/LAM4/KZN strains, respectively. Lower levels of cytokines/chemokines were induced by either the Beijing or Unique strains at all three time intervals. All strains induced up-regulation of pathogen recognition receptors (PRRs) (TLR3 and TLR5) while only the F15/LAM4/KZN, F11 and F28 strains induced significant differential expression of TLR2 compared to the Beijing, Unique and H37Rv strains. The low induction of cytokines in epithelial cells by the Beijing strain correlates with its previously reported hypervirulent properties. High concentrations of cytokines and chemokines required for early protection against M. tuberculosis infections induced by the F15/LAM4/KZN and F28 strains suggests a lower virulence of these genotypes compared to the Beijing strain. These findings demonstrate the high diversity in host cytokine/chemokine response to early infection of pulmonary epithelial cells by different strains of M. tuberculosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The acute-phase response impairs host defence against Enterococcus faecium peritonitis

    PubMed Central

    Leendertse, Masja; Willems, Rob J L; Giebelen, Ida A J; van den Pangaart, Petra S; Bonten, Marc J M; van der Poll, Tom

    2009-01-01

    Enterococcus faecium is an emerging pathogen that causes infections in hospitalized patients with various co-morbid diseases. These underlying diseases are often associated with an acute-phase response that renders patients vulnerable to nosocomial infections. To study the influence of the acute-phase response induced by sterile tissue injury on host defence against E. faecium, mice were injected subcutaneously with either turpentine or casein 1 day before intraperitoneal infection with E. faecium. Control mice were subcutaneously injected with saline or sodium bicarbonate, respectively. Turpentine and casein induced an acute-phase response as reflected by increases in the plasma concentrations of interleukin-6, serum amyloid P and C3. A pre-existent acute-phase response in mice was associated with a strongly reduced capacity to clear E. faecium, resulting in prolonged bacteraemia for several days. The inflammatory response to E. faecium was impaired in mice with an acute-phase response, as shown by reduced capacity to mount a neutrophilic leucocytosis in peripheral blood and by decreased local cytokine concentrations. These data indicate that the acute-phase response impairs host defence against E. faecium, suggesting that this condition may contribute to the increased vulnerability of critically ill patients to enterococcal infections. PMID:19175794

  7. T cell-derived IL-10 and its impact on the regulation of host responses during malaria.

    PubMed

    Freitas do Rosario, Ana Paula; Langhorne, Jean

    2012-05-15

    Despite intense research, malaria still is the one of the most devastating diseases killing more people than any other parasitic infection. In an attempt to control the infection, the host immune system produces a potent pro-inflammatory response. However, this response is also associated with complications, such as severe anaemia, hypoglycaemia and cerebral malaria. This pronounced production of pro-inflammatory cytokines response is a common feature of malaria caused by parasites infecting humans as well as rodents and primates. A balance between pro- and anti-inflammatory responses may be fundamental to the elimination of the parasite without inducing excessive host pathology. IL-10 is a key cytokine that has been shown to have an important regulatory function in establishing this balance in malaria. Here we discuss which cells can produce IL-10 during infection, and present an overview of the evidence showing that T-cell derived IL-10 plays an important role in regulating malaria pathology. Many different subsets of T cells can produce IL-10, however, evidence is accumulating that it is effector Th1 CD4(+) T cells which provide the crucial source that down-regulates inflammatory pathology during blood-stage malaria infections. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  8. Inter-individual variability and genetic influences on cytokine responses against bacterial and fungal pathogens

    PubMed Central

    Li, Yang; Oosting, Marije; Deelen, Patrick; Ricaño-Ponce, Isis; Smeekens, Sanne; Jaeger, Martin; Matzaraki, Vasiliki; Swertz, Morris A.; Xavier, Ramnik J.; Franke, Lude; Wijmenga, Cisca; Joosten, Leo A.B.; Kumar, Vinod; Netea, Mihai G.

    2016-01-01

    Little is known about the inter-individual variation of cytokine responses to different pathogens in healthy individuals. To systematically describe cytokine responses elicited by distinct pathogens, and to determine the impact of genetic variation on cytokine production, we profiled cytokines produced by peripheral blood mononuclear cells from 197 individuals of European origin from the 200 Functional Genomics (200FG) cohort within the Human Functional Genomics Study (www.humanfunctionalgenomics.org), obtained over three different years. By comparing bacteria- and fungi-induced cytokine profiles, we show that most cytokine responses are organized around a physiological response to specific pathogens, rather than around a particular immune pathway or cytokine. We then correlated genome-wide SNP genotypes with cytokine abundance and identified six cytokine QTLs. Among them, a cytokine QTL at NAA35-GOLM1 locus markedly modulates IL-6 production in response to multiple pathogens, and associated with susceptibility to candidemia. Furthermore, the cytokine QTLs we identified are enriched among SNPs previously associated with infectious diseases and heart diseases. These data reveal and begin to explain the variability in cytokine production by human immune cells in response to pathogens. PMID:27376574

  9. New insights about host response to smallpox using microarray data

    PubMed Central

    Esteves, Gustavo H; Simoes, Ana CQ; Souza, Estevao; Dias, Rodrigo A; Ospina, Raydonal; Venancio, Thiago M

    2007-01-01

    Background Smallpox is a lethal disease that was endemic in many parts of the world until eradicated by massive immunization. Due to its lethality, there are serious concerns about its use as a bioweapon. Here we analyze publicly available microarray data to further understand survival of smallpox infected macaques, using systems biology approaches. Our goal is to improve the knowledge about the progression of this disease. Results We used KEGG pathways annotations to define groups of genes (or modules), and subsequently compared them to macaque survival times. This technique provided additional insights about the host response to this disease, such as increased expression of the cytokines and ECM receptors in the individuals with higher survival times. These results could indicate that these gene groups could influence an effective response from the host to smallpox. Conclusion Macaques with higher survival times clearly express some specific pathways previously unidentified using regular gene-by-gene approaches. Our work also shows how third party analysis of public datasets can be important to support new hypotheses to relevant biological problems. PMID:17718913

  10. New insights about host response to smallpox using microarray data.

    PubMed

    Esteves, Gustavo H; Simoes, Ana C Q; Souza, Estevao; Dias, Rodrigo A; Ospina, Raydonal; Venancio, Thiago M

    2007-08-24

    Smallpox is a lethal disease that was endemic in many parts of the world until eradicated by massive immunization. Due to its lethality, there are serious concerns about its use as a bioweapon. Here we analyze publicly available microarray data to further understand survival of smallpox infected macaques, using systems biology approaches. Our goal is to improve the knowledge about the progression of this disease. We used KEGG pathways annotations to define groups of genes (or modules), and subsequently compared them to macaque survival times. This technique provided additional insights about the host response to this disease, such as increased expression of the cytokines and ECM receptors in the individuals with higher survival times. These results could indicate that these gene groups could influence an effective response from the host to smallpox. Macaques with higher survival times clearly express some specific pathways previously unidentified using regular gene-by-gene approaches. Our work also shows how third party analysis of public datasets can be important to support new hypotheses to relevant biological problems.

  11. Immunobiologic effects of cytokine gene transfer of the B16-BL6 melanoma.

    PubMed

    Strome, S E; Krauss, J C; Cameron, M J; Forslund, K; Shu, S; Chang, A E

    1993-12-01

    The genetic modification of tumors offers an approach to modulate the host immune response to relatively weak native tumor antigens. We examined the immunobiologic effects of various cytokine genes transferred into the poorly immunogenic B16-BL6 murine melanoma. Retroviral expression vectors containing cDNAs for interleukin 2, interleukin 4, interferon gamma, or a neomycin-resistant control were electroporated into a B16-BL6 tumor clone. Selected transfected clones were examined for in vitro cytokine secretion and in vivo tumorigenicity. When cells from individual clones were injected intradermally into syngeneic mice, the interleukin 4-secreting clone grew significantly slower than did the neomycin-resistant transfected control, while the growth of the interleukin 2- and interferon gamma-expressing clones was not affected. Despite minimal cytokine secretion by interferon gamma-transfected cells, these cells expressed upregulated major histocompatibility class I antigen and were more susceptible to lysis by allosensitized cytotoxic T lymphocytes compared with parental or neomycin-resistant transfected tumor targets. We observed diverse immunobiologic effects associated with cytokine gene transfer into the B16-BL6 melanoma. Interleukin 4 transfection of tumor resulted in decreased in vivo tumorigenicity that may be related to a host immune response. Further studies to evaluate the host T-cell response to these gene-modified tumors are being investigated.

  12. Association of O-Antigen Serotype with the Magnitude of Initial Systemic Cytokine Responses and Persistence in the Urinary Tract.

    PubMed

    Horvath, Dennis J; Patel, Ashay S; Mohamed, Ahmad; Storm, Douglas W; Singh, Chandra; Li, Birong; Zhang, Jingwen; Koff, Stephen A; Jayanthi, Venkata R; Mason, Kevin M; Justice, Sheryl S

    2016-01-11

    Urinary tract infection (UTI) is one of the most common ailments requiring both short-term and prophylactic antibiotic therapies. Progression of infection from the bladder to the kidney is associated with more severe clinical symptoms (e.g., fever and vomiting) as well as with dangerous disease sequelae (e.g., renal scaring and sepsis). Host-pathogen interactions that promote bacterial ascent to the kidney are not completely understood. Prior studies indicate that the magnitude of proinflammatory cytokine elicitation in vitro by clinical isolates of uropathogenic Escherichia coli (UPEC) inversely correlates with the severity of clinical disease. Therefore, we hypothesize that the magnitude of initial proinflammatory responses during infection defines the course and severity of disease. Clinical UPEC isolates obtained from patients with a nonfebrile UTI elicited high systemic proinflammatory responses early during experimental UTI in a murine model and were attenuated in bladder and kidney persistence. Conversely, UPEC isolates obtained from patients with febrile UTI elicited low systemic proinflammatory responses early during experimental UTI and exhibited prolonged persistence in the bladder and kidney. Soluble factors in the supernatant from saturated cultures as well as the lipopolysaccharide (LPS) serotype correlated with the magnitude of proinflammatory responses in vitro. Our data suggest that the structure of the O-antigen sugar moiety of the LPS may determine the strength of cytokine induction by epithelial cells. Moreover, the course and severity of disease appear to be the consequence of the magnitude of initial cytokines produced by the bladder epithelium during infection. The specific host-pathogen interactions that determine the extent and course of disease are not completely understood. Our studies demonstrate that modest changes in the magnitude of cytokine production observed using in vitro models of infection translate into significant

  13. Host Th1/Th2 immune response to Taenia solium cyst antigens in relation to cyst burden of neurocysticercosis.

    PubMed

    Tharmalingam, J; Prabhakar, A T; Gangadaran, P; Dorny, P; Vercruysse, J; Geldhof, P; Rajshekhar, V; Alexander, M; Oommen, A

    2016-10-01

    Neurocysticercosis (NCC), Taenia solium larval infection of the brain, is an important cause of acquired seizures in endemic countries, which relate to number, location and degenerating cysts in the brain. Multicyst infections are common in endemic countries although single-cyst infection prevails in India. Single-cyst infections in an endemic country suggest a role for host immunity limiting the infection. This study examined ex vivo CD4(+) T cells and in vitro Th1 and Th2 cytokine responses to T. solium cyst antigens of peripheral blood mononuclear cells of healthy subjects from endemic and nonendemic regions and of single- and multicyst-infected patients for association with cyst burden of NCC. T. solium cyst antigens elicited a Th1 cytokine response in healthy subjects of T. solium-endemic and T. solium-non-endemic regions and those with single-cyst infections and a Th2 cytokine response from subjects with multicyst neurocysticercosis. Multicyst neurocysticercosis subjects also exhibited low levels of effector memory CD4(+) T cells. Th1 cytokine response of T. solium exposure and low infectious loads may aid in limiting cyst number. Th2 cytokines and low effector T cells may enable multiple-cyst infections to establish and persist. © 2016 John Wiley & Sons Ltd.

  14. Host Responses to the Pathogen Mycobacterium avium subsp. paratuberculosis and Beneficial Microbes Exhibit Host Sex Specificity

    PubMed Central

    McMahon, K. Wyatt; Chang, David; Brashears, Mindy M.

    2014-01-01

    Differences between microbial pathogenesis in male and female hosts are well characterized in disease conditions connected to sexual transmission. However, limited biological insight is available on variances attributed to sex specificity in host-microbe interactions, and it is most often a minimized variable outside these transmission events. In this work, we studied two gut microbes—a pathogen, Mycobacterium avium subsp. paratuberculosis, and a probiotic, Lactobacillus animalis NP-51—and the interaction between each agent and the male and female gastrointestinal systems. This trial was conducted in BALB/c mice (n = 5 per experimental group and per sex at a given time point), with analysis at four time points over 180 days. Host responses to M. avium subsp. paratuberculosis and L. animalis were sensitive to sex. Cytokines that were significantly different (P ≤ 0.05) between the sexes included interleukin-1α/β (IL-1α/β), IL-17, IL-6, IL-10, IL-12, and gamma interferon (IFN-γ) and were dependent on experimental conditions. However, granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), and IL-13/23 showed no sex specificity. A metabolomics study indicated a 0.5- to 2.0-fold (log2 scale) increase in short-chain fatty acids (butyrate and acetate) in males and greater increases in o-phosphocholine or histidine from female colon tissues; variances distinct to each sex were observed with age or long-term probiotic consumption. Two genera, Staphylococcus and Roseburia, were consistently overrepresented in females compared to males; other species were specific to one sex but fluctuated depending on experimental conditions. The differences observed suggest that male and female gut tissues and microbiota respond to newly introduced microorganisms differently and that gut-associated microorganisms with host immune system responses and metabolic activity are supported by biology distinct to the host sex. PMID:24814797

  15. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity.

    PubMed

    Schirmer, Melanie; Smeekens, Sanne P; Vlamakis, Hera; Jaeger, Martin; Oosting, Marije; Franzosa, Eric A; Ter Horst, Rob; Jansen, Trees; Jacobs, Liesbeth; Bonder, Marc Jan; Kurilshikov, Alexander; Fu, Jingyuan; Joosten, Leo A B; Zhernakova, Alexandra; Huttenhower, Curtis; Wijmenga, Cisca; Netea, Mihai G; Xavier, Ramnik J

    2016-11-03

    Gut microbial dysbioses are linked to aberrant immune responses, which are often accompanied by abnormal production of inflammatory cytokines. As part of the Human Functional Genomics Project (HFGP), we investigate how differences in composition and function of gut microbial communities may contribute to inter-individual variation in cytokine responses to microbial stimulations in healthy humans. We observe microbiome-cytokine interaction patterns that are stimulus specific, cytokine specific, and cytokine and stimulus specific. Validation of two predicted host-microbial interactions reveal that TNFα and IFNγ production are associated with specific microbial metabolic pathways: palmitoleic acid metabolism and tryptophan degradation to tryptophol. Besides providing a resource of predicted microbially derived mediators that influence immune phenotypes in response to common microorganisms, these data can help to define principles for understanding disease susceptibility. The three HFGP studies presented in this issue lay the groundwork for further studies aimed at understanding the interplay between microbial, genetic, and environmental factors in the regulation of the immune response in humans. PAPERCLIP. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Differences in innate cytokine responses between European and African children.

    PubMed

    Labuda, Lucja A; de Jong, Sanne E; Meurs, Lynn; Amoah, Abena S; Mbow, Moustapha; Ateba-Ngoa, Ulysse; van der Ham, Alwin J; Knulst, André C; Yazdanbakhsh, Maria; Adegnika, Ayola A

    2014-01-01

    Although differences in immunological responses between populations have been found in terms of vaccine efficacy, immune responses to infections and prevalence of chronic inflammatory diseases, the mechanisms responsible for these differences are not well understood. Therefore, innate cytokine responses mediated by various classes of pattern-recognition receptors including Toll-like receptors (TLR), C-type lectin receptors (CLRs) and nucleotide-binding oligomerisation domain-like receptors (NLRs) were compared between Dutch (European), semi-urban and rural Gabonese (African) children. Whole blood was stimulated for 24 hours and the pro-inflammatory tumor necrosis factor (TNF) and the anti-inflammatory/regulatory interleukin-10 (IL-10) cytokines in culture supernatant were measured by enzyme-linked immunosorbent assay (ELISA). Gabonese children had a lower pro-inflammatory response to poly(I:C) (TLR3 ligand), but a higher pro-inflammatory response to FSL-1 (TLR2/6 ligand), Pam3 (TLR2/1 ligand) and LPS (TLR4 ligand) compared to Dutch children. Anti-inflammatory responses to Pam3 were also higher in Gabonese children. Non-TLR ligands did not induce substantial cytokine production on their own. Interaction between various TLR and non-TLR receptors was further assessed, but no differences were found between the three populations. In conclusion, using a field applicable assay, significant differences were observed in cytokine responses between European and African children to TLR ligands, but not to non-TLR ligands.

  17. DNA methylation differentially regulates cytokine secretion in gingival epithelia in response to bacterial challenges.

    PubMed

    Drury, Jeanie L; Chung, Whasun Oh

    2015-03-01

    Epigenetic modifications are changes in gene expression without altering DNA sequence. We previously reported that bacteria-specific innate immune responses are regulated by epigenetic modifications. Our hypothesis is that DNA methylation affects gingival cytokine secretion in response to bacterial stimulation. Gingival epithelial cells (GECs) were treated with DNMT-1 inhibitors prior to Porphyromonas gingivalis (Pg) or Fusobacterium nucleatum (Fn) exposure. Protein secretion was assessed using ELISA. Gene expression was quantified using qRT-PCR. The ability of bacteria to invade inhibitor pretreated GECs was assessed utilizing flow cytometry. Changes were compared to unstimulated GECs. GEC upregulation of IL-6 and CXCL1 by Pg or Fn stimulation was significantly diminished by inhibitor pretreatment. Pg stimulated IL-1α secretion and inhibitor pretreatment significantly enhanced this upregulation, while Fn alone or with inhibitor pretreatment had no effect on IL-1α expression. GEC upregulation of human beta-definsin-2 in response to Pg and Fn exposure was enhanced following the inhibitor pretreatment. GEC susceptibility to bacterial invasion was unaltered. These results suggest that DNA methylation differentially affects gingival cytokine secretion in response to Pg or Fn. Our data provide basis for better understanding of how epigenetic modifications, brought on by exposure to oral bacteria, will subsequently affect host susceptibility to oral diseases. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Association of Gender With Outcome and Host Response in Critically Ill Sepsis Patients.

    PubMed

    van Vught, Lonneke A; Scicluna, Brendon P; Wiewel, Maryse A; Hoogendijk, Arie J; Klein Klouwenberg, Peter M C; Ong, David S Y; Cremer, Olaf L; Horn, Janneke; Franitza, Marek; Toliat, Mohammad R; Nürnberg, Peter; Bonten, Marc M J; Schultz, Marcus J; van der Poll, Tom

    2017-11-01

    To determine the association of gender with the presentation, outcome, and host response in critically ill patients with sepsis. A prospective observational cohort study in the ICU of two tertiary hospitals between January 2011 and January 2014. All consecutive critically ill patients admitted with sepsis, involving 1,815 admissions (1,533 patients). The host response was evaluated on ICU admission by measuring 19 plasma biomarkers reflecting organ systems implicated in sepsis pathogenesis (1,205 admissions) and by applying genome-wide blood gene expression profiling (582 admissions). Sepsis patients admitted to the ICU were more frequently males (61.0%; p < 0.0001 vs females). Baseline characteristics were not different between genders. Urosepsis was more common in females; endocarditis and mediastinitis in men. Disease severity was similar throughout ICU stay. Mortality was similar up to 1 year after ICU admission, and gender was not associated with 90-day mortality in multivariate analyses in a variety of subgroups. Although plasma proteome analyses (including systemic inflammatory and cytokine responses, and activation of coagulation) were largely similar between genders, females showed enhanced endothelial cell activation; this difference was virtually absent in patients more than 55 years old. More than 80% of the leukocyte blood gene expression response was similar in male and female patients. The host response and outcome in male and female sepsis patients requiring ICU admission are largely similar.

  19. Immunotherapeutic implications of IL-6 blockade for cytokine storm.

    PubMed

    Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu

    2016-07-01

    IL-6 contributes to host defense against infections and tissue injuries. However, exaggerated, excessive synthesis of IL-6 while fighting environmental stress leads to an acute severe systemic inflammatory response known as 'cytokine storm', since high levels of IL-6 can activate the coagulation pathway and vascular endothelial cells but inhibit myocardial function. Remarkable beneficial effects of IL-6 blockade therapy using a humanized anti-IL-6 receptor antibody, tocilizumab were recently observed in patients with cytokine release syndrome complicated by T-cell engaged therapy. In this review we propose the possibility that IL-6 blockade may constitute a novel therapeutic strategy for other types of cytokine storm, such as the systemic inflammatory response syndrome including sepsis, macrophage activation syndrome and hemophagocytic lymphohistiocytosis.

  20. Comparison of the Host Immune Response to Herpes Simplex Virus 1 (HSV-1) and HSV-2 at Two Different Mucosal Sites

    PubMed Central

    Zheng, Min; Conrady, Christopher D.; Ward, Julie M.; Bryant-Hudson, Katie M.

    2012-01-01

    A study was undertaken to compare the host immune responses to herpes simplex virus 1 (HSV-1) and HSV-2 infection by the ocular or genital route in mice. Titers of HSV-2 from tissue samples were elevated regardless of the route of infection. The elevation in titers of HSV-2, including cell infiltration and cytokine/chemokine levels in the central nervous system relative to those found following HSV-1 infection, was correlative with inflammation. These results underscore a dichotomy between the host immune responses to closely related alphaherpesviruses. PMID:22532684

  1. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza.

    PubMed

    Bermejo-Martin, Jesus F; Ortiz de Lejarazu, Raul; Pumarola, Tomas; Rello, Jordi; Almansa, Raquel; Ramírez, Paula; Martin-Loeches, Ignacio; Varillas, David; Gallegos, Maria C; Serón, Carlos; Micheloud, Dariela; Gomez, Jose Manuel; Tenorio-Abreu, Alberto; Ramos, María J; Molina, M Lourdes; Huidobro, Samantha; Sanchez, Elia; Gordón, Mónica; Fernández, Victoria; Del Castillo, Alberto; Marcos, Ma Angeles; Villanueva, Beatriz; López, Carlos Javier; Rodríguez-Domínguez, Mario; Galan, Juan-Carlos; Cantón, Rafael; Lietor, Aurora; Rojo, Silvia; Eiros, Jose M; Hinojosa, Carmen; Gonzalez, Isabel; Torner, Nuria; Banner, David; Leon, Alberto; Cuesta, Pablo; Rowe, Thomas; Kelvin, David J

    2009-01-01

    Human host immune response following infection with the new variant of A/H1N1 pandemic influenza virus (nvH1N1) is poorly understood. We utilize here systemic cytokine and antibody levels in evaluating differences in early immune response in both mild and severe patients infected with nvH1N1. We profiled 29 cytokines and chemokines and evaluated the haemagglutination inhibition activity as quantitative and qualitative measurements of host immune responses in serum obtained during the first five days after symptoms onset, in two cohorts of nvH1N1 infected patients. Severe patients required hospitalization (n = 20), due to respiratory insufficiency (10 of them were admitted to the intensive care unit), while mild patients had exclusively flu-like symptoms (n = 15). A group of healthy donors was included as control (n = 15). Differences in levels of mediators between groups were assessed by using the non parametric U-Mann Whitney test. Association between variables was determined by calculating the Spearman correlation coefficient. Viral load was performed in serum by using real-time PCR targeting the neuraminidase gene. Increased levels of innate-immunity mediators (IP-10, MCP-1, MIP-1beta), and the absence of anti-nvH1N1 antibodies, characterized the early response to nvH1N1 infection in both hospitalized and mild patients. High systemic levels of type-II interferon (IFN-gamma) and also of a group of mediators involved in the development of T-helper 17 (IL-8, IL-9, IL-17, IL-6) and T-helper 1 (TNF-alpha, IL-15, IL-12p70) responses were exclusively found in hospitalized patients. IL-15, IL-12p70, IL-6 constituted a hallmark of critical illness in our study. A significant inverse association was found between IL-6, IL-8 and PaO2 in critical patients. While infection with the nvH1N1 induces a typical innate response in both mild and severe patients, severe disease with respiratory involvement is characterized by early secretion of Th17 and Th1 cytokines usually

  2. Host Cell Responses to Persistent Mycoplasmas - Different Stages in Infection of HeLa Cells with Mycoplasma hominis

    PubMed Central

    Hopfe, Miriam; Deenen, René; Degrandi, Daniel; Köhrer, Karl; Henrich, Birgit

    2013-01-01

    Mycoplasma hominis is a facultative human pathogen primarily associated with bacterial vaginosis and pelvic inflammatory disease, but it is also able to spread to other sites, leading to arthritis or, in neonates, meningitis. With a minimal set of 537 annotated genes, M. hominis is the second smallest self-replicating mycoplasma and thus an ideal model organism for studying the effects of an infectious agent on its host more closely. M. hominis adherence, colonisation and invasion of HeLa cells were characterised in a time-course study using scanning electron microscopy, confocal microscopy and microarray-based analysis of the HeLa cell transcriptome. At 4 h post infection, cytoadherence of M. hominis to the HeLa cell surface was accompanied by differential regulation of 723 host genes (>2 fold change in expression). Genes associated with immune responses and signal transduction pathways were mainly affected and components involved in cell-cycle regulation, growth and death were highly upregulated. At 48 h post infection, when mycoplasma invasion started, 1588 host genes were differentially expressed and expression of genes for lysosome-specific proteins associated with bacterial lysis was detected. In a chronically infected HeLa cell line (2 weeks), the proportion of intracellular mycoplasmas reached a maximum of 10% and M. hominis-filled protrusions of the host cell membrane were seen by confocal microscopy, suggesting exocytotic dissemination. Of the 1972 regulated host genes, components of the ECM-receptor interaction pathway and phagosome-related integrins were markedly increased. The immune response was quite different to that at the beginning of infection, with a prominent induction of IL1B gene expression, affecting pathways of MAPK signalling, and genes connected with cytokine-cytokine interactions and apoptosis. These data show for the first time the complex, time-dependent reaction of the host directed at mycoplasmal clearance and the counter measures of

  3. The Effective Regulation of Pro- and Anti-inflammatory Cytokines Induced by Combination of PA-MSHA and BPIFB1 in Initiation of Innate Immune Responses.

    PubMed

    Zhou, Weiqiang; Duan, Zhiwen; Yang, Biao; Xiao, Chunling

    2017-01-01

    PA-MSHA and BPIFB1 play especially important roles in triggering innate immune responses by inducing production of pro- or anti-inflammatory cytokines in the oral cavity and upper airway. We found that PA-MSHA had a strong ability to activate pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. However, BPIFB1 alone did not express a directly inductive effect. With incubation of PA-MSHA and BPIFB1, the combination can activate the CD14/TLR4/MyD88 complex and induce secretion of subsequent downstream cytokines. We used a proteome profiler antibody array to evaluate the phosphokinases status with PA-MSHA and BPIFB1 treatment. The results showed that the activation of MAPK, STAT, and PI-3K pathways is involved in PA-MSHA-BPIFB1 treatment, and that the related pathways control the secretion of targeting cytokines in the downstream. When we assessed the content changes of cytokines, we found that PA-MSHA-BPIFB1 treatment increased the production of pro-inflammatory cytokines in the early phase of treatment and induced the increase of IL-4 in the late phase. Our observations suggest that PA-MSHA-BPIFB1 stimulates the release of pro-inflammatory cytokines, and thereby initiates the innate immune system against inflammation. Meanwhile, the gradual release of anti-inflammatory cytokine IL-4 by PA-MSHA-BPIFB1 can also regulate the degree of inflammatory response; thus the host can effectively resist the environmental risks, but also manipulate inflammatory response in an appropriate and adjustable manner.

  4. Reprogramming the Host Response in Bacterial Meningitis: How Best To Improve Outcome?

    PubMed Central

    van der Flier, M.; Geelen, S. P. M.; Kimpen, J. L. L.; Hoepelman, I. M.; Tuomanen, E. I.

    2003-01-01

    Despite effective antibiotic therapy, bacterial meningitis is still associated with high morbidity and mortality in both children and adults. Animal studies have shown that the host inflammatory response induced by bacterial products in the subarachnoid space is associated with central nervous system injury. Thus, attenuation of inflammation early in the disease process might improve the outcome. The feasibility of such an approach is demonstrated by the reduction in neurologic sequelae achieved with adjuvant dexamethasone therapy. Increased understanding of the pathways of inflammation and neuronal damage has suggested rational new targets to modulate the host response in bacterial meningitis, but prediction of which agents would be optimal has been difficult. This review compares the future promise of benefit from the use of diverse adjuvant agents. It appears unlikely that inhibition of a single proinflammatory mediator will prove useful in clinical practice, but several avenues to reprogram a wider array of mediators simultaneously are encouraging. Particularly promising are efforts to adjust combinations of cytokines, to inhibit neuronal apoptosis and to enhance brain repair. PMID:12857775

  5. Increased Th1 and Th2 allergen-induced cytokine responses in children with atopic disease.

    PubMed

    Smart, J M; Kemp, A S

    2002-05-01

    Polyclonal cytokine responses following stimulation of T cells with mitogens or superantigens provides information on cytokine production from a wide range of T cells. Alternatively allergen-induced T cell responses can provide information on cytokine production by allergen-reactive T cells. While there is evidence of increased Th2 and reduced Th1 cytokine production following T cell stimulation with non-specific mitogens and superantigens, the evidence that Th1 cytokine production to allergens is decreased in line with a postulated imbalance in Th1/Th2 responses is unclear, with studies finding decreased, no difference or increased IFN-gamma responses to allergens in atopic subjects. To examine childhood polyclonal and allergen-induced cytokine responses in parallel to evaluate cytokine imbalances in childhood atopic disease. PBMC cytokine responses were examined in response to a polyclonal stimulus, staphylococcal superantigen (SEB), in parallel with two inhalant allergens, house dust mite (HDM) and rye grass pollen (RYE), and an ingested allergen, ovalbumin (OVA), in (a) 35 healthy children (non-atopic) and (b) 36 children with atopic disease (asthma, eczema and/or rhinitis) (atopic). Atopic children had significantly reduced IFN-gamma and increased IL-4 and IL-5 but not IL13 production to SEB superantigen stimulation when compared with non-atopic children. HDM and RYE allergens stimulated significantly increased IFN-gamma, IL-5 and IL-13, while OVA stimulated significantly increased IFN-gamma production in atopic children. We show that a polyclonal stimulus induces a reduced Th1 (IFN-gamma) and increased Th2 (IL-4 and IL-5) cytokine pattern. In contrast, the allergen-induced cytokine responses in atopic children were associated with both increased Th1 (INF-gamma) and Th2 (IL-5 and IL-13) cytokine production. The increased Th1 response to allergen is likely to reflect prior sensitization and indicates that increases in both Th1 and Th2 cytokine production to

  6. Endocrine dysfunction in sepsis: a beneficial or deleterious host response?

    PubMed Central

    Gheorghiţă, Valeriu; Barbu, Alina Elena; Gheorghiu, Monica Livia; Căruntu, Florin Alexandru

    2015-01-01

    Sepsis is a systemic, deleterious inflammatory host response triggered by an infective agent leading to severe sepsis, septic shock and multi-organ failure. The host response to infection involves a complex, organized and coherent interaction between immune, autonomic, neuroendocrine and behavioral systems. Recent data have confirmed that disturbances of the autonomic nervous and neuroendocrine systems could contribute to sepsis-induced organ dysfunction. Through this review, we aimed to summarize the current knowledge about the endocrine dysfunction as response to sepsis, specifically addressed to vasopressin, copeptin, cortisol, insulin and leptin. We searched the following readily accessible, clinically relevant databases: PubMed, UpToDate, BioMed Central. The immune system could be regarded as a “diffuse sensory organ” that signals the presence of pathogens to the brain through different pathways, such as the vagus nerve, endothelial activation/dysfunction, cytokines and neurotoxic mediators and the circumventricular organs, especially the neurohypophysis. The hormonal profile changes substantially as a consequence of inflammatory mediators and microorganism products leading to inappropriately low levels of vasopressin, sick euthyroid syndrome, reduced adrenal responsiveness to ACTH, insulin resistance, hyperglycemia as well as hyperleptinemia. In conclusion, clinical diagnosis of this “pan-endocrine illness” is frequently challenging due to the many limiting factors. The most important benefits of endocrine markers in the management of sepsis may be reflected by their potential to be used as biomarkers in different scoring systems to estimate the severity of the disease and the risk of death. PMID:25763364

  7. Co-infected C57BL/6 mice mount appropriately polarized and compartmentalized cytokine responses to Litomosoides sigmodontis and Leishmania major but disease progression is altered.

    PubMed

    Lamb, T J; Graham, A L; Le Goff, L; Allen, J E

    2005-09-01

    This study examines the capacity of the mammalian host to fully compartmentalize the response to infection with type 1 vs. type 2 inducing organisms that infect different sites in the body. For this purpose, C57BL/6 mice were infected with the rodent filarial nematode Litomosoides sigmodontis followed by footpad infection with the protozoan parasite Leishmania major. In this host, nematode infection is established in the thoracic cavity but no microfilariae circulate in the bloodstream. We utilized quantitative ELISPOT analysis of IL-4 and IFN-gamma producing cells to assess cytokine bias and response magnitude in the lymph nodes draining the sites of infection as well as more systemic responses in the spleen and serum. Contrary to other systems where co-infection has a major impact on bias, cytokine ratios were unaltered in either local lymph node. The most notable effect of co-infection was an unexpected increase in the magnitude of the IFN-gamma response to L. major in mice previously infected with L. sigmodontis. Further, lesion development was significantly delayed in these mice. Thus, despite the ability of the immune system to appropriately compartmentalize the immune response, interactions between responses at distinct infection sites can alter disease progression.

  8. Understanding the Inflammatory Cytokine Response in Pneumonia and Sepsis

    PubMed Central

    Kellum, John A.; Kong, Lan; Fink, Mitchell P.; Weissfeld, Lisa A.; Yealy, Donald M.; Pinsky, Michael R.; Fine, Jonathan; Krichevsky, Alexander; Delude, Russell L.; Angus, Derek C.

    2015-01-01

    Background Severe sepsis is common and frequently fatal, and community-acquired pneumonia (CAP) is the leading cause. Although severe sepsis is often attributed to uncontrolled and unbalanced inflammation, evidence from humans with infection syndromes across the breadth of disease is lacking. In this study we describe the systemic cytokine response to pneumonia and determine if specific patterns, including the balance of pro-inflammatory and anti-inflammatory markers, are associated with severe sepsis and death. Methods This is a cohort study of 1886 subjects hospitalized with CAP through the emergency departments in 28 US academic and community hospitals. We defined severe sepsis as CAP complicated by new-onset organ dysfunction, following international consensus conference criteria. We measured plasma tumor necrosis factor, IL-6 (interleukin 6), and IL-10 levels daily for the first week and weekly thereafter. Our main outcome measures were severe sepsis and 90-day mortality. Results A total of 583 patients developed severe sepsis (31%), of whom 149 died (26%). Systemic cytokine level elevation occurred in 82% of all subjects with CAP. Mean cytokine concentrations were highest at presentation, declined rapidly over the first few days, but remained elevated throughout the first week, beyond resolution of clinical signs of infection. Cytokine levels were highest in fatal severe sepsis and lowest in CAP with no severe sepsis. Unbalanced (high/low) cytokine patterns were unusual (4.6%) and not associated with decreased survival. Highest risk of death was with combined high levels of the proinflammatory IL-6 and anti-inflammatory IL-10 cytokine activity (hazard ratio, 20.5; 95% confidence interval, 10.8–39.0) (P<.001). Conclusions The circulating cytokine response to pneumonia is heterogeneous and continues for more than a week after presentation, with considerable overlap between those who do and do not develop severe sepsis. Unbalanced activation is uncommon, and

  9. TSLP-dependent basophils promote TH2 cytokine responses following intestinal helminth infection1

    PubMed Central

    Giacomin, Paul R.; Siracusa, Mark C.; Walsh, Kevin P.; Grencis, Richard K.; Kubo, Masato; Comeau, Michael R.; Artis, David

    2012-01-01

    CD4+ T helper type 2 (TH2) cytokine responses promote the development of allergic inflammation and are critical for immunity to parasitic helminth infection. Recent studies highlighted that basophils can promote TH2 cytokine-mediated inflammation and that phenotypic and functional heterogeneity exists between classical IL-3-elicited basophils versus TSLP-elicited basophils. However, whether distinct basophil populations develop following helminth infection, and their relative contributions to anti-helminth immune responses remain to be defined. Following Trichinella spiralis infection of mice, we show that basophil responses are rapidly induced in multiple tissue compartments, including intestinal-draining lymph nodes. Trichinella-induced basophil responses were IL-3-IL-3R-independent but critically dependent on TSLP-TSLPR interactions. Selective depletion of basophils following Trichinella infection impaired infection-induced CD4+ TH2 cytokine responses, suggesting that TSLP-dependent basophils augment TH2 cytokine responses following helminth infection. The identification and functional classification of TSLP-dependent basophils in a helminth infection model, coupled with their recently-described role in promoting atopic dermatitis, suggests these cells may be a critical population in promoting TH2 cytokine-associated inflammation in a variety of inflammatory or infectious settings. Collectively, these data suggest that the TSLP-basophil pathway may represent a new target in the design of therapeutic intervention strategies to promote or limit TH2 cytokine-dependent immunity and inflammation. PMID:23024277

  10. Pattern recognition receptor-mediated cytokine response in infants across 4 continents.

    PubMed

    Smolen, Kinga K; Ruck, Candice E; Fortuno, Edgardo S; Ho, Kevin; Dimitriu, Pedro; Mohn, William W; Speert, David P; Cooper, Philip J; Esser, Monika; Goetghebuer, Tessa; Marchant, Arnaud; Kollmann, Tobias R

    2014-03-01

    Susceptibility to infection as well as response to vaccination varies among populations. To date, the underlying mechanisms responsible for these clinical observations have not been fully delineated. Because innate immunity instructs adaptive immunity, we hypothesized that differences between populations in innate immune responses may represent a mechanistic link to variation in susceptibility to infection or response to vaccination. Determine whether differences in innate immune responses exist among infants from different continents of the world. We determined the innate cytokine response following pattern recognition receptor (PRR) stimulation of whole blood from 2-year-old infants across 4 continents (Africa, North America, South America, and Europe). We found that despite the many possible genetic and environmental exposure differences in infants across 4 continents, innate cytokine responses were similar for infants from North America, South America, and Europe. However, cells from South African infants secreted significantly lower levels of cytokines than did cells from infants from the 3 other sites, and did so following stimulation of extracellular and endosomal but not cytosolic PRRs. Substantial differences in innate cytokine responses to PRR stimulation exist among different populations of infants that could not have been predicted. Delineating the underlying mechanism(s) for these differences will not only aid in improving vaccine-mediated protection but possibly also provide clues for the susceptibility to infection in different regions of the world. Copyright © 2013 The Authors. Published by Mosby, Inc. All rights reserved.

  11. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design

    PubMed Central

    Brown, Aisling F.; Leech, John M.; Rogers, Thomas R.; McLoughlin, Rachel M.

    2014-01-01

    In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity. PMID:24409186

  12. A putative lateral flagella of the cystic fibrosis pathogen Burkholderia dolosa regulates swimming motility and host cytokine production

    PubMed Central

    Clark, Bradley S.; Weatherholt, Molly; Renaud, Diane; Scott, David; LiPuma, John J.; Priebe, Gregory; Gerard, Craig

    2018-01-01

    Burkholderia dolosa caused an outbreak in the cystic fibrosis clinic at Boston Children’s Hospital and was associated with high mortality in these patients. This species is part of a larger complex of opportunistic pathogens known as the Burkholderia cepacia complex (Bcc). Compared to other species in the Bcc, B. dolosa is highly transmissible; thus understanding its virulence mechanisms is important for preventing future outbreaks. The genome of one of the outbreak strains, AU0158, revealed a homolog of the lafA gene encoding a putative lateral flagellin, which, in other non-Bcc species, is used for movement on solid surfaces, attachment to host cells, or movement inside host cells. Here, we analyzed the conservation of the lafA gene and protein sequences, which are distinct from those of the polar flagella, and found lafA homologs to be present in numerous β-proteobacteria but notably absent from most other Bcc species. A lafA deletion mutant in B. dolosa showed a greater swimming motility than wild-type due to an increase in the number of polar flagella, but did not appear to contribute to biofilm formation, host cell invasion, or murine lung colonization or persistence over time. However, the lafA gene was important for cytokine production in human peripheral blood mononuclear cells, suggesting it may have a role in recognition by the human immune response. PMID:29346379

  13. At the Bench: Helicobacter pylori, dysregulated host responses, DNA damage, and gastric cancer

    PubMed Central

    Hardbower, Dana M.; Peek, Richard M.; Wilson, Keith T.

    2014-01-01

    Helicobacter pylori infection is the strongest known risk factor for the development of gastric cancer. Given that ∼50% of the global population is infected with this pathogen, there is great impetus to elucidate underlying causes that mediate progression from infection to cancer. Recent evidence suggests that H. pylori-induced chronic inflammation and oxidative stress create an environment conducive to DNA damage and tissue injury. DNA damage leads to genetic instability and eventually, neoplastic transformation. Pathogen-encoded virulence factors induce a robust but futile immune response and alter host pathways that lower the threshold for carcinogenesis, including DNA damage repair, polyamine synthesis and catabolism, antioxidant responses, and cytokine production. Collectively, such dysregulation creates a protumorigenic microenvironment within the stomach. This review seeks to address each of these aspects of H. pylori infection and to call attention to areas of particular interest within this field of research. This review also seeks to prioritize areas of translational research related to H. pylori-induced gastric cancer based on insights garnered from basic research in this field. See related review by Dalal and Moss, At the Bedside: H. pylori, dysregulated host responses, DNA damage, and gastric cancer. PMID:24868089

  14. Oral warfarin intake affects skin inflammatory cytokine responses in rats.

    PubMed

    Aleksandrov, Aleksandra Popov; Mirkov, Ivana; Zolotarevski, Lidija; Ninkov, Marina; Mileusnic, Dina; Kataranovski, Dragan; Kataranovski, Milena

    2017-09-01

    Warfarin is an anticoagulant used in prevention/prophylaxis of thromboembolism. Besides the effects on coagulation, non-hemorrhagic reactions have also been documented. Although cutaneous reactions were reported in some patients, the impact on skin immunity was not explored. In the present paper, the effect of 30-day oral warfarin intake on skin cytokine responses in rats was analyzed. Increased release of inflammatory cytokines (TNF, IL-1β and IL-10) was noted by skin explants from rats which received warfarin, but without effect on IL-6. No impact on epidermal cell cytokine secretion was seen, except a tendency of an increase of IL-6 response to stimulation with microbial product lipopolysaccharide (LPS). Topical application of contact allergen dinitrochlorobenzene (DNCB) resulted in slight (numerical solely) increase of TNF release by skin explants of warfarin-treated animals, while epidermal cells responded by increased secretion of all four cytokines examined. The data presented provide new information on the potential of oral warfarin to modulate skin innate immune activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cytokine Networking in Lungs of Immunocompetent Mice in Response to Inhaled Aspergillus fumigatus

    PubMed Central

    Brieland, Joan K.; Jackson, Craig; Menzel, Fred; Loebenberg, David; Cacciapuoti, Anthony; Halpern, Judy; Hurst, Stephen; Muchamuel, Tony; Debets, Reno; Kastelein, Rob; Churakova, Tatyana; Abrams, John; Hare, Roberta; O'Garra, Anne

    2001-01-01

    Cytokine networking in the lung in response to inhaled Aspergillus fumigatus was assessed using a murine model of primary pulmonary aspergillosis in immunocompetent Crl:CF-1 mice. Inhalation of virulent A. fumigatus (6 × 106 CFU) resulted in the induction of interleukin 18 (IL-18), tumor necrosis factor alpha (TNF-α), IL-12, and gamma interferon (IFN-γ) protein in bronchoalveolar lavage fluid and/or lung tissue. Induction of immunoreactive IL-18 preceded induction of TNF-α protein, which preceded induction of immunoreactive IL-12 and IFN-γ. Real-time reverse transcriptase (RT) PCR analysis of infected lung tissue demonstrated that induction of IL-18 protein also preceded induction of pulmonary TNF-α, IL-12, and IFN-γ mRNAs. Mice were subsequently treated with cytokine-specific neutralizing monoclonal antibodies (MAbs) to the IL-18 receptor (anti-IL-18R MAb), TNF-α (anti-TNF-α MAb), IL-12 (anti-IL-12 MAb), and/or IFN-γ (anti-IFN-γ MAb), and effects on intrapulmonary cytokine activity and growth of A. fumigatus were assessed in infected lung homogenates. Simultaneous neutralization of IL-12 and IL-18 resulted in decreased levels of immunoreactive TNF-α, while neutralization of IL-18, TNF-α, or IL-12 alone or of IL-18 and IL-12 together resulted in decreased levels of immunoreactive IFN-γ. Simultaneous neutralization of IL-12 and IL-18 or neutralization of TNF-α alone or in combination with IL-12, IL-18, or IFN-γ also resulted in a significant increase in A. fumigatus CFU in lung tissue. Taken together, these results demonstrate that endogenous IL-18, IL-12, and TNF-α, through their modulatory effects on both intrapulmonary cytokine activity and growth of A. fumigatus, play key roles in host defense against primary pulmonary aspergillosis. PMID:11179326

  16. Stratum corneum cytokines and skin irritation response to sodium lauryl sulfate.

    PubMed

    De Jongh, Cindy M; Verberk, Maarten M; Withagen, Carien E T; Jacobs, John J L; Rustemeyer, Thomas; Kezic, Sanja

    2006-06-01

    Little is known about cytokines involved in chronic irritant contact dermatitis. Individual cytokine profiles might explain at least part of the differences in the individual response to irritation. Our objective was to investigate the relation between baseline stratum corneum (SC) cytokine levels and the skin response to a single and a repeated irritation test. This study also aimed to determine changes in SC cytokine levels after repeated irritation. Transepidermal water loss (TEWL) and erythema were measured in 20 volunteers after single 24-hr exposure to 1% sodium lauryl sulfate (SLS), and during and after repeated exposure to 0.1% SLS over a 3-week period. SC cytokine levels were measured from an unexposed skin site and from the repeatedly exposed site. Interleukin (IL)-1alpha decreased by 30% after repeated exposure, while IL-1RA increased 10-fold and IL-8 increased fourfold. Baseline IL-1RA and IL-8 values were predictors of TEWL and erythema after single exposure (r = 0.55-0.61). 6 subjects showed barrier recovery during repeated exposure. Baseline IL-1RA and IL-8 levels are likely to be indicators of higher skin irritability after single exposure to SLS. Barrier repair in some of the subjects might explain the lack of agreement between the TEWL response after single and repeated irritation.

  17. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection

    PubMed Central

    2012-01-01

    Background During malaria infection, multiple pro-inflammatory mediators including IFN-γ, TNF and nitric oxide (NO) play a crucial role in the protection against the parasites. Modulation of host immunity is an important strategy to improve the outcome of malaria infection. Allicin is the major biologically active component of garlic and shows anti-microbial activity. Allicin is also active against protozoan parasites including Plasmodium, which is thought to be mediated by inhibiting cysteine proteases. In this study, the immunomodulatory activities of allicin were assessed during acute malaria infection using a rodent malaria model Plasmodium yoelii 17XL. Methods To determine whether allicin modulates host immune responses against malaria infection, mice were treated with allicin after infection with P. yoelii 17XL. Mortality was checked daily and parasitaemia was determined every other day. Pro-inflammatory mediators and IL-4 were quantified by ELISA, while NO level was determined by the Griess method. The populations of dendritic cells (DCs), macrophages, CD4+ T and regulatory T cells (Treg) were assessed by FACS. Results Allicin reduced parasitaemia and prolonged survival of the host in a dose-dependent manner. This effect is at least partially due to improved host immune responses. Results showed that allicin treatment enhanced the production of pro-inflammatory mediators such as IFN-γ, TNF, IL-12p70 and NO. The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice. In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10. Conclusions Allicin could partially protect host against P. yoelii 17XL through enhancement of the host innate and adaptive immune responses. PMID:22873687

  18. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection.

    PubMed

    Feng, Yonghui; Zhu, Xiaotong; Wang, Qinghui; Jiang, Yongjun; Shang, Hong; Cui, Liwang; Cao, Yaming

    2012-08-08

    During malaria infection, multiple pro-inflammatory mediators including IFN-γ, TNF and nitric oxide (NO) play a crucial role in the protection against the parasites. Modulation of host immunity is an important strategy to improve the outcome of malaria infection. Allicin is the major biologically active component of garlic and shows anti-microbial activity. Allicin is also active against protozoan parasites including Plasmodium, which is thought to be mediated by inhibiting cysteine proteases. In this study, the immunomodulatory activities of allicin were assessed during acute malaria infection using a rodent malaria model Plasmodium yoelii 17XL. To determine whether allicin modulates host immune responses against malaria infection, mice were treated with allicin after infection with P. yoelii 17XL. Mortality was checked daily and parasitaemia was determined every other day. Pro-inflammatory mediators and IL-4 were quantified by ELISA, while NO level was determined by the Griess method. The populations of dendritic cells (DCs), macrophages, CD4+ T and regulatory T cells (Treg) were assessed by FACS. Allicin reduced parasitaemia and prolonged survival of the host in a dose-dependent manner. This effect is at least partially due to improved host immune responses. Results showed that allicin treatment enhanced the production of pro-inflammatory mediators such as IFN-γ, TNF, IL-12p70 and NO. The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice. In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10. Allicin could partially protect host against P. yoelii 17XL through enhancement of the host innate and adaptive immune responses.

  19. An overview of cytokines and cytokine antagonists as therapeutic agents.

    PubMed

    Donnelly, Raymond P; Young, Howard A; Rosenberg, Amy S

    2009-12-01

    Cytokine-based therapies have the potential to provide novel treatments for cancer, autoimmune diseases, and many types of infectious disease. However, to date, the full clinical potential of cytokines as drugs has been limited by a number of factors. To discuss these limitations and explore ways to overcome them, the FDA partnered with the New York Academy of Sciences in March 2009 to host a two-day forum to discuss more effective ways to harness the clinical potential of cytokines and cytokine antagonists as therapeutic agents. The first day was focused primarily on the use of recombinant cytokines as therapeutic agents for treatment of human diseases. The second day focused largely on the use of cytokine antagonists as therapeutic agents for treatment of human diseases. This issue of the Annals includes more than a dozen papers that summarize much of the information that was presented during this very informative two-day conference.

  20. Ixodes scapularis saliva mitigates inflammatory cytokine secretion during Anaplasma phagocytophilum stimulation of immune cells

    PubMed Central

    2012-01-01

    Background Ixodes scapularis saliva enables the transmission of infectious agents to the mammalian host due to its immunomodulatory, anesthetic and anti-coagulant properties. However, how I. scapularis saliva influences host cytokine secretion in the presence of the obligate intracellular rickettsial pathogen Anaplasma phagocytophilum remains elusive. Methods Bone marrow derived macrophages (BMDMs) were stimulated with pathogen associated molecular patterns (PAMPs) and A. phagocytophilum. Cytokine secretion was measured in the presence and absence of I. scapularis saliva. Human peripheral blood mononuclear cells (PBMCs) were also stimulated with Tumor Necrosis Factor (TNF)-α in the presence and absence of I. scapularis saliva and interleukin (IL)-8 was measured. Results I. scapularis saliva inhibits inflammatory cytokine secretion by macrophages during stimulation of Toll-like (TLR) and Nod-like receptor (NLR) signaling pathways. The effect of I. scapularis saliva on immune cells is not restricted to murine macrophages because decreasing levels of interleukin (IL)-8 were observed after TNF-α stimulation of human peripheral blood mononuclear cells. I. scapularis saliva also mitigates pro-inflammatory cytokine response by murine macrophages during challenge with A. phagocytophilum. Conclusions These findings suggest that I. scapularis may inhibit inflammatory cytokine secretion during rickettsial transmission at the vector-host interface. PMID:23050849

  1. Diverse T-cell responses characterize the different manifestations of cutaneous graft-versus-host disease.

    PubMed

    Brüggen, Marie-Charlotte; Klein, Irene; Greinix, Hildegard; Bauer, Wolfgang; Kuzmina, Zoya; Rabitsch, Werner; Kalhs, Peter; Petzelbauer, Peter; Knobler, Robert; Stingl, Georg; Stary, Georg

    2014-01-09

    Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (HCT) and can present in an acute (aGVHD), a chronic lichenoid (clGVHD), and a chronic sclerotic form (csGVHD). It is unclear whether similar or different pathomechanisms lead to these distinct clinical presentations. To address this issue, we collected lesional skin biopsies from aGVHD (n = 25), clGVHD (n = 17), and csGVHD (n = 7) patients as well as serial nonlesional biopsies from HCT recipients (prior to or post-HCT) (n = 14) and subjected them to phenotypic and functional analyses. Our results revealed striking differences between aGVHD and clGVHD. In aGVHD, we found a clear predominance of T helper (Th)2 cytokines/chemokines and, surprisingly, of interleukin (IL)-22 messenger RNA as well as an increase of IL-22-producing CD4(+) T cells. Thymic stromal lymphopoietin, a cytokine skewing the immune response toward a Th2 direction, was elevated at day 20 to 30 post-HCT in the skin of patients who later developed aGVHD. In sharp contrast to aGVHD, the immune response occurring in clGVHD showed a mixed Th1/Th17 signature with upregulated Th1/Th17 cytokine/chemokine transcripts and elevated numbers of interferon-γ- and IL-17-producing CD8(+) T cells. Our findings shed new light on the T-cell responses involved in the different manifestations of cutaneous GVHD and identify molecular signatures indicating the development of the disease.

  2. Host Defense Versus Immunosuppression: Unisexual Infection With Male or Female Schistosoma mansoni Differentially Impacts the Immune Response Against Invading Cercariae.

    PubMed

    Sombetzki, Martina; Koslowski, Nicole; Rabes, Anne; Seneberg, Sonja; Winkelmann, Franziska; Fritzsche, Carlos; Loebermann, Micha; Reisinger, Emil C

    2018-01-01

    Infection with the intravascular diecious trematode Schistosoma spp . remains a serious tropical disease and public health problem in the developing world, affecting over 258 million people worldwide. During chronic Schistosoma mansoni infection, complex immune responses to tissue-entrapped parasite eggs provoke granulomatous inflammation which leads to serious damage of the liver and intestine. The suppression of protective host immune mechanisms by helminths promotes parasite survival and benefits the host by reducing tissue damage. However, immune-suppressive cytokines may reduce vaccine-induced immune responses. By combining a single-sex infection system with a murine air pouch model, we were able to demonstrate that male and female schistosomes play opposing roles in modulating the host's immune response. Female schistosomes suppress early innate immune responses to invading cercariae in the skin and upregulate anergy-associated genes. In contrast, male schistosomes trigger strong innate immune reactions which lead to a reduction in worm and egg burden in the liver. Our data suggest that the female worm is a neglected player in the dampening of the host's immune defense system and is therefore a promising target for new immune modulatory therapies.

  3. Ureaplasma Species Differentially Modulate Pro- and Anti-Inflammatory Cytokine Responses in Newborn and Adult Human Monocytes Pushing the State Toward Pro-Inflammation

    PubMed Central

    Glaser, Kirsten; Silwedel, Christine; Fehrholz, Markus; Waaga-Gasser, Ana M.; Henrich, Birgit; Claus, Heike; Speer, Christian P.

    2017-01-01

    cytokines were maintained or aggravated (p < 0.05). Conclusion: Our data demonstrate a considerable pro-inflammatory capacity of Ureaplasma isolates in human monocytes. Stimulating pro-inflammatory cytokine responses while hardly inducing immunomodulatory and anti-inflammatory cytokines, ureaplasmas might push monocyte immune responses toward pro-inflammation. Inhibition of LPS-induced cytokines in adult monocytes in contrast to sustained inflammation in term neonatal monocytes indicates a differential modulation of host immune responses to a second stimulus. Modification of TLR2 and TLR4 expression may shape host susceptibility to inflammation. PMID:29234642

  4. Subversion of cytokine networks by virally encoded decoy receptors

    PubMed Central

    Epperson, Megan L.; Lee, Chung A.; Fremont, Daved H.

    2012-01-01

    Summary During the course of evolution, viruses have captured or created a diverse array of open reading frames that encode for proteins that serve to evade and sabotage the host innate and adaptive immune responses, which would otherwise lead to their elimination. These viral genomes are some of the best textbooks of immunology ever written. The established arsenal of immunomodulatory proteins encoded by viruses is large and growing and includes specificities for virtually all known inflammatory pathways and targets. The focus of this review is on herpes and poxvirus-encoded cytokine and chemokine binding proteins that serve to undermine the coordination of host immune surveillance. Structural and mechanistic studies of these decoy receptors have provided a wealth of information, not only about viral pathogenesis but also about the inner workings of cytokine signaling networks. PMID:23046131

  5. Catch and Release of Cytokines Mediated by Tumor Phosphatidylserine Converts Transient Exposure into Long-Lived Inflammation.

    PubMed

    Oyler-Yaniv, Jennifer; Oyler-Yaniv, Alon; Shakiba, Mojdeh; Min, Nina K; Chen, Ying-Han; Cheng, Sheue-Yann; Krichevsky, Oleg; Altan-Bonnet, Nihal; Altan-Bonnet, Grégoire

    2017-06-01

    Immune cells constantly survey the host for pathogens or tumors and secrete cytokines to alert surrounding cells of these threats. In vivo, activated immune cells secrete cytokines for several hours, yet an acute immune reaction occurs over days. Given these divergent timescales, we addressed how cytokine-responsive cells translate brief cytokine exposure into phenotypic changes that persist over long timescales. We studied melanoma cell responses to transient exposure to the cytokine interferon γ (IFNγ) by combining a systems-scale analysis of gene expression dynamics with computational modeling and experiments. We discovered that IFNγ is captured by phosphatidylserine (PS) on the surface of viable cells both in vitro and in vivo then slowly released to drive long-term transcription of cytokine-response genes. This mechanism introduces an additional function for PS in dynamically regulating inflammation across diverse cancer and primary cell types and has potential to usher in new immunotherapies targeting PS and inflammatory pathways. Published by Elsevier Inc.

  6. Host Response to Probiotics Determined by Nutritional Status of Rotavirus-infected Neonatal Mice

    PubMed Central

    Preidis, Geoffrey A.; Saulnier, Delphine M.; Blutt, Sarah E.; Mistretta, Toni-Ann; Riehle, Kevin P.; Major, Angela M.; Venable, Susan F.; Barrish, James P.; Finegold, Milton J.; Petrosino, Joseph F.; Guerrant, Richard L.; Conner, Margaret E.; Versalovic, James

    2014-01-01

    Objectives Beneficial microbes and probiotics are promising agents for the prevention and treatment of enteric and diarrheal diseases in children; however, little is known about their in vivo mechanisms of action. We used a neonatal mouse model of rotavirus diarrhea to gain insight into how probiotics ameliorate acute gastroenteritis. Methods Rotavirus-infected mice were treated with 1 of 2 strains of human-derived Lactobacillus reuteri. We assessed intestinal microbiome composition with 16S metagenomic sequencing, enterocyte migration and proliferation with 5-bromo-2′-deoxyuridine, and antibody and cytokine concentrations with multiplex analyses of intestinal explant cultures. Results Probiotics reduced diarrhea duration, improved intestinal histopathology, and enhanced intestinal microbiome richness and phylogenetic diversity. The magnitude of reduction of diarrhea by probiotics was strain specific and influenced by nutritional status. L reuteri DSM 17938 reduced diarrhea duration by 0, 1, and 2 days in underweight, normal weight, and overweight pups, respectively. The magnitude of reduction of diarrhea duration correlated with increased enterocyte proliferation and migration. Strain ATCC PTA 6475 reduced diarrhea duration by 1 day in all of the mice without increasing enterocyte proliferation. Both probiotic strains decreased concentrations of proinflammatory cytokines, including macrophage inflammatory protein-1α and interleukin-1β, in all of the animals, and increased rotavirus-specific antibodies in all but the underweight animals. Body weight also influenced the host response to rotavirus, in terms of diarrhea duration, enterocyte turnover, and antibody production. Conclusions These data suggest that probiotic enhancement of enterocyte proliferation, villus repopulation, and virus-specific antibodies may contribute to diarrhea resolution, and that nutritional status influences the host response to both beneficial microbes and pathogens. PMID:22343914

  7. Kinetics of disease progression and host response in a rat model of bubonic plague.

    PubMed

    Sebbane, Florent; Gardner, Donald; Long, Daniel; Gowen, Brian B; Hinnebusch, B Joseph

    2005-05-01

    Plague, caused by the gram-negative bacterium Yersinia pestis, primarily affects rodents but is also an important zoonotic disease of humans. Bubonic plague in humans follows transmission by infected fleas and is characterized by an acute, necrotizing lymphadenitis in the regional lymph nodes that drain the intradermal flea bite site. Septicemia rapidly follows with spread to spleen, liver, and other organs. We developed a model of bubonic plague using the inbred Brown Norway strain of Rattus norvegicus to characterize the progression and kinetics of infection and the host immune response after intradermal inoculation of Y. pestis. The clinical signs and pathology in the rat closely resembled descriptions of human bubonic plague. The bacteriology; histopathology; host cellular response in infected lymph nodes, blood, and spleen; and serum cytokine levels were analyzed at various times after infection to determine the kinetics and route of disease progression and to evaluate hypothesized Y. pestis pathogenic mechanisms. Understanding disease progression in this rat infection model should facilitate further investigations into the molecular pathogenesis of bubonic plague and the immune response to Y. pestis at different stages of the disease.

  8. Kinetics of Disease Progression and Host Response in a Rat Model of Bubonic Plague

    PubMed Central

    Sebbane, Florent; Gardner, Donald; Long, Daniel; Gowen, Brian B.; Hinnebusch, B. Joseph

    2005-01-01

    Plague, caused by the gram-negative bacterium Yersinia pestis, primarily affects rodents but is also an important zoonotic disease of humans. Bubonic plague in humans follows transmission by infected fleas and is characterized by an acute, necrotizing lymphadenitis in the regional lymph nodes that drain the intradermal flea bite site. Septicemia rapidly follows with spread to spleen, liver, and other organs. We developed a model of bubonic plague using the inbred Brown Norway strain of Rattus norvegicus to characterize the progression and kinetics of infection and the host immune response after intradermal inoculation of Y. pestis. The clinical signs and pathology in the rat closely resembled descriptions of human bubonic plague. The bacteriology; histopathology; host cellular response in infected lymph nodes, blood, and spleen; and serum cytokine levels were analyzed at various times after infection to determine the kinetics and route of disease progression and to evaluate hypothesized Y. pestis pathogenic mechanisms. Understanding disease progression in this rat infection model should facilitate further investigations into the molecular pathogenesis of bubonic plague and the immune response to Y. pestis at different stages of the disease. PMID:15855643

  9. Allelic Variation on Murine Chromosome 11 Modifies Host Inflammatory Responses and Resistance to Bacillus anthracis

    PubMed Central

    Terra, Jill K.; France, Bryan; Cote, Christopher K.; Jenkins, Amy; Bozue, Joel A.; Welkos, Susan L.; Bhargava, Ragini; Ho, Chi-Lee; Mehrabian, Margarete; Pan, Calvin; Lusis, Aldons J.; Davis, Richard C.; LeVine, Steven M.; Bradley, Kenneth A.

    2011-01-01

    Anthrax is a potentially fatal disease resulting from infection with Bacillus anthracis. The outcome of infection is influenced by pathogen-encoded virulence factors such as lethal toxin (LT), as well as by genetic variation within the host. To identify host genes controlling susceptibility to anthrax, a library of congenic mice consisting of strains with homozygous chromosomal segments from the LT-responsive CAST/Ei strain introgressed on a LT-resistant C57BL/6 (B6) background was screened for response to LT. Three congenic strains containing CAST/Ei regions of chromosome 11 were identified that displayed a rapid inflammatory response to LT similar to, but more severe than that driven by a LT-responsive allele of the inflammasome constituent NRLP1B. Importantly, increased response to LT in congenic mice correlated with greater resistance to infection by the Sterne strain of B. anthracis. The genomic region controlling the inflammatory response to LT was mapped to 66.36–74.67 Mb on chromosome 11, a region that encodes the LT-responsive CAST/Ei allele of Nlrp1b. However, known downstream effects of NLRP1B activation, including macrophage pyroptosis, cytokine release, and leukocyte infiltration could not fully explain the response to LT or the resistance to B. anthracis Sterne in congenic mice. Further, the exacerbated response in congenic mice is inherited in a recessive manner while the Nlrp1b-mediated response to LT is dominant. Finally, congenic mice displayed increased responsiveness in a model of sepsis compared with B6 mice. In total, these data suggest that allelic variation of one or more chromosome 11 genes in addition to Nlrp1b controls the severity of host response to multiple inflammatory stimuli and contributes to resistance to B. anthracis Sterne. Expression quantitative trait locus analysis revealed 25 genes within this region as high priority candidates for contributing to the host response to LT. PMID:22241984

  10. Preterm Infants Have Deficient Monocyte and Lymphocyte Cytokine Responses to Group B Streptococcus▿

    PubMed Central

    Currie, Andrew J.; Curtis, Samantha; Strunk, Tobias; Riley, Karen; Liyanage, Khemanganee; Prescott, Susan; Doherty, Dorota; Simmer, Karen; Richmond, Peter; Burgner, David

    2011-01-01

    Group B streptococcus (GBS) is an important cause of early- and late-onset sepsis in the newborn. Preterm infants have markedly increased susceptibility and worse outcomes, but their immunological responses to GBS are poorly defined. We compared mononuclear cell and whole-blood cytokine responses to heat-killed GBS (HKGBS) of preterm infants (gestational age [GA], 26 to 33 weeks), term infants, and healthy adults. We investigated the kinetics and cell source of induced cytokines and quantified HKGBS phagocytosis. HKGBS-induced tumor necrosis factor (TNF) and interleukin 6 (IL-6) secretion was significantly impaired in preterm infants compared to that in term infants and adults. These cytokines were predominantly monocytic in origin, and production was intrinsically linked to HKGBS phagocytosis. Very preterm infants (GA, <30 weeks) had fewer cytokine-producing monocytes, but nonopsonic phagocytosis ability was comparable to that for term infants and adults. Exogenous complement supplementation increased phagocytosis in all groups, as well as the proportion of preterm monocytes producing IL-6, but for very preterm infants, responses were still deficient. Similar defective preterm monocyte responses were observed in fresh whole cord blood stimulated with live GBS. Lymphocyte-associated cytokines were significantly deficient for both preterm and term infants compared to levels for adults. These findings indicate that a subset of preterm monocytes do not respond to GBS, a defect compounded by generalized weaker lymphocyte responses in newborns. Together these deficient responses may increase the susceptibility of preterm infants to GBS infection. PMID:21300777

  11. Differentiated THP-1 Cells Exposed to Pathogenic and Nonpathogenic Borrelia Species Demonstrate Minimal Differences in Production of Four Inflammatory Cytokines.

    PubMed

    Stokes, John V; Moraru, Gail M; McIntosh, Chelsea; Kummari, Evangel; Rausch, Keiko; Varela-Stokes, Andrea S

    2016-11-01

    Tick-borne borreliae include Lyme disease and relapsing fever agents, and they are transmitted primarily by ixodid (hard) and argasid (soft) tick vectors, respectively. Tick-host interactions during feeding are complex, with host immune responses influenced by biological differences in tick feeding and individual differences within and between host species. One of the first encounters for spirochetes entering vertebrate host skin is with local antigen-presenting cells, regardless of whether the tick-associated Borrelia sp. is pathogenic. In this study, we performed a basic comparison of cytokine responses in THP-1-derived macrophages after exposure to selected borreliae, including a nonpathogen. By using THP-1 cells, differentiated to macrophages, we eliminated variations in host response and reduced the system to an in vitro model to evaluate the extent to which the Borrelia spp. influence cytokine production. Differentiated THP-1 cells were exposed to four Borrelia spp., Borrelia hermsii (DAH), Borrelia burgdorferi (B31), B. burgdorferi (NC-2), or Borrelia lonestari (LS-1), or lipopolysaccharides (LPS) (activated) or media (no treatment) controls. Intracellular and secreted interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were measured using flow cytometric and Luminex-based assays, respectively, at 6, 24, and 48 h postexposure time points. Using a general linear model ANOVA for each cytokine, treatment (all Borrelia spp. and LPS compared to no treatment) had a significant effect on secreted TNF-α only. Time point had a significant effect on intracellular IFN-γ, TNF-α and IL-6. However, we did not see significant differences in selected cytokines among Borrelia spp. Thus, in this model, we were unable to distinguish pathogenic from nonpathogenic borreliae using the limited array of selected cytokines. While unique immune profiles may be detectable in an in vitro model and may reveal predictors for pathogenicity in borreliae

  12. Preserved ex vivo inflammatory status and cytokine responses in naturally long-lived mice

    PubMed Central

    Arranz, Lorena; Lord, Janet M.

    2010-01-01

    Preserved immune cell function has been reported in mice that achieve extreme longevity. Since cytokines are major modulators of immune responses, we aimed to determine the levels of 21 cytokines secreted ex vivo by peritoneal leukocytes cultured under basal- and mitogen- (conconavalin A (ConA) and LPS) stimulated conditions in middle-aged (44 ± 4 weeks), old (69 ± 4 weeks), very old (92 ± 4 weeks), and extreme long-lived (125 ± 4 weeks) ICR (CD1) female mice. The secretion of cytokines was measured by multiplex luminometry. Increased basal levels of proinflammatory IL-1β, IL-6, IL-12 (p70), IFN-γ, and TNF-α were seen in the old and very old animals, accompanied by decreased IL-10. In contrast, the extreme long-lived mice maintained the overall cytokine profile of middle-aged mice, though the basal secretion of IL-2, IL-9, IL-10, IL-13, and IL-12 (p40) was raised. Under LPS- and/or ConA-stimulated conditions, leukocytes from old and very old animals showed a significantly impaired response with respect to secretion of Th1 cytokines IL-3, IL-12p70, IFN-γ, and TNF-α; Th2 cytokines IL-6, IL-4, IL-10, and IL-13; and the regulatory cytokines IL-2, IL-5, and IL-17. Extreme long-lived mice preserved the middle-aged-like cytokine profile, with the most striking effect seen for the IL-2 response to ConA, which was minimal in the old and very old mice but increased with respect to the middle-aged level in extreme long-lived mice. Chemokine responses in regard to KC, MCP-1, MIP1β, and RANTES were more variable, though similar secretion of LPS-induced KC and MCP-1 and ConA-induced MCP-1, MIP-1β, and RANTES was found in long-lived and middle-aged mice. Thus, extreme long-lived animals showed only a minimal inflammatory profile, much lower than the old and very old groups and also lower than the middle-aged, which is likely mediated by the increase of anti-inflammatory cytokines such as IL-10. This was coupled to a robust response to immune stimuli

  13. Cytokines as endogenous pyrogens.

    PubMed

    Dinarello, C A

    1999-03-01

    Cytokines are pleiotropic molecules mediating several pathologic processes. Long before the discovery of cytokines as immune system growth factors or as bone marrow stimulants, investigators learned a great deal about cytokines when they studied them as the endogenous mediators of fever. The terms "granulocytic" or "endogenous pyrogen" were used to describe substances with the biologic property of fever induction. Today, we recognize that pyrogenicity is a fundamental biologic property of several cytokines and hence the clinically recognizeable property of fever links host perturbations during disease with fundamental perturbations in cell biology. In this review, the discoveries made on endogenous pyrogens are revisited, with insights into the importance of the earlier work to the present-day understanding of cytokines in health and in disease.

  14. Host-pathogen interplay at primary infection sites in pigs challenged with Actinobacillus pleuropneumoniae.

    PubMed

    Sassu, Elena L; Frömbling, Janna; Duvigneau, J Catharina; Miller, Ingrid; Müllebner, Andrea; Gutiérrez, Ana M; Grunert, Tom; Patzl, Martina; Saalmüller, Armin; von Altrock, Alexandra; Menzel, Anne; Ganter, Martin; Spergser, Joachim; Hewicker-Trautwein, Marion; Verspohl, Jutta; Ehling-Schulz, Monika; Hennig-Pauka, Isabel

    2017-02-28

    Actinobacillus (A.) pleuropneumoniae is the causative agent of porcine pleuropneumonia and causes significant losses in the pig industry worldwide. Early host immune response is crucial for further progression of the disease. A. pleuropneumoniae is either rapidly eliminated by the immune system or switches to a long-term persistent form. To gain insight into the host-pathogen interaction during the early stages of infection, pigs were inoculated intratracheally with A. pleuropneumoniae serotype 2 and humanely euthanized eight hours after infection. Gene expression studies of inflammatory cytokines and the acute phase proteins haptoglobin, serum amyloid A and C-reactive protein were carried out by RT-qPCR from the lung, liver, tonsils and salivary gland. In addition, the concentration of cytokines and acute phase proteins were measured by quantitative immunoassays in bronchoalveolar lavage fluid, serum and saliva. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. Significant cytokine and acute phase protein gene expression was detected in the lung and the salivary gland however this was not observed in the tonsils. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter investigations, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. The bacteria isolated from the upper and lower respiratory tract showed distinct IR spectral patterns reflecting the organ-specific acute phase response of the host. In summary, this study implies a metabolic adaptation of A. pleuropneumoniae to the porcine upper respiratory tract already during early infection, which might indicate a first step towards the persistence of A. pleuropneumoniae. Not only in lung, but also in the salivary gland an increased inflammatory gene expression

  15. Comparison of Pathogenesis and Host Immune Responses to Candida glabrata and Candida albicans in Systemically Infected Immunocompetent Mice

    PubMed Central

    Brieland, Joan; Essig, David; Jackson, Craig; Frank, Doyle; Loebenberg, David; Menzel, Fred; Arnold, Brian; DiDomenico, Beth; Hare, Roberta

    2001-01-01

    Cytokine-mediated host defense against Candida glabrata infection was compared to that against C. albicans, using immunocompetent murine models of systemic candidiasis. The pathogenesis of infection was evaluated morphologically and by culture of target organs, while the kinetics of induction of cytokine mRNAs and corresponding proteins were determined in kidneys by real-time reverse transcription-PCR and cytokine-specific murine enzyme-linked immunosorbent assays, respectively. Systemic infection with C. glabrata resulted in a chronic, nonfatal infection with recovery of organisms from kidneys, while intravenous inoculation with C. albicans resulted in rapid mortality with logarithmic growth of organisms in kidneys and recovery of C. albicans from the spleen, liver, and lungs. Survival of C. glabrata-infected mice was associated with rapid induction of mRNAs and corresponding immunoreactive proteins for the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and gamma interferon (IFN-γ) and the lack of induction of protein for the anti-inflammatory cytokine IL-10. In contrast, mortality in C. albicans-infected mice was associated with induction of mRNA and corresponding protein for IL-10 but delayed (i.e., TNF-α) or absent (i.e., IL-12 and IFN-γ) induction of immunoreactive proinflammatory cytokines. Mice were subsequently treated with cytokine-specific neutralizing monoclonal antibodies (MAbs) to TNF-α, IL-12, or IFN-γ, and the effect on growth of C. glabrata in kidneys was assessed. Neutralization of endogenous TNF-α resulted in a significant increase in C. glabrata organisms compared to similarly infected mice administered an isotype-matched control MAb, while neutralization of endogenous IL-12 or IFN-γ had no significant effect on C. glabrata replication. These results demonstrate that in response to intravenous inoculation of C. glabrata, immunocompetent mice develop chronic nonfatal renal infections which are

  16. Examination of epithelial tissue cytokine response to natural peste des petits ruminants virus (PPRV) infection in sheep and goats by immunohistochemistry.

    PubMed

    Atmaca, H T; Kul, O

    2012-01-01

    In this study, we aimed to evaluate expression of IL-4, IL-10, TNF-α, IFN-γ and iNOS in lingual, buccal mucosa and lung epithelial tissue using immunoperoxidase technique and to compare with the tissues of control animals. The tissues used in the study were collected from 17 PPRV-affected and 5 healthy sheep and goats. In PPRV positive animals, the lungs, lingual and buccal mucosa had significantly higher iNOS, IFN-γ and TNF-α expressions compared to control group animals. There was no significant difference between PPRV positive and control groups for IL-4 and IL-10 expressions of epithelial tissues. In conclusion, the epithelial tissues infected by PPRV showed significant iNOS, IFN-γ and TNF-α expressions and they might play an important role in the initiation and regulation of cytokine response, as they take place in the first host barrier to be in contact with PPRV. It is suggested that the more epithelial damage produced by PPRV the more cytokine response may result in the infected epithelial cells. The first demonstration of iNOS expression and epithelial cytokine response to PPRV in natural cases is important because it may contribute to an early initiation of systemic immunity against PPRV infection, in addition to direct elimination of the virus during the initial epithelial phase of the infection.

  17. Quantitative Label-Free Phosphoproteomics Reveals Differentially Regulated Protein Phosphorylation Involved in West Nile Virus-Induced Host Inflammatory Response.

    PubMed

    Zhang, Hao; Sun, Jun; Ye, Jing; Ashraf, Usama; Chen, Zheng; Zhu, Bibo; He, Wen; Xu, Qiuping; Wei, Yanming; Chen, Huanchun; Fu, Zhen F; Liu, Rong; Cao, Shengbo

    2015-12-04

    West Nile virus (WNV) can cause neuro-invasive and febrile illness that may be fatal to humans. The production of inflammatory cytokines is key to mediating WNV-induced immunopathology in the central nervous system. Elucidating the host factors utilized by WNV for productive infection would provide valuable insights into the evasion strategies used by this virus. Although attempts have been made to determine these host factors, proteomic data depicting WNV-host protein interactions are limited. We applied liquid chromatography-tandem mass spectrometry for label-free, quantitative phosphoproteomics to systematically investigate the global phosphorylation events induced by WNV infection. Quantifiable changes to 1,657 phosphoproteins were found; of these, 626 were significantly upregulated and 227 were downregulated at 12 h postinfection. The phosphoproteomic data were subjected to gene ontology enrichment analysis, which returned the inflammation-related spliceosome, ErbB, mitogen-activated protein kinase, nuclear factor kappa B, and mechanistic target of rapamycin signaling pathways. We used short interfering RNAs to decrease the levels of glycogen synthase kinase-3 beta, bifunctional polynucleotide phosphatase/kinase, and retinoblastoma 1 and found that the activity of nuclear factor kappa B (p65) is significantly decreased in WNV-infected U251 cells, which in turn led to markedly reduced inflammatory cytokine production. Our results provide a better understanding of the host response to WNV infection and highlight multiple targets for the development of antiviral and anti-inflammatory therapies.

  18. Environmental Mold and Mycotoxin Exposures Elicit Specific Cytokine and Chemokine Responses

    PubMed Central

    Rosenblum Lichtenstein, Jamie H.; Hsu, Yi-Hsiang; Gavin, Igor M.; Donaghey, Thomas C.; Molina, Ramon M.; Thompson, Khristy J.; Chi, Chih-Lin; Gillis, Bruce S.; Brain, Joseph D.

    2015-01-01

    Background Molds can cause respiratory symptoms and asthma. We sought to use isolated peripheral blood mononuclear cells (PBMCs) to understand changes in cytokine and chemokine levels in response to mold and mycotoxin exposures and to link these levels with respiratory symptoms in humans. We did this by utilizing an ex vivo assay approach to differentiate mold-exposed patients and unexposed controls. While circulating plasma chemokine and cytokine levels from these two groups might be similar, we hypothesized that by challenging their isolated white blood cells with mold or mold extracts, we would see a differential chemokine and cytokine release. Methods and Findings Peripheral blood mononuclear cells (PBMCs) were isolated from blood from 33 patients with a history of mold exposures and from 17 controls. Cultured PBMCs were incubated with the most prominent Stachybotrys chartarum mycotoxin, satratoxin G, or with aqueous mold extract, ionomycin, or media, each with or without PMA. Additional PBMCs were exposed to spores of Aspergillus niger, Cladosporium herbarum and Penicillium chrysogenum. After 18 hours, cytokines and chemokines released into the culture medium were measured by multiplex assay. Clinical histories, physical examinations and pulmonary function tests were also conducted. After ex vivo PBMC exposures to molds or mycotoxins, the chemokine and cytokine profiles from patients with a history of mold exposure were significantly different from those of unexposed controls. In contrast, biomarker profiles from cells exposed to media alone showed no difference between the patients and controls. Conclusions These findings demonstrate that chronic mold exposures induced changes in inflammatory and immune system responses to specific mold and mycotoxin challenges. These responses can differentiate mold-exposed patients from unexposed controls. This strategy may be a powerful approach to document immune system responsiveness to molds and other inflammation

  19. Mycobacteria-specific cytokine responses as correlates of treatment response in active and latent tuberculosis.

    PubMed

    Clifford, Vanessa; Tebruegge, Marc; Zufferey, Christel; Germano, Susie; Forbes, Ben; Cosentino, Lucy; McBryde, Emma; Eisen, Damon; Robins-Browne, Roy; Street, Alan; Denholm, Justin; Curtis, Nigel

    2017-08-01

    A biomarker indicating successful tuberculosis (TB) therapy would assist in determining appropriate length of treatment. This study aimed to determine changes in mycobacteria-specific antigen-induced cytokine biomarkers in patients receiving therapy for latent or active TB, to identify biomarkers potentially correlating with treatment success. A total of 33 adults with active TB and 36 with latent TB were followed longitudinally over therapy. Whole blood stimulation assays using mycobacteria-specific antigens (CFP-10, ESAT-6, PPD) were done on samples obtained at 0, 1, 3, 6 and 9 months. Cytokine responses (IFN-γ, IL-1ra, IL-2, IL-10, IL-13, IP-10, MIP-1β, and TNF-α) in supernatants were measured by Luminex xMAP immunoassay. In active TB cases, median IL-1ra (with CFP-10 and with PPD stimulation), IP-10 (CFP-10, ESAT-6), MIP-1β (ESAT-6, PPD), and TNF-α (ESAT-6) responses declined significantly over the course of therapy. In latent TB cases, median IL-1ra (CFP-10, ESAT-6, PPD), IL-2 (CFP-10, ESAT-6), and IP-10 (CFP-10, ESAT-6) responses declined significantly. Mycobacteria-specific cytokine responses change significantly over the course of therapy, and their kinetics in active TB differ from those observed in latent TB. In particular, mycobacteria-specific IL-1ra responses are potential correlates of successful therapy in both active and latent TB. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  20. Early divergent host responses in SHIVsf162P3 and SIVmac251 infected macaques correlate with control of viremia.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Morici, Lisa A; Pahar, Bapi; Veazey, Ronald S

    2011-03-25

    We previously showed intravaginal inoculation with SHIVsf162p3 results in transient viremia followed by undetectable viremia in most macaques, and some displayed subsequent immunity to superinfection with pathogenic SIVmac251. Here we compare early T cell activation, proliferation, and plasma cytokine/chemokine responses in macaques intravaginally infected with either SHIVsf162p3 or SIVmac251 to determine whether distinct differences in host responses may be associated with early viral containment. The data show SIVmac251 infection results in significantly higher levels of T cell activation, proliferation, and a mixed cytokine/chemokine "storm" in plasma in primary infection, whereas infection with SHIVsf162p3 resulted in significantly lower levels of T cell activation, proliferation, and better preservation of memory CD4+ T cells in early infection which immediately preceded control of viremia. These results support the hypothesis that early systemic immune activation, T cell proliferation, and a more prominent and broader array of cytokine/chemokine responses facilitate SIV replication, and may play a key role in persistence of infection, and the progression to AIDS. In contrast, immune unresponsiveness may be associated with eventual clearance of virus, a concept that may have key significance for therapy and vaccine design.

  1. Integrin β1 activation induces an anti-melanoma host response

    PubMed Central

    Sole, Xavier; Salony; Chowdhury, Joeeta; Ross, Kenneth N.; Ramaswamy, Sridhar

    2017-01-01

    TGF-β is a cytokine thought to function as a tumor promoter in advanced malignancies. In this setting, TGF-β increases cancer cell proliferation, survival, and migration, and orchestrates complex, pro-tumorigenic changes in the tumor microenvironment. Here, we find that in melanoma, integrin β1-mediated TGF-β activation may also produce tumor suppression via an altered host response. In the A375 human melanoma cell nu/nu xenograft model, we demonstrate that cell surface integrin β1-activation increases TGF-β activity, resulting in stromal activation, neo-angiogenesis and, unexpectedly for this nude mouse model, increase in the number of intra-tumoral CD8+ T lymphocytes within the tumor microenvironment. This is associated with attenuation of tumor growth and long-term survival benefit. Correspondingly, in human melanomas, TGF-β1 correlates with integrin β1/TGF-β1 activation and the expression of markers for vasculature and stromal activation. Surprisingly, this integrin β1/TGF-β1 transcriptional footprint also correlates with the expression of markers for tumor-infiltrating lymphocytes, multiple immune checkpoints and regulatory pathways, and, importantly, better long-term survival of patients. These correlations are unique to melanoma, in that we do not observe similar associations between β1 integrin/TGF-β1 activation and better long-term survival in other human tumor types. These results suggest that activation of TGF-β1 in melanoma may be associated with the generation of an anti-tumor host response that warrants further study. PMID:28448494

  2. Serum Cytokine Levels in Major Depressive Disorder and Its Role in Antidepressant Response.

    PubMed

    Myung, Woojae; Lim, Shinn-Won; Woo, Hye In; Park, Jin Hong; Shim, Sanghong; Lee, Soo-Youn; Kim, Doh Kwan

    2016-11-01

    Cytokines have been reported to have key roles in major depressive disorder (MDD). However, much less is known about cytokines in MDD and antidepressant treatment due to the diversity of cytokines and the heterogeneity of depression. We investigated the levels of cytokines in patients with MDD compared with healthy subjects and their associations with antidepressant response. We investigated the changes of several cytokines (eotaxin, sCD40L, IL-8, MCP-1alpha, TNF-alpha, INF-gamma and MIP-1alpha) by Luminex assay in 66 patients with MDD and 22 healthy controls. The antidepressant response was assessed by 17-item Hamilton Rating Scale for Depression. We found the levels of sCD40L (p=0.001), IL-8 (p=0.004) and MCP-1 (p=0.03) of healthy controls were significantly higher than those of depressive patients. However, the level of eotaxin and TNF-alpha were not associated with MDD. In addition, we found the level of MCP-1 was significantly changed after antidepressant treatment (p=0.01). These findings suggest the roles of cytokines in MDD are complex, and could vary according to the individual characteristics of each patient. Further studies regarding the relationship between cytokines and MDD will be required.

  3. Excessive Cytokine Response to Rapid Proliferation of Highly Pathogenic Avian Influenza Viruses Leads to Fatal Systemic Capillary Leakage in Chickens

    PubMed Central

    Kuribayashi, Saya; Sakoda, Yoshihiro; Kawasaki, Takeshi; Tanaka, Tomohisa; Yamamoto, Naoki; Okamatsu, Masatoshi; Isoda, Norikazu; Tsuda, Yoshimi; Sunden, Yuji; Umemura, Takashi; Nakajima, Noriko; Hasegawa, Hideki; Kida, Hiroshi

    2013-01-01

    Highly pathogenic avian influenza viruses (HPAIVs) cause lethal infection in chickens. Severe cases of HPAIV infections have been also reported in mammals, including humans. In both mammals and birds, the relationship between host cytokine response to the infection with HPAIVs and lethal outcome has not been well understood. In the present study, the highly pathogenic avian influenza viruses A/turkey/Italy/4580/1999 (H7N1) (Ty/Italy) and A/chicken/Netherlands/2586/2003 (H7N7) (Ck/NL) and the low pathogenic avian influenza virus (LPAIV) A/chicken/Ibaraki/1/2005 (H5N2) (Ck/Ibaraki) were intranasally inoculated into chickens. Ty/Italy replicated more extensively than Ck/NL in systemic tissues of the chickens, especially in the brain, and induced excessive mRNA expression of inflammatory and antiviral cytokines (IFN-γ, IL-1β, IL-6, and IFN-α) in proportion to its proliferation. Using in situ hybridization, IL-6 mRNA was detected mainly in microglial nodules in the brain of the chickens infected with Ty/Italy. Capillary leakage assessed by Evans blue staining was observed in multiple organs, especially in the brains of the chickens infected with Ty/Italy, and was not observed in those infected with Ck/NL. In contrast, LPAIV caused only local infection in the chickens, with neither apparent cytokine expression nor capillary leakage in any tissue of the chickens. The present results indicate that an excessive cytokine response is induced by rapid and extensive proliferation of HPAIV and causes fatal multiple organ failure in chickens. PMID:23874602

  4. Proteomic Characterization of Host Response to Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chromy, B; Perkins, J; Heidbrink, J

    Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Y. pseudotuberculosis and Y. enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct formore » the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.« less

  5. Different cytokine response of primary colonic epithelial cells to commensal bacteria.

    PubMed

    Lan, Jing-Gang; Cruickshank, Sheena-Margaret; Singh, Joy-Carmelina-Indira; Farrar, Mark; Lodge, James-Peter-Alan; Felsburg, Peter-John; Carding, Simon-Richard

    2005-06-14

    To determine if primary murine colonic epithelial cells (CEC) respond to commensal bacteria and discriminate between different types of bacteria. A novel CEC: bacteria co-culture system was used to compare the ability of the colonic commensal bacteria, Bacteroides ovatus, E. coli (SLF) and Lactobacillus rhamnosus (LGG) to modulate production of different cytokines (n = 15) by primary CEC. Antibody staining and flow cytometry were used to investigate Toll-like receptor (TLR) expression by CEC directly ex vivo and TLR responsiveness was determined by examining the ability of TLR ligands to influence CEC cytokine production. Primary CEC constitutively expressed functional TLR2 and TLR4. Cultured in complete medium alone, CEC secreted IL-6, MCP-1 and IP-10 the levels of which were significantly increased upon addition of the TLR ligands peptidoglycan (PGN) and lipopolysaccharide (LPS). Exposure to the commensal bacteria induced or up-regulated different patterns of cytokine production and secretion. E. coli induced production of MIP-1alpha/beta and betadefensin3 whereas B. ovatus and L. rhamnosus exclusively induced MCP-1 and MIP-2alpha expression, respectively. TNFalpha, RANTES and MEC were induced or up-regulated in response to some but not all of the bacteria whereas ENA78 and IP-10 were up-regulated in response to all bacteria. Evidence of bacterial interference and suppression of cytokine production was obtained from mixed bacterial: CEC co-cultures. Probiotic LGG suppressed E. coli- and B. ovatus-induced cytokine mRNA accumulation and protein secretion. These observations demonstrate the ability of primary CEC to respond to and discriminate between different strains of commensal bacteria and identify a mechanism by which probiotic bacteria (LGG) may exert anti-inflammatory effects in vivo.

  6. Different cytokine response of primary colonic epithelial cells to commensal bacteria

    PubMed Central

    Lan, Jing-Gang; Cruickshank, Sheena Margaret; Singh, Joy Carmelina Indira; Farrar, Mark; Lodge, James Peter Alan; Felsburg, Peter John; Carding, Simon Richard

    2005-01-01

    AIM: To determine if primary murine colonic epithelial cells (CEC) respond to commensal bacteria and discriminate between different types of bacteria. METHODS: A novel CEC: bacteria co-culture system was used to compare the ability of the colonic commensal bacteria, Bacteroides ovatus, E. coli (SLF) and Lactobacillus rhamnosus (LGG) to modulate production of different cytokines (n = 15) by primary CEC. Antibody staining and flow cytometry were used to investigate Toll-like receptor (TLR) expression by CEC directly ex vivo and TLR responsiveness was determined by examining the ability of TLR ligands to influence CEC cytokine production. RESULTS: Primary CEC constitutively expressed functional TLR2 and TLR4. Cultured in complete medium alone, CEC secreted IL-6, MCP-1 and IP-10 the levels of which were significantly increased upon addition of the TLR ligands peptidoglycan (PGN) and lipopolysaccharide (LPS). Exposure to the commensal bacteria induced or up-regulated different patterns of cytokine production and secretion. E. coli induced production of MIP-1α/β and β defensin3 whereas B. ovatus and L. rhamnosus exclusively induced MCP-1 and MIP-2α expression, respectively. TNFα, RANTES and MEC were induced or up-regulated in response to some but not all of the bacteria whereas ENA78 and IP-10 were up-regulated in response to all bacteria. Evidence of bacterial interference and suppression of cytokine production was obtained from mixed bacterial: CEC co-cultures. Probiotic LGG suppressed E. coli- and B. ovatus-induced cytokine mRNA accumulation and protein secretion. CONCLUSION: These observations demonstrate the ability of primary CEC to respond to and discriminate between different strains of commensal bacteria and identify a mechanism by which probiotic bacteria (LGG) may exert anti-inflammatory effects in vivo. PMID:15948242

  7. Vitamin A supplementation increases ratios of proinflammatory to anti-inflammatory cytokine responses in pregnancy and lactation

    PubMed Central

    Cox, S E; Arthur, P; Kirkwood, B R; Yeboah-Antwi, K; Riley, E M

    2006-01-01

    Vitamin A supplementation reduces child mortality in populations at risk of vitamin A deficiency and may also reduce maternal mortality. One possible explanation for this is that vitamin A deficiency is associated with altered immune function and cytokine dysregulation. Vitamin A deficiency in pregnancy may thus compound the pregnancy-associated bias of cellular immune responses towards Th-2-like responses and exacerbate susceptibility to intracellular pathogens. We assessed mitogen and antigen-induced cytokine responses during pregnancy and lactation in Ghanaian primigravidae receiving either vitamin A supplementation or placebo. This was a double-blind, randomized, placebo-controlled trial of weekly vitamin A supplementation in pregnant and lactating women. Pregnancy compared to postpartum was associated with a suppression of cytokine responses, in particular of the proinflammatory cytokines interferon (IFN)-γ and tumour necrosis factor (TNF)-α. Mitogen-induced TNF-α responses were associated with a decreased risk of peripheral parasitaemia during pregnancy. Furthermore, vitamin A supplementation was significantly associated with an increased ratio of mitogen-induced proinflammatory cytokine (IFN-γ) to anti-inflammatory cytokine (IL-10) during pregnancy and in the postpartum period. The results of this study indicate that suppression of proinflammatory type 1 immune responses and hence immunity to intracellular infections, resulting from the combined effects of pregnancy and vitamin A deficiency, might be ameliorated by vitamin A supplementation. PMID:16734607

  8. Impaired Cytokine Responses to Epstein-Barr Virus Antigens in Systemic Lupus Erythematosus Patients

    PubMed Central

    Draborg, Anette Holck; Sandhu, Noreen; Larsen, Nanna; Lisander Larsen, Janni; Jacobsen, Søren; Houen, Gunnar

    2016-01-01

    We analyzed cytokine responses against latent and lytic Epstein-Barr virus (EBV) antigens in systemic lupus erythematosus (SLE) patients and healthy controls (HCs) to obtain an overview of the distinctive immune regulatory response in SLE patients and to expand the previously determined impaired EBV-directed T-cell response. The concentrations of 14 cytokines (IL2, IL4, IL5, IL6, IL10, IL12, IL17, IL18, IL1β, IFNγ, TNFα, TNFβ, TGFβ, and GM-CSF) were quantified upon stimulation of whole blood with latent state antigen EBNA1, lytic cycle antigen EBV-EA/D, and the superantigen SEB. To avoid results affected by lack of lymphocytes, we focused on SLE patients with normal levels. Decreased induction of IL12, IFNγ, IL17, and IL6 upon EBNA1 stimulation and that of IFNγ, IL6, TNFβ, IL1β, and GM-CSF upon EBV-EA/D stimulation were detected in SLE patients compared to HCs. IFNγ responses, especially, were shown to be reduced. Induction of several cytokines was furthermore impaired in SLE patients upon SEB stimulation, but no difference was observed in basic levels. Results substantiate the previously proposed impaired regulation of the immune response against latent and lytic cycle EBV infection in SLE patients without lymphopenia. Furthermore, results indicate general dysfunction of leukocytes and their cytokine regulations in SLE patients. PMID:27110576

  9. Cytokines and immune surveillance in humans

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1994-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to explore further the effects of space flight on cyotokines and cytokine-directed immunological function. Among the tests carried out are interferon-alpha production, interferon-gamma production, interleukin-1 and -2 production, signal transduction in neutrophils, signal transduction in monocytes, and monocyte phagocytic activity. The experiments will be performed using peripheral blood obtained from human subjects. It is our intent to eventually carry out these experiments using astronauts as subjects to determine the effects of space flight on cytokine production and activity. However, these subjects are not currently available. Until they become available, we will carry out these experiments using subjects maintained in the bed-rest model for microgravity.

  10. A systems-based approach to analyse the host response in murine lung macrophages challenged with respiratory syncytial virus

    PubMed Central

    2013-01-01

    Background Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infection in young children. The degree of disease severity is determined by the host response to infection. Lung macrophages play an important early role in the host response to infection and we have used a systems-based approach to examine the host response in RSV-infected lung-derived macrophage cells. Results Lung macrophage cells could be efficiently infected (>95%) with RSV in vitro, and the expression of several virus structural proteins could be detected. Although we failed to detect significant levels of virus particle production, virus antigen could be detected up until 96 hours post-infection (hpi). Microarray analysis indicated that 20,086 annotated genes were expressed in the macrophage cells, and RSV infection induced an 8.9% and 11.3% change in the global gene transcriptome at 4 hpi and 24 hpi respectively. Genes showing up-regulated expression were more numerous and exhibited higher changes in expression compared to genes showing down-regulated expression. Based on gene ontology, genes with cytokine, antiviral, cell death, and signal transduction functions showed the highest increases in expression, while signalling transduction, RNA binding and protein kinase genes showed the greatest reduction in expression levels. Analysis of the global gene expression profile using pathway enrichment analysis confirmed that up-regulated expression of pathways related to pathogen recognition, interferon signalling and antigen presentation occurred in the lung macrophage cells challenged with RSV. Conclusion Our data provided a comprehensive analysis of RSV-induced gene expression changes in lung macrophages. Although virus gene expression was detected, our data was consistent with an abortive infection and this correlated with the activation of several antivirus signalling pathways such as interferon type I signalling and cell death signalling. RSV infection induced a

  11. Viral mimicry of cytokines, chemokines and their receptors.

    PubMed

    Alcami, Antonio

    2003-01-01

    Viruses have evolved elegant mechanisms to evade detection and destruction by the host immune system. One of the evasion strategies that have been adopted by large DNA viruses is to encode homologues of cytokines, chemokines and their receptors--molecules that have a crucial role in control of the immune response. Viruses have captured host genes or evolved genes to target specific immune pathways, and so viral genomes can be regarded as repositories of important information about immune processes, offering us a viral view of the host immune system. The study of viral immunomodulatory proteins might help us to uncover new human genes that control immunity, and their characterization will increase our understanding of not only viral pathogenesis, but also normal immune mechanisms. Moreover, viral proteins indicate strategies of immune modulation that might have therapeutic potential.

  12. Production and function of cytokines in natural and acquired immunity to Candida albicans infection.

    PubMed Central

    Ashman, R B; Papadimitriou, J M

    1995-01-01

    Host resistance against infections caused by the yeast Candida albicans is mediated predominantly by polymorphonuclear leukocytes and macrophages. Antigens of Candida stimulate lymphocyte proliferation and cytokine synthesis, and in both humans and mice, these cytokines enhance the candidacidal functions of the phagocytic cells. In systemic candidiasis in mice, cytokine production has been found to be a function of the CD4+ T helper (Th) cells. The Th1 subset of these cells, characterized by the production of gamma interferon and interleukin-2, is associated with macrophage activation and enhanced resistance against reinfection, whereas the Th2 subset, which produces interleukins-4, -6, and -10, is linked to the development of chronic disease. However, other models have generated divergent data. Mucosal infection generally elicits Th1-type cytokine responses and protection from systemic challenge, and identification of cytokine mRNA present in infected tissues of mice that develop mild or severe lesions does not show pure Th1- or Th2-type responses. Furthermore, antigens of C. albicans, mannan in particular, can induce suppressor cells that modulate both specific and nonspecific cellular and humoral immune responses, and there is an emerging body of evidence that molecular mimicry may affect the efficiency of anti-Candida responses within defined genetic contexts. PMID:8531890

  13. Impaired cytokine responses in patients with cryopyrin-associated periodic syndrome (CAPS)

    PubMed Central

    Haverkamp, M H; van de Vosse, E; Goldbach-Mansky, R; Holland, S M

    2014-01-01

    Cryopyrin-associated periodic syndrome (CAPS) is characterized by dysregulated inflammation with excessive interleukin (IL)-1β activation and secretion. Neonatal-onset multi-system inflammatory disease (NOMID) is the most severe form. We explored cytokine responses in 32 CAPS patients before and after IL-1β blocking therapy. We measured cytokines produced by activated peripheral blood monuclear cells (PBMCs) from treated and untreated CAPS patients after stimulation for 48 h with phytohaemagglutinin (PHA), PHA plus IL-12, lipopolysaccharide (LPS) or LPS plus interferon (IFN)-γ. We measured IL-1β, IL-6, IL-10, tumour necrosis factor (TNF), IL-12p70 and IFN-γ in the supernatants. PBMCs from three untreated CAPS patients were cultured in the presence of the IL-1β blocker Anakinra. Fifty healthy individuals served as controls. CAPS patients had high spontaneous production of IL-1β, IL-6, TNF and IFN-γ by unstimulated cells. However, stimulation indexes (SIs, ratio of stimulated to unstimulated production) of these cytokines to PHA and LPS were low in NOMID patients compared to controls. Unstimulated IL-10 and IL-12p70 production was normal, but up-regulation after PHA and LPS was also low. LPS plus IFN-γ inadequately up-regulated the production of IL-1β, IL-6, TNF and IL-10 in CAPS patients. In-vitro but not in-vivo treatment with Anakinra improved SIs by lowering spontaneous cytokine production. However, in-vitro treatment did not improve the low stimulated cytokine levels. Activating mutations in NLRP3 in CAPS are correlated with poor SIs to PHA, LPS and IFN-γ. The impairment in stimulated cytokine responses in spite of IL-1β blocking therapy suggests a broader intrinsic defect in CAPS patients, which is not corrected by targeting IL-1β. PMID:24773462

  14. Impaired cytokine responses in patients with cryopyrin-associated periodic syndrome (CAPS).

    PubMed

    Haverkamp, M H; van de Vosse, E; Goldbach-Mansky, R; Holland, S M

    2014-09-01

    Cryopyrin-associated periodic syndrome (CAPS) is characterized by dysregulated inflammation with excessive interleukin (IL)-1β activation and secretion. Neonatal-onset multi-system inflammatory disease (NOMID) is the most severe form. We explored cytokine responses in 32 CAPS patients before and after IL-1β blocking therapy. We measured cytokines produced by activated peripheral blood monuclear cells (PBMCs) from treated and untreated CAPS patients after stimulation for 48 h with phytohaemagglutinin (PHA), PHA plus IL-12, lipopolysaccharide (LPS) or LPS plus interferon (IFN)-γ. We measured IL-1β, IL-6, IL-10, tumour necrosis factor (TNF), IL-12p70 and IFN-γ in the supernatants. PBMCs from three untreated CAPS patients were cultured in the presence of the IL-1β blocker Anakinra. Fifty healthy individuals served as controls. CAPS patients had high spontaneous production of IL-1β, IL-6, TNF and IFN-γ by unstimulated cells. However, stimulation indexes (SIs, ratio of stimulated to unstimulated production) of these cytokines to PHA and LPS were low in NOMID patients compared to controls. Unstimulated IL-10 and IL-12p70 production was normal, but up-regulation after PHA and LPS was also low. LPS plus IFN-γ inadequately up-regulated the production of IL-1β, IL-6, TNF and IL-10 in CAPS patients. In-vitro but not in-vivo treatment with Anakinra improved SIs by lowering spontaneous cytokine production. However, in-vitro treatment did not improve the low stimulated cytokine levels. Activating mutations in NLRP3 in CAPS are correlated with poor SIs to PHA, LPS and IFN-γ. The impairment in stimulated cytokine responses in spite of IL-1β blocking therapy suggests a broader intrinsic defect in CAPS patients, which is not corrected by targeting IL-1β. © 2014 British Society for Immunology.

  15. A tale of two cytokines: IL-17 and IL-22 in asthma and infection

    PubMed Central

    Manni, Michelle L; Robinson, Keven M; Alcorn, John F

    2014-01-01

    The Th17 pathway has recently been shown to play a critical role in host defense, allergic responses and autoimmune inflammation. Th17 cells predominantly produce IL-17 and IL-22, which are two cytokines with broad effects in the lung and other tissues. This review summarizes not only what is currently known about the molecular regulation of this pathway and Th17-related cytokine signaling, but also the roles of these cytokines in pathogen immunity and asthma. In the last 5 years, the Th17 field has rapidly grown and research has revealed that the Th17 pathway is essential in lung pathogenesis in response to exogenous stimuli. As work in the field continues, it is expected that many exciting therapeutic advances will be made for a broad range of diseases. PMID:24325586

  16. Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever.

    PubMed

    Blohmke, Christoph J; Darton, Thomas C; Jones, Claire; Suarez, Nicolas M; Waddington, Claire S; Angus, Brian; Zhou, Liqing; Hill, Jennifer; Clare, Simon; Kane, Leanne; Mukhopadhyay, Subhankar; Schreiber, Fernanda; Duque-Correa, Maria A; Wright, James C; Roumeliotis, Theodoros I; Yu, Lu; Choudhary, Jyoti S; Mejias, Asuncion; Ramilo, Octavio; Shanyinde, Milensu; Sztein, Marcelo B; Kingsley, Robert A; Lockhart, Stephen; Levine, Myron M; Lynn, David J; Dougan, Gordon; Pollard, Andrew J

    2016-05-30

    Enteric fever, caused by Salmonella enterica serovar Typhi, is an important public health problem in resource-limited settings and, despite decades of research, human responses to the infection are poorly understood. In 41 healthy adults experimentally infected with wild-type S. Typhi, we detected significant cytokine responses within 12 h of bacterial ingestion. These early responses did not correlate with subsequent clinical disease outcomes and likely indicate initial host-pathogen interactions in the gut mucosa. In participants developing enteric fever after oral infection, marked transcriptional and cytokine responses during acute disease reflected dominant type I/II interferon signatures, which were significantly associated with bacteremia. Using a murine and macrophage infection model, we validated the pivotal role of this response in the expression of proteins of the host tryptophan metabolism during Salmonella infection. Corresponding alterations in tryptophan catabolites with immunomodulatory properties in serum of participants with typhoid fever confirmed the activity of this pathway, and implicate a central role of host tryptophan metabolism in the pathogenesis of typhoid fever. © 2016 Blohmke et al.

  17. The Host Response to a Clinical MDR Mycobacterial Strain Cultured in a Detergent-Free Environment: A Global Transcriptomics Approach.

    PubMed

    Leisching, Gina; Pietersen, Ray-Dean; Mpongoshe, Vuyiseka; van Heerden, Carel; van Helden, Paul; Wiid, Ian; Baker, Bienyameen

    2016-01-01

    During Mycobacterium tuberculosis (M.tb) infection, the initial interactions between the pathogen and the host cell determines internalization and innate immune response events. It is established that detergents such as Tween alter the mycobacterial cell wall and solubilize various lipids and proteins. The implication of this is significant since induced changes on the cell wall affect macrophage uptake and the immune response to M.tb. Importantly, during transmission between hosts, aerosolized M.tb enters the host in its native form, i.e. in a detergent-free environment, thus in vitro and in vivo studies should mimic this as closely as possible. To this end, we have optimized a procedure for growing and processing detergent-free M.tb and assessed the response of murine macrophages (BMDM) infected with multi drug-resistant M.tb (R179 Beijing 220 clinical isolate) using RNAseq. We compared the effects of the host response to M.tb cultured under standard laboratory conditions (Tween 80 containing medium -R179T), or in detergent-free medium (R179NT). RNAseq comparisons reveal 2651 differentially expressed genes in BMDMs infected with R179T M.tb vs. BMDMs infected with R179NT M.tb. A range of differentially expressed genes involved in BMDM receptor interaction with M.tb (Mrc1, Ifngr1, Tlr9, Fpr1 and Itgax) and pro-inflammatory cytokines/chemokines (Il6, Il1b, Tnf, Ccl5 and Cxcl14) were selected for analysis through qPCR. BMDMs infected with R179NT stimulate a robust inflammatory response. Interestingly, R179NT M.tb induce transcription of Fpr1, a receptor which detects bacterial formyl peptides and initiates a myriad of immune responses. Additionally we show that the host components Cxcl14, with an unknown role in M.tb infection, and Tlr9, an emerging role player, are only stimulated by infection with R179NT M.tb. Taken together, our results suggest that the host response differs significantly in response to Tween 80 cultured M.tb and should therefore not be used in

  18. Cytokine polymorphisms have a synergistic effect on severity of the acute sickness response to infection.

    PubMed

    Vollmer-Conna, Uté; Piraino, Barbara F; Cameron, Barbara; Davenport, Tracey; Hickie, Ian; Wakefield, Denis; Lloyd, Andrew R

    2008-12-01

    Functional polymorphisms in immune response genes are increasingly recognized as important contributors to the marked individual differences in susceptibility to and outcomes of infectious disease. The acute sickness response is a stereotypical set of illness manifestations mediated by the proinflammatory cytokines induced by many different pathogens. The genetic determinants of severity of the acute sickness response have not previously been explored. We examined the impact of functional polymorphisms in cytokine genes with critical roles in the early immune response (tumor necrosis factor-alpha, interleukin-6, interleukin-10, and interferon-gamma) on the severity and duration of illness following acute infection with Epstein-Barr virus, Coxiella burnetii (the causative agent of Q fever), or Ross River virus. We found that the interferon-gamma +874T/A and the interleukin-10 -592C/A polymorphisms significantly affected illness severity, cytokine protein levels, and the duration of illness. These cytokine genotypes acted in synergy to potentiate their influence on disease outcomes. These findings suggest that genetically determined variations in the intensity of the inflammatory response underpin the severity of the acute sickness response and predict the recovery time across varied infections.

  19. Polyclonal and allergen-induced cytokine responses in adults with asthma: resolution of asthma is associated with normalization of IFN-gamma responses.

    PubMed

    Smart, Joanne M; Horak, Elisabeth; Kemp, Andrew S; Robertson, Colin F; Tang, Mimi L K

    2002-09-01

    Atopic disease is associated with skewing of immune responses away from a T(H)1 toward a T(H)2 profile. Previous studies have implicated this cytokine imbalance in the development of disease. However, it is not known whether normalization of this imbalance is conversely associated with disease resolution. To further delineate the role of reduced T(H)1 and increased T(H)2 cytokine production in the pathogenesis of atopic disease and to determine whether disease resolution is associated with alteration of cytokine profiles, we investigated cytokine responses in a cohort of adult patients with asthma followed from childhood. A cohort of wheezy children and control subjects aged 7 to 10 years were recruited from 1964 to 1967. Subjects were reevaluated every 7 years to monitor the outcome of childhood asthma. At the 42-year follow-up, 89 subjects from this cohort were evaluated for mitogen and house dust mite (HDM)-induced T(H)1 (IFN-gamma) and T(H)2 (IL-4, IL-5, and IL-13) cytokine responses. Cytokine responses were compared in patients with ongoing asthma, patients with resolved asthma, and control subjects. Patients with severe ongoing asthma had significantly reduced HDM-induced IFN-gamma production compared with that of control subjects and patients with resolved asthma. In contrast, HDM-induced IFN-gamma production in patients with resolved asthma was equivalent to that seen in control subjects. Patients with ongoing and resolved asthma produced significantly higher levels of IL-5 in response to HDM compared with that seen in control subjects, with levels being equivalent in patients with active and resolved asthma. HDM-induced IL-13 production was significantly increased in the patients with resolved asthma when compared with that seen in the control subjects. PHA-induced cytokine responses did not parallel HDM-induced responses. Patients with persistent and severe atopic asthma have a reduced HDM-induced T(H)1 response, whereas those with resolved asthma do not

  20. Learning from the Messengers: Innate Sensing of Viruses and Cytokine Regulation of Immunity—Clues for Treatments and Vaccines

    PubMed Central

    Melchjorsen, Jesper

    2013-01-01

    Virus infections are a major global public health concern, and only via substantial knowledge of virus pathogenesis and antiviral immune responses can we develop and improve medical treatments, and preventive and therapeutic vaccines. Innate immunity and the shaping of efficient early immune responses are essential for control of viral infections. In order to trigger an efficient antiviral defense, the host senses the invading microbe via pattern recognition receptors (PRRs), recognizing distinct conserved pathogen-associated molecular patterns (PAMPs). The innate sensing of the invading virus results in intracellular signal transduction and subsequent production of interferons (IFNs) and proinflammatory cytokines. Cytokines, including IFNs and chemokines, are vital molecules of antiviral defense regulating cell activation, differentiation of cells, and, not least, exerting direct antiviral effects. Cytokines shape and modulate the immune response and IFNs are principle antiviral mediators initiating antiviral response through induction of antiviral proteins. In the present review, I describe and discuss the current knowledge on early virus–host interactions, focusing on early recognition of virus infection and the resulting expression of type I and type III IFNs, proinflammatory cytokines, and intracellular antiviral mediators. In addition, the review elucidates how targeted stimulation of innate sensors, such as toll-like receptors (TLRs) and intracellular RNA and DNA sensors, may be used therapeutically. Moreover, I present and discuss data showing how current antimicrobial therapies, including antibiotics and antiviral medication, may interfere with, or improve, immune response. PMID:23435233

  1. Serum levels of cytokines in water buffaloes experimentally infected with Fasciola gigantica.

    PubMed

    Zhang, Fu-Kai; Guo, Ai-Jiang; Hou, Jun-Ling; Sun, Miao-Miao; Sheng, Zhao-An; Zhang, Xiao-Xuan; Huang, Wei-Yi; Elsheikha, Hany M; Zhu, Xing-Quan

    2017-09-15

    Fasciola gigantica infection in water buffaloes causes significant economic losses especially in developing countries. Although modulation of the host immune response by cytokine neutralization or vaccination is a promising approach to control infection with this parasite, our understanding of cytokine's dynamic during F. gigantica infection is limited. To address this, we quantified the levels of serum cytokines produced in water buffaloes following experimental infection with F. gigantica. Five buffaloes were infected via oral gavage with 500 viable F. gigantica metacercariae and blood samples were collected from buffaloes one week before infection and for 13 consecutive weeks thereafter. The levels of 10 cytokines in serum samples were simultaneously determined using ELISA. F. gigantica failed to elicit the production of various pro-inflammatory cytokines, including interleukin-1β (IL-1β), IL-2, IL-6, IL-12, and IFN-γ. On the other hand, evidence of a Th2 type response was detected, but only early in the course of parasite colonization and included modest increase in the levels of IL-10 and IL-13. The results also revealed suppression of the immune responses as a feature of chronic F. gigantica infection in buffaloes. Taken together, F. gigantica seems to elicit a modest Th2 response at early stage of infection in order to downregulate harmful Th1- and Th17-type inflammatory responses in experimentally infected buffaloes. The full extent of anti-F. gigantica immune response and its relation to pathogenesis requires further study. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Novel Sphingomyelinase-Like Enzyme in Ixodes scapularis Tick Saliva Drives Host CD4+ T cells to Express IL-4

    PubMed Central

    Alarcon-Chaidez, F. J.; Boppana, V. D.; Hagymasi, A.T.; Adler, A. J.; Wikel, S. K.

    2009-01-01

    Tick feeding modulates host immune responses. Tick-induced skewing of host CD4+ T cells towards a Th2 cytokine profile facilitates transmission of tick-borne pathogens that would otherwise be neutralized by Th1 cytokines. Tick-derived factors that drive this Th2 response have not previously been characterized. In the current study, we examined an I. scapularis cDNA library prepared at 18-24 hours of feeding and identified and expressed a tick gene with homology to Loxosceles spider venom proteins with sphingomyelinase activity. This I. scapularis sphingomyelinase-like (IsSMase) protein is a Mg+2-dependent, neutral (pH 7.4) form of sphingomyelinase. Significantly, in an in vivo TCR transgenic adoptive transfer assay IsSMase programmed host CD4+ T cells to express the hallmark Th2 effector cytokine IL-4. IsSMase appears to directly program host CD4 T cell IL-4 expression (as opposed to its metabolic by-products) because induced IL-4 expression was not altered when enzymatic activity was neutralized. TCR transgenic CD4 T cell proliferation (CFSE-dilution) was also significantly increased by IsSMase. Furthermore, a Th2 response is superimposed onto a virally-primed Th1 response by IsSMase. Thus, IsSMase is the first identified tick molecule capable of programming host CD4+ T cells to express IL-4. PMID:19292772

  3. Modeling the NF-κB mediated inflammatory response predicts cytokine waves in tissue

    PubMed Central

    2011-01-01

    Background Waves propagating in "excitable media" is a reliable way to transmit signals in space. A fascinating example where living cells comprise such a medium is Dictyostelium D. which propagates waves of chemoattractant to attract distant cells. While neutrophils chemotax in a similar fashion as Dictyostelium D., it is unclear if chemoattractant waves exist in mammalian tissues and what mechanisms could propagate them. Results We propose that chemoattractant cytokine waves may naturally develop as a result of NF-κB response. Using a heuristic mathematical model of NF-κB-like circuits coupled in space we show that the known characteristics of NF-κB response favor cytokine waves. Conclusions While the propagating wave of cytokines is generally beneficial for inflammation resolution, our model predicts that there exist special conditions that can cause chronic inflammation and re-occurrence of acute inflammatory response. PMID:21771307

  4. Trichomonas vaginalis α-Actinin 2 Modulates Host Immune Responses by Inducing Tolerogenic Dendritic Cells via IL-10 Production from Regulatory T Cells.

    PubMed

    Lee, Hye-Yeon; Kim, Juri; Ryu, Jae-Sook; Park, Soon-Jung

    2017-08-01

    Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis α-actinin 2, Tvα-actinin 2, has been used to diagnose trichomoniasis. This study was undertaken to examine the role of Tvα-actinin 2 as an antigenic molecule to induce immune responses from humans. Western blot analysis using anti-Tvα-actinin 2 antibodies indicated its presence in the secreted proteins of T. vaginalis. ELISA was employed to measure cytokine production by vaginal epithelial cells, prostate cells, mouse dendritic cells (DCs), or T cells stimulated with T. vaginalis or Tvα-actinin 2 protein. Both T. vaginalis and rTvα-actinin 2 induced cytokine production from epithelial cell lines, including IL-10. Moreover, CD4+CD25- regulatory T cells (Treg cells) incubated with rTvα-actinin 2-treated DCs produced high levels of IL-10. These data indicate that Tvα-actinin 2 modulates immune responses via IL-10 production by Treg cells.

  5. Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei.

    PubMed

    Kessler, Bianca; Rinchai, Darawan; Kewcharoenwong, Chidchamai; Nithichanon, Arnone; Biggart, Rachael; Hawrylowicz, Catherine M; Bancroft, Gregory J; Lertmemongkolchai, Ganjana

    2017-02-20

    Melioidosis, caused by Burkholderia pseudomallei, is endemic in northeastern Thailand and Northern Australia. Severe septicemic melioidosis is associated with high levels of pro-inflammatory cytokines and is correlated with poor clinical outcomes. IL-10 is an immunoregulatory cytokine, which in other infections can control the expression of pro-inflammatory cytokines, but its role in melioidosis has not been addressed. Here, whole blood of healthy seropositive individuals (n = 75), living in N. E. Thailand was co-cultured with B. pseudomallei and production of IL-10 and IFN-γ detected and the cellular sources identified. CD3 - CD14 + monocytes were the main source of IL-10. Neutralization of IL-10 increased IFN-γ, IL-6 and TNF-α production and improved bacteria killing. IFN-γ production and microbicidal activity were impaired in individuals with diabetes mellitus (DM). In contrast, IL-10 production was unimpaired in individuals with DM, resulting in an IL-10 dominant cytokine balance. Neutralization of IL-10 restored the IFN-γ response of individuals with DM to similar levels observed in healthy individuals and improved killing of B. pseudomallei in vitro. These results demonstrate that monocyte derived IL-10 acts to inhibit potentially protective cell mediated immune responses against B. pseudomallei, but may also moderate the pathological effects of excessive cytokine production during sepsis.

  6. Patient cytokine response in transfusion-associated sepsis.

    PubMed Central

    McAllister, S K; Bland, L A; Arduino, M J; Aguero, S M; Wenger, P N; Jarvis, W R

    1994-01-01

    Cytokine concentrations in plasma from patients transfused with packed erythrocytes contaminated with gram-negative bacilli were measured. Cytokine concentrations in posttransfusion plasma were significantly elevated. A difference in cytokine patterns between survivors and a nonsurvivor was observed. PMID:8168982

  7. Subclinical cytomegalovirus infection associates with altered host immunity, gut microbiota and vaccine responses.

    PubMed

    Santos Rocha, Clarissa; Hirao, Lauren A; Weber, Mariana G; Méndez-Lagares, Gema; Chang, W L William; Jiang, Guochun; Deere, Jesse D; Sparger, Ellen E; Roberts, Jeffrey; Barry, Peter A; Hartigan-O'Connor, Dennis J; Dandekar, Satya

    2018-04-18

    Subclinical viral infections (SVI) including cytomegalovirus (CMV) are highly prevalent in humans, resulting in life-long persistence. However, the impact of SVI on the interplay between the host immunity and gut microbiota in the context of environmental exposures is not well defined. We utilized the preclinical nonhuman primate (NHP) model consisting of SVI-free (SPF) rhesus macaques and compared them to the animals with SVI (non-SPF) acquired through natural exposure and investigated the impact of SVI on immune cell distribution and function as well as on gut microbiota. These changes were examined in animals housed in the outdoor environment as compared to the controlled indoor environment. We report that SVI are associated with altered immune cell subsets and gut microbiota composition in animals housed in the outdoor environment. Non-SPF animals harbored a higher proportion of potential butyrate-producing Firmicutes and higher numbers of lymphocytes, effector T cells and cytokine-producing T cells. Surprisingly, these differences diminished following their transfer to the controlled indoor environment, suggesting that non-SPFs had increased responsiveness to environmental exposures. An experimental infection of indoor SPF animals with CMV resulted in an increased abundance of butyrate-producing bacteria, validating that CMV enhanced colonization of butyrate-producing commensals. Finally, non-SPF animals displayed lower antibody responses to influenza vaccination as compared to SPF animals. Our data show that subclinical CMV infection heightens host immunity and gut microbiota changes in response to environmental exposures. This may contribute to the heterogeneity in host immune response to vaccines and environmental stimuli at the population level. IMPORTANCE Humans harbor several latent viruses that modulate host immunity and commensal microbiota, thus introducing heterogeneity in their responses to pathogens, vaccines and environmental exposures. Most of

  8. Multiplex analysis of plasma cytokines/chemokines showing different immune responses in active TB patients, latent TB infection and healthy participants.

    PubMed

    Yao, Xiangyang; Liu, Yongliang; Liu, Yang; Liu, Wei; Ye, Zhizhong; Zheng, Chao; Ge, Shengxiang

    2017-12-01

    Interferon gamma release assays (IGRAs) have been widely used to diagnose Mycobacterium tuberculosis (MTB) infection. However, IGRAs cannot discriminate between active TB patients and latent TB infection (LTBI), and the sensitivity of IGRAs for MTB infection is suboptimal. Here, we analyzed cytokines/chemokines in MTB antigen-stimulated and -unstimulated plasma samples to identify host biomarkers that are associated with active TB and MTB infection. Active TB patients, subjects with LTBI and healthy participants were recruited. Seventy-one soluble cytokines and chemokines were tested using Luminex liquid array-based multiplexed immunoassays. For the 71 examined factors, our results indicated that the unstimulated levels of IL-8 Nil , IP-10 Nil , MIP-1a Nil , and sIL-2Ra Nil and the antigen stimulated levels of IL-8 (Ag-Nil) , VEGF (Ag-Nil) , and MCP-3 (Ag-Nil) were potential biomarkers for differentiating between active TB and LTBI, with AUCs of 0.8, 0.86, 0.755, 0.845, 0.825, 0.812 and 0.75, respectively. The G-CSF (Ag-Nil) , GM-CSF (Ag-Nil) , IL-1a (Ag-Nil) , IL-2 (Ag-Nil) , IP-10 (Ag-Nil) , BCA-1 (Ag-Nil) and Eotaxin-1 (Ag-Nil) responses were significantly higher in patients with active TB and LTBI compared with healthy participants (p < 0.05), with AUCs of 0.922, 0.902, 0.908, 1.0, 0.937, 0.919 and 0.935, respectively. Our preliminary data suggest that unstimulated or stimulated levels of cytokines and chemokines could be used as host biomarkers for diagnosing active TB as well as additional biomarkers, except IFN-γ, for MTB infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila.

    PubMed

    Lamiable, Olivier; Kellenberger, Christine; Kemp, Cordula; Troxler, Laurent; Pelte, Nadège; Boutros, Michael; Marques, Joao Trindade; Daeffler, Laurent; Hoffmann, Jules A; Roussel, Alain; Imler, Jean-Luc

    2016-01-19

    Viruses are obligatory intracellular parasites that suffer strong evolutionary pressure from the host immune system. Rapidly evolving viral genomes can adapt to this pressure by acquiring genes that counteract host defense mechanisms. For example, many vertebrate DNA viruses have hijacked cellular genes encoding cytokines or cytokine receptors to disrupt host cell communication. Insect viruses express suppressors of RNA interference or apoptosis, highlighting the importance of these cell intrinsic antiviral mechanisms in invertebrates. Here, we report the identification and characterization of a family of proteins encoded by insect DNA viruses that are homologous to a 12-kDa circulating protein encoded by the virus-induced Drosophila gene diedel (die). We show that die mutant flies have shortened lifespan and succumb more rapidly than controls when infected with Sindbis virus. This reduced viability is associated with deregulated activation of the immune deficiency (IMD) pathway of host defense and can be rescued by mutations in the genes encoding the homolog of IKKγ or IMD itself. Our results reveal an endogenous pathway that is exploited by insect viruses to modulate NF-κB signaling and promote fly survival during the antiviral response.

  10. INCONSISTENCIES BETWEEN CYTOKINE PROFILES, ANTIBODY RESPONSES, AND RESPIRATORY HYPERRESPONSIVENESS FOLLOWING DERMAL EXPOSURE TO ISOCYANATES

    EPA Science Inventory

    Cytokine profiling of local lymph node responses has been proposed as a simple test to identify chemicals, such as low molecular weight diisocyanates, that pose a significant risk of occupational asthma. Previously, we reported cytokine mRNA profiles for dinitrochlorobenzene (DNC...

  11. Metabolic host responses to infection by intracellular bacterial pathogens

    PubMed Central

    Eisenreich, Wolfgang; Heesemann, Jürgen; Rudel, Thomas; Goebel, Werner

    2013-01-01

    The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies. PMID:23847769

  12. Role of gamma-delta T cells in host response against Staphylococcus aureus-induced pneumonia

    PubMed Central

    2012-01-01

    Background Staphylococcus aureus is the major cause of hospital-acquired and community-acquired pneumonia. Host defense to S.aureus infection is largely mediated by the innate immune system. γδ T cells play an important role in innate immunity to many infectious diseases. However, less is known about the role of these cells during S.aureus-induced pneumonia. In this study, we examined the response and the role of γδ T cells to pulmonary S.aureus infection. Results Mice infected with S. aureus intranasally showed rapid γδ T cells accumulation in the lung. Deficiency of γδ T cells led to attenuated bacterial clearance and less tissue damage in lung compared with WT mice. Moreover, TCR-δ−/− mice exhibited impaired neutrophil recruitment and reduced cytokine production at the site of infection. The γδ T cells in response to pulmonary S. aureus infection mainly secreted IL-17 and γδ T cells deficiency reduced IL-17 production, which might regulate the production of neutrophil-inducing cytokine/chemokine in the S. aureus-infected lungs. Conclusions Accumulation of γδ T cells in the lungs to S. aureus infection is beneficial for bacteria clearance and also contributes to the tissue damage. These cells were the primary source of IL-17, which might influence the recruitment of neutrophils at the early stage of infection. PMID:22776294

  13. Effects of Reticuloendotheliosis Virus Infection on Cytokine Production in SPF Chickens

    PubMed Central

    Xue, Mei; Shi, Xingming; Zhao, Yan; Cui, Hongyu; Hu, Shunlei; Cui, Xianlan; Wang, Yunfeng

    2013-01-01

    Infection with reticuloendotheliosis virus (REV), a gammaretrovirus in the Retroviridae family, can result in immunosuppression and subsequent increased susceptibility to secondary infections. The effects of REV infection on expression of mRNA for cytokine genes in chickens have not been completely elucidated. In this study, using multiplex branched DNA (bDNA) technology, we identified molecular mediators that participated in the regulation of the immune response during REV infection in chickens. Cytokine and chemokine mRNA expression levels were evaluated in the peripheral blood mononuclear cells (PBMCs). Expression levels of interleukin (IL)-4, IL-10, IL-13 and tumor necrosis factor (TNF)-α were significantly up-regulated while interferon (IFN)-α, IFN-β, IFN-γ, IL-1β,IL-2, IL-3, IL-15, IL-17F, IL-18 and colony-stimulating factor (CSF)-1 were markedly decreased in PBMCs at all stages of infection. Compared with controls, REV infected chickens showed greater expression levels of IL-8 in PBMCs 21 and 28 days post infection. In addition, REV regulates host immunity as a suppressor of T cell proliferative responses. The results in this study will help us to understand the host immune response to virus pathogens. PMID:24358317

  14. Dual function of CD70 in viral infection: modulator of early cytokine responses and activator of adaptive responses1

    PubMed Central

    Allam, Atef; Swiecki, Melissa; Vermi, William; Ashwell, Jonathan D.; Colonna, Marco

    2014-01-01

    The role of the tumor necrosis factor family member CD70 in adaptive T cell responses has been intensively studied but its function in innate responses is still under investigation. Here we show that CD70 inhibits the early innate response to murine cytomegalovirus (MCMV) but is essential for the optimal generation of virus-specific CD8 T cells. CD70-/- mice reacted to MCMV infection with a robust type I interferon and proinflammatory cytokine response. This response was sufficient for initial control of MCMV, although at later time points, CD70-/- mice became more susceptible to MCMV infection. The heightened cytokine response during the early phase of MCMV infection in CD70-/- mice was paralleled by a reduction in regulatory T cells (Treg). Treg from naïve CD70-/- mice were not as efficient at suppressing T cell proliferation compared to Treg from naïve WT mice and depletion of Treg during MCMV infection in Foxp3-DTR mice or in WT mice recapitulated the phenotype observed in CD70-/- mice. Our study demonstrates that while CD70 is required for the activation of the antiviral adaptive response, it has a regulatory role in early cytokine responses to viruses such as MCMV, possibly through maintenance of Treg survival and function. PMID:24913981

  15. Host pathogen interactions in Helicobacter pylori related gastric cancer

    PubMed Central

    Chmiela, Magdalena; Karwowska, Zuzanna; Gonciarz, Weronika; Allushi, Bujana; Stączek, Paweł

    2017-01-01

    Helicobacter pylori (H. pylori), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori-related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori-driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor. PMID:28321154

  16. Host pathogen interactions in Helicobacter pylori related gastric cancer.

    PubMed

    Chmiela, Magdalena; Karwowska, Zuzanna; Gonciarz, Weronika; Allushi, Bujana; Stączek, Paweł

    2017-03-07

    Helicobacter pylori ( H. pylori ), discovered in 1982, is a microaerophilic, spiral-shaped gram-negative bacterium that is able to colonize the human stomach. Nearly half of the world's population is infected by this pathogen. Its ability to induce gastritis, peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma has been confirmed. The susceptibility of an individual to these clinical outcomes is multifactorial and depends on H. pylori virulence, environmental factors, the genetic susceptibility of the host and the reactivity of the host immune system. Despite the host immune response, H. pylori infection can be difficult to eradicate. H. pylori is categorized as a group I carcinogen since this bacterium is responsible for the highest rate of cancer-related deaths worldwide. Early detection of cancer can be lifesaving. The 5-year survival rate for gastric cancer patients diagnosed in the early stages is nearly 90%. Gastric cancer is asymptomatic in the early stages but always progresses over time and begins to cause symptoms when untreated. In 97% of stomach cancer cases, cancer cells metastasize to other organs. H. pylori infection is responsible for nearly 60% of the intestinal-type gastric cancer cases but also influences the development of diffuse gastric cancer. The host genetic susceptibility depends on polymorphisms of genes involved in H. pylori -related inflammation and the cytokine response of gastric epithelial and immune cells. H. pylori strains differ in their ability to induce a deleterious inflammatory response. H. pylori -driven cytokines accelerate the inflammatory response and promote malignancy. Chronic H. pylori infection induces genetic instability in gastric epithelial cells and affects the DNA damage repair systems. Therefore, H. pylori infection should always be considered a pro-cancerous factor.

  17. Multigenic Control of Measles Vaccine Immunity Mediated by Polymorphisms in Measles Receptor, Innate Pathway, and Cytokine Genes

    PubMed Central

    Kennedy, Richard B.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; O’Byrne, Megan; Jacobson, Robert M.; Pankratz, V. Shane; Poland, Gregory A.

    2012-01-01

    Measles infection and vaccine response are complex biological processes that involve both viral and host genetic factors. We have previously investigated the influence of genetic polymorphisms on vaccine immune response, including measles vaccines, and have shown that polymorphisms in HLA, cytokine, cytokine receptor, and innate immune response genes are associated with variation in vaccine response but do not account for all of the inter-individual variance seen in vaccinated populations. In the current study we report the findings of a multigenic analysis of measles vaccine immunity, indicating a role for the measles virus receptor CD46, innate pattern-recognition receptors (DDX58, TLR2, 4, 5,7 and 8) and intracellular signaling intermediates (MAP3K7, NFKBIA), and key antiviral molecules (VISA, OAS2, MX1, PKR) as well as cytokines (IFNA1, IL4, IL6, IL8, IL12B) and cytokine receptor genes (IL2RB, IL6R, IL8RA) in the genetic control of both humoral and cellular immune responses. This multivariate approach provided additional insights into the genetic control of measles vaccine responses over and above the information gained by our previous univariate SNP association analyses. PMID:22265947

  18. Pirfenidone Inhibits T Cell Activation, Proliferation, Cytokine and Chemokine Production, and Host Alloresponses

    PubMed Central

    Visner, Gary A.; Liu, Fengzhi; Bizargity, Peyman; Liu, Hanzhong; Liu, Kaifeng; Yang, Jun; Wang, Liqing; Hancock, Wayne W.

    2009-01-01

    Background We previously showed that pirfenidone, an anti-fibrotic agent, reduces lung allograft injury/rejection. In this study, we tested the hypothesis that pirfenidone has immune modulating activities and evaluated its effects on the function of T cell subsets, which play important roles in allograft rejection. Method We first evaluated whether pirfenidone alters T cell proliferation and cytokine release in response to T cell receptor (TCR) activation, and whether pirfenidone alters regulatory T cells (CD4+CD25+) suppressive effects using an in vitro assay. Additionally, pirfenidone effects on alloantigen-induced T cell proliferation in vivo were assessed by adoptive transfer of CFSE-labeled T cells across a parent->F1 MHC mismatch, as well as using a murine heterotopic cardiac allograft model (BALB/c->C57BL/6). Results Pirfenidone was found to inhibit the responder frequency of TCR-stimulated CD4+ cell total proliferation in vitro and in vivo, whereas both CD4 and CD8 proliferation index were reduced by pirfenidone. Additionally, pirfenidone inhibited TCR-induced production of multiple pro-inflammatory cytokines and chemokines. Interestingly, there was no change on TGF-β production by purified T cells, and pirfenidone had no effect on the suppressive properties of naturally occurring regulatory T cells. Pirfenidone alone showed a small but significant (p < 0.05) effect on the in vivo allogeneic response while the combination of pirfenidone and low dose rapamycin had more remarkable effect in reducing the alloantigen response with prolonged graft survival. Conclusion Pirfenidone may be an important new agent in transplantation, with particular relevance to combating chronic rejection by inhibiting both fibroproliferative and alloimmune responses. PMID:19667934

  19. Peripheral Blood Mononuclear Cells Derived from Grand Multigravidae Display a Distinct Cytokine Profile in Response to P. falciparum Infected Erythrocytes

    PubMed Central

    Ludlow, Louise E.; Hasang, Wina; Umbers, Alexandra J.; Forbes, Emily K.; Ome, Maria; Unger, Holger W.; Mueller, Ivo; Siba, Peter M.; Jaworowski, Anthony; Rogerson, Stephen J.

    2014-01-01

    Immunopathology of placental malaria is most significant in women in their first pregnancy especially in endemic areas, due to a lack of protective immunity to Plasmodium falciparum, which is acquired in successive pregnancies. In some studies (but not all), grand multigravidae (defined as 5 or more pregnancies, G5–7) are more susceptible to poor birth outcomes associated with malaria compared to earlier gravidities. By comparing peripheral cellular responses in primigravidae (G1), women in their second to fourth pregnancy (G2–4) and grand multigravidae we sought to identify key components of the dysregulated immune response. PBMC were exposed to CS2-infected erythrocytes (IE) opsonised with autologous plasma or unopsonised IE, and cytokine and chemokine secretion was measured. Higher levels of opsonising antibody were present in plasma derived from multigravid compared to primigravid women. Significant differences in the levels of cytokines and chemokines secreted in response to IE were observed. Less IL-10, IL-1β, IL-6 and TNF but more CXCL8, CCL8, IFNγ and CXCL10 were detected in G5–7 compared to G2–4 women. Our study provides fresh insight into the modulation of peripheral blood cell function and effects on the balance between host protection and immunopathology during placental malaria infection. PMID:24465935

  20. Cytokine expression in response to root canal infection in gnotobiotic mice.

    PubMed

    Maciel, K F; Neves de Brito, L C; Tavares, W L F; Moreira, G; Nicoli, J R; Vieira, L Q; Ribeiro Sobrinho, A P

    2012-04-01

    To examine cytokine expression profiles during periapical lesion development in response to synergetic human pathogens in a gnotobiotic mouse model. Human strains of Fusobacterium nucleatum and Peptostreptococcus prevotii were inoculated into the root canals of germ-free mice in either mono- or bi-association. Animals were killed 7 and 14 days after infection, and periapical tissues were collected. mRNA expression of the cytokines IFN-γ, TNF-α, Receptor activator of nuclear factor kappa-B ligand (RANKL), IL-10, IL-4 and transforming growth factor β (TGF-β) was assessed using real-time PCR. Levene's test was used to assess the equality of variance of the data, whereas a t-test for independent samples was used to evaluate the significance of the differences between groups (P < 0.05). The mRNA expression of IFN-γ and TNF-α was up-regulated by F. nucleatum during the acute (day 7) and chronic phase (day 14) of periapical lesion development. However, in bi-infection the expression of IFN-γ and TNF-α were effectively absent at both time-points. RANKL mRNA expression was down-regulated during dual infection at the chronic phase. As IL-4 expression was similar at both time-points, IL-4 does not appear to be involved in the periapical response to these bacterial strains. IL-10 was up-regulated during the chronic phase by mono-infection with either F. nucleatum or P. prevotii. Dual infection increased TGF-β mRNA expression on day 7, which paralleled the decrease in IFN-γ and TNF-α mRNA levels at the same time-point. F. nucleatum increased TGF-β mRNA expression during the chronic phase. Cytokine profiles depend on the nature of the bacterial challenge. Both TGF-β and IL-10 appeared to be regulating the proinflammatory cytokine responses at both time-points of the periapical immune response. © 2012 International Endodontic Journal.

  1. Polyclonal and allergen-induced cytokine responses in children with elevated immunoglobulin E but no atopic disease.

    PubMed

    Smart, J M; Tang, M L K; Kemp, A S

    2002-11-01

    Reduced Th1 and elevated Th2 cytokine responses are considered to be a principal mechanism in the generation of the inflammation leading to the manifestations of atopic disease in the skin of atopic dermatitis and in the airways of asthma. If reduced Th1 and elevated Th2 responses are principal determinants of the manifestation of atopic disease it might be expected that subjects with established disease would exhibit differences in their cytokine profiles as compared with atopic patients without clinical disease. To determine whether asymptomatic atopic children exhibit a cytokine imbalance similar to that seen in patients with established atopic disease or if they behave like non-atopic controls. Cytokine responses in a group of children with elevated IgE but no clinical manifestations of disease, atopic children with established disease and non-atopic controls were compared. We examined allergen-induced (house dust mite, HDM, rye grass pollen and RYE) cytokine responses in parallel with polyclonal (staphylococcal enterotoxin B, SEB) cytokine responses in a group of children with elevated serum IgE levels without current or past evidence of atopic disease (median age 6.6 years) and compared these with a non-atopic control group (median age 6.5 years) and a group of children with atopic disease (median age 6.7 years). Symptomatic atopic children had reduced SEB-induced IFN-gamma and increased SEB-induced IL-4 and IL-5 as compared with non-atopic controls. In contrast, SEB-induced IFN-gamma, IL-4 and IL-5 production in asymptomatic atopics was not significantly different from the non-atopic control subjects. Allergen-induced Th1 (IFN-gamma) and Th2 (IL-5 and IL-13) cytokine production was increased in both symptomatic atopics and asymptomatic atopics when compared with non-atopic controls. The defect in polyclonally induced IFN-gamma production was associated with the clinical manifestation of atopic disease but not the atopic stateper se. This suggests that the

  2. Th-1, Th-2 Cytokines Profile among Madurella mycetomatis Eumycetoma Patients.

    PubMed

    Nasr, Amre; Abushouk, Amir; Hamza, Anhar; Siddig, Emmanuel; Fahal, Ahmed H

    2016-07-01

    Eumycetoma is a progressive and destructive chronic granulomatous subcutaneous inflammatory disease caused by certain fungi, the most common being Madurella mycetomatis. The host defence mechanisms against fungi usually range from an early non-specific immune response to activation and induction of specific adaptive immune responses by the production of Th-1 and Th-2 cytokines. The aim of this study is to determine the levels of Th-1 and Th-2 cytokines in patients infected with Madurella mycetomatis, and the association between their levels and disease prognosis. This is a descriptive cross-sectional study conducted at the Mycetoma Research Centre, University of Khartoum, Sudan, where 70 patients with confirmed M. mycetomatis eumycetoma were enrolled; 35 with, and 35 without surgical excision. 70 healthy individuals from mycetoma endemic areas were selected as controls. The levels of serum cytokines were determined by cytometric bead array technique. Significantly higher levels of the Th-1 cytokines (IFN-γ, TNF-α, IL-1β and IL-2) were recorded in patients treated with surgical excision, compared to those treated without surgical excision. In contrast, the Th-2 cytokines (IL-4, IL-5, IL-6 and IL-10) were significantly lower in patients treated with surgical excision compared to those treated without surgical excision. In conclusion, the results of this study suggest that cell-mediated immunity can have a role to play in the pathogenesis of eumycetoma.

  3. The meteorology of cytokine storms, and the clinical usefulness of this knowledge.

    PubMed

    Clark, Ian A; Vissel, Bryce

    2017-07-01

    The term cytokine storm has become a popular descriptor of the dramatic harmful consequences of the rapid release of polypeptide mediators, or cytokines, that generate inflammatory responses. This occurs throughout the body in both non-infectious and infectious disease states, including the central nervous system. In infectious disease it has become a useful concept through which to appreciate that most infectious disease is not caused directly by a pathogen, but by an overexuberant innate immune response by the host to its presence. It is less widely known that in addition to these roles in disease pathogenesis these same cytokines are also the basis of innate immunity, and in lower concentrations have many essential physiological roles. Here we update this field, including what can be learned through the history of how these interlinking three aspects of biology and disease came to be appreciated. We argue that understanding cytokine storms in their various degrees of acuteness, severity and persistence is essential in order to grasp the pathophysiology of many diseases, and thus the basis of newer therapeutic approaches to treating them. This particularly applies to the neurodegenerative diseases.

  4. Genetic dissection of host immune response in pneumonia development and progression

    PubMed Central

    Smelaya, Tamara V.; Belopolskaya, Olesya B.; Smirnova, Svetlana V.; Kuzovlev, Artem N.; Moroz, Viktor V.; Golubev, Arkadiy M.; Pabalan, Noel A.; Salnikova, Lyubov E.

    2016-01-01

    The role of host genetic variation in pneumonia development and outcome is poorly understood. We studied common polymorphisms in the genes of proinflammatory cytokines (IL6 rs1800795, IL8 rs4073, IL1B rs16944), anti-inflammatory cytokines (IL10 rs1800896, IL4 rs2243250, IL13 rs20541) and toll-like receptors (TLR2 rs5743708 and rs4696480, TLR4 rs4986791, TLR9 rs352139, rs5743836 and rs187084) in patients with community-acquired pneumonia (CAP) (390 cases, 203 controls) and nosocomial pneumonia (355 cases, 216 controls). Experimental data were included in a series of 11 meta-analyses and eight subset analyses related to pneumonia susceptibility and outcome. TLR2 rs5743708 minor genotype appeared to be associated with CAP/Legionnaires’ disease/pneumococcal disease. In CAP patients, the IL6 rs1800795-C allele was associated with severe sepsis/septic shock/severe systemic inflammatory response, while the IL10 rs1800896-A allele protected against the development of these critical conditions. To contribute to deciphering of the above results, we performed an in silico analysis and a qualitative synthesis of literature data addressing basal and stimulated genotype-specific expression level. This data together with database information on transcription factors’ affinity changes caused by SNPs in putative promoter regions, the results of linkage disequilibrium analysis along with SNPs functional annotations supported assumptions about the complexity underlying the revealed associations. PMID:27725770

  5. Genetic dissection of host immune response in pneumonia development and progression.

    PubMed

    Smelaya, Tamara V; Belopolskaya, Olesya B; Smirnova, Svetlana V; Kuzovlev, Artem N; Moroz, Viktor V; Golubev, Arkadiy M; Pabalan, Noel A; Salnikova, Lyubov E

    2016-10-11

    The role of host genetic variation in pneumonia development and outcome is poorly understood. We studied common polymorphisms in the genes of proinflammatory cytokines (IL6 rs1800795, IL8 rs4073, IL1B rs16944), anti-inflammatory cytokines (IL10 rs1800896, IL4 rs2243250, IL13 rs20541) and toll-like receptors (TLR2 rs5743708 and rs4696480, TLR4 rs4986791, TLR9 rs352139, rs5743836 and rs187084) in patients with community-acquired pneumonia (CAP) (390 cases, 203 controls) and nosocomial pneumonia (355 cases, 216 controls). Experimental data were included in a series of 11 meta-analyses and eight subset analyses related to pneumonia susceptibility and outcome. TLR2 rs5743708 minor genotype appeared to be associated with CAP/Legionnaires' disease/pneumococcal disease. In CAP patients, the IL6 rs1800795-C allele was associated with severe sepsis/septic shock/severe systemic inflammatory response, while the IL10 rs1800896-A allele protected against the development of these critical conditions. To contribute to deciphering of the above results, we performed an in silico analysis and a qualitative synthesis of literature data addressing basal and stimulated genotype-specific expression level. This data together with database information on transcription factors' affinity changes caused by SNPs in putative promoter regions, the results of linkage disequilibrium analysis along with SNPs functional annotations supported assumptions about the complexity underlying the revealed associations.

  6. Looking Beyond Respiratory Cultures: Microbiome-Cytokine Signatures of Bacterial Pneumonia and Tracheobronchitis in Lung Transplant Recipients.

    PubMed

    Shankar, J; Nguyen, M H; Crespo, M M; Kwak, E J; Lucas, S K; McHugh, K J; Mounaud, S; Alcorn, J F; Pilewski, J M; Shigemura, N; Kolls, J K; Nierman, W C; Clancy, C J

    2016-06-01

    Bacterial pneumonia and tracheobronchitis are diagnosed frequently following lung transplantation. The diseases share clinical signs of inflammation and are often difficult to differentiate based on culture results. Microbiome and host immune-response signatures that distinguish between pneumonia and tracheobronchitis are undefined. Using a retrospective study design, we selected 49 bronchoalveolar lavage fluid samples from 16 lung transplant recipients associated with pneumonia (n = 8), tracheobronchitis (n = 12) or colonization without respiratory infection (n = 29). We ensured an even distribution of Pseudomonas aeruginosa or Staphylococcus aureus culture-positive samples across the groups. Bayesian regression analysis identified non-culture-based signatures comprising 16S ribosomal RNA microbiome profiles, cytokine levels and clinical variables that characterized the three diagnoses. Relative to samples associated with colonization, those from pneumonia had significantly lower microbial diversity, decreased levels of several bacterial genera and prominent multifunctional cytokine responses. In contrast, tracheobronchitis was characterized by high microbial diversity and multifunctional cytokine responses that differed from those of pneumonia-colonization comparisons. The dissimilar microbiomes and cytokine responses underlying bacterial pneumonia and tracheobronchitis following lung transplantation suggest that the diseases result from different pathogenic processes. Microbiomes and cytokine responses had complementary features, suggesting that they are closely interconnected in the pathogenesis of both diseases. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  7. Effect of extracorporeal cytokine removal on vascular barrier function in a septic shock patient.

    PubMed

    David, Sascha; Thamm, Kristina; Schmidt, Bernhard M W; Falk, Christine S; Kielstein, Jan T

    2017-01-01

    Sepsis and septic shock are major healthcare problems, affecting millions of individuals around the world each year. Pathophysiologically, septic multiple organ dysfunction (MOD) is a life-threatening condition caused by an overwhelming systemic inflammatory response of the host's organism to an infection. We experimentally tested if high circulating cytokine levels might increase vascular permeability-a critical hallmark of the disease-and if this phenomenon can be reversed by therapeutic cytokine removal (CytoSorb®) in an exemplary patient. A 32-year-old Caucasian female presented with septic shock and accompanying acute kidney injury (Sequential Organ Failure Assessment (SOFA) = 18) to our ICU. In spite of a broad anti-infective regimen, adequate fluid resuscitation, and high doses of inotropics and catecholamines, she remained refractory hypotensive. The extraordinary severity of septic shock suggested an immense overwhelming host response assumingly accompanied by a notable cytokine storm such as known from patients with toxic shock syndrome. Thus, a CytoSorb® filter was added to the dialysis circuit to remove excess shock-perpetuating cytokines. To analyze the endothelial phenotype in vitro before and after extracorporeal cytokine removal, we tested the septic shock patient's serum on human umbilical vein endothelial cells (HUVECs). The effect on endothelial integrity was assessed both on the morphological (fluorescent immunocytochemistry for VE-cadherin and F-actin) and functional (transendothelial electrical resistance (TER)) level that was recorded in real time with an "electric cell-substrate impedance sensing" (ECIS) system (ibidi). We found (1) severe alterations of cell-cell contacts and the cytoskeletal architecture and (2) profound functional permeability changes, the putative cellular correlate of the clinical vascular leakage syndrome. However, the endothelial barrier was protected from these profound adverse effects when HUVECs were challenged

  8. Lipopolysaccharide-binding protein and leptin are associated with stress-induced interleukin-6 cytokine expression ex vivo in obesity.

    PubMed

    Huang, Chun-Jung; Stewart, Jennifer K; Shibata, Yoshimi; Slusher, Aaron L; Acevedo, Edmund O

    2015-05-01

    Obesity is associated with enhanced inflammation and mental stress, but limited information has addressed the potential additive effect of psychological stress on obesity-associated inflammation. This study examined whether obese subjects would elicit a greater host immune response (IL-6 mRNA and cytokine) to lipopolysaccharide (LPS) in response to mental stress. Blood samples for LPS-stimulated IL-6 mRNA and cytokine were collected prior to and following mental stress. Results showed that obese subjects elicited a greater LPS-induced IL-6 along with its mRNA expression following mental stress compared to normal-weight subjects. Stress-induced IL-6 cytokine response to LPS was correlated with the baseline levels of plasma LPS binding protein (LBP) and leptin. These findings are consistent with the idea that endogenous inflammatory agents (e.g., LBP and leptin), often elevated with obesity, enhance inflammatory responses to psychological stress. © 2014 Society for Psychophysiological Research.

  9. Epithelial cell pro-inflammatory cytokine response differs across dental plaque bacterial species.

    PubMed

    Stathopoulou, Panagiota G; Benakanakere, Manjunatha R; Galicia, Johnah C; Kinane, Denis F

    2010-01-01

    The dental plaque is comprised of numerous bacterial species, which may or may not be pathogenic. Human gingival epithelial cells (HGECs) respond to perturbation by various bacteria of the dental plaque by production of different levels of inflammatory cytokines, which is a putative reflection of their virulence. The aim of the current study was to determine responses in terms of interleukin (IL)-1beta, IL-6, IL-8 and IL-10 secretion induced by Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum and Streptococcus gordonii in order to gauge their virulence potential. HGECs were challenged with the four bacterial species, live or heat killed, at various multiplicity of infections and the elicited IL-1beta, IL-6, IL-8 and IL-10 responses were assayed by enzyme-linked immunosorbent assay. Primary HGECs challenged with live P. gingivalis produced high levels of IL-1beta, while challenge with live A. actinomycetemcomitans gave high levels of IL-8. The opportunistic pathogen F. nucleatum induces the highest levels of pro-inflammatory cytokines, while the commensal S. gordonii is the least stimulatory. We conclude that various dental plaque biofilm bacteria induce different cytokine response profiles in primary HGECs that may reflect their individual virulence or commensal status.

  10. Pten Cell Autonomously Modulates the Hematopoietic Stem Cell Response to Inflammatory Cytokines.

    PubMed

    Porter, Shaina N; Cluster, Andrew S; Signer, Robert A J; Voigtmann, Jenna; Monlish, Darlene A; Schuettpelz, Laura G; Magee, Jeffrey A

    2016-06-14

    Pten negatively regulates the phosphatidylinositol 3-kinase (PI3K) pathway and is required to maintain quiescent adult hematopoietic stem cells (HSCs). Pten has been proposed to regulate HSCs cell autonomously and non-cell autonomously, but the relative importance of each mechanism has not been directly tested. Furthermore, the cytokines that activate the PI3K pathway upstream of Pten are not well defined. We sought to clarify whether Pten cell autonomously or non-cell autonomously regulates HSC mobilization. We also tested whether Pten deficiency affects the HSC response to granulocyte colony-stimulating factor (G-CSF) and interferon-α (IFNα) since these cytokines induce HSC mobilization or proliferation, respectively. We show that Pten regulates HSC mobilization and expansion in the spleen primarily via cell-autonomous mechanisms. Pten-deficient HSCs do not require G-CSF to mobilize, although they are hyper-sensitized to even low doses of exogenous G-CSF. Pten-deficient HSCs are similarly sensitized to IFNα. Pten therefore modulates the HSC response to inflammatory cytokines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Defective IL-17- and IL-22-dependent mucosal host response to Candida albicans determines susceptibility to oral candidiasis in mice expressing the HIV-1 transgene.

    PubMed

    Goupil, Mathieu; Cousineau-Côté, Vincent; Aumont, Francine; Sénéchal, Serge; Gaboury, Louis; Hanna, Zaher; Jolicoeur, Paul; de Repentigny, Louis

    2014-10-26

    The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17 cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1. Naïve CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of Il17, Il22, S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C. albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or Il-22 alone, significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response to C. albicans infection. These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.

  12. Robust Lys63-Linked Ubiquitination of RIG-I Promotes Cytokine Eruption in Early Influenza B Virus Infection

    PubMed Central

    Jiang, Jingwen; Fan, Wenhui; Zheng, Weinan; Yu, Meng; Chen, Can; Sun, Lei; Bi, Yuhai; Ding, Chan; Gao, George F.

    2016-01-01

    ABSTRACT Influenza A and B virus infections both cause a host innate immunity response. Here, we report that the robust production of type I and III interferons (IFNs), IFN-stimulated genes, and proinflammatory factors can be induced by influenza B virus rather than influenza A virus infection in alveolar epithelial (A549) cells during early infection. This response is mainly dependent on the retinoic acid-inducible gene I (RIG-I)-mediated signaling pathway. Infection by influenza B virus promotes intense Lys63-linked ubiquitination of RIG-I, resulting in cytokine eruption. It is known that the influenza A virus NS1 protein (NS1-A) interacts with RIG-I and TRIM25 to suppress the activation of RIG-I-mediated signaling. However, the present results indicate that the influenza B virus NS1 protein (NS1-B) is unable to interact with RIG-I but engages in the formation of a RIG-I/TRIM25/NS1-B ternary complex. Furthermore, we demonstrate that the N-terminal RNA-binding domain (RBD) of NS1-B is responsible for interaction with TRIM25 and that this interaction blocks the inhibitory effect of the NS1-B C-terminal effector domain (TED) on RIG-I ubiquitination. Our findings reveal a novel mechanism for the host cytokine response to influenza B virus infection through regulatory interplay between host and viral proteins. IMPORTANCE Influenza B virus generally causes local mild epidemics but is occasionally lethal to individuals. Existing studies describe the broad characteristics of influenza B virus epidemiology and pathology. However, to develop better prevention and treatments for the disease, determining the concrete molecular mechanisms of pathogenesis becomes pivotal to understand how the host reacts to the challenge of influenza B virus. Thus, we aimed to characterize the host innate immune response to influenza B virus infection. Here, we show that vigorous Lys63-linked ubiquitination of RIG-I and cytokine eruption dependent on RIG-I-mediated signal transduction are

  13. Robust Lys63-Linked Ubiquitination of RIG-I Promotes Cytokine Eruption in Early Influenza B Virus Infection.

    PubMed

    Jiang, Jingwen; Li, Jing; Fan, Wenhui; Zheng, Weinan; Yu, Meng; Chen, Can; Sun, Lei; Bi, Yuhai; Ding, Chan; Gao, George F; Liu, Wenjun

    2016-07-15

    Influenza A and B virus infections both cause a host innate immunity response. Here, we report that the robust production of type I and III interferons (IFNs), IFN-stimulated genes, and proinflammatory factors can be induced by influenza B virus rather than influenza A virus infection in alveolar epithelial (A549) cells during early infection. This response is mainly dependent on the retinoic acid-inducible gene I (RIG-I)-mediated signaling pathway. Infection by influenza B virus promotes intense Lys63-linked ubiquitination of RIG-I, resulting in cytokine eruption. It is known that the influenza A virus NS1 protein (NS1-A) interacts with RIG-I and TRIM25 to suppress the activation of RIG-I-mediated signaling. However, the present results indicate that the influenza B virus NS1 protein (NS1-B) is unable to interact with RIG-I but engages in the formation of a RIG-I/TRIM25/NS1-B ternary complex. Furthermore, we demonstrate that the N-terminal RNA-binding domain (RBD) of NS1-B is responsible for interaction with TRIM25 and that this interaction blocks the inhibitory effect of the NS1-B C-terminal effector domain (TED) on RIG-I ubiquitination. Our findings reveal a novel mechanism for the host cytokine response to influenza B virus infection through regulatory interplay between host and viral proteins. Influenza B virus generally causes local mild epidemics but is occasionally lethal to individuals. Existing studies describe the broad characteristics of influenza B virus epidemiology and pathology. However, to develop better prevention and treatments for the disease, determining the concrete molecular mechanisms of pathogenesis becomes pivotal to understand how the host reacts to the challenge of influenza B virus. Thus, we aimed to characterize the host innate immune response to influenza B virus infection. Here, we show that vigorous Lys63-linked ubiquitination of RIG-I and cytokine eruption dependent on RIG-I-mediated signal transduction are induced by virus

  14. Candida albicans triggers interleukin-6 and interleukin-8 responses by oral fibroblasts in vitro.

    PubMed

    Dongari-Bagtzoglou, A; Wen, K; Lamster, I B

    1999-12-01

    Oral candidiasis is the most frequent opportunistic infection associated with an immunocompromised host. Production of proinflammatory cytokines, such as interleukin-6 (IL-6) and IL-8, by host cells in response to Candida albicans can be expected to have a major impact in the activation of immune effector cells against the invading microorganism. Using a human cell--C. albicans coculture model system, we determined that this microorganism can trigger secretion of these potent chemoattractant and proinflammatory cytokines by oral mucosal fibroblasts. This response varied depending on the infecting strain and required fungal viability, germination of yeast into hyphae and mannose-mediated direct contact between the host cell and Candida. The secretion of proinflammatory cytokines by oral mucosal fibroblasts in response to C. albicans suggests that these cells have the potential to enhance the host defense against this organism in vivo. This may have important implications in controlling fungal overgrowth in the oral cavity.

  15. Antigen-Specific Interferon-Gamma Responses and Innate Cytokine Balance in TB-IRIS

    PubMed Central

    Goovaerts, Odin; Jennes, Wim; Massinga-Loembé, Marguerite; Ceulemans, Ann; Worodria, William; Mayanja-Kizza, Harriet; Colebunders, Robert; Kestens, Luc

    2014-01-01

    Background Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) remains a poorly understood complication in HIV-TB patients receiving antiretroviral therapy (ART). TB-IRIS could be associated with an exaggerated immune response to TB-antigens. We compared the recovery of IFNγ responses to recall and TB-antigens and explored in vitro innate cytokine production in TB-IRIS patients. Methods In a prospective cohort study of HIV-TB co-infected patients treated for TB before ART initiation, we compared 18 patients who developed TB-IRIS with 18 non-IRIS controls matched for age, sex and CD4 count. We analyzed IFNγ ELISpot responses to CMV, influenza, TB and LPS before ART and during TB-IRIS. CMV and LPS stimulated ELISpot supernatants were subsequently evaluated for production of IL-12p70, IL-6, TNFα and IL-10 by Luminex. Results Before ART, all responses were similar between TB-IRIS patients and non-IRIS controls. During TB-IRIS, IFNγ responses to TB and influenza antigens were comparable between TB-IRIS patients and non-IRIS controls, but responses to CMV and LPS remained significantly lower in TB-IRIS patients. Production of innate cytokines was similar between TB-IRIS patients and non-IRIS controls. However, upon LPS stimulation, IL-6/IL-10 and TNFα/IL-10 ratios were increased in TB-IRIS patients compared to non-IRIS controls. Conclusion TB-IRIS patients did not display excessive IFNγ responses to TB-antigens. In contrast, the reconstitution of CMV and LPS responses was delayed in the TB-IRIS group. For LPS, this was linked with a pro-inflammatory shift in the innate cytokine balance. These data are in support of a prominent role of the innate immune system in TB-IRIS. PMID:25415590

  16. CYTOKINE PROFILES DO NOT PREDICT ANTIBODY RESPONSES AND RESPIRATORY HYPERRESPONSIVENESS FOLLOWING DERMAL EXPOSURE TO ISOCYANATES

    EPA Science Inventory

    Rationale: Cytokine profiling of local lymph node responses following dermal exposure has been proposed as a test to identify chemicals that pose a risk of occupational asthma. The present study tested the hypothesis that relative differences in cytokine profiles for dini...

  17. MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response.

    PubMed

    Pang, Xiuhua; Samten, Buka; Cao, Guangxiang; Wang, Xisheng; Tvinnereim, Amy R; Chen, Xiu-Lan; Howard, Susan T

    2013-01-01

    The ESX-1 secretion system exports the immunomodulatory protein ESAT-6 and other proteins important in the pathogenesis of Mycobacterium tuberculosis. Components and substrates of ESX-1 are encoded at several loci, but the regulation of the encoding genes is only partially understood. In this study, we investigated the role of the MprAB two-component system in the regulation of ESX-1 activity. We determined that MprAB directly regulates the espA gene cluster, a locus necessary for ESX-1 function. Transcript mapping determined that the five genes in the cluster form an operon with two transcriptional start points, and several MprA binding sites were detected in the espA promoter. Expression analyses and promoter constructs indicated that MprAB represses the espA operon. However, the MprAB mutant Rv-D981 secreted lower levels of EspA, ESAT-6, and the ESX-1 substrate EspB than control strains. Secretion of CFP10, which is normally cosecreted with ESAT-6, was similar in Rv-D981 and control strains, further demonstrating aberrant ESX-1 activity in the mutant. ESAT-6 induces proinflammatory cytokines, and macrophages infected with Rv-D981 elicited lower levels of interleukin 1β (IL-1β) and tumor necrosis factor alpha (TNF-α), consistent with the reduced levels of ESAT-6. These findings indicate that MprAB modulates ESX-1 function and reveal a new role for MprAB in host-pathogen interactions.

  18. Inflammatory Cytokines as Preclinical Markers of Adverse Responses to Chemical Stressors

    EPA Science Inventory

    Abstract: The in vivo cytokine response to chemical stressors is a promising mainstream tool used to assess potential systemic inflammation and immune function changes. Notably, new instrumentation and statistical analysis provide the selectivity and sensitivity to rapidly diff...

  19. Liposomal Glutathione Supplementation Restores TH1 Cytokine Response to Mycobacterium tuberculosis Infection in HIV-Infected Individuals.

    PubMed

    Ly, Judy; Lagman, Minette; Saing, Tommy; Singh, Manpreet Kaur; Tudela, Enrique Vera; Morris, Devin; Anderson, Jessica; Daliva, John; Ochoa, Cesar; Patel, Nishita; Pearce, Daniel; Venketaraman, Vishwanath

    2015-11-01

    Cytokines are signaling biomolecules that serve as key regulators of our immune system. CD4(+) T-cells can be grouped into 2 major categories based on their cytokine profile: T-helper 1 (TH1) subset and T-helper 2 (TH2) subset. Protective immunity against HIV infection requires TH1-directed CD4 T-cell responses, mediated by cytokines, such as interleukin-1β (IL-1β), IL-12, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). Cytokines released by the TH1 subset of CD4 T-cells are considered important for mediating effective immune responses against intracellular pathogens such as Mycobacterium tuberculosis (M. tb). Oxidative stress and redox imbalance that occur during HIV infection often lead to inappropriate immune responses. Glutathione (GSH) is an antioxidant present in nearly all cells and is recognized for its function in maintaining redox homeostasis. Our laboratory previously reported that individuals with HIV infection have lower levels of GSH. In this study, we report a link between lower levels of GSH and dysregulation of TH1- and TH2-associated cytokines in the plasma samples of HIV-positive subjects. Furthermore, we demonstrate that supplementing individuals with HIV infection for 13 weeks with liposomal GSH (lGSH) resulted in a significant increase in the levels of TH1 cytokines, IL-1β, IL-12, IFN-γ, and TNF-α. lGSH supplementation in individuals with HIV infection also resulted in a substantial decrease in the levels of free radicals and immunosuppressive cytokines, IL-10 and TGF-β, relative to those in a placebo-controlled cohort. Finally, we determined the effects of lGSH supplementation in improving the functions of immune cells to control M. tb infection by conducting in vitro assays using peripheral blood mononuclear cells collected from HIV-positive individuals at post-GSH supplementation. Our studies establish a correlation between low levels of GSH and increased susceptibility to M. tb infection through TH2-directed response

  20. Interleukin-2 and other cytokines in candidiasis: expression, clinical significance, and future therapeutic targets.

    PubMed

    Rodríguez-Cerdeira, Carmen; Carnero-Gregorio, Miguel; López-Barcenas, Adriana; Fabbrocini, Gabriella; Sanchez-Blanco, Elena; Alba-Menendez, Alfonso; Guzmán, Roberto Arenas

    2018-06-01

    Susceptibility to Candida spp. infection is largely determined by the status of host immunity, whether immunocompromised/immunodeficient or immunocompetent. Interleukin-2 (IL-2), a potent lymphoid cell growth factor, is a four-α-helix bundle cytokine induced by activated T cells with two important roles: the activation and maintenance of immune responses, and lymphocyte production and differentiation. We reviewed the roles of cytokines as immune stimulators and suppressors of Candida spp. infections as an update on this continuously evolving field. We performed a comprehensive search of the Cochrane Central Register of Controlled Trials, Medline (PubMed), and Embase databases for articles published from March 2010 to March 2016 using the following search terms: interleukins, interleukin-2, Candida spp., and immunosuppression. Data from our own studies were also reviewed. Here, we provide an overview focusing on the ability of IL-2 to induce a large panel of trafficking receptors in skin inflammation and control T helper (Th)2 cytokine production in response to contact with Candida spp. Immunocompromised patients have reduced capacity to secrete Th1-related cytokines such as IL-2. The ability to secrete the Th1-related cytokine IL-2 is low in immunocompromised patients. This prevents an efficient Th1 immune response to Candida spp. antigens, making immunocompromised patients more susceptible to candidal infections.

  1. Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model

    PubMed Central

    Carlson, Jolene; O’Donnell, Vivian; Alfano, Marialexia; Velazquez Salinas, Lauro; Holinka, Lauren G.; Krug, Peter W.; Gladue, Douglas P.; Higgs, Stephen; Borca, Manuel V.

    2016-01-01

    African swine fever (ASF) is a lethal hemorrhagic disease of swine caused by a double-stranded DNA virus, ASF virus (ASFV). There is no vaccine to prevent the disease and current control measures are limited to culling and restricting animal movement. Swine infected with attenuated strains are protected against challenge with a homologous virulent virus, but there is limited knowledge of the host immune mechanisms generating that protection. Swine infected with Pretoriuskop/96/4 (Pret4) virus develop a fatal severe disease, while a derivative strain lacking virulence-associated gene 9GL (Pret4Δ9GL virus) is completely attenuated. Swine infected with Pret4Δ9GL virus and challenged with the virulent parental virus at 7, 10, 14, 21, and 28 days post infection (dpi) showed a progressive acquisition of protection (from 40% at 7 dpi to 80% at 21 and 28 dpi). This animal model was used to associate the presence of host immune response (ASFV-specific antibody and interferon (IFN)-γ responses, or specific cytokine profiles) and protection against challenge. With the exception of ASFV-specific antibodies in survivors challenged at 21 and 28 dpi, no association between the parameters assessed and protection could be established. These results, encompassing data from 65 immunized swine, underscore the complexity of the system under study, suggesting that protection relies on the concurrence of different host immune mechanisms. PMID:27782090

  2. Cytokines and autoimmunity.

    PubMed Central

    Cavallo, M G; Pozzilli, P; Thorpe, R

    1994-01-01

    Although the immunopathology of most autoimmune diseases has been well defined, the mechanisms responsible for the breakdown of self-tolerance and which lead to the development of systemic and organ-specific autoaggression are still unclear. Evidence has accumulated which supports a role for a disregulated production of cytokines by leucocytes and possibly other cells in the pathogenesis of some autoimmune diseases. However, due to the complexity and heterogeneity of cytokine effects in the regulation of the immune response, it is difficult to determine whether abnormalities in the patterns of cytokine production are primary or secondary to the pathological process. Confusion is also caused by the fact that the biological activities of cytokines are multiple and often overlapping, and consequently it is difficult to focus on a unique effect of any one cytokine. Characterization of the potential and actual involvement of cytokines is important not only for a better understanding of the pathogenesis of autoimmune conditions, but particularly because of the implications for the development of immunotherapeutic strategies for the prevention and treatment of the diseases. PMID:8149655

  3. Inflammatory bowel disease therapy: blockade of cytokines and cytokine signaling pathways.

    PubMed

    Yamamoto-Furusho, Jesus K

    2018-07-01

    Treatment of inflammatory bowel disease (IBD) patients can vary depending on the degree of response, lack of response or intolerance to conventional or biological agents aimed at blocking various cytokines or integrins. Recent therapies targeting several cytokines were reviewed to evaluate efficacy in IBD patients. Ustekinumab is an interleukin inhibitor which blocks the p40 subunit of IL-12 and IL-23 axis and is already approved for the treatment of Crohn's disease patients, specially those who had inadequate response or intolerance to conventional treatment with anti-TNF-α agents. Several treatments have been developed that are focused on the blockade of specific cytokines such as IL-6, IL-12, IL-13, IL-17, IL-23 and a chemokine named IFN-γ-inducible protein-10 as well as some oral small-molecule inhibitors of intracellular cytoplasmic tyrosine kinases like tofacitinib, filgotinib and upadacitinib. Several biologics blocking different and specific cytokines and oral small molecule agents have been and are being evaluated in IBD patients. A comprehensive understanding of the underlying immunological mechanisms will allow to develop effective and safe agents that inhibit one or more cytokines to improve the outcome in patients with IBD.

  4. Cytokine profiles in tears accompanying the secondary conjunctival responses induced by nasal allergy.

    PubMed

    Pelikan, Zdenek

    2014-02-01

    Allergic conjunctivitis (AC) occurs either in a primary form, due to the allergic reaction localized in the conjunctivae or in a secondary form, induced by an allergic reaction initiated primarily in the nasal mucosa. The purpose of this study was to investigate the cytokine profiles in tears associated with the secondary conjunctival response (SCR) types. In 47 AC patients developing 16 immediate (SICR; p < 0.01), 20 late (SLCR; p < 0.001) and 11 delayed (SDYCR; p < 0.05) responses to nasal provocation tests (NPTs) with allergens, the NPTs were repeated and combined with recording of cytokine concentrations in the tears. The SCRs were associated with significant concentration changes of particular cytokines in tears (p < 0.05) as follows: (1): SICRs: interleukin (IL)-3, IL-4, IL-10 and granulocyte macrophage colony-stimulating factor (GM-CSF); (2) SLCRs: IL-3, IL-4, IL-5, IL-8, IL-10, IL-12p40, GM-CSF and granulocyte colony-stimulating factor (G-CSF); and (3) SDYCRs: IL-2, IL-8, IL-10, interferon gamma, G-CSF and tumor necrosis factor alpha. No significant cytokine changes were recorded in tears during the phosphate-buffered saline controls or negative SCRs. Different cytokine profiles in the tears accompanying the immediate, late and delayed types of SCR, induced by nasal allergy, would indicate involvement of different hypersensitivity mechanisms in the particular SCR types. The low cytokine concentrations in tears recorded during the SCRs may suggest their origin from the nasal mucosa. These results emphasize the diagnostic value of NPTs with allergens combined with monitoring of various ocular features in patients suffering from the secondary form of AC. These results may also have an impact on the therapeutical approach to this clinical entity.

  5. Effects of different cytokines on immune responses of rainbow trout in a virus DNA vaccination model

    PubMed Central

    Cao, Yongsheng; Zhang, Qiya; Xu, Liming; Li, Shaowu; Wang, Di; Zhao, Jingzhuang; Liu, Hongbai; Feng, Jian; Lu, Tongyan

    2017-01-01

    Seven rainbow trout cytokine genes (interleukin (IL)-2, IL-8, IL-15, IL-17, IL-1β, intracellular interferon (iIFN) 1a, and IFN-γ2) were evaluated for their adjuvant effects on a DNA vaccine, called pG, containing the glycoprotein gene of infectious hematopoietic necrosis virus (IHNV). Distinct DNA constructs in expression plasmid pcDNA3.1 encoding a cytokine gene were generated. Immunofluorescence assays in rainbow trout gonadal cells demonstrated successful protein expression from all these constructs. Subsequently, fish were immunized with pG alone or together with a cytokine expression plasmid. Results showed that each cytokine plasmids at an appropriate dose showed notable effects on immune gene expression. IL-17 and IFN-γ2 can enhance early specific IgM response. All cytokines, except IL-8, can benefit initial neutralizing antibody (NAb) titers. At 35 days post immunization (dpi), NAb titers of fish immunized with pG and IL-2, iIFN1a, or IFN-γ2 plasmids remained at high levels (1:160). NAb titers of fish immunized with pG alone decreased to 1:40. IL-8 or IL-1β can enhance antigen-specific proliferative T-cell responses at 14 dpi. At 28 dpi, coinjection of pG with IL-2, IL-8, IL-15, or IL-17 plasmids induced considerably stronger lymphocyte proliferation than that with injection of pG alone. All cytokine plasmids delivered with pG plasmid enhanced protection of trout against IHNV-mediated mortality. These results indicate that the type and dose of trout cytokine genes injected into fish affect quality of immune response to DNA vaccination. PMID:29348820

  6. TLR-mediated stimulation of APC: Distinct cytokine responses of B cells and dendritic cells

    PubMed Central

    Barr, Tom A; Brown, Sheila; Ryan, Gemma; Zhao, Jiexin; Gray, David

    2007-01-01

    In addition to their role in humoral immunity, B lymphocytes are important antigen-presenting cells (APC). In the same way as other APC, B cells make cytokines upon activation and have the potential to modulate T cell responses. In this study, we investigated which mouse B cell subsets are the most potent cytokine producers, and examined the role of Toll-like receptors (TLR) in the control of secretion of IL-6, IL-10, IL-12 and IFN-γ by B cells. Production of some cytokines was restricted to particular subsets. Marginal zone and B1 cells were the predominant source of B cell IL-10 in the spleen. Conversely, follicular B cells were found to express IFN-γ mRNA directly ex vivo. The nature of the activating stimulus dramatically influenced the cytokine made by B cells. Thus, in response to combined TLR stimulation, or via phorbol esters, IFN-γ was secreted. IL-10 was elicited by T-dependent activation or stimulation through TLR2, 4 or 9. This pattern of cytokine expression contrasts with that elicited from dendritic cells. QRT-PCR array data indicate that this may be due to differential expression of TLR signalling molecules, effectors and adaptors. Our data highlight the potentially unique nature of immune modulation when B cells act as APC. PMID:17918201

  7. miR-451 regulates dendritic cell cytokine responses to influenza infection1

    PubMed Central

    Rosenberger, Carrie M.; Podyminogin, Rebecca L.; Navarro, Garnet; Zhao, Guo-Wei; Askovich, Peter S.; Weiss, Mitchell J.; Aderem, Alan

    2012-01-01

    MicroRNAs are important post-transcriptional regulators in immune cells, but how viral infection regulates microRNA expression to shape dendritic cell responses has not been well characterized. We identified 20 miRNAs that were differentially expressed in primary murine dendritic cells in response to the double-stranded RNA agonist poly(I:C), a subset of which were modestly regulated by influenza infection. miR-451 was unique because it was induced more strongly in primary splenic and lung dendritic cells by live viral infection than by purified agonists of pattern recognition receptors. We determined that miR-451 regulates a subset of pro-inflammatory cytokine responses. Three types of primary dendritic cells treated with anti-sense RNA antagomirs directed against miR-451 secreted elevated levels of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α, and these results were confirmed using miR-451null cells. miR-451 negatively regulates YWHAZ/14-3-3ζ protein levels in various cell types, and we measured a similar inhibition of YWHAZ levels in dendritic cells. It is known that YWHAZ can control the activity of two negative regulators of cytokine production: FOXO3, which is an inhibitory transcription factor, and ZFP36/Tristetraprolin, which binds to AU-rich elements within 3′-UTRs to destabilize cytokine mRNAs. Inhibition of miR-451 expression correlated with increased YWHAZ protein expression and decreased ZFP36 expression, providing a possible mechanism for the elevated secretion of IL-6, TNF, CCL5/RANTES, and CCL3/MIP1α. miR-451 levels are themselves increased by IL-6 and type I interferon, potentially forming a regulatory loop. These data suggest that viral infection specifically induces a miRNA that directs a negative regulatory cascade to tune dendritic cell cytokine production. PMID:23169590

  8. Mycobacterium tuberculosis Controls MicroRNA-99b (miR-99b) Expression in Infected Murine Dendritic Cells to Modulate Host Immunity*

    PubMed Central

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R.; Das, Gobardhan

    2013-01-01

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies. PMID:23233675

  9. Parasite-specific IL-17-type cytokine responses and soluble IL-17 receptor levels in Alveolar Echinococcosis patients.

    PubMed

    Lechner, Christian J; Grüner, Beate; Huang, Xiangsheng; Hoffmann, Wolfgang H; Kern, Peter; Soboslay, Peter T

    2012-01-01

    Alveolar Echinococcosis (AE) caused by the cestode Echinococcus multilocularis, is a severe helminth infection of man, where unrestricted parasite growth will ultimately result in organ failure and fatality. The tissue-infiltrative growth of the larval metacestode and the limited efficacy of available drugs complicate successful intervention in AE; patients often need life-long medication, and if possible, surgical resection of affected tissues and organs. Resistance to AE has been reported, but the determinants which confer protection are not known. ln this study, we analyzed in patients at distinct stages of Alveolar Echirococcosis, that is cured, stable and progressive AE, as well as in infection-free controls, the cellular production and plasma levels of pro-inflammatory cytokines lL-17A, lL-17B, lL-17F and their soluble receptors lL-17RA (slL-17RA) and IL-17RB (sIL-17RB). Significantly elevated levels of IL-17B and slL-17RB were observed, whilst lL-17F and slL-17RA were reduced in patients with AE. Similarly, the cellular production of lL-17F and slL-L7RA in response to E. multilocularis antigens was low in AE patients, while levels of slL-17RB were highly enhanced. These observations suggest immune-modulating properties of E. multitocularis on lL-17 cytokine-mediated pro-inflammatory immune responses; this may facilitate the tissue infiltrative growth of the parasite and its persistence in the human host.

  10. Cytokine response of human THP-1 macrophages to Trichomonas tenax.

    PubMed

    Govro, Emily J; Stuart, Melissa K

    2016-10-01

    Trichomonas tenax is a protozoan that inhabits the oral cavity of humans, most often those with poor oral hygiene. Although T. tenax is widely considered a commensal, recent studies have suggested a pathogenic role for the protozoan in persons with periodontitis. Here we investigated the capacity of T. tenax to induce pro-inflammatory cytokine secretion in human macrophages, with the idea that elicitation of inflammation may be one mechanism by which T. tenax contributes to oral pathology. Human THP-1 cells differentiated to the macrophage phenotype (dTHP-1) were incubated with live or sonicated T. tenax at trophozoite:dTHP-1 ratios of 1:5, 1:10, and 1:20. Culture media removed from the wells after 4, 8, and 16 h of stimulation were assayed by ELISA for tumor necrosis factor alpha, interleukin-1 beta, interleukin-8, and the immunoregulatory cytokine interleukin-10. Live T. tenax trophozoites failed to induce production of any of the cytokines tested, regardless of trophozoite:dTHP-1 cell ratio or length of co-incubation. T. tenax lysates stimulated interleukin-8 synthesis, but only after 16 h of incubation at the 1:5 trophozoite:dTHP-1 cell ratio. These results suggest that pro-inflammatory cytokine synthesis by human macrophages in direct response to T. tenax contributes little to oral pathology. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Fetal asphyctic preconditioning modulates the acute cytokine response thereby protecting against perinatal asphyxia in neonatal rats.

    PubMed

    Vlassaks, Evi; Strackx, Eveline; Vles, Johan Sh; Nikiforou, Maria; Martinez-Martinez, Pilar; Kramer, Boris W; Gavilanes, Antonio Wd

    2013-01-26

    Perinatal asphyxia (PA) is a major cause of brain damage and neurodevelopmental impairment in infants. Recent investigations have shown that experimental sublethal fetal asphyxia (FA preconditioning) protects against a subsequent more severe asphyctic insult at birth. The molecular mechanisms of this protection have, however, not been elucidated. Evidence implicates that inflammatory cytokines play a protective role in the induction of ischemic tolerance in the adult brain. Accordingly, we hypothesize that FA preconditioning leads to changes in the fetal cytokine response, thereby protecting the newborn against a subsequent asphyctic insult. In rats, FA preconditioning was induced at embryonic day 17 by clamping the uterine vasculature for 30 min. At term birth, global PA was induced by placing the uterine horns, containing the pups, in a saline bath for 19 min. We assessed, at different time points after FA and PA, mRNA and protein expression of several cytokines and related receptor mRNA levels in total hemispheres of fetal and neonatal brains. Additionally, we measured pSTAT3/STAT3 levels to investigate cellular responses to these cytokines. Prenatally, FA induced acute downregulation in IL-1β, TNF-α and IL-10 mRNA levels. At 96 h post FA, IL-6 mRNA and IL-10 protein expression were increased in FA brains compared with controls. Two hours after birth, all proinflammatory cytokines and pSTAT3/STAT3 levels decreased in pups that experienced FA and/or PA. Interestingly, IL-10 and IL-6 mRNA levels increased after PA. When pups were FA preconditioned, however, IL-10 and IL-6 mRNA levels were comparable to those in controls. FA leads to prenatal changes in the neuroinflammatory response. This modulation of the cytokine response probably results in the protective inflammatory phenotype seen when combining FA and PA and may have significant implications for preventing post-asphyctic perinatal encephalopathy.

  12. Cytokine Response of Cultured Skeletal Muscle Cells Stimulated with Proinflammatory Factors Depends on Differentiation Stage

    PubMed Central

    Podbregar, Matej; Lainscak, Mitja; Prelovsek, Oja; Mars, Tomaz

    2013-01-01

    Myoblast proliferation and myotube formation are critical early events in skeletal muscle regeneration. The attending inflammation and cytokine signaling are involved in regulation of skeletal muscle cell proliferation and differentiation. Secretion of muscle-derived cytokines upon exposure to inflammatory factors may depend on the differentiation stage of regenerating muscle cells. Cultured human myoblasts and myotubes were exposed to 24-hour treatment with tumor necrosis factor (TNF)-α or lipopolysaccharide (LPS). Secretion of interleukin 6 (IL-6), a major muscle-derived cytokine, and interleukin 1 (IL-1), an important regulator of inflammatory response, was measured 24 hours after termination of TNF-α or LPS treatment. Myoblasts pretreated with TNF-α or LPS displayed robustly increased IL-6 secretion during the 24-hour period after removal of treatments, while IL-1 secretion remained unaltered. IL-6 secretion was also increased in myotubes, but the response was less pronounced compared with myoblasts. In contrast to myoblasts, IL-1 secretion was markedly stimulated in LPS-pretreated myotubes. We demonstrate that preceding exposure to inflammatory factors stimulates a prolonged upregulation of muscle-derived IL-6 and/or IL-1 in cultured skeletal muscle cells. Our findings also indicate that cytokine response to inflammatory factors in regenerating skeletal muscle partially depends on the differentiation stage of myogenic cells. PMID:23509435

  13. Transient Receptor Potential Channel 1 Deficiency Impairs Host Defense and Proinflammatory Responses to Bacterial Infection by Regulating Protein Kinase Cα Signaling.

    PubMed

    Zhou, Xikun; Ye, Yan; Sun, Yuyang; Li, Xuefeng; Wang, Wenxue; Privratsky, Breanna; Tan, Shirui; Zhou, Zongguang; Huang, Canhua; Wei, Yu-Quan; Birnbaumer, Lutz; Singh, Brij B; Wu, Min

    2015-08-01

    Transient receptor potential channel 1 (TRPC1) is a nonselective cation channel that is required for Ca(2+) homeostasis necessary for cellular functions. However, whether TRPC1 is involved in infectious disease remains unknown. Here, we report a novel function for TRPC1 in host defense against Gram-negative bacteria. TRPC1(-/-) mice exhibited decreased survival, severe lung injury, and systemic bacterial dissemination upon infection. Furthermore, silencing of TRPC1 showed decreased Ca(2+) entry, reduced proinflammatory cytokines, and lowered bacterial clearance. Importantly, TRPC1 functioned as an endogenous Ca(2+) entry channel critical for proinflammatory cytokine production in both alveolar macrophages and epithelial cells. We further identified that bacterium-mediated activation of TRPC1 was dependent on Toll-like receptor 4 (TLR4), which induced endoplasmic reticulum (ER) store depletion. After activation of phospholipase Cγ (PLC-γ), TRPC1 mediated Ca(2+) entry and triggered protein kinase Cα (PKCα) activity to facilitate nuclear translocation of NF-κB/Jun N-terminal protein kinase (JNK) and augment the proinflammatory response, leading to tissue damage and eventually mortality. These findings reveal that TRPC1 is required for host defense against bacterial infections through the TLR4-TRPC1-PKCα signaling circuit. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Enhanced host immune recognition of E.coli causing mastitis in CD-14 transgenic mice.

    USDA-ARS?s Scientific Manuscript database

    Escherchia coli causes mastitis, an economically significant disease in dairy animals. E. coli endotoxin (lipopolysaccharide, LPS) when bound by host membrane proteins such as CD-14, causes release of pro-inflammatory cytokines recruiting neutrophils as a early innate immune response. Excessive pr...

  15. Cytokine modulation by glucocorticoids: mechanisms and actions in cellular studies.

    PubMed

    Brattsand, R; Linden, M

    1996-01-01

    Glucocorticoids inhibit the expression and action of most cytokines. This is part of the in vivo feed-back system between inflammation-derived cytokines and CNS-adrenal produced corticosteroids with the probable physiological relevance to balance parts of the host defence and anti-inflammatory systems of the body. Glucocorticoids modulate cytokine expression by a combination of genomic mechanisms. The activated glucocorticoid-receptor complex can (i) bind to and inactivate key proinflammatory transcription factors (e.g. AP-1, NF kappa B). This takes place at the promotor responsive elements of these factors, but has also been reported without the presence of DNA; (ii) via glucocorticoid responsive elements (GRE), upregulate the expression of cytokine inhibitory proteins, e.g. I kappa B, which inactivates the transcription factor NF kappa B and thereby the secondary expression of a series of cytokines; (iii) reduce the half-life time and utility of cytokine mRNAs. In studies with triggered human blood mononuclear cells in culture, glucocorticoids strongly diminish the production of the 'initial phase' cytokines IL-1 beta and TNF-alpha and the 'immunomodulatory' cytokines IL-2, IL-3, IL-4, IL-5, IL-10, IL-12 and IFN-gamma, as well as of IL-6, IL-8 and the growth factor GM-CSF. While steroid treatment broadly attenuates cytokine production, it cannot modulate it selectively, e.g. just the TH0, the TH1 or the TH2 pathways. The production of the 'anti-inflammatory' IL-10 is also inhibited. The exceptions of steroid down-regulatory activity on cytokine expression seem to affect 'repair phase' cytokines like TGF-beta and PDGF. These are even reported to be upregulated, which may explain the rather weak steroid dampening action on healing and fibrotic processes. Some growth factors, e.g. G-CSF and M-CSF, are only weakly affected. In addition to diminishing the production of a cytokine, steroids can also often inhibit its subsequent actions. Because cytokines work in

  16. Inhibition of cytokine response to TLR stimulation and alleviation of collagen-induced arthritis in mice by Schistosoma japonicum peptide SJMHE1.

    PubMed

    Wang, Xuefeng; Li, Li; Wang, Jun; Dong, Liyang; Shu, Yang; Liang, Yong; Shi, Liang; Xu, Chengcheng; Zhou, Yuepeng; Wang, Yi; Chen, Deyu; Mao, Chaoming

    2017-03-01

    Helminth-derived products have recently been shown to prevent the development of inflammatory diseases in mouse models. However, most identified immunomodulators from helminthes are mixtures or macromolecules with potentially immunogenic side effects. We previously identified an immunomodulatory peptide called SJMHE1 from the HSP60 protein of Schistosoma japonicum. In this study, we assessed the ability of SJMHE1 to affect murine splenocytes and human peripheral blood mononuclear cells (PBMCs) stimulated by toll-like receptor (TLR) ligands in vitro and its treatment effect on mice with collagen-induced arthritis (CIA). We show that SJMHE1 not only modulates the cytokine production of murine macrophage (MΦ) and dendritic cell but also affects cytokine production upon coculturing with allogeneic CD4 + T cell. SJMHE1 potently inhibits the cytokine response to TLR ligands lipopolysaccharide (LPS), CpG oligodeoxynucleotides (CpG) or resiquimod (R848) from mouse splenocytes, and human PBMCs stimulated by LPS. Furthermore, SJMHE1 suppressed clinical signs of CIA in mice and blocked joint erosion progression. This effect was mediated by downregulation of key cytokines involved in the pathogenesis of CIA, such as interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-17, and IL-22 and up-regulation of the inhibitory cytokine IL-10, Tgf-β1 mRNA, and CD4 + CD25 + Foxp3 + Tregs. This study provides new evidence that the peptide from S. japonicum, which is the 'safe' selective generation of small molecule peptide that has evolved during host-parasite interactions, is of great value in the search for novel anti-inflammatory agents and therapeutic targets for autoimmune diseases. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Transcript profiling of the immunological interactions between Actinobacillus pleuropneumoniae serotype 7 and the host by dual RNA-seq.

    PubMed

    Li, Ping; Xu, Zhiwen; Sun, Xiangang; Yin, Yue; Fan, Yi; Zhao, Jun; Mao, Xiyu; Huang, Jianbo; Yang, Fan; Zhu, Ling

    2017-09-12

    The complexity of the pathogenic mechanism underlying the host immune response to Actinobacillus pleuropneumonia (App) makes the use of preventive measures difficult, and a more global view of the host-pathogen interactions and new insights into this process are urgently needed to reveal the pathogenic and immune mechanisms underlying App infection. Here, we infected specific pathogen-free Mus musculus with App serotype 7 by intranasal inoculation to construct an acute hemorrhagic pneumonia infection model and isolated the infected lungs for analysis of the interactions by dual RNA-seq. Four cDNA libraries were constructed, and 2428 differentially expressed genes (DEGs) of the host and 333 DEGs of App were detected. The host DEGs were mainly enriched in inflammatory signaling pathways, such as the TLR, NLR, RLR, BCR and TCR signaling pathways, resulting in large-scale cytokine up-regulation and thereby yielding a cytokine cascade for anti-infection and lung damage. The majority of the up-regulated cytokines are involved in the IL-23/IL-17 cytokine-regulated network, which is crucial for host defense against bacterial infection. The DEGs of App were mainly related to the transport and metabolism of energy and materials. Most of these genes are metabolic genes involved in anaerobic metabolism and important for challenging the host and adapting to the anaerobic stress conditions observed in acute hemorrhagic pneumonia. Some of these genes, such as adhE, dmsA, and aspA, might be potential virulence genes. In addition, the up-regulation of genes associated with peptidoglycan and urease synthesis and the restriction of major virulence genes might be immune evasion strategies of App. The regulation of metabolic genes and major virulence genes indicate that the dominant antigens might differ during the infection process and that vaccines based on these antigens might allow establishment of a precise and targeted immune response during the early phase of infection. Through

  18. Gene Expression Profile of Human Cytokines in Response to B.pseudomallei Infection

    DTIC Science & Technology

    2017-04-19

    responses 81 to an infection (6). Activation of leukocytes and cytokine networks are prominent 82 features of inflammation and the septic response (7...Nationwide active surveillance for melioidosis was established in multiple state and 106 private hospitals throughout Sri Lanka, with ethics...time of recruitment all melioidosis 122 patients were undergoing antibacterial treatment. 123 We also recruited healthy donors and patients fitting

  19. Response of host plants to periodical cicada oviposition damage.

    PubMed

    Flory, S Luke; Mattingly, W Brett

    2008-06-01

    Insect oviposition on plants is widespread across many systems, but studies on the response of host plants to oviposition damage are lacking. Although patterns of oviposition vary spatially and temporally, ovipositing insects that exhibit outbreak characteristics may have strong effects on host plants during peak abundance. Periodical cicadas (Magicicada spp.), in particular, may reduce the performance of host plants when they synchronously emerge in massive numbers to mate and oviposit on host plants. Here we provide the first experimental manipulation of host plant use by periodical cicadas to evaluate the impact of cicada oviposition on plant performance across a diversity of host species within an ecologically relevant setting. Using a randomized block design, we established a plantation of three native and three exotic host plant species common to the successional forests in which cicadas occur. During the emergence of Brood X in 2004, we employed a highly effective cicada exclusion treatment by netting half of the host plants within each block. We assessed multiple measures of host plant performance, including overall plant growth and the growth and reproduction of individual branches, across three growing seasons. Despite our thorough assessment of potential host plant responses to oviposition damage, cicada oviposition did not generally inhibit host plant performance. Oviposition densities on unnetted host plants were comparable to levels documented in other studies, reinforcing the ecological relevance of our results, which indicate that cicada oviposition damage did not generally reduce the performance of native or exotic host plants.

  20. Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine.

    PubMed

    Ovsyannikova, Inna G; Jacobson, Robert M; Dhiman, Neelam; Vierkant, Robert A; Pankratz, V Shane; Poland, Gregory A

    2008-05-01

    Mumps outbreaks continue to occur throughout the world, including in highly vaccinated populations. Vaccination against mumps has been successful; however, humoral and cellular immune responses to mumps vaccines vary significantly from person to person. We set out to assess whether HLA and cytokine gene polymorphisms are associated with variations in the immune response to mumps viral vaccine. To identify genetic factors that might contribute to variations in mumps vaccine-induced immune responses, we performed HLA genotyping in a group of 346 healthy schoolchildren (12-18 years of age) who previously received 2 doses of live mumps vaccine. Single-nucleotide polymorphisms (minor allele frequency of >5%) in cytokine and cytokine receptor genes were genotyped for a subset of 118 children. Median values for mumps-specific antibody titers and lymphoproliferative stimulation indices were 729 IU/mL and 4.8, respectively. Girls demonstrated significantly higher mumps antibody titers than boys, indicating gender-linked genetic differences in humoral immune response. Significant associations were found between the HLA-DQB1*0303 alleles and lower mumps-specific antibody titers. An interesting finding was the association of several HLA class II alleles with mumps-specific lymphoproliferation. Alleles of the DRB1 (*0101, *0301, *0801, *1001, *1201, and *1302), DQA1 (*0101, *0105, *0401, and *0501), and DQB1 (*0201, *0402, and *0501) loci were associated with significant variations in lymphoproliferative immune responses to mumps vaccine. Additional associations were observed with single-nucleotide polymorphisms in the interleukin-10RA, interleukin-12RB1, and interleukin-12RB2 cytokine receptor genes. Minor alleles for 4 single-nucleotide polymorphisms within interleukin-10RA and interleukin-12RB genes were associated with variations in humoral and cellular immune responses to mumps vaccination. These data suggest the important role of HLA and immunoregulatory cytokine receptor

  1. Tissue specific distribution of iNKT cells impacts their cytokine response

    PubMed Central

    Lee, You Jeong; Wang, Haiguang; Starrett, Gabriel J.; Phuong, Vanessa; Jameson, Stephen C.; Hogquist, Kristin A.

    2015-01-01

    Summary Three subsets of invariant natural killer T (iNKT) cells have been identified, NKT1, NKT2 and NKT17, which produce distinct cytokines when stimulated, but little is known about their localization. Here, we have defined the anatomic localization and systemic distribution of these subsets and measured their cytokine production. Thymic NKT2 cells that produced interleukin-4 (IL-4) at steady state were located in the medulla and conditioned medullary thymocytes. NKT2 cells were abundant in the mesenteric lymph node (LN) of BALB/c mice and produced IL-4 in the T cell zone that conditioned other lymphocytes. Intravenous injection of α-galactosylceramide activated NKT1 cells with vascular access, but not LN or thymic NKT cells, resulting in systemic interferon-γ and IL-4 production, while oral α-galactosylceramide activated NKT2 cells in the mesenteric LN, resulting in local IL-4 release. These finding indicate that the localization of iNKT cells governs their cytokine response both at steady state and upon activation. PMID:26362265

  2. Cellular response markers and cytokine gene expression in the central nervous system of cattle naturally infected with bovine herpesvirus 5.

    PubMed

    Cardoso, T C; Ferreira, H L; Okamura, L H; Giroto, T P; Oliveira, B R S M; Fabri, C U F; Gameiro, R; Flores, E F

    2016-12-01

    The present study reports an investigation on the phenotype of inflammatory and immune cells, cytokine and viral gene expression in the brains of cattle naturally infected with bovine herpesvirus 5 (BHV5). Brain sections of 38 affected animals were analysed for the nature and extent of perivascular cuffs in the Virchow-Robin space and parenchyma. Histopathological changes were severe in the olfactory bulbs (Obs), hippocampus, piriform, frontal, temporal and parietal cortices/lobes and were characterized by inflammatory infiltrates in Virchow-Robin spaces. The histopathological changes correlated positively with the distribution of BHV5 antigens (r = 0.947; P < 0.005). Cells of CD3+ phenotype were predominant in areas with severe perivascular cuffs. Viral antigens and genomic viral DNA were detected in the Obs and piriform lobe, simultaneously (r = 0.987; P < 0.005). Similarly, pro-inflammatory cytokine genes INFG, IL2, TNF and LTBR were expressed in the same brain areas (P < 0.005). These results provide important information on the inflammatory and immunological events accompanying BHV5 neurological infections. Our findings provide the first evidence for increased immune activation followed by inflammatory cytokine expression, positively correlated with viral replication in the cranial areas of the brain. Taken together, these results suggest that the host immune response and inflammation play a crucial role in the pathogenesis of acute encephalitis by BHV5 in cattle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Exercise Improves Host Response to Influenza Viral Infection in Obese and Non-Obese Mice through Different Mechanisms

    PubMed Central

    Warren, Kristi J.; Olson, Molly M.; Thompson, Nicholas J.; Cahill, Mackenzie L.; Wyatt, Todd A.; Yoon, Kyoungjin J.; Loiacono, Christina M.; Kohut, Marian L.

    2015-01-01

    Obesity has been associated with greater severity of influenza virus infection and impaired host defense. Exercise may confer health benefits even when weight loss is not achieved, but it has not been determined if regular exercise improves immune defense against influenza A virus (IAV) in the obese condition. In this study, diet-induced obese mice and lean control mice exercised for eight weeks followed by influenza viral infection. Exercise reduced disease severity in both obese and non-obese mice, but the mechanisms differed. Exercise reversed the obesity-associated delay in bronchoalveolar-lavage (BAL) cell infiltration, restored BAL cytokine and chemokine production, and increased ciliary beat frequency and IFNα-related gene expression. In non-obese mice, exercise treatment reduced lung viral load, increased Type-I-IFN-related gene expression early during infection, but reduced BAL inflammatory cytokines and chemokines. In both obese and non-obese mice, exercise increased serum anti-influenza virus specific IgG2c antibody, increased CD8+ T cell percentage in BAL, and reduced TNFα by influenza viral NP-peptide-responding CD8+ T cells. Overall, the results suggest that exercise “restores” the immune response of obese mice to a phenotype similar to non-obese mice by improving the delay in immune activation. In contrast, in non-obese mice exercise treatment results in an early reduction in lung viral load and limited inflammatory response. PMID:26110868

  4. Different protein of Echinococcus granulosus stimulates dendritic induced immune response.

    PubMed

    Wang, Yana; Wang, Qiang; Lv, Shiyu; Zhang, Shengxiang

    2015-06-01

    Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.

  5. Cytokines as biomarkers of inflammatory response after open versus endovascular repair of abdominal aortic aneurysms: a systematic review.

    PubMed

    Tsilimigras, Diamantis I; Sigala, Fragiska; Karaolanis, Georgios; Ntanasis-Stathopoulos, Ioannis; Spartalis, Eleftherios; Spartalis, Michael; Patelis, Nikolaos; Papalampros, Alexandros; Long, Chandler; Moris, Demetrios

    2018-05-17

    The repair of an abdominal aortic aneurysm (AAA) is a high-risk surgical procedure related to hormonal and metabolic stress-related response with an ensuing activation of the inflammatory cascade. In contrast to open repair (OR), endovascular aortic aneurysm repair (EVAR) seems to decrease the postoperative stress by offering less extensive incisions, dissection, and tissue manipulation. However, these beneficial effects may be offset by the release of cytokines and arachidonic acid metabolites during intra-luminal manipulation of the thrombus using catheters in endovascular repair, resulting in systemic inflammatory response (SIR), which is clinically called post-implantation syndrome. In this systematic review we compared OR with EVAR in terms of the post-interventional inflammatory response resulting from alterations in the circulating cytokine levels. We sought to summarize all the latest evidence regarding post-implantation syndrome after EVAR. We searched Medline (PubMed), ClinicalTrials.gov and the Cochrane library for clinical studies reporting on the release of cytokines as part of the inflammatory response after both open/conventional and endovascular repair of the AAA. We identified 17 studies examining the cytokine levels after OR versus EVAR. OR seemed to be associated with a greater SIR than EVAR, as evidenced by the increased cytokine levels, particularly IL-6 and IL-8, whereas IL-1β, IL-10 and TNF-α showed conflicting results or no difference between the two groups. Polyester endografts appear to be positively correlated with the incidence of post-implantation syndrome after EVAR. Future large prospective studies are warranted to delineate the underlying mechanisms of the cytokine interaction in the post-surgical inflammatory response setting.

  6. Graft-versus-host disease is independent of innate signaling pathways triggered by pathogens in host hematopoietic cells.

    PubMed

    Li, Hongmei; Matte-Martone, Catherine; Tan, Hung Sheng; Venkatesan, Srividhya; McNiff, Jennifer; Demetris, Anthony J; Jain, Dhanpat; Lakkis, Fadi; Rothstein, David; Shlomchik, Warren D

    2011-01-01

    Graft-versus-host disease (GVHD) is initiated by APCs that prime alloreactive donor T cells. In antipathogen responses, Ag-bearing APCs receive signals through pattern-recognition receptors, including TLRs, which induce the expression of costimulatory molecules and production of inflammatory cytokines, which in turn mold the adaptive T cell response. However, in allogeneic hematopoietic stem cell transplantation (alloSCT), there is no specific pathogen, alloantigen is ubiquitous, and signals that induce APC maturation are undefined. To investigate APC activation in GVHD, we used recipient mice with hematopoietic cells genetically deficient in pathways critical for APC maturation in models in which host APCs are absolutely required. Strikingly, CD8-mediated and CD4-mediated GVHD were similar whether host APCs were wild-type or deficient in MyD88, TRIF, or MyD88 and TRIF, which excludes essential roles for TLRs and IL-1β, the key product of inflammasome activation. Th1 differentiation was if anything augmented when APCs were MyD88/TRIF(-/-), and T cell production of IFN-γ did not require host IL-12. GVHD was also intact when APCs lacked the type I IFNR, which amplifies APC activation pathways that induce type I IFNs. Thus in GVHD, alloreactive T cells can be activated when pathways critical for antipathogen T cell responses are impaired.

  7. Candida albicans Pathogenesis: Fitting within the Host-Microbe Damage Response Framework

    PubMed Central

    Kong, Eric F.; Tsui, Christina; Nguyen, M. Hong; Clancy, Cornelius J.; Fidel, Paul L.; Noverr, Mairi

    2016-01-01

    Historically, the nature and extent of host damage by a microbe were considered highly dependent on virulence attributes of the microbe. However, it has become clear that disease is a complex outcome which can arise because of pathogen-mediated damage, host-mediated damage, or both, with active participation from the host microbiota. This awareness led to the formulation of the damage response framework (DRF), a revolutionary concept that defined microbial virulence as a function of host immunity. The DRF outlines six classifications of host damage outcomes based on the microbe and the strength of the immune response. In this review, we revisit this concept from the perspective of Candida albicans, a microbial pathogen uniquely adapted to its human host. This fungus commonly colonizes various anatomical sites without causing notable damage. However, depending on environmental conditions, a diverse array of diseases may occur, ranging from mucosal to invasive systemic infections resulting in microbe-mediated and/or host-mediated damage. Remarkably, C. albicans infections can fit into all six DRF classifications, depending on the anatomical site and associated host immune response. Here, we highlight some of these diverse and site-specific diseases and how they fit the DRF classifications, and we describe the animal models available to uncover pathogenic mechanisms and related host immune responses. PMID:27430274

  8. The role of cytokines in a Porphyromonas gingivalis-induced murine abscess model.

    PubMed

    Alayan, J; Gemmell, E; Ford, P; Hamlet, S; Bird, P S; Ivanovski, S; Farah, C S

    2007-10-01

    Porphyromonas gingivalis is an important periodontopathic bacterium that is strongly associated with periodontal disease and is part of human dental plaque. Periodontal disease results from the interaction of the host with bacterial products, and T-cell-derived cytokines remain critical in the immunoregulation of periodontal disease. The aim of this study was to examine the role of T helper type 1 [interleukin-12p40 (IL-12p40), interferon-gamma, tumour necrosis factor (TNF)] and type 2 (IL-4, IL-10) cytokines in the immune response to a subcutaneous challenge with P. gingivalis using a well-established murine abscess model, in genetically modified cytokine-specific knockout mice. IL-12p40(-/-) mice exhibited more advanced tissue destruction and a reduced inflammatory cell infiltrate after subcutaneous P. gingivalis challenge. Deficiency of IL-4 or IL-10 did not result in increased susceptibility to P. gingivalis-mediated tissue destruction. Furthermore, TNF deficiency appeared to reduce local tissue destruction. Interestingly, serum-specific antibodies suggested a strong T helper type 2 response. The results of our study indicate an important role for IL-12 in a primary P. gingivalis subcutaneous challenge.

  9. Characterization of Arabidopsis Transcriptional Responses to Different Aphid Species Reveals Genes that Contribute to Host Susceptibility and Non-host Resistance

    PubMed Central

    Jaouannet, Maëlle; Morris, Jenny A.; Hedley, Peter E.; Bos, Jorunn I. B.

    2015-01-01

    Aphids are economically important pests that display exceptional variation in host range. The determinants of diverse aphid host ranges are not well understood, but it is likely that molecular interactions are involved. With significant progress being made towards understanding host responses upon aphid attack, the mechanisms underlying non-host resistance remain to be elucidated. Here, we investigated and compared Arabidopsis thaliana host and non-host responses to aphids at the transcriptional level using three different aphid species, Myzus persicae, Myzus cerasi and Rhopalosiphum pisum. Gene expression analyses revealed a high level of overlap in the overall gene expression changes during the host and non-host interactions with regards to the sets of genes differentially expressed and the direction of expression changes. Despite this overlap in transcriptional responses across interactions, there was a stronger repression of genes involved in metabolism and oxidative responses specifically during the host interaction with M. persicae. In addition, we identified a set of genes with opposite gene expression patterns during the host versus non-host interactions. Aphid performance assays on Arabidopsis mutants that were selected based on our transcriptome analyses identified novel genes contributing to host susceptibility, host defences during interactions with M. persicae as well to non-host resistance against R. padi. Understanding how plants respond to aphid species that differ in their ability to infest plant species, and identifying the genes and signaling pathways involved, is essential for the development of novel and durable aphid control in crop plants. PMID:25993686

  10. Immune and biochemical responses in skin differ between bovine hosts genetically susceptible and resistant to the cattle tick Rhipicephalus microplus.

    PubMed

    Franzin, Alessandra Mara; Maruyama, Sandra Regina; Garcia, Gustavo Rocha; Oliveira, Rosane Pereira; Ribeiro, José Marcos Chaves; Bishop, Richard; Maia, Antônio Augusto Mendes; Moré, Daniela Dantas; Ferreira, Beatriz Rossetti; Santos, Isabel Kinney Ferreira de Miranda

    2017-01-31

    Ticks attach to and penetrate their hosts' skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently. In order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds. Functional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more

  11. Malassezia Yeast and Cytokine Gene Polymorphism in Atopic Dermatitis

    PubMed Central

    Das, Shukla; Ramachandran, V.G.; Saha, Rumpa; Bhattacharya, S.N.; Dar, Sajad

    2017-01-01

    Introduction Atopic Dermatitis (AD) is a recurrent chronic condition associated with microorganism and their interaction with the susceptible host. Malassezia yeast is a known commensal which is thought to provoke the recurrent episodes of symptoms in atopic dermatitis patients. Malassezia immunomodulatory properties along with defective skin barrier in such host, results in disease manifestation. Here, we studied Single Nucleotide Polymorphism (SNP) in IL10 and IFN γ genes of the host and its relation with susceptibility to Malassezia infection. Aim To isolate Malassezia yeast from AD patients and compare the genetic susceptibility of the host by correlating the cytokine gene polymorphism with the control subjects. Materials and Methods Study was conducted from January 2012 to January 2013. It was a prospective observational study done in Department of Microbiology and Department of Dermatology and Venereology in University College of Medical Sciences and GTB Hospital, Delhi. Sample size comprised of 38 cases each of AD. Skin scrapings were used for fungal culture on Sabouraud Dextrose Agar (SDA) and Modified Dixon Agar (MDA) and isolated were identified as per conventional phenotypic methods. Genomic DNA was extracted from blood samples collected from all study subjects. Cytokine genotyping was carried out by Amplification Refractory Mutations System- Polymerase Chain Reaction (ARMS-PCR) with sequence specific primers. Three SNPs (IL10-1082A/G; IL10-819/592C/T; IFN-γ+874A/T) in two cytokine genes were assessed in all the patients and healthy controls. Statistical Analysis Chi-Square Test or Fisher’s-Exact Test and Bonferroni’s correction. Results In AD group, Malassezia yeasts were cultured in 24 out of 38 samples and thus the identification rate was 63.1 percent as compared to healthy group, 52.6 percent (20/38). Significant difference in allele, or genotype distribution were observed in IL10-819/592C/T and IFN-γ+874A/T gene polymorphism in AD group

  12. Mucorales spores induce a proinflammatory cytokine response in human mononuclear phagocytes and harbor no rodlet hydrophobins.

    PubMed

    Wurster, Sebastian; Thielen, Vanessa; Weis, Philipp; Walther, Paul; Elias, Johannes; Waaga-Gasser, Ana Maria; Dragan, Mariola; Dandekar, Thomas; Einsele, Hermann; Löffler, Jürgen; Ullmann, Andrew J

    2017-11-17

    Mucormycoses are life-threatening infections in immunocompromised patients. This study characterizes the response of human mononuclear cells to different Mucorales and Ascomycota. PBMC, monocytes, and monocyte derived dendritic cells (moDCs) from healthy donors were stimulated with resting and germinated stages of Mucorales and Ascomycota. Cytokine response and expression of activation markers were studied. Both inactivated germ tubes and resting spores of Rhizopus arrhizus and other human pathogenic Mucorales species significantly stimulated mRNA synthesis and secretion of proinflammatory cytokines. Moreover, R. arrhizus spores induced the upregulation of co-stimulatory molecules on moDCs and a specific T-helper cell response. Removal of rodlet hydrophobins by hydrofluoric acid treatment of A. fumigatus conidia resulted in enhanced immunogenicity, whereas the cytokine response of PBMCs to dormant R. arrhizus spores was not influenced by hydrofluoric acid. Scanning electron micrographs of Mucorales spores did not exhibit any morphological correlates of rodlet hydrophobins. Taken together, this study revealed striking differences in the response of human mononuclear cells to resting stages of Ascomycota and Mucorales, which may be explained by absence of an immunoprotective hydrophobin layer in Mucorales spores.

  13. Fetal asphyctic preconditioning modulates the acute cytokine response thereby protecting against perinatal asphyxia in neonatal rats

    PubMed Central

    2013-01-01

    Background Perinatal asphyxia (PA) is a major cause of brain damage and neurodevelopmental impairment in infants. Recent investigations have shown that experimental sublethal fetal asphyxia (FA preconditioning) protects against a subsequent more severe asphyctic insult at birth. The molecular mechanisms of this protection have, however, not been elucidated. Evidence implicates that inflammatory cytokines play a protective role in the induction of ischemic tolerance in the adult brain. Accordingly, we hypothesize that FA preconditioning leads to changes in the fetal cytokine response, thereby protecting the newborn against a subsequent asphyctic insult. Methods In rats, FA preconditioning was induced at embryonic day 17 by clamping the uterine vasculature for 30 min. At term birth, global PA was induced by placing the uterine horns, containing the pups, in a saline bath for 19 min. We assessed, at different time points after FA and PA, mRNA and protein expression of several cytokines and related receptor mRNA levels in total hemispheres of fetal and neonatal brains. Additionally, we measured pSTAT3/STAT3 levels to investigate cellular responses to these cytokines. Results Prenatally, FA induced acute downregulation in IL-1β, TNF-α and IL-10 mRNA levels. At 96 h post FA, IL-6 mRNA and IL-10 protein expression were increased in FA brains compared with controls. Two hours after birth, all proinflammatory cytokines and pSTAT3/STAT3 levels decreased in pups that experienced FA and/or PA. Interestingly, IL-10 and IL-6 mRNA levels increased after PA. When pups were FA preconditioned, however, IL-10 and IL-6 mRNA levels were comparable to those in controls. Conclusions FA leads to prenatal changes in the neuroinflammatory response. This modulation of the cytokine response probably results in the protective inflammatory phenotype seen when combining FA and PA and may have significant implications for preventing post-asphyctic perinatal encephalopathy. PMID:23351591

  14. Cytokine Responses to Acute Exercise in Healthy Older Adults: The Effect of Cardiorespiratory Fitness

    PubMed Central

    Windsor, Mark T.; Bailey, Tom G.; Perissiou, Maria; Meital, Lara; Golledge, Jonathan; Russell, Fraser D.; Askew, Christopher D.

    2018-01-01

    Markers of chronic inflammation increase with aging, and are associated with cardiovascular disease prevalence and mortality. Increases in fitness with exercise training have been associated with lower circulating concentrations of cytokines known to have pro-inflammatory actions (such as interleukin-6 [IL-6]) and higher circulating concentrations of anti-inflammatory cytokines (interleukin-10 [IL-10]). However, the effect of cardiorespiratory fitness on acute cytokine responses to a single bout of exercise in healthy older individuals is unknown. We compared the response of plasma cytokines IL-6, tumor necrosis factor-alpha (TNF-α) and IL-10 to a bout of moderate-intensity continuous and higher-intensity interval exercise between older individuals with higher and lower levels of cardiorespiratory fitness. Sixteen lower-fit (VO2peak: 22.6±2.8 mL.kg−1.min−1) and fourteen higher-fit participants (VO2peak: 37.4±5.9 mL.kg−1.min−1) completed three 24 min experimental protocols in a randomized order: (1) moderate-intensity continuous exercise (40% of peak power output [PPO]); (2) higher-intensity interval exercise (12 × 1 min intervals at 70% PPO separated by 1 min periods at 10% PPO); or (3) non-exercise control. Plasma cytokines were measured at rest, immediately after, and during 90 min of recovery following exercise or control. Plasma IL-6 concentrations at baseline were greater in the higher-fit compared to the lower-fit group (P = 0.02), with no difference in plasma IL-10 or TNF-α concentrations at baseline between groups. Plasma IL-6 and IL-10 concentrations in both groups increased immediately after all protocols (IL-6: P = 0.02, IL-10: P < 0.01). However, there was no difference in the IL-6 and IL-10 response between the exercise and non-exercise (control) protocols. After all protocols, no changes in plasma TNF-α concentrations were observed in either the higher- or lower-fit groups. In this study, basal concentrations of circulating IL-6 were

  15. Urine cytokine and chemokine levels predict urinary tract infection severity independent of uropathogen, urine bacterial burden, host genetics, and host age.

    PubMed

    Armbruster, Chelsie E; Smith, Sara N; Mody, Lona; Mobley, Harry L T

    2018-06-11

    Urinary tract infections (UTIs) are among the most common infections worldwide. Diagnosing UTIs in older adults poses a significant challenge as asymptomatic colonization is common. Identification of a non-invasive profile that predicts likelihood of progressing from urine colonization to severe disease would provide a significant advantage in clinical practice. We monitored colonization susceptibility, disease severity, and immune response to two uropathogens in two mouse strains across three age groups to identify predictors of infection outcome. Proteus mirabilis caused more severe disease than Escherichia coli, regardless of mouse strain or age, and was associated with differences in IL-1β, IFN-β, CXCL5 (LIX), CCL5 (RANTES), and CCL2 (MCP-1). In comparing the response to infection across age groups, mature adult mice were better able to control colonization and prevent progression to kidney colonization and bacteremia than young or aged mice, regardless of mouse strain or bacterial species, and this was associated with differences in IL-23, CXCL1, and CCL5. A bimodal distribution was noted for urine colonization, which was strongly associated with bladder CFUs and the magnitude of the immune response but independent of age or disease severity. To determine the value of urine cytokine and chemokine levels for predicting severe disease, all infection datasets were combined and subjected to a series of logistic regressions. A multivariate model incorporating IL-1β, CXCL1, and CCL2 had strong predictive value for identifying mice that did not develop kidney colonization or bacteremia, regardless of mouse genetic background, age, infecting bacterial species, or urine bacterial burden. In conclusion, urine cytokine profiles could potentially serve as a non-invasive decision-support tool in clinical practice and contribute to antimicrobial stewardship. Copyright © 2018 American Society for Microbiology.

  16. Analysis of protein levels of 24 cytokines in scrapie agent-infected brain and glial cell cultures from mice differing in prion protein expression levels.

    PubMed

    Tribouillard-Tanvier, Déborah; Striebel, James F; Peterson, Karin E; Chesebro, Bruce

    2009-11-01

    Activation of microglia and astroglia is seen in many neurodegenerative diseases including prion diseases. Activated glial cells produce cytokines as a protective response against certain pathogens and as part of the host inflammatory response to brain damage. In addition, cytokines might also exacerbate tissue damage initiated by other processes. In the present work using multiplex assays to analyze protein levels of 24 cytokines in scrapie agent-infected C57BL/10 mouse brains, we observed elevation of CCL2, CCL5, CXCL1, CXCL10, granulocyte-macrophage colony-stimulating factor (GM-CSF), gamma interferon (IFN-gamma), interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, and IL-12p40. Scrapie agent-infected wild-type mice and transgenic mice expressing anchorless prion protein (PrP) had similar cytokine responses in spite of extensive differences in neuropathology. Therefore, these responses may be primarily a reaction to brain damage induced by prion infection rather than specific inducers of a particular type of pathology. To study the roles of astroglia and microglia in these cytokine responses, primary glial cultures were exposed to scrapie agent-infected brain homogenates. Microglia produced only IL-12p40 and CXCL10, whereas astroglia produced these cytokines plus CCL2, CCL3, CCL5, CXCL1, G-CSF, IL-1beta, IL-6, IL-12p70, and IL-13. Glial cytokine responses from wild-type mice and transgenic mice expressing anchorless PrP differed only slightly, but glia from PrP-null mice produced only IL-12p40, indicating that PrP expression was required for scrapie agent induction of other cytokines detected. The difference in cytokine response between microglia and astroglia correlated with 20-fold-higher levels of PrP expression in astroglia versus microglia, suggesting that high-level PrP expression on astroglia might be important for induction of certain cytokines.

  17. Strong inflammatory cytokine response in male and strong anti-inflammatory response in female kidney transplant recipients with urinary tract infection.

    PubMed

    Sadeghi, Mahmoud; Daniel, Volker; Naujokat, Cord; Wiesel, Manfred; Hergesell, Olaf; Opelz, Gerhard

    2005-02-01

    Urinary tract infection (UTI) is the most common post-transplant infection in renal transplant recipients. The relationship of plasma and urine cytokines with UTI after kidney transplantation has not yet been delineated and literature reports on cytokine and UTI are rare. In a retrospective study, we compared post-transplant plasma and urine cytokine levels of 132 outpatient renal transplant recipients with or without UTI. Soluble interleukin-1 receptor antagonist (sIL-1RA), IL-2, sIL-2R, IL-3, IL-4, IL-6, sIL-6R, IL-8, IL-10, transforming growth factor-beta2 (TGF-beta2), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) levels were determined using commercially available enzyme-linked immunosorbent assay (ELISA) kits. We found gender-related urine cytokine patterns. Anti-inflammatory sIL-1RA was significantly higher in females than in males and this gender-related difference was more pronounced in bacteriuric (P < 0.0001) than in nonbacteriuric (P = 0.001) patients. Urine proinflammatory cytokines IL-6 (P = 0.001) and IL-8 (P = 0.007) were significantly higher in male patients with bacteriuria than in males without bacteriuria and sIL-2R (P = 0.001) and sIL-6R (P = 0.03) were significantly higher in males with leukocyturia than in males without leukocyturia. Bacteriuria in males was associated with higher doses of immunosuppressive drugs (P = 0.02). Male renal transplant recipients with UTI have a strong inflammatory cytokine response with activation of IL-6, IL-8, sIL-2R and sIL-6R producing cells, whereas female patients with UTI block the inflammatory response to UTI by production of sIL-1RA.

  18. Inhibitory effects of methamphetamine on mast cell activation and cytokine/chemokine production stimulated by lipopolysaccharide in C57BL/6J mice.

    PubMed

    Xue, Li; Geng, Yan; Li, Ming; Jin, Yao-Feng; Ren, Hui-Xun; Li, Xia; Wu, Feng; Wang, Biao; Cheng, Wei-Ying; Chen, Teng; Chen, Yan-Jiong

    2018-04-01

    Previous studies have demonstrated that methamphetamine (MA) influences host immunity; however, the effect of MA on lipopolysaccharide (LPS)-induced immune responses remains unknown. Mast cells (MCs) are considered to serve an important role in the innate and acquired immune response, but it remains unknown whether MA modulates MC activation and LPS-stimulated cytokine production. The present study aimed to investigate the effect of MA on LPS-induced MC activation and the production of MC-derived cytokines in mice. Markers for MC activation, including cluster of differentiation 117 and the type I high affinity immunoglobulin E receptor, were assessed in mouse intestines. Levels of MC-derived cytokines in the lungs and thymus were also examined. The results demonstrated that cytokines were produced in the bone marrow-derived mast cells (BMMCs) of mice. The present study demonstrated that MA suppressed the LPS-mediated MC activation in mouse intestines. MA also altered the release of MC cytokines in the lung and thymus following LPS stimulation. In addition, LPS-stimulated cytokines were decreased in the BMMCs of mice following treatment with MA. The present study demonstrated that MA may regulate LPS-stimulated MC activation and cytokine production.

  19. Temporal Dynamics of Host Molecular Responses Differentiate Symptomatic and Asymptomatic Influenza A Infection

    PubMed Central

    Huang, Yongsheng; Zaas, Aimee K.; Rao, Arvind; Dobigeon, Nicolas; Woolf, Peter J.; Veldman, Timothy; Øien, N. Christine; McClain, Micah T.; Varkey, Jay B.; Nicholson, Bradley; Carin, Lawrence; Kingsmore, Stephen; Woods, Christopher W.; Ginsburg, Geoffrey S.; Hero, Alfred O.

    2011-01-01

    Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin) and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza. PMID:21901105

  20. Extracorporeal membrane oxygenation and cytokine adsorption

    PubMed Central

    Träger, Karl

    2018-01-01

    Extracorporeal membrane oxygenation (ECMO) is an increasingly used technology for mechanical support of respiratory and cardio-circulatory failure. Excessive systemic inflammatory response is observed during sepsis and after cardiopulmonary bypass (CPB) with similar clinical features. The overwhelming inflammatory response is characterized by highly elevated pro- and anti-inflammatory cytokine levels. The excessive cytokine release during the overwhelming inflammatory response may result in multiple organ damage and failure. During ECMO therapy activation of complement and contact systems occur which may be followed by cytokine release. Controlling excessively increased cytokines may be considered as a valuable treatment option. Hemoadsorption therapy may be used to decrease cytokine levels in case of excessive inflammatory response and due to its unspecific adsorptive characteristics also substances like myoglobin, free hemoglobin or bilirubin. Controlling pro-inflammatory response with hemoadsorption may have positive impact on the endothelial glycocalix and also may be advantageous for maintenance of the vascular barrier function which plays a pivotal role in the development of tissue edema and oxygen mismatch. Hemoadsorption therapy seems to offer a promising new option for the treatment of patients with overwhelming inflammatory response leading to faster hemodynamic and metabolic stabilization finally resulting in preserved organ functions. PMID:29732183

  1. Extracorporeal membrane oxygenation and cytokine adsorption.

    PubMed

    Datzmann, Thomas; Träger, Karl

    2018-03-01

    Extracorporeal membrane oxygenation (ECMO) is an increasingly used technology for mechanical support of respiratory and cardio-circulatory failure. Excessive systemic inflammatory response is observed during sepsis and after cardiopulmonary bypass (CPB) with similar clinical features. The overwhelming inflammatory response is characterized by highly elevated pro- and anti-inflammatory cytokine levels. The excessive cytokine release during the overwhelming inflammatory response may result in multiple organ damage and failure. During ECMO therapy activation of complement and contact systems occur which may be followed by cytokine release. Controlling excessively increased cytokines may be considered as a valuable treatment option. Hemoadsorption therapy may be used to decrease cytokine levels in case of excessive inflammatory response and due to its unspecific adsorptive characteristics also substances like myoglobin, free hemoglobin or bilirubin. Controlling pro-inflammatory response with hemoadsorption may have positive impact on the endothelial glycocalix and also may be advantageous for maintenance of the vascular barrier function which plays a pivotal role in the development of tissue edema and oxygen mismatch. Hemoadsorption therapy seems to offer a promising new option for the treatment of patients with overwhelming inflammatory response leading to faster hemodynamic and metabolic stabilization finally resulting in preserved organ functions.

  2. Non-polarized cytokine profile of a long-term non-progressor HIV infected patient.

    PubMed

    Pina, Ana Flávia; Matos, Vanessa Terezinha Gubert de; Bonin, Camila Mareti; Dal Fabbro, Márcia Maria Ferrairo Janini; Tozetti, Inês Aparecida

    The HIV-1 initial viral infection may present diverse clinical and laboratory course and lead to rapid, intermediate, or long-term progression. Among the group of non-progressors, the elite controllers are those who control the infection most effectively, in the absence of antiretroviral therapy (ART). In this paper, the TH1, TH2 and TH17 cytokines profiles are described, as well as clinical and laboratory aspects of an HIV-infected patient with undetectable viral load without antiretroviral therapy. Production of IL-6, IL-10, TNF-α, IFN-γ, and IL-17 was detected; in contrast IL-4 was identified. Host-related factors could help explain such a level of infection control, namely the differentiated modulation of the cellular immune response and a non-polarized cytokine response of the TH1 and TH2 profiles. Copyright © 2018 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. Fas/FasL interaction mediates imbalanced cytokine/cytotoxicity responses of iNKT cells against Jurkat cells.

    PubMed

    Dou, Rui; Hong, Zhenya; Tan, Xiaosheng; Hu, Fenfen; Ding, Yajie; Wang, Wei; Liang, Zhihui; Zhong, Rongrong; Wu, Xiongwen; Weng, Xiufang

    2018-07-01

    The rapid antitumor cytokine production and direct cytotoxicity confer invariant NKT (iNKT) cells ideal candidates for cancer therapy. However, the therapeutic potential of iNKT cells in T-cell malignant diseases remains elusive, as antigen presentation by T cells (T-T presentation) has been suggested to induce hyporesponsiveness of iNKT cells. In this study, we found discrepancies in iNKT cell responses against two T cell-origin cell lines (Jurkat and Molt-4). Human iNKT cells exhibited more intensive cytotoxicity and less efficient cytokine production in response to Fas-bearing Jurkat cells than those to the Fas-negative tumor cells (Molt-4 and myeloid-derived K562). The imbalanced cytokine/cytotoxicity responses of iNKT cells against Jurkat cells were CD1d-dependent and relied mostly on Fas/FasL interaction. The impairment in cytokine production could be overcome by Fas/FasL blocking antibodies and exogenous IL-2. Elevated CD1d levels as well as CD1d and Fas co-localization were found in T-cell lymphomas. However, defects in frequency and function of circulating iNKT cells were observed in the patients, which could be partly rescued by exogenous IL-2. Collectively, the Fas/FasL-dependent aberrant iNKT cell responses and the reversibility of the defects suggest the distinct iNKT cell manipulation in CD1d- and Fas-bearing T cell malignancies. Copyright © 2018. Published by Elsevier Ltd.

  4. Cytokine Responses in Gills of Capoeta umbla as Biomarkers of Environmental Pollution.

    PubMed

    Danabas, Durali; Yildirim, Nuran Cikcikoglu; Yildirim, Numan; Onal, Ayten Oztufekci; Uslu, Gulsad; Unlu, Erhan; Danabas, Seval; Ergin, Cemil; Tayhan, Nilgun

    2016-03-01

    Immunological biomarkers reflect the effects of exposure to environmental contaminants. In this study, the suitability and sensitivity of cytokine responses, interleukin1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) in gill tissues of Capoeta umbla (Heckel, 1843), collected from different regions, as early warning indices of environmental pollution and ecosystem health was evaluated. Fish and water samples were taken from ten stations in March and September 2011 and 2012. Tumor necrosis factor-α, IL-1β and IL-6 levels were determined in samples of the gill tissues by using an ELISA kit. Significant variations of TNF-α, IL-1β and IL-6 levels observed between stations and seasons. The results of this study show that seasonal variations of cytokine responses in gills of Capoeta umbla are sensitive to the contaminants present in Uzuncayir Dam Lake (Tunceli, Turkey) water and are valuable biomarkers for environmental pollution and ecosystem health.

  5. Th9 Cells Drive Host Immunity against Gastrointestinal Worm Infection.

    PubMed

    Licona-Limón, Paula; Henao-Mejia, Jorge; Temann, Angela U; Gagliani, Nicola; Licona-Limón, Ileana; Ishigame, Harumichi; Hao, Liming; Herbert, De'broski R; Flavell, Richard A

    2013-10-17

    Type 2 inflammatory cytokines, including interleukin-4 (IL-4), IL-5, IL-9, and IL-13, drive the characteristic features of immunity against parasitic worms and allergens. Whether IL-9 serves an essential role in the initiation of host-protective responses is controversial, and the importance of IL-9- versus IL-4-producing CD4⁺ effector T cells in type 2 immunity is incompletely defined. Herein, we generated IL-9-deficient and IL-9-fluorescent reporter mice that demonstrated an essential role for this cytokine in the early type 2 immunity against Nippostrongylus brasiliensis. Whereas T helper 9 (Th9) cells and type 2 innate lymphoid cells (ILC2s) were major sources of infection-induced IL-9 production, the adoptive transfer of Th9 cells, but not Th2 cells, caused rapid worm expulsion, marked basophilia, and increased mast cell numbers in Rag2-deficient hosts. Taken together, our data show a critical and nonredundant role for Th9 cells and IL-9 in host-protective type 2 immunity against parasitic worm infection. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Human Leukocyte Antigen and Cytokine Receptor Gene Polymorphisms Associated With Heterogeneous Immune Responses to Mumps Viral Vaccine

    PubMed Central

    Ovsyannikova, Inna G.; Jacobson, Robert M.; Dhiman, Neelam; Vierkant, Robert A.; Pankratz, V. Shane; Poland, Gregory A.

    2009-01-01

    OBJECTIVES Mumps outbreaks continue to occur throughout the world, including in highly vaccinated populations. Vaccination against mumps has been successful; however, humoral and cellular immune responses to mumps vaccines vary significantly from person to person. We set out to assess whether HLA and cytokine gene polymorphisms are associated with variations in the immune response to mumps viral vaccine. METHODS To identify genetic factors that might contribute to variations in mumps vaccine–induced immune responses, we performed HLA genotyping in a group of 346 healthy schoolchildren (12–18 years of age) who previously received 2 doses of live mumps vaccine. Single-nucleotide polymorphisms (minor allele frequency of >5%) in cytokine and cytokine receptor genes were genotyped for a subset of 118 children. RESULTS Median values for mumps-specific antibody titers and lymphoproliferative stimulation indices were 729 IU/mL and 4.8, respectively. Girls demonstrated significantly higher mumps antibody titers than boys, indicating gender-linked genetic differences in humoral immune response. Significant associations were found between the HLA-DQB1*0303 alleles and lower mumps-specific antibody titers. An interesting finding was the association of several HLA class II alleles with mumps-specific lymphoproliferation. Alleles of the DRB1 (*0101, *0301, *0801, *1001, *1201, and *1302), DQA1 (*0101, *0105, *0401, and *0501), and DQB1 (*0201, *0402, and *0501) loci were associated with significant variations in lymphoproliferative immune responses to mumps vaccine. Additional associations were observed with single-nucleotide polymorphisms in the interleukin-10RA, interleukin-12RB1, and interleukin-12RB2 cytokine receptor genes. Minor alleles for 4 single-nucleotide polymorphisms within interleukin-10RA and interleukin-12RB genes were associated with variations in humoral and cellular immune responses to mumps vaccination. CONCLUSIONS These data suggest the important role of

  7. Differential Macrophage Polarization from Pneumocystis in Immunocompetent and Immunosuppressed Hosts: Potential Adjunctive Therapy during Pneumonia

    PubMed Central

    Nandakumar, Vijayalakshmi; Hebrink, Deanne; Jenson, Paige; Kottom, Theodore

    2016-01-01

    ABSTRACT We explored differential polarization of macrophages during infection using a rat model of Pneumocystis pneumonia. We observed enhanced pulmonary M1 macrophage polarization in immunosuppressed (IS) hosts, but an M2 predominant response in immunocompetent (IC) hosts following Pneumocystis carinii challenge. Increased inflammation and inducible nitric oxide synthase (iNOS) levels characterized the M1 response. However, macrophage ability to produce nitric oxide was defective. In contrast, the lungs of IC animals revealed a prominent M2 gene signature, and these macrophages effectively elicited an oxidative burst associated with clearance of Pneumocystis. In addition, during P. carinii infection the expression of Dectin-1, a critical receptor for recognition and clearance of P. carinii, was upregulated in macrophages of IC animals but suppressed in IS animals. In the absence of an appropriate cytokine milieu for M2 differentiation, Pneumocystis induced an M1 response both in vitro and in vivo. The M1 response induced by P. carinii was plastic in nature and reversible with appropriate cytokine stimuli. Finally, we tested whether macrophage polarization can be modulated in vivo and used to help manage the pathogenesis of Pneumocystis pneumonia by adoptive transfer. Treatment with both M1 and M2 cells significantly improved survival of P. carinii-infected IS hosts. However, M2 treatment provided the best outcomes with efficient clearance of P. carinii and reduced inflammation. PMID:27993972

  8. Alternative pathway regulation by factor H modulates Streptococcus pneumoniae induced proinflammatory cytokine responses by decreasing C5a receptor crosstalk.

    PubMed

    van der Maten, Erika; de Bont, Cynthia M; de Groot, Ronald; de Jonge, Marien I; Langereis, Jeroen D; van der Flier, Michiel

    2016-12-01

    Bacterial pathogens not only stimulate innate immune receptors, but also activate the complement system. Crosstalk between complement C5a receptor (C5aR) and other innate immune receptors is known to enhance the proinflammatory cytokine response. An important determinant of the magnitude of complement activation is the activity of the alternative pathway, which serves as an amplification mechanism for complement activation. Both alternative pathway activity as well as plasma levels of factor H, a key inhibitor of the alternative pathway, show large variation within the human population. Here, we studied the effect of factor H-mediated regulation of the alternative pathway on bacterial-induced proinflammatory cytokine responses. We used the human pathogen Streptococcus pneumoniae as a model stimulus to induce proinflammatory cytokine responses in human peripheral blood mononuclear cells. Serum containing active complement enhanced pneumococcal induced proinflammatory cytokine production through C5a release and C5aR crosstalk. We found that inhibition of the alternative pathway by factor H, with a concentration equivalent to a high physiological level, strongly reduced C5a levels and decreased proinflammatory cytokine production in human peripheral blood mononuclear cells. This suggests that variation in alternative pathway activity due to variation in factor H plasma levels affects individual cytokine responses during infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo

    PubMed Central

    Liu, Yancheng; Tan, Shumin; Huang, Lu; Abramovitch, Robert B.; Rohde, Kyle H.; Zimmerman, Matthew D.; Chen, Chao; Dartois, Véronique; VanderVen, Brian C.

    2016-01-01

    Successful chemotherapy against Mycobacterium tuberculosis (Mtb) must eradicate the bacterium within the context of its host cell. However, our understanding of the impact of this environment on antimycobacterial drug action remains incomplete. Intriguingly, we find that Mtb in myeloid cells isolated from the lungs of experimentally infected mice exhibit tolerance to both isoniazid and rifampin to a degree proportional to the activation status of the host cells. These data are confirmed by in vitro infections of resting versus activated macrophages where cytokine-mediated activation renders Mtb tolerant to four frontline drugs. Transcriptional analysis of intracellular Mtb exposed to drugs identified a set of genes common to all four drugs. The data imply a causal linkage between a loss of fitness caused by drug action and Mtb’s sensitivity to host-derived stresses. Interestingly, the environmental context exerts a more dominant impact on Mtb gene expression than the pressure on the drugs’ primary targets. Mtb’s stress responses to drugs resemble those mobilized after cytokine activation of the host cell. Although host-derived stresses are antimicrobial in nature, they negatively affect drug efficacy. Together, our findings demonstrate that the macrophage environment dominates Mtb’s response to drug pressure and suggest novel routes for future drug discovery programs. PMID:27114608

  10. Role of the ceramide-signaling pathway in cytokine responses to P- fimbriated Escherichia coli

    PubMed Central

    1996-01-01

    Escherichia coli express fimbriae-associated adhesins through which they attach to mucosal cells and activate a cytokine response. The receptors for E. coli P fimbriae are the globoseries of glycosphingolipids; Gal alpha 1-->4Gal beta-containing oligosaccharides bound to ceramide in the outer leaflet of the lipid bilayer. The receptors for type 1 fimbriae are mannosylated glycoproteins rather than glycolipids. This study tested the hypothesis that P-fimbriated E. coli elicit a cytokine response through the release of ceramide in the receptor-bearing cell. We used the A498 human kidney cell line, which expressed functional receptors for P and type 1 fimbriae and secreted higher levels of interleukin (IL)-6 when exposed to the fimbriated strains than to isogenic nonfimbriated controls. P-fimbriated E. coli caused the release of ceramide and increased the phosphorylation of ceramide to ceramide 1-phosphate. The IL-6 response to P-fimbriated E. coli was reduced by inhibitors of serine/threonine kinases but not by other protein kinase inhibitors. In contrast, ceramide levels were not influenced by type 1-fimbriated E. coli, and the IL-6 response was insensitive to the serine/threonine kinase inhibitors. These results demonstrate that the ceramide-signaling pathway is activated by P- fimbriated E. coli, and that the receptor specificity of the P fimbriae influences this process. We propose that this activation pathway contributes to the cytokine induction by P-fimbriated E. coli in epithelial cells. PMID:8642245

  11. Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis.

    PubMed

    Zimmerli, Laurent; Stein, Mónica; Lipka, Volker; Schulze-Lefert, Paul; Somerville, Shauna

    2004-12-01

    Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway.

  12. Coordinate cytokine regulatory sequences

    DOEpatents

    Frazer, Kelly A.; Rubin, Edward M.; Loots, Gabriela G.

    2005-05-10

    The present invention provides CNS sequences that regulate the cytokine gene expression, expression cassettes and vectors comprising or lacking the CNS sequences, host cells and non-human transgenic animals comprising the CNS sequences or lacking the CNS sequences. The present invention also provides methods for identifying compounds that modulate the functions of CNS sequences as well as methods for diagnosing defects in the CNS sequences of patients.

  13. Influence of HMB supplementation and resistance training on cytokine responses to resistance exercise.

    PubMed

    Kraemer, William J; Hatfield, Disa L; Comstock, Brett A; Fragala, Maren S; Davitt, Patrick M; Cortis, Cristina; Wilson, Jacob M; Lee, Elaine C; Newton, Robert U; Dunn-Lewis, Courtenay; Häkkinen, Keijo; Szivak, Tunde K; Hooper, David R; Flanagan, Shawn D; Looney, David P; White, Mark T; Volek, Jeff S; Maresh, Carl M

    2014-01-01

    The purpose of this study was to determine the effects of a multinutritional supplement including amino acids, β-hydroxy-β-methylbutyrate (HMB), and carbohydrates on cytokine responses to resistance exercise and training. Seventeen healthy, college-aged men were randomly assigned to a Muscle Armor™ (MA; Abbott Nutrition, Columbus, OH) or placebo supplement group and 12 weeks of resistance training. An acute resistance exercise protocol was administered at 0, 6, and 12 weeks of training. Venous blood samples at pre-, immediately post-, and 30-minutes postexercise were analyzed via bead multiplex immunoassay for 17 cytokines. After 12 weeks of training, the MA group exhibited decreased interferon-gamma (IFN-γ) and interleukin (IL)-10. IL-1β differed by group at various times. Granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, IL-7, IL-8, IL-12p70, IL-13, IL-17, monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β) changed over the 12-week training period but did not differ by group. Twelve weeks of resistance training alters the cytokine response to acute resistance exercise, and supplementation with HMB and amino acids appears to further augment this result.

  14. Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses

    PubMed Central

    McConnell, Kevin W.; McDunn, Jonathan E.; Clark, Andrew T.; Dunne, W. Michael; Dixon, David J.; Turnbull, Isaiah R.; DiPasco, Peter J.; Osberghaus, William F.; Sherman, Benjamin; Martin, James R.; Walter, Michael J.; Cobb, J. Perren; Buchman, Timothy G.; Hotchkiss, Richard S.; Coopersmith, Craig M.

    2009-01-01

    Objective Pathogens that cause pneumonia may be treated in a targeted fashion by antibiotics, but if this therapy fails, treatment involves only non-specific supportive measures, independent of the inciting infection. The purpose of this study was to determine whether host response is similar following disparate infections with similar mortalities. Design Prospective, randomized controlled study. Setting Animal laboratory in a university medical center. Interventions Pneumonia was induced in FVB/N mice by either Streptococcus pneumoniae or two different concentrations of Pseudomonas aeruginosa. Plasma and bronchoalveolar lavage fluid from septic animals was assayed by a microarray immunoassay measuring 18 inflammatory mediators at multiple timepoints. Measurements and Main Results The host response was dependent upon the causative organism as well as kinetics of mortality, but the pro- and anti- inflammatory response was independent of inoculum concentration or degree of bacteremia. Pneumonia caused by different concentrations of the same bacteria, Pseudomonas aeruginosa, also yielded distinct inflammatory responses; however, inflammatory mediator expression did not directly track the severity of infection. For all infections, the host response was compartmentalized, with markedly different concentrations of inflammatory mediators in the systemic circulation and the lungs. Hierarchical clustering analysis resulted in the identification of 5 distinct clusters of the host response to bacterial infection. Principal components analysis correlated pulmonary MIP-2 and IL-10 with progression of infection while elevated plasma TNFsr2 and MCP-1 were indicative of fulminant disease with >90% mortality within 48 hours. Conclusions Septic mice have distinct local and systemic responses to Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia. Targeting specific host inflammatory responses induced by distinct bacterial infections could represent a potential therapeutic

  15. Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia induce distinct host responses.

    PubMed

    McConnell, Kevin W; McDunn, Jonathan E; Clark, Andrew T; Dunne, W Michael; Dixon, David J; Turnbull, Isaiah R; Dipasco, Peter J; Osberghaus, William F; Sherman, Benjamin; Martin, James R; Walter, Michael J; Cobb, J Perren; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2010-01-01

    Pathogens that cause pneumonia may be treated in a targeted fashion by antibiotics, but if this therapy fails, then treatment involves only nonspecific supportive measures, independent of the inciting infection. The purpose of this study was to determine whether host response is similar after disparate infections with similar mortalities. Prospective, randomized controlled study. Animal laboratory in a university medical center. Pneumonia was induced in FVB/N mice by either Streptococcus pneumoniae or two different concentrations of Pseudomonas aeruginosa. Plasma and bronchoalveolar lavage fluid from septic animals was assayed by a microarray immunoassay measuring 18 inflammatory mediators at multiple time points. The host response was dependent on the causative organism as well as kinetics of mortality, but the pro-inflammatory and anti-inflammatory responses were independent of inoculum concentration or degree of bacteremia. Pneumonia caused by different concentrations of the same bacteria, Pseudomonas aeruginosa, also yielded distinct inflammatory responses; however, inflammatory mediator expression did not directly track the severity of infection. For all infections, the host response was compartmentalized, with markedly different concentrations of inflammatory mediators in the systemic circulation and the lungs. Hierarchical clustering analysis resulted in the identification of five distinct clusters of the host response to bacterial infection. Principal components analysis correlated pulmonary macrophage inflammatory peptide-2 and interleukin-10 with progression of infection, whereas elevated plasma tumor necrosis factor sr2 and macrophage chemotactic peptide-1 were indicative of fulminant disease with >90% mortality within 48 hrs. Septic mice have distinct local and systemic responses to Streptococcus pneumoniae and Pseudomonas aeruginosa pneumonia. Targeting specific host inflammatory responses induced by distinct bacterial infections could represent a

  16. Aspartyl proteases in Candida glabrata are required for suppression of the host innate immune response.

    PubMed

    Rasheed, Mubashshir; Battu, Anamika; Kaur, Rupinder

    2018-04-27

    A family of 11 cell surface-associated aspartyl proteases (CgYps1-11), also referred as yapsins, is a key virulence factor in the pathogenic yeast Candida glabrata However, the mechanism by which CgYapsins modulate immune response and facilitate survival in the mammalian host remains to be identified. Here, using RNA-Seq analysis, we report that genes involved in cell wall metabolism are differentially regulated in the Cgyps1-11 Δ mutant. Consistently, the mutant contained lower β-glucan and mannan levels and exhibited increased chitin content in the cell wall. As cell wall components are known to regulate the innate immune response, we next determined the macrophage transcriptional response to C. glabrata infection and observed differential expression of genes implicated in inflammation, chemotaxis, ion transport, and the tumor necrosis factor signaling cascade. Importantly, the Cgyps1-11 Δ mutant evoked a different immune response, resulting in an enhanced release of the pro-inflammatory cytokine IL-1β in THP-1 macrophages. Further, Cgyps1-11 Δ-induced IL-1β production adversely affected intracellular proliferation of co-infected WT cells and depended on activation of spleen tyrosine kinase (Syk) signaling in the host cells. Accordingly, the Syk inhibitor R406 augmented intracellular survival of the Cgyps1-11 Δ mutant. Finally, we demonstrate that C. glabrata infection triggers elevated IL-1β production in mouse organs and that the CgYPS genes are required for organ colonization and dissemination in the murine model of systemic infection. Altogether, our results uncover the basis for macrophage-mediated killing of Cgyps1-11 Δ cells and provide the first evidence that aspartyl proteases in C. glabrata are required for suppression of IL-1β production in macrophages. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Aspartyl proteases in Candida glabrata are required for suppression of the host innate immune response

    PubMed Central

    Rasheed, Mubashshir; Battu, Anamika; Kaur, Rupinder

    2018-01-01

    A family of 11 cell surface-associated aspartyl proteases (CgYps1–11), also referred as yapsins, is a key virulence factor in the pathogenic yeast Candida glabrata. However, the mechanism by which CgYapsins modulate immune response and facilitate survival in the mammalian host remains to be identified. Here, using RNA-Seq analysis, we report that genes involved in cell wall metabolism are differentially regulated in the Cgyps1–11Δ mutant. Consistently, the mutant contained lower β-glucan and mannan levels and exhibited increased chitin content in the cell wall. As cell wall components are known to regulate the innate immune response, we next determined the macrophage transcriptional response to C. glabrata infection and observed differential expression of genes implicated in inflammation, chemotaxis, ion transport, and the tumor necrosis factor signaling cascade. Importantly, the Cgyps1–11Δ mutant evoked a different immune response, resulting in an enhanced release of the pro-inflammatory cytokine IL-1β in THP-1 macrophages. Further, Cgyps1–11Δ–induced IL-1β production adversely affected intracellular proliferation of co-infected WT cells and depended on activation of spleen tyrosine kinase (Syk) signaling in the host cells. Accordingly, the Syk inhibitor R406 augmented intracellular survival of the Cgyps1–11Δ mutant. Finally, we demonstrate that C. glabrata infection triggers elevated IL-1β production in mouse organs and that the CgYPS genes are required for organ colonization and dissemination in the murine model of systemic infection. Altogether, our results uncover the basis for macrophage-mediated killing of Cgyps1–11Δ cells and provide the first evidence that aspartyl proteases in C. glabrata are required for suppression of IL-1β production in macrophages. PMID:29491142

  18. Host defences against Giardia lamblia.

    PubMed

    Lopez-Romero, G; Quintero, J; Astiazarán-García, H; Velazquez, C

    2015-08-01

    Giardia spp. is a protozoan parasite that inhabits the upper small intestine of mammals and other species and is the aetiological agent of giardiasis. It has been demonstrated that nitric oxide, mast cells and dendritic cells are the first line of defence against Giardia. IL-6 and IL-17 play an important role during infection. Several cytokines possess overlapping functions in regulating innate and adaptive immune responses. IgA and CD4(+) T cells are fundamental to the process of Giardia clearance. It has been suggested that CD4(+) T cells play a double role during the anti-Giardia immune response. First, they activate and stimulate the differentiation of B cells to generate Giardia-specific antibodies. Second, they act through a B-cell-independent mechanism that is probably mediated by Th17 cells. Several Giardia proteins that stimulate humoral and cellular immune responses have been described. Variant surface proteins, α-1 giardin, and cyst wall protein 2 can induce host protective responses to future Giardia challenges. The characterization and evaluation of the protective potential of the immunogenic proteins that are associated with Giardia will offer new insights into host-parasite interactions and may aid in the development of an effective vaccine against the parasite. © 2015 John Wiley & Sons Ltd.

  19. Reduced ratio of protective versus proinflammatory cytokine responses to commensal bacteria in HLA-B27 transgenic rats

    PubMed Central

    DIELEMAN, L A; HOENTJEN, F; QIAN, B-F; SPRENGERS, D; TJWA, E; TORRES, M F; TORRICE, C D; SARTOR, R B; TONKONOGY, S L

    2004-01-01

    Germ-free HLA-B27 transgenic (TG) rats do not develop colitis, but colonization with specific pathogen-free (SPF) bacteria induces colitis accompanied by immune activation. To study host-dependent immune responses to commensal caecal bacteria we investigated cytokine profiles in mesenteric lymph node (MLN) cells from HLA-B27 TG versus nontransgenic (non-TG) littermates after in vitro stimulation with caecal bacterial lysates (CBL). Supernatants from CBL-stimulated unseparated T- or B- cell-depleted MLN cells from HLA-B27 TG and non-TG littermates were analysed for IFN-γ, IL-12, TNF, IL-10 and TGF-β production. Our results show that unfractionated TG MLN cells stimulated with CBL produced more IFN-γ, IL-12 and TNF than did non-TG MLN cells. In contrast, CBL-stimulated non-TG MLN cells produced more IL-10 and TGF-β. T cell depletion abolished IFN-γ and decreased IL-12 production, but did not affect IL-10 and TGF-β production. Conversely, neither IL-10 nor TGF-β was produced in cultures of B cell-depleted MLN. In addition, CD4+ T cells enriched from MLN of HLA-B27 TG but not from non-TG rats produced IFN-γ when cocultured with CBL-pulsed antigen presenting cells from non-TG rats. Interestingly, IL-10 and TGF-β, but not IFN-γ, IL-12 and TNF were produced by MLN cells from germ-free TG rats. These results indicate that the colitis that develops in SPF HLA-B27 TG rats is accompanied by activation of IFN-γ-producing CD4+ T cells that respond to commensal bacteria. However, B cell cytokine production in response to components of commensal intestinal microorganisms occurs in the absence of intestinal inflammation. PMID:15030511

  20. Cytokine adsorbing columns.

    PubMed

    Taniguchi, Takumi

    2010-01-01

    Sepsis induces the activation of complement and the release of inflammatory cytokines such as TNF-alpha and IL-1beta. The inflammatory cytokines and nitric oxide induced by sepsis can decrease systemic vascular resistance, resulting in profound hypotension. The combination of hypotension and microvascular occlusion results in tissue ischemia and ultimately leads to multiple organ failure. Recently, several experimental and clinical studies have reported that treatment for adsorption of cytokines is beneficial during endotoxemia and sepsis. Therefore, the present article discusses cytokine adsorbing columns. These columns, such as CytoSorb, CYT-860-DHP, Lixelle, CTR-001 and MPCF-X, the structures of which vary significantly, have excellent adsorption rates for inflammatory cytokines such as TNF-alpha, IL-1beta, IL-6 and IL8. Many studies have demonstrated that treatment with cytokine adsorbing columns has beneficial effects on the survival rate and inflammatory responses in animal septic models. Moreover, several cases have been reported in which treatment with cytokine adsorbing columns is very effective in hemodynamics and organ failures in critically ill patients. Although further investigations and clinical trials are needed, in the future treatment with cytokine adsorbing columns may play a major role in the treatment of hypercytokinemia such as multiple organ failure and acute respiratory distress syndrome. Copyright 2010 S. Karger AG, Basel.

  1. Macrophages and cytokines in the early defence against herpes simplex virus

    PubMed Central

    Ellermann-Eriksen, Svend

    2005-01-01

    Herpes simplex virus (HSV) type 1 and 2 are old viruses, with a history of evolution shared with humans. Thus, it is generally well-adapted viruses, infecting many of us without doing much harm, and with the capacity to hide in our neurons for life. In rare situations, however, the primary infection becomes generalized or involves the brain. Normally, the primary HSV infection is asymptomatic, and a crucial element in the early restriction of virus replication and thus avoidance of symptoms from the infection is the concerted action of different arms of the innate immune response. An early and light struggle inhibiting some HSV replication will spare the host from the real war against huge amounts of virus later in infection. As far as such a war will jeopardize the life of the host, it will be in both interests, including the virus, to settle the conflict amicably. Some important weapons of the unspecific defence and the early strikes and beginning battle during the first days of a HSV infection are discussed in this review. Generally, macrophages are orchestrating a multitude of anti-herpetic actions during the first hours of the attack. In a first wave of responses, cytokines, primarily type I interferons (IFN) and tumour necrosis factor are produced and exert a direct antiviral effect and activate the macrophages themselves. In the next wave, interleukin (IL)-12 together with the above and other cytokines induce production of IFN-γ in mainly NK cells. Many positive feed-back mechanisms and synergistic interactions intensify these systems and give rise to heavy antiviral weapons such as reactive oxygen species and nitric oxide. This results in the generation of an alliance against the viral enemy. However, these heavy weapons have to be controlled to avoid too much harm to the host. By IL-4 and others, these reactions are hampered, but they are still allowed in foci of HSV replication, thus focusing the activity to only relevant sites. So, no hero does it alone

  2. Prebiotic Oligosaccharides Potentiate Host Protective Responses against L. Monocytogenes Infection

    PubMed Central

    Chen, Poyin; Huang, Bihua; Kong, Nguyet; Weimer, Bart C.

    2017-01-01

    Prebiotic oligosaccharides are used to modulate enteric pathogens and reduce pathogen shedding. The interactions with prebiotics that alter Listeria monocytogenes infection are not yet clearly delineated. L. monocytogenes cellular invasion requires a concerted manipulation of host epithelial cell membrane receptors to initiate internalization and infection often via receptor glycosylation. Bacterial interactions with host glycans are intimately involved in modulating cellular responses through signaling cascades at the membrane and in intracellular compartments. Characterizing the mechanisms underpinning these modulations is essential for predictive use of dietary prebiotics to diminish pathogen association. We demonstrated that human milk oligosaccharide (HMO) pretreatment of colonic epithelial cells (Caco-2) led to a 50% decrease in Listeria association, while Biomos pretreatment increased host association by 150%. L. monocytogenes-induced gene expression changes due to oligosaccharide pretreatment revealed global alterations in host signaling pathways that resulted in differential subcellular localization of L. monocytogenes during early infection. Ultimately, HMO pretreatment led to bacterial clearance in Caco-2 cells via induction of the unfolded protein response and eIF2 signaling, while Biomos pretreatment resulted in the induction of host autophagy and L. monocytogenes vacuolar escape earlier in the infection progression. This study demonstrates the capacity of prebiotic oligosaccharides to minimize infection through induction of host-intrinsic protective responses. PMID:29257110

  3. Effects of trans-stilbene and terphenyl compounds on different strains of Leishmania and on cytokines production from infected macrophages.

    PubMed

    Bruno, Federica; Castelli, Germano; Vitale, Fabrizio; Giacomini, Elisa; Roberti, Marinella; Colomba, Claudia; Cascio, Antonio; Tolomeo, Manlio

    2018-01-01

    Most of the antileishmanial modern therapies are not satisfactory due to high toxicity or emergence of resistance and high cost of treatment. Previously, we observed that two compounds of a small library of trans-stilbene and terphenyl derivatives, ST18 and TR4, presented the best activity and safety profiles against Leishmania infantum promastigotes and amastigotes. In the present study we evaluated the effects of ST18 and the TR4 in 6 different species of Leishmania and the modifications induced by these two compounds in the production of 8 different cytokines from infected macrophages. We observed that TR4 was potently active in all Leishmania species tested in the study showing a leishmanicidal activity higher than that of ST18 and meglumine antimoniate in the most of the species. Moreover, TR4 was able to decrease the levels of IL-10, a cytokine able to render the host macrophage inactive allowing the persistence of parasites inside its phagolysosome, and increase the levels of IL-1β, a cytokine important for host resistance to Leishmania infection by inducible iNOS-mediated production of NO, and IL-18, a cytokine implicated in the development of Th1-type immune response. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. CD4 T-helper cell cytokine phenotypes and antibody response following tetanus toxoid booster immunization.

    PubMed

    Livingston, Kimberly A; Jiang, Xiaowen; Stephensen, Charles B

    2013-04-30

    Routine methods for enumerating antigen-specific T-helper cells may not identify low-frequency phenotypes such as Th2 cells. We compared methods of evaluating such responses to identify tetanus toxoid- (TT) specific Th1, Th2, Th17 and IL10(+) cells. Eight healthy subjects were given a TT booster vaccination. Blood was drawn before, 3, 7, 14, and 28days after vaccination and peripheral blood mononuclear cells (PBMC) were cultured for 7days with TT, negative control (diluent), and a positive control (Staphylococcus enterotoxin B [SEB]). Activation markers (CD25 and CD69) were measured after 44h (n=8), cytokines in supernatant after 3 and 7days, and intracellular cytokine staining (ICS) of proliferated cells (identified by dye dilution) after 7days (n=6). Vaccination increased TT-specific expression of CD25 and CD69 on CD3(+)CD4(+) lymphocytes, and TT-specific proliferation at 7, 14 and 28days post vaccination. Vaccination induced TT-specific Th1 (IFN-γ, TNF-α, and IL-2) Th2 (IL-13, IL-5, and IL-4), Th17 (IL-17A) and IL-10(+) cells as measured by ICS. TT-specific Th1 cells were the most abundant (12-15% of all TT-specific CD4(+) T-cells) while IL10(+) (1.8%) Th17 (1.1%) and Th2 cells (0.2-0.6%) were less abundant. TT-specific cytokine concentrations in PBMC supernatants followed the same pattern where a TT-specific IL-9 response was also seen. In conclusion, TT booster vaccination induced a broad T-helper cell response. This method of evaluating cytokine phenotypes may be useful in examining the impact of nutrition and environmental conditions on the plasticity of T-helper cell memory responses. Published by Elsevier B.V.

  5. Analysis of SF and plasma cytokines provides insights into the mechanisms of inflammatory arthritis and may predict response to therapy.

    PubMed

    Wright, Helen L; Bucknall, Roger C; Moots, Robert J; Edwards, Steven W

    2012-03-01

    Biologic drugs have revolutionized the care of RA, but are expensive and not universally effective. To further understand the inflammatory mechanisms underlying RA and identify potential biomarkers predicting response to therapy, we measured multiple cytokine concentrations in SF of patients with inflammatory arthritides (IAs) and, in a subset of patients with RA, correlated this with response to TNF-α inhibition. SF from 42 RA patients and 19 non-RA IA patients were analysed for 12 cytokines using a multiplex cytokine assay. Cytokines were also measured in the plasma of 16 RA patients before and following treatment with anti-TNF-α. Data were analysed using Mann-Whitney U-test, Spearman's rank correlation and cluster analysis with the Kruskal-Wallis test with Dunn's post-test analysis. RA SF contained significantly elevated levels of IL-1β, IL-1ra, IL-2, IL-4, IL-8, IL-10, IL-17, IFN-γ, G-CSF, GM-CSF and TNF-α compared with other IA SF. RA patients who did not respond to anti-TNF therapy had elevated IL-6 in their SF pre-therapy (P < 0.05), whereas responders had elevated IL-2 and G-CSF (P < 0.05). Plasma cytokine concentrations were not significantly modulated by TNF inhibitors, with the exception of IL-6, which decreased after 12 weeks (P < 0.05). Cytokine profiles in RA SF vary with treatment and response to therapy. Cytokine concentrations are significantly lower in plasma than in SF and relatively unchanged by TNF inhibitor therapy. Concentrations of IL-6, IL-2 and G-CSF in SF may predict response to TNF inhibitors.

  6. Short communication: Cytokine profiles from blood mononuclear cells of dairy cows classified with divergent immune response phenotypes.

    PubMed

    Martin, C E; Paibomesai, M A; Emam, S M; Gallienne, J; Hine, B C; Thompson-Crispi, K A; Mallard, B A

    2016-03-01

    Genetic selection for enhanced immune response has been shown to decrease disease occurrence in dairy cattle. Cows can be classified as high (H), average, or low responders based on antibody-mediated immune response (AMIR), predominated by type-2 cytokine production, and cell-mediated immune response (CMIR) through estimated breeding values for these traits. The purpose of this study was to identify in vitro tests that correlate with in vivo immune response phenotyping in dairy cattle. Blood mononuclear cells (BMC) isolated from cows classified as H-AMIR and H-CMIR through estimated breeding values for immune response traits were stimulated with concanavalin A (ConA; Sigma Aldrich, St. Louis, MO) and gene expression, cytokine production, and cell proliferation was determined at multiple time points. A repeated measures model, which included the effects of immune response group, parity, and stage of lactation, was used to compare differences between immune response phenotype groups. The H-AMIR cows produced more IL-4 protein than H-CMIR cows at 48 h; however, no difference in gene expression of type-2 transcription factor GATA3 or IL4 was noted. The BMC from H-CMIR cows had increased production of IFN-γ protein at 48, 72, and 96 h compared with H-AMIR animals. Further, H-CMIR cows had increased expression of the IFNG gene at 16, 24, and 48 h post-treatment with ConA, although expression of the type-1 transcription factor gene TBX21 did not differ between immune response groups. Although proliferation of BMC increased from 24 to 72 h after ConA stimulation, no differences were found between the immune response groups. Overall, stimulation of H-AMIR and H-CMIR bovine BMC with ConA resulted in distinct cytokine production profiles according to genetically defined groups. These distinct cytokine profiles could be used to define disease resistance phenotypes in dairy cows according to stimulation in vitro; however, other immune response phenotypes should be assessed

  7. Host genetics of response to porcine reproductive and respiratory syndrome in nursery pigs.

    PubMed

    Dekkers, Jack; Rowland, Raymond R R; Lunney, Joan K; Plastow, Graham

    2017-09-01

    PRRS is the most costly disease in the US pig industry. While vaccination, biosecurity and eradication effort have had some success, the variability and infectiousness of PRRS virus strains have hampered the effectiveness of these measures. We propose the use of genetic selection of pigs as an additional and complementary effort. Several studies have shown that host response to PRRS infection has a sizeable genetic component and recent advances in genomics provide opportunities to capitalize on these genetic differences and improve our understanding of host response to PRRS. While work is also ongoing to understand the genetic basis of host response to reproductive PRRS, the focus of this review is on research conducted on host response to PRRS in the nursery and grow-finish phase as part of the PRRS Host Genetics Consortium. Using experimental infection of large numbers of commercial nursery pigs, combined with deep phenotyping and genomics, this research has identified a major gene that is associated with host response to PRRS. Further functional genomics work identified the GBP5 gene as harboring the putative causative mutation. GBP5 is associated with innate immune response. Subsequent work has validated the effect of this genomic region on host response to a second PRRSV strain and to PRRS vaccination and co-infection of nursery pigs with PRRSV and PCV2b. A genetic marker near GBP5 is available to the industry for use in selection. Genetic differences in host response beyond GBP5 appear to be highly polygenic, i.e. controlled by many genes across the genome, each with a small effect. Such effects can by capitalized on in a selection program using genomic prediction on large numbers of genetic markers across the genome. Additional work has also identified the genetic basis of antibody response to PRRS, which could lead to the use of vaccine response as an indicator trait to select for host response to PRRS. Other genomic analyses, including gene expression

  8. Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments.

    PubMed

    Pestrak, Matthew J; Chaney, Sarah B; Eggleston, Heather C; Dellos-Nolan, Sheri; Dixit, Sriteja; Mathew-Steiner, Shomita S; Roy, Sashwati; Parsek, Matthew R; Sen, Chandan K; Wozniak, Daniel J

    2018-02-01

    Pseudomonas aeruginosa causes devastating infections in immunocompromised individuals. Once established, P. aeruginosa infections become incredibly difficult to treat due to the development of antibiotic tolerant, aggregated communities known as biofilms. A hyper-biofilm forming clinical variant of P. aeruginosa, known as a rugose small-colony variant (RSCV), is frequently isolated from chronic infections and is correlated with poor clinical outcome. The development of these mutants during infection suggests a selective advantage for this phenotype, but it remains unclear how this phenotype promotes persistence. While prior studies suggest RSCVs could survive by evading the host immune response, our study reveals infection with the RSCV, PAO1ΔwspF, stimulated an extensive inflammatory response that caused significant damage to the surrounding host tissue. In both a chronic wound model and acute pulmonary model of infection, we observed increased bacterial burden, host tissue damage, and a robust neutrophil response during RSCV infection. Given the essential role of neutrophils in P. aeruginosa-mediated disease, we investigated the impact of the RSCV phenotype on neutrophil function. The RSCV phenotype promoted phagocytic evasion and stimulated neutrophil reactive oxygen species (ROS) production. We also demonstrate that bacterial aggregation and TLR-mediated pro-inflammatory cytokine production contribute to the immune response to RSCVs. Additionally, RSCVs exhibited enhanced tolerance to neutrophil-produced antimicrobials including H2O2 and the antimicrobial peptide LL-37. Collectively, these data indicate RSCVs elicit a robust but ineffective neutrophil response that causes significant host tissue damage. This study provides new insight on RSCV persistence, and indicates this variant may have a critical role in the recurring tissue damage often associated with chronic infections.

  9. Cytokines and the Inception of CD8 T Cell Responses

    PubMed Central

    Cox, Maureen A.; Harrington, Laurie E.; Zajac, Allan J.

    2011-01-01

    The activation and differentiation of CD8 T cells is a necessary first step that endows these cells with the phenotypic and functional properties required for the control of intracellular pathogens. The induction of the CD8 T cell responses typically results in the development of a massive overall population of effector cells, comprised of both highly functional but short-lived terminally differentiated cells, as well as a smaller subset of precursors that are predisposed to survive and transition into the memory T cell pool. In this article we discuss how inflammatory cytokines and IL-2 bias the initial response towards short-lived effector generation and also highlight the potential counterbalancing role of IL-21. PMID:21371940

  10. [Clinical Applications of Peripheral Markers of Response in Antidepressant Treatment: Neurotrophins and Cytokines].

    PubMed

    Bermúdez, Constanza Mendoza

    2012-03-01

    Explanatory theories of depression have advanced in recent decades from the monoaminergic hypothesis to neurogenesis alterations to the neurohormonal hypothesis that includes the dysfunction of the inflammatory response. Currently there is a growing interest in the development of biomarkers that can contribute to diagnosis and proper treatment. To describe the role of neurotrophins such as brain-derived neurotrophic factor (BDNF) and cytokines in the pathophysiology of depressive disorder in addition to reviewing and analyzing evidence about their clinical application as biomarkers of antidepressant therapy. Relevant data research in several databases. In recent years evidence of alterations in neurogenesis mediated by the expression of BDNF in the hippocampus in the pathophysiology of depression has increased and there is ample evidence that BDNF is a marker of the diagnosis of depressive disorder and also of treatment effectiveness. There is little information about other neurotrophins. There has also been increased interest in relation to depression as an "inflammatory disease" and the link with cytokines in its pathogenesis. Evidence has been found for the usefulness of some cytokines especially IL-1 (interleukin 1), IL-6 (interleukin 6), and TNF (tumor necrosis factor) as biomarkers of antidepressant drug response in humans. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  11. SOCS3 deletion in B cells alters cytokine responses and germinal center output

    PubMed Central

    Jones, Sarah A.; White, Christine A.; Robb, Lorraine; Alexander, Warren S.; Tarlinton, David M.

    2011-01-01

    B cell behaviour is fine-tuned by internal regulatory mechanisms and external cues such as cytokines and chemokines. SOCS3 is a key regulator of STAT3-dependent cytokine responses in many cell types, and has been reported to inhibit CXCL12-induced retention of immature B cells in the bone marrow. Using mice with SOCS3 exclusively deleted in the B cell lineage (Socs3Δ/Δmb1cre+), we analysed the role of SOCS3 in the response of these cells to CXCL12 and the STAT3-inducing cytokines IL-6 and IL-21. Our findings refute a B cell-intrinsic role for SOCS3 in B cell development, as SOCS3 deletion in the B lineage did not affect B cell populations in naïve mice. SOCS3 was strongly induced in B cells stimulated with IL-21 and in plasma cells exposed to IL-6. Its deletion permitted excessive and prolonged STAT3 signaling following IL-6 stimulation of plasma cells, and in a T cell-dependent immunization model, reduced the number of GC B cells formed and altered the production of antigen-specific IgM and IgE. These data demonstrate a novel regulatory signal transduction circuit in plasma cells, providing the first evidence of how these long-lived, sessile cells respond to the external signals that mediate their longevity. PMID:22075701

  12. Distinct effects of Broncho-Vaxom (OM-85 BV) on gp130 binding cytokines

    PubMed Central

    Roth, M; Block, L

    2000-01-01

    BACKGROUND—Broncho-Vaxom (OM-85 BV) is known to support respiratory tract resistance to bacterial infections. In vivo and in vitro studies in animals and humans have shown that the action of the drug is based on the modulation of the host immune response, and it has been found to upregulate interferon γ (IFN-γ) and interleukin (IL)-2, IL-6, and IL-8. These immunomodulatory effects of the compound may explain its stimulation on T helper cells and natural killer cells. Following earlier findings that OM-85 BV induces the synthesis of IL-6, a study was undertaken to investigate its possible effect on other gp130 binding cytokines including IL-11, IL-12, leukaemia inhibitory factor (LIF), oncostatin M (OSM), and ciliary neutrophil factor (CNTF). Its modulation of the corresponding receptors of the above mentioned cytokines and of the signal transducer gp130 in human pulmonary fibroblasts and peripheral blood lymphocytes was also studied.
METHODS—Transcription of cytokines was assessed by Northern blot analysis. Secretion of cytokines was analysed using commercially available enzyme linked immunosorbent assay kits. Cytokine receptors and gp130 proteins were determined by Western blot analysis.
RESULTS—OM-85 BV increased the expression of IL-11 in human lung fibroblasts, but not in lymphocytes, in a dose and time dependent manner by maximal fivefold within 20 hours. The compound inhibited serum induced IL-12 expression in peripheral blood lymphocytes but did not induce OSM, LIF, or CNTF at any concentration. In lung fibroblasts the expression of the IL-6 receptor was enhanced fourfold at a concentration of 10 µg/ml OM-85 BV while that of the IL-11 receptor was not altered. In peripheral blood lymphocytes LIF receptor α expression was downregulated in the presence of 10 µg/ml OM-85 BV. At a concentration of 10 µg/ml OM-85 BV enhanced gp130 gene transcription fivefold and increased gp130 protein accumulation in cell membranes by 2.5times

  13. Identification of host response signatures of infection.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branda, Steven S.; Sinha, Anupama; Bent, Zachary

    2013-02-01

    Biological weapons of mass destruction and emerging infectious diseases represent a serious and growing threat to our national security. Effective response to a bioattack or disease outbreak critically depends upon efficient and reliable distinguishing between infected vs healthy individuals, to enable rational use of scarce, invasive, and/or costly countermeasures (diagnostics, therapies, quarantine). Screening based on direct detection of the causative pathogen can be problematic, because culture- and probe-based assays are confounded by unanticipated pathogens (e.g., deeply diverged, engineered), and readily-accessible specimens (e.g., blood) often contain little or no pathogen, particularly at pre-symptomatic stages of disease. Thus, in addition to themore » pathogen itself, one would like to detect infection-specific host response signatures in the specimen, preferably ones comprised of nucleic acids (NA), which can be recovered and amplified from tiny specimens (e.g., fingerstick draws). Proof-of-concept studies have not been definitive, however, largely due to use of sub-optimal sample preparation and detection technologies. For purposes of pathogen detection, Sandia has developed novel molecular biology methods that enable selective isolation of NA unique to, or shared between, complex samples, followed by identification and quantitation via Second Generation Sequencing (SGS). The central hypothesis of the current study is that variations on this approach will support efficient identification and verification of NA-based host response signatures of infectious disease. To test this hypothesis, we re-engineered Sandia's sophisticated sample preparation pipelines, and developed new SGS data analysis tools and strategies, in order to pioneer use of SGS for identification of host NA correlating with infection. Proof-of-concept studies were carried out using specimens drawn from pathogen-infected non-human primates (NHP). This work provides a strong foundation

  14. Luminex and other multiplex high throughput technologies for the identification of, and host response to, environmental triggers of type 1 diabetes.

    PubMed

    Purohit, Sharad; Sharma, Ashok; She, Jin-Xiong

    2015-01-01

    Complex interactions between a series of environmental factors and genes result in progression to clinical type 1 diabetes in genetically susceptible individuals. Despite several decades of research in the area, these interactions remain poorly understood. Several studies have yielded associations of certain foods, infections, and immunizations with the onset and progression of diabetes autoimmunity, but most findings are still inconclusive. Environmental triggers are difficult to identify mainly due to (i) large number and complex nature of environmental exposures, including bacteria, viruses, dietary factors, and environmental pollutants, (ii) reliance on low throughput technology, (iii) less efforts in quantifying host response, (iv) long silent period between the exposure and clinical onset of T1D which may lead to loss of the exposure fingerprints, and (v) limited sample sets. Recent development in multiplex technologies has enabled systematic evaluation of different classes of molecules or macroparticles in a high throughput manner. However, the use of multiplex assays in type 1 diabetes research is limited to cytokine assays. In this review, we will discuss the potential use of multiplex high throughput technologies in identification of environmental triggers and host response in type 1 diabetes.

  15. Mycobacterium tuberculosis Rv1987 induces Th2 immune responses and enhances Mycobacterium smegmatis survival in mice.

    PubMed

    Sha, Shanshan; Shi, Xiaoxia; Deng, Guoying; Chen, Lina; Xin, Yi; Ma, Yufang

    2017-04-01

    Mycobacterium tuberculosis can interfere with host immune response and escape clearance through its specific antigens. M. tuberculosis Rv1987 encoded by region of difference (RD)-2 gene is a secretory protein with immunogenic potency. Here, we investigated the impact of Rv1987 on host cytokine responses and T cell polarization in mouse aerosol model. A recombinant M. smegmatis mc 2 155 strain that overexpressed Rv1987 protein (named MS1987) was constructed and used to infect C57BL/6 mice. The mc 2 155 harbored the empty vector (named MSVec) was as a control. The results showed that MS1987 challenged mice promoted Th2-biased cytokine responses with lower secretion of IFN-γ but higher production of IL-4 and Rv1987-specific IgG antibody compared to MSVec infected mice. Neutrophilic inflammation and high bacterial burden were observed in the lung tissues of MS1987 infected mice probably own to the failed Th1 cell immunity. Besides, subcutaneous injection of Rv1987 protein could mediate the Th1 cytokine responses caused by M. bovis BCG in mice. These results indicated that M. tuberculosis Rv1987 protein could modulate host immune response towards Th2 profile, which probably contributed to the immune evasion of bacteria from host elimination. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Animal model of respiratory syncytial virus: CD8+ T cells cause a cytokine storm that is chemically tractable by sphingosine-1-phosphate 1 receptor agonist therapy.

    PubMed

    Walsh, Kevin B; Teijaro, John R; Brock, Linda G; Fremgen, Daniel M; Collins, Peter L; Rosen, Hugh; Oldstone, Michael B A

    2014-06-01

    The cytokine storm is an intensified, dysregulated, tissue-injurious inflammatory response driven by cytokine and immune cell components. The cytokine storm during influenza virus infection, whereby the amplified innate immune response is primarily responsible for pulmonary damage, has been well characterized. Now we describe a novel event where virus-specific T cells induce a cytokine storm. The paramyxovirus pneumonia virus of mice (PVM) is a model of human respiratory syncytial virus (hRSV). Unexpectedly, when C57BL/6 mice were infected with PVM, the innate inflammatory response was undetectable until day 5 postinfection, at which time CD8(+) T cells infiltrated into the lung, initiating a cytokine storm by their production of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Administration of an immunomodulatory sphingosine-1-phosphate (S1P) receptor 1 (S1P1R) agonist significantly inhibited PVM-elicited cytokine storm by blunting the PVM-specific CD8(+) T cell response, resulting in diminished pulmonary disease and enhanced survival. A dysregulated overly exuberant immune response, termed a "cytokine storm," accompanies virus-induced acute respiratory diseases (VARV), is primarily responsible for the accompanying high morbidity and mortality, and can be controlled therapeutically in influenza virus infection of mice and ferrets by administration of sphingosine-1-phosphate 1 receptor (S1P1R) agonists. Here, two novel findings are recorded. First, in contrast to influenza infection, where the cytokine storm is initiated early by the innate immune system, for pneumonia virus of mice (PVM), a model of RSV, the cytokine storm is initiated late in infection by the adaptive immune response: specifically, by virus-specific CD8 T cells via their release of IFN-γ and TNF-α. Blockading these cytokines with neutralizing antibodies blunts the cytokine storm and protects the host. Second, PVM infection is controlled by administration of an S1P1R agonist.

  17. Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb® sorbent porous polymer beads.

    PubMed

    Gruda, Maryann C; Ruggeberg, Karl-Gustav; O'Sullivan, Pamela; Guliashvili, Tamaz; Scheirer, Andrew R; Golobish, Thomas D; Capponi, Vincent J; Chan, Phillip P

    2018-01-01

    Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis and septic shock, pathogen-associated molecular pattern molecules (PAMPS), such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host often leading to excessive cytokine production, a maladaptive systemic inflammatory response syndrome response (SIRS), and tissue damage that releases DAMPs, such as activated complement and HMGB-1, into the bloodstream causing further organ injury. Cytokine reduction using extracorporeal blood filtration has been correlated with improvement in survival and clinical outcomes in experimental studies and clinical reports, but the ability of this technology to reduce a broader range of inflammatory mediators has not been well-described. This study quantifies the size-selective adsorption of a wide range of sepsis-related inflammatory bacterial and fungal PAMPs, DAMPs and cytokines, in a single compartment, in vitro whole blood recirculation system. Purified proteins were added to whole blood at clinically relevant concentrations and recirculated through a device filled with CytoSorb® hemoadsorbent polymer beads (CytoSorbents Corporation, USA) or control (no bead) device in vitro. Except for the TNF-α trimer, hemoadsorption through porous polymer bead devices reduced the levels of a broad spectrum of cytokines, DAMPS, PAMPS and mycotoxins by more than 50 percent. This study demonstrates that CytoSorb® hemoadsorbent polymer beads efficiently remove a broad spectrum of toxic PAMPS and DAMPS from blood providing an additional means of reducing the uncontrolled inflammatory cascade that contributes to a maladaptive SIRS response, organ dysfunction and death in patients with a broad range of life-threatening inflammatory conditions such as sepsis, toxic shock syndrome, necrotizing fasciitis, and other severe inflammatory conditions.

  18. Broad adsorption of sepsis-related PAMP and DAMP molecules, mycotoxins, and cytokines from whole blood using CytoSorb® sorbent porous polymer beads

    PubMed Central

    Ruggeberg, Karl-Gustav; O’Sullivan, Pamela; Guliashvili, Tamaz; Scheirer, Andrew R.; Golobish, Thomas D.; Capponi, Vincent J.; Chan, Phillip P.

    2018-01-01

    Objective Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. In sepsis and septic shock, pathogen-associated molecular pattern molecules (PAMPS), such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host often leading to excessive cytokine production, a maladaptive systemic inflammatory response syndrome response (SIRS), and tissue damage that releases DAMPs, such as activated complement and HMGB-1, into the bloodstream causing further organ injury. Cytokine reduction using extracorporeal blood filtration has been correlated with improvement in survival and clinical outcomes in experimental studies and clinical reports, but the ability of this technology to reduce a broader range of inflammatory mediators has not been well-described. This study quantifies the size-selective adsorption of a wide range of sepsis-related inflammatory bacterial and fungal PAMPs, DAMPs and cytokines, in a single compartment, in vitro whole blood recirculation system. Measurements and main results Purified proteins were added to whole blood at clinically relevant concentrations and recirculated through a device filled with CytoSorb® hemoadsorbent polymer beads (CytoSorbents Corporation, USA) or control (no bead) device in vitro. Except for the TNF-α trimer, hemoadsorption through porous polymer bead devices reduced the levels of a broad spectrum of cytokines, DAMPS, PAMPS and mycotoxins by more than 50 percent. Conclusions This study demonstrates that CytoSorb® hemoadsorbent polymer beads efficiently remove a broad spectrum of toxic PAMPS and DAMPS from blood providing an additional means of reducing the uncontrolled inflammatory cascade that contributes to a maladaptive SIRS response, organ dysfunction and death in patients with a broad range of life-threatening inflammatory conditions such as sepsis, toxic shock syndrome, necrotizing fasciitis, and other severe inflammatory

  19. Effect of nutrient deficiencies on in vitro Th1 and Th2 cytokine response of peripheral blood mononuclear cells to Plasmodium falciparum infection

    PubMed Central

    2010-01-01

    Background An appropriate balance between pro-inflammatory and anti-inflammatory cytokines that mediate innate and adaptive immune responses is required for effective protection against human malaria and to avoid immunopathology. In malaria endemic countries, this immunological balance may be influenced by micronutrient deficiencies. Methods Peripheral blood mononuclear cells from Tanzanian preschool children were stimulated in vitro with Plasmodium falciparum-parasitized red blood cells to determine T-cell responses to malaria under different conditions of nutrient deficiencies and malaria status. Results The data obtained indicate that zinc deficiency is associated with an increase in TNF response by 37%; 95% CI: 14% to 118% and IFN-γ response by 74%; 95% CI: 24% to 297%. Magnesium deficiency, on the other hand, was associated with an increase in production of IL-13 by 80%; 95% CI: 31% to 371% and a reduction in IFN-γ production. These results reflect a shift in cytokine profile to a more type I cytokine profile and cell-cell mediated responses in zinc deficiency and a type II response in magnesium deficiency. The data also reveal a non-specific decrease in cytokine production in children due to iron deficiency anaemia that is largely associated with malaria infection status. Conclusions The pathological sequels of malaria potentially depend more on the balance between type I and type II cytokine responses than on absolute suppression of these cytokines and this balance may be influenced by a combination of micronutrient deficiencies and malaria status. PMID:20546583

  20. Yersinia vs. host Immunity: how a pathogen evades or triggers a protective response

    PubMed Central

    Chung, Lawton K.; Bliska, James B.

    2015-01-01

    The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe. PMID:26638030

  1. Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota.

    PubMed

    Wu, Richard Y; Määttänen, Pekka; Napper, Scott; Scruten, Erin; Li, Bo; Koike, Yuhki; Johnson-Henry, Kathene C; Pierro, Agostino; Rossi, Laura; Botts, Steven R; Surette, Michael G; Sherman, Philip M

    2017-10-10

    Prebiotics are non-digestible food ingredients that enhance the growth of certain microbes within the gut microbiota. Prebiotic consumption generates immune-modulatory effects that are traditionally thought to reflect microbial interactions within the gut. However, recent evidence suggests they may also impart direct microbe-independent effects on the host, though the mechanisms of which are currently unclear. Kinome arrays were used to profile the host intestinal signaling responses to prebiotic exposures in the absence of microbes. Identified pathways were functionally validated in Caco-2Bbe1 intestinal cell line and in vivo model of murine endotoxemia. We found that prebiotics directly regulate host mucosal signaling to alter response to bacterial infection. Intestinal epithelial cells (IECs) exposed to prebiotics are hyporesponsive to pathogen-induced mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) activations, and have a kinome profile distinct from non-treated cells pertaining to multiple innate immune signaling pathways. Consistent with this finding, mice orally gavaged with prebiotics showed dampened inflammatory response to lipopolysaccharide (LPS) without alterations in the gut microbiota. These findings provide molecular mechanisms of direct host-prebiotic interactions to support prebiotics as potent modulators of host inflammation.

  2. Stress responses in Streptococcus species and their effects on the host.

    PubMed

    Nguyen, Cuong Thach; Park, Sang-Sang; Rhee, Dong-Kwon

    2015-11-01

    Streptococci cause a variety of diseases, such as dental caries, pharyngitis, meningitis, pneumonia, bacteremia, endocarditis, erysipelas, and necrotizing fasciitis. The natural niche of this genus of bacteria ranges from the mouth and nasopharynx to the skin, indicating that the bacteria will inevitably be subjected to environmental changes during invasion into the host, where it is exposed to the host immune system. Thus, the Streptococcus-host interaction determines whether bacteria are cleared by the host's defenses or whether they survive after invasion to cause serious diseases. If this interaction was to be deciphered, it could aid in the development of novel preventive and therapeutic agents. Streptococcus species possess many virulent factors, such as peroxidases and heat-shock proteins (HSPs), which play key roles in protecting the bacteria from hostile host environments. This review will discuss insights into the mechanism(s) by which streptococci adapt to host environments. Additionally, we will address how streptococcal infections trigger host stress responses; however, the mechanism by which bacterial components modulate host stress responses remains largely unknown.

  3. Multiple cytokine responses in discriminating between active tuberculosis and latent tuberculosis infection.

    PubMed

    Wu, Jing; Wang, Sen; Lu, Chanyi; Shao, Lingyun; Gao, Yan; Zhou, Zumo; Huang, Heqing; Zhang, Ying; Zhang, Wenhong

    2017-01-01

    Cytokines play an important role in cell-mediated immune responses against Mycobacterium tuberculosis (Mtb) infection. Cytokine profile specifically associated with active tuberculosis (ATB) patients, subjects with latent tuberculosis infection (LTBI) and non-infected individuals remains to be determined. We enrolled a total of 92 subjects including patients with ATB (n = 25), LTBI (n = 36) and healthy controls (HC, n = 31) to investigate the cytokine production by peripheral blood mononuclear cells after Mtb purified protein derivative (PPD) stimulation which was evaluated by a beads-based multiplex assay system. The production of IL-1β, IL-2, IL-6, IL-10, IL-17, G-CSF, IFN-γ, IP-10, MIP-1α and TNF-α was abundantly induced by PPD in all three groups. The levels of IL-2, IL-10, IFN-γ, IP-10 and TNF-α were significantly higher in LTBI group than in ATB group. The combination of PPD-stimulated IL-2 and IL-10 accurately identified 84.0% of ATB and 88.9% of LTBI. We validated the use of PPD-stimulated IL-2 and IL-10 test combined with T-SPOT.TB test in a cohort of 44 subjects with TB suspicion. The sensitivity and specificity of the combined test were 83.3% and 92.3%, respectively. The PPD-stimulated IL-2/IFN-γ ratio (p < 0.001) in LTBI subjects was significantly higher than in active TB patients. Our study identified cytokine patterns characteristic of ATB and LTBI. Cytokines such as IL-2 and IL-10 may serve as biomarkers for distinguishing ATB from LTBI and healthy control and may contribute to intervention and improvement in TB diagnosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cytokine storms are primarily responsible for the rapid death of ducklings infected with duck hepatitis A virus type 1.

    PubMed

    Xie, Jinyan; Wang, Mingshu; Cheng, Anchun; Zhao, Xin-Xin; Liu, Mafeng; Zhu, Dekang; Chen, Shun; Jia, Renyong; Yang, Qiao; Wu, Ying; Zhang, Shaqiu; Liu, Yunya; Yu, Yanling; Zhang, Ling; Sun, Kunfeng; Chen, Xiaoyue

    2018-04-26

    Duck hepatitis A virus type 1 (DHAV-1) is one of the most harmful pathogens in the duck industry. The infection of adult ducks with DHAV-1 was previously shown to result in transient cytokine storms in their kidneys. To understand how DHAV-1 infection impacts the host liver, we conducted animal experiments with the virulent CH DHAV-1 strain and the attenuated CH60 commercial vaccine strain. Visual observation and standard hematoxylin and eosin staining were performed to detect pathological damage in the liver, and viral copy numbers and cytokine expression in the liver were evaluated by quantitative PCR. The CH strain (10 8.4 copies/mg) had higher viral titers than the CH60 strain (10 4.9 copies/mg) in the liver and caused ecchymotic hemorrhaging on the liver surface. Additionally, livers from ducklings inoculated with the CH strain were significantly infiltrated by numerous red blood cells, accompanied by severe cytokine storms, but similar signs were not observed in the livers of ducklings inoculated with the CH60 strain. In conclusion, the severe cytokine storm caused by the CH strain apparently induces hemorrhagic lesions in the liver, which might be a key factor in the rapid death of ducklings.

  5. Cytokines and metabolic patterns in pediatric patients with critical illness.

    PubMed

    Briassoulis, George; Venkataraman, Shekhar; Thompson, Ann

    2010-01-01

    It is not known if cytokines, which are cell-derived mediators released during the host immune response to stress, affect metabolic response to stress during critical illness. The aim of this prospective study was to determine whether the metabolic response to stress is related to the inflammatory interleukin-6 (IL-6), 10 (IL-10), and other stress mediators' responses and to assess their relationships with different feeding patterns, nutritional markers, the severity of illness as assessed by the Multiple Organ System Failure (MOSF), the Pediatric Risk of Mortality Score (PRISM), systemic inflammatory response syndrome (SIRS), and mortality in critically ill children. Patients were classified as hypermetabolic, normometabolic, and hypometabolic when the measured resting energy expenditures (REE) were >110%, 90-110% and, <90% of the predicted basal metabolic rate, respectively. The initial predominance of the hypometabolic pattern (48.6%) declined within 1 week of acute stress (20%), and the hypermetabolic patterns dominated only after 2 weeks (60%). Only oxygen consumption (VO(2)) and carbon dioxide production (VCO(2)) (P < .0001) but none of the cytokines and nutritional markers, were independently associated with a hypometabolic pattern. REE correlated with the IL-10 but not PRISM. In the presence of SIRS or sepsis, CRP, IL-6, IL-10, Prognostic Inflammatory and Nutritional Index (NI), and triglycerides--but not glucose, VO(2), or VCO(2) increased significantly. High IL-10 levels (P = .0000) and low measured REE (P = .0000) were independently associated with mortality (11.7%), which was higher in the hypometabolic compared to other metabolic patterns (P < .005). Our results showed that only VO(2) and VCO(2), but not IL-6 or IL-10, were associated with a hypometabolic pattern which predominated the acute phase of stress, and was associated with increased mortality. Although in SIRS or sepsis, the cytokine response was reliably reflected by increases in NI and

  6. Cytokines and Metabolic Patterns in Pediatric Patients with Critical Illness

    PubMed Central

    Briassoulis, George; Venkataraman, Shekhar; Thompson, Ann

    2010-01-01

    It is not known if cytokines, which are cell-derived mediators released during the host immune response to stress, affect metabolic response to stress during critical illness. The aim of this prospective study was to determine whether the metabolic response to stress is related to the inflammatory interleukin-6 (IL-6), 10 (IL-10), and other stress mediators' responses and to assess their relationships with different feeding patterns, nutritional markers, the severity of illness as assessed by the Multiple Organ System Failure (MOSF), the Pediatric Risk of Mortality Score (PRISM), systemic inflammatory response syndrome (SIRS), and mortality in critically ill children. Patients were classified as hypermetabolic, normometabolic, and hypometabolic when the measured resting energy expenditures (REE) were >110%, 90–110% and, <90% of the predicted basal metabolic rate, respectively. The initial predominance of the hypometabolic pattern (48.6%) declined within 1 week of acute stress (20%), and the hypermetabolic patterns dominated only after 2 weeks (60%). Only oxygen consumption (VO2) and carbon dioxide production (VCO2) (P < .0001) but none of the cytokines and nutritional markers, were independently associated with a hypometabolic pattern. REE correlated with the IL-10 but not PRISM. In the presence of SIRS or sepsis, CRP, IL-6, IL-10, Prognostic Inflammatory and Nutritional Index (NI), and triglycerides—but not glucose, VO2, or VCO2 increased significantly. High IL-10 levels (P = .0000) and low measured REE (P = .0000) were independently associated with mortality (11.7%), which was higher in the hypometabolic compared to other metabolic patterns (P < .005). Our results showed that only VO2 and VCO2, but not IL-6 or IL-10, were associated with a hypometabolic pattern which predominated the acute phase of stress, and was associated with increased mortality. Although in SIRS or sepsis, the cytokine response was reliably reflected by increases in NI and

  7. Cytokines in human milk.

    PubMed

    Garofalo, Roberto

    2010-02-01

    Epidemiologic studies conducted in the past 30 years to investigate the protective functions of human milk strongly support the notion that breastfeeding prevents infantile infections, particularly those affecting the gastrointestinal and respiratory tracts. However, more recent clinical and experimental observations also suggest that human milk not only provides passive protection, but also can directly modulate the immunological development of the recipient infant. The study of this remarkable defense system in human milk has been difficult because of its biochemical complexity, the small concentration of certain bioactive components, the compartmentalization of some of these agents, the dynamic quantitative and qualitative changes of milk during lactation, and the lack of specific reagents to quantify these agents. However, a host of bioactive substances, including hormones, growth factors, and immunological factors such as cytokines, have been identified in human milk. Cytokines are pluripotent polypeptides that act in autocrine/paracrine fashions by binding to specific cellular receptors. They operate in networks and orchestrate the development and functions of immune system. Several different cytokines and chemokines have been discovered in human milk in the past years, and the list is growing very rapidly. This article will review the current knowledge about the increasingly complex network of chemoattractants, activators, and anti-inflammatory cytokines present in human milk and their potential role in compensating for the developmental delay of the neonate immune system. Copyright 2010. Published by Mosby, Inc.

  8. Can the mild clinical course of crimean-congo hemorrhagic fever in children be explained by cytokine responses?

    PubMed

    Ozsurekci, Yasemin; Arasli, Mehmet; Karadag Oncel, Eda; Caglayik, Dilek Yagci; Kaya, Ali; Icagasioglu, Fusun Dilara; Engin, Aynur; Korukluoglu, Gulay; Elaldi, Nazif; Ceyhan, Mehmet

    2013-11-01

    Cytokines are possibly one of the factors responsible for death due to Crimean-Congo hemorrhagic fever (CCHF). This study aimed to determine the differences between the cytokine levels in children and adult patients with CCHF; the influence of cytokines; and the severity of the course of the disease, which seems to be milder in children. Thirty-four children and 36 adult patients diagnosed with CCHF between 2010 and 2011 were included in this study. Diagnosis was performed by serology or by the polymerase chain reaction for CCHF virus. Levels of IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 p70, IL-13, IL-17A, and IL-22 were measured in all serum samples. Although the disease had a fatal course in three adult patients, there were no deaths in children. Statistically significant differences were not observed between the cytokine concentrations in the adults and children. No differences were detected between the serum cytokine levels in the children with moderate and those with a severe clinical course of the disease. In the adult patients with fatal outcome, significantly higher serum levels of IL-2, IL-5, IL-9, IL-12 p70, and IL-13 were detected as compared to the cytokine levels in patients who survived the infection. No differences were detected between the serum levels of IFN-γ, IL-1β, IL-17A, IL-22, IL-10, IL-6, IL-4, and TNF-α in the patients who died and those who survived. Thus, the milder clinical course in children with CCHF cannot be explained by the cytokine network alone. The incomplete maturation of the immune system and timing and scale of immune responses could change the outcome dramatically. Copyright © 2013 Wiley Periodicals, Inc.

  9. Yersinia versus host immunity: how a pathogen evades or triggers a protective response.

    PubMed

    Chung, Lawton K; Bliska, James B

    2016-02-01

    The human pathogenic Yersinia species cause diseases that represent a significant source of morbidity and mortality. Despite this, specific mechanisms underlying Yersinia pathogenesis and protective host responses remain poorly understood. Recent studies have shown that Yersinia disrupt cell death pathways, perturb inflammatory processes and exploit immune cells to promote disease. The ensuing host responses following Yersinia infection include coordination of innate and adaptive immune responses in an attempt to control bacterial replication. Here, we highlight current advances in our understanding of the interactions between the pathogenic yersiniae and host cells, as well as the protective host responses mobilized to counteract these pathogens. Together, these studies enhance our understanding of Yersinia pathogenesis and highlight the ongoing battle between host and microbe. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Interaction of Bovine Peripheral Blood Polymorphonuclear Cells and Leptospira Species; Innate Responses in the Natural Bovine Reservoir Host

    PubMed Central

    Wilson-Welder, Jennifer H.; Frank, Ami T.; Hornsby, Richard L.; Olsen, Steven C.; Alt, David P.

    2016-01-01

    Cattle are the reservoir hosts of Leptospira borgpetersenii serovar Hardjo, and can also be reservoir hosts of other Leptospira species such as L. kirschneri, and Leptospira interrogans. As a reservoir host, cattle shed Leptospira, infecting other animals, including humans. Previous studies with human and murine neutrophils have shown activation of neutrophil extracellular trap or NET formation, and upregulation of inflammatory mediators by neutrophils in the presence of Leptospira. Humans, companion animals and most widely studied models of Leptospirosis are of acute infection, hallmarked by systemic inflammatory response, neutrophilia, and septicemia. In contrast, cattle exhibit chronic infection with few outward clinical signs aside from reproductive failure. Taking into consideration that there is host species variation in innate immunity, especially in pathogen recognition and response, the interaction of bovine peripheral blood polymorphonuclear cells (PMNs) and several Leptospira strains was evaluated. Studies including bovine-adapted strains, human pathogen strains, a saprophyte and inactivated organisms. Incubation of PMNs with Leptospira did induce slight activation of neutrophil NETs, greater than unstimulated cells but less than the quantity from E. coli P4 stimulated PMNs. Very low but significant from non-stimulated, levels of reactive oxygen peroxides were produced in the presence of all Leptospira strains and E. coli P4. Similarly, significant levels of reactive nitrogen intermediaries (NO2) was produced from PMNs when incubated with the Leptospira strains and greater quantities in the presence of E. coli P4. PMNs incubated with Leptospira induced RNA transcripts of IL-1β, MIP-1α, and TNF-α, with greater amounts induced by live organisms when compared to heat-inactivated leptospires. Transcript for inflammatory cytokine IL-8 was also induced, at similar levels regardless of Leptospira strain or viability. However, incubation of Leptospira strains

  11. Diagnostics for Lassa Fever: Detecting Host Antibody Responses.

    PubMed

    Salvato, Maria S; Lukashevich, Igor S; Medina-Moreno, Sandra; Zapata, Juan Carlos

    2018-01-01

    There are two types of viral diagnostics: (1) those that detect components of the pathogen (like viral RNA or proteins) and (2) those that detect host molecules that rise or fall as a consequence of pathogen infection (like anti-viral antibodies or virus-induced inflammatory cytokines). Quantitative PCR to detect Lassa RNA, and clinical chemistry to detect high liver enzymes (AST/ALT) are commonly used to diagnose Lassa fever. Here, we discuss the various types of diagnostics for Lassa fever and the urgent need for early diagnosis. We also describe a protocol for using the attenuated Lassa vaccine candidate, ML29 , as an antigen for detecting Lassa-specific antibodies. Since antibodies are developed late in the progression of Lassa fever disease, this is not an early diagnostic, but is more useful in surveillance of the population to determine the sero-prevalence of antibodies to Lassa virus (LASV ), and to define treatment options for people in close contact with a Lassa-infected person.

  12. Ebola virus-like particles stimulate type I interferons and proinflammatory cytokine expression through the toll-like receptor and interferon signaling pathways.

    PubMed

    Ayithan, Natarajan; Bradfute, Steven B; Anthony, Scott M; Stuthman, Kelly S; Dye, John M; Bavari, Sina; Bray, Mike; Ozato, Keiko

    2014-02-01

    Ebola viruses (EBOV) can cause severe hemorrhagic disease with high case fatality rates. Currently, no vaccines or therapeutics are approved for use in humans. Ebola virus-like particles (eVLP) comprising of virus protein (VP40), glycoprotein, and nucleoprotein protect rodents and nonhuman primates from lethal EBOV infection, representing as a candidate vaccine for EBOV infection. Previous reports have shown that eVLP stimulate the expression of proinflammatory cytokines in dendritic cells (DCs) and macrophages (MΦs) in vitro. However, the molecular mechanisms and signaling pathways through which eVLP induce innate immune responses remain obscure. In this study, we show that eVLP stimulate not only the expression of proinflammatory cytokines but also the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) in murine bone marrow-derived DCs (BMDCs) and MΦs. Our data indicate that eVLP trigger host responses through toll-like receptor (TLR) pathway utilizing 2 distinct adaptors, MyD88 and TRIF. More interestingly, eVLP activated the IFN signaling pathway by inducing a set of potent antiviral ISGs. Last, eVLP and synthetic adjuvants, Poly I:C and CpG DNA, cooperatively increased the expression of cytokines and ISGs. Further supporting this synergy, eVLP when administered together with Poly I:C conferred mice enhanced protection against EBOV infection. These results indicate that eVLP stimulate early innate immune responses through TLR and type I IFN signaling pathways to protect the host from EBOV infection.

  13. The effect of aliskiren on urinary cytokine/chemokine responses to clamped hyperglycaemia in type 1 diabetes.

    PubMed

    Cherney, David Z I; Reich, Heather N; Scholey, James W; Daneman, Denis; Mahmud, Farid H; Har, Ronnie L H; Sochett, Etienne B

    2013-10-01

    Acute clamped hyperglycaemia activates the renin-angiotensin-aldosterone system (RAAS) and increases the urinary excretion of inflammatory cytokines/chemokines in patients with uncomplicated type 1 diabetes mellitus. Our objective was to determine whether blockade of the RAAS would blunt the effect of acute hyperglycaemia on urinary cytokine/chemokine excretion, thereby giving insights into potentially protective effects of these agents prior to the onset of clinical nephropathy. Blood pressure, renal haemodynamic function (inulin and para-aminohippurate clearances) and urinary cytokines/chemokines were measured after 6 h of clamped euglycaemia (4-6 mmol/l) and hyperglycaemia (9-11 mmol/l) on two consecutive days in patients with type 1 diabetes mellitus (n = 27) without overt nephropathy. Measurements were repeated after treatment with aliskiren (300 mg daily) for 30 days. Before aliskiren, clamped hyperglycaemia increased filtration fraction (from 0.188 ± 0.007 to 0.206 ± 0.007, p = 0.003) and urinary fibroblast growth factor-2 (FGF2), IFN-α2 and macrophage-derived chemokine (MDC) (p < 0.005). After aliskiren, the filtration fraction response to hyperglycaemia was abolished, resulting in a lower filtration fraction after aliskiren under clamped hyperglycaemic conditions (p = 0.004), and none of the biomarkers increased in response to hyperglycaemia. Aliskiren therapy also reduced levels of urinary eotaxin, FGF2, IFN-α2, IL-2 and MDC during clamped hyperglycaemia (p < 0.005). The increased urinary excretion of inflammatory cytokines/chemokines in response to acute hyperglycaemia is blunted by RAAS blockade in humans with uncomplicated type 1 diabetes mellitus.

  14. An evaluation of a host responsibility program

    DOT National Transportation Integrated Search

    1987-09-30

    Research shows that the homes of relatives and friends are second only to public bars and restaurants as sources of alcohol for impaired drivers. An instructional program was developed to encourage and assist hosts in more responsible service of alco...

  15. The Systemic Immune State of Super-shedder Mice Is Characterized by a Unique Neutrophil-dependent Blunting of TH1 Responses

    PubMed Central

    Johns, Jennifer; Nolan, Garry; Monack, Denise

    2013-01-01

    Host-to-host transmission of a pathogen ensures its successful propagation and maintenance within a host population. A striking feature of disease transmission is the heterogeneity in host infectiousness. It has been proposed that within a host population, 20% of the infected hosts, termed super-shedders, are responsible for 80% of disease transmission. However, very little is known about the immune state of these super-shedders. In this study, we used the model organism Salmonella enterica serovar Typhimurium, an important cause of disease in humans and animal hosts, to study the immune state of super-shedders. Compared to moderate shedders, super-shedder mice had an active inflammatory response in both the gastrointestinal tract and the spleen but a dampened TH1 response specific to the secondary lymphoid organs. Spleens from super-shedder mice had higher numbers of neutrophils, and a dampened T cell response, characterized by higher levels of regulatory T cells (Tregs), fewer T-bet+ (TH1) T cells as well as blunted cytokine responsiveness. Administration of the cytokine granulocyte colony stimulating factor (G-CSF) and subsequent neutrophilia was sufficient to induce the super-shedder immune phenotype in moderate-shedder mice. Similar to super-shedders, these G-CSF-treated moderate-shedders had a dampened TH1 response with fewer T-bet+ T cells and a loss of cytokine responsiveness. Additionally, G-CSF treatment inhibited IL-2-mediated TH1 expansion. Finally, depletion of neutrophils led to an increase in the number of T-bet+ TH1 cells and restored their ability to respond to IL-2. Taken together, we demonstrate a novel role for neutrophils in blunting IL-2-mediated proliferation of the TH1 immune response in the spleens of mice that are colonized by high levels of S. Typhimurium in the gastrointestinal tract. PMID:23754944

  16. Characterization of host immune responses in Ebola virus infections.

    PubMed

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  17. Arsenic affects inflammatory cytokine expression in Gallus gallus brain tissues.

    PubMed

    Sun, Xiao; He, Ying; Guo, Ying; Li, Siwen; Zhao, Hongjing; Wang, Yu; Zhang, Jingyu; Xing, Mingwei

    2017-06-05

    The heavy metal arsenic is widely distributed in nature and posses a serious threat to organism's health. However, little is known about the arsenic-induced inflammatory response in the brain tissues of birds and the relationship and mechanism of the inflammatory response. The purpose of this study was to explore the effects of dietary arsenic on the expression of inflammatory cytokines in the brains of Gallus gallus. Seventy-two 1-day-old male Hy-line chickens were divided into a control group, a low arsenic trioxide (As 2 O 3 )-treated (7.5 mg/kg) group, a middle As 2 O 3 -treated (15 mg/kg) group, and a high As 2 O 3 -treated (30 mg/kg) group. Arsenic exposure caused obvious ultrastructural changes. The mRNA levels of the transcription factor nuclear factor-κB (NF-κB) and of pro-inflammatory cytokines, including inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and prostaglandin E synthase (PTGEs), in chicken brain tissues (cerebrum, cerebellum, thalamus, brainstem and myelencephalon) on days 30, 60 and 90, respectively, were measured by real-time PCR. The protein expression of iNOS was detected by western blot. The results showed that after being treated with As 2 O 3, the levels of inflammatory-related factor NF-κB and pro-inflammatory cytokines in chicken brain tissues increased (P < 0.05). Arsenic exposure in the chickens triggered host defence and induced an inflammatory response by regulating the expression of inflammatory-related genes in the cerebrum, cerebellum, thalamus, brainstem and myelencephalon. These data form a foundation for further research on arsenic-induced neurotoxicity in Gallus gallus.

  18. Sex differences in the pro-inflammatory cytokine response to endotoxin unfold in vivo but not ex vivo in healthy humans.

    PubMed

    Wegner, Alexander; Benson, Sven; Rebernik, Laura; Spreitzer, Ingo; Jäger, Marcus; Schedlowski, Manfred; Elsenbruch, Sigrid; Engler, Harald

    2017-07-01

    Clinical data indicate that inflammatory responses differ across sexes, but the mechanisms remain elusive. Herein, we assessed in vivo and ex vivo cytokine responses to bacterial endotoxin in healthy men and women to elucidate the role of systemic and cellular factors underlying sex differences in inflammatory responses. Participants received an i.v. injection of low-dose endotoxin (0.4 ng/kg body mass), and plasma TNF-α and IL-6 responses were analyzed over a period of 6 h. In parallel, ex vivo cytokine production was measured in endotoxin-stimulated blood samples obtained immediately before in vivo endotoxin administration. As glucocorticoids (GCs) play an important role in the negative feedback regulation of the inflammatory response, we additionally analyzed plasma cortisol concentrations and ex vivo GC sensitivity of cytokine production. Results revealed greater in vivo pro-inflammatory responses in women compared with men, with significantly higher increases in plasma TNF-α and IL-6 concentrations. In addition, the endotoxin-induced rise in plasma cortisol was more pronounced in women. In contrast, no sex differences in ex vivo cytokine production and GC sensitivity were observed. Together, these findings demonstrate major differences in in vivo and ex vivo responses to endotoxin and underscore the importance of systemic factors underlying sex differences in the inflammatory response.

  19. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, Claudia A.; Fievez, Laurence; Neyrinck, Audrey M.

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact ofmore » sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.« less

  20. Cytokine-targeting biologics for allergic diseases.

    PubMed

    Lawrence, Monica G; Steinke, John W; Borish, Larry

    2018-04-01

    Asthma and allergic diseases continue to increase in prevalence, creating a financial burden on the health care system and affecting the quality of life for those who have these diseases. Many intrinsic and extrinsic factors are involved in the initiation and maintenance of the allergic response. Cytokines are proteins with growth, differentiation, and activation functions that regulate and direct the nature of immune responses. clinicaltrials.gov and PubMed. Relevant clinical trials and recent basic science studies were chosen for discussion. Many cytokines have been implicated in the development and perpetuation of the allergic response. Biologics have been and are continuing to be developed that target these molecules for use in patients with asthma and atopic dermatitis where standard treatment options fail. The current state of cytokine-targeting therapies is discussed. This review focused on cytokines involved in the allergic response with an emphasis on those for which therapies are being or have been developed. Copyright © 2018 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Host response to Brucella infection: review and future perspective.

    PubMed

    Elfaki, Mohamed G; Alaidan, Alwaleed Abdullah; Al-Hokail, Abdullah Abdulrahman

    2015-07-30

    Brucellosis is a zoonotic and contagious infectious disease caused by infection with Brucella species. The infecting brucellae are capable of causing a devastating multi-organ disease in humans with serious health complications. The pathogenesis of Brucella infection is influenced largely by host factors, Brucella species/strain, and the ability of invading brucellae to survive and replicate within mononuclear phagocytic cells, preferentially macrophages (Mf). Consequently, the course of human infection may appear as an acute fatal or progress into chronic debilitating infection with periodical episodes that leads to bacteremia and death. The existence of brucellae inside Mf represents one of the strategies used by Brucella to evade the host immune response and is responsible for treatment failure in certain human populations treated with anti-Brucella drugs. Moreover, the persistence of brucellae inside Mf complicates the diagnosis and may affect the host cell signaling pathways with consequent alterations in both innate and adaptive immune responses. Therefore, there is an urgent need to pursue the development of novel drugs and/or vaccine targets against human brucellosis using high throughput technologies in genomics, proteomics, and immunology.

  2. Cytokine response signatures in disease progression and development of severe clinical outcomes for leptospirosis.

    PubMed

    Reis, Eliana A G; Hagan, José E; Ribeiro, Guilherme S; Teixeira-Carvalho, Andrea; Martins-Filho, Olindo A; Montgomery, Ruth R; Shaw, Albert C; Ko, Albert I; Reis, Mitermayer G

    2013-01-01

    The role of the immune response in influencing leptospirosis clinical outcomes is not yet well understood. We hypothesized that acute-phase serum cytokine responses may play a role in disease progression, risk for death, and severe pulmonary hemorrhage syndrome (SPHS). We performed a case-control study design to compare cytokine profiles in patients with mild and severe forms of leptospirosis. Among patients hospitalized with severe disease, we compared those with fatal and nonfatal outcomes. During active outpatient and hospital-based surveillance we prospectively enrolled 172 patients, 23 with mild disease (outpatient) and 149 with severe leptospirosis (hospitalized). Circulating concentrations of pro- and anti-inflammatory cytokines at the time of patient presentation were measured using a multiplex bead array assay. Concentrations of IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-17A, and TNF-α were significantly higher (P<0.05) in severe disease compared to mild disease. Among severe patients, levels of IL-6 (P<0.001), IL-8 (P = 0.0049) and IL-10 (P<0.001), were higher in fatal compared to non-fatal cases. High levels of IL-6 and IL-10 were independently associated (P<0.05) with case fatality after adjustment for age and days of symptoms. IL-6 levels were higher (P = 0.0519) among fatal cases who developed SPHS than among who did not. This study shows that severe cases of leptospirosis are differentiated from mild disease by a "cytokine storm" process, and that IL-6 and IL-10 may play an immunopathogenic role in the development of life-threatening outcomes in human leptospirosis.

  3. Salivary cytokine response in the aftermath of stress: An emotion regulation perspective.

    PubMed

    Newton, Tamara L; Fernandez-Botran, Rafael; Lyle, Keith B; Szabo, Yvette Z; Miller, James J; Warnecke, Ashlee J

    2017-09-01

    Elevated inflammation in the context of stress has been implicated in mental and physical health. Approaching this from an emotion regulation perspective, we tested whether the salivary cytokine response to stress is dampened by using distraction to minimize opportunity for poststressor rumination. Healthy young adults were randomized to an acute stressor: modified Trier Social Stress Test (TSST, Study 1) or angry memory retrieval (Study 2). Within each study, participants were randomized to poststressor condition-rest or distraction-at a 3:1 ratio. Saliva, collected before and 40 min after the end of each stressor, was assayed for proinflammatory cytokines (PICs): interleukin-1β (IL-1β), TNF-α, and IL-6. Both stressors increased all PICs, and both provoked negative emotion. At 40 min post-TSST, salivary PIC increases did not differ between distraction and rest, but correlated positively with emotional reactivity to stress. At 40 min after memory retrieval, IL-1β increases and intrusive rumination were lower during distraction than rest, but did not correlate with emotional reactivity. Trait rumination and interference control mechanisms, also measured, played little role in PIC increases. Overall, after some stressors, some salivary cytokine responses are lower during distraction than rest. The roles of specific emotions, emotional intensity, and poststressor timing of saliva collection in this finding require clarification. Furthermore, the possibility of two affective paths to inflammation in the context of stress-one sensitive to opportunities for early occurring emotion regulation (as reflected in emotional reactivity), and one sensitive to late-occurring emotion regulation (as reflected in distraction after stress)-deserves attention. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Functional Response of Eretmocerus delhiensis on Trialeurodes vaporariorum by Parasitism and Host Feeding

    PubMed Central

    Ebrahimifar, Jafar; Allahyari, Hossein

    2017-01-01

    The parasitoid wasp, Eretmocerus delhiensis (Hymenoptera, Aphelinidae) is a thelytokous and syn-ovigenic parasitoid. To evaluate E. delhiensis as a biocontrol agent in greenhouse, the killing efficiency of this parasitoid by parasitism and host-feeding, were studied. Killing efficiency can be compared by estimation of functional response parameters. Laboratory experiments were performed in controllable conditions to evaluate the functional response of E. delhiensis at eight densities (2, 4, 8, 16, 32, 64, 100, and 120 third nymphal stage) of Trialeurodes vaporariorum (Hemiptera, Aleyrodidae) on two hosts including; tomato and prickly lettuce. The maximum likelihood estimates from regression logistic analysis revealed type II functional response for two host plants and the type of functional response was not affected by host plant. Roger’s model was used to fit the data. The attack rate (a) for E. delhiensis was 0.0286 and 0.0144 per hour on tomato and 0.0434 and 0.0170 per hour on prickly lettuce for parasitism and host feeding, respectively. Furthermore, estimated handling times (Th) were 0.4911 and 1.4453 h on tomato and 0.5713 and 1.5001 h on prickly lettuce for parasitism and host feeding, respectively. Based on 95% confidence interval, functional response parameters were significantly different between the host plants solely in parasitism. Results of this study opens new insight in the host parasitoid interactions, subsequently needs further investigation before utilizing it for management and reduction of greenhouse whitefly. PMID:28423420

  5. Associations between Cytokine/Cytokine Receptor SNPs and Humoral Immunity to Measles, Mumps and Rubella in a Somali Population

    PubMed Central

    Dhiman, Neelam; Ovsyannikova, Inna G.; Vierkant, Robert A.; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.

    2008-01-01

    We genotyped a Somali population (n=85; age ≤ 30 years) for 617 cytokine and cytokine receptor SNPs using Illumina GoldenGate genotyping to determine associations with measles, mumps and rubella immunity. Overall, sixty-one significant associations (p≤0.01) were found between SNPs belonging to cytokine receptor genes regulating Th1 (IL12RB2, IL2RA and B) and Th2 (IL4R, IL10RB) immunity, and cytokine (IL1B, TNFA, IL6 and IFNB1) and cytokine receptor (IL1RA, IFNAR2, IL18R1, TNFRSF1A and B) genes regulating innate immunity, and variations in antibody levels to measles, mumps or rubella. SNPs within two major inflammatory cytokine genes, TNFA and IL6, demonstrated associations with measles-specific antibodies. Specifically, the minor allele variant of rs1799964 (TNFA -1211 C>T) was associated with primarily seronegative values (median EIA index values ≤0.87; p=0.002; q=0.23) in response to measles disease and/or vaccination. A heterozygous variant CT for rs2069849 (IL6 +4272C>T; Phe201Phe) was also associated with seronegative values and a lower median level of antibody response to measles disease and/or vaccination (p=0.004; q=0.36) or measles vaccination alone (p=0.008). Several SNPs within the coding and regulatory regions of cytokine and cytokine receptor genes demonstrated associations with mumps and rubella antibody levels, but were less informative as strong LD patterns and lower frequencies for minor alleles were observed among these SNPs. Our study identifies specific SNPs in innate immune response genes that may play a role in modulating antibody responses to measles vaccination and/or infection in Somali subjects. PMID:18715339

  6. Group B Streptococcus CovR regulation modulates host immune signaling pathways to promote vaginal colonization

    PubMed Central

    Patras, Kathryn A.; Wang, Nai-Yu; Fletcher, Erin M.; Cavaco, Courtney K.; Jimenez, Alyssa; Garg, Mansi; Fierer, Joshua; Sheen, Tamsin R.; Rajagopal, Lakshmi; Doran, Kelly S.

    2013-01-01

    Summary Streptococcus agalactiae (Group B Streptococcus, GBS) is a frequent commensal organism of the vaginal tract of healthy women. However, GBS can transition to a pathogen in susceptible hosts, but host and microbial factors that contribute to this conversion are not well understood. GBS CovR/S (CsrR/S) is a two component regulatory system that regulates key virulence elements including adherence and toxin production. We performed global transcription profiling of human vaginal epithelial cells exposed to WT, CovR deficient, and toxin deficient strains, and observed that insufficient regulation by CovR and subsequent increased toxin production results in a drastic increase in host inflammatory responses, particularly in cytokine signaling pathways promoted by IL-8 and CXCL2. Additionally, we observed that CovR regulation impacts epithelial cell attachment and intracellular invasion. In our mouse model of GBS vaginal colonization, we further demonstrated that CovR regulation promotes vaginal persistence, as infection with a CovR deficient strain resulted in a heightened host immune response as measured by cytokine production and neutrophil activation. Using CXCr2 KO mice, we determined that this immune alteration occurs, at least in part, via signaling through the CXCL2 receptor. Taken together, we conclude that CovR is an important regulator of GBS vaginal colonization and loss of this regulatory function may contribute to the inflammatory havoc seen during the course of infection. PMID:23298320

  7. CD44 deficiency leads to decreased proinflammatory cytokine production in lung induced by PCV2 in mice.

    PubMed

    Fu, Qiang; Hou, Linbing; Xiao, Pingping; Guo, Chunhe; Chen, Yaosheng; Liu, Xiaohong

    2014-12-01

    Porcine circovirus type 2 (PCV2) is the primary etiological agent of postweaning multisystemic wasting syndrome (PMWS). CD44 is a widely expressed class I transmembrane glycoprotein implicated in immunological and inflammatory responses. In previous studies, the role of CD44 in host defense against microorganism infection remains controversial. The role of CD44 in host defense against PCV2 infection has never been studied before. In this study, we investigated the role of CD44 in the development of pneumonia induced by PCV2 in mice model. Upon infection, CD44 mRNA level in lung tissue was upregulated, and we confirmed a detrimental role of CD44 in host defense against PCV2 infection. The results demonstrated that CD44 deficiency could result in decreased proinflammatory cytokine production in lung induced by PCV2 in mice, suggesting a previously unrecognized role for CD44 in the development of pneumonia response to PCV2 infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Methamphetamine Administration Modifies Leukocyte Proliferation and Cytokine Production in Murine Tissues

    PubMed Central

    Peerzada, Habibullah; Ghandi, Jay A.; Guimaraes, Allan J.; Nosanchuk, Joshua D.; Martinez, Luis R.

    2013-01-01

    Methamphetamine (METH) is a potent and highly addictive central nervous system (CNS) stimulant. Additionally, METH adversely impacts immunological responses, which might contribute to the higher rate and more rapid progression of certain infections in drug abusers. However no studies have shown the impact of METH on inflammation within specific organs, cellular participation and cytokine production. Using a murine model of METH administration, we demonstrated that METH modifies, with variable degrees, leukocyte recruitment and alters cellular mediators in the lungs, liver, spleen and kidneys of mice. Our findings demonstrate the pleotropic effects of METH on the immune response within diverse tissues. These alterations have profound implications on tissue homeostasis and the capacity of the host to respond to diverse insults, including invading pathogens. PMID:23518444

  9. Interactions between Autophagy and Inhibitory Cytokines

    PubMed Central

    Wu, Tian-tian; Li, Wei-Min; Yao, Yong-Ming

    2016-01-01

    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy. PMID:27313501

  10. Aging enhances serum cytokine response but not task-induced grip strength declines in a rat model of work-related musculoskeletal disorders

    PubMed Central

    2011-01-01

    Background We previously reported early tissue injury, increased serum and tissue inflammatory cytokines and decreased grip in young rats performing a moderate demand repetitive task. The tissue cytokine response was transient, the serum response and decreased grip were still evident by 8 weeks. Thus, here, we examined their levels at 12 weeks in young rats. Since aging is known to enhance serum cytokine levels, we also examined aged rats. Methods Aged and young rats, 14 mo and 2.5 mo of age at onset, respectfully, were trained 15 min/day for 4 weeks, and then performed a high repetition, low force (HRLF) reaching and grasping task for 2 hours/day, for 12 weeks. Serum was assayed for 6 cytokines: IL-1alpha, IL-6, IFN-gamma, TNF-alpha, MIP2, IL-10. Grip strength was assayed, since we have previously shown an inverse correlation between grip strength and serum inflammatory cytokines. Results were compared to naïve (grip), and normal, food-restricted and trained-only controls. Results Serum cytokines were higher overall in aged than young rats, with increases in IL-1alpha, IFN-gamma and IL-6 in aged Trained and 12-week HRLF rats, compared to young Trained and HRLF rats (p < 0.05 and p < 0.001, respectively, each). IL-6 was also increased in aged 12-week HRLF versus aged normal controls (p < 0.05). Serum IFN-gamma and MIP2 levels were also increased in young 6-week HRLF rats, but no cytokines were above baseline levels in young 12-week HRLF rats. Grip strength declined in both young and aged 12-week HRLF rats, compared to naïve and normal controls (p < 0.05 each), but these declines correlated only with IL-6 levels in aged rats (r = -0.39). Conclusion Aging enhanced a serum cytokine response in general, a response that was even greater with repetitive task performance. Grip strength was adversely affected by task performance in both age groups, but was apparently influenced by factors other than serum cytokine levels in young rats. PMID:21447183

  11. Transcriptomic and innate immune responses to Yersinia pestis in the lymph node during bubonic plague.

    PubMed

    Comer, Jason E; Sturdevant, Daniel E; Carmody, Aaron B; Virtaneva, Kimmo; Gardner, Donald; Long, Dan; Rosenke, Rebecca; Porcella, Stephen F; Hinnebusch, B Joseph

    2010-12-01

    A delayed inflammatory response is a prominent feature of infection with Yersinia pestis, the agent of bubonic and pneumonic plague. Using a rat model of bubonic plague, we examined lymph node histopathology, transcriptome, and extracellular cytokine levels to broadly characterize the kinetics and extent of the host response to Y. pestis and how it is influenced by the Yersinia virulence plasmid (pYV). Remarkably, dissemination and multiplication of wild-type Y. pestis during the bubonic stage of disease did not induce any detectable gene expression or cytokine response by host lymph node cells in the developing bubo. Only after systemic spread had led to terminal septicemic plague was a transcriptomic response detected, which included upregulation of several cytokine, chemokine, and other immune response genes. Although an initial intracellular phase of Y. pestis infection has been postulated, a Th1-type cytokine response associated with classical activation of macrophages was not observed during the bubonic stage of disease. However, elevated levels of interleukin-17 (IL-17) were present in infected lymph nodes. In the absence of pYV, sustained recruitment to the lymph node of polymorphonuclear leukocytes (PMN, or neutrophils), the major IL-17 effector cells, correlated with clearance of infection. Thus, the ability to counteract a PMN response in the lymph node appears to be a major in vivo function of the Y. pestis virulence plasmid.

  12. Increased Age, but Not Parity Predisposes to Higher Bacteriuria Burdens Due to Streptococcus Urinary Tract Infection and Influences Bladder Cytokine Responses, Which Develop Independent of Tissue Bacterial Loads.

    PubMed

    Sullivan, Matthew J; Carey, Alison J; Leclercq, Sophie Y; Tan, Chee K; Ulett, Glen C

    2016-01-01

    Streptococcus agalactiae causes urinary tract infection (UTI) in pregnant adults, non-pregnant adults, immune-compromised individuals and the elderly. The pathogenesis of S. agalactiae UTI in distinct patient populations is poorly understood. In this study, we used murine models of UTI incorporating young mice, aged and dam mice to show that uropathogenic S. agalactiae causes bacteriuria at significantly higher levels in aged mice compared to young mice and this occurs coincident with equivalent levels of bladder tissue colonisation at 24 h post-infection (p.i.). In addition, aged mice exhibited significantly higher bacteriuria burdens at 48 h compared to young mice, confirming a divergent pattern of bacterial colonization in the urinary tract of aged and young mice. Multiparous mice, in contrast, exhibited significantly lower urinary titres of S. agalactiae compared to age-matched nulliparous mice suggesting that parity enhances the ability of the host to control S. agalactiae bacteriuria. Additionally, we show that both age and parity alter the expression levels of several key regulatory and pro-inflammatory cytokines, which are known to be important the immune response to UTI, including Interleukin (IL)-1β, IL-12(p40), and Monocyte Chemoattractant Protein-1 (MCP-1). Finally, we demonstrate that other cytokines, including IL-17 are induced significantly in the S. agalactiae-infected bladder regardless of age and parity status. Collectively, these findings show that the host environment plays an important role in influencing the severity of S. agalactiae UTI; infection dynamics, particularly in the context of bacteriuria, depend on age and parity, which also affect the nature of innate immune responses to infection.

  13. Increased Age, but Not Parity Predisposes to Higher Bacteriuria Burdens Due to Streptococcus Urinary Tract Infection and Influences Bladder Cytokine Responses, Which Develop Independent of Tissue Bacterial Loads

    PubMed Central

    Sullivan, Matthew J.; Carey, Alison J.; Leclercq, Sophie Y.; Tan, Chee K.

    2016-01-01

    Streptococcus agalactiae causes urinary tract infection (UTI) in pregnant adults, non-pregnant adults, immune-compromised individuals and the elderly. The pathogenesis of S. agalactiae UTI in distinct patient populations is poorly understood. In this study, we used murine models of UTI incorporating young mice, aged and dam mice to show that uropathogenic S. agalactiae causes bacteriuria at significantly higher levels in aged mice compared to young mice and this occurs coincident with equivalent levels of bladder tissue colonisation at 24 h post-infection (p.i.). In addition, aged mice exhibited significantly higher bacteriuria burdens at 48 h compared to young mice, confirming a divergent pattern of bacterial colonization in the urinary tract of aged and young mice. Multiparous mice, in contrast, exhibited significantly lower urinary titres of S. agalactiae compared to age-matched nulliparous mice suggesting that parity enhances the ability of the host to control S. agalactiae bacteriuria. Additionally, we show that both age and parity alter the expression levels of several key regulatory and pro-inflammatory cytokines, which are known to be important the immune response to UTI, including Interleukin (IL)-1β, IL-12(p40), and Monocyte Chemoattractant Protein-1 (MCP-1). Finally, we demonstrate that other cytokines, including IL-17 are induced significantly in the S. agalactiae-infected bladder regardless of age and parity status. Collectively, these findings show that the host environment plays an important role in influencing the severity of S. agalactiae UTI; infection dynamics, particularly in the context of bacteriuria, depend on age and parity, which also affect the nature of innate immune responses to infection. PMID:27936166

  14. Parasite Load Induces Progressive Spleen Architecture Breakage and Impairs Cytokine mRNA Expression in Leishmania infantum-Naturally Infected Dogs

    PubMed Central

    Cavalcanti, Amanda S.; Ribeiro-Alves, Marcelo; Pereira, Luiza de O. R.; Mestre, Gustavo Leandro; Ferreira, Anna Beatriz Robottom; Morgado, Fernanda N.; Boité, Mariana C.; Cupolillo, Elisa; Moraes, Milton O.; Porrozzi, Renato

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) shares many aspects with the human disease and dogs are considered the main urban reservoir of L. infantum in zoonotic VL. Infected dogs develop progressive disease with a large clinical spectrum. A complex balance between the parasite and the genetic/immunological background of the host are decisive for infection evolution and clinical outcome. This study comprised 92 Leishmania infected mongrel dogs of various ages from Mato Grosso, Brazil. Spleen samples were collected for determining parasite load, humoral response, cytokine mRNA expression and histopathology alterations. By real-time PCR for the ssrRNA Leishmania gene, two groups were defined; a low (lowP, n = 46) and a high parasite load groups (highP, n = 42). When comparing these groups, results show variable individual humoral immune response with higher specific IgG production in infected animals but with a notable difference in CVL rapid test optical densities (DPP) between highP and lowP groups. Splenic architecture disruption was characterized by disorganization of white pulp, more evident in animals with high parasitism. All cytokine transcripts in spleen were less expressed in highP than lowP groups with a large heterogeneous variation in response. Individual correlation analysis between cytokine expression and parasite load revealed a negative correlation for both pro-inflammatory cytokines: IFNγ, IL-12, IL-6; and anti-inflammatory cytokines: IL-10 and TGFβ. TNF showed the best negative correlation (r2 = 0.231; p<0.001). Herein we describe impairment on mRNA cytokine expression in leishmania infected dogs with high parasite load associated with a structural modification in the splenic lymphoid micro-architecture. We also discuss the possible mechanism responsible for the uncontrolled parasite growth and clinical outcome. PMID:25875101

  15. Do host species evolve a specific response to slave-making ants?

    PubMed Central

    2012-01-01

    Background Social parasitism is an important selective pressure for social insect species. It is particularly the case for the hosts of dulotic (so called slave-making) ants, which pillage the brood of host colonies to increase the worker force of their own colony. Such raids can have an important impact on the fitness of the host nest. An arms race which can lead to geographic variation in host defenses is thus expected between hosts and parasites. In this study we tested whether the presence of a social parasite (the dulotic ant Myrmoxenus ravouxi) within an ant community correlated with a specific behavioral defense strategy of local host or non-host populations of Temnothorax ants. Social recognition often leads to more or less pronounced agonistic interactions between non-nestmates ants. Here, we monitored agonistic behaviors to assess whether ants discriminate social parasites from other ants. It is now well-known that ants essentially rely on cuticular hydrocarbons to discriminate nestmates from aliens. If host species have evolved a specific recognition mechanism for their parasite, we hypothesize that the differences in behavioral responses would not be fully explained simply by quantitative dissimilarity in cuticular hydrocarbon profiles, but should also involve a qualitative response due to the detection of particular compounds. We scaled the behavioral results according to the quantitative chemical distance between host and parasite colonies to test this hypothesis. Results Cuticular hydrocarbon profiles were distinct between species, but host species did not show a clearly higher aggression rate towards the parasite than toward non-parasite intruders, unless the degree of response was scaled by the chemical distance between intruders and recipient colonies. By doing so, we show that workers of the host and of a non-host species in the parasitized site displayed more agonistic behaviors (bites and ejections) towards parasite than toward non

  16. Helicobacter pylori infection and host cell responses.

    PubMed

    Di Leo, A; Messa, C; Russo, F; Linsalata, M; Amati, L; Caradonna, L; Pece, S; Pellegrino, N M; Caccavo, D; Antonaci, S; Jirillo, E

    1999-11-01

    It is well known that Helicobacter pylori is able to colonize the gastric mucosa, causing a chronic and persistent infection with complications, such as peptic ulcer and gastric cancer. This review places emphasis on some epidemiological aspects of Helicobacter pylori infection and its mode of transmission. At the same time, invasive and non-invasive methods of diagnosis of Helicobacter pylori infection are illustrated. More space is devoted to the host response following invasion of the stomach. In this respect, the role played by different growth factors and polyamines in the course of Helicobacter pylori disease is discussed also in relation to the result of eradicating treatment. On the other hand, an accurate description of the host immune responses against Helicobacter pylori organism and/or their components (e.g. lipopolysaccharides) is reported. Finally, since Helicobacter pylori has been classified as a class I carcinogen, current researches are focussed on the Helicobacter pylori-induced carcinogenesis.

  17. The innate and adaptive immune response to avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...

  18. Cytokine Profiles during Invasive Nontyphoidal Salmonella Disease Predict Outcome in African Children.

    PubMed

    Gilchrist, James J; Heath, Jennifer N; Msefula, Chisomo L; Gondwe, Esther N; Naranbhai, Vivek; Mandala, Wilson; MacLennan, Jenny M; Molyneux, Elizabeth M; Graham, Stephen M; Drayson, Mark T; Molyneux, Malcolm E; MacLennan, Calman A

    2016-07-01

    Nontyphoidal Salmonella is a leading cause of sepsis in African children. Cytokine responses are central to the pathophysiology of sepsis and predict sepsis outcome in other settings. In this study, we investigated cytokine responses to invasive nontyphoidal Salmonella (iNTS) disease in Malawian children. We determined serum concentrations of 48 cytokines with multiplexed immunoassays in Malawian children during acute iNTS disease (n = 111) and in convalescence (n = 77). Principal component analysis and logistic regression were used to identify cytokine signatures of acute iNTS disease. We further investigated whether these responses are altered by HIV coinfection or severe malnutrition and whether cytokine responses predict inpatient mortality. Cytokine changes in acute iNTS disease were associated with two distinct cytokine signatures. The first is characterized by increased concentrations of mediators known to be associated with macrophage function, and the second is characterized by raised pro- and anti-inflammatory cytokines typical of responses reported in sepsis secondary to diverse pathogens. These cytokine responses were largely unaltered by either severe malnutrition or HIV coinfection. Children with fatal disease had a distinctive cytokine profile, characterized by raised mediators known to be associated with neutrophil function. In conclusion, cytokine responses to acute iNTS infection in Malawian children are reflective of both the cytokine storm typical of sepsis secondary to diverse pathogens and the intramacrophage replicative niche of NTS. The cytokine profile predictive of fatal disease supports a key role of neutrophils in the pathogenesis of NTS sepsis. Copyright © 2016 Gilchrist et al.

  19. An Overview of Trypanosoma brucei Infections: An Intense Host-Parasite Interaction.

    PubMed

    Ponte-Sucre, Alicia

    2016-01-01

    Trypanosoma brucei rhodesiense and T. brucei gambiense , the causative agents of Human African Trypanosomiasis, are transmitted by tsetse flies. Within the vector, the parasite undergoes through transformations that prepares it to infect the human host. Sequentially these developmental stages are the replicative procyclic (in which the parasite surface is covered by procyclins) and trypo-epimastigote forms, as well as the non-replicative, infective, metacyclic form that develops in the vector salivary glands. As a pre-adaptation to their life in humans, metacyclic parasites begin to express and be densely covered by the Variant Surface Glycoprotein (VSG). Once the metacyclic form invades the human host the parasite develops into the bloodstream form. Herein the VSG triggers a humoral immune response. To avoid this humoral response, and essential for survival while in the bloodstream, the parasite changes its cover periodically and sheds into the surroundings the expressed VSG, thus evading the consequences of the immune system activation. Additionally, tools comparable to quorum sensing are used by the parasite for the successful parasite transmission from human to insect. On the other hand, the human host promotes clearance of the parasite triggering innate and adaptive immune responses and stimulating cytokine and chemokine secretion. All in all, the host-parasite interaction is extremely active and leads to responses that need multiple control sites to develop appropriately.

  20. Cytokine levels (IL-4, IL-6, IL-8 and TGFβ) as potential biomarkers of systemic inflammatory response in trauma patients.

    PubMed

    Volpin, Gershon; Cohen, Miri; Assaf, Michael; Meir, Tamar; Katz, Rina; Pollack, Shimon

    2014-06-01

    Much research is now being conducted in order to understand the role of cytokines in the development of the inflammatory response following trauma. The purpose of this study was to evaluate whether serum levels of certain cytokines, measured immediately after initial injury, can be used as potential biomarkers for predicting the development and the degree of severity of the systemic inflammatory response (SIRS) in patients with moderate and severe trauma. We conducted a prospective study with 71 individuals of whom 13 (18.3 %) were healthy controls and 58 (81.7 %) were traumatized orthopaedic patients who were categorized into two groups: 31 (43.6 %) with moderate injuries and 27 (38.1 %) patients with severe orthopaedic trauma. Thirty cc of heparinized blood were drawn from each individual within a few hours after the injury. Serum levels of pro-inflammatory, regulatory and anti-inflammatory cytokines were measured in each individual participant. High levels of pro-inflammatory cytokines IL-1β,-6,-8,-12, tumour necrosis factor alpha and interferon gamma were found in all injured patients compared to healthy controls. Only IL-6 and IL-8 were significantly higher in the injured patients. Levels of the regulatory cytokines, transformed growth factor beta (TGF-β) and IL-10 were higher in the injured patients, but significant only for TGF-β. Levels of IL-4 were significantly lower in the injured groups as compared to the controls. Secretion of large amounts of pro-inflammatory cytokines and decreased level of anti-inflammatory cytokines during the acute phase of trauma may lead to the development of systemic inflammatory response syndrome (SIRS) in unstable polytraumatized patients. SIRS may result in life threatening conditions as acute respiratory distress syndrome (ARDS) and multiple organ failure (MOF). High levels of IL-6, IL-8, TGFβ and low levels of IL-4 were found to be reliable markers for the existence of immune reactivity in trauma patients. More

  1. Inhibition of ex vivo proinflammatory cytokine secretion in fatal Mycobacterium tuberculosis infection.

    PubMed Central

    Friedland, J S; Hartley, J C; Hartley, C G; Shattock, R J; Griffin, G E

    1995-01-01

    Tuberculosis is characterized by fever, weight loss, a prolonged acute-phase protein response and granuloma formation. These characteristics may partly be due to action of proinflammatory cytokines tumour necrosis factor (TNF), IL-6 and IL-8. We investigated plasma concentrations of these cytokines before and after ex vivo lipopolysaccharide stimulation of whole blood leucocytes from 41 Zambian patients with tuberculosis, 32 of whom were also HIV+. Although patients had a reduced weight, were more anaemic and had higher erythrocyte sedimentation rate compared with controls (all P < 0.0005), clinical and laboratory measurements of disease state were similar in those who died and survivors. In contrast, plasma IL-6 and IL-8 concentrations were higher in patients who died (P < 0.05). There was no detectable cytokine mRNA in unstimulated leucocytes. There was reduced secretion of TNF (P < 0.005 at 2 h), IL-6 (P < 0.005 at 8 h) and IL-8 (P < 0.005 at 24 h) after ex vivo stimulation of whole blood leucocytes from patients who died compared with survivors. This was partly due to a soluble inhibitory factor present in plasma. The only additional effect of concurrent infection by HIV with Myco. tuberculosis was decreased IL-6 secretion following ex vivo stimulation of leucocytes. Reduced proinflammatory cytokine release may represent a critical impairment of host immune defences important in determining outcome in tuberculosis. PMID:7743661

  2. Plasmodium falciparum erythrocyte membrane protein-1 specifically suppresses early production of host interferon-gamma.

    PubMed

    D'Ombrain, Marthe C; Voss, Till S; Maier, Alexander G; Pearce, J Andrew; Hansen, Diana S; Cowman, Alan F; Schofield, Louis

    2007-08-16

    Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a variable antigen expressed by P. falciparum, the malarial parasite. PfEMP-1, present on the surface of infected host erythrocytes, mediates erythrocyte binding to vascular endothelium, enabling the parasite to avoid splenic clearance. In addition, PfEMP-1 is proposed to regulate host immune responses via interactions with the CD36 receptor on antigen-presenting cells. We investigated the immunoregulatory function of PfEMP-1 by comparing host cell responses to erythrocytes infected with either wild-type parasites or transgenic parasites lacking PfEMP-1. We showed that PfEMP-1 suppresses the production of the cytokine interferon-gamma by human peripheral blood mononuclear cells early after exposure to P. falciparum. Suppression of this rapid proinflammatory response was CD36 independent and specific to interferon-gamma production by gammadelta-T, NK, and alphabeta-T cells. These data demonstrate a parasite strategy for downregulating the proinflammatory interferon-gamma response and further establish transgenic parasites lacking PfEMP-1 as powerful tools for elucidating PfEMP-1 functions.

  3. Pattern of Serum Cytokine Expression and T-Cell Subsets in Sickle Cell Disease Patients in Vaso-Occlusive Crisis▿

    PubMed Central

    Musa, Bolanle O. P.; Onyemelukwe, Geoffrey C.; Hambolu, Joseph O.; Mamman, Aisha I.; Isa, Albarka H.

    2010-01-01

    The pathogenesis of sickle vaso-occlusive crisis (VOC) in sickle cell disease (SCD) patients involves the accumulation of rigid sickle cells and the stimulation of an ongoing inflammatory response, as well as the stress of infections. The immune response, via cytokine imbalances and deregulated T-cell subsets, also has been proposed to contribute to the development of VOC. In this study, a panel of high-sensitivity cytokine kits was used to investigate cytokines in the sera of SCD patients in VOC. The results were compared primarily with those for stable SCD patients and secondarily with those for normal healthy people who served as controls. The cytokines studied included interleukin-2 (IL-2), IL-4, and IL-10. Lymphocyte subsets of patients with VOC were also studied and were compared with those of both control groups (20 stable patients without crisis [SCD group] and 20 normal healthy controls [NHC]). The VOC group was notable for remarkably elevated levels of IL-4, among the three cytokines tested, compared with those for the SCD and NHC groups. Patients with VOC also differed from stable SCD patients and NHC by having notably lower IL-10 levels, as well as the lowest ratio of CD4+ to CD8+ T cells (0.7). The patterns of the proinflammatory cytokine IL-2 did not differ between VOC and stable SCD patients, but NHC had significantly lower IL-2 levels than both the VOC and SCD groups. Our results demonstrate coexisting levels, both high and low, of TH1- and TH2-type cytokines, as well as diminished levels of T-cell subsets in VOC. These results are discussed in an effort to better understand the importance of the immune system profile in the pathogenesis of sickle cell VOC. Since the possibility that a cytokine imbalance is implicated in the pathogenesis of sickle cell crisis has been raised, our results should prompt further investigation of the host immune response in terms of TH1 and TH2 balance in sickle cell crisis. PMID:20130127

  4. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    PubMed Central

    Tabor, Ala E.; Ali, Abid; Rehman, Gauhar; Rocha Garcia, Gustavo; Zangirolamo, Amanda Fonseca; Malardo, Thiago; Jonsson, Nicholas N.

    2017-01-01

    Ticks are able to transmit tick-borne infectious agents to vertebrate hosts which cause major constraints to public and livestock health. The costs associated with mortality, relapse, treatments, and decreased production yields are economically significant. Ticks adapted to a hematophagous existence after the vertebrate hemostatic system evolved into a multi-layered defense system against foreign invasion (pathogens and ectoparasites), blood loss, and immune responses. Subsequently, ticks evolved by developing an ability to suppress the vertebrate host immune system with a devastating impact particularly for exotic and crossbred cattle. Host genetics defines the immune responsiveness against ticks and tick-borne pathogens. To gain an insight into the naturally acquired resistant and susceptible cattle breed against ticks, studies have been conducted comparing the incidence of tick infestation on bovine hosts from divergent genetic backgrounds. It is well-documented that purebred and crossbred Bos taurus indicus cattle are more resistant to ticks and tick-borne pathogens compared to purebred European Bos taurus taurus cattle. Genetic studies identifying Quantitative Trait Loci markers using microsatellites and SNPs have been inconsistent with very low percentages relating phenotypic variation with tick infestation. Several skin gene expression and immunological studies have been undertaken using different breeds, different samples (peripheral blood, skin with tick feeding), infestation protocols and geographic environments. Susceptible breeds were commonly found to be associated with the increased expression of toll like receptors, MHC Class II, calcium binding proteins, and complement factors with an increased presence of neutrophils in the skin following tick feeding. Resistant breeds had higher levels of T cells present in the skin prior to tick infestation and thus seem to respond to ticks more efficiently. The skin of resistant breeds also contained higher

  5. Cytokine-Induced Memory-Like Differentiation Enhances Unlicensed Natural Killer Cell Antileukemia and FcγRIIIa-Triggered Responses.

    PubMed

    Wagner, Julia A; Berrien-Elliott, Melissa M; Rosario, Maximillian; Leong, Jeffrey W; Jewell, Brea A; Schappe, Timothy; Abdel-Latif, Sara; Fehniger, Todd A

    2017-03-01

    Cytokine-induced memory-like natural killer (NK) cells differentiate after short-term preactivation with IL-12, IL-15, and IL-18 and display enhanced effector function in response to cytokines or tumor targets for weeks after the initial preactivation. Conventional NK cell function depends on a licensing signal, classically delivered by an inhibitory receptor engaging its cognate MHC class I ligand. How licensing status integrates with cytokine-induced memory-like NK cell responses is unknown. We investigated this interaction using killer cell immunoglobulin-like receptor- and HLA-genotyped primary human NK cells. Memory-like differentiation resulted in enhanced IFN-γ production triggered by leukemia targets or FcγRIIIa ligation within licensed NK cells, which exhibited the highest functionality of the NK cell subsets interrogated. IFN-γ production by unlicensed memory-like NK cells was also enhanced to a level comparable with that of licensed control NK cells. Mechanistically, differences in responses to FcγRIIIa-based triggering were not explained by alterations in key signaling intermediates, indicating that the underlying biology of memory-like NK cells is distinct from that of adaptive NK cells in human cytomegalovirus-positive individuals. Additionally, memory-like NK cells responded robustly to cytokine receptor restimulation with no impact of licensing status. These results demonstrate that both licensed and unlicensed memory-like NK cell populations have enhanced functionality, which may be translated to improve leukemia immunotherapy. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  6. Suppression of Proinflammatory Cytokines in Functionalized Fullerene-Exposed Dermal Keratinocytes

    DOE PAGES

    Gao, Jun; Wang, Hsing-Lin; Iyer, Rashi

    2010-01-01

    Initial experiments using differentially functionalized fullerenes, CD-, hexa-, and tris-, suggested a properties dependent effect on cytotoxic and proliferative responses in human skin keratinocytes. In the present study we investigated the cytokine secretion profile of dermal epithelial cells exposed to functionalized fullerenes. Keratinocyte-derived cytokines affect homing and trafficking of normal and malignant epidermal immune as well as nonimmune cells in vivo. These cytokines are critical for regulating activation, proliferation, and differentiation of epidermal cells. Our results indicate that tris- (size range <100 nm) significantly reduces inflammatory cytokine release in a dose- and time-dependent manner. In contrast CD- demonstrated a relatively pro-inflammatorymore » cytokine response, while hexa- did not significantly perturb cytokine responses. Physical and chemical characterizations of these engineered nanomaterials suggest that the disparate biological responses observed may potentially be a function of the aggregation properties of these fullerenes.« less

  7. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling.

    PubMed

    Jiang, Jing; Chen, Xinchun; An, Hongjuan; Yang, Bingfen; Zhang, Fuping; Cheng, Xiaoxing

    2016-09-02

    The functions of MAIT cells at the site of Mycobacterium tuberculosis infection in humans are still largely unknown. In this study, the phenotypes and immune response of MAIT cells from tuberculous pleural effusions and peripheral blood were investigated. MAIT cells in tuberculous pleural effusions had greatly enhanced IFN-γ, IL-17F and granzyme B response compared with those in peripheral blood. The level of IFN-γ response in MAIT cells from tuberculous pleural effusions was inversely correlated with the extent of tuberculosis infection (p = 0.0006). To determine whether cytokines drive the immune responses of MAIT cells at the site of tuberculosis infection, the role of IL-1β, IL-2, IL-7, IL-12, IL-15 and IL-18 was investigated. Blockade of IL-2, IL-12 or IL-18 led to significantly reduced production of IFN-γ and/or granzyme B in MAIT cells from tuberculous pleural effusions. Majority of IL-2-producing cells (94.50%) in tuberculous pleural effusions had phenotype of CD3(+)CD4(+), and most IL-12p40-producing cells (91.39%) were CD14(+) cells. MAIT cells had significantly elevated expression of γc receptor which correlated with enhanced immune responses of MAIT cells. It is concluded that MAIT cells from tuberculous pleural effusions exhibited highly elevated immune response to Mtb antigens, which are controlled by cytokines produced by innate/adaptive immune cells.

  8. Enhanced immune response of MAIT cells in tuberculous pleural effusions depends on cytokine signaling

    PubMed Central

    Jiang, Jing; Chen, Xinchun; An, Hongjuan; Yang, Bingfen; Zhang, Fuping; Cheng, Xiaoxing

    2016-01-01

    The functions of MAIT cells at the site of Mycobacterium tuberculosis infection in humans are still largely unknown. In this study, the phenotypes and immune response of MAIT cells from tuberculous pleural effusions and peripheral blood were investigated. MAIT cells in tuberculous pleural effusions had greatly enhanced IFN-γ, IL-17F and granzyme B response compared with those in peripheral blood. The level of IFN-γ response in MAIT cells from tuberculous pleural effusions was inversely correlated with the extent of tuberculosis infection (p = 0.0006). To determine whether cytokines drive the immune responses of MAIT cells at the site of tuberculosis infection, the role of IL-1β, IL-2, IL-7, IL-12, IL-15 and IL-18 was investigated. Blockade of IL-2, IL-12 or IL-18 led to significantly reduced production of IFN-γ and/or granzyme B in MAIT cells from tuberculous pleural effusions. Majority of IL-2-producing cells (94.50%) in tuberculous pleural effusions had phenotype of CD3+CD4+, and most IL-12p40-producing cells (91.39%) were CD14+ cells. MAIT cells had significantly elevated expression of γc receptor which correlated with enhanced immune responses of MAIT cells. It is concluded that MAIT cells from tuberculous pleural effusions exhibited highly elevated immune response to Mtb antigens, which are controlled by cytokines produced by innate/adaptive immune cells. PMID:27586092

  9. Oral microbe-host interactions: influence of β-glucans on gene expression of inflammatory cytokines and metabolome profile.

    PubMed

    Silva, Viviam de Oliveira; Pereira, Luciano José; Murata, Ramiro Mendonça

    2017-03-07

    The aim of this study was to evaluate the effects of β-glucan on the expression of inflammatory mediators and metabolomic profile of oral cells [keratinocytes (OBA-9) and fibroblasts (HGF-1) in a dual-chamber model] infected by Aggregatibacter actinomycetemcomitans. The periodontopathogen was applied and allowed to cross the top layer of cells (OBA-9) to reach the bottom layer of cells (HGF-1) and induce the synthesis of immune factors and cytokines in the host cells. β-glucan (10 μg/mL or 20 μg/mL) were added, and the transcriptional factors and metabolites produced were quantified in the remaining cell layers and supernatant. The relative expression of interleukin (IL)-1-α and IL-18 genes in HGF-1 decreased with 10 μg/mL or 20 μg/mL of β-glucan, where as the expression of PTGS-2 decreased only with 10 μg/mL. The expression of IL-1-α increased with 20 μg/mL and that of IL-18 increased with 10 μg/mL in OBA-9; the expression of BCL 2, EP 300, and PTGS-2 decreased with the higher dose of β-glucan. The production of the metabolite 4-aminobutyric acid presented lower concentrations under 20 μg/mL, whereas the concentrations of 2-deoxytetronic acid NIST and oxalic acid decreased at both concentrations used. Acetophenone, benzoic acid, and pinitol presented reduced concentrations only when treated with 10 μg/mL of β-glucan. Treatment with β-glucans positively modulated the immune response and production of metabolites.

  10. Transcriptomic profile of host response in mouse brain after exposure to plant toxin abrin.

    PubMed

    Bhaskar, A S Bala; Gupta, Nimesh; Rao, P V Lakshmana

    2012-09-04

    Abrin toxin is a plant glycoprotein, which is similar in structure and properties to ricin and is obtained from the seeds of Abrus precatorius (jequirity bean). Abrin is highly toxic, with an estimated human fatal dose of 0.1-1 μg/kg, and has caused death after accidental and intentional poisoning. Abrin is a potent biological toxin warfare agent. There are no chemical antidotes available against the toxin. Neurological symptoms like delirium, hallucinations, reduced consciousness and generalized seizures were reported in human poisoning cases. Death of a patient with symptoms of acute demyelinating encephalopathy with gastrointestinal bleeding due to ingestion of abrin seeds was reported in India. The aim of this study was to examine both dose and time-dependent transcriptional responses induced by abrin in the adult mouse brain. Mice (n=6) were exposed to 1 and 2 LD50 (2.83 and 5.66 μg/kg respectively) dose of abrin by intraperitoneal route and observed over 3 days. A subset of animals (n=3) were sacrificed at 1 and 2 day intervals for microarray and histopathology analysis. None of the 2 LD50 exposed animals survived till 3 days. The histopathological analysis showed the severe damage in brain and the infiltration of inflammatory cells in a dose and time dependent manner. The abrin exposure resulted in the induction of rapid immune and inflammatory response in brain. Clinical biochemistry parameters like lactate dehydrogenase, aspartate aminotransferase, urea and creatinine showed significant increase at 2-day 2 LD50 exposure. The whole genome microarray data revealed the significant regulation of various pathways like MAPK pathway, cytokine-cytokine receptor interaction, calcium signaling pathway, Jak-STAT signaling pathway and natural killer cell mediated toxicity. The comparison of differential gene expression at both the doses showed dose dependent effects of abrin toxicity. The real-time qRT-PCR analysis of selected genes supported the microarray data

  11. Caprine arthritis encephalitis virus dysregulates the expression of cytokines in macrophages.

    PubMed Central

    Lechner, F; Machado, J; Bertoni, G; Seow, H F; Dobbelaere, D A; Peterhans, E

    1997-01-01

    Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that leads to chronic mononuclear infiltration of various tissues, in particular, the radiocarpal joints. Cells of the monocyte/macrophage lineage are the major host cells of CAEV in vivo. We have shown that infection of cultured goat macrophages with CAEV results in an alteration of cytokine expression in vitro. Constitutive expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) was increased in infected macrophages, whereas transforming growth factor beta1 (TGF-beta1) mRNA was down-regulated. When macrophages were infected with a CAEV clone lacking the trans-acting nuclear regulatory gene tat, IL-8 and MCP-1 were also increased. No significant differences from cells infected with the wild-type clone were observed, suggesting that Tat is not required for the increased expression of IL-8 and MCP-1 in infected macrophages. Furthermore, infection with CAEV led to an altered pattern of cytokine expression in response to lipopolysaccharide (LPS), heat-killed Listeria monocytogenes plus gamma interferon, or fixed cells of Staphylococcus aureus Cowan I. In infected macrophages, tumor necrosis factor alpha, IL-1beta, IL-6, and IL-12 p40 mRNA expression was reduced in response to all stimuli tested whereas changes in expression of granulocyte-macrophage colony-stimulating factor depended on the stimulating agent. Electrophoretic mobility shift assays demonstrated that, in contrast to effects of human immunodeficiency virus infection of macrophages, CAEV infection had no effect on the level of constitutive nuclear factor-kappaB (NF-kappaB) activity or on the level of LPS-stimulated NF-kappaB activity, suggesting that NF-kappaB is not involved in altered regulation of cytokine expression in CAEV-infected cells. In contrast, activator protein 1 (AP-1) binding activity was decreased in infected macrophages. These data show that CAEV infection may result in a dysregulation of

  12. What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles?

    PubMed

    Tuan, Rocky S; Lee, Francis Young-In; T Konttinen, Yrjö; Wilkinson, J Mark; Smith, Robert Lane

    2008-01-01

    New clinical and basic science data on the cellular and molecular mechanisms by which wear particles stimulate the host inflammatory response have provided deeper insight into the pathophysiology of periprosthetic bone loss. Interactions among wear particles, macrophages, osteoblasts, bone marrow-derived mesenchymal stem cells, fibroblasts, endothelial cells, and T cells contribute to the production of pro-inflammatory and pro-osteoclastogenic cytokines such as TNF-alpha, RANKL, M-SCF, PGE2, IL-1, IL-6, and IL-8. These cytokines not only promote osteoclastogenesis but interfere with osteogenesis led by osteoprogenitor cells. Recent studies indicate that genetic variations in TNF-alpha, IL-1, and FRZB can result in subtle changes in gene function, giving rise to altered susceptibility or severity for periprosthetic inflammation and bone loss. Continuing research on the biologic effects and mechanisms of action of wear particles will provide a rational basis for the development of novel and effective ways of diagnosis, prevention, and treatment of periprosthetic inflammatory bone loss.

  13. Host identity matters in the amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of variation in responses to a multi-host pathogen

    Treesearch

    Stephanie Gervasi; Carmen Gondhalekar; Deanna H. Olson; Andrew R. Blaustein

    2013-01-01

    Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal...

  14. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.

    PubMed

    Hu, Jinming; Liu, Shiyong

    2014-07-15

    CONSPECTUS: All living organisms and soft matter are intrinsically responsive and adaptive to external stimuli. Inspired by this fact, tremendous effort aiming to emulate subtle responsive features exhibited by nature has spurred the invention of a diverse range of responsive polymeric materials. Conventional stimuli-responsive polymers are constructed via covalent bonds and can undergo reversible or irreversible changes in chemical structures, physicochemical properties, or both in response to a variety of external stimuli. They have been imparted with a variety of emerging applications including drug and gene delivery, optical sensing and imaging, diagnostics and therapies, smart coatings and textiles, and tissue engineering. On the other hand, in comparison with molecular chemistry held by covalent bonds, supramolecular chemistry built on weak and reversible noncovalent interactions has emerged as a powerful and versatile strategy for materials fabrication due to its facile accessibility, extraordinary reversibility and adaptivity, and potent applications in diverse fields. Typically involving more than one type of noncovalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic association, electrostatic interactions, van der Waals forces, and π-π stacking), host-guest recognition refers to the formation of supramolecular inclusion complexes between two or more entities connected together in a highly controlled and cooperative manner. The inherently reversible and adaptive nature of host-guest molecular recognition chemistry, stemming from multiple noncovalent interactions, has opened up a new platform to construct novel types of stimuli-responsive materials. The introduction of host-guest chemistry not only enriches the realm of responsive materials but also confers them with promising new applications. Most intriguingly, the integration of responsive polymer building blocks with host-guest recognition motifs will endow the former with

  15. Cytokines Elevated in HIV Elite Controllers Reduce HIV Replication In Vitro and Modulate HIV Restriction Factor Expression

    PubMed Central

    Jacobs, Evan S.; Abdel-Mohsen, Mohamed; Gibb, Stuart L.; Heitman, John W.; Inglis, Heather C.; Martin, Jeffrey N.; Zhang, Jinbing; Kaidarova, Zhanna; Deng, Xutao; Wu, Shiquan; Anastos, Kathryn; Crystal, Howard; Villacres, Maria C.; Young, Mary; Greenblatt, Ruth M.; Landay, Alan L.; Gange, Stephen J.; Deeks, Steven G.; Golub, Elizabeth T.; Pillai, Satish K.

    2017-01-01

    ABSTRACT A subset of HIV-infected individuals termed elite controllers (ECs) maintain CD4+ T cell counts and control viral replication in the absence of antiretroviral therapy (ART). Systemic cytokine responses may differentiate ECs from subjects with uncontrolled viral replication or from those who require ART to suppress viral replication. We measured 87 cytokines in four groups of women: 73 ECs, 42 with pharmacologically suppressed viremia (ART), 42 with uncontrolled viral replication (noncontrollers [NCs]), and 48 HIV-uninfected (NEG) subjects. Four cytokines were elevated in ECs but not NCs or ART subjects: CCL14, CCL21, CCL27, and XCL1. In addition, median stromal cell-derived factor-1 (SDF-1) levels were 43% higher in ECs than in NCs. The combination of the five cytokines suppressed R5 and X4 virus replication in resting CD4+ T cells, and individually SDF-1β, CCL14, and CCL27 suppressed R5 virus replication, while SDF-1β, CCL21, and CCL14 suppressed X4 virus replication. Functional studies revealed that the combination of the five cytokines upregulated CD69 and CCR5 and downregulated CXCR4 and CCR7 on CD4+ T cells. The CD69 and CXCR4 effects were driven by SDF-1, while CCL21 downregulated CCR7. The combination of the EC-associated cytokines induced expression of the anti-HIV host restriction factors IFITM1 and IFITM2 and suppressed expression of RNase L and SAMHD1. These results identify a set of cytokines that are elevated in ECs and define their effects on cellular activation, HIV coreceptor expression, and innate restriction factor expression. This cytokine pattern may be a signature characteristic of HIV-1 elite control, potentially important for HIV therapeutic and curative strategies. IMPORTANCE Approximately 1% of people infected with HIV control virus replication without taking antiviral medications. These subjects, termed elite controllers (ECs), are known to have stronger immune responses targeting HIV than the typical HIV-infected subject, but

  16. Cytokines Elevated in HIV Elite Controllers Reduce HIV Replication In Vitro and Modulate HIV Restriction Factor Expression.

    PubMed

    Jacobs, Evan S; Keating, Sheila M; Abdel-Mohsen, Mohamed; Gibb, Stuart L; Heitman, John W; Inglis, Heather C; Martin, Jeffrey N; Zhang, Jinbing; Kaidarova, Zhanna; Deng, Xutao; Wu, Shiquan; Anastos, Kathryn; Crystal, Howard; Villacres, Maria C; Young, Mary; Greenblatt, Ruth M; Landay, Alan L; Gange, Stephen J; Deeks, Steven G; Golub, Elizabeth T; Pillai, Satish K; Norris, Philip J

    2017-03-15

    A subset of HIV-infected individuals termed elite controllers (ECs) maintain CD4 + T cell counts and control viral replication in the absence of antiretroviral therapy (ART). Systemic cytokine responses may differentiate ECs from subjects with uncontrolled viral replication or from those who require ART to suppress viral replication. We measured 87 cytokines in four groups of women: 73 ECs, 42 with pharmacologically suppressed viremia (ART), 42 with uncontrolled viral replication (noncontrollers [NCs]), and 48 HIV-uninfected (NEG) subjects. Four cytokines were elevated in ECs but not NCs or ART subjects: CCL14, CCL21, CCL27, and XCL1. In addition, median stromal cell-derived factor-1 (SDF-1) levels were 43% higher in ECs than in NCs. The combination of the five cytokines suppressed R5 and X4 virus replication in resting CD4 + T cells, and individually SDF-1β, CCL14, and CCL27 suppressed R5 virus replication, while SDF-1β, CCL21, and CCL14 suppressed X4 virus replication. Functional studies revealed that the combination of the five cytokines upregulated CD69 and CCR5 and downregulated CXCR4 and CCR7 on CD4 + T cells. The CD69 and CXCR4 effects were driven by SDF-1, while CCL21 downregulated CCR7. The combination of the EC-associated cytokines induced expression of the anti-HIV host restriction factors IFITM1 and IFITM2 and suppressed expression of RNase L and SAMHD1. These results identify a set of cytokines that are elevated in ECs and define their effects on cellular activation, HIV coreceptor expression, and innate restriction factor expression. This cytokine pattern may be a signature characteristic of HIV-1 elite control, potentially important for HIV therapeutic and curative strategies. IMPORTANCE Approximately 1% of people infected with HIV control virus replication without taking antiviral medications. These subjects, termed elite controllers (ECs), are known to have stronger immune responses targeting HIV than the typical HIV-infected subject, but the

  17. Robust Cytokine and Chemokine Response in Nasopharyngeal Secretions: Association With Decreased Severity in Children With Physician Diagnosed Bronchiolitis

    PubMed Central

    Nicholson, Erin G.; Schlegel, Chelsea; Garofalo, Roberto P.; Mehta, Reena; Scheffler, Margaret; Mei, Minghua; Piedra, Pedro A.

    2016-01-01

    Background. Bronchiolitis causes substantial disease in young children. Previous findings had indicated that a robust innate immune response was not associated with a poor clinical outcome in bronchiolitis. This study tested the hypothesis that increased concentrations of cytokines and chemokines in nasal wash specimens were associated with decreased severity in bronchiolitis. Methods. Children <24 months old who presented to the emergency department with signs and symptoms of bronchiolitis were eligible for enrollment. Nasal wash specimens were analyzed for viral pathogens and cytokine/chemokine concentrations. These results were evaluated with regard to disposition. Results. One hundred eleven children with bronchiolitis were enrolled. A viral pathogen was identified in 91.9% of patients (respiratory syncytial virus in 51.4%, human rhinovirus in 11.7%). Higher levels of cytokines and chemokines (interferon [IFN] γ; interleukin [IL] 4, 15, and 17; CXCL10; and eotaxin) were significantly associated with a decreased risk of hospitalization. IL-17, IL-4, IFN-γ, and IFN-γ–inducible protein 10 (CXCL10 or IP-10) remained statistically significant in the multivariate analyses. Conclusions. The cytokines and chemokines significantly associated with decreased bronchiolitis severity are classified in a wide range of functional groups (T-helper 1 and 2, regulatory, and chemoattractant). The involvement of these functional groups suggest that a broadly overlapping cytokine/chemokine response is required for control of virus-mediated respiratory disease in young children. PMID:27190183

  18. Colostrum proinflammatory cytokines as biomarkers of bovine immune response to bovine tuberculosis (bTB).

    PubMed

    Sánchez-Soto, Eduardo; Ponce-Ramos, Rosa; Hernández-Gutiérrez, Rodolfo; Gutiérrez-Ortega, Abel; Álvarez, Angel H; Martínez-Velázquez, Moisés; Absalón, Angel E; Ortiz-Lazareno, Pablo; Limón-Flores, Alberto; Estrada-Chávez, Ciro; Herrera-Rodríguez, Sara E

    2017-02-01

    Bovine colostrum contains compounds, which provide passive immune protection from mother to newborn calves. Little is known about cytokine levels and their role in bovine colostrum. Moreover, the capacity of bovine colostrum cells to mount specific immune responses after natural exposure to bovine tuberculosis (bTB) antigens in dairy herds has not been studied, thus far. The purpose of this study was to identify biomarkers for bTB infection measurable in bovine colostrum. The present study reveals that isolated-immune colostrum cells can mount a specific immune response against bTB antigens, by measuring the novo IFN-γ release in cell culture. We found that IFN-γ levels in the responders (Bov + ) to bTB antigen were higher than in non-responders (Bov - ). On the other hand, proinflammatory cytokines contained in colostrum's whey were tested in Tuberculin Skin Test (TST) reactor (TST + ) and non-reactor (TST - ) animals to assess their potential role as biomarker. We observed that IFN-γ levels were lower or undetectable, as opposed to IL4 levels were measurable, the TNF-α level was higher in TST - than TST + , while IL-6 levels showed the opposite reaction and with no statistical significance. Moreover, IL-1α mRNA expression levels were higher in colostrum mononuclear cells (CMC) in Bov + cattle. Collectively, these data suggest that the differential expression of pro and anti-inflammatory cytokines could have relevant value to diagnose bTB in cattle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Detecting specific infections in children through host responses: a paradigm shift.

    PubMed

    Mejias, Asuncion; Suarez, Nicolas M; Ramilo, Octavio

    2014-06-01

    There is a need for improved diagnosis and for optimal classification of patients with infectious diseases. An alternative approach to the pathogen-detection strategy is based on a comprehensive analysis of the host response to the infection. This review focuses on the value of transcriptome analyses of blood leukocytes for the diagnosis and management of patients with infectious diseases. Initial studies showed that RNA from blood leukocytes of children with acute viral and bacterial infections carried pathogen-specific transcriptional signatures. Subsequently, transcriptional signatures for several other infections have been described and validated in humans with malaria, dengue, salmonella, melioidosis, respiratory syncytial virus, influenza, tuberculosis, and HIV. In addition, transcriptome analyses represent an invaluable tool to understand disease pathogenesis and to objectively classify patients according to the clinical severity. Microarray studies have been shown to be highly reproducible using different platforms, and in different patient populations, confirming the value of blood transcriptome analyses to study pathogen-specific host immune responses in the clinical setting. Combining the detection of the pathogen with a comprehensive assessment of the host immune response will provide a new understanding of the correlations between specific causative agents, the host response, and the clinical manifestations of the disease.

  20. Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety.

    PubMed

    Young, Patricia A; Morrison, Sherie L; Timmerman, John M

    2014-10-01

    The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    PubMed Central

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  2. Host protective roles of type 2 immunity: Parasite killing and tissue repair, flip sides of the same coin

    PubMed Central

    Allen, Judith E.; Sutherland, Tara E.

    2014-01-01

    Metazoan parasites typically induce a type 2 immune response, characterized by T helper 2 (Th2) cells that produce the cytokines IL-4, IL-5 and IL-13 among others. The type 2 response is host protective, reducing the number of parasites either through direct killing in the tissues, or expulsion from the intestine. Type 2 immunity also protects the host against damage mediated by these large extracellular parasites as they migrate through the body. At the center of both the innate and adaptive type 2 immune response, is the IL-4Rα that mediates many of the key effector functions. Here we highlight the striking overlap between the molecules, cells and pathways that mediate both parasite control and tissue repair. We have proposed that adaptive Th2 immunity evolved out of our innate repair pathways to mediate both accelerated repair and parasite control in the face of continual assault from multicellular pathogens. Type 2 cytokines are involved in many aspects of mammalian physiology independent of helminth infection. Therefore understanding the evolutionary relationship between helminth killing and tissue repair should provide new insight into immune mechanisms of tissue protection in the face of physical injury. PMID:25028340

  3. Inhibition of inflammatory cytokine-induced response in human islet cells by withaferin A.

    PubMed

    Peng, H; Olsen, G; Tamura, Y; Noguchi, H; Matsumoto, S; Levy, M F; Naziruddin, B

    2010-01-01

    After islet cell transplantation, a substantial mass of islets are lost owing to nonspecific inflammatory reactions. Cytokine exposure before or after transplantation can upregulate expression of proinflammatory genes via the nuclear factor-kappaB signaling pathway, eventually resulting in islet loss. To test the effects of a naturally occurring nuclear factor-kappaB inhibitor, withaferin A, on regulation of inflammatory genes in human islets. Human pancreatic islets were isolated using a modified Ricordi protocol. Purified islets were cultured for 2 days. The effect of withaferin A treatment on islet cell viability was examined using the fluorescein diacetate-propidium iodide dye exclusion test, and on function using a static glucose stimulation assay. Islet cells were treated with a cytokine mixture (50 U/mL of interleukin-1beta, 1000 U/mL of tumor necrosis factor-alpha, and 1000 U/mL of interferon-gamma) for 48 hours with or without withaferin A, 1 microg/mL. Treated islets were used for real-time polymerase chain reaction (PCR) array analysis for expression of inflammatory genes, and expression of other selected genes was analyzed using real-time PCR with single primers. Glucose stimulation and viability assays demonstrated that withaferin A was not toxic to islet cells. Of 84 inflammation-related genes examined using real-time PCR array analysis, 9 were significantly upregulated by cytokine treatment compared with the control group. However, addition of withaferin A to the culture significantly inhibited expression of all genes. Withaferin A significantly inhibits the inflammatory response of islet cells with cytokine exposure. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Common gamma chain cytokines: dissidence in the details.

    PubMed

    Alves, Nuno L; Arosa, Fernando A; van Lier, René A W

    2007-02-15

    Cytokines of the common cytokine-receptor gamma-chain (gamma(c)) family are essential for the development and maintenance of lymphocytes. Herein, we will focus on the roles of interleukin-2 (IL-2), IL-7, IL-15 and IL-21, in the orchestration of CD8 T cell responses. Among these cytokines, IL-7 has emerged as a master regulator of survival of immature and mature T lymphocytes, while IL-2, IL-15 and IL-21 appear to have specific functions in T cell homeostasis and differentiation. Hence, the gamma(c) has evolved as an elegant anchor through which related cytokines regulate distinct biological responses in T cells.

  5. Cytokine profile after oral food challenge in infants with food protein-induced enterocolitis syndrome.

    PubMed

    Kimura, Mitsuaki; Ito, Yasunori; Shimomura, Masaki; Morishita, Hideaki; Meguro, Takaaki; Adachi, Yuichi; Seto, Shiro

    2017-07-01

    Although food protein-induced enterocolitis syndrome (FPIES) is supposed to be caused by inflammation, the role of cytokines has not yet been clarified. To elucidate the role of cytokines in the development of symptoms and abnormal laboratory findings at an oral food challenge (OFC), changes in serum cytokine levels were analyzed for 6 OFCs in 4 patients with FPIES. The result of OFC was judged positive if any gastrointestinal (GI) symptoms (vomiting, diarrhea, or bloody stool) were induced. Among 11 cytokines profiled, serum levels of interleukin (IL)-2, IL-5, and IL-8 were clearly increased in all 4 positive OFCs in which elevations of the serum level of C-reactive protein (CRP) and peripheral blood neutrophilia were also seen. The level of serum IL-10 also rose in 2 positive OFCs. Remarkable increases in the serum level of interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), IL-6, and IL-12 were observed in a positive OFC where the serum level of CRP rose markedly (6.75 mg/dL). The serum levels of IL-5 were also elevated in 2 negative OFCs. No apparent specific correlations were found between cytokines and GI symptoms. These results suggest that IL-2 and IL-8 are involved in the antigen-specific immune responses in most patients with FPIES. Further studies are needed to elucidate the significance of these cytokine in the pathogenesis of FPIES. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  6. Dose- and time-dependence of the host-mediated response to paclitaxel therapy: a mathematical modeling approach.

    PubMed

    Benguigui, Madeleine; Alishekevitz, Dror; Timaner, Michael; Shechter, Dvir; Raviv, Ziv; Benzekry, Sebastien; Shaked, Yuval

    2018-01-05

    It has recently been suggested that pro-tumorigenic host-mediated processes induced in response to chemotherapy counteract the anti-tumor activity of therapy, and thereby decrease net therapeutic outcome. Here we use experimental data to formulate a mathematical model describing the host response to different doses of paclitaxel (PTX) chemotherapy as well as the duration of the response. Three previously described host-mediated effects are used as readouts for the host response to therapy. These include the levels of circulating endothelial progenitor cells in peripheral blood and the effect of plasma derived from PTX-treated mice on migratory and invasive properties of tumor cells in vitro . A first set of mathematical models, based on basic principles of pharmacokinetics/pharmacodynamics, did not appropriately describe the dose-dependence and duration of the host response regarding the effects on invasion. We therefore provide an alternative mathematical model with a dose-dependent threshold, instead of a concentration-dependent one, that describes better the data. This model is integrated into a global model defining all three host-mediated effects. It not only precisely describes the data, but also correctly predicts host-mediated effects at different doses as well as the duration of the host response. This mathematical model may serve as a tool to predict the host response to chemotherapy in cancer patients, and therefore may be used to design chemotherapy regimens with improved therapeutic outcome by minimizing host mediated effects.

  7. Role of T Cell TGF-β Signaling in Intestinal Cytokine Responses and Helminthic Immune Modulation

    PubMed Central

    Ince, M. Nedim; Elliott, David E.; Setiawan, Tommy; Metwali, Ahmed; Blum, Arthur; Chen, Hung-lin; Urban, Joseph F.; Flavell, Richard A.; Weinstock, Joel V.

    2010-01-01

    Colonization with helminthic parasites induces mucosal regulatory cytokines, like IL-10 or TGF-β that are important in suppressing colitis. Helminths induce mucosal T cell IL-10 secretion and regulate lamina propria mononuclear cell Th1 cytokine generation in an IL-10 dependent manner in wild-type mice. Helminths also stimulate mucosal TGF-β release. As TGF-β exerts major regulatory effects on T lymphocytes, we investigated the role of T lymphocyte TGF-β signaling in helminthic modulation of intestinal immunity. T cell TGF-β signaling is interrupted in TGF-βRII DN mice by T cell-specific over-expression of a dominant negative TGF-β receptor II. We studied lamina propria mononuclear cell responses in wild-type and TGF-βRII DN mice that were uninfected or colonized with the nematode, Heligmosomoides polygyrus. Our results indicate an essential role of T cell TGF-β signaling in limiting mucosal Th1 and Th2 responses. Furthermore, we demonstrate that helminthic induction of intestinal T cell IL-10 secretion requires intact T cell TGF-β signaling pathway. Helminths fail to curtail robust, dysregulated intestinal Th1 cytokine production and chronic colitis in TGF-βRII DN mice. Thus, T cell TGF-β signaling is essential for helminthic stimulation of mucosal IL-10 production, helminthic modulation of intestinal interferon-γ generation and H. polygyrus-mediated suppression of chronic colitis. PMID:19544487

  8. Uninephrectomy in Rats on a Fixed Food Intake Potentiates Both Anorexia and Circulating Cytokine Subsets in Response to LPS.

    PubMed

    Arsenijevic, Denis; Montani, Jean-Pierre

    2015-01-01

    Recent human studies have suggested that mild reduction in kidney function can alter immune response and increase susceptibility to infection. The role of mild reduction in kidney function in altering susceptibility to bacterial lipopolysaccharide (LPS) responses was investigated in uninephrectomized rats compared to Sham-operated controls rats 4 weeks after surgery. Throughout the 4 weeks, all rats were maintained under mild food restriction at 90% of ad libitum intake to ensure the same caloric intake in both groups. In comparison to Sham, uninephrectomy (UniNX) potentiated LPS-induced anorexia by 2.1-fold. The circulating anorexigenic cytokines granulocyte-macrophage colony stimulating factor, interferon-γ, tumor necrosis factor-α, and complement-derived acylation-stimulating protein were elevated after LPS in UniNX animals compared to Sham animals. Interleukin(IL)1β and IL6 pro-inflammatory cytokines were transiently increased. Anti-inflammatory cytokines IL4 and IL10 did not differ or had a tendency to be lower in UniNX group compared to Sham animals. LPS-induced anorexia was associated with increased anorexigenic neuropeptides mRNA for pro-opiomelanocortin, corticotrophin-releasing factor, and cocaine-amphetamine-regulated transcript in the hypothalamus of both Sham and UniNX groups, but at higher levels in the UniNX group. Melanocortin-4-receptor mRNA was markedly increased in the UniNX group, which may have contributed to the enhanced anorexic response to LPS of the UniNX group. In summary, UniNX potentiates pro-inflammatory cytokine production, anorexia, and selected hypothalamic anorexigenic neuropeptides in response to LPS.

  9. Regulation of the Host Antiviral State by Intercellular Communications

    PubMed Central

    Assil, Sonia; Webster, Brian; Dreux, Marlène

    2015-01-01

    Viruses usually induce a profound remodeling of host cells, including the usurpation of host machinery to support their replication and production of virions to invade new cells. Nonetheless, recognition of viruses by the host often triggers innate immune signaling, preventing viral spread and modulating the function of immune cells. It conventionally occurs through production of antiviral factors and cytokines by infected cells. Virtually all viruses have evolved mechanisms to blunt such responses. Importantly, it is becoming increasingly recognized that infected cells also transmit signals to regulate innate immunity in uninfected neighboring cells. These alternative pathways are notably mediated by vesicular secretion of various virus- and host-derived products (miRNAs, RNAs, and proteins) and non-infectious viral particles. In this review, we focus on these newly-described modes of cell-to-cell communications and their impact on neighboring cell functions. The reception of these signals can have anti- and pro-viral impacts, as well as more complex effects in the host such as oncogenesis and inflammation. Therefore, these “broadcasting” functions, which might be tuned by an arms race involving selective evolution driven by either the host or the virus, constitute novel and original regulations of viral infection, either highly localized or systemic. PMID:26295405

  10. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia

    PubMed Central

    Periasamy, Sivakumar; Avram, Dorina; McCabe, Amanda; MacNamara, Katherine C.; Sellati, Timothy J.; Harton, Jonathan A.

    2016-01-01

    Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection. PMID:27015566

  11. Crimean-Congo Hemorrhagic Fever: Tick-Host-Virus Interactions

    PubMed Central

    Papa, Anna; Tsergouli, Katerina; Tsioka, Katerina; Mirazimi, Ali

    2017-01-01

    Crimean-Congo hemorrhagic fever virus (CCHFV) is transmitted to humans by bite of infected ticks or by direct contact with blood or tissues of viremic patients or animals. It causes to humans a severe disease with fatality up to 30%. The current knowledge about the vector-host-CCHFV interactions is very limited due to the high-level containment required for CCHFV studies. Among ticks, Hyalomma spp. are considered the most competent virus vectors. CCHFV evades the tick immune response, and following its replication in the lining of the tick's midgut, it is disseminated by the hemolymph in the salivary glands and reproductive organs. The introduction of salivary gland secretions into the host cells is the major route via which CCHFV enters the host. Following an initial amplification at the site of inoculation, the virus is spread to the target organs. Apoptosis is induced via both intrinsic and extrinsic pathways. Genetic factors and immune status of the host may affect the release of cytokines which play a major role in disease progression and outcome. It is expected that the use of new technology of metabolomics, transcriptomics and proteomics will lead to improved understanding of CCHFV-host interactions and identify potential targets for blocking the CCHFV transmission. PMID:28603698

  12. IL-21 Is an Antitolerogenic Cytokine of the Late-Phase Alloimmune Response

    PubMed Central

    Petrelli, Alessandra; Carvello, Michele; Vergani, Andrea; Lee, Kang Mi; Tezza, Sara; Du, Ming; Kleffel, Sonja; Chengwen, Liu; Mfarrej, Bechara G.; Hwu, Patrick; Secchi, Antonio; Leonard, Warren J.; Young, Deborah; Sayegh, Mohamed H.; Markmann, James F.; Zajac, Allan J.; Fiorina, Paolo

    2011-01-01

    OBJECTIVE Interleukin-21 (IL-21) is a proinflammatory cytokine that has been shown to affect Treg/Teff balance. However, the mechanism by which IL-21 orchestrates alloimmune response and interplays with Tregs is still unclear. RESEARCH DESIGN AND METHODS The interplay between IL-21/IL-21R signaling, FoxP3 expression, and Treg survival and function was evaluated in vitro in immunologically relevant assays and in vivo in allogenic and autoimmune models of islet transplantation. RESULTS IL-21R expression decreases on T cells and B cells in vitro and increases in the graft in vivo, while IL-21 levels increase in vitro and in vivo during anti-CD3/anti-CD28 stimulation/allostimulation in the late phase of the alloimmune response. In vitro, IL-21/IL-21R signaling (by using rmIL-21 or genetically modified CD4+ T cells [IL-21 pOrf plasmid–treated or hIL-21-Tg mice]) enhances the T-cell response during anti-CD3/anti-CD28 stimulation/allostimulation, prevents Treg generation, inhibits Treg function, induces Treg apoptosis, and reduces FoxP3 and FoxP3-dependent gene transcripts without affecting FoxP3 methylation status. In vivo targeting of IL-21/IL-21R expands intragraft and peripheral Tregs, promotes Treg neogenesis, and regulates the antidonor immune response, whereas IL-21/IL-21R signaling in Doxa-inducible ROSA-rtTA-IL-21-Tg mice expands Teffs and FoxP3− cells. Treatment with a combination of mIL-21R.Fc and CTLA4-Ig (an inhibitor of the early alloimmune response) leads to robust graft tolerance in a purely alloimmune setting and prolonged islet graft survival in NOD mice. CONCLUSIONS IL-21 interferes with different checkpoints of the FoxP3 Treg chain in the late phase of alloimmune response and, thus, acts as an antitolerogenic cytokine. Blockade of the IL-21/IL-21R pathway could be a precondition for tolerogenic protocols in transplantation. PMID:22013017

  13. Differential Responsiveness of Innate-like IL-17- and IFN-γ-Producing γδ T Cells to Homeostatic Cytokines.

    PubMed

    Corpuz, Theresa M; Stolp, Jessica; Kim, Hee-Ok; Pinget, Gabriela V; Gray, Daniel H D; Cho, Jae-Ho; Sprent, Jonathan; Webster, Kylie E

    2016-01-15

    γδ T cells respond to molecules upregulated following infection or cellular stress using both TCR and non-TCR molecules. The importance of innate signals versus TCR ligation varies greatly. Both innate-like IL-17-producing γδ T (γδT-17) and IFN-γ-producing γδ T (γδT-IFNγ) subsets tune the sensitivity of their TCR following thymic development, allowing robust responses to inflammatory cytokines in the periphery. The remaining conventional γδ T cells retain high TCR responsiveness. We determined homeostatic mechanisms that govern these various subsets in the peripheral lymphoid tissues. We found that, although innate-like γδT-17 and γδT-IFNγ cells share elements of thymic development, they diverge when it comes to homeostasis. Both exhibit acute sensitivity to cytokines compared with conventional γδ T cells, but they do not monopolize the same cytokine. γδT-17 cells rely exclusively on IL-7 for turnover and survival, aligning them with NKT17 cells; IL-7 ligation triggers proliferation, as well as promotes survival, upregulating Bcl-2 and Bcl-xL. γδT-IFNγ cells instead depend heavily on IL-15. They display traits analogous to memory CD8(+) T cells and upregulate Bcl-xL and Mcl-1 upon cytokine stimulation. The conventional γδ T cells display low sensitivity to cytokine-alone stimulation and favor IL-7 for their turnover, characteristics reminiscent of naive αβ T cells, suggesting that they may also require tonic TCR signaling for population maintenance. These survival constraints suggest that γδ T cell subsets do not directly compete with each other for cytokines, but instead fall into resource niches with other functionally similar lymphocytes. Copyright © 2016 by The American Association of Immunologists, Inc.

  14. The cytokine temporal profile in rat cortex after controlled cortical impact

    PubMed Central

    Dalgard, Clifton L.; Cole, Jeffrey T.; Kean, William S.; Lucky, Jessica J.; Sukumar, Gauthaman; McMullen, David C.; Pollard, Harvey B.; Watson, William D.

    2012-01-01

    Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury (TBI). Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact (CCI) on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12, and 24 hours) and extended (3 and 7 days) time points post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemiluminescence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFN-γ, TNF-α levels significantly peaked at four hours post-injury compared to levels found in naïve or contralateral tissue. CXCL1, IFN-γ, and TNF-α levels were then observed to decrease at least 3-fold by 12 hours post-injury. IL-1β, IL-4, and IL-13 levels were also significantly elevated at four hours post-injury although their expression did not decrease more than 3-fold for up to 24 hours post-injury. Additionally, IL-1β and IL-4 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in adaptive immune responses. Interestingly, peak levels of CCL2 and CCL20 were not observed until after four hours post-injury. CCL2 levels in injured cortical tissue were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may

  15. The cytokine temporal profile in rat cortex after controlled cortical impact.

    PubMed

    Dalgard, Clifton L; Cole, Jeffrey T; Kean, William S; Lucky, Jessica J; Sukumar, Gauthaman; McMullen, David C; Pollard, Harvey B; Watson, William D

    2012-01-01

    Cerebral inflammatory responses may initiate secondary cascades following traumatic brain injury (TBI). Changes in the expression of both cytokines and chemokines may activate, regulate, and recruit innate and adaptive immune cells associated with secondary degeneration, as well as alter a host of other cellular processes. In this study, we quantified the temporal expression of a large set of inflammatory mediators in rat cortical tissue after brain injury. Following a controlled cortical impact (CCI) on young adult male rats, cortical and hippocampal tissue of the injured hemisphere and matching contralateral material was harvested at early (4, 12, and 24 hours) and extended (3 and 7 days) time points post-procedure. Naïve rats that received only anesthesia were used as controls. Processed brain homogenates were assayed for chemokine and cytokine levels utilizing an electrochemiluminescence-based multiplex ELISA platform. The temporal profile of cortical tissue samples revealed a multi-phasic injury response following brain injury. CXCL1, IFN-γ, TNF-α levels significantly peaked at four hours post-injury compared to levels found in naïve or contralateral tissue. CXCL1, IFN-γ, and TNF-α levels were then observed to decrease at least 3-fold by 12 hours post-injury. IL-1β, IL-4, and IL-13 levels were also significantly elevated at four hours post-injury although their expression did not decrease more than 3-fold for up to 24 hours post-injury. Additionally, IL-1β and IL-4 levels displayed a biphasic temporal profile in response to injury, which may suggest their involvement in adaptive immune responses. Interestingly, peak levels of CCL2 and CCL20 were not observed until after four hours post-injury. CCL2 levels in injured cortical tissue were significantly higher than peak levels of any other inflammatory mediator measured, thus suggesting a possible use as a biomarker. Fully elucidating chemokine and cytokine signaling properties after brain injury may

  16. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens

    PubMed Central

    Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-01-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523

  17. Noninvasive optical monitoring multiple physiological parameters response to cytokine storm

    NASA Astrophysics Data System (ADS)

    Li, Zebin; Li, Ting

    2018-02-01

    Cancer and other disease originated by immune or genetic problems have become a main cause of death. Gene/cell therapy is a highlighted potential method for the treatment of these diseases. However, during the treatment, it always causes cytokine storm, which probably trigger acute respiratory distress syndrome and multiple organ failure. Here we developed a point-of-care device for noninvasive monitoring cytokine storm induced multiple physiological parameters simultaneously. Oxy-hemoglobin, deoxy-hemoglobin, water concentration and deep-tissue/tumor temperature variations were simultaneously measured by extended near infrared spectroscopy. Detection algorithms of symptoms such as shock, edema, deep-tissue fever and tissue fibrosis were developed and included. Based on these measurements, modeling of patient tolerance and cytokine storm intensity were carried out. This custom device was tested on patients experiencing cytokine storm in intensive care unit. The preliminary data indicated the potential of our device in popular and milestone gene/cell therapy, especially, chimeric antigen receptor T-cell immunotherapy (CAR-T).

  18. Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores.

    PubMed

    Wong, Sarah Sze Wah; Rani, Manjusha; Dodagatta-Marri, Eswari; Ibrahim-Granet, Oumaima; Kishore, Uday; Bayry, Jagadeesh; Latgé, Jean-Paul; Sahu, Arvind; Madan, Taruna; Aimanianda, Vishukumar

    2018-03-30

    Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SP-D has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus , but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus , galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike un-opsonized conidia, SP-D-opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocyte-derived macrophages. Furthermore, SP-D -/- mice challenged intranasally with wildtype conidia or melanin ghosts ( i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wildtype mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Cytokines and major depression.

    PubMed

    Schiepers, Olga J G; Wichers, Marieke C; Maes, Michael

    2005-02-01

    In the research field of psychoneuroimmunology, accumulating evidence has indicated the existence of reciprocal communication pathways between nervous, endocrine and immune systems. In this respect, there has been increasing interest in the putative involvement of the immune system in psychiatric disorders. In the present review, the role of proinflammatory cytokines, such as interleukin (IL)-1, tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma, in the aetiology and pathophysiology of major depression, is discussed. The 'cytokine hypothesis of depression' implies that proinflammatory cytokines, acting as neuromodulators, represent the key factor in the (central) mediation of the behavioural, neuroendocrine and neurochemical features of depressive disorders. This view is supported by various findings. Several medical illnesses, which are characterised by chronic inflammatory responses, e.g. rheumatoid arthritis, have been reported to be accompanied by depression. In addition, administration of proinflammatory cytokines, e.g. in cancer or hepatitis C therapies, has been found to induce depressive symptomatology. Administration of proinflammatory cytokines in animals induces 'sickness behaviour', which is a pattern of behavioural alterations that is very similar to the behavioural symptoms of depression in humans. The central action of cytokines may also account for the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity that is frequently observed in depressive disorders, as proinflammatory cytokines may cause HPA axis hyperactivity by disturbing the negative feedback inhibition of circulating corticosteroids (CSs) on the HPA axis. Concerning the deficiency in serotonergic (5-HT) neurotransmission that is concomitant with major depression, cytokines may reduce 5-HT levels by lowering the availability of its precursor tryptophan (TRP) through activation of the TRP-metabolising enzyme indoleamine-2,3-dioxygenase (IDO). Although the central effects of

  20. Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon

    PubMed Central

    Ma, Feng; Liu, Su-Yang; Razani, Bahram; Arora, Neda; Li, Bing; Kagechika, Hiroyuki; Tontonoz, Peter; Núñez, Vanessa; Ricote, Mercedes; Cheng, Genhong

    2015-01-01

    The retinoid X receptor α (RXRα), a key nuclear receptor in metabolic processes, is down-regulated during host antiviral response. However, the roles of RXRα in host antiviral response are unknown. Here we show that RXRα overexpression or ligand activation increases host susceptibility to viral infections in vitro and in vivo, while Rxra −/− or antagonist treatment reduces infection by the same viruses. Consistent with these functional studies, ligand activation of RXR inhibits the expression of antiviral genes including type I interferon (IFN) and Rxra −/− macrophages produce more IFNβ than WT macrophages in response to polyI:C stimulation. Further results indicate that ligand activation of RXR suppresses the nuclear translocation of β-catenin, a co-activator of IFNβ enhanceosome. Thus, our studies have uncovered a novel RXR-dependent innate immune regulatory pathway, suggesting that the downregulation of RXR expression or RXR antagonist treatment benefits host antiviral response, whereas RXR agonist treatment may increase the risk of viral infections. PMID:25417649

  1. The cytokine storm of severe influenza and development of immunomodulatory therapy.

    PubMed

    Liu, Qiang; Zhou, Yuan-hong; Yang, Zhan-qiu

    2016-01-01

    Severe influenza remains unusual in its virulence for humans. Complications or ultimately death arising from these infections are often associated with hyperinduction of proinflammatory cytokine production, which is also known as 'cytokine storm'. For this disease, it has been proposed that immunomodulatory therapy may improve the outcome, with or without the combination of antiviral agents. Here, we review the current literature on how various effectors of the immune system initiate the cytokine storm and exacerbate pathological damage in hosts. We also review some of the current immunomodulatory strategies for the treatment of cytokine storms in severe influenza, including corticosteroids, peroxisome proliferator-activated receptor agonists, sphingosine-1-phosphate receptor 1 agonists, cyclooxygenase-2 inhibitors, antioxidants, anti-tumour-necrosis factor therapy, intravenous immunoglobulin therapy, statins, arbidol, herbs, and other potential therapeutic strategies.

  2. Yeast Modulation of Human Dendritic Cell Cytokine Secretion: An In Vitro Study

    PubMed Central

    Smith, Ida M.; Christensen, Jeffrey E.; Arneborg, Nils; Jespersen, Lene

    2014-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The concept of individual microorganisms influencing the makeup of T cell subsets via interactions with intestinal dendritic cells (DCs) appears to constitute the foundation for immunoregulatory effects of probiotics, and several studies have reported probiotic strains resulting in reduction of intestinal inflammation through modulation of DC function. Consequent to a focus on Saccharomyces boulardii as the fundamental probiotic yeast, very little is known about hundreds of non-Saccharomyces yeasts in terms of their interaction with the human gastrointestinal immune system. The aim of the present study was to evaluate 170 yeast strains representing 75 diverse species for modulation of inflammatory cytokine secretion by human DCs in vitro, as compared to cytokine responses induced by a S. boulardii reference strain with probiotic properties documented in clinical trials. Furthermore, we investigated whether cytokine inducing interactions between yeasts and human DCs are dependent upon yeast viability or rather a product of membrane interactions regardless of yeast metabolic function. We demonstrate high diversity in yeast induced cytokine profiles and employ multivariate data analysis to reveal distinct clustering of yeasts inducing similar cytokine profiles in DCs, highlighting clear species distinction within specific yeast genera. The observed differences in induced DC cytokine profiles add to the currently very limited knowledge of the cross-talk between yeasts and human immune cells and provide a foundation for selecting yeast strains for further characterization and development toward potentially novel yeast probiotics. Additionally, we present data to support a hypothesis that the interaction between yeasts and human DCs does not solely depend on yeast viability, a concept which may suggest a need for further classifications beyond the current

  3. Robust Cytokine and Chemokine Response in Nasopharyngeal Secretions: Association With Decreased Severity in Children With Physician Diagnosed Bronchiolitis.

    PubMed

    Nicholson, Erin G; Schlegel, Chelsea; Garofalo, Roberto P; Mehta, Reena; Scheffler, Margaret; Mei, Minghua; Piedra, Pedro A

    2016-08-15

    Bronchiolitis causes substantial disease in young children. Previous findings had indicated that a robust innate immune response was not associated with a poor clinical outcome in bronchiolitis. This study tested the hypothesis that increased concentrations of cytokines and chemokines in nasal wash specimens were associated with decreased severity in bronchiolitis. Children <24 months old who presented to the emergency department with signs and symptoms of bronchiolitis were eligible for enrollment. Nasal wash specimens were analyzed for viral pathogens and cytokine/chemokine concentrations. These results were evaluated with regard to disposition. One hundred eleven children with bronchiolitis were enrolled. A viral pathogen was identified in 91.9% of patients (respiratory syncytial virus in 51.4%, human rhinovirus in 11.7%). Higher levels of cytokines and chemokines (interferon [IFN] γ; interleukin [IL] 4, 15, and 17; CXCL10; and eotaxin) were significantly associated with a decreased risk of hospitalization. IL-17, IL-4, IFN-γ, and IFN-γ-inducible protein 10 (CXCL10 or IP-10) remained statistically significant in the multivariate analyses. The cytokines and chemokines significantly associated with decreased bronchiolitis severity are classified in a wide range of functional groups (T-helper 1 and 2, regulatory, and chemoattractant). The involvement of these functional groups suggest that a broadly overlapping cytokine/chemokine response is required for control of virus-mediated respiratory disease in young children. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  4. Interactions between cytokines and nitric oxide.

    PubMed

    Liew, F Y

    1995-01-01

    There is now an impressive range of evidence supporting the important role of cytokines in sleep regulation (see Krueger et al., 1995; De Simoni et al., 1995). It has also been reported that inhibition of nitric oxide (NO) synthesis suppresses sleep in rabbits (Kapás et al., 1994). This is not surprising, since NO is closely involved in neurotransmission (Garthwaite, 1991; Schuman and Madison, 1994) and cytokines are the major inducers of NO synthesis (Hibbs et al., 1990). Further, it is now clear that NO plays an important role in modulating immune responses, possibly through the differential regulation of cytokine synthesis (Taylor-Robinson et al., 1994). In this article, I will provide evidence for the interactions between cytokines and nitric oxide, and discuss their implications in the regulation of immune responses. I shall illustrate these mainly with results from my coworkers and I, from our laboratory rather than attempting an exhaustive review of the subject.

  5. Myxovirus resistance, osteopontin and suppressor of cytokine signaling 3 polymorphisms predict hepatitis C virus therapy response in an admixed patient population: comparison with IL28B.

    PubMed

    Angelo, Ana Luiza Dias; Cavalcante, Lourianne Nascimento; Abe-Sandes, Kiyoko; Machado, Taísa Bonfim; Lemaire, Denise Carneiro; Malta, Fernanda; Pinho, João Renato; Lyra, Luiz Guilherme Costa; Lyra, Andre Castro

    2013-10-01

    Suppressor of cytokine signaling 3, myxovirus resistance protein and osteopontin gene polymorphisms may influence the therapeutic response in patients with chronic hepatitis C, and an association with IL28 might increase the power to predict sustained virologic response. Our aims were to evaluate the association between myxovirus resistance protein, osteopontin and suppressor of cytokine signaling 3 gene polymorphisms in combination with IL28B and to assess the therapy response in hepatitis C patients treated with pegylated-interferon plus ribavirin. Myxovirus resistance protein, osteopontin, suppressor of cytokine signaling 3 and IL28B polymorphisms were analyzed by PCR-restriction fragment length polymorphism, direct sequencing and real-time PCR. Ancestry was determined using genetic markers. We analyzed 181 individuals, including 52 who were sustained virologic responders. The protective genotype frequencies among the sustained virologic response group were as follows: the G/G suppressor of cytokine signaling 3 (rs4969170) (62.2%); T/T osteopontin (rs2853744) (60%); T/T osteopontin (rs11730582) (64.3%); and the G/T myxovirus resistance protein (rs2071430) genotype (54%). The patients who had ≥3 of the protective genotypes from the myxovirus resistance protein, the suppressor of cytokine signaling 3 and osteopontin had a greater than 90% probability of achieving a sustained response (p<0.0001). The C/C IL28B genotype was present in 58.8% of the subjects in this group. The sustained virological response rates increased to 85.7% and 91.7% by analyzing C/C IL28B with the T/T osteopontin genotype at rs11730582 and the G/G suppressor of cytokine signaling 3 genotype, respectively. Genetic ancestry analysis revealed an admixed population. Hepatitis C genotype 1 patients who were responders to interferon-based therapy had a high frequency of multiple protective polymorphisms in the myxovirus resistance protein, osteopontin and suppressor of cytokine signaling 3 genes

  6. Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity

    NASA Astrophysics Data System (ADS)

    Meng, Jie; Yang, Man; Jia, Fumin; Kong, Hua; Zhang, Weiqi; Wang, Chaoying; Xing, Jianmin; Xie, Sishen; Xu, Haiyan

    2010-04-01

    The immunological responses induced by oxidized water-soluble multi-walled carbon nanotubes on a hepatocarcinoma tumor-bearing mice model via a local administration of subcutaneous injection were investigated. Experimental results show that the subcutaneously injected carbon nanotubes induced significant activation of the complement system, promoted inflammatory cytokines' production and stimulated macrophages' phagocytosis and activation. All of these responses increased the general activity of the host immune system and inhibited the progression of tumor growth.

  7. Leukocyte populations and cytokine expression in the mammary gland in a mouse model of Streptococcus agalactiae mastitis.

    PubMed

    Trigo, Gabriela; Dinis, Márcia; França, Angela; Bonifácio Andrade, Elva; Gil da Costa, Rui M; Ferreira, Paula; Tavares, Delfina

    2009-07-01

    Streptococcus agalactiae is a contagious, mastitis-causing pathogen that is highly adapted to survive in the bovine mammary gland. This study used a BALB/c mouse model of Streptococcus agalactiae mastitis to evaluate leukocyte populations in regional lymph nodes and cytokine expression in the mammary gland involved in the immune response against Streptococcus agalactiae. It was found that the bacteria replicated efficiently in the mammary gland, peaking after 24 h and increasing by 100-fold. Dissemination of bacteria to systemic organs was observed 6 h after infection. At the same time, a massive infiltration of polymorphonuclear cells and an increase in the inflammatory cytokines interleukin (IL)-1beta, IL-6 and tumour necrosis factor-alpha were detected in mammary glands, indicating an early inflammatory response. A decrease in the levels of inflammatory cytokines in mammary glands was observed 72 h after infection, accompanied by an increase in the levels of IL-12 and IL-10, which were related to a gradual decrease in bacterial load. An increase in the number of macrophages and B220(+) lymphocytes and similar increases in both CD4(+) and CD8(+) T cells in regional lymph nodes were observed, being most pronounced 5 days after infection. Moreover, increased levels of anti-Streptococcus agalactiae antibodies in the mammary gland were observed 10 days after infection. Overall, these data suggest that the host exhibits both innate and acquired immune responses in response to Streptococcus agalactiae mastitis.

  8. Comparative analyses of host responses upon infection with moderately virulent classical swine fever virus in domestic pigs and wild boar.

    PubMed

    Petrov, Anja; Blohm, Ulrike; Beer, Martin; Pietschmann, Jana; Blome, Sandra

    2014-07-29

    Classical swine fever (CSF) is one of the most important viral diseases of pigs. Clinical signs may vary from almost inapparent infection to a hemorrhagic fever like illness. Among the host factors leading to different disease courses are age, breed, and immune status. The aim of this study was to compare host responses of different pig breeds upon infection with a recent moderately virulent CSF virus (CSFV) strain, and to assess their impact on the clinical outcome and the efficiency of immune responses. To this means, two domestic pig types (German Landrace and hybrids), were compared to European wild boar. Along with clinical and pathological assessments and routine virological and serological methods, kinetics of immune-cellular parameters were evaluated. All animals were susceptible to infection and despite clinical differences, virus could be detected in all infected animals to similar amounts. All but one animal developed an acute disease course, two landrace animals recovered after a transient infection. One wild boar got chronically infected. Changes in the percentages of lymphocyte subsets in peripheral blood did not show a clear correlation with the clinical outcome. High and early titers of neutralizing antibodies were especially detected in wild boar and German Landrace pigs. While differences among breeds did not have the expected impact on course and outcome of CSFV infection, preload with facultative pathogens and even small differences in age seemed to be more relevant. Future studies will target the characterization of responses observed during different disease courses including cytokine reactions and further analyses of lymphocyte subsets.

  9. Agmatine Reverses Sub-chronic Stress induced Nod-like Receptor Protein 3 (NLRP3) Activation and Cytokine Response in Rats.

    PubMed

    Sahin, Ceren; Albayrak, Ozgur; Akdeniz, Tuğba F; Akbulut, Zeynep; Yanikkaya Demirel, Gulderen; Aricioglu, Feyza

    2016-10-01

    The activation of Nod-like receptor protein 3 (NLRP3) has lately been implicated in stress and depression as an initiator mechanism required for the production of interleukin (IL)-1β and IL-18. Agmatine, an endogenous polyamine widely distributed in mammalian brain, is a novel neurotransmitter/neuromodulator, with antistress, anxiolytic and antidepressant-like effects. In this study, we examined the effect of exogenously administered agmatine on NLRP3 inflammasome pathway/cytokine responses in rats exposed to restraint stress for 7 days. The rats were divided into three groups: stress, stress+agmatine (40 mg/kg; i.p.) and control groups. Agmatine significantly down-regulated the gene expressions of all stress-induced NLRP3 inflammasome components (NLRP3, NF-κB, PYCARD, caspase-1, IL-1β and IL-18) in the hippocampus and prefrontal cortex (PFC) and reduced pro-inflammatory cytokine levels not only in both brain regions, but also in serum. Stress-reduced levels of IL-4 and IL-10, two major anti-inflammatory cytokines, were restored back to normal by agmatine treatment in the PFC. The findings of the present study suggest that stress-activated NLRP3 inflammasome and cytokine responses are reversed by an acute administration of agmatine. Whether antidepressant-like effect of agmatine can somehow, at least partially, be mediated by the inhibition of NLRP3 inflammasome cascade and relevant inflammatory responses requires further studies in animal models of depression. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  10. Anesthesiologists at work: an increase in pro-inflammatory and Th2 cytokine production, and alterations in proliferative immune responses.

    PubMed

    Beilin, B; Greenfeld, K; Abiri, N; Yardeni, I Z; Bessler, H; Ben-Eliyahu, S

    2006-11-01

    Anesthesiologists are a population at high risk of alcohol and drug abuse, depression, suicide, and psychiatric hospitalization. The impact of their working milieu on specific immune indices has scarcely been studied, and it is assumed that immune perturbations may contribute to some of the above risks. This study took advantage of an unplanned, 3-month long strike of anesthesiologists, and explored its relations to specific immune measures. We assessed induced cytokine production and lymphocytes proliferative responses in blood samples taken from 10 anesthesiologists just before the strike and at its end, after a long period of markedly reduced workload. The results indicated that the proliferative responses to phytohemagglutinin (PHA) and concanavalin A (Con A) were significantly lower at the end of the strike. At this time point, we observed a significant decrease in the production of interleukin-6 (IL-6), IL-10 and IL1ra levels, and a significant increase in IL-2 production. A strong trend towards a decline in tumor necrosis factor-alpha (TNF-alpha) levels was evident, while levels of IL-1beta were unchanged. These findings suggest that the working conditions of anesthesiologists are associated with specific immune alterations, including a shift towards a Th2 cytokines' dominance, and an elevated pro-inflammatory cytokine response. A reduced Th1 profile has been related to increased susceptibility to infections, and high pro-inflammatory cytokine levels were recently proposed as etiological factors in cardiovascular diseases and in depression.

  11. Male adolescent rats display blunted cytokine responses in the CNS after acute ethanol or lipopolysaccharide exposure

    PubMed Central

    Doremus-Fitzwater, Tamara L.; Gano, Anny; Paniccia, Jacqueline E.; Deak, Terrence

    2015-01-01

    Alcohol induces widespread changes in cytokine expression, with recent data from our laboratory having demonstrated that, during acute ethanol intoxication, adult rats exhibit consistent increases in interleukin (IL)-6 mRNA expression in several brain regions, while showing reductions in IL-1 and TNFα expression. Given evidence indicating that adolescence may be an ontogenetic period in which some neuroimmune processes and cells may not yet have fully matured, the purpose of the current experiments was to examine potential age differences in the central cytokine response of adolescent (P31–33 days of age) and adult (69–71 days of age) rats to either an acute immune (lipopolysaccharide; LPS) or non-immune challenge (ethanol). In Experiment 1, male Sprague-Dawley rats were given an intraperitoneal (i.p.) injection of either sterile saline, LPS (250 µg/kg), or ethanol (4-g/kg), and then trunk blood and brain tissue were collected 3 hr later for measurement of blood EtOH concentrations (BECs), plasma endotoxin, and central mRNA expression of several immune-related gene targets. In Experiment 2, the response to intragastrically (i.g.) administered ethanol was examined and compared to animals given tap water (i.g.). Results showed that LPS stimulated robust increases in expression of IL-1, IL-6, TNFα, and IκBα in the hippocampus, PVN, and amygdala, and that these increases were generally less pronounced in adolescents relative to adults. Following an i.p. EtOH challenge, IL-6 and IκBα expression were significantly increased in both ages in the PVN and amygdala, and adults exhibited even greater increases in IκBα than adolescents. I.g. administration of ethanol also increased IL-6 and IκBα expression in all three brain regions, with hippocampal IL-6 expression elevated even more so in adults compared to adolescents. Furthermore, assessment of plasma endotoxin concentrations revealed (i) whereas robust increases in plasma endotoxin were observed in adults

  12. Insights from human studies into the host defense against candidiasis.

    PubMed

    Filler, Scott G

    2012-04-01

    Candida spp. are the most common cause of mucosal and disseminated fungal infections in humans. Studies using mutant strains of mice have provided initial information about the roles of dectin-1, CARD9, and Th17 cytokines in the host defense against candidiasis. Recent technological advances have resulted in the identification of mutations in specific genes that predispose humans to develop candidal infection. The analysis of individuals with these mutations demonstrates that dectin-1 is critical for the host defense against vulvovaginal candidiasis and candidal colonization of the gastrointestinal tract. They also indicate that CARD9 is important for preventing both mucosal and disseminated candidiasis, whereas the Th17 response is necessary for the defense against mucocutaneous candidiasis. This article reviews the recent studies of genetic defects in humans that result in an increased susceptibility to candidiasis and discusses how these studies provide new insight into the host defense against different types of candidal infections. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Evaluation of cytokine responses against novel Mtb antigens as diagnostic markers for TB disease.

    PubMed

    Awoniyi, Dolapo O; Teuchert, Andrea; Sutherland, Jayne S; Mayanja-Kizza, Harriet; Howe, Rawleigh; Mihret, Adane; Loxton, Andre G; Sheehama, Jacob; Kassa, Desta; Crampin, Amelia C; Dockrell, Hazel M; Kidd, Martin; Rosenkrands, Ida; Geluk, Annemieke; Ottenhoff, Tom H M; Corstjens, P L A M; Chegou, Novel N; Walzl, Gerhard

    2016-09-01

    We investigated the accuracy of host markers detected in Mtb antigen-stimulated whole blood culture supernatant in the diagnosis of TB. Prospectively, blood from 322 individuals with presumed TB disease from six African sites was stimulated with four different Mtb antigens (Rv0081, Rv1284, ESAT-6/CFP-10, and Rv2034) in a 24 h whole blood stimulation assay (WBA). The concentrations of 42 host markers in the supernatants were measured using the Luminex multiplex platform. Diagnostic biosignatures were investigated through the use of multivariate analysis techniques. 17% of the participants were HIV infected, 106 had active TB disease and in 216 TB was excluded. Unstimulated concentrations of CRP, SAA, ferritin and IP-10 had better discriminating ability than markers from stimulated samples. Accuracy of marker combinations by general discriminant analysis (GDA) identified a six analyte model with 77% accuracy for TB cases and 84% for non TB cases, with a better performance in HIV uninfected patients. A biosignature of 6 cytokines obtained after stimulation with four Mtb antigens has moderate potential as a diagnostic tool for pulmonary TB disease individuals and stimulated marker expression had no added value to unstimulated marker performance. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  14. Association of brain injury and neonatal cytokine response during therapeutic hypothermia in newborns with hypoxic-ischemic encephalopathy.

    PubMed

    Orrock, Janet E; Panchapakesan, Karuna; Vezina, Gilbert; Chang, Taeun; Harris, Kari; Wang, Yunfei; Knoblach, Susan; Massaro, An N

    2016-05-01

    Cytokines have been proposed as mediators of neonatal brain injury via neuroinflammatory pathways triggered by hypoxia-ischemia. Limited data are available on cytokine profiles in larger cohorts of newborns with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH). Serum cytokines interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-13, tumor necrosis factor-α, and interferon-γ were measured in newborns with HIE at 24 and 72 h of TH. Differences between infants with favorable (survivors with mild/no magnetic resonance imaging (MRI) injury) vs. adverse outcome (death or moderate/severe MRI injury) were compared using mixed models to adjust for covariates. Data from 36 term newborns with HIE (favorable outcome: n = 20, adverse outcome: n = 16) were evaluated. Cytokines IL-1β, IL-2, IL-6, IL-8, IL-10, and IL-13 were elevated in the adverse relative to favorable outcome group at 24 h. IL-6 remained significantly elevated in the adverse outcome group at 72 h. IL-6 and IL-10 remained significantly associated with outcome group after controlling for covariates. Inflammatory cytokines are elevated in HIE newborns with brain injury by MRI. In particular, IL-6 and IL-10 were associated with adverse outcomes after controlling for baseline characteristics and severity of presentation. These data suggest that cytokine response may identify infants in need of additional neuroprotective interventions.

  15. Dectin-1 plays an important role in host defense against systemic Candida glabrata infection.

    PubMed

    Chen, Si Min; Shen, Hui; Zhang, Teng; Huang, Xin; Liu, Xiao Qi; Guo, Shi Yu; Zhao, Jing Jun; Wang, Chun Fang; Yan, Lan; Xu, Guo Tong; Jiang, Yuan Ying; An, Mao Mao

    2017-11-17

    Candida glabrata is the second most common pathogen of severe candidiasis in immunocompromised hosts, following C. albicans. Although C. glabrata and C. albicans belong to the same genus, they are phylogenetically distinct. C-type lectin receptors (CLRs), acting as pattern-recognition receptors (PRRs), play critical roles in host defense against C. albicans infections. However, our understanding of the specific roles of CLRs in host defense against C. glabrata is limited. Here, we explored the potential roles of the C-type lectins Dectin-1 and Dectin-2 in host defense against C. glabrata. We found that both Dectin-1-deficient mice (Dectin-1 -/- ) and Dectin-2-deficient mice (Dectin-2 -/- ) are more susceptible to C. glabrata infection. Dectin-1confers host higher sensitivity for sensing C. glabrata infections, while the effect of Dectin-2 in the host defense against C. glabrata is infection dose dependent. Dectin-1 is required for host myeloid cells recognition, killing of C. glabrata, and development of subsequent Th1 and Th17 cell-mediated adaptive immune response. Significantly impaired inflammatory responses such as inflammatory cells recruitment and cytokines release that were induced by C. glabrata were manifested in Dectin-1-deficient mice. Together, our study demonstrates that Dectin-1 plays an important role in host defense against systemic Candida glabrata infections, indicating a previous unknown control mechanism for this particular type of infection in host. Our study, therefore, provides new insights into the host defense against C. glabrata.

  16. Profiling the human immune response to Mycobacterium tuberculosis by human cytokine array.

    PubMed

    Chen, Tao; Li, Zhenyan; Yu, Li; Li, Haicheng; Lin, Jinfei; Guo, Huixin; Wang, Wei; Chen, Liang; Zhang, Xianen; Wang, Yunxia; Chen, Yuhui; Liao, Qinghua; Tan, Yaoju; Shu, Yang; Huang, Wenyan; Cai, Changhui; Zhou, Zhongjing; Yu, Meiling; Li, Guozhou; Zhou, Lin; Zhong, Qiu; Bi, Lijun; Zhao, Meigui; Guo, Lina; Zhou, Jie

    2016-03-01

    Tuberculosis (TB) continues to be one of the most serious infectious diseases in the world, however, no effective biomarkers can be used for rapid screening of latent tuberculosis infection (LTBI) and active TB. In this study, serum cytokines were screened and tested as potential biomarker for TB diagnosis. Cytokine array was used to track the cytokine profile and its dynamic change after TB infection. The different expressions of cytokines were confirmed by ELISA assay. ROC curve analyses were used to evaluate the efficacy of a cytokine or cytokine combination for diagnosis. Eotaxin-2, ICAM-1, MCSF, IL-12p70, and IL-11 were significantly higher in the LTBI individuals. I-309, MIG, Eotaxin-2, IL-8, ICAM-1, IL-6sR, and Eotaxin were significantly higher in active TB patients. ROC curve analyses gave AUCs of 0.843, 0.898, and 0.888 for I-309, MIG, and IL-8, respectively, and 0.894 for the combination panel in active TB diagnosis. IFN-γ/IL-4 and IL-2/TNF-α ratios exhibit dynamic changes in the healthy control and LTBI to different stages of active TB. Serum cytokines, including I-309 and MIG, IL-8, Extoxin-2, ICAM-1 and combinations of cytokines, including IFN-γ/IL-4 and IL-2/TNF-α, can be used as serum biomarkers for LTBI and active TB screening, thus indicating prospective clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Multiple Inflammatory Cytokines Converge to Regulate CD8+ T cell Expansion and Function During Tuberculosis

    PubMed Central

    Booty, Matthew G.; Nunes-Alves, Cláudio; Carpenter, Stephen M.; Jayaraman, Pushpa; Behar, Samuel M.

    2015-01-01

    The differentiation of effector CD8+ T cells is a dynamically regulated process that varies during different infections and is influenced by the inflammatory milieu of the host. Here, we define three signals regulating CD8+ T cell responses during tuberculosis by focusing on cytokines known to affect disease outcome: IL-12, type I IFN, and IL-27. Using mixed bone marrow chimeras, we compared wild type and cytokine receptor knockout CD8+ T cells within the same mouse following aerosol infection with Mycobacterium tuberculosis. Four weeks post-infection, IL-12, type 1 IFN, and IL-27 were all required for efficient CD8+ T cell expansion in the lungs. We next determined if these cytokines directly promote CD8+ T cell priming or are required only for expansion in the lungs. Utilizing retrogenic CD8+ T cells specific for the Mtb antigen TB10.4 (EsxH), we observed that IL-12 is the dominant cytokine driving both CD8+ T cell priming in the lymph node and expansion in the lungs; however, type I IFN and IL-27 have non-redundant roles supporting pulmonary CD8+ T cell expansion. Thus, IL-12 is a major signal promoting priming in the lymph node, but a multitude of inflammatory signals converge in the lung to promote continued expansion. Furthermore, these cytokines regulate the differentiation and function of CD8+ T cells during tuberculosis. These data demonstrate distinct and overlapping roles for each of the cytokines examined and underscore the complexity of CD8+ T cell regulation during tuberculosis. PMID:26755819

  18. Glibenclamide reduces pro-inflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection

    NASA Astrophysics Data System (ADS)

    Kewcharoenwong, Chidchamai; Rinchai, Darawan; Utispan, Kusumawadee; Suwannasaen, Duangchan; Bancroft, Gregory J.; Ato, Manabu; Lertmemongkolchai, Ganjana

    2013-11-01

    Type 2 diabetes mellitus is a major risk factor for melioidosis, which is caused by Burkholderia pseudomallei. Our previous study has shown that polymorphonuclear neutrophils (PMNs) from diabetic subjects exhibited decreased functions in response to B. pseudomallei. Here we investigated the mechanisms regulating cytokine secretion of PMNs from diabetic patients which might contribute to patient susceptibility to bacterial infections. Purified PMNs from diabetic patients who had been treated with glibenclamide (an ATP-sensitive potassium channel blocker for anti-diabetes therapy), showed reduction of interleukin (IL)-1β and IL-8 secretion when exposed to B. pseudomallei. Additionally, reduction of these pro-inflammatory cytokines occurred when PMNs from diabetic patients were treated in vitro with glibenclamide. These findings suggest that glibenclamide might be responsible for the increased susceptibility of diabetic patients, with poor glycemic control, to bacterial infections as a result of its effect on reducing IL-1β production by PMNs.

  19. Multispecies Biofilms and Host Responses: “Discriminating the Trees from the Forest”

    PubMed Central

    Peyyala, R.; Ebersole, J.L.

    2014-01-01

    Periodontal diseases reflect a tissue destructive process of the hard and soft tissues of the periodontium that are initiated by the accumulation of multispecies bacterial biofilms in the subgingival sulcus. This accumulation, in both quantity and quality of bacteria, results in a chronic immunoinflammatory response of the host to control this noxious challenge, leading to collateral damage of the tissues. As knowledge of the characteristics of the host-bacterial interactions in the oral cavity has expanded, new knowledge has become available on the complexity of the microbial challenge and the repertoire of host responses to this challenge. Recent results from the Human Microbiome Project continue to extend the array of taxa, genera, and species of bacteria that inhabit the multiple niches in the oral cavity; however, there is rather sparse information regarding variations in how host cells discriminate commensal from pathogenic species, as well as how the host response is affected by the 3-dimensional architecture and interbacterial interactions that occur in the oral biofilms. This review provides some insights into thes- processes by including existing literature on the biology of nonoral bacterial biofilms, and the more recent literature just beginning to document how the oral cavity responds to multispecies biofilms. PMID:23141757

  20. Whole Blood Cytokine Response to Local Traffic-Related Particulate Matter in Peruvian Children With and Without Asthma

    PubMed Central

    Negherbon, Jesse P.; Romero, Karina; Williams, D’Ann L.; Guerrero-Preston, Rafael E.; Hartung, Thomas; Scott, Alan L.; Breysse, Patrick N.; Checkley, William; Hansel, Nadia N.

    2017-01-01

    This study sought to investigate if acute phase immune responses of whole blood from Peruvian children with controlled and uncontrolled asthma differed from children without asthma, following exposure to traffic-related particulate matter (TRPM). TRPM, including particulate matter from diesel combustion, has been shown to stimulate acute airway inflammation in individuals with and without asthma. For this study, a whole blood assay (WBA) was used to test peripheral whole blood samples from 27 children with asthma, and 12 without asthma. Participant blood samples were stimulated, ex vivo, for 24-h with an aqueous extract of TRPM that was collected near study area highways in Lima, Peru. All participant blood samples were tested against the same TRPM extract, in addition to purified bacterial endotoxin and pyrogen-free water, which served as positive and negative WBA controls, respectively. The innate and adaptive cytokine responses were evaluated in cell-free supernatants of the whole blood incubations. Comparatively similar levels were recorded for nine out of the 10 cytokines measured [e.g., – Interleukin (IL)-1β, IL-6, IL-10], regardless of study participant asthma status. However, IL-8 levels in TRPM-stimulated blood from children with uncontrolled asthma were diminished, compared to subjects without asthma (633 pg/ml vs. 1,023 pg/ml, respectively; p < 0.01); IL-8 responses for subjects with controlled asthma were also reduced, but to a lesser degree (799 pg/ml vs. 1,023 pg/ml, respectively; p = 0.10). These relationships were present before, and after, adjusting for age, sex, obesity/overweight status, C-reactive protein levels, and residential proximity to the study area’s major roadway. For tests conducted with endotoxin, there were no discernible differences in cytokine response between groups, for all cytokines measured. The WBA testing conducted for this study highlighted the capacity of the TRPM extract to potently elicit the release of IL-8 from the

  1. A Host Transcriptional Signature for Presymptomatic Detection of Infection in Humans Exposed to Influenza H1N1 or H3N2

    DTIC Science & Technology

    2013-01-09

    specificity. The majority of the top 50 predictive genes contained in each factor are known to characterize host response to viral infection, and include...RSAD2, the OAS family, multiple interferon response elements, the myxovirus- resistance gene MX1, cytokine response pathways and others [16,17,18]. Many...antiviral pathways (Fig. s4). Furthermore, the high degree of similarity and cross- applicability of the two signatures permit the mathematical

  2. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats.

    PubMed

    Luck, Christian; DeMarco, Vincent G; Mahmood, Abuzar; Gavini, Madhavi P; Pulakat, Lakshmi

    2017-01-01

    Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750  μ g/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters ( E / E ', E '/ A ', E / Vp ) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFN γ , and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes.

  3. Differential Regulation of Cardiac Function and Intracardiac Cytokines by Rapamycin in Healthy and Diabetic Rats

    PubMed Central

    Luck, Christian; DeMarco, Vincent G.; Mahmood, Abuzar; Gavini, Madhavi P.

    2017-01-01

    Diabetes is comorbid with cardiovascular disease and impaired immunity. Rapamycin improves cardiac functions and extends lifespan by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1). However, in diabetic murine models, Rapamycin elevates hyperglycemia and reduces longevity. Since Rapamycin is an immunosuppressant, we examined whether Rapamycin (750 μg/kg/day) modulates intracardiac cytokines, which affect the cardiac immune response, and cardiac function in male lean (ZL) and diabetic obese Zucker (ZO) rats. Rapamycin suppressed levels of fasting triglycerides, insulin, and uric acid in ZO but increased glucose. Although Rapamycin improved multiple diastolic parameters (E/E′, E′/A′, E/Vp) initially, these improvements were reversed or absent in ZO at the end of treatment, despite suppression of cardiac fibrosis and phosphoSer473Akt. Intracardiac cytokine protein profiling and Ingenuity® Pathway Analysis indicated suppression of intracardiac immune defense in ZO, in response to Rapamycin treatment in both ZO and ZL. Rapamycin increased fibrosis in ZL without increasing phosphoSer473Akt and differentially modulated anti-fibrotic IL-10, IFNγ, and GM-CSF in ZL and ZO. Therefore, fundamental difference in intracardiac host defense between diabetic ZO and healthy ZL, combined with differential regulation of intracardiac cytokines by Rapamycin in ZO and ZL hearts, underlies differential cardiac outcomes of Rapamycin treatment in health and diabetes. PMID:28408970

  4. Cytokine induction of sol–gel-derived TiO2 and SiO2 coatings on metallic substrates after implantation to rat femur

    PubMed Central

    Urbanski, Wiktor; Marycz, Krzysztof; Krzak, Justyna; Pezowicz, Celina; Dragan, Szymon Feliks

    2017-01-01

    Material surface is a key determinant of host response on implanted biomaterial. Therefore, modification of the implant surface may optimize implant–tissue reactions. Inflammatory reaction is inevitable after biomaterial implantation, but prolonged inflammation may lead to adverse reactions and subsequent implant failure. Proinflammatory activities of cytokines like interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α) are attractive indicators of these processes and ultimately characterize biocompatibility. The objective of the study was to evaluate local cytokine production after implantation of stainless steel 316L (SS) and titanium alloy (Ti6Al4V) biomaterials coated with titanium dioxide (TiO2) and silica (SiO2) coatings prepared by sol–gel method. Biomaterials were implanted into rat femur and after 12 weeks, bones were harvested. Bone–implant tissue interface was evaluated; immunohistochemical staining was performed to identify IL-6, TNF-α, and Caspase-1. Histomorphometry (AxioVision Rel. 4.6.3 software) of tissue samples was performed in order to quantify the cytokine levels. Both the oxide coatings on SS and Ti6Al4V significantly reduced cytokine production. However, the lowest cytokine levels were observed in TiO2 groups. Cytokine content in uncoated groups was lower in Ti6Al4V than in SS, although coating of either metal reduced cytokine production to similar levels. Sol–gel TiO2 or SiO2 coatings reduced significantly the production of proinflammatory cytokines by local tissues, irrespective of the material used as a substrate, that is, either Ti6Al4V or SS. This suggests lower inflammatory response, which directly points out improvement of materials’ biocompatibility. PMID:28280331

  5. Pro-inflammatory Cytokine Response and Genetic Diversity in Merozoite Surface Protein 2 of Plasmodium falciparum Isolates from Nigeria.

    PubMed

    Ajibaye, Olusola; Osuntoki, Akinniyi A; Ebuehi, Albert Ot; Iwalokun, Bamidele A; Balogun, Emmanuel O; Egbuna, Kathleen N

    2017-01-01

    Polymorphisms in Plasmodium falciparum merozoite surface protein-2 ( msp -2) and associated parasite genetic diversity which varies between malaria-endemic regions remain a limitation in malaria vaccine development. Pro-inflammatory cytokines are important in immunity against malaria, understanding the influence of genetic diversity on cytokine response is important for effective vaccine design. P. falciparum isolates obtained from 300 Nigerians with uncomplicated falciparum malaria at Ijede General Hospital, Ijede (IJE), General Hospital Ajeromi, Ajeromi (AJE) and Saint Kizito Mission Hospital, Lekki, were genotyped by nested polymerase chain reaction of msp -2 block 3 while ELISA was used to determine the pro-inflammatory cytokine response to describe the genetic diversity of P. falciparum . Eighteen alleles were observed for msp -2 loci. Of the 195 isolates, 61 (31.0%) had only FC27-type alleles, 38 (19.7%) had only 3D7-type alleles, and 49.3% had multiple parasite lines with both alleles. Band sizes were 275-625 bp for FC27 and 150-425 bp for 3D7. Four alleles were observed from LEK, 2 (375-425 bp) and 2 (275-325 bp) of FC27-and 3D7-types, respectively; 12 alleles from AJE, 9 (275-625 bp) and 3 (325-425 bp) of FC27-types and 3D7-types, respectively; while IJE had a total of 12 alleles, 9 (275-625 bp) and 3 (325-425 bp) of FC27-types and 3D7-types, respectively. Mean multiplicity of infection (MOI) was 1.54. Heterozygosity ( H E ) ranged from 0.77 to 0.87 and was highest for IJE (0.87). Cytokine response was higher among <5 years and was significantly associated with MOI ( P > 0.05) but with neither parasite density nor infection type. P. falciparum genetic diversity is extensive in Nigeria, protection via pro-inflammatory cytokines have little or no interplay with infection multiplicity.

  6. Blood autoantibody and cytokine profiles predict response to anti-tumor necrosis factor therapy in rheumatoid arthritis

    PubMed Central

    Hueber, Wolfgang; Tomooka, Beren H; Batliwalla, Franak; Li, Wentian; Monach, Paul A; Tibshirani, Robert J; Van Vollenhoven, Ronald F; Lampa, Jon; Saito, Kazuyoshi; Tanaka, Yoshiya; Genovese, Mark C; Klareskog, Lars; Gregersen, Peter K; Robinson, William H

    2009-01-01

    Introduction Anti-TNF therapies have revolutionized the treatment of rheumatoid arthritis (RA), a common systemic autoimmune disease involving destruction of the synovial joints. However, in the practice of rheumatology approximately one-third of patients demonstrate no clinical improvement in response to treatment with anti-TNF therapies, while another third demonstrate a partial response, and one-third an excellent and sustained response. Since no clinical or laboratory tests are available to predict response to anti-TNF therapies, great need exists for predictive biomarkers. Methods Here we present a multi-step proteomics approach using arthritis antigen arrays, a multiplex cytokine assay, and conventional ELISA, with the objective to identify a biomarker signature in three ethnically diverse cohorts of RA patients treated with the anti-TNF therapy etanercept. Results We identified a 24-biomarker signature that enabled prediction of a positive clinical response to etanercept in all three cohorts (positive predictive values 58 to 72%; negative predictive values 63 to 78%). Conclusions We identified a multi-parameter protein biomarker that enables pretreatment classification and prediction of etanercept responders, and tested this biomarker using three independent cohorts of RA patients. Although further validation in prospective and larger cohorts is needed, our observations demonstrate that multiplex characterization of autoantibodies and cytokines provides clinical utility for predicting response to the anti-TNF therapy etanercept in RA patients. PMID:19460157

  7. Response of cranberry weevil (Coleoptera: Curculionidae) to host plant volatiles.

    PubMed

    Szendrei, Zsofia; Malo, Edi; Stelinski, Lukasz; Rodriguez-Saona, Cesar

    2009-06-01

    The oligophagous cranberry weevil, Anthonomus musculus Say, causes economic losses to blueberry growers in New Jersey because females deposit eggs into developing flower buds and subsequent larval feeding damages buds, which fail to produce fruit. A cost-effective and reliable method is needed for monitoring this pest to correctly time insecticide applications. We studied the behavioral and antennal responses of adult A. musculus to its host plant volatiles to determine their potential for monitoring this pest. We evaluated A. musculus response to intact and damaged host plant parts, such as buds and flowers in Y-tube bioassays. We also collected and identified host plant volatiles from blueberry buds and open flowers and performed electroantennograms with identified compounds to determine the specific chemicals eliciting antennal responses. Male weevils were more attracted to blueberry flower buds and were repelled by conspecific-damaged buds compared with clean air. In contrast, females were more attracted to open flowers compared with flower buds. Nineteen volatiles were identified from blueberry buds; 10 of these were also emitted from blueberry flowers. Four of the volatiles emitted from both blueberry buds and flowers [hexanol, (Z)-3-hexenyl acetate, hexyl acetate, and (Z)-3-hexenyl butyrate] elicited strong antennal responses from A. musculus. Future laboratory and field testing of the identified compounds in combination with various trap designs is planned to develop a reliable monitoring trap for A. musculus.

  8. Cytokine profiling of docetaxel-resistant castration-resistant prostate cancer.

    PubMed

    Mahon, K L; Lin, H-M; Castillo, L; Lee, B Y; Lee-Ng, M; Chatfield, M D; Chiam, K; Breit, S N; Brown, D A; Molloy, M P; Marx, G M; Pavlakis, N; Boyer, M J; Stockler, M R; Daly, R J; Henshall, S M; Horvath, L G

    2015-04-14

    Docetaxel improves symptoms and survival in metastatic castration-resistant prostate cancer (CRPC). However, ∼50% of patients are chemoresistant. This study examined whether changes in cytokine levels predict for docetaxel resistance in vitro and in a clinical cohort. PC3 cells or their docetaxel-resistant subline (PC3Rx) were co-cultured with U937 monocytes, with and without docetaxel treatment, and cytokine levels were measured. The circulating levels of 28 cytokines were measured pre-/post cycle 1 of docetaxel from 55 men with CRPC, and compared with prostate-specific antigen (PSA) response. PC3Rx-U937 co-culture expressed more cytokines, chiefly markers of alternative macrophage differentiation, compared with PC3-U937 co-culture. Docetaxel treatment enhanced cytokine production by PC3Rx-U937 co-culture, while reducing cytokine levels in PC3-U937. In patients, changes in the levels of seven circulating cytokines (macrophage inhibitory cytokine 1 (MIC1), interleukin (IL)-1ra, IL-1β, IL-4, IL-6, IL-12 and IFNγ) after cycle 1 of docetaxel were associated with progressive disease (all P<0.05). The combination of changes in MIC1, IL-4 and IL-6 most strongly predicted PSA response (P=0.002). In vitro studies suggest docetaxel resistance is mediated, at least in part, by cytokines induced by the interaction between the docetaxel-resistant tumour cells and macrophages. Early changes in circulating cytokine levels were associated with docetaxel resistance in CRPC patients. When considered together, these data suggest a significant role for the inflammatory response and macrophages in the development of docetaxel resistance in CRPC.

  9. Phagocytosis and phagosome acidification are required for pathogen processing and MyD88-dependent responses to Staphylococcus aureus

    PubMed Central

    Ip, WK Eddie; Sokolovska, Anna; Charriere, Guillaume M; Boyer, Laurent; Dejardin, Stephanie; Cappillino, Michael P; Yantosca, L Michael; Takahashi, Kazue; Moore, Kathryn J; Lacy-Hulbert, Adam; Stuart, Lynda M

    2010-01-01

    Innate immunity is vital for protection from microbes and is mediated by both humoral effectors, such as cytokines, and cellular immune defenses, including phagocytic cells such as macrophages. After internalization by phagocytes, microbes are delivered into a phagosome, a complex intracellular organelle with a well-established and important role in microbial killing. However, the role of this organelle in cytokine responses and microbial sensing is less well defined. Here we assess the role of the phagosome in innate immune sensing and demonstrate the critical interdependence of phagocytosis and pattern recognition receptor signaling during response to the Gram-positive bacteria Staphylococcus aureus. We show that phagocytosis is essential to initiate optimal MyD88-dependent response to Staphylococcus aureus. Prior to TLR-dependent cytokine production bacteria must not only be engulfed but also delivered into acidic phagosomes. Here acid-activated host enzymes digest the internalized bacteria to liberate otherwise cryptic bacterial-derived ligands that initiate responses from the vacuole. Importantly, in macrophages in which phagosome acidification is perturbed, the impaired response to Staphylococcus aureus can be rescued by addition of lysostaphin, a bacterial endopeptidase active at neutral pH that can substitute for the acid-activated host enzymes. Together these observations delineate the inter-dependence of phagocytosis with pattern recognition receptor signaling and suggest that therapeutics to augment functions and signaling from the vacuole may be useful strategies to increase host responses to Staphylococcus aureus. PMID:20483752

  10. Listeria monocytogenes CadC Regulates Cadmium Efflux and Fine-tunes Lipoprotein Localization to Escape the Host Immune Response and Promote Infection.

    PubMed

    Pombinho, Rita; Camejo, Ana; Vieira, Ana; Reis, Olga; Carvalho, Filipe; Almeida, Maria Teresa; Pinheiro, Jorge Campos; Sousa, Sandra; Cabanes, Didier

    2017-05-01

    Listeria monocytogenes is a major intracellular human foodborne bacterial pathogen. We previously revealed L. monocytogenes cadC as highly expressed during mouse infection. Here we show that L. monocytogenes CadC is a sequence-specific, DNA-binding and cadmium-dependent regulator of CadA, an efflux pump conferring cadmium resistance. CadC but not CadA is required for L. monocytogenes infection in vivo. Interestingly, CadC also directly represses lspB, a gene encoding a lipoprotein signal peptidase whose expression appears detrimental for infection. lspB overexpression promotes the release of the LpeA lipoprotein to the extracellular medium, inducing tumor necrosis factor α and interleukin 6 expression, thus impairing L. monocytogenes survival in macrophages. We propose that L. monocytogenes uses CadC to repress lspB expression during infection to avoid LpeA exposure to the host immune system, diminishing inflammatory cytokine expression and promoting intramacrophagic survival and virulence. CadC appears as the first metal efflux pump regulator repurposed during infection to fine-tune lipoprotein processing and host responses. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  11. Immunosuppressants: tools to investigate the physiological role of cytokines.

    PubMed

    Quesniaux, V F

    1993-11-01

    The cyclic peptide Cyclosporine A (CsA) is best known as the immunosuppressive drug which has revolutionized organ transplantation. It selectively suppresses T cell activation by blocking the transcription of cytokine genes such as IL-2 at the level of transcription factor modulation. The structurally unrelated immunosuppressant FK 506 acts on the same pathway and blocks cytokine gene expression. In contrast, rapamycin, a structural analogue of FK 506, interferes with the immune response at a different level, by blocking the response induced by cytokines such as IL-2. Although these drugs have been most studied for their immunosuppressive activities, it is clear that their effects on cytokine pathways extend far beyond the sole IL-2-mediated responses involved in the immune response. For instance, CsA and FK 506 inhibit the transcription of IL-3, IL-4, IFN gamma, TNF alpha or GM-CSF by activated T cells, and rapamycin has been shown to block the response to various growth factors such as IL-3, IL-4 or IL-6. Here, we recap what is known about the effects of CsA, FK 506 and rapamycin on hematopoiesis in vitro and in vivo and extrapolate on what these drugs can teach us about the physiological role of cytokines for hematopoiesis.

  12. The pleotropic role of statins: Could it be the imminent host modulation agent in periodontics?

    PubMed

    Grover, Harpreet Singh; Luthra, Shailly; Maroo, Shruti; Maroo, Niteeka

    2013-03-01

    Periodontal disease is a chronic inflammatory disease which represents a primarily anaerobic Gram-negative oral infection that results in gingival inflammation, loss of attachment, bone destruction. Bacterial endotoxins in the form of lipopolysaccharides (LPS) that are instrumental in generating a host-mediated tissue destructive immune response by mobilizing their defensive cells and releasing cytokines like Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Interleukin-6 (IL-6), which lead to tissue destruction by stimulating the production of the collagenolytic enzymes: Matrix metalloproteinases (MMPs). Since the host-mediated tissue destruction is to be controlled, various means have been employed for modulating this response. Statins, 3-hydroxy-3-methylglutarylcoenzyme A (HMG CoA) reductase inhibitors, besides having lipid-lowering abilities also have antioxidant, antithrombotic, anti-inflammatory, immunomodulatory and osteomodulatory properties. All of these pleiotropic effects of statins point out to it perhaps becoming the novel host modulation agent in periodontics.

  13. The pleotropic role of statins: Could it be the imminent host modulation agent in periodontics?

    PubMed Central

    Grover, Harpreet Singh; Luthra, Shailly; Maroo, Shruti; Maroo, Niteeka

    2013-01-01

    Periodontal disease is a chronic inflammatory disease which represents a primarily anaerobic Gram-negative oral infection that results in gingival inflammation, loss of attachment, bone destruction. Bacterial endotoxins in the form of lipopolysaccharides (LPS) that are instrumental in generating a host-mediated tissue destructive immune response by mobilizing their defensive cells and releasing cytokines like Interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Interleukin-6 (IL-6), which lead to tissue destruction by stimulating the production of the collagenolytic enzymes: Matrix metalloproteinases (MMPs). Since the host-mediated tissue destruction is to be controlled, various means have been employed for modulating this response. Statins, 3-hydroxy-3-methylglutarylcoenzyme A (HMG CoA) reductase inhibitors, besides having lipid-lowering abilities also have antioxidant, antithrombotic, anti-inflammatory, immunomodulatory and osteomodulatory properties. All of these pleiotropic effects of statins point out to it perhaps becoming the novel host modulation agent in periodontics. PMID:23946727

  14. The host immunological response to cancer therapy: An emerging concept in tumor biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voloshin, Tali; Voest, Emile E.; Shaked, Yuval, E-mail: yshaked@tx.technion.ac.il

    Almost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet onlymore » partially-known process. It is postulated that blocking these specific immunological effects in the reactive host in response to cancer therapy may aid in identifying new host-dependent targets for cancer, which in combination with conventional treatments can prolong therapy efficacy and extend survival. Additional studies investigating this specific research direction—both in preclinical models and in the clinical setting are essential in order to advance our understanding of how tumors relapse and evade therapy. -- Highlights: • Cancer therapy induces host molecular and cellular pro-tumorigenic effects. • Host effects in response to therapy may promote tumor relapse and metastasis. • The reactive host consists of immunological mediators promoting tumor re-growth. • Blocking therapy-induced host mediators may improve outcome.« less

  15. Comparative phosphoproteomics reveals components of host cell invasion and post-transcriptional regulation during Francisella infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Tempel, Rebecca; Cambronne, Xiaolu A.

    2013-09-22

    Francisella tularensis is a facultative intracellular bacterium that causes the deadly disease tularemia. Most evidence suggests that Francisella is not well recognized by the innate immune system that normally leads to cytokine expression and cell death. In previous work, we identified new bacterial factors that were hyper-cytotoxic to macrophages. Four of the identified hyper-cytotoxic strains (lpcC, manB, manC and kdtA) had an impaired lipopolysaccharide (LPS) synthesis and produced an exposed lipid A lacking the O-antigen. These mutants were not only hyper-cytotoxic but also were phagocytosed at much higher rates compared to the wild type parent strain. To elucidate the cellularmore » signaling underlying this enhanced phagocytosis and cell death, we performed a large-scale comparative phosphoproteomic analysis of cells infected with wild-type and delta-lpcC F. novicida. Our data suggest that not only actin but also intermediate filaments and microtubules are important for F. novicida entry into the host cells. In addition, we observed differential phosphorylation of tristetraprolin (TTP), a key component of the mRNA-degrading machinery that controls the expression of a variety of genes including many cytokines. Infection with the delta-lpcC mutant induced the hyper-phosphorylation and inhibition of TTP, leading to the production of cytokines such as IL-1beta and TNF-alpha which may kill the host cells by triggering apoptosis. Together, our data provide new insights for Francisella invasion and a post-transcriptional mechanism that prevents the expression of host immune response factors that controls infection by this pathogen.« less

  16. Human Leukocyte Antigen and Interleukin 2, 10 and 12p40 Cytokine Responses to Measles: Is There Evidence of the HLA Effect?

    PubMed Central

    Ovsyannikova, Inna G.; Ryan, Jenna E.; Jacobson, Robert M.; Vierkant, Robert A.; Pankratz, V. Shane; Poland, Gregory A.

    2007-01-01

    HLA class I and class II associations were examined in relation to measles virus-specific cytokine responses in 339 healthy children who had received two doses of live attenuated measles vaccine. Multivariate linear regression modeling analysis revealed suggestions of associations between the expression of DPA1*0201 (p=0.03) and DPA1*0202 (p=0.09) alleles and interleukin-2 (IL-2) cytokine production (global p-value 0.06). Importantly, cytokine production and DQB1 allele associations (global p-value 0.04) revealed that the alleles with the strongest association with IL-10 secretion were DQB1*0302 (p=0.02), DQB1*0303 (p=0.07) and DQB1*0502 (p=0.06). Measles-specific IL-10 secretion associations approached significance with DRB1 and DQA1 loci (both global p-values 0.08). Specifically, suggestive associations were found between DRB1*0701 (p=0.07), DRB1*1103 (p=0.06), DRB1*1302 (p=0.08), DRB1*1303 (p=0.06), DQA1*0101 (p=0.08), and DQA1*0201 (p=0.04) alleles and measles-induced IL-10 secretion. Further, suggestive association was observed between specific DQA1*0505 (p=0.002) alleles and measles-specific IL-12p40 secretion (global p-value 0.09) indicating that cytokine responses to measles antigens are predominantly influenced by HLA class II genes. We found no associations between any of the alleles of HLA A, B, and Cw loci and cytokine secretion. These novel findings suggest that HLA class II genes may influence the level of cytokine production in the adaptive immune responses to measles vaccine. PMID:17234427

  17. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production.

    PubMed

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-08-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses.

  18. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production

    PubMed Central

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-01-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses. PMID:25613374

  19. Susceptibility to Lower Respiratory Infections in Childhood is Associated with Perturbation of the Cytokine Response to Pathogenic Airway Bacteria.

    PubMed

    Vissing, Nadja Hawwa; Larsen, Jeppe Madura; Rasmussen, Morten Arendt; Chawes, Bo Lund Krogsgaard; Thysen, Anna Hammerich; Bønnelykke, Klaus; Brix, Susanne; Bisgaard, Hans

    2016-05-01

    Neonatal colonization of the airways with respiratory pathogens is associated with increased risk of lower respiratory infections (LRI) in early childhood. Therefore, we hypothesized that children developing LRI have an aberrant immune response to pathogenic bacteria in infancy. The objective was to characterize in vitro the early life systemic immune response to pathogenic bacteria and study the possible association with incidence of LRI during the first 3 years of life. The Copenhagen Prospective Studies on Asthma in Childhood2000 (COPSAC2000) is a clinical birth cohort study of 411 children born of mothers with asthma. LRI incidence was prospectively captured from 6-monthly planned visits and visits at acute respiratory episodes. The in vitro systemic immune response to Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae was characterized by the production of TNF-α, IFN-γ, IL-2, IL-5, IL-10, IL-13 and IL-17 in peripheral blood mononuclear cells isolated at age 6 months from 291 infants. Data were analyzed by Poisson regression against incidence of LRI in infancy. A multivariable model including all cytokine responses from the 3 different bacterial stimulations significantly identified children at risk of LRI (P = 0.006). The immune response pattern associated with LRI was characterized by perturbed production of several cytokines rather than production of one specific cytokine, and was independent of concurrent asthma. TNF-α and IL-5 were key drivers but did not explain the entire variation in LRI susceptibility. Children at risk of future LRI present a perturbed systemic immune response upon exposure to common airway pathogens in early life.

  20. The role of cytokines in immune changes induced by spaceflight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Miller, E. S.

    1993-01-01

    It has become apparent that spaceflight alters many immune responses. Among the regulatory components of the immune response that have been shown to be affected by spaceflight is the cytokine network. Spaceflight, as well as model systems of spaceflight, have been shown to affect the production and action of various cytokines including interferons, interleukins, colony stimulating factors, and tumor necrosis factors. These changes have been shown not to involve a general shutdown of the cytokine network but, rather, to involve selective alterations of specific cytokine functions by spaceflight. The full breadth of changes in cytokines induced by spaceflight, as well as mechanisms, duration, adaptation, reversibility, and significance to resistance to infection and neoplastic diseases, remains to be established.

  1. Interleukin 33 as a Mechanically Responsive Cytokine Secreted by Living Cells*

    PubMed Central

    Kakkar, Rahul; Hei, Hillary; Dobner, Stephan; Lee, Richard T.

    2012-01-01

    Interleukin 33 (IL-33), a member of the Interleukin 1 cytokine family, is implicated in numerous human inflammatory diseases such as asthma, atherosclerosis, and rheumatoid arthritis. Despite its pathophysiologic importance, fundamental questions regarding the basic biology of IL-33 remain. Nuclear localization and lack of an export signal sequence are consistent with the view of IL-33 as a nuclear factor with the ability to repress RNA transcription. However, signaling via the transmembrane receptor ST2 and documented caspase-dependent inactivation have suggested IL-33 is liberated during cellular necrosis to effect paracrine signaling. We determined the subcellular localization of IL-33 and tracked its intracellular mobility and extracellular release. In contrast to published data, IL-33 localized simultaneously to nuclear euchromatin and membrane-bound cytoplasmic vesicles. Fluorescent pulse-chase fate-tracking documented dynamic nucleo-cytoplasmic flux, which was dependent on nuclear pore complex function. In murine fibroblasts in vitro and in vivo, mechanical strain induced IL-33 secretion in the absence of cellular necrosis. These data document IL-33 dynamic inter-organelle trafficking and release during biomechanical overload. As such we recharacterize IL-33 as both an inflammatory as well as mechanically responsive cytokine secreted by living cells. PMID:22215666

  2. The Pla Protease of Yersinia pestis Degrades Fas Ligand to Manipulate Host Cell Death and Inflammation

    PubMed Central

    Caulfield, Adam J.; Walker, Margaret E.; Gielda, Lindsay M.; Lathem, Wyndham W.

    2014-01-01

    SUMMARY Pneumonic plague is a deadly respiratory disease caused by Yersinia pestis. The bacterial protease Pla contributes to disease progression and manipulation of host immunity, but the mechanisms by which this occurs are largely unknown. Here we show that Pla degrades the apoptotic signaling molecule Fas ligand (FasL) to prevent host cell apoptosis and inflammation. Wild-type Y. pestis, but not a Pla mutant (Δpla), degrades FasL, which results in decreased downstream caspase-3/7 activation and reduced apoptosis. Similarly, lungs of mice challenged with wild-type Y. pestis show reduced levels of FasL and activated caspase-3/7 compared to Δpla infection. Consistent with a role for FasL in regulating immune responses, Δpla infection results in aberrant pro-inflammatory cytokine levels. The loss of FasL or inhibition of caspase activity alters host inflammatory responses and enables enhanced Y. pestis outgrowth in the lungs. Thus, by degrading FasL, Y. pestis manipulates host cell death pathways to facilitate infection. PMID:24721571

  3. Genomic profiling of host responses to Lassa virus: therapeutic potential from primate to man

    PubMed Central

    Zapata, Juan C; Salvato, Maria S

    2015-01-01

    Lassa virus infection elicits distinctive changes in host gene expression and metabolism. We focus on changes in host gene expression that may be biomarkers that discriminate individual pathogens or may help to provide a prognosis for disease. In addition to assessing mRNA changes, functional studies are also needed to discriminate causes of disease from mechanisms of host resistance. Host responses that drive pathogenesis are likely to be targets for prevention or therapy. Host responses to Lassa or its related arenaviruses have been monitored in cell culture, in animal models of hemorrhagic fever, in Lassa-infected nonhuman primates and, to a limited extent, in infected human beings. Here, we describe results from those studies and discuss potential targets for reducing virus replication and mitigating disease. PMID:25844088

  4. HCV-induced miR146a controls SOCS1/STAT3 and cytokine expression in monocytes to promote regulatory T cell development

    PubMed Central

    Ren, Jun P; Ying, Rue S; Cheng, Yong Q.; Wang, Ling; Elgazzar, Mohamed A.; Li, Guang Y.; Ning, Shun B.; Moorman, Jonathan P.; Yao, Zhi Q.

    2016-01-01

    Host innate and adaptive immune responses must be tightly regulated by an intricate balance between positive and negative signals to ensure their appropriate onset and termination while fighting pathogens and avoiding autoimmunity; persistent pathogens may usurp these regulatory machineries to dampen host immune responses for their persistence in vivo. Here we demonstrate that miR146a is up-regulated in monocytes from hepatitis C virus (HCV)-infected individuals compared to control subjects. Interestingly, miR146a expression in monocytes without HCV infection increased, whereas its level in monocytes with HCV infection decreased, following Toll-like receptor (TLR) stimulation. This miR146a induction by HCV infection and differential response to TLR stimulation were recapitulated in vitro in monocytes co-cultured with hepatocytes with or without HCV infection. Importantly, inhibition of miR146a in monocytes from HCV-infected patients led to a decrease in IL-23, IL-10, and TGF-β expressions through induction of suppressor of cytokine signaling 1 (SOCS1) and inhibition of signal transducer and activator transcription 3 (STAT3), and this subsequently resulted in a decrease in regulatory T cells (Tregs) accumulated during HCV infection. These results suggest that miR146a may regulate SOCS1/STAT3 and cytokine signaling in monocytes, directing T cell differentiation and balancing immune clearance and immune injury during chronic viral infection. PMID:27004559

  5. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    PubMed

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  6. Temporal pattern and effect of sex on lipopolysaccharide-induced stress hormone and cytokine response in pigs

    USDA-ARS?s Scientific Manuscript database

    The temporal pattern and gender effect of immune and stress hormone responses to a lipopolysaccharide (LPS) challenge were assessed using a pig model. Secretion of the pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 increased in a time-dependent manner f...

  7. Cytokine responses in relation to age, gender, body mass index, Mycobacterium tuberculosis infection, and otitis media among Inuit in Greenland.

    PubMed

    Nielsen, Nina O; Soborg, Bolette; Børresen, Malene; Andersson, Mikael; Koch, Anders

    2013-01-01

    To evaluate the cytokine response pattern in Inuit in Greenland in relation to age, gender, body mass index (BMI), Mycobacterium tuberculosis infection (MTI), and otitis media (OM) to assess whether Inuit may have signs of impaired immune responsiveness to infection. A cross-sectional health assessment was conducted among inhabitants of Maniitsoq, West Greenland, in 2009, and several health outcomes were measured. The prevalence of MTI, overweight, and obesity was assessed among 263 school children and 137 adults, and OM was assessed among the children. Cytokine responses were measured in whole blood cultures after stimulation with phytohemagglutinin or purified protein derivative (PPD). Associations between cytokine concentrations, age, gender, BMI, MTI, and OM were estimated by linear regression. Adults had generally higher cytokine concentrations than children. Children with MTI had 2.7 times higher interleukin (IL)-10 concentrations than those without (P = 0.01), and girls had 80% higher IL-10 than boys (P < 0.01) after phytohemagglutinin stimulation. Interferon (IFN)γ and tumor necrosis factor (TNF) concentrations were strongly elevated among children (P(IFNγ) < 0.001 and P(TNF) < 0.001) and adults (P(IFNγ) < 0.001 and P(TNF) <0.01) with MTI compared to those without after PPD stimulation. Adult women had significantly lower IFNγ (P = 0.03) and TNF (P = 0.04) concentrations than men. TNF was positively correlated with BMI in children (P = 0.01), and IL-10 was positively correlated with BMI in adults (P = 0.0004) after PPD stimulation. We found cytokine patterns similar to those reported from other immune competent study populations. Therefore, the study does not support the suggestion that Inuit may have impaired immune reactivity to infection. Copyright © 2012 Wiley Periodicals, Inc.

  8. Mce4A protein of Mycobacterium tuberculosis induces pro inflammatory cytokine response leading to macrophage apoptosis in a TNF-α dependent manner.

    PubMed

    Saini, Neeraj Kumar; Sinha, Rajesh; Singh, Pooja; Sharma, Monika; Pathak, Rakesh; Rathor, Nisha; Varma-Basil, Mandira; Bose, Mridula

    2016-11-01

    Mycobacterium tuberculosis subverts the host immune response through numerous immune-evasion strategies. Apoptosis has been identified as one such mechanism and has been well studied in M. tuberculosis infection. Here, we demonstrate that the Mce4A protein of mce4 operon is involved in the induction of host cell apoptosis. Earlier we have shown that the Mce4A was required for the invasion and survival of M. tuberculosis. In this report we present evidence to establish a role for Mce4A in the modulation of THP-1 cell survival. Recombinant Mce4A was expressed and purified from Escherichia coli as inclusion bodies and then refolded. Viability of THP-1 cells decreased in a dose-dependent manner when treated with Mce4A. The secretion of pro-inflammatory cytokines like tumor necrosis factor (TNF-α) or interferon gamma (IFN-γ), and enhanced nitric oxide release was observed when the THP-1 cells, were treated with Mce4A protein. The Mce4A induced apoptosis of the THP-1 cells was TNF-α dependent since blocking with anti TNF-α antibody abrogated this phenomenon. Collectively, these data suggest that Mce4A can induce the THP-1 cells to undergo apoptosis which primarily follows a TNF- α dependent pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Rheumatoid arthritis synovial fibroblasts produce a soluble form of the interleukin-7 receptor in response to pro-inflammatory cytokines

    PubMed Central

    Badot, V; Durez, P; Van den Eynde, BJ; Nzeusseu-Toukap, A; Houssiau, FA; Lauwerys, BR

    2011-01-01

    Abstract We previously demonstrated that baseline synovial overexpression of the interleukin-7 receptor α-chain (IL-7R) is associated with poor response to tumour necrosis factor (TNF) blockade in rheumatoid arthritis (RA). We found that IL-7R gene expression is induced in fibroblast-like synovial cells (FLS) by the addition of TNF-α, IL-1β and combinations of TNF-α+ IL-1β or TNF-α+ IL-17, thereby suggesting that these cytokines play a role in the resistance to TNF blockade in RA. Because FLS and CD4 T cells also produce a soluble form of IL-7R (sIL-7R), resulting from an alternative splicing of the full-length transcript, we wondered whether expression of sIL-7R is similarly regulated by pro-inflammatory cytokines. We also investigated whether sIL-7R is detectable in the serum of RA patients and associated with response to TNF blockade. RA FLS were cultured in the presence of pro-inflammatory cytokines and sIL-7R concentrations were measured in culture supernatants. Similarly, sIL-7R titres were measured in sera obtained from healthy individuals, early untreated RA patients with active disease and disease-modifying anti-rheumatic drug (DMARD)-resistant RA patients prior to initiation of TNF-blockade. Baseline serum sIL-7R titres were correlated with validated clinical measurements of disease activity. We found that exposure of RA FLS to pro-inflammatory cytokines (TNF-α, IL-1β and combinations of TNF-α and IL-1β or TNF-α and IL-17) induces sIL-7R secretion. Activated CD4 T cells also produce sIL-7R. sIL-7R serum levels are higher in RA patients as compared to controls. In DMARD-resistant patients, high sIL-7R serum concentrations are strongly associated with poor response to TNF-blockade. In conclusion, sIL-7R is induced by pro-inflammatory cytokines in RA FLS. sIL-7R could qualify as a new biomarker of response to therapy in RA. PMID:21129157

  10. IGF-I, IGFBPs, and inflammatory cytokine responses during gender-integrated Israeli Army basic combat training.

    PubMed

    Nindl, Bradley C; Scofield, Dennis E; Strohbach, Cassandra A; Centi, Amanda J; Evans, Rachel K; Yanovich, Ran; Moran, Daniel S

    2012-07-01

    Insulin-like growth factor 1 (IGF-I) is a robust metabolic and anabolic biomarker that has been demonstrated to be reflective of military training-induced body composition changes and influenced by initial aerobic fitness level. Greater mechanistic insight into the IGF-I response to physical training can potentially be gleaned by also examining other regulatory factors that influence IGF-I biological activity (i.e., insulin-like growth factor-binding proteins [IGFBPs] and inflammatory cytokine responses). The purpose of this study was to assess the influence of sex and initial fitness level on the IGF-I and inflammatory cytokine response to gender-integrated Israeli Defense Forces (IDF) basic combat training (BCT). Recruits (29 men, 19.1 ± 1.3 years; 93 women, 18.8 ± 0.6 years) were recruited from a 4-month gender-integrated BCT of the IDF. Blood was drawn and assayed for total IGF-I, free IGF-I, IGFBPs 1-6, tumor necrosis factor alpha (TNF-α), interleukin 6, and interleukin 1 beta. Body composition was determined via a 4-site skinfold (biceps, triceps, suprailiac, and subscapular) equation. Physical performance was assessed via a maximum volume of oxygen consumption (V[Combining Dot Above]O₂max) test using a treadmill protocol. All measures were obtained pre- and posttraining. A 2-way (sex × time) analysis of variance was used to test for statistical differences (p ≤ 0.05). Additionally, subjects were further partitioned (men and women separately) by tertiles of initial V[Combining Dot Above]O₂max to assess the influence of initial fitness level on the IGF-I system and inflammatory cytokine responses to physical training. Pearson product moment correlational analysis was also used to examine relationships between percent changes in blood measures and physical performance and body composition changes. All data are presented as mean ± SE. Time effects were observed only for total IGF-I, IGFBP-2, TNF-α, V[Combining Dot Above]O₂max, fat-free mass, and

  11. Host-Derived CD70 Suppresses Murine Graft-versus-Host Disease by Limiting Donor T Cell Expansion and Effector Function.

    PubMed

    Leigh, Nicholas D; O'Neill, Rachel E; Du, Wei; Chen, Chuan; Qiu, Jingxin; Ashwell, Jonathan D; McCarthy, Philip L; Chen, George L; Cao, Xuefang

    2017-07-01

    Allogeneic hematopoietic cell transplantation (allo-HCT) is a potentially curative treatment for hematologic and immunologic diseases. However, graft-versus-host disease (GVHD) may develop when donor-derived T cells recognize and damage genetically distinct normal host tissues. In addition to TCR signaling, costimulatory pathways are involved in T cell activation. CD27 is a TNFR family member expressed on T cells, and its ligand, CD70, is expressed on APCs. The CD27/CD70 costimulatory pathway was shown to be critical for T cell function and survival in viral infection models. However, the role of this pathway in allo-HCT is previously unknown. In this study, we have examined its contribution in GVHD pathogenesis. Surprisingly, Ab blockade of CD70 after allo-HCT significantly increases GVHD. Interestingly, whereas donor T cell- or bone marrow-derived CD70 plays no role in GVHD, host-derived CD70 inhibits GVHD as CD70 -/- hosts show significantly increased GVHD. This is evidenced by reduced survival, more severe weight loss, and increased histopathologic damage compared with wild-type hosts. In addition, CD70 -/- hosts have higher levels of proinflammatory cytokines TNF-α, IFN-γ, IL-2, and IL-17. Moreover, accumulation of donor CD4 + and CD8 + effector T cells is increased in CD70 -/- versus wild-type hosts. Mechanistic analyses suggest that CD70 expressed by host hematopoietic cells is involved in the control of alloreactive T cell apoptosis and expansion. Together, our findings demonstrate that host CD70 serves as a unique negative regulator of allogeneic T cell response by contributing to donor T cell apoptosis and inhibiting expansion of donor effector T cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  12. Multiple Inflammatory Cytokines Converge To Regulate CD8+ T Cell Expansion and Function during Tuberculosis.

    PubMed

    Booty, Matthew G; Nunes-Alves, Cláudio; Carpenter, Stephen M; Jayaraman, Pushpa; Behar, Samuel M

    2016-02-15

    The differentiation of effector CD8(+) T cells is a dynamically regulated process that varies during different infections and is influenced by the inflammatory milieu of the host. In this study, we define three signals regulating CD8(+) T cell responses during tuberculosis by focusing on cytokines known to affect disease outcome: IL-12, type I IFN, and IL-27. Using mixed bone marrow chimeras, we compared wild-type and cytokine receptor knockout CD8(+) T cells within the same mouse following aerosol infection with Mycobacterium tuberculosis. Four weeks postinfection, IL-12, type 1 IFN, and IL-27 were all required for efficient CD8(+) T cell expansion in the lungs. We next determined if these cytokines directly promote CD8(+) T cell priming or are required only for expansion in the lungs. Using retrogenic CD8(+) T cells specific for the M. tuberculosis Ag TB10.4 (EsxH), we observed that IL-12 is the dominant cytokine driving both CD8(+) T cell priming in the lymph node and expansion in the lungs; however, type I IFN and IL-27 have nonredundant roles supporting pulmonary CD8(+) T cell expansion. Thus, IL-12 is a major signal promoting priming in the lymph node, but a multitude of inflammatory signals converge in the lung to promote continued expansion. Furthermore, these cytokines regulate the differentiation and function of CD8(+) T cells during tuberculosis. These data demonstrate distinct and overlapping roles for each of the cytokines examined and underscore the complexity of CD8(+) T cell regulation during tuberculosis. Copyright © 2016 by The American Association of Immunologists, Inc.

  13. The immunological response and post-treatment survival of DC-vaccinated melanoma patients are associated with increased Th1/Th17 and reduced Th3 cytokine responses.

    PubMed

    Durán-Aniotz, Claudia; Segal, Gabriela; Salazar, Lorena; Pereda, Cristián; Falcón, Cristián; Tempio, Fabián; Aguilera, Raquel; González, Rodrigo; Pérez, Claudio; Tittarelli, Andrés; Catalán, Diego; Nervi, Bruno; Larrondo, Milton; Salazar-Onfray, Flavio; López, Mercedes N

    2013-04-01

    Immunization with autologous dendritic cells (DCs) loaded with a heat shock-conditioned allogeneic melanoma cell lysate caused lysate-specific delayed type hypersensitivity (DTH) reactions in a number of patients. These responses correlated with a threefold prolonged long-term survival of DTH(+) with respect to DTH(-) unresponsive patients. Herein, we investigated whether the immunological reactions associated with prolonged survival were related to dissimilar cellular and cytokine responses in blood. Healthy donors and melanoma patient's lymphocytes obtained from blood before and after vaccinations and from DTH biopsies were analyzed for T cell population distribution and cytokine release. Peripheral blood lymphocytes from melanoma patients have an increased proportion of Th3 (CD4(+) TGF-β(+)) regulatory T lymphocytes compared with healthy donors. Notably, DTH(+) patients showed a threefold reduction of Th3 cells compared with DTH(-) patients after DCs vaccine treatment. Furthermore, DCs vaccination resulted in a threefold augment of the proportion of IFN-γ releasing Th1 cells and in a twofold increase of the IL-17-producing Th17 population in DTH(+) with respect to DTH(-) patients. Increased Th1 and Th17 cell populations in both blood and DTH-derived tissues suggest that these profiles may be related to a more effective anti-melanoma response. Our results indicate that increased proinflammatory cytokine profiles are related to detectable immunological responses in vivo (DTH) and to prolonged patient survival. Our study contributes to the understanding of immunological responses produced by DCs vaccines and to the identification of follow-up markers for patient outcome that may allow a closer individual monitoring of patients.

  14. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?

    PubMed

    van Die, Irma; Cummings, Richard D

    2010-01-01

    Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival.

  15. Cytokine and chemokine expression in the central nervous system associated with protective cell-mediated immunity against Cryptococcus neoformans.

    PubMed

    Uicker, William C; Doyle, Hester A; McCracken, James P; Langlois, Mary; Buchanan, Kent L

    2005-02-01

    Cryptococcus neoformans is a yeast that causes cryptococcosis, a life-threatening disease that develops following inhalation and dissemination of the organisms. C. neoformans has a predilection for the central nervous system (CNS) and mortality is most frequently associated with meningoencephalitis. Susceptibility to cryptococcosis is increased in patients with deficiencies in cell-mediated immunity (CMI). Because cryptococcal CNS infections are associated with mortality and diagnosis of cryptococcosis is often not made until after dissemination to the CNS, a better understanding of host defense mechanisms against C. neoformans in the CNS is needed to design improved therapies for immunocompromised individuals suffering from cryptococcosis. Using a mouse model, we previously described a protective cell-mediated immune response induced in the periphery that limited the growth of C. neoformans in the CNS. In the current investigation, we examined cytokine and chemokine expression in the CNS to identify factors important in achieving protective immunity. We observed increased expression of IL-1beta, TNF-alpha, IFN-gamma, MCP-1, RANTES, and IP-10 in C. neoformans-infected brains of immune mice compared to control mice suggesting that these cytokines and chemokines are associated with the protective immune response. Furthermore, the Th1-type cytokines TNF-alpha and IFN-gamma, but not the Th2 cytokines IL-4 and IL-5, were secreted at significantly higher levels in C. neoformans-infected brains of immune mice compared to control mice. Our results demonstrate that cytokines and chemokines associated with CMI are produced following infection in the CNS of immunized mice, and the expression of these factors correlates with protection against C. neoformans in the CNS.

  16. Host Responses to Malassezia spp. in the Mammalian Skin

    PubMed Central

    Sparber, Florian; LeibundGut-Landmann, Salomé

    2017-01-01

    The skin of mammalian organisms is home for a myriad of microbes. Many of these commensals are thought to have beneficial effects on the host by critically contributing to immune homeostasis. Consequently, dysbiosis can have detrimental effects for the host that may manifest with inflammatory diseases at the barrier tissue. Besides bacteria, fungi make an important contribution to the microbiota and among these, the yeast Malassezia widely dominates in most areas of the skin in healthy individuals. There is accumulating evidence that Malassezia spp. are involved in a variety of skin disorders in humans ranging from non- or mildly inflammatory conditions such as dandruff and pityriasis versicolor to more severe inflammatory skin diseases like seborrheic eczema and atopic dermatitis. In addition, Malassezia is strongly linked to the development of dermatitis and otitis externa in dogs. However, the association of Malassezia spp. with such diseases remains poorly characterized. Until now, studies on the fungus–host interaction remain sparse and they are mostly limited to experiments with isolated host cells in vitro. They suggest a multifaceted crosstalk of Malassezia spp. with the skin by direct activation of the host via conserved pattern recognition receptors and indirectly via the release of fungus-derived metabolites that can modulate the function of hematopoietic and/or non-hematopoietic cells in the barrier tissue. In this review, we discuss our current understanding of the host response to Malassezia spp. in the mammalian skin. PMID:29213272

  17. Host Responses to Malassezia spp. in the Mammalian Skin.

    PubMed

    Sparber, Florian; LeibundGut-Landmann, Salomé

    2017-01-01

    The skin of mammalian organisms is home for a myriad of microbes. Many of these commensals are thought to have beneficial effects on the host by critically contributing to immune homeostasis. Consequently, dysbiosis can have detrimental effects for the host that may manifest with inflammatory diseases at the barrier tissue. Besides bacteria, fungi make an important contribution to the microbiota and among these, the yeast Malassezia widely dominates in most areas of the skin in healthy individuals. There is accumulating evidence that Malassezia spp. are involved in a variety of skin disorders in humans ranging from non- or mildly inflammatory conditions such as dandruff and pityriasis versicolor to more severe inflammatory skin diseases like seborrheic eczema and atopic dermatitis. In addition, Malassezia is strongly linked to the development of dermatitis and otitis externa in dogs. However, the association of Malassezia spp. with such diseases remains poorly characterized. Until now, studies on the fungus-host interaction remain sparse and they are mostly limited to experiments with isolated host cells in vitro . They suggest a multifaceted crosstalk of Malassezia spp. with the skin by direct activation of the host via conserved pattern recognition receptors and indirectly via the release of fungus-derived metabolites that can modulate the function of hematopoietic and/or non-hematopoietic cells in the barrier tissue. In this review, we discuss our current understanding of the host response to Malassezia spp. in the mammalian skin.

  18. Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response.

    PubMed

    Queiroz, Adriano; Riley, Lee W

    2017-01-01

    The lipid-rich cell wall of Mycobacterium tuberculosis is a dynamic structure that is involved in the regulation of the transport of nutrients, toxic host-cell effector molecules, and anti-tuberculosis drugs. It is therefore postulated to contribute to the long-term bacterial survival in an infected human host. Accumulating evidence suggests that M. tuberculosis remodels the lipid composition of the cell wall as an adaptive mechanism against host-imposed stress. Some of these lipid species (trehalose dimycolate, diacylated sulphoglycolipid, and mannan-based lipoglycans) trigger an immunopathologic response, whereas others (phthiocerol dimycocerosate, mycolic acids, sulpholipid-1, and di-and polyacyltrehalose) appear to dampen the immune responses. These lipids appear to be coordinately expressed in the cell wall of M. tuberculosis during different phases of infection, ultimately determining the clinical fate of the infection. This review summarizes the current state of knowledge on the metabolism, transport, and homeostatic or immunostatic regulation of the cell wall lipids, and their orchestrated interaction with host immune responses that results in bacterial clearance, persistence, or tuberculosis.

  19. Lamellar pro-inflammatory cytokine expression patterns in laminitis at the developmental stage and at the onset of lameness: innate vs. adaptive immune response.

    PubMed

    Belknap, J K; Giguère, S; Pettigrew, A; Cochran, A M; Van Eps, A W; Pollitt, C C

    2007-01-01

    Recent research has indicated that inflammation plays a role in the early stages of laminitis and that, similar to organ failure in human sepsis, early inflammatory mechanisms may lead to downstream events resulting in lamellar failure. Characterisation of the type of immune response (i.e. innate vs. adaptive) is essential in order to develop therapeutic strategies to counteract these deleterious events. To quantitate gene expression of pro-inflammatory cytokines known to be important in the innate and adaptive immune response during the early stages of laminitis, using both the black walnut extract (BWE) and oligofructose (OF) models of laminitis. Real-time qPCR was used to assess lamellar mRNA expression of interleukins-1beta, 2, 4, 6, 8, 10, 12 and 18, and tumour necrosis factor alpha and interferon gamma at the developmental stage and at the onset of lameness. Significantly increased lamellar mRNA expression of cytokines important in the innate immune response were present at the developmental stage of the BWE model, and at the onset of acute lameness in both the BWE model and OF model. Of the cytokines characteristic of the Th1 and Th2 arms of the adaptive immune response, a mixed response was noted at the onset of acute lameness in the BWE model, whereas the response was skewed towards a Th1 response at the onset of lameness in the OF model. Lamellar inflammation is characterised by strong innate immune response in the developmental stages of laminitis; and a mixture of innate and adaptive immune responses at the onset of lameness. These results indicate that anti-inflammatory treatment of early stage laminitis (and the horse at risk of laminitis) should include not only therapeutic drugs that address prostanoid activity, but should also address the marked increases in lamellar cytokine expression.

  20. Graft-versus-host disease causes failure of donor hematopoiesis and lymphopoiesis in interferon-gamma receptor-deficient hosts.

    PubMed

    Delisle, Jean-Sébastien; Gaboury, Louis; Bélanger, Marie-Pier; Tassé, Eliane; Yagita, Hideo; Perreault, Claude

    2008-09-01

    The immunopathologic condition known as graft-versus-host disease (GVHD) results from a type I T-cell process. However, a prototypical type I cytokine, interferon-gamma (IFN-gamma), can protect against several manifestations of GVHD in recipients of major histocompatibility complex (MHC)-mismatched hematopoietic cells. We transplanted hematopoietic cells from C3H.SW donors in wild-type (wt) and IFN-gamma-receptor-deficient (IFN-gammaRKO) MHC-matched C57BL/6 recipients. In IFN-gammaRKO recipients, host cells were unresponsive to IFN-gamma, whereas wt donor cells were exposed to exceptionally high levels of IFN-gamma. From an IFN-gamma perspective, we could therefore evaluate the impact of a loss-of-function on host cells and gain-of-function on donor cells. We found that lack of IFN-gammaR prevented up-regulation of MHC proteins on host cells but did not mitigate damage to most target organs. Two salient phenotypes in IFN-gammaRKO recipients involved donor cells: lymphoid hypoplasia and hematopoietic failure. Lymphopenia was due to FasL-induced apoptosis and decreased cell proliferation. Bone marrow aplasia resulted from a decreased proliferation of hematopoietic stem/progenitor cells that was associated with down-regulation of 2 genes negatively regulated by IFN-gamma: Ccnd1 and Myc. We conclude that IFN-gamma produced by alloreactive T cells may entail a severe graft-versus-graft reaction and could be responsible for cytopenias that are frequently observed in subjects with GVHD.

  1. New fronts emerge in the influenza cytokine storm.

    PubMed

    Guo, Xi-Zhi J; Thomas, Paul G

    2017-07-01

    Influenza virus is a significant pathogen in humans and animals with the ability to cause extensive morbidity and mortality. Exuberant immune responses induced following infection have been described as a "cytokine storm," associated with excessive levels of proinflammatory cytokines and widespread tissue damage. Recent studies have painted a more complex picture of cytokine networks and their contributions to clinical outcomes. While many cytokines clearly inflict immunopathology, others have non-pathological delimited roles in sending alarm signals, facilitating viral clearance, and promoting tissue repair, such as the IL-33-amphiregulin axis, which plays a key role in resolving some types of lung damage. Recent literature suggests that type 2 cytokines, traditionally thought of as not involved in anti-influenza immunity, may play an important regulatory role. Here, we discuss the diverse roles played by cytokines after influenza infection and highlight new, serene features of the cytokine storm, while highlighting the specific functions of relevant cytokines that perform unique immune functions and may have applications for influenza therapy.

  2. A novel retinoic acid, catechin hydrate and mustard oil-based emulsion for enhanced cytokine and antibody responses against multiple strains of HIV-1 following mucosal and systemic vaccinations

    PubMed Central

    Yu, Mingke; Vajdy, Michael

    2011-01-01

    Non-replicating protein- or DNA-based antigens generally require immune-enhancing adjuvants and delivery systems. It has been particularly difficult to raise antibodies against gp120 of HIV-1, which constitutes an important approach in HIV vaccine design. While almost all effort in adjuvant research has focused on mimicking the pathogens and the danger signals they engender in the host, relatively little effort has been spent on nutritive approaches. In this study, a new nutritive immune-enhancing delivery system (NIDS) composed of vitamin A, a polyphenol-flavonoid catechin hydrate, and mustard oil was tested for its adjuvant effect in immune responses against the gp120 protein of HIV-1CN54. Following a combination of two mucosal and two systemic vaccinations of mice, we found significant enhancement of both local and systemic antibodies as well as cytokine responses. These data have important implications for vaccine and adjuvant design against HIV-1 and other pathogens. PMID:21272602

  3. Mycobacterium tuberculosis Hip1 Dampens Macrophage Proinflammatory Responses by Limiting Toll-Like Receptor 2 Activation▿

    PubMed Central

    Madan-Lala, Ranjna; Peixoto, Katia Vitorello; Re, Fabio; Rengarajan, Jyothi

    2011-01-01

    Mycobacterium tuberculosis is a highly successful human pathogen that evades host innate immunity by interfering with macrophage functions. In addition to avoiding macrophage microbicidal activities, M. tuberculosis triggers secretion of proinflammatory cytokines and chemokines in macrophages. The levels of proinflammatory cytokines induced by clinical M. tuberculosis isolates are thought to play an important role in determining tuberculosis disease progression and severity, but the mechanisms by which M. tuberculosis modulates the magnitude of inflammatory responses remain unclear. Here we show that M. tuberculosis restricts robust macrophage activation and dampens proinflammatory responses through the cell envelope-associated serine hydrolase Hip1 (hydrolase important for pathogenesis 1). By transcriptionally profiling macrophages infected with either wild-type or hip1 mutant bacteria, we found that the hip1 mutant induced earlier and significantly higher levels of several proinflammatory cytokines and chemokines. We show that increased activation of Toll-like receptor 2 (TLR2)- and MyD88-dependent signaling pathways mediates the enhanced cytokine secretion induced by the hip1 mutant. Thus, Hip1 restricts the onset and magnitude of proinflammatory cytokines by limiting TLR2-dependent activation. We also show that Hip1 dampens TLR2-independent activation of the inflammasome and limits secretion of interleukin-18 (IL-18). Dampening of TLR2 signaling does not require viable M. tuberculosis or phagocytosis but does require Hip1 catalytic activity. We propose that M. tuberculosis restricts proinflammatory responses by masking cell surface interactions between TLR2 agonists on M. tuberculosis and TLR2 on macrophages. This strategy may allow M. tuberculosis to evade early detection by host immunity, delay the onset of adaptive immune responses, and accelerate disease progression. PMID:21947769

  4. Mycobacterium tuberculosis Hip1 dampens macrophage proinflammatory responses by limiting toll-like receptor 2 activation.

    PubMed

    Madan-Lala, Ranjna; Peixoto, Katia Vitorello; Re, Fabio; Rengarajan, Jyothi

    2011-12-01

    Mycobacterium tuberculosis is a highly successful human pathogen that evades host innate immunity by interfering with macrophage functions. In addition to avoiding macrophage microbicidal activities, M. tuberculosis triggers secretion of proinflammatory cytokines and chemokines in macrophages. The levels of proinflammatory cytokines induced by clinical M. tuberculosis isolates are thought to play an important role in determining tuberculosis disease progression and severity, but the mechanisms by which M. tuberculosis modulates the magnitude of inflammatory responses remain unclear. Here we show that M. tuberculosis restricts robust macrophage activation and dampens proinflammatory responses through the cell envelope-associated serine hydrolase Hip1 (hydrolase important for pathogenesis 1). By transcriptionally profiling macrophages infected with either wild-type or hip1 mutant bacteria, we found that the hip1 mutant induced earlier and significantly higher levels of several proinflammatory cytokines and chemokines. We show that increased activation of Toll-like receptor 2 (TLR2)- and MyD88-dependent signaling pathways mediates the enhanced cytokine secretion induced by the hip1 mutant. Thus, Hip1 restricts the onset and magnitude of proinflammatory cytokines by limiting TLR2-dependent activation. We also show that Hip1 dampens TLR2-independent activation of the inflammasome and limits secretion of interleukin-18 (IL-18). Dampening of TLR2 signaling does not require viable M. tuberculosis or phagocytosis but does require Hip1 catalytic activity. We propose that M. tuberculosis restricts proinflammatory responses by masking cell surface interactions between TLR2 agonists on M. tuberculosis and TLR2 on macrophages. This strategy may allow M. tuberculosis to evade early detection by host immunity, delay the onset of adaptive immune responses, and accelerate disease progression.

  5. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death.

    PubMed

    Philip, Naomi H; DeLaney, Alexandra; Peterson, Lance W; Santos-Marrero, Melanie; Grier, Jennifer T; Sun, Yan; Wynosky-Dolfi, Meghan A; Zwack, Erin E; Hu, Baofeng; Olsen, Tayla M; Rongvaux, Anthony; Pope, Scott D; López, Carolina B; Oberst, Andrew; Beiting, Daniel P; Henao-Mejia, Jorge; Brodsky, Igor E

    2016-10-01

    Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense.

  6. Alternative Effector-Function Profiling Identifies Broad HIV-Specific T-Cell Responses in Highly HIV-Exposed Individuals Who Remain Uninfected

    PubMed Central

    Ruiz-Riol, Marta; Llano, Anuska; Ibarrondo, Javier; Zamarreño, Jennifer; Yusim, Karina; Bach, Vanessa; Mothe, Beatriz; Perez-Alvarez, Susana; Fernandez, Marco A.; Requena, Gerard; Meulbroek, Michael; Pujol, Ferran; Leon, Agathe; Cobarsi, Patricia; Korber, Bette T.; Clotet, Bonaventura; Ganoza, Carmela; Sanchez, Jorge; Coll, Josep; Brander, Christian

    2015-01-01

    The characterization of host immune responses to human immunodeficiency virus (HIV) in HIV controllers and individuals with high exposure but seronegativity to HIV (HESN) is needed to guide the development of effective preventive and therapeutic vaccine candidates. However, several technical hurdles severely limit the definition of an effective virus-specific T-cell response. By using a toggle-peptide approach, which takes HIV sequence diversity into account, and a novel, boosted cytokine staining/flow cytometry strategy, we here describe new patterns of T-cell responses to HIV that would be missed by standard assays. Importantly, this approach also allows detection of broad and strong virus-specific T-cell responses in HESN individuals that are characterized by a T-helper type 1 cytokine–like effector profile and produce cytokines that have been associated with potential control of HIV infection, including interleukin 10, interleukin 13, and interleukin 22. These results establish a novel approach to improve the current understanding of HIV-specific T-cell immunity and identify cellular immune responses and individual cytokines as potential markers of relative HIV resistance. As such, the findings also help develop similar strategies for more-comprehensive assessments of host immune responses to other human infections and immune-mediated disorders. PMID:25249264

  7. The Host Response in Patients with Sepsis Developing Intensive Care Unit-acquired Secondary Infections.

    PubMed

    van Vught, Lonneke A; Wiewel, Maryse A; Hoogendijk, Arie J; Frencken, Jos F; Scicluna, Brendon P; Klein Klouwenberg, Peter M C; Zwinderman, Aeilko H; Lutter, Rene; Horn, Janneke; Schultz, Marcus J; Bonten, Marc M J; Cremer, Olaf L; van der Poll, Tom

    2017-08-15

    Sepsis can be complicated by secondary infections. We explored the possibility that patients with sepsis developing a secondary infection while in the intensive care unit (ICU) display sustained inflammatory, vascular, and procoagulant responses. To compare systemic proinflammatory host responses in patients with sepsis who acquire a new infection with those who do not. Consecutive patients with sepsis with a length of ICU stay greater than 48 hours were prospectively analyzed for the development of ICU-acquired infections. Twenty host response biomarkers reflective of key pathways implicated in sepsis pathogenesis were measured during the first 4 days after ICU admission and at the day of an ICU-acquired infection or noninfectious complication. Of 1,237 admissions for sepsis (1,089 patients), 178 (14.4%) admissions were complicated by ICU-acquired infections (at Day 10 [6-13], median with interquartile range). Patients who developed a secondary infection showed higher disease severity scores and higher mortality up to 1 year than those who did not. Analyses of biomarkers in patients who later went on to develop secondary infections revealed a more dysregulated host response during the first 4 days after admission, as reflected by enhanced inflammation, stronger endothelial cell activation, a more disturbed vascular integrity, and evidence for enhanced coagulation activation. Host response reactions were similar at the time of ICU-acquired infectious or noninfectious complications. Patients with sepsis who developed an ICU-acquired infection showed a more dysregulated proinflammatory and vascular host response during the first 4 days of ICU admission than those who did not develop a secondary infection.

  8. Host-Toxoplasma gondii Coadaptation Leads to Fine Tuning of the Immune Response.

    PubMed

    Brasil, Thaís Rigueti; Freire-de-Lima, Celio Geraldo; Morrot, Alexandre; Vetö Arnholdt, Andrea Cristina

    2017-01-01

    Toxoplasma gondii has successfully developed strategies to evade host's immune response and reach immune privileged sites, which remains in a controlled environment inside quiescent tissue cysts. In this review, we will approach several known mechanisms used by the parasite to modulate mainly the murine immune system at its favor. In what follows, we review recent findings revealing interference of host's cell autonomous immunity and cell signaling, gene expression, apoptosis, and production of microbicide molecules such as nitric oxide and oxygen reactive species during parasite infection. Modulation of host's metalloproteinases of extracellular matrix is also discussed. These immune evasion strategies are determinant to parasite dissemination throughout the host taking advantage of cells from the immune system to reach brain and retina, crossing crucial hosts' barriers.

  9. Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options.

    PubMed

    Josset, Laurence; Zeng, Hui; Kelly, Sara M; Tumpey, Terrence M; Katze, Michael G

    2014-02-04

    A novel avian-origin H7N9 influenza A virus (IAV) emerged in China in 2013, causing mild to lethal human respiratory infections. H7N9 originated with multiple reassortment events between avian viruses and carries genetic markers of human adaptation. Determining whether H7N9 induces a host response closer to that with human or avian IAV is important in order to better characterize this emerging virus. Here we compared the human lung epithelial cell response to infection with A/Anhui/01/13 (H7N9) or highly pathogenic avian-origin H5N1, H7N7, or human seasonal H3N2 IAV. The transcriptomic response to H7N9 was highly specific to this strain but was more similar to the response to human H3N2 than to that to other avian IAVs. H7N9 and H3N2 both elicited responses related to eicosanoid signaling and chromatin modification, whereas H7N9 specifically induced genes regulating the cell cycle and transcription. Among avian IAVs, the response to H7N9 was closest to that elicited by H5N1 virus. Host responses common to H7N9 and the other avian viruses included the lack of induction of the antigen presentation pathway and reduced proinflammatory cytokine induction compared to that with H3N2. Repression of these responses could have an important impact on the immunogenicity and virulence of H7N9 in humans. Finally, using a genome-based drug repurposing approach, we identified several drugs predicted to regulate the host response to H7N9 that may act as potential antivirals, including several kinase inhibitors, as well as FDA-approved drugs, such as troglitazone and minocycline. Importantly, we validated that minocycline inhibited H7N9 replication in vitro, suggesting that our computational approach holds promise for identifying novel antivirals. Whether H7N9 will be the next pandemic influenza virus or will persist and sporadically infect humans from its avian reservoir, similar to H5N1, is not known yet. High-throughput profiling of the host response to infection allows rapid

  10. Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication

    PubMed Central

    Bakre, Abhijeet; Mitchell, Patricia; Coleman, Jonathan K.; Jones, Les P.; Saavedra, Geraldine; Teng, Michael; Tompkins, S. Mark

    2012-01-01

    Respiratory syncytial virus (RSV) causes substantial morbidity and life-threatening lower respiratory tract disease in infants, young children and the elderly. Understanding the host response to RSV infection is critical for developing disease-intervention approaches. The role of microRNAs (miRNAs) in post-transcriptional regulation of host genes responding to RSV infection is not well understood. In this study, it was shown that RSV infection of a human alveolar epithelial cell line (A549) induced five miRNAs (let-7f, miR-24, miR-337-3p, miR-26b and miR-520a-5p) and repressed two miRNAs (miR-198 and miR-595), and showed that RSV G protein triggered let-7f expression. Luciferase–untranslated region reporters and miRNA mimics and inhibitors validated the predicted targets, which included cell-cycle genes (CCND1, DYRK2 and ELF4), a chemokine gene (CCL7) and the suppressor of cytokine signalling 3 gene (SOCS3). Modulating let-7 family miRNA levels with miRNA mimics and inhibitors affected RSV replication, indicating that RSV modulates host miRNA expression to affect the outcome of the antiviral host response, and this was mediated in part through RSV G protein expression. PMID:22894925

  11. Human Leukocyte Antigen Class I and Class II Polymorphisms and Serum Cytokine Profiles in Cervical Cancer.

    PubMed

    Bahls, Larissa; Yamakawa, Roger; Zanão, Karina; Alfieri, Daniela; Flauzino, Tamires; Delongui, Francieli; de Abreu, André; Souza, Raquel; Gimenes, Fabrícia; Reiche, Edna; Borelli, Sueli; Consolaro, Marcia

    2017-08-31

    Only a small proportion of women who are exposed to infection with high-risk human papillomavirus (HR-HPV) progress to persistent infection and develop cervical cancer (CC). The immune response and genetic background of the host may affect the risk of progression from a HR-HPV infection to lesions and cancer. However, to our knowledge, no studies has been conducted to evaluate the relationship between variability of human leukocyte antigens ( HLA ) genes and serum cytokine expression in this pathology. In the current study, we examined the associations of HLA alleles and haplotypes including Class I ( HLA-A , -B and -C ) and II ( HLA-DRB1 , -DQA1 and -DQB1 ) with serum levels of cytokines interleukin (IL)-6, tumor necrosis factor-α (TNF-α), IL-10 and IL-17 as well as risks of HPV infections, lesions and CC among admixed Brazilian women. HLA polymorphisms were associated with an increased risk or protection from HPV, lesions and CC. Additionally, we demonstrated a potential association of a HLA class I haplotype ( HLA-B*14-C*08 ) with higher IL-10 cytokine serum levels in cervical disease, suggesting an association between HLA class I and specific cytokines in cervical carcinogenesis. However, larger studies with detailed HPV types coupled with genetic data are needed to further evaluate the effects of HLA and CC by HPV genotype.

  12. Human Leukocyte Antigen Class I and Class II Polymorphisms and Serum Cytokine Profiles in Cervical Cancer

    PubMed Central

    Bahls, Larissa; Yamakawa, Roger; Zanão, Karina; Alfieri, Daniela; Flauzino, Tamires; Delongui, Francieli; de Abreu, André; Souza, Raquel; Gimenes, Fabrícia; Reiche, Edna; Borelli, Sueli; Consolaro, Marcia

    2017-01-01

    Only a small proportion of women who are exposed to infection with high-risk human papillomavirus (HR-HPV) progress to persistent infection and develop cervical cancer (CC). The immune response and genetic background of the host may affect the risk of progression from a HR-HPV infection to lesions and cancer. However, to our knowledge, no studies has been conducted to evaluate the relationship between variability of human leukocyte antigens (HLA) genes and serum cytokine expression in this pathology. In the current study, we examined the associations of HLA alleles and haplotypes including Class I (HLA-A, -B and -C) and II (HLA-DRB1, -DQA1 and -DQB1) with serum levels of cytokines interleukin (IL)-6, tumor necrosis factor-α (TNF-α), IL-10 and IL-17 as well as risks of HPV infections, lesions and CC among admixed Brazilian women. HLA polymorphisms were associated with an increased risk or protection from HPV, lesions and CC. Additionally, we demonstrated a potential association of a HLA class I haplotype (HLA-B*14-C*08) with higher IL-10 cytokine serum levels in cervical disease, suggesting an association between HLA class I and specific cytokines in cervical carcinogenesis. However, larger studies with detailed HPV types coupled with genetic data are needed to further evaluate the effects of HLA and CC by HPV genotype. PMID:28858203

  13. Meta-analysis of the effects of insect vector saliva on host immune responses and infection of vector-transmitted pathogens: a focus on leishmaniasis.

    PubMed

    Ockenfels, Brittany; Michael, Edwin; McDowell, Mary Ann

    2014-10-01

    A meta-analysis of the effects of vector saliva on the immune response and progression of vector-transmitted disease, specifically with regard to pathology, infection level, and host cytokine levels was conducted. Infection in the absence or presence of saliva in naïve mice was compared. In addition, infection in mice pre-exposed to uninfected vector saliva was compared to infection in unexposed mice. To control for differences in vector and pathogen species, mouse strain, and experimental design, a random effects model was used to compare the ratio of the natural log of the experimental to the control means of the studies. Saliva was demonstrated to enhance pathology, infection level, and the production of Th2 cytokines (IL-4 and IL-10) in naïve mice. This effect was observed across vector/pathogen pairings, whether natural or unnatural, and with single salivary proteins used as a proxy for whole saliva. Saliva pre-exposure was determined to result in less severe leishmaniasis pathology when compared with unexposed mice infected either in the presence or absence of sand fly saliva. The results of further analyses were not significant, but demonstrated trends toward protection and IFN-γ elevation for pre-exposed mice.

  14. Cytokine expression profile over time in burned mice.

    PubMed

    Finnerty, Celeste C; Przkora, Rene; Herndon, David N; Jeschke, Marc G

    2009-01-01

    The persistent inflammatory response induced by a severe burn increases patient susceptibility to infections and sepsis, potentially leading to multi-organ failure and death. In order to use murine models to develop interventions that modulate the post-burn inflammatory response, the response in mice and the similarities to the human response must first be determined. Here, we present the temporal serum cytokine expression profiles in burned mice in comparison to sham mice and human burn patients. Male C57BL/6 mice were randomized to control (n=47) or subjected to a 35% TBSA scald burn (n=89). Mice were sacrificed 3, 6, 9, 12, 24, and 48 h and 7, 10, and 14 days post-burn; cytokines were measured by multi-plex array. Following the burn injury, IL-6, IL-1beta, KC, G-CSF, TNF, IL-17, MIP-1alpha, RANTES, and GM-CSF were increased, p<0.05. IL-2, IL-3, and IL-5 were decreased, p<0.05. IL-10, IFN-gamma, and IL-12p70 were expressed in a biphasic manner, p<0.05. This temporal cytokine expression pattern elucidates the pathogenesis of the inflammatory response in burned mice. Expression of 11 cytokines were similar in mice and children, returning to lowest levels by post-burn day 14, confirming the utility of the burned mouse model for development of therapeutic interventions to attenuate the post-burn inflammatory response.

  15. Effects of prebiotics on immune system and cytokine expression.

    PubMed

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo

    2017-02-01

    Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.

  16. Cytokines and the immune-neuroendocrine network: What did we learn from infection and autoimmunity?

    PubMed

    Correa, Silvia G; Maccioni, Mariana; Rivero, Virginia E; Iribarren, Pablo; Sotomayor, Claudia E; Riera, Clelia M

    2007-01-01

    The initial view of the neuroendocrine-immune communication as the brake of immune activation is changing. Recent evidence suggests that the optimization of the body's overall response to infection could be actually the role of the immune-endocrine network. In gradually more complex organisms, the multiplicity of host-pathogen interfaces forced the development of efficient and protective responses. Molecules such as cytokines and Toll-like receptors (TLRs) are distributed both in the periphery and in the brain to participate in a coordinated adaptive function. When sustained release of inflammatory mediators occurs, as in autoimmune diseases, undesirable pathological consequences become evident with different manifestations and outcomes. Clearly, organisms are not well adapted to that disregulated condition yet, suggesting that additional partners within neuroendocrine-immune interactions might emerge from the evolutionary road.

  17. Recent advances in our understanding of human host responses to tuberculosis

    PubMed Central

    Schluger, Neil W

    2001-01-01

    Tuberculosis remains one of the world's greatest public health challenges: 2 billion persons have latent infection, 8 million people develop active tuberculosis annually, and 2–3 million die. Recently, significant advances in our understanding of the human immune response against tuberculosis have occurred. The present review focuses on recent work in macrophage and T-cell biology that sheds light on the human immune response to tuberculosis. The role of key cytokines such as interferon-γ is discussed, as is the role of CD4+ and CD8+ T cells in immune regulation in tuberculosis, particularly with regard to implications for vaccine development and evaluation. PMID:11686880

  18. Role of HLA, KIR, MICA, and Cytokines Genes in Leprosy

    PubMed Central

    Jarduli, Luciana Ribeiro; Sell, Ana Maria; Reis, Pâmela Guimarães; Ayo, Christiane Maria; Mazini, Priscila Saamara; Alves, Hugo Vicentin; Teixeira, Jorge Juarez Vieira; Visentainer, Jeane Eliete Laguila

    2013-01-01

    Many genes including HLA, KIR, and MICA genes, as well as polymorphisms in cytokines have been investigated for their role in infectious disease. HLA alleles may influence not only susceptibility or resistance to leprosy, but also the course of the disease. Some combinations of HLA and KIR may result in negative as well as positive interactions between NK cells and infected host cells with M. leprae, resulting in activation or inhibition of NK cells and, consequently, in death of bacillus. In addition, studies have demonstrated the influence of MICA genes in the pathogenesis of leprosy. Specifically, they may play a role in the interaction between NK cells and infected cells. Finally, pro- and anti-inflammatory cytokines have been influencing the clinical course of leprosy. Data from a wide variety of sources support the existence of genetic factors influencing the leprosy pathogenesis. These sources include twin studies, segregation analyses, family-based linkage and association studies, candidate gene association studies, and, most recently, genome-wide association studies (GWAS). The purpose of this brief review was to highlight the importance of some immune response genes and their correlation with the clinical forms of leprosy, as well as their implications for disease resistance and susceptibility. PMID:23936864

  19. Dietary sodium selenite affects host intestinal and systemic immune response and disease susceptibility to necrotic enteritis in commercial broilers.

    PubMed

    Xu, S Z; Lee, S H; Lillehoj, H S; Bravo, D

    2015-01-01

    1. This study was to evaluate the effects of supplementary dietary selenium (Se) given as sodium selenite on host immune response against necrotic enteritis (NE) in commercial broiler chickens. 2. Chicks were fed from hatching on a non-supplemented diet or diets supplemented with different levels of Se (0.25, 0.50, and 1.00 Se mg/kg). To induce NE, broiler chickens were orally infected with Eimeria maxima at 14 d of age and then with Clostridium perfringens 4 d later using our previously established NE disease model. 3. NE-associated clinical signs and host protective immunity were determined by body weight changes, intestinal lesion scores, and serum antibodies against α-toxin and necrotic enteritis B (NetB) toxin. The effects of dietary Se on the gene expression of pro-inflammatory cytokines e.g., interleukin (IL)-1β, IL-6, IL-8LITAF (lipopolysaccharide-induced TNFα-factor), tumour necrosis factor (TNF) SF15, and inducible nitric oxide synthase (iNOS), glutathione peroxidase 7 (GPx7), and avian β-defensins (AvBD) 6, 8, and 13 (following NE infection) were analysed in the intestine and spleen. 4. The results showed that dietary supplementation of newly hatched broiler chicks with 0.25 Se mg/kg from hatch significantly reduced NE-induced gut lesions compared with infected birds given a non-supplemented diet. The levels of serum antibody against the NetB toxin in the chicks fed with 0.25 and 0.50 mg/kg Se were significantly higher than the non-supplemented control group. The transcripts for IL-1β, IL-6, IL-8, iNOS, LITAF, and GPx7, as well as AvBD6, 8, and 13 were increased in the intestine and spleen of Se-supplemented groups, whereas transcript for TNFSF15 was decreased in the intestine. 5. It was concluded that dietary supplementation with optimum levels of Se exerted beneficial effects on host immune response to NE and reduced negative consequence of NE-induced immunopathology.

  20. The important and diverse roles of antibodies in the host response to Borrelia infections.

    PubMed

    LaRocca, T J; Benach, J L

    2008-01-01

    Antibodies are of critical importance in the host response to tick-borne Borrelia species that cause relapsing fever and Lyme disease. Recent studies on the role of various B cell subsets in the host response to Borrelia, complement-independent, bactericidal antibodies, and diagnostics led to this review that focuses on the array of functions that antibodies to Borrelia can perform.

  1. Host Transcriptional Response to Ebola Virus Infection

    PubMed Central

    Speranza, Emily; Connor, John H

    2017-01-01

    Ebola virus disease (EVD) is a serious illness that causes severe disease in humans and non-human primates (NHPs) and has mortality rates up to 90%. EVD is caused by the Ebolavirus and currently there are no licensed therapeutics or vaccines to treat EVD. Due to its high mortality rates and potential as a bioterrorist weapon, a better understanding of the disease is of high priority. Multiparametric analysis techniques allow for a more complete understanding of a disease and the host response. Analysis of RNA species present in a sample can lead to a greater understanding of activation or suppression of different states of the immune response. Transcriptomic analyses such as microarrays and RNA-Sequencing (RNA-Seq) have been important tools to better understand the global gene expression response to EVD. In this review, we outline the current knowledge gained by transcriptomic analysis of EVD. PMID:28930167

  2. Cardiorespiratory control and cytokine profile in response to heat stress, hypoxia, and lipopolysaccharide (LPS) exposure during early neonatal period.

    PubMed

    McDonald, Fiona B; Chandrasekharan, Kumaran; Wilson, Richard J A; Hasan, Shabih U

    2016-02-01

    Sudden infant death syndrome (SIDS) is one of the most common causes of postneonatal infant mortality in the developed world. An insufficient cardiorespiratory response to multiple environmental stressors (such as prone sleeping positioning, overwrapping, and infection), during a critical period of development in a vulnerable infant, may result in SIDS. However, the effect of multiple risk factors on cardiorespiratory responses has rarely been tested experimentally. Therefore, this study aimed to quantify the independent and possible interactive effects of infection, hyperthermia, and hypoxia on cardiorespiratory control in rats during the neonatal period. We hypothesized that lipopolysaccharide (LPS) administration will negatively impact cardiorespiratory responses to increased ambient temperature and hypoxia in neonatal rats. Sprague-Dawley neonatal rat pups were studied at postnatal day 6-8. Rats were examined at an ambient temperature of 33°C or 38°C. Within each group, rats were allocated to control, saline, or LPS (200 μg/kg) treatments. Cardiorespiratory and thermal responses were recorded and analyzed before, during, and after a hypoxic exposure (10% O2). Serum samples were taken at the end of each experiment to measure cytokine concentrations. LPS significantly increased cytokine concentrations (such as TNFα, IL-1β, MCP-1, and IL-10) compared to control. Our results do not support a three-way interaction between experimental factors on cardiorespiratory control. However, independently, heat stress decreased minute ventilation during normoxia and increased the hypoxic ventilatory response. Furthermore, LPS decreased hypoxia-induced tachycardia. Herein, we provide an extensive serum cytokine profile under various experimental conditions and new evidence that neonatal cardiorespiratory responses are adversely affected by dual interactions of environmental stress factors. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on

  3. Host defence related responses in bovine milk during an experimentally induced Streptococcus uberis infection

    PubMed Central

    2014-01-01

    Background Milk contains a range of proteins of moderate or low abundance that contribute to host defence. Characterisation of these proteins, the extent to which their abundance is regulated by pathogenic stimuli, and the variability of their response between and within individual animals would facilitate a better understanding of the molecular basis for this important function of milk. Results We have characterised the host defence proteins in bovine milk and their responses to intra-mammary infection by a common Gram positive mastitis pathogen, Streptococcus uberis, using a combination of 2D gel electrophoresis and GeLC mass spectrometry. In total, 68 host defence-associated proteins were identified, 18 of which have a direct antimicrobial function, 23 of which have a pathogen-recognition function, and 27 of which have a role in modulating inflammatory or immune signalling. The responsiveness of seven proteins was quantified by western blotting; validating the proteomic analyses, quantifying the within- and between animal variability of the responses, and demonstrating the complexity and specificity of the responses to this pathogen. Conclusions These data provide a foundation for understanding the role of milk in host-microbe interaction. Furthermore they provide candidate biomarkers for mastitis diagnosis, and will inform efforts to develop dairy products with improved health-promoting properties. PMID:24721702

  4. Behavioral Strategies of Phorid Parasitoids and Responses of Their Hosts, the Leaf-Cutting Ants

    PubMed Central

    Elizalde, Luciana; Folgarait, Patricia Julia

    2012-01-01

    Host-searching and oviposition behaviors of parasitoids, and defensive responses of the hosts, are fundamental in shaping the ecology of host-parasitoid interactions. In order to uncover key behavioral features for the little known interactions between phorid parasitoids (Diptera: Phoridae) and their leaf-cutting ant hosts (Formicidae: Attini), host-related behavioral strategies (i.e., host searching and oviposition) for 13 phorid species, and host defensive responses (i.e., hitchhikers and particular body postures) for 11 ant species, were studied. Data was collected at 14 localities, one of them characterized by its high species richness for this host-parasitoid system. Phorid species showed both great variation and specificity in attacking behaviors. Some chose their hosts using either an ambush or an actively searching strategy, while some species attacked ants on different body parts, and specialized on ants performing different tasks, such as when ants were foraging, removing wastes to refuse piles, or repairing the nest. Combining all the behaviors recorded, most phorid species differed in performance in at least one, making it possible to recognize species in the field through their behavior. Phorid species that attacked hosts with greater activity levels showed overall higher attack rates, although there was no significant correlation between attack rates by most phorid species and ant activity outside the nest while parasitoids were attacking. The presence of phorids was a significant determinant for the presence of defensive behaviors by the ants. Although ant species varied in the incidence levels of these defensive behaviors, most ant species reacted against different phorids by utilizing similar behaviors, in contrast to what parasitoids do. General features of the observed phorid-ant interactions were parasitoid specialization and corresponding high interspecific variation in their behaviors, while their hosts showed generalized responses to attacks

  5. WntD and Diedel: Two immunomodulatory cytokines in Drosophila immunity.

    PubMed

    Lamiable, Olivier; Meignin, Carine; Imler, Jean-Luc

    2016-10-01

    Remarkable progress has been made on the understanding of the basic mechanisms of innate immunity in flies, from sensing infection to production of effector molecules. However, how the immune response is orchestrated at the level of the organism remains poorly understood. While cytokines activating immune responses, such as Spaetzle or Unpaired-3, have been identified and characterized in Drosophila, much less is known regarding immunosuppressor cytokines. In a recent publication, we reported the identification of a novel cytokine, Diedel, which acts as systemic negative regulator of the IMD pathway. Here, we discuss the similarities between Diedel and WntD, another immunomodulatory cytokine and present evidence that the 2 molecules act independently from one another.

  6. T cell cytokine responses to stimulation with Ureaplasma parvum in pregnancy.

    PubMed

    Friedland, Yael D; Lee-Pullen, Tracey F; Nathan, Elizabeth A; Watts, Rory; Keelan, Jeffrey A; Payne, Matthew S; Ireland, Demelza J

    2016-08-01

    Ureaplasma spp. are a common vaginal microorganism causally linked to inflammation-driven preterm birth (PTB). The nature of the immune response to Ureaplasma spp. may influence PTB risk. This study sought to define maternal T cell cytokine responses to in vitro stimulation with Ureaplasma parvum serovar 3 (UpSV3) in vaginally colonised (UP+) and non-colonised (UP-) pregnant women. Whole blood flow cytometry demonstrated an increase (p=0.027) in the baseline frequency of IFNγ-positive CD3(+)CD4(-)(CD8(+)) T cells in UP+ women. UpSV3 stimulation resulted in a significant and specific increase (p=0.001) in the frequency of IFNγ-positive CD3(+)CD4(-)(CD8(+)) T cells, regardless of vaginal colonisation status. UpSV3 stimulation also increased the frequency of IFNγ-positive CD3(+)CD4(+) T cells, particularly in the UP+ group (p=0.003). This is the first published study to examine T cell responses to Ureaplasma spp. Future appropriately-powered studies are needed to assess whether insufficient priming or a loss of tolerance to Ureaplasma spp. is occurring in UP+ women at risk of PTB. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Cytokine-Conditioned Dendritic Cells Induce Humoral Tolerance to Protein Therapy in Mice

    PubMed Central

    Sule, Gautam; Suzuki, Masataka; Guse, Kilian; Cela, Racel; Rodgers, John R.

    2012-01-01

    Abstract A major obstacle in the genetic therapy of inherited metabolic disease is host immune responses to the therapeutic protein. This is best exemplified by inhibitor formation in the protein therapy for hemophilia A. An approach to overcoming this is induction of immunological tolerance to the therapeutic protein. Tolerogenic dendritic cells (DCtols) have been reported to induce tolerance. In addition, cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β1 are known to induce tolerance. To model protein therapy, we used ovalbumin (OVA) as antigen in BALB/c mice and their transgenic derivative, DO11.10 mice. In this study we show that adoptive transfer of antigen-pulsed dendritic cells (DCs) treated with a combination of IL-10 and TGF-β1 can suppress the antibody response in mice. Adoptive transfer of cytokine-conditioned DCs in preimmunized mice results in reduction of antibody response in the mice. Furthermore, the effect is antigen specific, as the recipient mice were able to mount a potent antibody response to the control antigen. Last, we show that TGF-β1 and IL-10-conditioned DCs are able to inhibit anti-FVIII antibody responses in FVIII knockout (KO) mice. Analysis of the contribution of IL-10 and TGF-β1 to the DCtol phenotype shows that IL-10 treatment of DCs is sufficient for inducing OVA-specific tolerance in BALB/c mice, but we observed a requirement for treatment with both human TGF-β1 and human IL-10 to significantly inhibit anti-FVIII antibody responses in FVIII KO mice. This paper demonstrates that autologous cell therapy for antigen-targeted immune suppression may be developed to facilitate long-term therapy. PMID:22468961

  8. Emerging IL-12 family cytokines in the fight against fungal infections.

    PubMed

    Thompson, Aiysha; Orr, Selinda J

    2018-05-21

    Invasive fungal infections cause approximately 1.5 million deaths per year worldwide and are a growing threat to human health. Current anti-fungal therapies are often insufficient, therefore studies into host-pathogen interactions are critical for the development of novel therapies to improve mortality rates. Myeloid cells, such as macrophages and dendritic cells, express pattern recognition receptor (PRRs), which are important for fungal recognition. Engagement of these PRRs by fungal pathogens induces multiple cytokines, which in turn activate T effector responses. Interleukin (IL)-12 family members (IL-12p70, IL-23, IL-27 and IL-35) link innate immunity with the development of adaptive immunity and are also important for regulating T cell responses. IL-12 and IL-23 have established roles during anti-fungal immunity, whereas emerging roles for IL-27 and IL-35 have recently been reported. Here, we discuss the IL-12 family, focusing on IL-27 and IL-35 during anti-fungal immune responses to pathogens such as Candida and Aspergillus. Copyright © 2018. Published by Elsevier Ltd.

  9. Cytokine activation induces human memory-like NK cells.

    PubMed

    Romee, Rizwan; Schneider, Stephanie E; Leong, Jeffrey W; Chase, Julie M; Keppel, Catherine R; Sullivan, Ryan P; Cooper, Megan A; Fehniger, Todd A

    2012-12-06

    Natural killer (NK) cells are lymphocytes that play an important role in the immune response to infection and malignancy. Recent studies in mice have shown that stimulation of NK cells with cytokines or in the context of a viral infection results in memory-like properties. We hypothesized that human NK cells exhibit such memory-like properties with an enhanced recall response after cytokine preactivation. In the present study, we show that human NK cells preactivated briefly with cytokine combinations including IL-12, IL-15, and IL-18 followed by a 7- to 21-day rest have enhanced IFN-γ production after restimulation with IL-12 + IL-15, IL-12 + IL-18, or K562 leukemia cells. This memory-like phenotype was retained in proliferating NK cells. In CD56(dim) NK cells, the memory-like IFN-γ response was correlated with the expression of CD94, NKG2A, NKG2C, and CD69 and a lack of CD57 and KIR. Therefore, human NK cells have functional memory-like properties after cytokine activation, which provides a novel rationale for integrating preactivation with combinations of IL-12, IL-15, and IL-18 into NK cell immunotherapy strategies.

  10. Cytokine and cytokine receptor genes of adaptive immune response are differentially associated with breast cancer risk in American women of African and European ancestry

    PubMed Central

    Quan, Lei; Gong, Zhihong; Yao, Song; Bandera, Elisa V.; Zirpoli, Gary; Hwang, Helena; Roberts, Michelle; Ciupak, Gregory; Davis, Warren; Sucheston, Lara; Pawlish, Karen; Bovbjerg, Dana H.; Jandorf, Lina; Cabasag, Citadel; Coignet, Jean-Gabriel; Ambrosone, Christine B.; Hong, Chi-Chen

    2014-01-01

    Disparities in breast cancer biology are evident between American women of African ancestry (AA) and European ancestry (EA), and may be due, in part, to differences in immune function. To assess the potential role of constitutional host immunity on breast carcinogenesis, we tested associations between breast cancer risk and 47 single nucleotide polymorphisms (SNPs) in 26 cytokine-related genes of the adaptive immune system using 650 EA (n=335 cases) and 864 AA (n=458 cases) women from the Women's Circle of Health Study (WCHS). With additional participant accrual to the WCHS, promising SNPs from the initial analysis were evaluated in a larger sample size (1307 EAs and 1365 AAs). Multivariate logistic regression found SNPs in genes important for T helper type 1 (Th1) immunity (IFNGR2 rs1059293, IL15RA rs2296135, LTA rs1041981), Th2 immunity (IL4R rs1801275), and T regulatory cell-mediated immunosuppression (TGFB1 rs1800469), associated with breast cancer risk, mainly among AAs. The combined effect of these five SNPs was highly significant among AAs (P-trend=0.0005). When stratified by estrogen receptor (ER) status, LTA rs1041981 was associated with ER positive breast cancers among EAs and marginally among AAs. Among AA women only, IL15 rs10833 and IL15RA rs2296135 were associated with ER positive tumors, and IL12RB1 rs375947, IL15 rs10833 and TGFB1 rs1800469 were associated with ER negative tumors. Our study systematically identified genetic variants in the adaptive immune response pathway associated with breast cancer risk, which appears to differ by ancestry groups, menopausal status and ER status. PMID:23996684

  11. Neuro-immune interactions in inflammation and host defense: Implications for transplantation.

    PubMed

    Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M

    2018-03-01

    Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  12. Dual RNA-seq of Nontypeable Haemophilus influenzae and Host Cell Transcriptomes Reveals Novel Insights into Host-Pathogen Cross Talk.

    PubMed

    Baddal, Buket; Muzzi, Alessandro; Censini, Stefano; Calogero, Raffaele A; Torricelli, Giulia; Guidotti, Silvia; Taddei, Anna R; Covacci, Antonello; Pizza, Mariagrazia; Rappuoli, Rino; Soriani, Marco; Pezzicoli, Alfredo

    2015-11-17

    pathogen and its target host cells represents a key strategy for identifying regulatory responses that drive pathogenesis. In this study, we report the progressive events of NTHi colonization in a highly differentiated model of ciliated bronchial epithelium. Genome-wide transcriptome maps of NTHi during infection provided mechanistic insights into bacterial adaptive responses to the host niche, with modulation of the central metabolism as an important signature of the evolving milieu. Our data indicate that infected epithelia respond by substantial alteration of the cytoskeletal network and cytokine repertoire, revealing a dynamic cross talk that is responsible for the onset of inflammation. This work significantly enhances our understanding of the means by which NTHi promotes infection on human mucosae and reveals novel strategies exploited by this important pathogen to cause invasive disease. Copyright © 2015 Baddal et al.

  13. Dermatophytes activate skin keratinocytes via mitogen-activated protein kinase signaling and induce immune responses.

    PubMed

    Achterman, Rebecca R; Moyes, David L; Thavaraj, Selvam; Smith, Adam R; Blair, Kris M; White, Theodore C; Naglik, Julian R

    2015-04-01

    Dermatophytes cause superficial and cutaneous fungal infections in immunocompetent hosts and invasive disease in immunocompromised hosts. However, the host mechanisms that regulate innate immune responses against these fungi are largely unknown. Here, we utilized commercially available epidermal tissues and primary keratinocytes to assess (i) damage induction by anthropophilic, geophilic, and zoophilic dermatophyte strains and (ii) the keratinocyte signaling pathways, transcription factors, and proinflammatory responses induced by a representative dermatophyte, Trichophyton equinum. Initially, five dermatophyte species were tested for their ability to invade, cause tissue damage, and induce cytokines, with Microsporum gypseum inducing the greatest level of damage and cytokine release. Using T. equinum as a representative dermatophyte, we found that the mitogen-activated protein kinase (MAPK) pathways were predominantly affected, with increased levels of phospho-p38 and phospho-Jun N-terminal protein kinase (JNK) but decreased levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2). Notably, the NF-κB and PI3K pathways were largely unaffected. T. equinum also significantly increased expression of the AP-1-associated transcription factor, c-Fos, and the MAPK regulatory phosphatase, MKP1. Importantly, the ability of T. equinum to invade, cause tissue damage, activate signaling and transcription factors, and induce proinflammatory responses correlated with germination, indicating that germination may be important for dermatophyte virulence and host immune activation. Copyright © 2015, Achterman et al.

  14. Polarized type 2 alloreactive CD4+ and CD8+ donor T cells fail to induce experimental acute graft-versus-host disease.

    PubMed

    Krenger, W; Snyder, K M; Byon, J C; Falzarano, G; Ferrara, J L

    1995-07-15

    Acute graft-vs-host disease (GVHD) is thought to be mediated by alloreactive T cells with a type 1 cytokine phenotype. To prevent the development of acute GVHD, we have successfully polarized mature donor T cells toward a type 2 cytokine phenotype ex-vivo by incubating them with murine rIL-4 in a primary MLC. Polarized type 2 T cells were then transplanted with T cell-depleted bone marrow cells into irradiated recipients across either MHC class II (bm12-->C57BL/6) or class I (bm1-->C57BL/6) barriers, and the intensity of GVHD was measured by assessment of several in vitro and in vivo parameters. The injection of polarized type 2 T cells abrogated the mitogen-induced production of IFN-gamma by splenocytes from transplanted hosts on day 13 after bone marrow transplantation (BMT). Injection of polarized type 2 T cells failed to induce secretion of the effector phase cytokine TNF-alpha by splenocytes stimulated with LPS both in vitro and in vivo, and survival of transplanted mice after i.v. injection with LPS was significantly improved. Furthermore, cell-mixing experiments revealed that polarized type 2 T cells were able to inhibit type 1 cytokine responses induced by naive T cells after BMT. These data demonstrate that both polarized CD4+ and CD8+ type 2 alloreactive donor T cells can be generated in vitro from mature T cell populations. These cells function in vivo to inhibit type 1 T cell responses, and such inhibition attenuates the systemic morbidity of GVHD after BMT across both MHC class II or class I barriers in mice.

  15. Differential General Anesthetic Effects on Microglial Cytokine Expression

    PubMed Central

    Ye, Xuefei; Lian, Qingquan; Eckenhoff, Maryellen F.; Eckenhoff, Roderic G.; Pan, Jonathan Z.

    2013-01-01

    Post-operative cognitive dysfunction has been widely observed, especially in older patients. An association of post-operative cognitive dysfunction with the neurodegenerative diseases, such as Alzheimer's disease, has been suggested. Neuroinflammation contributes to Alzheimer pathology, through elevated pro-inflammatory cytokines and microglial activation in the CNS leading to neuronal damage, synaptic disruption and ultimately cognitive dysfunction. We compare the effects of three different, clinically-used, anesthetics on microglial activation with, and without, the prototypical inflammatory trigger, lipopolysaccharide (LPS). Microglial BV-2 cell cultures were first exposed to isoflurane, sevoflurane (each at 2 concentrations) or propofol for 6 h, and cytokine levels measured in lysates and media. The same experiments were repeated after 1 h LPS pre-treatment. We found; 1) anesthetics alone have either no or only a small effect on cytokine expression; 2) LPS provoked a large increase in microglia cytokine expression; 3) the inhaled anesthetics either had no effect on LPS-evoked responses or enhanced it; 4) propofol nearly eliminated the LPS pro-inflammatory cytokine response and improved cell survival as reflected by lactate dehydrogenase release. These data suggest that propofol may be a preferred anesthetic when it is desirable to minimize neuroinflammation. PMID:23382826

  16. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    PubMed

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  17. The host immune response to gastrointestinal nematode infection in sheep.

    PubMed

    McRae, K M; Stear, M J; Good, B; Keane, O M

    2015-12-01

    Gastrointestinal nematode infection represents a major threat to the health, welfare and productivity of sheep populations worldwide. Infected lambs have a reduced ability to absorb nutrients from the gastrointestinal tract, resulting in morbidity and occasional mortality. The current chemo-dominant approach to nematode control is considered unsustainable due to the increasing incidence of anthelmintic resistance. In addition, there is growing consumer demand for food products from animals not subjected to chemical treatment. Future mechanisms of nematode control must rely on alternative, sustainable strategies such as vaccination or selective breeding of resistant animals. Such strategies take advantage of the host's natural immune response to nematodes. The ability to resist gastrointestinal nematode infection is considered to be dependent on the development of a protective acquired immune response, although the precise immune mechanisms involved in initiating this process remain to be fully elucidated. In this study, current knowledge on the innate and acquired host immune response to gastrointestinal nematode infection in sheep and the development of immunity is reviewed. © 2015 John Wiley & Sons Ltd.

  18. Cytokines and cytokine networks target neurons to modulate long-term potentiation

    PubMed Central

    Prieto, G. Aleph; Cotman, Carl W.

    2017-01-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. PMID:28377062

  19. Hypothesis: Normalisation of cytokine dysbalance explains the favourable effects of strict glucose regulation in the critically ill.

    PubMed

    Pickkers, P; Hoedemaekers, A; Netea, M G; de Galan, B E; Smits, P; van der Hoeven, J G; van Deuren, M

    2004-05-01

    Recent trials investigating the effects of strict glucose regulation in critically ill patients have shown impressive reductions in morbidity and mortality. Although the literature focuses on the possible toxic effects of high blood glucose levels, the underlying mechanism for this improvement is unclear. We hypothesise that strict glucose regulation results in modulation of cytokine production, leading to a shift towards a more anti-inflammatory pattern. This shift in the cytokine balance accounts for the reduction in morbidity and mortality. To support our hypothesis, effects of glucose and insulin on cytokine release and effects of glucose, insulin, and cytokines on host defence, cardiac function and coagulation will be reviewed.

  20. Host responses to historical climate change shape parasite communities in North America’s intermountain west

    USDA-ARS?s Scientific Manuscript database

    Host-parasite co-speciation, in which parasite divergence occurs in response to host divergence, is commonly proposed as a driver of parasite diversification, yet few empirical examples of strict co-speciation exist. Host-parasite co-evolutionary histories commonly reflect complex mosaics of co-spe...

  1. Therapeutic Effects of Resiniferatoxin Related with Immunological Responses for Intestinal Inflammation in Trichinellosis.

    PubMed

    Muñoz-Carrillo, José Luis; Muñoz-López, José Luis; Muñoz-Escobedo, José Jesús; Maldonado-Tapia, Claudia; Gutiérrez-Coronado, Oscar; Contreras-Cordero, Juan Francisco; Moreno-García, María Alejandra

    2017-12-01

    The immune response against Trichinella spiralis at the intestinal level depends on the CD4+ T cells, which can both suppress or promote the inflammatory response through the synthesis of diverse cytokines. During the intestinal phase, the immune response is mixed (Th1/Th2) with the initial predominance of the Th1 response and the subsequent domination of Th2 response, which favor the development of intestinal pathology. In this context, the glucocorticoids (GC) are the pharmacotherapy for the intestinal inflammatory response in trichinellosis. However, its therapeutic use is limited, since studies have shown that treatment with GC suppresses the host immune system, favoring T. spiralis infection. In the search for novel pharmacological strategies that inhibit the Th1 immune response (proinflammatory) and assist the host against T. spiralis infection, recent studies showed that resiniferatoxin (RTX) had anti-inflammatory activity, which decreased the serum levels of IL-12, INF-γ, IL-1β, TNF-α, NO, and PGE2, as well the number of eosinophils in the blood, associated with decreased intestinal pathology and muscle parasite burden. These researches demonstrate that RTX is capable to inhibit the production of Th1 cytokines, contributing to the defense against T. spiralis infection, which places it as a new potential drug modulator of the immune response.

  2. Correlation of in Vitro Cytokine Responses with the Chemical Composition of Soil-Derived Particulate Matter

    PubMed Central

    Veranth, John M.; Moss, Tyler A.; Chow, Judith C.; Labban, Raed; Nichols, William K.; Walton, John C.; Watson, John G.; Yost, Garold S.

    2006-01-01

    We treated human lung epithelial cells, type BEAS-2B, with 10–80 μg/cm2 of dust from soils and road surfaces in the western United States that contained particulate matter (PM) < 2.5 μm aerodynamic diameter. Cell viability and cytokine secretion responses were measured at 24 hr. Each dust sample is a complex mixture containing particles from different minerals mixed with biogenic and anthropogenic materials. We determined the particle chemical composition using methods based on the U.S. Environmental Protection Agency Speciation Trends Network (STN) and the National Park Service Interagency Monitoring of Protected Visual Environments (IMPROVE) network. The functionally defined carbon fractions reported by the ambient monitoring networks have not been widely used for toxicology studies. The soil-derived PM2.5 from different sites showed a wide range of potency for inducing the release of the proinflammatory cytokines interleukin-6 (IL-6) and IL-8 in vitro. Univariate regression and multivariate redundancy analysis were used to test for correlation of viability and cytokine release with the concentrations of 40 elements, 7 ions, and 8 carbon fractions. The particles showed positive correlation between IL-6 release and the elemental and pyrolyzable carbon fractions, and the strongest correlation involving crustal elements was between IL-6 release and the aluminum:silicon ratio. The observed correlations between low-volatility organic components of soil- and road-derived dusts and the cytokine release by BEAS-2B cells are relevant for investigation of mechanisms linking specific air pollution particle types with the initiating events leading to airway inflammation in sensitive populations. PMID:16507455

  3. Decreased interferon-α production in response to CpG DNA dysregulates cytokine responses in patients with multiple sclerosis.

    PubMed

    Hirotani, Makoto; Niino, Masaaki; Fukazawa, Toshiyuki; Yaguchi, Hiroaki; Nakamura, Masakazu; Kikuchi, Seiji; Sasaki, Hidenao

    2012-05-01

    Type I interferons (IFNs), represented by IFN-α and β, activate immune effector cells belonging to the innate and adaptive immune systems. Plasmacytoid dendritic cells (pDCs) produce IFN-α in response to CpG DNA. We aimed to examine the impact of pDC-produced IFN-α on the adaptive immune system in Multiple Sclerosis (MS). Our results demonstrated that CpG DNA-induced IFN-α production was significantly decreased in PBMCs from MS patients. Decreased levels of IL-12 p70, IFN-γ, and IL-17 and increased level of IL-10 were found in CpG DNA-treated PBMCs of healthy subjects unlike in those from MS patients. In samples pre-treated with IFN-α and IFN-β, decreased levels of IL-12 p70, IFN-γ, and IL-17 and increased level of IL-10 were detected in PBMCs from MS patients. These results suggest that CpG DNA-induced decreased IFN-α production causes pro-inflammatory cytokine secretion, and either IFN-α or IFN-β induces anti-inflammatory cytokine secretion in the adaptive immune system in MS. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Oral administration of Saccharomyces boulardii alters duodenal morphology, enzymatic activity and cytokine production response in broiler chickens.

    PubMed

    Sun, Yajing; Rajput, Imran Rashid; Arain, Muhammad Asif; Li, Yanfei; Baloch, Dost Muhammad

    2017-08-01

    The present study evaluated the effects of Saccharomyces boulardii on duodenal digestive enzymes, morphology and cytokine induction response in broiler chicken. A total of 200 birds were allotted into two groups (n = 100) and each group divided into five replications (n = 20). The control group was fed basal diet in addition to antibiotic (virginiamycin 20 mg/kg), and treatment group received (1 × 10 8  colony-forming units/kg feed) S. boulardii in addition to basal diet lasting for 72 days. The results compared to control group revealed that adenosine triphosphatase, gamma glutamyl transpeptidase, lipase and trypsin activities were higher, while, no significant improvement was observed in amylase activities in the duodenum of the treatment group. Moreover, morphological findings showed that villus height, width and number of goblet cells markedly increased. Additionally, transmission electron microscopy visualized that villus height, width and structural condensation significantly increased in the treatment group. The immunohistological observations showed increased numbers of immunoglobulin A (IgA)-positive cells in the duodenum of the treatment group. Meanwhile, cytokine production levels of tumor necrosis factor-α, interleukin (IL)-10, transforming growth factor-β and secretory IgA markedly increased, and IL-6 statistically remained unchanged as compared to the control group. These findings illustrated that initial contact of S. boulardii to the duodenum has significant impact in improving enzymatic activity, intestinal morphology and cytokine response in broiler chicken. © 2016 Japanese Society of Animal Science.

  5. Increased human IgE induced by killing Schistosoma mansoni in vivo is associated with pretreatment Th2 cytokine responsiveness to worm antigens.

    PubMed

    Walter, Klaudia; Fulford, Anthony J C; McBeath, Rowena; Joseph, Sarah; Jones, Frances M; Kariuki, H Curtis; Mwatha, Joseph K; Kimani, Gachuhi; Kabatereine, Narcis B; Vennervald, Birgitte J; Ouma, John H; Dunne, David W

    2006-10-15

    In schistosomiasis endemic areas, children are very susceptible to postchemotherapy reinfection, whereas adults are relatively resistant. Different studies have reported that schistosome-specific IL-4 and IL-5 responses, or posttreatment worm-IgE levels, correlate with subsequent low reinfection. Chemotherapy kills i.v. worms providing an in vivo Ag challenge. We measured anti-worm (soluble worm Ag (SWA) and recombinant tegumental Ag (rSm22.6)) and anti-egg (soluble egg Ag) Ab levels in 177 Ugandans (aged 7-50) in a high Schistosoma mansoni transmission area, both before and 7 wk posttreatment, and analyzed these data in relation to whole blood in vitro cytokine responses at the same time points. Soluble egg Ag-Ig levels were unaffected by treatment but worm-IgG1 and -IgG4 increased, whereas worm-IgE increased in many but not all individuals. An increase in worm-IgE was mainly seen in >15-year-olds and, unlike in children, was inversely correlated to pretreatment infection intensities, suggesting this response was associated both with resistance to pretreatment infection, as well as posttreatment reinfection. The increases in SWA-IgE and rSm22.6-IgE positively correlated with pretreatment Th2 cytokines, but not IFN-gamma, induced by SWA. These relationships remained significant after allowing for the confounding effects of pretreatment infection intensity, age, and pretreatment IgE levels, indicating a link between SWA-specific Th2 cytokine responsiveness and subsequent increases in worm-IgE. An exceptionally strong relationship between IL-5 and posttreatment worm-IgE levels in < 15-year-olds suggested that the failure of younger children to respond to in vivo Ag stimulation with increased levels of IgE, is related to their lack of pretreatment SWA Th2 cytokine responsiveness.

  6. Cytokines and cytokine networks target neurons to modulate long-term potentiation.

    PubMed

    Prieto, G Aleph; Cotman, Carl W

    2017-04-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Cytokine expression in response to root repair agents.

    PubMed

    Oliveira, R R; Tavares, W L F; Reis, A L; Silva, V A; Vieira, L Q; Ribeiro Sobrinho, A P

    2018-05-06

    To evaluate the expression of TNF-α, IL-6, IFN-γ, TGF-β, IL-4, IL-10, RANKL, RANK and OPG on mouse calvarial bone treated with MTA, Geristore ® and Emdogain ® . Bone wounds were made on the heads of C57BL/6 mice, breaking the periosteum and the cortical surface of the calvaria. Each repair agent was inserted into sectioned Eppendorf microtubes and placed on the bone wound, and soft tissues were sutured. At 14 and 21 days, animals were sacrificed and the treated region was dissected. The calvaria bone was removed, and RNA was extracted. mRNA expression of the aforementioned cytokines was assessed using real-time PCR. Data were analysed by nonparametric methods, including the Mann-Whitney and Kruskal-Wallis tests (p<0.05). Following treatment with Emdogain ® and MTA, mRNA expression of RANKL, RANK and OPG increased significantly (p <0.05) between days 14 to 21. Geristore ® did not alter the basal expression of these mediators during the same period of evaluation. While treatment with Emdogain ® did cause a significant increase in TNF-α mRNA expression between days 14 and 21 (p <0.05), treatment with MTA did not alter the basal expression of this cytokine at either experimental time point. However, TNF-α mRNA expression was down-regulated significantly at day 21 (p <0.05) when Geristore ® was applied. A significant increase in the mRNA expression of IL-6, TGF-β, IL-10, IL-4 and IFN-γ was observed with Emdogain ® and MTA treatment between days 14 to 21, whereas Geristore ® reduced significantly the expression of IL-6, TGF-β and IL-4 (p <0.05). The clinical indication of these repair agents depends on the root resorption diagnosis. While MTA and Emdogain ® induce a pro- and anti-inflammatory response early and late, respectively, Geristore ® was not associated with an inflammatory reaction when compared to both repair agents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Myelopotentiating effect of curcumin in tumor-bearing host: Role of bone marrow resident macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Kumar, Ajay

    2012-08-15

    The present investigation was undertaken to study if curcumin, which is recognized for its potential as an antineoplastic and immunopotentiating agent, can also influence the process of myelopoiesis in a tumor-bearing host. Administration of curcumin to tumor-bearing host augmented count of bone marrow cell (BMC) accompanied by an up-regulated BMC survival and a declined induction of apoptosis. Curcumin administration modulated expression of cell survival regulatory molecules: Bcl2, p53, caspase-activated DNase (CAD) and p53-upregulated modulator of apoptosis (PUMA) along with enhanced expression of genes of receptors for M-CSF and GM-CSF in BMC. The BMC harvested from curcumin-administered hosts showed an up-regulatedmore » colony forming ability with predominant differentiation into bone marrow-derived macrophages (BMDM), responsive for activation to tumoricidal state. The number of F4/80 positive bone marrow resident macrophages (BMM), showing an augmented expression of M-CSF, was also augmented in the bone marrow of curcumin-administered host. In vitro reconstitution experiments indicated that only BMM of curcumin-administered hosts, but not in vitro curcumin-exposed BMM, augmented BMC survival. It suggests that curcumin-dependent modulation of BMM is of indirect nature. Such prosurvival action of curcumin is associated with altered T{sub H1}/T{sub H2} cytokine balance in serum. Augmented level of serum-borne IFN-γ was found to mediate modulation of BMM to produce enhanced amount of monokines (IL-1, IL-6, TNF-α), which are suggested to augment the BMC survival. Taken together the present investigation indicates that curcumin can potentiate myelopoiesis in a tumor-bearing host, which may have implications in its therapeutic utility. Highlights: ► Curcumin augments myelopoiesis in tumor-bearing host. ► Bone marrow resident macrophages mediate curcumin-dependent augmented myelopoiesis. ► Serum borne cytokine are implicated in modulation of bone marrow

  9. IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection.

    PubMed

    Booty, Matthew G; Barreira-Silva, Palmira; Carpenter, Stephen M; Nunes-Alves, Cláudio; Jacques, Miye K; Stowell, Britni L; Jayaraman, Pushpa; Beamer, Gillian; Behar, Samuel M

    2016-11-07

    IL-21 is produced predominantly by activated CD4 + T cells and has pleiotropic effects on immunity via the IL-21 receptor (IL-21R), a member of the common gamma chain (γ c ) cytokine receptor family. We show that IL-21 signaling plays a crucial role in T cell responses during Mycobacterium tuberculosis infection by augmenting CD8 + T cell priming, promoting T cell accumulation in the lungs, and enhancing T cell cytokine production. In the absence of IL-21 signaling, more CD4 + and CD8 + T cells in chronically infected mice express the T cell inhibitory molecules PD-1 and TIM-3. We correlate these immune alterations with increased susceptibility of IL-21R -/- mice, which have increased lung bacterial burden and earlier mortality compared to WT mice. Finally, to causally link the immune defects with host susceptibility, we use an adoptive transfer model to show that IL-21R -/- T cells transfer less protection than WT T cells. These results prove that IL-21 signaling has an intrinsic role in promoting the protective capacity of T cells. Thus, the net effect of IL-21 signaling is to enhance host resistance to M. tuberculosis. These data position IL-21 as a candidate biomarker of resistance to tuberculosis.

  10. IL-21 signaling is essential for optimal host resistance against Mycobacterium tuberculosis infection

    PubMed Central

    Booty, Matthew G.; Barreira-Silva, Palmira; Carpenter, Stephen M.; Nunes-Alves, Cláudio; Jacques, Miye K.; Stowell, Britni L.; Jayaraman, Pushpa; Beamer, Gillian; Behar, Samuel M.

    2016-01-01

    IL-21 is produced predominantly by activated CD4+ T cells and has pleiotropic effects on immunity via the IL-21 receptor (IL-21R), a member of the common gamma chain (γc) cytokine receptor family. We show that IL-21 signaling plays a crucial role in T cell responses during Mycobacterium tuberculosis infection by augmenting CD8+ T cell priming, promoting T cell accumulation in the lungs, and enhancing T cell cytokine production. In the absence of IL-21 signaling, more CD4+ and CD8+ T cells in chronically infected mice express the T cell inhibitory molecules PD-1 and TIM-3. We correlate these immune alterations with increased susceptibility of IL-21R−/− mice, which have increased lung bacterial burden and earlier mortality compared to WT mice. Finally, to causally link the immune defects with host susceptibility, we use an adoptive transfer model to show that IL-21R−/− T cells transfer less protection than WT T cells. These results prove that IL-21 signaling has an intrinsic role in promoting the protective capacity of T cells. Thus, the net effect of IL-21 signaling is to enhance host resistance to M. tuberculosis. These data position IL-21 as a candidate biomarker of resistance to tuberculosis. PMID:27819295

  11. Gingival fluid cytokine expression and subgingival bacterial counts during pregnancy and postpartum: a case series.

    PubMed

    Bieri, Regina Alessandri; Adriaens, Laurence; Spörri, Stefan; Lang, Niklaus P; Persson, G Rutger

    2013-01-01

    The aim of this study was to assess gingival fluid (GCF) cytokine messenger RNA (mRNA) levels, subgingival bacteria, and clinical periodontal conditions during a normal pregnancy to postpartum. Subgingival bacterial samples were analyzed with the checkerboard DNA-DNA hybridization method. GCF samples were assessed with real-time PCR including five proinflammatory cytokines and secretory leukocyte protease inhibitor. Nineteen pregnant women with a mean age of 32 years (S.D. ± 4 years, range 26-42) participated in the study. Full-mouth bleeding scores (BOP) decreased from an average of 41.2% (S.D. ± 18.6%) at the 12th week of pregnancy to 26.6% (S.D. ± 14.4%) at the 4-6 weeks postpartum (p < 0.001). Between week 12 and 4-6 weeks postpartum, the mean probing pocket depth changed from 2.4 mm (S.D. ± 0.4) to 2.3 mm (S.D. ± 0.3) (p = 0.34). Higher counts of Eubacterium saburreum, Parvimonas micra, Selenomonas noxia, and Staphylococcus aureus were found at week 12 of pregnancy than at the 4-6 weeks postpartum examinations (p < 0.001). During and after pregnancy, statistically significant correlations between BOP scores and bacterial counts were observed. BOP scores and GCF levels of selected cytokines were not related to each other and no differences in GCF levels of the cytokines were observed between samples from the 12th week of pregnancy to 4-6 weeks postpartum. Decreasing postpartum counts of Porphyromonas endodontalis and Pseudomonas aeruginosa were associated with decreasing levels of Il-8 and Il-1β. BOP decreased after pregnancy without any active periodontal therapy. Associations between bacterial counts and cytokine levels varied greatly in pregnant women with gingivitis and a normal pregnancy outcome. Postpartum associations between GCF cytokines and bacterial counts were more consistent. Combined assessments of gingival fluid cytokines and subgingival bacteria may provide important information on host response.

  12. Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages.

    PubMed

    Pondman, Kirsten M; Sobik, Martin; Nayak, Annapurna; Tsolaki, Anthony G; Jäkel, Anne; Flahaut, Emmanuel; Hampel, Silke; Ten Haken, Bennie; Sim, Robert B; Kishore, Uday

    2014-08-01

    Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease

    PubMed Central

    Foster, Meika; Samman, Samir

    2012-01-01

    In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination. PMID:22852057

  14. Cytokines in tears during the secondary keratoconjunctival responses induced by allergic reaction in the nasal mucosa.

    PubMed

    Pelikan, Zdenek

    2014-01-01

    Allergic keratoconjunctivitis (KC) can occur in a primary form due to an allergic reaction taking place in the conjunctivae or in a secondary form induced by nasal allergy. To search for the cytokine changes in tears accompanying the secondary keratoconjunctival response types (SKCR), caused by the nasal allergy. In 43 KC patients developing 15 immediate (SIKCR), 16 late (SLKCR) and 12 delayed (SDYKCR) responses to nasal provocation tests with allergens (NPT), the NPTs were repeated with subsequent recording of cytokine concentrations in tears up to 72 h. The SIKCRs (p<0.001), occurring 10-120 min after the NPT, were accompanied by significant changes (p<0.05) of interleukin (IL)-4, IL-6, IL-10, IL-12p70 and granulocyte-macrophage colony-stimulating factor (GM-CSF). The SLKCRs (p<0.01), appearing 5-12 h after the NPT, were associated with significant changes (p<0.05) of IL-3, IL-4, IL-5, IL-8, IL-10, tumor necrosis factor (TNF)-α, GM-CSF and granulocyte colony-stimulating factor. The SDYKCRs (p<0.01), occurring 24-48 h after the NPT, were accompanied by significant changes (p<0.05) of IL-2, IL-8, IL-10, interferon-γ, transforming growth factor-β and TNF-α. The particular SKCR types, induced by an allergic reaction in the nasal mucosa, were accompanied by different cytokine profiles in the tears, suggesting involvement of different hypersensitivity mechanisms. These results also stress the diagnostic usefulness of NPTs combined with monitoring of ocular features in KC patients who did not respond satisfactorily to the topical ophthalmological treatment. © 2014 S. Karger AG, Basel.

  15. Hypothalamic-pituitary cytokine network.

    PubMed

    Kariagina, Anastasia; Romanenko, Dmitry; Ren, Song-Guang; Chesnokova, Vera

    2004-01-01

    Cytokines expressed in the brain and involved in regulating the hypothalamus-pituitary-adrenal (HPA) axis contribute to the neuroendocrine interface. Leukemia inhibitory factor (LIF) and LIF receptors are expressed in human pituitary cells and murine hypothalamus and pituitary. LIF potently induces pituitary proopiomelanocortin (POMC) gene transcription and ACTH secretion and potentiates CRH induction of POMC. In vivo, LIF, along with CRH, enhances POMC expression and ACTH secretion in response to emotional and inflammatory stress. To further elucidate specific roles for both CRH and LIF in activating the inflammatory HPA response, double-knockout mice (CRH/LIFKO) were generated by breeding the null mutants for each respective single gene. Inflammation produced by ip injection of lipopolysaccharide (1 microg/mouse) to double CRH and LIF-deficient mice elicited pituitary POMC induction similar to wild type and markedly higher than in single null animals (P<0.0.01). Double-knockout mice also demonstrated robust corticosterone response to inflammation. High pituitary POMC mRNA levels may reflect abundant TNFalpha, IL-1beta, and IL-6 activation observed in the hypothalamus and pituitary of these animals. Our results suggest that increased central proinflammatory cytokine expression can compensate for the impaired HPA axis function and activates inflammatory ACTH and corticosterone responses in mice-deficient in both CRH and LIF.

  16. Host Identity Matters in the Amphibian-Batrachochytrium dendrobatidis System: Fine-Scale Patterns of Variation in Responses to a Multi-Host Pathogen

    PubMed Central

    Gervasi, Stephanie; Gondhalekar, Carmen; Olson, Deanna H.; Blaustein, Andrew R.

    2013-01-01

    Species composition within ecological assemblages can drive disease dynamics including pathogen invasion, spread, and persistence. In multi-host pathogen systems, interspecific variation in responses to infection creates important context dependency when predicting the outcome of disease. Here, we examine the responses of three sympatric host species to a single fungal pathogen, Batrachochytrium dendrobatidis, which is associated with worldwide amphibian population declines and extinctions. Using an experimental approach, we show that amphibian species from three different genera display significant differences in patterns of pathgen-induced mortality as well as the magnitude and temporal dynamics of infection load. We exposed amphibians to one of four inoculation dose treatments at both larval and post- metamorphic stages and quantified infection load on day 8 and day 15 post-inoculation. Of the three species examined, only one (the Pacific treefrog; Pseudacris regilla) displayed “dose-dependent” responses; survival was reduced and infection load was elevated as inoculation dose was increased. We observed a reduction in survival but no differences in infection load across pathogen treatments in Cascades frogs (Rana cascadae). Western toads (Anaxyrus boreas) displayed differences in infection load but no differences in survival across pathogen treatments. Within species, responses to the pathogen varied with life history stage, and the most heavily infected species at the larval stage was different from the most heavily infected species at the post-metamorphic stage. Temporal changes in infection load were species and life history stage-specific. We show that variation in susceptibility to this multi-host pathogen is complex when viewed at a fine-scale and may be mediated through intrinsic host traits. PMID:23382904

  17. Diagnostic Potential of Novel Salivary Host Biomarkers as Candidates for the Immunological Diagnosis of Tuberculosis Disease and Monitoring of Tuberculosis Treatment Response.

    PubMed

    Jacobs, Ruschca; Maasdorp, Elizna; Malherbe, Stephanus; Loxton, Andre G; Stanley, Kim; van der Spuy, Gian; Walzl, Gerhard; Chegou, Novel N

    2016-01-01

    There is an urgent need for new tools for the early diagnosis of TB disease and monitoring of the response to treatment, especially in resource-constrained settings. We investigated the usefulness of host markers detected in saliva as candidate biomarkers for the immunological diagnosis of TB disease and monitoring of treatment response. We prospectively collected saliva samples from 51 individuals that presented with signs and symptoms suggestive of TB disease at a health centre in Cape Town, South Africa, prior to the establishment of a clinical diagnosis. Patients were later classified as having TB disease or other respiratory disease (ORD), using a combination of clinical, radiological and laboratory findings. We evaluated the concentrations of 69 host markers in saliva samples using a multiplex cytokine platform, and assessed the diagnostic potentials of these markers by receiver operator characteristics (ROC) curve analysis, and general discriminant analysis. Out of the 51 study participants, 18 (35.4%) were diagnosed with TB disease and 12 (23.5%) were HIV infected. Only two of the 69 host markers that were evaluated (IL-16 and IL-23) diagnosed TB disease individually with area under the ROC curve ≥0.70. A five-marker biosignature comprising of IL-1β, IL-23, ECM-1, HCC1 and fibrinogen diagnosed TB disease with a sensitivity of 88.9% (95% CI,76.7-99.9%) and specificity of 89.7% (95% CI, 60.4-96.6%) after leave-one-out cross validation, regardless of HIV infection status. Eight-marker biosignatures performed with a sensitivity of 100% (95% CI, 83.2-100%) and specificity of 95% (95% CI, 68.1-99.9%) in the absence of HIV infection. Furthermore, the concentrations of 11 of the markers changed during treatment, indicating that they may be useful in monitoring of TB treatment response. We have identified novel salivary biosignatures which may be useful in the diagnosis of TB disease and monitoring of the response to TB treatment. Our findings require further

  18. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor

    PubMed Central

    Ben-David, Roi; Dinoor, Amos; Peleg, Zvi; Fahima, Tzion

    2018-01-01

    The biotroph wheat powdery mildew, Blumeria graminis (DC.) E.O. Speer, f. sp. tritici Em. Marchal (Bgt), has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes (Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum, and T. aestivum) and 241 accessions of its direct progenitor, wild emmer wheat (T. turgidum ssp. dicoccoides)]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant). Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host). Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [P(F) < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance). By testing the

  19. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor.

    PubMed

    Ben-David, Roi; Dinoor, Amos; Peleg, Zvi; Fahima, Tzion

    2018-01-01

    The biotroph wheat powdery mildew, Blumeria graminis (DC.) E.O. Speer, f. sp. tritici Em. Marchal ( Bgt ), has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes ( Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum , and T. aestivum ) and 241 accessions of its direct progenitor, wild emmer wheat ( T. turgidum ssp. dicoccoides )]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant). Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host). Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [ P (F) < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance). By

  20. As-CATH1-6, novel cathelicidins with potent antimicrobial and immunomodulatory properties from Alligator sinensis, play pivotal roles in host antimicrobial immune responses.

    PubMed

    Chen, Yan; Cai, Shasha; Qiao, Xue; Wu, Mali; Guo, Zhilai; Wang, Renping; Kuang, Yi-Qun; Yu, Haining; Wang, Yipeng

    2017-08-10

    Crocodilians are regarded as possessing a powerful immune system. However, the composition and action of the crocodilian immune system have remained unclear until now. Cathelicidins, the principal family of host defense peptides, play pivotal roles in vertebrate immune defense against microbial invasions. However, cathelicidins from crocodilians have not been extensively studied to date. In the present study, six novel cathelicidins (As-CATH1-6) were identified and characterized from the endangered Chinese alligator ( Alligator sinensis ). As-CATH1-6 exhibit no sequence similarity with any of the known cathelicidins. Structure analysis indicated that As-CATH1-3 adopt a random coil secondary conformation, whereas As-CATH4-6 were predicted to mainly adopt an amphipathic α-helix conformation. Among them, As-CATH4-6 exhibited potent, broad-spectrum and rapid antimicrobial activity by inducing the disruption of cell membrane integrity. They also exhibited strong ability to prevent the formation of bacterial biofilms and eradicate preformed biofilms. Furthermore, As-CATH4-6 exhibited potent anti-inflammatory activity by inhibiting the lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and pro-inflammatory cytokines in mouse peritoneal macrophages. They directly neutralized LPS toxicity and therefore inhibited the binding of LPS to the TLR4 receptor and the subsequent activation of inflammatory response pathways. In a peritonitis mice model, As-CATH2-6 provided effective protection against bacterial infection through enhanced immune cell recruitment. In the host Chinese alligator, As-CATH1-6 are mainly expressed in immune organs and epithelial tissues. Bacterial infection significantly enhances their expression, which implies an important role in host anti-infective response. Taken together, the diversity and multiple functions of As-CATH1-6 partially reveal the powerful immune system of the Chinese alligator. © 2017 The Author(s). Published by Portland

  1. Single cell analysis of innate cytokine responses to pattern recognition receptor stimulation in children across four continents

    PubMed Central

    Smolen, Kinga K; Cai, Bing; Fortuno, Edgardo S; Gelinas, Laura; Larsen, Martin; Speert, David P; Chamekh, Mustapha; Kollmann, Tobias R

    2014-01-01

    Innate immunity instructs adaptive immunity, and suppression of innate immunity is associated with increased risk for infection. We had previously shown that whole blood cellular components from a cohort of South African children secreted significantly lower levels of most cytokines following stimulation of pattern recognition receptors (PRR) as compared to whole blood from cohorts of Ecuadorian, Belgian, or Canadian children. To begin dissecting the responsible molecular mechanisms, we now set out to identify the relevant cellular source of these differences. Across the four cohorts represented in our study, we identified significant variation in the cellular composition of whole blood; however, significant reduction of the intracellular cytokine production on the single cell level was only detected in South African childrens’ monocytes, cDC, and pDC. We also uncovered a marked reduction in polyfunctionality for each of these cellular compartments in South African children as compared to children from other continents. Together our data identify differences in cell composition as well as profoundly lower functional responses of innate cells in our cohort of South African children. A possible link between altered innate immunity and increased risk for infection or lower response to vaccines in South African infants needs to be explored. PMID:25135829

  2. Attenuation of massive cytokine response to the staphylococcal enterotoxin B superantigen by the innate immunomodulatory protein lactoferrin

    PubMed Central

    Hayworth, J L; Kasper, K J; Leon-Ponte, M; Herfst, C A; Yue, D; Brintnell, W C; Mazzuca, D M; Heinrichs, D E; Cairns, E; Madrenas, J; Hoskin, D W; McCormick, J K; Haeryfar, S M M

    2009-01-01

    Staphylococcal enterotoxin B (SEB) is a pyrogenic exotoxin and a potent superantigen which causes massive T cell activation and cytokine secretion, leading to profound immunosuppression and morbidity. The inhibition of SEB-induced responses is thus considered a goal in the management of certain types of staphylococcal infections. Lactoferrin (LF) is a multi-functional glycoprotein with both bacteriostatic and bactericidal activities. In addition, LF is known to have potent immunomodulatory properties. Given the anti-microbial and anti-inflammatory properties of this protein, we hypothesized that LF can modulate T cell responses to SEB. Here, we report that bovine LF (bLF) was indeed able to attenuate SEB-induced proliferation, interleukin-2 production and CD25 expression by human leucocyte antigen (HLA)-DR4 transgenic mouse T cells. This inhibition was not due to bLF's iron-binding capacity, and could be mimicked by the bLF-derived peptide lactoferricin. Cytokine secretion by an engineered SEB-responsive human Jurkat T cell line and by peripheral blood mononuclear cells from healthy donors was also inhibited by bLF. These findings reveal a previously unrecognized property of LF in modulation of SEB-triggered immune activation and suggest a therapeutic potential for this naturally occurring protein during toxic shock syndrome. PMID:19659771

  3. A novel immune-to-CNS communication pathway: cells of the meninges surrounding the spinal cord CSF space produce proinflammatory cytokines in response to an inflammatory stimulus.

    PubMed

    Wieseler-Frank, Julie; Jekich, Brian M; Mahoney, John H; Bland, Sondra T; Maier, Steven F; Watkins, Linda R

    2007-07-01

    Pain is enhanced in response to elevations of proinflammatory cytokines in spinal cerebrospinal fluid (CSF), following either intrathecal injection of these cytokines or intrathecal immune challenge with HIV-1 gp120 that induces cytokine release. Spinal cord glia have been assumed to be the source of endogenous proinflammatory cytokines that enhance pain. However, assuming that spinal cord glia are the sole source of CSF cytokines may be an underestimate, as the cellular composition of the meninges surrounding the spinal cord CSF space includes several cell types known to produce proinflammatory cytokines. The present experiments provide the first investigation of the immunocompetent nature of the spinal cord meninges. Here, we explore whether rat meninges are responsive to intrathecal gp120. These studies demonstrate that: (a) intrathecal gp120 upregulates meningeal gene expression of proinflammatory signals, including tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin 6 (IL-6), and inducible nitric oxide synthase (iNOS), and (b) intrathecal gp120 induces meningeal release of TNF-alpha, IL-1beta, and IL-6. In addition, stimulation of isolated meninges in vitro with gp120 induced the release of TNF-alpha and IL-1beta, indicating that the resident cells of the meninges are able to respond without immune cell recruitment. Taken together, these data document that the meninges are responsive to immunogenic stimuli in the CSF and that the meninges may be a source of immune products detected in CSF. The ability of the meninges to release to proinflammatory signals suggests a potential role in the modulation of pain.

  4. EGFR ligands drive multipotential stromal cells to produce multiple growth factors and cytokines via early growth response-1.

    PubMed

    Kerpedjieva, Svetoslava S; Kim, Duk Soo; Barbeau, Dominique J; Tamama, Kenichi

    2012-09-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)-EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase-extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands.

  5. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts.

    PubMed

    Bhattacharyya, Sankar; Md Sakib Hossain, Dewan; Mohanty, Suchismita; Sankar Sen, Gouri; Chattopadhyay, Sreya; Banerjee, Shuvomoy; Chakraborty, Juni; Das, Kaushik; Sarkar, Diptendra; Das, Tanya; Sa, Gaurisankar

    2010-07-01

    Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion. CD8(+) cytotoxic T lymphocytes (CTLs) are involved in antigen-specific tumor destruction and CD4(+) T cells are essential for helping this CD8(+) T cell-dependent tumor eradication. Tumors often target and inhibit T-cell function to escape from immune surveillance. This dysfunction includes loss of effector and memory T cells, bias towards type 2 cytokines and expansion of T regulatory (Treg) cells. Curcumin has previously been shown to have antitumor activity and some research has addressed the immunoprotective potential of this plant-derived polyphenol in tumor-bearing hosts. Here we examined the role of curcumin in the prevention of tumor-induced dysfunction of T cell-based immune responses. We observed severe loss of both effector and memory T-cell populations, downregulation of type 1 and upregulation of type 2 immune responses and decreased proliferation of effector T cells in the presence of tumors. Curcumin, in turn, prevented this loss of T cells, expanded central memory T cell (T(CM))/effector memory T cell (T(EM)) populations, reversed the type 2 immune bias and attenuated the tumor-induced inhibition of T-cell proliferation in tumor-bearing hosts. Further investigation revealed that tumor burden upregulated Treg cell populations and stimulated the production of the immunosuppressive cytokines transforming growth factor (TGF)-beta and IL-10 in these cells. Curcumin, however, inhibited the suppressive activity of Treg cells by downregulating the production of TGF-beta and IL-10 in these cells. More importantly, curcumin treatment enhanced the ability of effector T cells to kill cancer cells. Overall, our observations suggest that the unique properties of curcumin may be exploited for successful attenuation of tumor-induced suppression of cell-mediated immune responses.

  6. Exposure, infection, systemic cytokine levels and antibody responses in young children concurrently exposed to schistosomiasis and malaria

    PubMed Central

    IMAI, NATSUKO; RUJENI, NADINE; NAUSCH, NORMAN; BOURKE, CLAIRE D.; APPLEBY, LAURA J.; COWAN, GRAEME; GWISAI, REGGIS; MIDZI, NICHOLAS; CAVANAGH, DAVID; MDULUZA, TAKAFIRA; TAYLOR, DAVID; MUTAPI, FRANCISCA

    2011-01-01

    SUMMARY Despite the overlapping distribution of Schistosoma haematobium and Plasmodium falciparum infections, few studies have investigated early immune responses to both parasites in young children resident in areas co-endemic for the parasites. This study measures infection levels of both parasites and relates them to exposure and immune responses in young children. Levels of IgM, IgE, IgG4 directed against schistosome cercariae, egg and adult worm and IgM, IgG directed against P. falciparum schizonts and the merozoite surface proteins 1 and 2 together with the cytokines IFN-γ, IL-4, IL-5, IL-10 and TNF-α were measured by ELISA in 95 Zimbabwean children aged 1–5 years. Schistosome infection prevalence was 14·7% and that of Plasmodium infection was 0% in the children. 43. 4% of the children showed immunological evidence of exposure to schistosome parasites and 13% showed immunological evidence of exposure to Plasmodium parasites. Schistosome–specific responses, indicative of exposure to parasite antigens, were positively associated with cercariae-specific IgE responses, while Plasmodium-specific responses, indicative of exposure to parasite antigens, were negatively associated with responses associated with protective immunity against Plasmodium. There was no significant association between schistosome-specific and Plasmodium-specific responses. Systemic cytokine levels rose with age as well as with schistosome infection and exposure. Overall the results show that (1) significantly more children are exposed to schistosome and Plasmodium infection than those currently infected and; (2) the development of protective acquired immunity commences in early childhood, although its effects on infection levels and pathology may take many years to become apparent. PMID:21813042

  7. Cytokine response in crimean-congo hemorrhagic fever virus infection.

    PubMed

    Ergönül, Önder; Şeref, Ceren; Eren, Şebnem; Çelikbaş, Aysel; Baykam, Nurcan; Dokuzoğuz, Başak; Gönen, Mehmet; Can, Füsun

    2017-10-01

    We described the predictive role of cytokines in fatality of Crimean Congo Hemorrhagic Fever Virus (CCHFV) infection by using daily clinical sera samples. Consequent serum samples of the selected patients in different severity groups and healthy controls were examined by using human cytokine 17-plex assay. We included 12 (23%) mild, 30 (58%) moderate, 10 (19%) severe patients, and 10 healthy volunteers. The mean age of the patients was 52 (sd 15), 52% were female. Forty-six patients (88%) received ribavirin. During disease course, the median levels of IL-6, IL-8, IL-10, IL-10/12, IFN-γ, MCP-1, and MIP-1b were found to be significantly higher among CCHF patients than the healthy controls. Within the first 5 days after onset of disease, among the fatal cases, the median levels of IL-6 and IL-8 were found to be significantly higher than the survived ones (Fig. 3), and MCP-1 was elevated among fatal cases, but statistical significance was not detected. In receiver operating characteristic (ROC) analysis, IL-8 (92%), IL-6 (92%), MCP-1 (79%) were found to be the most significant cytokines in predicting the fatality rates in the early period of the disease (5 days). IL-6 and IL-8 can predict the poor outcome, within the first 5 days of disease course. Elevated IL-6 and IL-8 levels within first 5 days could be used as prognostic markers. © 2017 Wiley Periodicals, Inc.

  8. Concurrent Host-Pathogen Transcriptional Responses in a Clostridium perfringens Murine Myonecrosis Infection

    PubMed Central

    2018-01-01

    ABSTRACT To obtain an insight into host-pathogen interactions in clostridial myonecrosis, we carried out comparative transcriptome analysis of both the bacterium and the host in a murine Clostridium perfringens infection model, which is the first time that such an investigation has been conducted. Analysis of the host transcriptome from infected muscle tissues indicated that many genes were upregulated compared to the results seen with mock-infected mice. These genes were enriched for host defense pathways, including Toll-like receptor (TLR) and Nod-like receptor (NLR) signaling components. Real-time PCR confirmed that host TLR2 and NLRP3 inflammasome genes were induced in response to C. perfringens infection. Comparison of the transcriptome of C. perfringens cells from the infected tissues with that from broth cultures showed that host selective pressure induced a global change in C. perfringens gene expression. A total of 33% (923) of C. perfringens genes were differentially regulated, including 10 potential virulence genes that were upregulated relative to their expression in vitro. These genes encoded putative proteins that may be involved in the synthesis of cell wall-associated macromolecules, in adhesion to host cells, or in protection from host cationic antimicrobial peptides. This report presents the first successful expression profiling of coregulated transcriptomes of bacterial and host genes during a clostridial myonecrosis infection and provides new insights into disease pathogenesis and host-pathogen interactions. PMID:29588405

  9. A molecular arms race between host innate antiviral response and emerging human coronaviruses.

    PubMed

    Wong, Lok-Yin Roy; Lui, Pak-Yin; Jin, Dong-Yan

    2016-02-01

    Coronaviruses have been closely related with mankind for thousands of years. Community-acquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.

  10. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meissonnier, Guylaine M.; Alltech-France, European Regulatory Department, F-92593 Levallois-Perret; Pinton, Philippe

    Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 {mu}g pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no majormore » effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-{alpha}, IL-1{beta}, IL-6, IFN-{gamma}) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-{gamma} and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1.« less

  11. Characterizing the proteome and oxi-proteome of apple in response to a host (Penicillium expansum) and a non-host (Penicillium digitatum) pathogen.

    PubMed

    Buron-Moles, Gemma; Wisniewski, Michael; Viñas, Inmaculada; Teixidó, Neus; Usall, Josep; Droby, Samir; Torres, Rosario

    2015-01-30

    Apples are subjected to both abiotic and biotic stresses during the postharvest period, which lead to large economic losses worldwide. To obtain biochemical insights into apple defense response, we monitored the protein abundance changes (proteome), as well as the protein carbonyls (oxi-proteome) formed by reactive oxygen species (ROS) in 'Golden Smoothee' apple in response to wounding, Penicillium expansum (host) and Penicillium digitatum (non-host) pathogens with select transcriptional studies. To examine the biological relevance of the results, we described quantitative and oxidative protein changes into the gene ontology functional categories, as well as into de KEGG pathways. We identified 26 proteins that differentially changed in abundance in response to wounding, P. expansum or P. digitatum infection. While these changes showed some similarities between the apple responses and abiotic and biotic stresses, Mal d 1.03A case, other proteins as Mal d 1.03E and EF-Tu were specifically induced in response to P. digitatum infection. Using a protein carbonyl detection method based on fluorescent Bodipy, we detected and identified 27 oxidized proteins as sensitive ROS targets. These ROS target proteins were related to metabolism processes, suggesting that this process plays a leading role in apple fruit defense response against abiotic and biotic stresses. ACC oxidase and two glutamine synthetases showed the highest protein oxidation level in response to P. digitatum infection. Documenting changes in the proteome and, specifically in oxi-proteome of apple can provide information that can be used to better understand how impaired protein functions may affect apple defense mechanisms. Possible mechanisms by which these modified proteins are involved in fruit defense response are discussed. Mechanical damage in apple fruits is linked annually to large economic losses due to opportunistic infection by postharvest pathogens, such as P. expansum. Despite the current use

  12. Innate immune response to Burkholderia mallei.

    PubMed

    Saikh, Kamal U; Mott, Tiffany M

    2017-06-01

    Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.

  13. Innate immune response to Burkholderia mallei

    PubMed Central

    Saikh, Kamal U.; Mott, Tiffany M.

    2017-01-01

    Purpose of review Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent findings Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin–cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Summary Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei. PMID:28177960

  14. What Is a Host? Incorporating the Microbiota into the Damage-Response Framework

    PubMed Central

    Pirofski, Liise-anne

    2014-01-01

    Since proof of the germ theory of disease in the late 19th century, a major focus of the fields of microbiology and infectious diseases has been to seek differences between pathogenic and nonpathogenic microbes and the role that the host plays in microbial pathogenesis. Remarkably, despite the increasing recognition that host immunity plays a role in microbial pathogenesis, there has been little discussion about what constitutes a host. Historically, hosts have been viewed in the context of their fitness or immunological status and characterized by adjectives such as immune, immunocompetent, immunosuppressed, immunocompromised, or immunologically impaired. However, in recent years it has become apparent that the microbiota has profound effects on host homeostasis and susceptibility to microbial diseases in addition to its effects on host immunity. This raises the question of how to incorporate the microbiota into defining a host. This definitional problem is further complicated because neither host nor microbial properties are adequate to predict the outcome of host-microbe interaction because this outcome exhibits emergent properties. In this essay, we revisit the damage-response framework (DRF) of microbial pathogenesis and demonstrate how it can incorporate the rapidly accumulating information being generated by the microbiome revolution. We use the tenets of the DRF to put forth the following definition of a host: a host is an entity that houses an associated microbiome/microbiota and interacts with microbes such that the outcome results in damage, benefit, or indifference, thus resulting in the states of symbiosis, colonization, commensalism, latency, and disease. PMID:25385796

  15. Persistence of host response against glochidia larvae in Micropterus salmoides.

    PubMed

    Dodd, Benjamin J; Barnhart, M Christopher; Rogers-Lowery, Constance L; Fobian, Todd B; Dimock, Ronald V

    2006-11-01

    Host fish acquire resistance to the parasitic larvae (glochidia) of freshwater mussels (Unionidae). Glochidia metamorphose into juvenile mussels while encysted on host fish. We investigated the duration of acquired resistance of largemouth bass, Micropterus salmoides (Lacepède, 1802) to glochidia of the broken rays mussel, Lampsilis reeveiana (Call, 1887). Fish received three successive priming infections with glochidia to induce an immune response. Primed fish were held at 22-23 degrees C and were challenged (re-infected) at intervals after priming. Metamorphosis success was quantified as the percent of attached glochidia that metamorphosed to the juvenile stage and were recovered alive. Metamorphosis success at 3, 7, and 12 months after priming was significantly lower on primed fish (26%, 40%, and 68% respectively) than on control fish (85%, 93%, and 92% respectively). A second group of largemouth bass was similarly primed and blood was extracted. Immunoblotting was used to detect host serum antibodies to L. reeveiana glochidia proteins. Serum antibodies were evident in primed fish, but not in naive control fish. Acquired resistance of host fish potentially affects natural reproduction and artificial propagation of unionids, many of which are of conservation concern.

  16. Host-microbiota interactions in the intestine.

    PubMed

    Elson, Charles O; Alexander, Katie L

    2015-01-01

    The comprehensive collection of bacterial species, termed microbiota, within human and other mammalian hosts has profound effects on both innate and adaptive immunity. Multiple host innate mechanisms contribute to intestinal homeostasis, including epithelial production of protective mucin layers maintaining spatial segregation in the intestine as well as epithelial cell secretion of a broad range of antimicrobial peptides. Additionally, epithelial cells employ autophagy to contain and eliminate invading bacteria; interestingly, genetic variants in specific autophagy genes are linked to susceptibility to Crohn's disease. Innate lymphoid cells, which rapidly respond to cytokine and microbial signals, have emerged as important regulators of the intestinal immune response to the microbiota. With regard to adaptive immunity, specific microbial species stimulate induction of regulatory T cells while others induce effector T cells within the gut. Such stimulation is subject to dysregulation during inflammation and disease, contributing to 'dysbiosis' or an abnormal microbiota composition that has been associated with a variety of immune-mediated inflammatory disorders, including celiac disease. The microbiota communicates with the immune system and vice versa; thus, an abnormal microbiota composition likely translates into an altered host immune response, though the exact mechanisms of such are not yet clear. Immunoglobulin A plays a critical role in limiting bacterial access to the host and in maintaining mutualism with the microbiota. Perturbation of the mucosal barrier via infection or other means can induce effector T cells reactive to the intestinal microbiota, and these cells can persist as memory cells for extended periods of time and potentially serve as pathogenic effector cells upon re-encounter with antigen. Health is associated with a diverse microbiota that functions to maintain the balance between T effector and T regulatory cells in the intestine. Whether

  17. Host-Specific Response to HCV Infection in the Chimeric SCID-beige/Alb-uPA Mouse Model: Role of the Innate Antiviral Immune Response

    PubMed Central

    Thompson, Jill C; Smith, Maria W; Yeh, Matthew M; Proll, Sean; Zhu, Lin-Fu; Gao, T. J; Kneteman, Norman M; Tyrrell, D. Lorne; Katze, Michael G

    2006-01-01

    The severe combined immunodeficiency disorder (SCID)-beige/albumin (Alb)-urokinase plasminogen activator (uPA) mouse containing a human-mouse chimeric liver is currently the only small animal model capable of supporting hepatitis C virus (HCV) infection. This model was utilized to characterize the host transcriptional response to HCV infection. The purpose of these studies was to investigate the genetic component of the host response to HCV infection and also to distinguish virus-induced gene expression changes from adaptive HCV-specific immune-mediated effects. Gene expression profiles from HCV-infected mice were also compared to those from HCV-infected patients. Analyses of the gene expression data demonstrate that host factors regulate the response to HCV infection, including the nature of the innate antiviral immune response. They also indicate that HCV mediates gene expression changes, including regulation of lipid metabolism genes, which have the potential to be directly cytopathic, indicating that liver pathology may not be exclusively mediated by HCV-specific adaptive immune responses. This effect appears to be inversely related to the activation of the innate antiviral immune response. In summary, the nature of the initial interferon response to HCV infection may determine the extent of viral-mediated effects on host gene expression. PMID:16789836

  18. Embryotoxic cytokines-Potential roles in embryo loss and fetal programming.

    PubMed

    Robertson, Sarah A; Chin, Peck-Yin; Femia, Joseph G; Brown, Hannah M

    2018-02-01

    Cytokines in the reproductive tract environment at conception mediate a dialogue between the embryo and maternal tissues to profoundly influence embryo development and implantation success. Through effects on gene expression and the cell stress response, cytokines elicit an epigenetic impact with consequences for placental development and fetal growth, which in turn affect metabolic phenotype and long-term health of offspring. There is substantial evidence demonstrating that pro-survival cytokines, such as GM-CSF, CSF1, LIF, HB-EGF and IGFII, support embryos to develop optimally. Less attention has been paid to cytokines that adversely impact embryo development, including the pro-inflammatory cytokines TNF, TRAIL and IFNG. These agents elicit cell stress, impair cell survival and retard blastocyst development, and at sufficiently high concentrations, can cause embryo demise. Experiments in mice suggest these so-called 'embryotoxic' cytokines can harm embryos through pro-apoptotic and adverse programming effects, as well as indirectly suppressing uterine receptivity through the maternal immune response. Embryotrophic factors may mitigate against and protect from these adverse effects. Thus, the balance between embryotrophic and embryotoxic cytokines can impart effects on embryo development and implantation, and has the potential to contribute to endometrial 'biosensor' function to mediate embryo selection. Embryotoxic cytokines can be elevated in plasma and reproductive tract tissues in inflammatory conditions including infection, diabetes, obesity, PCOS and endometriosis. Studies are therefore warranted to investigate whether excessive embryotoxic cytokines contribute to infertility and recurrent implantation failure in women, and compromised reproductive performance in livestock animals. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Impact of Nosema ceranae and Nosema apis on individual worker bees of the two host species (Apis cerana and Apis mellifera) and regulation of host immune response.

    PubMed

    Sinpoo, Chainarong; Paxton, Robert J; Disayathanoowat, Terd; Krongdang, Sasiprapa; Chantawannakul, Panuwan

    Nosema apis and Nosema ceranae are obligate intracellular microsporidian parasites infecting midgut epithelial cells of host adult honey bees, originally Apis mellifera and Apis cerana respectively. Each microsporidia cross-infects the other host and both microsporidia nowadays have a worldwide distribution. In this study, cross-infection experiments using both N. apis and N. ceranae in both A. mellifera and A. cerana were carried out to compare pathogen proliferation and impact on hosts, including host immune response. Infection by N. ceranae led to higher spore loads than by N. apis in both host species, and there was greater proliferation of microsporidia in A. mellifera compared to A. cerana. Both N. apis and N. ceranae were pathogenic in both host Apis species. N. ceranae induced subtly, though not significantly, higher mortality than N. apis in both host species, yet survival of A. cerana was no different to that of A. mellifera in response to N. apis or N. ceranae. Infections of both host species with N. apis and N. ceranae caused significant up-regulation of AMP genes and cellular mediated immune genes but did not greatly alter apoptosis-related gene expression. In this study, A. cerana enlisted a higher immune response and displayed lower loads of N. apis and N. ceranae spores than A. mellifera, suggesting it may be better able to defend itself against microsporidia infection. We caution against over-interpretation of our results, though, because differences between host and parasite species in survival were insignificant and because size differences between microsporidia species and between host Apis species may alternatively explain the differential proliferation of N. ceranae in A. mellifera. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Particulate matter triggers depressive-like response associated with modulation of inflammatory cytokine homeostasis and brain-derived neurotrophic factor signaling pathway in mice.

    PubMed

    Liu, Xuemei; Qian, Xin; Xing, Jing; Wang, Jinhua; Sun, Yixuan; Wang, Qin'geng; Li, Huiming

    2018-04-23

    Particulate matter (PM) exposure may contribute to depressive-like response in mice. However, few studies have evaluated the adaptive impacts of long-term PM exposure on depressive-like response associated with systemic inflammation and brain-derived neurotrophic factor (BDNF) signaling pathway. We studied the association among depressive-like behaviors, mRNA levels of pro- and anti-inflammatory cytokines, and the expression of BDNF signaling pathway in mice by long-term PM exposure. C57BL/6 male mice were exposed to ambient air alongside control mice breathing air filtered through a high-efficiency air PM (HEPA) filter. Depressive-like behaviors were assessed together with pro-inflammatory, anti-inflammatory cytokine mRNA levels and the modulation of BDNF pathway in hippocampus and olfactory-bulb of mice exposed to PM for 4, 8, and 12 weeks. Exposure to HEPA filtered air for 4 weeks may exert antidepressant like effects in mice. Pro-inflammatory cytokines were up-regulated while the expression of BDNF, its high-affinity receptor tropomyosin-related kinase B (TrkB), and the transcription factor cAMP-response-element binding protein (CREB) were down-regulated in ambient air mice. However, after 8 weeks, there was no significant difference in the rate of depressive-like behaviors between the two groups. After 12 weeks, mice exposed to ambient air again had a higher rate of depressive-like behaviors, significant up-regulation of pro-inflammatory cytokines, down-regulation of interleukin-10 (IL-10), BDNF, TrkB, and CREB than HEPA mice. Ultrafine PM in brain tissues of mice exposed to ambient air was observed. Our results suggest continuous high-level PM exposure alters the depressive-like response in mice and induces a damage-repair-imbalance reaction.

  1. Toll-like receptor cascade and gene polymorphism in host-pathogen interaction in Lyme disease.

    PubMed

    Rahman, Shusmita; Shering, Maria; Ogden, Nicholas H; Lindsay, Robbin; Badawi, Alaa

    2016-01-01

    Lyme disease (LD) risk occurs in North America and Europe where the tick vectors of the causal agent Borrelia burgdorferi sensu lato are found. It is associated with local and systemic manifestations, and has persistent posttreatment health complications in some individuals. The innate immune system likely plays a critical role in both host defense against B. burgdorferi and disease severity. Recognition of B. burgdorferi, activation of the innate immune system, production of proinflammatory cytokines, and modulation of the host adaptive responses are all initiated by Toll-like receptors (TLRs). A number of Borrelia outer-surface proteins (eg, OspA and OspB) are recognized by TLRs. Specifically, TLR1 and TLR2 were identified as the receptors most relevant to LD. Several functional single-nucleotide polymorphisms have been identified in TLR genes, and are associated with varying cytokines types and synthesis levels, altered pathogen recognition, and disruption of the downstream signaling cascade. These single-nucleotide polymorphism-related functional alterations are postulated to be linked to disease development and posttreatment persistent illness. Elucidating the role of TLRs in LD may facilitate a better understanding of disease pathogenesis and can provide an insight into novel therapeutic targets during active disease or postinfection and posttreatment stages.

  2. Short Communication: Lack of Immune Response in Rapid Progressor Morphine-Dependent and SIV/SHIV-Infected Rhesus Macaques Is Correlated with Downregulation of TH1 Cytokines

    PubMed Central

    Kumar, Rakesh; Noel, Richard J.; Garcia, Yashira; Rodriguez, Idia V.; Martinez, Melween; Sariol, Carlos A.; Kraiselburd, Edmundo; Iszard, Marcus; Mukherji, Mridul; Kumar, Santosh; Giavedoni, Luis D.; Kumar, Anil

    2010-01-01

    Abstract Our previous studies have shown two distinct disease patterns (rapid and normal onset of clinical symptoms) in morphine-dependent SHIV/SIV-inoculated rhesus macaques. We have also shown that control as well as 50% of morphine-dependent macaques (normal progressor) developed humoral and cellular immune responses whereas the other half of the morphine-dependent macaques (rapid progressor) did not develop antiviral immune responses after infection with SIV/SHIV. In the present study, we analyzed the association between cytokine production, immune response, and disease progression. To study the immunological effects of morphine at cytokine levels in the context of a lentiviral infection, we inoculated rhesus macaques with a mixture of SHIVKU−18, SHIV89.6P, and SIV/17E-Fr. These animals were followed for a period of 56 weeks for cytokine level production in plasma. Drug-dependent rapid disease progressors exhibited an increase in IL-18 and IL-1Ra and a decrease in IL-12 levels in the plasma. Morphine-dependent normal progressors and control macaques exhibited an increase in both IL-18 and IL-12, whereas IL-Ra levels remained constant throughout the observation period. These results suggest that rapid disease progression in relation to morphine dependency may be the result of an altered cytokine profile. PMID:20672973

  3. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease.

    PubMed

    Racke, M K; Bonomo, A; Scott, D E; Cannella, B; Levine, A; Raine, C S; Shevach, E M; Röcken, M

    1994-11-01

    The properties and outcome of an immune response are best predicted by the lymphokine phenotype of the responding T cells. Cytokines produced by CD4+ T helper type 1 (Th1) T cells mediate delayed type hypersensitivity (DTH) and inflammatory responses, whereas cytokines produced by Th2 T cells mediate helper T cell functions for antibody production. To determine whether induction of Th2-like cells would modulate an inflammatory response, interleukin 4 (IL-4) was administered to animals with experimental allergic encephalomyelitis (EAE), a prototypic autoimmune disease produced by Th1-like T cells specific for myelin basic protein (MBP). IL-4 treatment resulted in amelioration of clinical disease, the induction of MBP-specific Th2 cells, diminished demyelination, and inhibition of the synthesis of inflammatory cytokines in the central nervous system (CNS). Modulation of an immune response from one dominated by excessive activity of Th1-like T cells to one dominated by the protective cytokines produced by Th2-like T cells may have applicability to the therapy of certain human autoimmune diseases.

  4. Multifunctional roles of leader protein of foot-and-mouth disease viruses in suppressing host antiviral responses.

    PubMed

    Liu, Yingqi; Zhu, Zixiang; Zhang, Miaotao; Zheng, Haixue

    2015-10-28

    Foot-and-mouth disease virus (FMDV) leader protein (L(pro)) is a papain-like proteinase, which plays an important role in FMDV pathogenesis. L(pro) exists as two forms, Lab and Lb, due to translation being initiated from two different start codons separated by 84 nucleotides. L(pro) self-cleaves from the nascent viral polyprotein precursor as the first mature viral protein. In addition to its role as a viral proteinase, L(pro) also has the ability to antagonize host antiviral effects. To promote FMDV replication, L(pro) can suppress host antiviral responses by three different mechanisms: (1) cleavage of eukaryotic translation initiation factor 4 γ (eIF4G) to shut off host protein synthesis; (2) inhibition of host innate immune responses through restriction of interferon-α/β production; and (3) L(pro) can also act as a deubiquitinase and catalyze deubiquitination of innate immune signaling molecules. In the light of recent functional and biochemical findings regarding L(pro), this review introduces the basic properties of L(pro) and the mechanisms by which it antagonizes host antiviral responses.

  5. Dynamic Changes in Pro- and Anti-Inflammatory Cytokine Profiles and Gamma Interferon Receptor Signaling Integrity Correlate with Tuberculosis Disease Activity and Response to Curative Treatment▿

    PubMed Central

    Sahiratmadja, Edhyana; Alisjahbana, Bachti; de Boer, Tjitske; Adnan, Iskandar; Maya, Anugrah; Danusantoso, Halim; Nelwan, Ronald H. H.; Marzuki, Sangkot; van der Meer, Jos W. M.; van Crevel, Reinout; van de Vosse, Esther; Ottenhoff, Tom H. M.

    2007-01-01

    Pro- and anti-inflammatory cytokines and their signaling pathways play key roles in protection from and pathogenesis of mycobacterial infection, and their balance and dynamic changes may control or predict clinical outcome. Peripheral blood cells' capacity to produce proinflammatory (tumor necrosis factor alpha [TNF-α], interleukin-12/23p40 [IL-12/23p40], and gamma interferon [IFN-γ]) and anti-inflammatory (IL-10) cytokines in response to Mycobacterium tuberculosis or unrelated stimuli (lipopolysaccharide, phytohemagglutinin) was studied in 93 pulmonary tuberculosis (TB) patients and 127 healthy controls from Indonesia. Their cells' ability to respond to IFN-γ was examined to investigate whether M. tuberculosis infection can also inhibit IFN-γ receptor (IFN-γR) signaling. Although there was interindividual variability in the observed responses, the overall results revealed that M. tuberculosis-induced TNF-α and IFN-γ levels showed opposite trends. Whereas TNF-α production was higher in active-TB patients than in controls, IFN-γ production was strongly depressed during active TB, correlated inversely with TB disease severity, and increased during therapy. By contrast, mitogen-induced IFN-γ production, although lower in patients than in controls, did not change during treatment, suggesting an M. tuberculosis-specific and reversible component in the depression of IFN-γ. Depressed IFN-γ production was not due to decreased IL-12/IL-23 production. Importantly, IFN-γ-inducible responses were also significantly depressed during active TB and normalized during treatment, revealing disease activity-related and reversible impairment in IFN-γR signaling in TB. Finally, IFN-γ/IL-10 ratios significantly correlated with TB cure. Taken together, these results show that M. tuberculosis-specific stimulation of IFN-γ (but not TNF-α) production and IFN-γR signaling are significantly depressed in active TB, correlate with TB disease severity and activity, and

  6. Cytokines and the neurodevelopmental basis of mental illness

    PubMed Central

    Ratnayake, Udani; Quinn, Tracey; Walker, David W.; Dickinson, Hayley

    2013-01-01

    Epidemiological studies suggest that prenatal exposure to different types of viral or bacterial infections may be associated with similar outcomes; i.e., an increased risk of mental illness disorders in the offspring. Infections arising from various causes have similar debilitating effects in later life, suggesting that the exact pathogen may not be the critical factor in determining the neurological and cognitive outcome in the offspring. Instead, it is thought that response of the innate immune system, specifically the increased production of inflammatory cytokines, may be the critical mediator in altering fetal brain development pre-disposing the offspring to mental illness disorders later in life. Inflammatory cytokines are essential for normal brain development. Factors such as the site of cytokine production, a change in balance between anti- and pro- inflammatory cytokines, placental transfer of cytokines, the effects of cytokines on glial cells, and the effects of glucocorticoids are important when evaluating the impact of maternal infection on fetal brain development. Although it is clear that cytokines are altered in the fetal brain following maternal infection, further evidence is required to determine if cytokines are the critical factor that alters the trajectory of brain development, subsequently leading to postnatal behavioral and neurological abnormalities. PMID:24146637

  7. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications

    PubMed Central

    Felger, Jennifer C.; Lotrich, Francis E.

    2013-01-01

    Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, e.g. brain derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression’s development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed. PMID:23644052

  8. Adenovirus Core Protein VII Downregulates the DNA Damage Response on the Host Genome

    PubMed Central

    Avgousti, Daphne C.; Della Fera, Ashley N.; Otter, Clayton J.; Herrmann, Christin; Pancholi, Neha J.

    2017-01-01

    ABSTRACT Viral manipulation of cellular proteins allows viruses to suppress host defenses and generate infectious progeny. Due to the linear double-stranded DNA nature of the adenovirus genome, the cellular DNA damage response (DDR) is considered a barrier to successful infection. The adenovirus genome is packaged with protein VII, a virally encoded histone-like core protein that is suggested to protect incoming viral genomes from detection by the cellular DNA damage machinery. We showed that protein VII localizes to host chromatin during infection, leading us to hypothesize that protein VII may affect DNA damage responses on the cellular genome. Here we show that protein VII at cellular chromatin results in a significant decrease in accumulation of phosphorylated H2AX (γH2AX) following irradiation, indicating that protein VII inhibits DDR signaling. The oncoprotein SET was recently suggested to modulate the DDR by affecting access of repair proteins to chromatin. Since protein VII binds SET, we investigated a role for SET in DDR inhibition by protein VII. We show that knockdown of SET partially rescues the protein VII-induced decrease in γH2AX accumulation on the host genome, suggesting that SET is required for inhibition. Finally, we show that knockdown of SET also allows ATM to localize to incoming viral genomes bound by protein VII during infection with a mutant lacking early region E4. Together, our data suggest that the protein VII-SET interaction contributes to DDR evasion by adenovirus. Our results provide an additional example of a strategy used by adenovirus to abrogate the host DDR and show how viruses can modify cellular processes through manipulation of host chromatin. IMPORTANCE The DNA damage response (DDR) is a cellular network that is crucial for maintaining genome integrity. DNA viruses replicating in the nucleus challenge the resident genome and must overcome cellular responses, including the DDR. Adenoviruses are prevalent human pathogens that

  9. Cardiopulmonary reflex, cardiac cytokines, and nandrolone decanoate: response to resistance training in rats.

    PubMed

    Lima, Ewelyne Miranda; Nascimento, Andrews Marques; Brasil, Girlandia Alexandre; Kalil, Ieda Carneiro; Lenz, Dominik; Endringer, Denise Coutinho; Andrade, Tadeu Uggere; Bissoli, Nazaré Souza

    2015-11-01

    This study evaluated the effects of nandrolone associated with resistance training (RT) on cardiac cytokines, angiotensin-converting enzyme activity (ACEA), and the sensitivity of the Bezold-Jarisch reflex (BJR). Male Wistar rats were divided into 3 groups: CONT (received vehicle, no training); EXERC (RT: after one week of water adaptation, rats were exercised by jumping into water twice a week for 4 weeks), and ND+EXERC (received nandrolone decanoate 10 mg/kg, twice/week, i.m, associated with RT). The BJR was analysed by measuring bradycardic and hypotensive responses elicited by serotonin administration. Myocyte hypertrophy and matrix collagen deposition were determined by morphometric analysis of H&E and picrosirius red-stained samples, respectively. TNF-α and ACEA were also studied. RT promoted physiological myocyte hyrpertrophy but did not cause changes in the other parameters. The association of ND with RT increased myocyte hypertrophy, deposition of matrix type I collagen, TNF-α and ACEA; decreased IL-10, and impairment in the BJR were observed in ND+EXERC compared with CONT and EXERC. ND is associated with alterations in cardiac structure and function as a result of the development of pathological cardiac hypertrophy (cardiac cytokine imbalance, elevation of ACEA) and cardiac injury, even when combined with resistance training.

  10. Effects of mannan oligosaccharide on cytokine secretions by porcine alveolar macrophages and serum cytokine concentrations in nursery pigs.

    PubMed

    Che, T M; Johnson, R W; Kelley, K W; Dawson, K A; Moran, C A; Pettigrew, J E

    2012-02-01

    -α secretions by AM. Generally, the study suggests that MOS may be a potent immunomodulator because it directly activates AM to secrete TNF-α and alters the cytokine responses of bacterial endotoxin-induced AM in both ex vivo and in vitro systems. In particular, feeding MOS to pigs for 2 wk reduces TNF-α and increases IL-10 concentrations after ex vivo treatment of AM with LPS. These immunomodulatory properties of MOS may have important implications for both host defense and avoidance of harmful overstimulation of the immune system.

  11. Neutrophils differentially attenuate immune response to Aspergillus infection through complement receptor 3 and induction of myeloperoxidase.

    PubMed

    Goh, Jessamine G; Ravikumar, Sharada; Win, Mar Soe; Cao, Qiong; Tan, Ai Ling; Lim, Joan H J; Leong, Winnie; Herbrecht, Raoul; Troke, Peter F; Kullberg, Bart Jan; Netea, Mihai G; Chng, Wee Joo; Dan, Yock Young; Chai, Louis Y A

    2018-03-01

    Invasive aspergillosis (IA) remains a major cause of morbidity in immunocompromised hosts. This is due to the inability of the host immunity to respond appropriately to Aspergillus. An established risk factor for IA is neutropenia that is encountered by patients undergoing chemotherapy. Herein, we investigate the role of neutrophils in modulating host response to Aspergillus. We found that neutrophils had the propensity to suppress proinflammatory cytokine production but through different mechanisms for specific cytokines. Cellular contact was requisite for the modulation of interleukin-1 beta production by Aspergillus with the involvement of complement receptor 3. On the other hand, inhibition of tumour necrosis factor-alpha production (TNF-α) was cell contact-independent and mediated by secreted myeloperoxidase. Specifically, the inhibition of TNF-α by myeloperoxidase was through the TLR4 pathway and involved interference with the mRNA transcription of TNF receptor-associated factor 6/interferon regulatory factor 5. Our study illustrates the extended immune modulatory role of neutrophils beyond its primary phagocytic function. The absence of neutrophils and loss of its inhibitory effect on cytokine production explains the hypercytokinemia seen in neutropenic patients when infected with Aspergillus. © 2017 John Wiley & Sons Ltd.

  12. Detoxified pneumolysin derivative Plym2 directly protects against pneumococcal infection via induction of inflammatory cytokines.

    PubMed

    Lu, Jingcai; Sun, Tianxu; Hou, Hongjia; Xu, Man; Gu, Tiejun; Dong, Yunliang; Wang, Dandan; Chen, Pinxu; Wu, Chunlai; Liang, Chunshu; Sun, Shiyang; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2014-01-01

    Streptococcus pneumoniae is a major cause of infectious disease and complications worldwide, such as pneumonia, otitis media, bacteremia and meningitis. New generation protein-based pneumococcal vaccines are recognized as alternative vaccine candidates. Pneumolysin (Ply) is a cholesterol-dependent cytolysin produced by all clinical isolates of S. pneumoniae. Our research group previously developed a highly detoxified Ply mutant designated Plym2 by replacement of two animo acids (C428G and W433F). Exhibiting undetectable levels of cytotoxicity, Plym2 could still elicit high titer neutralizing antibodies against the native toxin. However, evaluation of the active immunoprotective effects of Plym2 by subcutaneous immunization and lethal challenge with S. pneumoniae in mice did not yield favorable results. In the present work, we confirmed the previous observations by using passive immunization and systemic challenge. Results of the passive immunization were consistent with those of active immunization. Further experiments were conducted to explain the inability of high titer neutralizing antibodies against Ply to protect mice from S. pneumoniae challenge. Pneumococcal Ply is known to be the major factor responsible for the induction of inflammation that benefits the host. Proinflammatory cytokines facilitate the clearance of invaders by the recruitment and activation of leukocytes at the early infection stage. We demonstrated that Plym2 could induce proinflammatory cytokines similarly to wild-type Ply. A systemic infection model was used to clarify that Plym2 lacking cytolytic activity could protect mice from intraperitoneal challenge directly, while antibodies to the mutant had no effect. Therefore, the protective function of Plym2 may be due to its induction of proinflammatory cytokines. When used in the systemic infection model, Plym2 antibodies may block the induction of proinflammatory cytokines by Ply. These findings demonstrate that a Ply-based vaccine would

  13. The Effect of C. burnetii Infection on the Cytokine Response of PBMCs from Pregnant Goats

    PubMed Central

    Ammerdorffer, Anne; Roest, Hendrik-I J.; Dinkla, Annemieke; Post, Jacob; Schoffelen, Teske; van Deuren, Marcel; Sprong, Tom; Rebel, Johanna M.

    2014-01-01

    In humans, infection with Coxiella burnetii, the causative agent of Q fever, leads to acute or chronic infection, both associated with specific clinical symptoms. In contrast, no symptoms are observed in goats during C. burnetii infection, although infection of the placenta eventually leads to premature delivery, stillbirth and abortion. It is unknown whether these differences in clinical outcome are due to the early immune responses of the goats. Therefore, peripheral blood mononuclear cells (PBMCs) were isolated from pregnant goats. In total, 17 goats were included in the study. Six goats remained naive, while eleven goats were infected with C. burnetii. Toll-like receptor (TLR) and cytokine mRNA expression were measured after in vitro stimulation with heat-killed C. burnetii at different time points (prior infection, day 7, 35 and 56 after infection). In naive goats an increased expression of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-10 and interferon (IFN)-γ mRNA upon C. burnetii stimulation was detected. In addition, TLR2 expression was strongly up-regulated. In goats infected with C. burnetii, PBMCs re-stimulated in vitro with C. burnetii, expressed significantly more TNF-α mRNA and IFN-γ mRNA compared to naive goats. In contrast, IL-10 mRNA production capacity was down-regulated during C. burnetii infection. Interestingly, at day 7 after inoculation a decreased IFN-γ protein level was observed in stimulated leukocytes in whole blood from infected goats, whereas at other time-points increased production of IFN-γ protein was seen. Our study shows that goats initiate a robust pro-inflammatory immune response against C. burnetii in vitro. Furthermore, PBMCs from C. burnetii infected goats show augmented pro-inflammatory cytokine responses compared to PBMCs from non-infected goats. However, despite this pro-inflammatory response, goats are not capable of clearing the C. burnetii infection. PMID:25279829

  14. Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals

    PubMed Central

    Korpela, Katri; Flint, Harry J.; Johnstone, Alexandra M.; Lappi, Jenni; Poutanen, Kaisa; Dewulf, Evelyne; Delzenne, Nathalie; de Vos, Willem M.; Salonen, Anne

    2014-01-01

    Background Interactions between the diet and intestinal microbiota play a role in health and disease, including obesity and related metabolic complications. There is great interest to use dietary means to manipulate the microbiota to promote health. Currently, the impact of dietary change on the microbiota and the host metabolism is poorly predictable and highly individual. We propose that the responsiveness of the gut microbiota may depend on its composition, and associate with metabolic changes in the host. Methodology Our study involved three independent cohorts of obese adults (n = 78) from Belgium, Finland, and Britain, participating in different dietary interventions aiming to improve metabolic health. We used a phylogenetic microarray for comprehensive fecal microbiota analysis at baseline and after the intervention. Blood cholesterol, insulin and inflammation markers were analyzed as indicators of host response. The data were divided into four training set – test set pairs; each intervention acted both as a part of a training set and as an independent test set. We used linear models to predict the responsiveness of the microbiota and the host, and logistic regression to predict responder vs. non-responder status, or increase vs. decrease of the health parameters. Principal Findings Our models, based on the abundance of several, mainly Firmicute species at baseline, predicted the responsiveness of the microbiota (AUC  =  0.77–1; predicted vs. observed correlation  =  0.67–0.88). Many of the predictive taxa showed a non-linear relationship with the responsiveness. The microbiota response associated with the change in serum cholesterol levels with an AUC of 0.96, highlighting the involvement of the intestinal microbiota in metabolic health. Conclusion This proof-of-principle study introduces the first potential microbial biomarkers for dietary responsiveness in obese individuals with impaired metabolic health, and reveals the potential of

  15. Therapeutic Effects of Resiniferatoxin Related with Immunological Responses for Intestinal Inflammation in Trichinellosis

    PubMed Central

    Muñoz-Carrillo, José Luis; Muñoz-López, José Luis; Muñoz-Escobedo, José Jesús; Maldonado-Tapia, Claudia; Gutiérrez-Coronado, Oscar; Contreras-Cordero, Juan Francisco; Moreno-García, María Alejandra

    2017-01-01

    The immune response against Trichinella spiralis at the intestinal level depends on the CD4+ T cells, which can both suppress or promote the inflammatory response through the synthesis of diverse cytokines. During the intestinal phase, the immune response is mixed (Th1/Th2) with the initial predominance of the Th1 response and the subsequent domination of Th2 response, which favor the development of intestinal pathology. In this context, the glucocorticoids (GC) are the pharmacotherapy for the intestinal inflammatory response in trichinellosis. However, its therapeutic use is limited, since studies have shown that treatment with GC suppresses the host immune system, favoring T. spiralis infection. In the search for novel pharmacological strategies that inhibit the Th1 immune response (proinflammatory) and assist the host against T. spiralis infection, recent studies showed that resiniferatoxin (RTX) had anti-inflammatory activity, which decreased the serum levels of IL-12, INF-γ, IL-1β, TNF-α, NO, and PGE2, as well the number of eosinophils in the blood, associated with decreased intestinal pathology and muscle parasite burden. These researches demonstrate that RTX is capable to inhibit the production of Th1 cytokines, contributing to the defense against T. spiralis infection, which places it as a new potential drug modulator of the immune response. PMID:29320813

  16. An Update on Host-Pathogen Interplay and Modulation of Immune Responses during Orientia tsutsugamushi Infection.

    PubMed

    Díaz, Fabián E; Abarca, Katia; Kalergis, Alexis M

    2018-04-01

    The obligate intracellular bacterium Orientia tsutsugamushi is the causative agent of scrub typhus in humans, a serious mite-borne disease present in a widespread area of endemicity, which affects an estimated 1 million people every year. This disease may exhibit a broad range of presentations, ranging from asymptomatic to fatal conditions, with the latter being due to disseminated endothelial infection and organ injury. Unique characteristics of the biology and host-pathogen interactions of O. tsutsugamushi , including the high antigenic diversity among strains and the highly variable, short-lived memory responses developed by the host, underlie difficulties faced in the pursuit of an effective vaccine, which is an imperative need. Other factors that have hindered scientific progress relative to the infectious mechanisms of and the immune response triggered by this bacterium in vertebrate hosts include the limited number of mechanistic studies performed on animal models and the lack of genetic tools currently available for this pathogen. However, recent advances in animal model development are promising to improve our understanding of host-pathogen interactions. Here, we comprehensively discuss the recent advances in and future perspectives on host-pathogen interactions and the modulation of immune responses related to this reemerging disease, highlighting the role of animal models. Copyright © 2018 American Society for Microbiology.

  17. The role of multiple negative social relationships in inflammatory cytokine responses to a laboratory stressor

    PubMed Central

    Song, Sunmi; Graham-Engeland, Jennifer E.; Corwin, Elizabeth J.; Ceballos, Rachel M.; Taylor, Shelley E.; Seeman, Teresa

    2015-01-01

    The present study examined the unique impact of perceived negativity in multiple social relationships on endocrine and inflammatory responses to a laboratory stressor. Via hierarchical cluster analysis, those who reported negative social exchanges across relationships with a romantic partner, family, and their closest friend had higher mean IL-6 across time and a greater increase in TNF-α from 15 min to 75 min post stress. Those who reported negative social exchanges across relationships with roommates, family, and their closest friend showed greater IL-6 responses to stress. Differences in mean IL-6 were accounted for by either depressed mood or hostility, whereas differences in the cytokine stress responses remained significant after controlling for those factors. Overall, this research provides preliminary evidence to suggest that having multiple negative relationships may exacerbate acute inflammatory responses to a laboratory stressor independent of hostility and depressed mood. PMID:26056615

  18. The role of multiple negative social relationships in inflammatory cytokine responses to a laboratory stressor.

    PubMed

    Song, Sunmi; Graham-Engeland, Jennifer E; Corwin, Elizabeth J; Ceballos, Rachel M; Taylor, Shelley E; Seeman, Teresa; Klein, Laura Cousino

    2015-01-01

    The present study examined the unique impact of perceived negativity in multiple social relationships on endocrine and inflammatory responses to a laboratory stressor. Via hierarchical cluster analysis, those who reported negative social exchanges across relationships with a romantic partner, family, and their closest friend had higher mean IL-6 across time and a greater increase in TNF-α from 15 min to 75 min post stress. Those who reported negative social exchanges across relationships with roommates, family, and their closest friend showed greater IL-6 responses to stress. Differences in mean IL-6 were accounted for by either depressed mood or hostility, whereas differences in the cytokine stress responses remained significant after controlling for those factors. Overall, this research provides preliminary evidence to suggest that having multiple negative relationships may exacerbate acute inflammatory responses to a laboratory stressor independent of hostility and depressed mood.

  19. Deficiency in Th2 cytokine responses exacerbate orthopoxvirus infection.

    PubMed

    Sakala, Isaac G; Chaudhri, Geeta; Eldi, Preethi; Buller, R Mark; Karupiah, Gunasegaran

    2015-01-01

    Ectromelia virus (ECTV) causes mousepox in mice, a disease very similar to smallpox in humans. ECTV and variola virus (VARV), the agent of smallpox, are closely related orthopoxviruses. Mousepox is an excellent small animal model to study the genetic and immunologic basis for resistance and susceptibility of humans to smallpox. Resistance to mousepox is dependent on a strong polarized type 1 immune response, associated with robust natural killer (NK) cell, cytotoxic T lymphocyte (CTL) and gamma interferon (IFN-γ) responses. In contrast, ECTV-susceptible mice generate a type 2 response, associated with weak NK cell, CTL and IFN-γ responses but robust IL-4 responses. Nonetheless, susceptible strains infected with mutant ECTV lacking virus-encoded IFN-γ binding protein (vIFN-γbp) (ECTV-IFN-γbpΔ) control virus replication through generation of type 1 response. Since the IL-4/IL-13/STAT-6 signaling pathways polarize type 2/T helper 2 (Th2) responses with a corresponding suppression of IFN-γ production, we investigated whether the combined absence of vIFN-γbp, and one or more host genes involved in Th2 response development, influence generation of protective immunity. Most mutant mouse strains infected with wild-type (WT) virus succumbed to disease more rapidly than WT animals. Conversely, the disease outcome was significantly improved in WT mice infected with ECTV-IFN-γbpΔ but absence of IL-4/IL-13/STAT-6 signaling pathways did not provide any added advantage. Deficiency in IL-13 or STAT-6 resulted in defective CTL responses, higher mortality rates and accelerated deaths. Deficiencies in IL-4/IL-13/STAT-6 signaling pathways significantly reduced the numbers of IFN-γ producing CD4 and CD8 T cells, indicating an absence of a switch to a Th1-like response. Factors contributing to susceptibility or resistance to mousepox are far more complex than a balance between Th1 and Th2 responses.

  20. EGFR Ligands Drive Multipotential Stromal Cells to Produce Multiple Growth Factors and Cytokines via Early Growth Response-1

    PubMed Central

    Kerpedjieva, Svetoslava S.; Kim, Duk Soo; Barbeau, Dominique J.

    2012-01-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)–EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase–extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands. PMID:22316125

  1. Stress hormones predict a host superspreader phenotype in the West Nile virus system

    USGS Publications Warehouse

    Gervasi, Stephanie; Burgan, Sarah; Hofmeister, Erik K.; Unnasch, Thomas R.; Martin, Lynn B.

    2017-01-01

    Glucocorticoid stress hormones, such as corticosterone (CORT), have profound effects on the behaviour and physiology of organisms, and thus have the potential to alter host competence and the contributions of individuals to population- and community-level pathogen dynamics. For example, CORT could alter the rate of contacts among hosts, pathogens and vectors through its widespread effects on host metabolism and activity levels. CORT could also affect the intensity and duration of pathogen shedding and risk of host mortality during infection. We experimentally manipulated songbird CORT, asking how CORT affected behavioural and physiological responses to a standardized West Nile virus (WNV) challenge. Although all birds became infected after exposure to the virus, only birds with elevated CORT had viral loads at or above the infectious threshold. Moreover, though the rate of mortality was faster in birds with elevated CORT compared with controls, most hosts with elevated CORT survived past the day of peak infectiousness. CORT concentrations just prior to inoculation with WNV and anti-inflammatory cytokine concentrations following viral exposure were predictive of individual duration of infectiousness and the ability to maintain physical performance during infection (i.e. tolerance), revealing putative biomarkers of competence. Collectively, our results suggest that glucocorticoid stress hormones could directly and indirectly mediate the spread of pathogens.

  2. Analysis of inflammatory cytokines in human blood, breath ...

    EPA Pesticide Factsheets

    A change in the expression of cytokines in human biological media indicates an inflammatory response to external stressors and reflects an early step along the adverse outcome pathway (AOP) for various health endpoints. To characterize and interpret this inflammatory response, methodology was developed for measuring a suite of 10 different cytokines in human blood, exhaled breath condensate (EBC), and urine using an electrochemiluminescent multiplex Th1/Th2 cytokine immunoassay platform. Measurement distributions and correlations for eight interleukins (IL) (1β, 2, 4, 5, 8, 10, 12p70 and 13), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) were evaluated using 90 blood plasma, 77 EBC, and 400 urine samples collected from nominally healthy adults subjects in North Carolina in 2008-2012. The in vivo results show that there is sufficient sensitivity for characterizing all 10 cytokines at levels of 0.05-0.10 ρg/ml with a dynamic range up to 100 ng/ml across all three of these biological media. The measured in vivo results also show that the duplicate analysis of blood, EBC and urine samples have average estimated fold ranges of 2.21, 3.49, and 2.50, respectively, which are similar to the mean estimated fold range (2.88) for the lowest concentration (0.610ρg/ml) from a series of spiked control samples; the cytokine method can be used for all three biological media. Nine out of the 10 cytokines measured in EBC were highly correlated within one a

  3. Effect of proinflammatory cytokines on PIGA- hematopoiesis.

    PubMed

    Kulkarni, Shashikant; Bessler, Monica

    2003-09-01

    Blood cells from patients with paroxysmal nocturnal hemoglobinuria lack glycosyl phosphatidylinositol (GPI)-linked proteins, due to a somatic mutation in the X-linked PIGA gene. It is believed that clonal expansion of PIGA- blood cells is due to a survival advantage in the hostile marrow environment of aplastic anemia. Here we investigated the effects of inhibitory cytokines in mice genetically engineered to have blood cells deficient in GPI-linked proteins. The effect of inhibitory cytokines (tumor necrosis factor-alpha [TNF-alpha], interferon-gamma [IFN-gamma], macrophage inflammatory protein-1 alpha [MIP-1alpha], and transforming growth factor-beta1 [TGF-beta1]) was investigated, using clonogenic assays, competitive repopulation, and in vivo induction of proinflammatory cytokines by double-stranded RNA. The expression of Fas on progenitor cells and its up-regulation by inhibitory cytokines were analyzed by flow cytometry. TNF-alpha, IFN-gamma, MIP-1alpha, and TGF-beta1 suppressed colony formation in a dose-dependent fashion that was similar for PIGA+ and PIGA- blood bone marrow cells. Competitive repopulation of bone marrow cells cultured in IFN-gamma and TNF-alpha resulted in a comparable ability of PIGA+ and PIGA- hematopoietic stem cells to reconstitute hematopoiesis. Fas expression was minimal on PIGA+ and PIGA- progenitor cells and was up-regulated to the same extent in response to IFN-gamma and TNF-alpha as assessed by Fas antibody-mediated apoptosis. Similarly, in vivo induction of proinflammatory cytokines by double-stranded RNA had no effect on the proportion of circulating PIGA- blood cells. These results indicate that PIGA+ and PIGA- hematopoietic progenitor cells respond similarly to inhibitory cytokines, suggesting that other factors are responsible for the clonal expansion of paroxysmal nocturnal hemoglobinuria cells.

  4. Host-to-host variation of ecological interactions in polymicrobial infections

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sayak; Weimer, Kristin E.; Seok, Sang-Cheol; Ray, Will C.; Jayaprakash, C.; Vieland, Veronica J.; Swords, W. Edward; Das, Jayajit

    2015-02-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  5. Cytokines in Bipolar Disorder: Paving the Way for Neuroprogression

    PubMed Central

    Barbosa, Izabela Guimarães; Bauer, Moisés Evandro; Machado-Vieira, Rodrigo; Teixeira, Antonio Lucio

    2014-01-01

    Bipolar disorder (BD) is a severe, chronic, and recurrent psychiatric illness. It has been associated with high prevalence of medical comorbidities and cognitive impairment. Its neurobiology is not completely understood, but recent evidence has shown a wide range of immune changes. Cytokines are proteins involved in the regulation and the orchestration of the immune response. We performed a review on the involvement of cytokines in BD. We also discuss the cytokines involvement in the neuroprogression of BD. It has been demonstrated that increased expression of cytokines in the central nervous system in postmortem studies is in line with the elevated circulating levels of proinflammatory cytokines in BD patients. The proinflammatory profile and the immune imbalance in BD might be regarded as potential targets to the development of new therapeutic strategies. PMID:25313338

  6. Proteolytic Activation Transforms Heparin Cofactor II into a Host Defense Molecule

    PubMed Central

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Tollefsen, Douglas M.; Malmsten, Martin; Mörgelin, Matthias

    2013-01-01

    The abundant serine proteinase inhibitor heparin cofactor II (HCII) has been proposed to inhibit extravascular thrombin. However, the exact physiological role of this plasma protein remains enigmatic. In this study, we demonstrate a previously unknown role for HCII in host defense. Proteolytic cleavage of the molecule induced a conformational change, thereby inducing endotoxin-binding and antimicrobial properties. Analyses employing representative peptide epitopes mapped these effects to helices A and D. Mice deficient in HCII showed increased susceptibility to invasive infection by Pseudomonas aeruginosa, along with a significantly increased cytokine response. Correspondingly, decreased levels of HCII were observed in wild-type animals challenged with bacteria or endotoxin. In humans, proteolytically cleaved HCII forms were detected during wounding and in association with bacteria. Thus, the protease-induced uncovering of cryptic epitopes in HCII, which transforms the molecule into a host defense factor, represents a previously unknown regulatory mechanism in HCII biology and innate immunity. PMID:23656734

  7. Proteolytic activation transforms heparin cofactor II into a host defense molecule.

    PubMed

    Kalle, Martina; Papareddy, Praveen; Kasetty, Gopinath; Tollefsen, Douglas M; Malmsten, Martin; Mörgelin, Matthias; Schmidtchen, Artur

    2013-06-15

    The abundant serine proteinase inhibitor heparin cofactor II (HCII) has been proposed to inhibit extravascular thrombin. However, the exact physiological role of this plasma protein remains enigmatic. In this study, we demonstrate a previously unknown role for HCII in host defense. Proteolytic cleavage of the molecule induced a conformational change, thereby inducing endotoxin-binding and antimicrobial properties. Analyses employing representative peptide epitopes mapped these effects to helices A and D. Mice deficient in HCII showed increased susceptibility to invasive infection by Pseudomonas aeruginosa, along with a significantly increased cytokine response. Correspondingly, decreased levels of HCII were observed in wild-type animals challenged with bacteria or endotoxin. In humans, proteolytically cleaved HCII forms were detected during wounding and in association with bacteria. Thus, the protease-induced uncovering of cryptic epitopes in HCII, which transforms the molecule into a host defense factor, represents a previously unknown regulatory mechanism in HCII biology and innate immunity.

  8. IL-33-induced alterations in murine intestinal function and cytokine responses are MyD88, STAT6, and IL-13-dependent

    USDA-ARS?s Scientific Manuscript database

    IL-33 is a recently identified cytokine member of the IL-1 family. The biological activities of IL-33 are associated with promotion of Th2 and inhibition of Th1/Th17 immune responses. Exogenous IL-33 induces a typical “type 2” immune response in the gastrointestinal tract, yet the underlying mechani...

  9. Genetics of immune recognition and response in Drosophila host defense.

    PubMed

    Ligoxygakis, Petros

    2013-01-01

    Due to the evolutionary conservation of innate immune mechanisms, Drosophila has been extensively used as a model for the dissection in genetic terms of innate host immunity to infection. Genetic screening in fruit flies has set the stage for the pathways and systems required for responding to immune challenge and the dynamics of the progression of bacterial and fungal infection. In addition, fruit flies have been used as infection models to dissect host-pathogen interactions from both sides of this equation. This chapter describes our current understanding of the genetics of the fruit fly immune response and summarizes the most important findings in this area during the past decade. © 2013 Elsevier Inc. All rights reserved.

  10. Early human pregnancy serum cytokine levels predict autoimmunity in offspring.

    PubMed

    Lindehammer, Sabina Resic; Björck, Sara; Lynch, Kristian; Brundin, Charlotte; Marsal, Karel; Agardh, Daniel; Fex, Malin

    2011-09-01

    It is generally believed that pregnancy is mediated by a Th2 response, which includes cytokines that promote placental growth and are involved in inducing tolerance to the foetus. If the balance between Th1/and Th2-mediated cytokines is disrupted, systemic and local changes could predispose the foetus to future disease. Therefore, a shift in the Th1/Th2 balance during pregnancy, possibly caused by underlying environmental factors, could be associated with post-partum autoimmune disease in the offspring. Based on this presumption, we used celiac disease as a model to investigate whether autoimmunity is triggered in the foetus during early pregnancy, observed as changes in the mother's cytokine profile. Ten cytokines were measured by electro-chemi-luminescent multiplex ELISA in serum samples obtained from mothers during early pregnancy. Cases included women with children who had developed verified celiac disease before the age of 5, who were compared with other women as matched controls. We observed that 7 out of 10 cytokine levels were significantly increased in our case mothers when compared to controls. Five of these belonged to what is generally known as a Th1-mediated response (TNFα, IFNγ, IL-2, IL-1β and IL-12) and two were Th2 cytokines (IL-13 and IL-10). However, the IL-10 cytokine is known to have features from both arms of the immune system. These results were confirmed in a logistic regression model where five out of the initial seven cytokines remained. This study suggests that increase in Th1 serum cytokines may be associated with celiac disease in offspring.

  11. Pathogenic Mechanisms and Host Interactions in Staphylococcus epidermidis Device-Related Infection.

    PubMed

    Sabaté Brescó, Marina; Harris, Llinos G; Thompson, Keith; Stanic, Barbara; Morgenstern, Mario; O'Mahony, Liam; Richards, R Geoff; Moriarty, T Fintan

    2017-01-01

    Staphylococcus epidermidis is a permanent member of the normal human microbiota, commonly found on skin and mucous membranes. By adhering to tissue surface moieties of the host via specific adhesins, S. epidermidis is capable of establishing a lifelong commensal relationship with humans that begins early in life. In its role as a commensal organism, S. epidermidis is thought to provide benefits to human host, including out-competing more virulent pathogens. However, largely due to its capacity to form biofilm on implanted foreign bodies, S. epidermidis has emerged as an important opportunistic pathogen in patients receiving medical devices. S. epidermidis causes approximately 20% of all orthopedic device-related infections (ODRIs), increasing up to 50% in late-developing infections. Despite this prevalence, it remains underrepresented in the scientific literature, in particular lagging behind the study of the S. aureus . This review aims to provide an overview of the interactions of S. epidermidis with the human host, both as a commensal and as a pathogen. The mechanisms retained by S. epidermidis that enable colonization of human skin as well as invasive infection, will be described, with a particular focus upon biofilm formation. The host immune responses to these infections are also described, including how S. epidermidis seems to trigger low levels of pro-inflammatory cytokines and high levels of interleukin-10, which may contribute to the sub-acute and persistent nature often associated with these infections. The adaptive immune response to S. epidermidis remains poorly described, and represents an area which may provide significant new discoveries in the coming years.

  12. Monoethylhexyl Phthalate Elicits an Inflammatory Response in Adipocytes Characterized by Alterations in Lipid and Cytokine Pathways

    PubMed Central

    Manteiga, Sara; Lee, Kyongbum

    2016-01-01

    Background: A growing body of evidence links endocrine-disrupting chemicals (EDCs) with obesity-related metabolic diseases. While it has been shown that EDCs can predispose individuals toward adiposity by affecting developmental processes, little is known about the chemicals’ effects on adult adipose tissue. Objectives: Our aim was to study the effects of low, physiologically relevant doses of EDCs on differentiated murine adipocytes. Methods: We combined metabolomics, proteomics, and gene expression analysis to characterize the effects of mono-ethylhexyl phthalate (MEHP) in differentiated adipocytes. Results: Repeated exposure to MEHP over several days led to changes in metabolite and enzyme levels indicating elevated lipogenesis and lipid oxidation. The chemical exposure also increased expression of major inflammatory cytokines, including chemotactic factors. Proteomic and gene expression analysis revealed significant alterations in pathways regulated by peroxisome proliferator activated receptor-γ (PPARγ). Inhibiting the nuclear receptor’s activity using a chemical antagonist abrogated not only the alterations in PPARγ-regulated metabolic pathways, but also the increases in cytokine expression. Conclusions: Our results show that MEHP can induce a pro-inflammatory state in differentiated adipocytes. This effect is at least partially mediated PPARγ. Citation: Manteiga S, Lee K. 2017. Monoethylhexyl phthalate elicits an inflammatory response in adipocytes characterized by alterations in lipid and cytokine pathways. Environ Health Perspect 125:615–622; http://dx.doi.org/10.1289/EHP464 PMID:27384973

  13. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose

    PubMed Central

    Auld, Stuart K. J. R; Edel, Kai H.; Little, Tom J.

    2013-01-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. PMID:23025616

  14. Withaferin A Associated Differential Regulation of Inflammatory Cytokines.

    PubMed

    Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev

    2018-01-01

    A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases.

  15. Withaferin A Associated Differential Regulation of Inflammatory Cytokines

    PubMed Central

    Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev

    2018-01-01

    A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases. PMID:29479354

  16. Cytokine patterns in paediatric patients presenting serious gastrointestinal and respiratory bacterial infections

    PubMed Central

    Palacios-Martínez, Monika; Rodríguez-Cruz, Leonor; Cortés-Bejar, Consuelo Del Carmen; Valencia-Chavarría, Fernando; Martínez-Gómez, Daniel; González-Torres, María Cristina

    2014-01-01

    In the adaptive immune response, the types of cytokines produced define whether there is a cellular (T1) or a humoral (T2) response. Specifically, in the T1 response, interleukin 2 (IL-2), interferon γ (IFN-γ) and tumor necrosis factor β (TNF-β) are produced, whereas in the T2 response, IL-4, IL-5, IL- 6, IL-10 and IL-13 are primarily produced. Cytokines are primarily involved in the regulation of immune system cells. The aim of the present study was to evaluate the cytokine patterns (Type 1/Type 2) and TNF-α expression levels in children with severe gastrointestinal and respiratory bacterial infections. The enzyme-linked immunosorbent assay (ELISA) technique was used to identify the cytokines and the infectious agents. The results obtained demonstrated that, in general, children with bacterial infections experienced an increase in IL-2, IFN-γ and IL-4 concentrations and a decrease in TNF-α, IL-5 and IL-6 concentrations when compared to healthy children. Specifically, type 1 cytokines and an increased TNF-α concentration were found in children with gastrointestinal infections. However, patients with respiratory infections showed increased concentrations of both T2 (IL-4, IL-6 and IL-10) and T1 (IL-2 and IFN-γ) components. Thus, it was concluded that children with gastrointestinal infections exclusively developed a T1 response, whereas children with respiratory infections developed a T1/T2 response to fight the infection. PMID:26155128

  17. Modulation of human dermal microvascular endothelial cells by Sarcoptes scabiei in combination with proinflammatory cytokines, histamine, and lipid-derived biologic mediators

    PubMed Central

    Elder, B. Laurel; Arlian, Larry G.; Morgan, Marjorie S.

    2009-01-01

    The ectoparasitic mite, Sarcoptes scabiei, produces molecules that depress initiation of host inflammatory and immune responses. Some of these down-regulate expression of adhesion molecules or secretion of chemokines or cytokines on and by cultured dermal endothelial cells (HMVEC-D). This study was undertaken to determine if the response of HMVEC-D to scabies is altered in the presence of various proinflammatory cytokines (tumor necrosis factor α and interleukins 1α, 1β and 6), histamine, and lipid-derived mediators (prostaglandins D2 and E2, leukotriene B4, platelet activation factor) that likely occur in scabietic lesions in vivo. Scabies extract down-regulated the TNFα-induced expression of VCAM-1 by HMVEC-D and this down-regulation still occurred in the presence of the other proinflammatory cytokines, histamine or the lipid-derived mediators. Scabies inhibited the IL-1α and IL-1β-induced secretion of IL-6, while a combination of scabies and histamine or LTB4 reduced the TNFα-induced secretion of IL-6. Scabies extract inhibited secretion of IL-8. Histamine, PGD2, PGE2, LTB4, PAF, and IL-6 alone had no effect on this inhibition, but the scabies-induced inhibition of IL-8 secretion was reduced in a dose-dependent fashion in the presence of IL-1α and IL-1β. PMID:19523846

  18. Profile of cytokines in the lungs of BALB/c mice after intra-nasal infection with Histoplasma capsulatum mycelial propagules.

    PubMed

    Sahaza, Jorge Humberto; Suárez-Alvarez, Roberto; Estrada-Bárcenas, Daniel Alfonso; Pérez-Torres, Armando; Taylor, Maria Lucia

    2015-08-01

    The host pulmonary response to the fungus Histoplasma capsulatum was evaluated, through the profile of cytokines detected by the MagPix magnetic beads platform in lung homogenates and by lung-granulomas formation, from mice intra-nasally infected with mycelial propagules (M-phase) of two virulent H. capsulatum strains, EH-46 and G-217B. Results highlight that mice lung inflammatory response depends on the H. capsulatum strain used, during the first step of the fungal infection. IL-1β and TNF-α increased their concentrations in mice infected with both strains. The highest levels of IL-6, IL-17, and IL-23 were found in EH-46-infected mice, whereas levels of IL-22 were variable at all post-infection times for both strains. Significant increases of IL-12, IFN-γ, IL-4, and IL-10 were associated to EH-46-infected mice. Histological lung findings from EH-46-infected mice revealed incipient and numerous well-developed granulomas, distributed in lung-lobes at the 14th and the 21st days after infection, according to cytokine profiles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. RNA-Seq Profile Reveals Th-1 and Th-17-Type of Immune Responses in Mice Infected Systemically with Aspergillus fumigatus.

    PubMed

    Shankar, Jata; Cerqueira, Gustavo C; Wortman, Jennifer R; Clemons, Karl V; Stevens, David A

    2018-03-02

    With the increasing numbers of immunocompromised hosts, Aspergillus fumigatus emerges as a lethal opportunistic fungal pathogen. Understanding innate and acquired immunity responses of the host is important for a better therapeutic strategy to deal with aspergillosis patients. To determine the transcriptome in the kidneys in aspergillosis, we employed RNA-Seq to obtain single 76-base reads of whole-genome transcripts of murine kidneys on a temporal basis (days 0; uninfected, 1, 2, 3 and 8) during invasive aspergillosis. A total of 6284 transcripts were downregulated, and 5602 were upregulated compared to baseline expression. Gene ontology enrichment analysis identified genes involved in innate and adaptive immune response, as well as iron binding and homeostasis, among others. Our results showed activation of pathogen recognition receptors, e.g., β-defensins, C-type lectins (e.g., dectin-1), Toll-like receptors (TLR-2, TLR-3, TLR-8, TLR-9 and TLR-13), as well as Ptx-3 and C-reactive protein among the soluble receptors. Upregulated transcripts encoding various differentiating cytokines and effector proinflammatory cytokines, as well as those encoding for chemokines and chemokine receptors, revealed Th-1 and Th-17-type immune responses. These studies form a basic dataset for experimental prioritization, including other target organs, to determine the global response of the host against Aspergillus infection.

  20. Partially Glycosylated Dendrimers Block MD-2 and Prevent TLR4-MD-2-LPS Complex Mediated Cytokine Responses

    PubMed Central

    Barata, Teresa S.; Teo, Ian; Brocchini, Steve; Zloh, Mire; Shaunak, Sunil

    2011-01-01

    The crystal structure of the TLR4-MD-2-LPS complex responsible for triggering powerful pro-inflammatory cytokine responses has recently become available. Central to cell surface complex formation is binding of lipopolysaccharide (LPS) to soluble MD-2. We have previously shown, in biologically based experiments, that a generation 3.5 PAMAM dendrimer with 64 peripheral carboxylic acid groups acts as an antagonist of pro-inflammatory cytokine production after surface modification with 8 glucosamine molecules. We have also shown using molecular modelling approaches that this partially glycosylated dendrimer has the flexibility, cluster density, surface electrostatic charge, and hydrophilicity to make it a therapeutically useful antagonist of complex formation. These studies enabled the computational study of the interactions of the unmodified dendrimer, glucosamine, and of the partially glycosylated dendrimer with TLR4 and MD-2 using molecular docking and molecular dynamics techniques. They demonstrate that dendrimer glucosamine forms co-operative electrostatic interactions with residues lining the entrance to MD-2's hydrophobic pocket. Crucially, dendrimer glucosamine interferes with the electrostatic binding of: (i) the 4′phosphate on the di-glucosamine of LPS to Ser118 on MD-2; (ii) LPS to Lys91 on MD-2; (iii) the subsequent binding of TLR4 to Tyr102 on MD-2. This is followed by additional co-operative interactions between several of the dendrimer glucosamine's carboxylic acid branches and MD-2. Collectively, these interactions block the entry of the lipid chains of LPS into MD-2's hydrophobic pocket, and also prevent TLR4-MD-2-LPS complex formation. Our studies have therefore defined the first nonlipid-based synthetic MD-2 antagonist using both animal model-based studies of pro-inflammatory cytokine responses and molecular modelling studies of a whole dendrimer with its target protein. Using this approach, it should now be possible to computationally design