Science.gov

Sample records for host migration diversity

  1. Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents

    PubMed Central

    Nazir, Rashid; Tazetdinova, Diana I.; van Elsas, Jan Dirk

    2014-01-01

    Soil bacteria can benefit from co-occurring soil fungi in respect of the acquisition of carbonaceous nutrients released by fungal hyphae and the access to novel territories in soil. Here, we investigated the capacity of the mycosphere-isolated bacterium Burkholderia terrae BS001 to comigrate through soil along with hyphae of the soil fungi Trichoderma asperellum, Rhizoctonia solani, Fusarium oxysporum, F. oxysporum pv lini, Coniochaeta ligniaria, Phanerochaete velutina, and Phallus impudicus. We used Lyophyllum sp. strain Karsten as the reference migration-inciting fungus. Bacterial migration through presterilized soil on the extending fungal hyphae was detected with six of the seven test fungi, with only Phallus impudicus not showing any bacterial transport. Much like with Lyophyllum sp. strain Karsten, intermediate (106–108 CFU g-1 dry soil) to high (>108 CFU g-1 dry soil) strain BS001 cell population sizes were found at the hyphal migration fronts of four fungi, i.e., T. asperellum, Rhizoctonia solani, F. oxysporum and F. oxysporum pv lini, whereas for two fungi, Coniochaeta ligniaria and Phanerochaete velutina, the migration responses were retarded and population sizes were lower (103–106 CFU g-1 dry soil). Consistent with previous data obtained with the reference fungus, migration with the migration-inciting fungi occurred only in the direction of the hyphal growth front. Remarkably, Burkholderia terrae BS001 provided protection from several antifungal agents to the canonical host Lyophyllum sp. strain Karsten. Specifically, this host was protected from Pseudomonas fluorescens strain CHA0 metabolites, as well as from the anti-fungal agent cycloheximide. Similar protection by strain BS001was observed for T. asperellum, and, to a lower extent, F. oxysporum and Rhizoctonia solani. The protective effect may be related to the consistent occurrence of biofilm-like cell layers or agglomerates at the surfaces of the protected fungi. The current study represents

  2. Age-specific migration and regional diversity.

    PubMed

    Morrill, R

    1994-11-01

    "This author examines patterns of age-specific migration between 1980 and 1990 for a small, growing region, the Pacific Northwest of the U.S.A., with the purpose of assessing the degree of geographic diversity in experience. A simple typology of the expected spatial and structural pattern of age-specific migration is proposed. Cluster analysis is used to group counties on the basis of age-specific rates of net migration. Even this fairly small region is found to exemplify most of the patterns that might be expected to occur in the nation as a whole." PMID:12288335

  3. Host diversity begets parasite diversity: Bird final hosts and trematodes in snail intermediate hosts

    USGS Publications Warehouse

    Hechinger, R.F.; Lafferty, K.D.

    2005-01-01

    An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management. ?? 2005 The Royal Society.

  4. Salmonella bacteriophage diversity reflects host diversity on dairy farms.

    PubMed

    Switt, Andrea I Moreno; den Bakker, Henk C; Vongkamjan, Kitiya; Hoelzer, Karin; Warnick, Lorin D; Cummings, Kevin J; Wiedmann, Martin

    2013-12-01

    Salmonella is an animal and human pathogen of worldwide concern. Surveillance programs indicate that the incidence of Salmonella serovars fluctuates over time. While bacteriophages are likely to play a role in driving microbial diversity, our understanding of the ecology and diversity of Salmonella phages is limited. Here we report the isolation of Salmonella phages from manure samples from 13 dairy farms with a history of Salmonella presence. Salmonella phages were isolated from 10 of the 13 farms; overall 108 phage isolates were obtained on serovar Newport, Typhimurium, Dublin, Kentucky, Anatum, Mbandaka, and Cerro hosts. Host range characterization found that 51% of phage isolates had a narrow host range, while 49% showed a broad host range. The phage isolates represented 65 lysis profiles; genome size profiling of 94 phage isolates allowed for classification of phage isolates into 11 groups with subsequent restriction fragment length polymorphism analysis showing considerable variation within a given group. Our data not only show an abundance of diverse Salmonella phage isolates in dairy farms, but also show that phage isolates that lyse the most common serovars causing salmonellosis in cattle are frequently obtained, suggesting that phages may play an important role in the ecology of Salmonella on dairy farms. PMID:24010608

  5. Uncovering Wolbachia Diversity upon Artificial Host Transfer

    PubMed Central

    Schneider, Daniela I.; Riegler, Markus; Arthofer, Wolfgang; Merçot, Hervé; Stauffer, Christian; Miller, Wolfgang J.

    2013-01-01

    The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system. PMID:24376534

  6. Does genetic diversity limit disease spread in natural host populations?

    PubMed Central

    King, K C; Lively, C M

    2012-01-01

    It is a commonly held view that genetically homogenous host populations are more vulnerable to infection than genetically diverse populations. The underlying idea, known as the ‘monoculture effect,' is well documented in agricultural studies. Low genetic diversity in the wild can result from bottlenecks (that is, founder effects), biparental inbreeding or self-fertilization, any of which might increase the risk of epidemics. Host genetic diversity could buffer populations against epidemics in nature, but it is not clear how much diversity is required to prevent disease spread. Recent theoretical and empirical studies, particularly in Daphnia populations, have helped to establish that genetic diversity can reduce parasite transmission. Here, we review the present theoretical work and empirical evidence, and we suggest a new focus on finding ‘diversity thresholds.' PMID:22713998

  7. Multiple effects of host-species diversity on coexisting host-specific and host-opportunistic microbes.

    PubMed

    Kedem, Hadar; Cohen, Carmit; Messika, Irit; Einav, Monica; Pilosof, Shai; Hawlena, Hadas

    2014-05-01

    While host-species diversity often influences microbial prevalence, there may be multiple mechanisms causing such effects that may also depend on the foraging strategy of the microbes. We employed a natural gradient of rodent-species richness to examine competing hypotheses describing possible mechanisms mediating the relationship between host-species richness and the prevalence of the most dominant microbes, along with microbe specificity to the different rodent host species. We sampled blood from three gerbil species in plots differing in terms of the proportion of the different species and screened for the most dominant bacteria. Two dominant bacterial lineages were detected: host-specific bacteria and host-opportunistic bacteria. Using a model selection approach, we detected evidence for both direct and indirect effects of host-species richness on the prevalence of these bacteria. Infection probability of the host-specific lineage was lower in richer host communities, most likely due to increased frequency and density of the least suitable host species. In contrast, field observations suggest that the effect of host-species richness on infection probability of the opportunistic lineage was both direct and indirect, mostly mediated by changes in flea densities on the host and by the presence of the host-specific lineage. Our results thus suggest that host-species richness has multiple effects on microbial prevalence, depending on the degree of host-specificity of the microbe in question. PMID:25000749

  8. Host Density and Competency Determine the Effects of Host Diversity on Trematode Parasite Infection

    PubMed Central

    Wojdak, Jeremy M.; Edman, Robert M.; Wyderko, Jennie A.; Zemmer, Sally A.; Belden, Lisa K.

    2014-01-01

    Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other’s densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts) for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans), in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1) replace the focal host species so that the total number of individuals remains constant (substitution) or (2) add to total host density (addition). For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly) when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns. PMID:25119568

  9. Host specialization and phylogenetic diversity of Corynespora cassiicola.

    PubMed

    Dixon, L J; Schlub, R L; Pernezny, K; Datnoff, L E

    2009-09-01

    The fungus Corynespora cassiicola is primarily found in the tropics and subtropics, and is widely diverse in substrate utilization and host association. Isolate characterization within C. cassiicola was undertaken to investigate how genetic diversity correlates with host specificity, growth rate, and geographic distribution. C. cassiicola isolates were collected from 68 different plant species in American Samoa, Brazil, Malaysia, and Micronesia, and Florida, Mississippi, and Tennessee within the United States. Phylogenetic analyses using four loci were performed with 143 Corynespora spp. isolates, including outgroup taxa obtained from culture collections: C. citricola, C. melongenae, C. olivacea, C. proliferata, C. sesamum, and C. smithii. Phylogenetic trees were congruent from the ribosomal DNA internal transcribed spacer region, two random hypervariable loci (caa5 and ga4), and the actin-encoding locus act1, indicating a lack of recombination within the species and asexual propagation. Fifty isolates were tested for pathogenicity on eight known C. cassiicola crop hosts: basil, bean, cowpea, cucumber, papaya, soybean, sweet potato, and tomato. Pathogenicity profiles ranged from one to four hosts, with cucumber appearing in 14 of the 16 profiles. Bootstrap analyses and Bayesian posterior probability values identified six statistically significant phylogenetic lineages. The six phylogenetic lineages correlated with host of origin, pathogenicity, and growth rate but not with geographic location. Common fungal genotypes were widely distributed geographically, indicating long-distance and global dispersal of clonal lineages. This research reveals an abundance of previously unrecognized genetic diversity within the species and provides evidence for host specialization on papaya. PMID:19671003

  10. Habitat heterogeneity drives the host-diversity-begets-parasite-diversity relationship: evidence from experimental and field studies.

    PubMed

    Johnson, Pieter T J; Wood, Chelsea L; Joseph, Maxwell B; Preston, Daniel L; Haas, Sarah E; Springer, Yuri P

    2016-07-01

    Despite a century of research into the factors that generate and maintain biodiversity, we know remarkably little about the drivers of parasite diversity. To identify the mechanisms governing parasite diversity, we combined surveys of 8100 amphibian hosts with an outdoor experiment that tested theory developed for free-living species. Our analyses revealed that parasite diversity increased consistently with host diversity due to habitat (i.e. host) heterogeneity, with secondary contributions from parasite colonisation and host abundance. Results of the experiment, in which host diversity was manipulated while parasite colonisation and host abundance were fixed, further reinforced this conclusion. Finally, the coefficient of host diversity on parasite diversity increased with spatial grain, which was driven by differences in their species-area curves: while host richness quickly saturated, parasite richness continued to increase with neighbourhood size. These results offer mechanistic insights into drivers of parasite diversity and provide a hierarchical framework for multi-scale disease research. PMID:27147106

  11. The Compositional Diversity of Extrasolar Terrestrial Planets. II. Migration Simulations

    NASA Astrophysics Data System (ADS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2012-11-01

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extrasolar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994, and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results in large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to (1) increase the typical abundance of Mg-rich silicates in the terrestrial planets' feeding zones and thus increase the frequency of planets with Earth-like compositions compared with simulations with static giant planet orbits, and (2) drastically increase the efficiency of the delivery of hydrous phases (water and serpentine) to terrestrial planets and thus produce waterworlds and/or wet Earths. Our results demonstrate that although a wide variety of terrestrial planet compositions can still be produced, planets with Earth-like compositions should be common within extrasolar planetary systems.

  12. THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. II. MIGRATION SIMULATIONS

    SciTech Connect

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2012-11-20

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extrasolar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994, and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results in large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to (1) increase the typical abundance of Mg-rich silicates in the terrestrial planets' feeding zones and thus increase the frequency of planets with Earth-like compositions compared with simulations with static giant planet orbits, and (2) drastically increase the efficiency of the delivery of hydrous phases (water and serpentine) to terrestrial planets and thus produce waterworlds and/or wet Earths. Our results demonstrate that although a wide variety of terrestrial planet compositions can still be produced, planets with Earth-like compositions should be common within extrasolar planetary systems.

  13. The Great Migration and African-American Genomic Diversity

    PubMed Central

    Barakatt, Maxime; Gignoux, Christopher R.; Errington, Jacob; Blot, William J.; Bustamante, Carlos D.; Kenny, Eimear E.; Williams, Scott M.; Aldrich, Melinda C.; Gravel, Simon

    2016-01-01

    We present a comprehensive assessment of genomic diversity in the African-American population by studying three genotyped cohorts comprising 3,726 African-Americans from across the United States that provide a representative description of the population across all US states and socioeconomic status. An estimated 82.1% of ancestors to African-Americans lived in Africa prior to the advent of transatlantic travel, 16.7% in Europe, and 1.2% in the Americas, with increased African ancestry in the southern United States compared to the North and West. Combining demographic models of ancestry and those of relatedness suggests that admixture occurred predominantly in the South prior to the Civil War and that ancestry-biased migration is responsible for regional differences in ancestry. We find that recent migrations also caused a strong increase in genetic relatedness among geographically distant African-Americans. Long-range relatedness among African-Americans and between African-Americans and European-Americans thus track north- and west-bound migration routes followed during the Great Migration of the twentieth century. By contrast, short-range relatedness patterns suggest comparable mobility of ∼15–16km per generation for African-Americans and European-Americans, as estimated using a novel analytical model of isolation-by-distance. PMID:27232753

  14. The Great Migration and African-American Genomic Diversity.

    PubMed

    Baharian, Soheil; Barakatt, Maxime; Gignoux, Christopher R; Shringarpure, Suyash; Errington, Jacob; Blot, William J; Bustamante, Carlos D; Kenny, Eimear E; Williams, Scott M; Aldrich, Melinda C; Gravel, Simon

    2016-05-01

    We present a comprehensive assessment of genomic diversity in the African-American population by studying three genotyped cohorts comprising 3,726 African-Americans from across the United States that provide a representative description of the population across all US states and socioeconomic status. An estimated 82.1% of ancestors to African-Americans lived in Africa prior to the advent of transatlantic travel, 16.7% in Europe, and 1.2% in the Americas, with increased African ancestry in the southern United States compared to the North and West. Combining demographic models of ancestry and those of relatedness suggests that admixture occurred predominantly in the South prior to the Civil War and that ancestry-biased migration is responsible for regional differences in ancestry. We find that recent migrations also caused a strong increase in genetic relatedness among geographically distant African-Americans. Long-range relatedness among African-Americans and between African-Americans and European-Americans thus track north- and west-bound migration routes followed during the Great Migration of the twentieth century. By contrast, short-range relatedness patterns suggest comparable mobility of ∼15-16km per generation for African-Americans and European-Americans, as estimated using a novel analytical model of isolation-by-distance. PMID:27232753

  15. Unexpected absence of genetic separation of a highly diverse population of hookworms from geographically isolated hosts.

    PubMed

    Haynes, Benjamin T; Marcus, Alan D; Higgins, Damien P; Gongora, Jaime; Gray, Rachael; Šlapeta, Jan

    2014-12-01

    The high natal site fidelity of endangered Australian sea lions (Neophoca cinerea) along the southern Australian coast suggests that their maternally transmitted parasitic species, such as hookworms, will have restricted potential for dispersal. If this is the case, we would expect to find a hookworm haplotype structure corresponding to that of the host mtDNA haplotype structure; that is, restricted among geographically separated colonies. In this study, we used a fragment of the cytochrome c oxidase I mitochondrial DNA (mtDNA) gene to investigate the diversity of hookworms (Uncinaria sanguinis) in N. cinerea to assess the importance of host distribution and ecology on the evolutionary history of the parasite. High haplotype (h=0.986) and nucleotide diversity (π=0.013) were seen, with 45 unique hookworm mtDNA haplotypes across N. cinerea colonies; with most of the variation (78%) arising from variability within hookworms from individual colonies. This is supported by the low genetic differentiation co-efficient (GST=0.007) and a high gene flow (Nm=35.25) indicating a high migration rate between the populations of hookworms. The haplotype network demonstrated no clear distribution and delineation of haplotypes according to geographical location. Our data rejects the vicariance hypothesis; that female host natal site fidelity and the transmammary route of infection restrict hookworm gene flow between N. cinerea populations and highlights the value of studies of parasite diversity and dispersal to challenge our understanding of parasite and host ecology. PMID:25262830

  16. Host jumps shaped the diversity of extant rust fungi (Pucciniales).

    PubMed

    McTaggart, Alistair R; Shivas, Roger G; van der Nest, Magriet A; Roux, Jolanda; Wingfield, Brenda D; Wingfield, Michael J

    2016-02-01

    The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies. PMID:26459939

  17. Diversity begets diversity: host expansions and the diversification of plant-feeding insects

    PubMed Central

    Janz, Niklas; Nylin, Sören; Wahlberg, Niklas

    2006-01-01

    Background Plant-feeding insects make up a large part of earth's total biodiversity. While it has been shown that herbivory has repeatedly led to increased diversification rates in insects, there has been no compelling explanation for how plant-feeding has promoted speciation rates. There is a growing awareness that ecological factors can lead to rapid diversification and, as one of the most prominent features of most insect-plant interactions, specialization onto a diverse resource has often been assumed to be the main process behind this diversification. However, specialization is mainly a pruning process, and is not able to actually generate diversity by itself. Here we investigate the role of host colonizations in generating insect diversity, by testing if insect speciation rate is correlated with resource diversity. Results By applying a variant of independent contrast analysis, specially tailored for use on questions of species richness (MacroCAIC), we show that species richness is strongly correlated with diversity of host use in the butterfly family Nymphalidae. Furthermore, by comparing the results from reciprocal sister group selection, where sister groups were selected either on the basis of diversity of host use or species richness, we find that it is likely that diversity of host use is driving species richness, rather than vice versa. Conclusion We conclude that resource diversity is correlated with species richness in the Nymphalidae and suggest a scenario based on recurring oscillations between host expansions – the incorporation of new plants into the repertoire – and specialization, as an important driving force behind the diversification of plant-feeding insects. PMID:16420707

  18. Host density drives the postglacial migration of the tree parasite, Epifagus virginiana

    PubMed Central

    Tsai, Yi-Hsin Erica; Manos, Paul S.

    2010-01-01

    To survive changes in climate, successful species shift their geographic ranges to remain in suitable habitats. For parasites and other highly specialized species, distributional changes not only are dictated by climate but can also be engineered by their hosts. The extent of host control on parasite range expansion is revealed through comparisons of host and parasite migration and demographic histories. However, understanding the codistributional history of entire forest communities is complicated by challenges in synthesizing datasets from multiple interacting species of differing datatypes. Here we integrate genetic and fossil pollen datasets from a host–parasite pair; specifically, the population structure of the parasitic plant (Epifagus virginiana) was compared with both its host (Fagus grandifolia) genetic patterns and abundance data from the paleopollen record of the last 21,000 y. Through tests of phylogeographic structure and spatial linear regression models we find, surprisingly, host range changes had little effect on the parasite's range expansion and instead host density is the main driver of parasite spread. Unlike other symbionts that have been used as proxies to track their host's movements, this parasite's migration routes are incongruent with the host and instead reflect the greater importance of host density in this community's assembly. Furthermore, these results confirm predictions of disease ecological models regarding the role of host density in the spread of pathogens. Due to host density constraints, highly specialized species may have low migration capacities and long lag times before colonization of new areas. PMID:20841421

  19. Tree phylogenetic diversity promotes host-parasitoid interactions.

    PubMed

    Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria

    2016-07-13

    Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish. PMID:27383815

  20. Parallel Exploitation of Diverse Host Nutrients Enhances Salmonella Virulence

    PubMed Central

    Steeb, Benjamin; Claudi, Beatrice; Burton, Neil A.; Tienz, Petra; Schmidt, Alexander; Farhan, Hesso; Mazé, Alain; Bumann, Dirk

    2013-01-01

    Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases. PMID:23633950

  1. Dynamic Quantification of Host Schwann Cell Migration into Peripheral Nerve Allografts

    PubMed Central

    Whitlock, Elizabeth L.; Myckatyn, Terence M.; Tong, Alice Y.; Yee, Andrew; Yan, Ying; Magill, Christina K.; Johnson, Philip J.; Mackinnon, Susan E.

    2010-01-01

    Host Schwann cell (SC) migration into nerve allografts is the limiting factor in the duration of immunosuppression following peripheral nerve allotransplantation, and may be affected by different immunosuppressive regimens. Our objective was to compare SC migration patterns between clinical and experimental immunosuppression regimens both over time and at the harvest endpoint. Eighty mice that express GFP under the control of the Schwann cell specific S100 promoter were engrafted with allogeneic, nonfluorescent sciatic nerve grafts. Mice received immunosuppression with either tacrolimus (FK506), or experimental T-cell triple costimulation blockade (CSB), consisting of CTLA4-immunoglobulin fusion protein, anti-CD40 monoclonal antibody, and anti-inducible costimulator monoclonal antibody. Migration of GFP-expressing host SCs into wild-type allografts was assessed in vivo every 3 weeks until 15 weeks postoperatively, and explanted allografts were evaluated for immunohistochemical staining patterns to differentiate graft from host SCs. Immunosuppression with tacrolimus exhibited a plateau of SC migration, characterized by significant early migration (< 3 weeks) followed by a constant level of host SCs in the graft (15 weeks). At the endpoint, graft fluorescence was decreased relative to surrounding host nerve, and donor SCs persisted within the graft. CSB-treated mice displayed gradually increasing migration of host SCs into the graft, without the plateau noted in tacrolimus-treated mice, and also maintained a population of donor SCs at the 15-week endpoint. SC migration patterns are affected by immunosuppressant choice, particularly in the immediate postoperative period, and the use of a single treatment of CSB may allow for gradual population of nerve allografts with host SCs. PMID:20633557

  2. Diversity of endophytic enterobacteria associated with different host plants.

    PubMed

    Torres, Adalgisa Ribeiro; Araújo, Welington Luiz; Cursino, Luciana; Hungria, Mariangela; Plotegher, Fábio; Mostasso, Fábio Luís; Azevedo, João Lúcio

    2008-08-01

    Fifty-three endophytic enterobacteria isolates from citrus, cocoa, eucalyptus, soybean, and sugar cane were evaluated for susceptibility to the antibiotics ampicillin and kanamycin, and cellulase production. Susceptibility was found on both tested antibiotics. However, in the case of ampicillin susceptibility changed according to the host plant, while all isolates were susceptible to kanamycin. Cellulase production also changed according to host plants. The diversity of these isolates was estimated by employing BOX-PCR genomic fingerprints and 16S rDNA sequencing. In total, twenty-three distinct operational taxonomic units (OTUs) were identified by employing a criterion of 60% fingerprint similarity as a surrogate for an OTU. The 23 OTUs belong to the Pantoea and Enterobacter genera, while their high diversity could be an indication of paraphyletic classification. Isolates representing nine different OTUs belong to Pantoea agglomerans, P. ananatis, P. stewartii, Enterobacter sp., and E. homaechei. The results of this study suggest that plant species may select endophytic bacterial genotypes. It has also become apparent that a review of the Pantoea/Enterobacter genera may be necessary. PMID:18758726

  3. Probiotics stimulate enterocyte migration and microbial diversity in the neonatal mouse intestine.

    PubMed

    Preidis, Geoffrey A; Saulnier, Delphine M; Blutt, Sarah E; Mistretta, Toni-Ann; Riehle, Kevin P; Major, Angela M; Venable, Susan F; Finegold, Milton J; Petrosino, Joseph F; Conner, Margaret E; Versalovic, James

    2012-05-01

    Beneficial microbes and probiotics show promise for the treatment of pediatric gastrointestinal diseases. However, basic mechanisms of probiosis are not well understood, and most investigations have been performed in germ-free or microbiome-depleted animals. We sought to functionally characterize probiotic-host interactions in the context of normal early development. Outbred CD1 neonatal mice were orally gavaged with one of two strains of human-derived Lactobacillus reuteri or an equal volume of vehicle. Transcriptome analysis was performed on enterocyte RNA isolated by laser-capture microdissection. Enterocyte migration and proliferation were assessed by labeling cells with 5-bromo-2'-deoxyuridine, and fecal microbial community composition was determined by 16S metagenomic sequencing. Probiotic ingestion altered gene expression in multiple canonical pathways involving cell motility. L. reuteri strain DSM 17938 dramatically increased enterocyte migration (3-fold), proliferation (34%), and crypt height (29%) compared to vehicle-treated mice, whereas strain ATCC PTA 6475 increased cell migration (2-fold) without affecting crypt proliferative activity. In addition, both probiotic strains increased the phylogenetic diversity and evenness between taxa of the fecal microbiome 24 h after a single probiotic gavage. These experiments identify two targets of probiosis in early development, the intestinal epithelium and the gut microbiome, and suggest novel mechanisms for probiotic strain-specific effects. PMID:22267340

  4. Methane Seep Carbonates Host Distinct, Diverse, and Dynamic Microbial Assemblages

    PubMed Central

    Pasulka, Alexis L.; Marlow, Jeffrey J.; Grupe, Benjamin M.; Levin, Lisa A.

    2015-01-01

    ABSTRACT Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. PMID:26695630

  5. Phosphorus source alters host plant response to ectomycorrhizal diversity.

    PubMed

    Baxter, James W; Dighton, John

    2005-11-01

    We examined the influence of phosphorus source and availability on host plant (Pinus rigida) response to ectomycorrhizal diversity under contrasting P conditions. An ectomycorrhizal richness gradient was established with equimolar P supplied as either inorganic phosphate or organic inositol hexaphosphate. We measured growth and N and P uptake of individual P. rigida seedlings inoculated with one, two, or four species of ectomycorrhizal fungi simultaneously and without mycorrhizas in axenic culture. Whereas colonization of P. rigida by individual species of ectomycorrhizal fungi decreased with increasing fungal richness, colonization of all species combined increased. Plant biomass and N content increased across the ectomycorrhizal richness gradient in the organic but not the inorganic P treatment. Plants grown under organic P conditions had higher N concentration than those grown under inorganic P conditions, but there was no effect of richness. Phosphorus content of plants grown in the organic P treatment increased with increasing ectomycorrhizal richness, but there was no response in the inorganic P treatment. Phosphorus concentration was higher in plants grown at the four-species richness level in the organic P treatment, but there was no effect of diversity under inorganic P conditions. Overall, few ectomycorrhizal composition effects were found on plant growth or nutrient status. Phosphatase activities of individual ectomycorrhizal fungi differed under organic P conditions, but there was no difference in total root system phosphatase expression between the inorganic or organic P treatments or across richness levels. Our results provide evidence that plant response to ectomycorrhizal diversity is dependent on the source and availability of P. PMID:15809869

  6. Host range, prevalence, and genetic diversity of adenoviruses in bats.

    PubMed

    Li, Yan; Ge, Xingyi; Zhang, Huajun; Zhou, Peng; Zhu, Yan; Zhang, Yunzhi; Yuan, Junfa; Wang, Lin-Fa; Shi, Zhengli

    2010-04-01

    Bats are the second largest group of mammals on earth and act as reservoirs of many emerging viruses. In this study, a novel bat adenovirus (AdV) (BtAdV-TJM) was isolated from bat fecal samples by using a bat primary kidney cell line. Infection studies indicated that most animal and human cell lines are susceptible to BtAdV-TJM, suggesting a possible wide host range. Genome analysis revealed 30 putative genes encoding proteins homologous to their counterparts in most known AdVs. Phylogenetic analysis placed BtAdV-TJM within the genus Mastadenovirus, most closely related to tree shrew and canine AdVs. PCR analysis of 350 bat fecal samples, collected from 19 species in five Chinese provinces during 2007 and 2008, indicated that 28 (or 8%) samples were positive for AdVs. The samples were from five bat species, Hipposideros armiger, Myotis horsfieldii, M. ricketti, Myotis spp., and Scotophilus kuhlii. The prevalence ranged from 6.25% (H. armiger in 2007) to 40% (M. ricketti in 2007). Comparison studies based on available partial sequences of the pol gene demonstrated a great genetic diversity among bat AdVs infecting different bat species as well as those infecting the same bat species. This is the first report of a genetically diverse group of DNA viruses in bats. Our results support the notion, derived from previous studies based on RNA viruses (especially coronaviruses and astroviruses), that bats seem to have the unusual ability to harbor a large number of genetically diverse viruses within a geographic location and/or within a taxonomic group. PMID:20089640

  7. Pediatric migration and hepatitis A risk in host population.

    PubMed

    Castelli, F; Matteelli, A; Signorini, L; Scalvini, C; Romano, L; Tanzi, E; Brunori, A; Cadeo, G P; Zanetti, A R

    1999-09-01

    Hepatitis A virus (HAV) circulation in a given area is closely related to socioeconomic standards. Following the improvement of living conditions, HAV seroprevalence rates in the population have decreased steadily during the last decades in many Western European countries, including Italy, thereby leading to a shift of risk of disease towards older age groups. Since the severity of the disease closely parallels age, a higher incidence of symptomatic cases in adults is now reported in Europe and the United States, being travel-related to a large extent. Intrafamilial person-to-person spread is also an important source of infection and transmission from children to parents may occur due to the lack of immunity in the general population. In the last two decades, Italy has been the destination of an increasing number of migrants from developing countries, where HAV is highly endemic. Furthermore, international adoption programmes cause pediatric populations from HAV endemic countries to increase in low endemic areas, possibly leading to secondary cases in close contacts.7 The aim of this paper is to report the epidemic HAV outbreak which occurred among the voluntary nursing staff of a pediatric Rwandan refugee community hosted in a village of the Brescia Province, in northern Italy. PMID:10467157

  8. Distinct immunoregulatory properties of macrophage migration inhibitory factors encoded by Eimeria parasites and their chicken host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays an important role in host defense against a variety of microorganisms including protozoan parasites. Interestingly, some microbial pathogens also express a MIF-like protein, although its role in disease pathogenesi...

  9. Ectomycorrhizal fungi in Mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns in phylogeography.

    PubMed

    Kennedy, Peter G; Garibay-Orijel, Roberto; Higgins, Logan M; Angeles-Arguiz, Rodolfo

    2011-08-01

    To examine the geographic patterns in Alnus-associated ectomycorrhizal (ECM) fungal assemblages and determine how they may relate to host plant biogeography, we studied ECM assemblages associated with two Alnus species (Alnus acuminata and Alnus jorullensis) in montane Mexico and compared them with Alnus-associated ECM assemblages located elsewhere in the Americas. ECM root samples were collected from four sites in Mexico (two per host species), identified with ITS and LSU rRNA gene sequences, and assessed using both taxon- (richness, diversity, evenness indices) and sequence divergence-based (UniFrac clustering and significance) analyses. Only 23 ECM taxa were encountered. Clavulina, an ECM lineage never before reported with Alnus, contained the dominant taxon overall. ECM assemblage structure varied between hosts, but UniFrac significance tests indicated that both associated with similar ECM lineage diversity. There was a strikingly high sequence similarity among a diverse array of the ECM taxa in Mexico and those in Alnus forests in Argentina, the United States, and Europe. The Mexican and United States assemblages had greater overlap than those present in Argentina, supporting the host-ECM fungi co-migration hypothesis from a common north temperate origin. Our results indicate that Alnus-associated ECM assemblages have clear patterns in richness and composition across a wide range of geographic locations. Additional data from boreal western North America as well as the eastern United States and Canada will be particularly informative in further understanding the co-biogeographic patterns of Alnus and ECM fungi in the Americas. PMID:21331794

  10. Downstream Migration of Masu Salmon Smolt at a Diversion Facility of Dam

    NASA Astrophysics Data System (ADS)

    Hayashida, K.; Nii, H.; Kasuga, K.; Watanabe, K.

    2014-12-01

    A diversion facility was installed on the upstream of Pirika Dam in Northern Japan that produced a downstream flow into the fishway, thus allowing the fish to migrate to the sea. On the other hand, if the flow rate in the river was more than 7.00 m 3/s (design flow rate of diversion facility), masu salmon smolt were concerned about accessing the dam reservoir, because the smolt can't migrate to the sea through the diversion facility unfortunately. Therefore, the downstream migration of smolt was investigated around the diversion facility. The PIT tag system and radio transmitters as the biotelemetry were used to determine 1) whether masu salmon smolt were able to migrate downstream through the diversion facility and fishway at Pirika Dam, 2) when the smolt started to migrate downstream, 3) whether the downstream migration of smolt were affected by the flow increase in the river. It was clarified that 88% of the smolt were able to enter the diversion facility, and then 81% of the smolt were able to access the fishway. It was also clarified that smolt downstream migration had two peaks in a day (5:00 and 18:00). During the study period, although the flow rate was in the 2.21 m3/s to 30.44 m3/s range (average 6.70 m3/s), it was revealed that the diversion facility has a satisfactory function for the downstream migration of smolt as presented above. The survey clarified the downstream migration behavior of masu salmon by using two types of biotelemetry equipment. PIT tag and radio transmitter were found to be very effective in tracking the behavior of small fish such as smolt. PIT tags, in particular, require very little operating cost, because once they are inserted in the fish, they do not need human labor for tracking. It is desirable to actively introduce the biotelemetry as tracking equipment when surveying the fish migration in the river.

  11. Prevalence and beta diversity in avian malaria communities: host species is a better predictor than geography.

    PubMed

    Scordato, Elizabeth S C; Kardish, Melissa R

    2014-11-01

    Patterns of diversity and turnover in macroorganism communities can often be predicted from differences in habitat, phylogenetic relationships among species and the geographical scale of comparisons. In this study, we asked whether these factors also predict diversity and turnover in parasite communities. We studied communities of avian malaria in two sympatric, ecologically similar, congeneric host species at three different sites. We asked whether parasite prevalence and community structure varied with host population, host phylogeography or geographical distance. We used PCR to screen birds for infections and then used Bayesian methods to determine phylogenetic relationships among malaria strains. Metrics of both community and phylogenetic beta diversity were used to examine patterns of malaria strain turnover between host populations, and partial Mantel tests were used determine the correlation between malaria beta diversity and geographical distance. Finally, we developed microsatellite markers to describe the genetic structure of host populations and assess the relationship between host phylogeography and parasite beta diversity. We found that different genera of malaria parasites infect the two hosts at different rates. Within hosts, parasite communities in one population were phylogenetically clustered, but there was otherwise no correlation between metrics of parasite beta diversity and geographical or genetic distance between host populations. Patterns of parasite turnover among host populations are consistent with malaria transmission occurring in the winter rather than on the breeding grounds. Our results indicate greater turnover in parasite communities between different hosts than between different study sites. Differences in host species, as well as transmission location and vector ecology, seem to be more important in structuring malaria communities than the distance-decay relationships frequently found in macroorganisms. Determining the factors

  12. Partitioning the net effect of host diversity on an emerging amphibian pathogen

    PubMed Central

    Becker, C. Guilherme; Rodriguez, David; Toledo, L. Felipe; Longo, Ana V.; Lambertini, Carolina; Corrêa, Décio T.; Leite, Domingos S.; Haddad, Célio F. B.; Zamudio, Kelly R.

    2014-01-01

    The ‘dilution effect’ (DE) hypothesis predicts that diverse host communities will show reduced disease. The underlying causes of pathogen dilution are complex, because they involve non-additive (driven by host interactions and differential habitat use) and additive (controlled by host species composition) mechanisms. Here, we used measures of complementarity and selection traditionally employed in the field of biodiversity–ecosystem function (BEF) to quantify the net effect of host diversity on disease dynamics of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd). Complementarity occurs when average infection load in diverse host assemblages departs from that of each component species in uniform populations. Selection measures the disproportionate impact of a particular species in diverse assemblages compared with its performance in uniform populations, and therefore has strong additive and non-additive properties. We experimentally infected tropical amphibian species of varying life histories, in single- and multi-host treatments, and measured individual Bd infection loads. Host diversity reduced Bd infection in amphibians through a mechanism analogous to complementarity (sensu BEF), potentially by reducing shared habitat use and transmission among hosts. Additionally, the selection component indicated that one particular terrestrial species showed reduced infection loads in diverse assemblages at the expense of neighbouring aquatic hosts becoming heavily infected. By partitioning components of diversity, our findings underscore the importance of additive and non-additive mechanisms underlying the DE. PMID:25297867

  13. Influenza A virus on oceanic islands: host and viral diversity in seabirds in the Western Indian Ocean.

    PubMed

    Lebarbenchon, Camille; Jaeger, Audrey; Feare, Chris; Bastien, Matthieu; Dietrich, Muriel; Larose, Christine; Lagadec, Erwan; Rocamora, Gérard; Shah, Nirmal; Pascalis, Hervé; Boulinier, Thierry; Le Corre, Matthieu; Stallknecht, David E; Dellagi, Koussay

    2015-05-01

    Ducks and seabirds are natural hosts for influenza A viruses (IAV). On oceanic islands, the ecology of IAV could be affected by the relative diversity, abundance and density of seabirds and ducks. Seabirds are the most abundant and widespread avifauna in the Western Indian Ocean and, in this region, oceanic islands represent major breeding sites for a large diversity of potential IAV host species. Based on serological assays, we assessed the host range of IAV and the virus subtype diversity in terns of the islands of the Western Indian Ocean. We further investigated the spatial variation in virus transmission patterns between islands and identified the origin of circulating viruses using a molecular approach. Our findings indicate that terns represent a major host for IAV on oceanic islands, not only for seabird-related virus subtypes such as H16, but also for those commonly isolated in wild and domestic ducks (H3, H6, H9, H12 subtypes). We also identified strong species-associated variation in virus exposure that may be associated to differences in the ecology and behaviour of terns. We discuss the role of tern migrations in the spread of viruses to and between oceanic islands, in particular for the H2 and H9 IAV subtypes. PMID:25996394

  14. Influenza A Virus on Oceanic Islands: Host and Viral Diversity in Seabirds in the Western Indian Ocean

    PubMed Central

    Lebarbenchon, Camille; Jaeger, Audrey; Feare, Chris; Bastien, Matthieu; Dietrich, Muriel; Larose, Christine; Lagadec, Erwan; Rocamora, Gérard; Shah, Nirmal; Pascalis, Hervé; Boulinier, Thierry; Le Corre, Matthieu; Stallknecht, David E.; Dellagi, Koussay

    2015-01-01

    Ducks and seabirds are natural hosts for influenza A viruses (IAV). On oceanic islands, the ecology of IAV could be affected by the relative diversity, abundance and density of seabirds and ducks. Seabirds are the most abundant and widespread avifauna in the Western Indian Ocean and, in this region, oceanic islands represent major breeding sites for a large diversity of potential IAV host species. Based on serological assays, we assessed the host range of IAV and the virus subtype diversity in terns of the islands of the Western Indian Ocean. We further investigated the spatial variation in virus transmission patterns between islands and identified the origin of circulating viruses using a molecular approach. Our findings indicate that terns represent a major host for IAV on oceanic islands, not only for seabird-related virus subtypes such as H16, but also for those commonly isolated in wild and domestic ducks (H3, H6, H9, H12 subtypes). We also identified strong species-associated variation in virus exposure that may be associated to differences in the ecology and behaviour of terns. We discuss the role of tern migrations in the spread of viruses to and between oceanic islands, in particular for the H2 and H9 IAV subtypes. PMID:25996394

  15. Cryptosporidium within-host genetic diversity: systematic bibliographical search and narrative overview.

    PubMed

    Grinberg, Alex; Widmer, Giovanni

    2016-07-01

    Knowledge of the within-host genetic diversity of a pathogen often has broad implications for disease management. Cryptosporidium protozoan parasites are among the most common causative agents of infectious diarrhoea. Current limitations of in vitro culture impose the use of uncultured isolates obtained directly from the hosts as operational units of Cryptosporidium genotyping. The validity of this practice is centred on the assumption of genetic homogeneity of the parasite within the host, and genetic studies often take little account of the within-host genetic diversity of Cryptosporidium. Yet, theory and experimental evidence contemplate genetic diversity of Cryptosporidium at the within-host scale, but this diversity is not easily identified by genotyping methods ill-suited for the resolution of DNA mixtures. We performed a systematic bibliographical search of the occurrence of within-host genetic diversity of Cryptosporidium parasites in epidemiological samples, between 2005 and 2015. Our results indicate that genetic diversity at the within-host scale, in the form of mixed species or intra-species diversity, has been identified in a large number (n=55) of epidemiological surveys of cryptosporidiosis in variable proportions, but has often been treated as a secondary finding and not analysed. As in malaria, there are indications that the scale of this diversity varies between geographical regions, perhaps depending on the prevailing transmission pathways. These results provide a significant knowledge base from which to draw alternative population genetic structure models, some of which are discussed in this paper. PMID:27021167

  16. Migration, Prospecting, Dispersal? What Host Movement Matters for Infectious Agent Circulation?

    PubMed

    Boulinier, Thierry; Kada, Sarah; Ponchon, Aurore; Dupraz, Marlène; Dietrich, Muriel; Gamble, Amandine; Bourret, Vincent; Duriez, Olivier; Bazire, Romain; Tornos, Jérémy; Tveraa, Torkild; Chambert, Thierry; Garnier, Romain; McCoy, Karen D

    2016-08-01

    Spatial disease ecology is emerging as a new field that requires the integration of complementary approaches to address how the distribution and movements of hosts and parasites may condition the dynamics of their interactions. In this context, migration, the seasonal movement of animals to different zones of their distribution, is assumed to play a key role in the broad scale circulation of parasites and pathogens. Nevertheless, migration is not the only type of host movement that can influence the spatial ecology, evolution, and epidemiology of infectious diseases. Dispersal, the movement of individuals between the location where they were born or bred to a location where they breed, has attracted attention as another important type of movement for the spatial dynamics of infectious diseases. Host dispersal has notably been identified as a key factor for the evolution of host-parasite interactions as it implies gene flow among local host populations and thus can alter patterns of coevolution with infectious agents across spatial scales. However, not all movements between host populations lead to dispersal per se. One type of host movement that has been neglected, but that may also play a role in parasite spread is prospecting, i.e., movements targeted at selecting and securing new habitat for future breeding. Prospecting movements, which have been studied in detail in certain social species, could result in the dispersal of infectious agents among different host populations without necessarily involving host dispersal. In this article, we outline how these various types of host movements might influence the circulation of infectious disease agents and discuss methodological approaches that could be used to assess their importance. We specifically focus on examples from work on colonial seabirds, ticks, and tick-borne infectious agents. These are convenient biological models because they are strongly spatially structured and involve relatively simple communities

  17. Association of Host and Microbial Species Diversity across Spatial Scales in Desert Rodent Communities

    PubMed Central

    Messika, Irit; Cohen, Carmit; Toh, Evelyn; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith; Hawlena, Hadas

    2014-01-01

    Relationships between host and microbial diversity have important ecological and applied implications. Theory predicts that these relationships will depend on the spatio-temporal scale of the analysis and the niche breadth of the organisms in question, but representative data on host-microbial community assemblage in nature is lacking. We employed a natural gradient of rodent species richness and quantified bacterial communities in rodent blood at several hierarchical spatial scales to test the hypothesis that associations between host and microbial species diversity will be positive in communities dominated by organisms with broad niches sampled at large scales. Following pyrosequencing of rodent blood samples, bacterial communities were found to be comprised primarily of broad niche lineages. These communities exhibited positive correlations between host diversity, microbial diversity and the likelihood for rare pathogens at the regional scale but not at finer scales. These findings demonstrate how microbial diversity is affected by host diversity at different spatial scales and suggest that the relationships between host diversity and overall disease risk are not always negative, as the dilution hypothesis predicts. PMID:25343259

  18. Association of host and microbial species diversity across spatial scales in desert rodent communities.

    PubMed

    Gavish, Yoni; Kedem, Hadar; Messika, Irit; Cohen, Carmit; Toh, Evelyn; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith; Hawlena, Hadas

    2014-01-01

    Relationships between host and microbial diversity have important ecological and applied implications. Theory predicts that these relationships will depend on the spatio-temporal scale of the analysis and the niche breadth of the organisms in question, but representative data on host-microbial community assemblage in nature is lacking. We employed a natural gradient of rodent species richness and quantified bacterial communities in rodent blood at several hierarchical spatial scales to test the hypothesis that associations between host and microbial species diversity will be positive in communities dominated by organisms with broad niches sampled at large scales. Following pyrosequencing of rodent blood samples, bacterial communities were found to be comprised primarily of broad niche lineages. These communities exhibited positive correlations between host diversity, microbial diversity and the likelihood for rare pathogens at the regional scale but not at finer scales. These findings demonstrate how microbial diversity is affected by host diversity at different spatial scales and suggest that the relationships between host diversity and overall disease risk are not always negative, as the dilution hypothesis predicts. PMID:25343259

  19. Cryptic diversity and female host specificity in a parasitoid where the sexes utilize hosts from separate orders.

    PubMed

    Hayward, Alexander; McMahon, Dino P; Kathirithamby, Jeyaraney

    2011-04-01

    Investigating complex parasitic life cycles is important for understanding the major fitness components that drive the evolution of host-parasite systems. The rare condition of heterotrophic heteronomy, in which the sexes utilize disparate host taxa, is a poorly understood complex parasitic lifestyle. One of only two known examples occurs in the Myrmecolacidae, an unusual family of the parasitoid order Strepsiptera (Insecta), in which males parasitize ants while females parasitize grasshoppers, crickets, and praying mantids. Here, we reconstruct the evolutionary pattern and timescale of host-use in a set of morphologically cryptic myrmecolacid taxa currently identified as Caenocholax fenyesi. We find that (i) C. fenyesi contains at least ten cryptic lineages consistent with separate species; (ii) Fossil evidence suggests a very low molecular clock rate and an ancient origin for cryptic lineages; (iii) Diversity among Caenocholax species is partitioned by geography and host association of the female; and (iv) Switches in host usage are uncoupled between the sexes, with changes in female host preference accompanying diversification. This study represents the first phylogeographical analysis of any strepsipteran, and the first molecular examination of host-use for a heterotrophic heteronomous taxon. Our results have implications for the understanding of evolution, host usage and estimated species richness in parasitic taxa. PMID:21382110

  20. Nile Tilapia Infectivity by Genomically Diverse Streptoccocus agalactiae Isolates from Multiple Hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae, Lancefield group B Streptococcus (GBS), is recognized for causing cattle mastitis, human neonatal meningitis, and fish meningo-encephalitis. We investigated the genomic diversity of GBS isolates from different phylogenetic hosts and geographical regions using serological t...

  1. Analysis of host genetic diversity and viral entry as sources of between-host variation in viral load

    USGS Publications Warehouse

    Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael

    2012-01-01

    Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.

  2. Molecular Diversity of the peanut rust pathogen and its host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Puccinia arachidis Speg is the causal agent of peanut rust, an important foliar disease of peanut in mainly low input peanut (Arachis hypogaea) producing countries with warm, tropical climates. Management of this disease in these countries is best realized through host resistance. Knowledge on the v...

  3. The Global Diversity of Parasitic Isopods Associated with Crustacean Hosts (Isopoda: Bopyroidea and Cryptoniscoidea)

    PubMed Central

    Williams, Jason D.; Boyko, Christopher B.

    2012-01-01

    Parasitic isopods of Bopyroidea and Cryptoniscoidea (commonly referred to as epicarideans) are unique in using crustaceans as both intermediate and definitive hosts. In total, 795 epicarideans are known, representing ∼7.7% of described isopods. The rate of description of parasitic species has not matched that of free-living isopods and this disparity will likely continue due to the more cryptic nature of these parasites. Distribution patterns of epicarideans are influenced by a combination of their definitive (both benthic and pelagic species) and intermediate (pelagic copepod) host distributions, although host specificity is poorly known for most species. Among epicarideans, nearly all species in Bopyroidea are ectoparasitic on decapod hosts. Bopyrids are the most diverse taxon (605 species), with their highest diversity in the North West Pacific (139 species), East Asian Sea (120 species), and Central Indian Ocean (44 species). The diversity patterns of Cryptoniscoidea (99 species, endoparasites of a diverse assemblage of crustacean hosts) are distinct from bopyrids, with the greatest diversity of cryptoniscoids in the North East Atlantic (18 species) followed by the Antarctic, Mediterranean, and Arctic regions (13, 12, and 8 species, respectively). Dajidae (54 species, ectoparasites of shrimp, mysids, and euphausids) exhibits highest diversity in the Antarctic (7 species) with 14 species in the Arctic and North East Atlantic regions combined. Entoniscidae (37 species, endoparasites within anomuran, brachyuran and shrimp hosts) show highest diversity in the North West Pacific (10 species) and North East Atlantic (8 species). Most epicarideans are known from relatively shallow waters, although some bopyrids are known from depths below 4000 m. Lack of parasitic groups in certain geographic areas is likely a sampling artifact and we predict that the Central Indian Ocean and East Asian Sea (in particular, the Indo-Malay-Philippines Archipelago) hold a wealth of

  4. Endophytic Phomopsis species: host range and implications for diversity estimates.

    PubMed

    Murali, T S; Suryanarayanan, T S; Geeta, R

    2006-07-01

    Foliar endophyte assemblages of teak trees growing in dry deciduous and moist deciduous forests of Nilgiri Biosphere Reserve were compared. A species of Phomopsis dominated the endophyte assemblages of teak, irrespective of the location of the host trees. Internal transcribed spacer sequence analysis of 11 different Phomopsis isolates (ten from teak and one from Cassia fistula) showed that they fall into two groups, which are separated by a relatively long branch that is strongly supported. The results showed that this fungus is not host restricted and that it continues to survive as a saprotroph in teak leaf, possibly by exploiting senescent leaves as well as the litter. Although the endophyte assemblage of a teak tree growing about 500 km from the forests was also dominated by a Phomopsis sp., it separated into a different group based on internal transcribed spacer sequence analysis. Our results with an endophytic Phomopsis sp. reinforce the earlier conclusions reached by others for pathogenic Phomopsis sp., i.e., that this fungus is not host specific, and the species concept of Phomopsis needs to be redefined. PMID:16917524

  5. Tracking Dengue Virus Intra-host Genetic Diversity during Human-to-Mosquito Transmission

    PubMed Central

    Sim, Shuzhen; Aw, Pauline P. K.; Wilm, Andreas; Teoh, Garrett; Hue, Kien Duong Thi; Nguyen, Nguyet Minh; Nagarajan, Niranjan; Simmons, Cameron P.; Hibberd, Martin L.

    2015-01-01

    Dengue virus (DENV) infection of an individual human or mosquito host produces a dynamic population of closely-related sequences. This intra-host genetic diversity is thought to offer an advantage for arboviruses to adapt as they cycle between two very different host species, but it remains poorly characterized. To track changes in viral intra-host genetic diversity during horizontal transmission, we infected Aedes aegypti mosquitoes by allowing them to feed on DENV2-infected patients. We then performed whole-genome deep-sequencing of human- and matched mosquito-derived DENV samples on the Illumina platform and used a sensitive variant-caller to detect single nucleotide variants (SNVs) within each sample. >90% of SNVs were lost upon transition from human to mosquito, as well as from mosquito abdomen to salivary glands. Levels of viral diversity were maintained, however, by the regeneration of new SNVs at each stage of transmission. We further show that SNVs maintained across transmission stages were transmitted as a unit of two at maximum, suggesting the presence of numerous variant genomes carrying only one or two SNVs each. We also present evidence for differences in selection pressures between human and mosquito hosts, particularly on the structural and NS1 genes. This analysis provides insights into how population drops during transmission shape RNA virus genetic diversity, has direct implications for virus evolution, and illustrates the value of high-coverage, whole-genome next-generation sequencing for understanding viral intra-host genetic diversity. PMID:26325059

  6. Migration of human lymphocytes. I. A model using the mouse as host.

    PubMed Central

    Morgan, K; Holt, P J

    1978-01-01

    The distribution of radioactivity after the intravenous injection of 51Cr-labelled human lymphocytes has been examined in normal mice, irradiated mice, mice treated with anti-platelet antiserum and in mice treated with colloidal carbon. Pre-treatment with carbon and anti-platelet antiserum appears to protect the human lymphocytes from uptake by the host's reticuloendothelial system (RES). Comparison of tissue radioactivity in carbon-treated mice after the injection of viable human lymphocytes with that found after the injection of dead cells and soluble or insoluble cell debris showed that radioactivity recovered in the spleen and lymph nodes is primarily due to the migration of viable lymphocytes into these tissues. Thus the measurement of radioactivity in lymph nodes of carbon-treated mice after the injection of 51Cr-labelled human lymphocytes can be used as a model of these lymphocytes' ability to migrate into the lymph nodes during recirculation and to study factors influencing this migration. PMID:721139

  7. Effect of host species diversity on multiparasite systems in rodent communities.

    PubMed

    Rendón-Franco, Emilio; Muñoz-García, Claudia I; Romero-Callejas, Evangelina; Moreno-Torres, Karla I; Suzán, Gerardo

    2014-01-01

    Reduced species diversity has been suggested to increase transmission rates and prevalence of infectious diseases. While this theory has been studied mostly in single pathogen systems, little is known regarding multiple pathogens systems in vertebrates at the community level. The aim of this study was to evaluate the effect of host richness and diversity on multiple parasite systems on a local scale. We captured small rodents and collected feces in three different vegetation types in a natural protected area in Janos, Chihuahua, Mexico. The flotation technique was used to identify parasite eggs or oocysts. Analysis of linear correlations was conducted between parasite prevalence and host and parasite diversity and richness. Negative correlation was detected between parasite prevalence and host diversity (p = 0.02 r(2) =-0.86), but no significant correlations was detected between parasite prevalence and host richness or parasite diversity or richness. Our study shows that at local scale, host diversity could affect multiple parasite systems in the same way that single pathogens do. Further studies should be performed on larger temporal and spatial scales to more thoroughly investigate the correlation observed in our analysis. PMID:24337614

  8. Differential Impacts of Virus Diversity on Biomass Production of a Native and an Exotic Grass Host.

    PubMed

    Mordecai, Erin A; Hindenlang, Madeleine; Mitchell, Charles E

    2015-01-01

    Pathogens are common and diverse in natural communities and have been implicated in the success of host invasions. Yet few studies have experimentally measured how pathogens impact native versus exotic hosts, particularly when individual hosts are simultaneously coinfected by diverse pathogens. To estimate effects of interactions among multiple pathogens within host individuals on both transmission of pathogens and fitness consequences for hosts, we conducted a greenhouse experiment using California grassland species: the native perennial grass Nassella (Stipa) pulchra, the exotic annual grass Bromus hordeaceus, and three virus species, Barley yellow dwarf virus-PAV, Barley yellow dwarf virus-MAV, and Cereal yellow dwarf virus-RPV. In terms of virus transmission, the native host was less susceptible than the exotic host to MAV. Coinfection of PAV and MAV did not occur in any of the 157 co-inoculated native host plants. In the exotic host, PAV infection most strongly reduced root and shoot biomass, and coinfections that included PAV severely reduced biomass. Infection with single or multiple viruses did not affect biomass in the native host. However, in this species the most potentially pathogenic coinfections (PAV + MAV and PAV + MAV + RPV) did not occur. Together, these results suggest that interactions among multiple pathogens can have important consequences for host health, which may not be predictable from interactions between hosts and individual pathogens. This work addresses a key empirical gap in understanding the impact of multiple generalist pathogens on competing host species, with potential implications for population and community dynamics of native and exotic species. It also demonstrates how pathogens with relatively mild impacts independently can more substantially reduce host performance in coinfection. PMID:26230720

  9. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence.

    PubMed

    Holowka, Thomas; Castilho, Tiago M; Garcia, Alvaro Baeza; Sun, Tiffany; McMahon-Pratt, Diane; Bucala, Richard

    2016-06-01

    Leishmania major encodes 2 orthologs of the cytokine macrophage migration inhibitory factor (MIF), whose functions in parasite growth or in the host-parasite interaction are unknown. To determine the importance of Leishmania-encoded MIF, both LmMIF genes were removed to produce an mif(-/-) strain of L. major This mutant strain replicated normally in vitro but had a 2-fold increased susceptibility to clearance by macrophages. Mice infected with mif(-/-) L. major, when compared to the wild-type strain, also showed a 3-fold reduction in parasite burden. Microarray and functional analyses revealed a reduced ability of mif(-/-) L. major to activate antigen-presenting cells, resulting in a 2-fold reduction in T-cell priming. In addition, there was a reduction in inflammation and effector CD4 T-cell formation in mif(-/-) L. major-infected mice when compared to mice infected with wild-type L. major Notably, effector CD4 T cells that developed during infection with mif(-/-) L. major demonstrated statistically significant differences in markers of functional exhaustion, including increased expression of IFN-γ and IL-7R, reduced expression of programmed death-1, and decreased apoptosis. These data support a role for LmMIF in promoting parasite persistence by manipulating the host response to increase the exhaustion and depletion of protective CD4 T cells.-Holowka, T., Castilho, T. M., Baeza Garcia, A., Sun, T., McMahon-Pratt, D., Bucala, R. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence. PMID:26956417

  10. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity

    PubMed Central

    Bashey, Farrah

    2015-01-01

    Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases. PMID:26150667

  11. Serial infection of diverse host (Mus) genotypes rapidly impedes pathogen fitness and virulence.

    PubMed

    Kubinak, Jason L; Cornwall, Douglas H; Hasenkrug, Kim J; Adler, Frederick R; Potts, Wayne K

    2015-01-01

    Reduced genetic variation among hosts may favour the emergence of virulent infectious diseases by enhancing pathogen replication and its associated virulence due to adaptation to a limited set of host genotypes. Here, we test this hypothesis using experimental evolution of a mouse-specific retroviral pathogen, Friend virus (FV) complex. We demonstrate rapid fitness (i.e. viral titre) and virulence increases when FV complex serially infects a series of inbred mice representing the same genotype, but not when infecting a diverse array of inbred mouse strains modelling the diversity in natural host populations. Additionally, a single infection of a different host genotype was sufficient to constrain the emergence of a high fitness/high virulence FV complex phenotype in these experiments. The potent inhibition of viral fitness and virulence was associated with an observed loss of the defective retroviral genome (spleen focus-forming virus), whose presence exacerbates infection and drives disease in susceptible mice. Results from our experiments provide an important first step in understanding how genetic variation among vertebrate hosts influences pathogen evolution and suggests that serial exposure to different genotypes within a single host species may act as a constraint on pathogen adaptation that prohibits the emergence of more virulent infections. From a practical perspective, these results have implications for low-diversity host populations such as endangered species and domestic animals. PMID:25392466

  12. Malagasy bats shelter a considerable genetic diversity of pathogenic Leptospira suggesting notable host-specificity patterns.

    PubMed

    Gomard, Yann; Dietrich, Muriel; Wieseke, Nicolas; Ramasindrazana, Beza; Lagadec, Erwan; Goodman, Steven M; Dellagi, Koussay; Tortosa, Pablo

    2016-04-01

    Pathogenic Leptospira are the causative agents of leptospirosis, a disease of global concern with major impact in tropical regions. Despite the importance of this zoonosis for human health, the evolutionary and ecological drivers shaping bacterial communities in host reservoirs remain poorly investigated. Here, we describe Leptospira communities hosted by Malagasy bats, composed of mostly endemic species, in order to characterize host-pathogen associations and investigate their evolutionary histories. We screened 947 individual bats (representing 31 species, 18 genera and seven families) for Leptospira infection and subsequently genotyped positive samples using three different bacterial loci. Molecular identification showed that these Leptospira are notably diverse and include several distinct lineages mostly belonging to Leptospira borgpetersenii and L. kirschneri. The exploration of the most probable host-pathogen evolutionary scenarios suggests that bacterial genetic diversity results from a combination of events related to the ecology and the evolutionary history of their hosts. Importantly, based on the data set presented herein, the notable host-specificity we have uncovered, together with a lack of geographical structuration of bacterial genetic diversity, indicates that the Leptospira community at a given site depends on the co-occurring bat species assemblage. The implications of such tight host-specificity on the epidemiology of leptospirosis are discussed. PMID:26902801

  13. Host Suitability of Diverse Lines of Phaseolus vulgaris to Multiple Populations of Heterodera glycines

    PubMed Central

    Smith, James R.; Young, Lawrence D.

    2003-01-01

    The host suitability of diverse races and gene pools of common bean (Phaseolus vulgaris) for multiple isolates of Heterodera glycines was studied. Twenty P. vulgaris genotypes, representing three of the six races within the two major germplasm pools, were tested in greenhouse experiments to determine their host suitability to five H. glycines isolates. Phaseolus vulgaris genotypes differed in their host suitability to different H. glycines isolates. While some common bean lines were excellent hosts for some H. glycines isolates, no common bean line was a good host for all isolates. Some bean lines from races Durango and Mesoamerica, representing the Middle America gene pool, were resistant to all five nematode isolates. Other lines, from both the Andean and Middle America gene pools, had differential responses for host suitability to the different isolates of H. glycines. PMID:19265970

  14. The impact of small irrigation diversion dams on the recent migration rates of steelhead and redband trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Weigel, Dana E.; Connolly, Patrick J.; Powell, Madison S.

    2013-01-01

    Barriers to migration are numerous in stream environments and can occur from anthropogenic activities (such as dams and culverts) or natural processes (such as log jams or dams constructed by beaver (Castor canadensis)). Identification of barriers can be difficult when obstructions are temporary or incomplete providing passage periodically. We examine the effect of several small irrigation diversion dams on the recent migration rates of steelhead (Oncorhynchus mykiss) in three tributaries to the Methow River, Washington. The three basins had different recent migration patterns: Beaver Creek did not have any recent migration between sites, Libby Creek had two-way migration between sites and Gold Creek had downstream migration between sites. Sites with migration were significantly different from sites without migration in distance, number of obstructions, obstruction height to depth ratio and maximum stream gradient. When comparing the sites without migration in Beaver Creek to the sites with migration in Libby and Gold creeks, the number of obstructions was the only significant variable. Multinomial logistic regression identified obstruction height to depth ratio and maximum stream gradient as the best fitting model to predict the level of migration among sites. Small irrigation diversion dams were limiting population interactions in Beaver Creek and collectively blocking steelhead migration into the stream. Variables related to stream resistance (gradient, obstruction number and obstruction height to depth ratio) were better predictors of recent migration rates than distance, and can provide important insight into migration and population demographic processes in lotic species.

  15. Exploring Child Mortality Risks Associated with Diverse Patterns of Maternal Migration in Haiti

    PubMed Central

    Smith-Greenaway, Emily; Thomas, Kevin

    2014-01-01

    Internal migration is a salient dimension of adulthood in Haiti, particularly among women. Despite the prevalence of migration in Haiti, it remains unknown whether Haitian women’s diverse patterns of migration influence their children’s health and survival. In this paper, we introduce the concept of lateral (i.e., rural-to-rural, urban-to-urban) versus nonlateral (i.e., rural-to-urban, urban-to-rural) migration to describe how some patterns of mothers’ internal migration may be associated with particularly high mortality among children. We use the 2006 Haitian Demographic and Health Survey to estimate a series of discrete-time hazard models among 7,409 rural children and 3,864 urban children. We find that, compared with their peers with nonmigrant mothers, children born to lateral migrants generally experience lower mortality whereas those born to nonlateral migrants generally experience higher mortality. Although there are important distinctions across Haiti’s rural and urban contexts, these associations remain net of socioeconomic factors, suggesting they are not entirely attributable to migrant selection. Considering the timing of maternal migration uncovers even more variation in the child health implications of maternal migration; however, the results counter the standard disruption and adaptation perspective. Although future work is needed to identify the processes underlying the differential risk of child mortality across lateral versus nonlateral migrants, the study demonstrates that looking beyond rural-to-urban migration and considering the timing of maternal migration can provide a fuller, more complex understanding of migration’s association with child health. PMID:25506111

  16. Exposing malaria in-host diversity and estimating population diversity by capture-recapture using massively parallel pyrosequencing

    PubMed Central

    Juliano, Jonathan J.; Porter, Kimberly; Mwapasa, Victor; Sem, Rithy; Rogers, William O.; Ariey, Frédéric; Wongsrichanalai, Chansuda; Read, Andrew; Meshnick, Steven R.

    2010-01-01

    Malaria infections commonly contain multiple genetically distinct variants. Mathematical and animal models suggest that interactions among these variants have a profound impact on the emergence of drug resistance. However, methods currently used for quantifying parasite diversity in individual infections are insensitive to low-abundance variants and are not quantitative for variant population sizes. To more completely describe the in-host complexity and ecology of malaria infections, we used massively parallel pyrosequencing to characterize malaria parasite diversity in the infections of a group of patients. By individually sequencing single strands of DNA in a complex mixture, this technique can quantify uncommon variants in mixed infections. The in-host diversity revealed by this method far exceeded that described by currently recommended genotyping methods, with as many as sixfold more variants per infection. In addition, in paired pre- and posttreatment samples, we show a complex milieu of parasites, including variants likely up-selected and down-selected by drug therapy. As with all surveys of diversity, sampling limitations prevent full discovery and differences in sampling effort can confound comparisons among samples, hosts, and populations. Here, we used ecological approaches of species accumulation curves and capture-recapture to estimate the number of variants we failed to detect in the population, and show that these methods enable comparisons of diversity before and after treatment, as well as between malaria populations. The combination of ecological statistics and massively parallel pyrosequencing provides a powerful tool for studying the evolution of drug resistance and the in-host ecology of malaria infections. PMID:21041629

  17. Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteria‐phage system

    PubMed Central

    Betts, Alex; Gifford, Danna R.; MacLean, R. Craig; King, Kayla C.

    2016-01-01

    Host–parasite evolutionary interactions are typically considered in a pairwise species framework. However, natural infections frequently involve multiple parasites. Altering parasite diversity alters ecological and evolutionary dynamics as parasites compete and hosts resist multiple infection. We investigated the effects of parasite diversity on host–parasite population dynamics and evolution using the pathogen Pseudomonas aeruginosa and five lytic bacteriophage parasites. To manipulate parasite diversity, bacterial populations were exposed for 24 hours to either phage monocultures or diverse communities containing up to five phages. Phage communities suppressed host populations more rapidly but also showed reduced phage density, likely due to interphage competition. The evolution of resistance allowed rapid bacterial recovery that was greater in magnitude with increases in phage diversity. We observed no difference in the extent of resistance with increased parasite diversity, but there was a profound impact on the specificity of resistance; specialized resistance evolved to monocultures through mutations in a diverse set of genes. In summary, we demonstrate that parasite diversity has rapid effects on host–parasite population dynamics and evolution by selecting for different resistance mutations and affecting the magnitude of bacterial suppression and recovery. Finally, we discuss the implications of phage diversity for their use as biological control agents. PMID:27005577

  18. Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid.

    PubMed

    Hite, Jessica L; Bosch, Jaime; Fernández-Beaskoetxea, Saioa; Medina, Daniel; Hall, Spencer R

    2016-07-27

    Why does the severity of parasite infection differ dramatically across habitats? This question remains challenging to answer because multiple correlated pathways drive disease. Here, we examined habitat-disease links through direct effects on parasites and indirect effects on parasite predators (zooplankton), host diversity and key life stages of hosts. We used a case study of amphibian hosts and the chytrid fungus, Batrachochytrium dendrobatidis, in a set of permanent and ephemeral alpine ponds. A field experiment showed that ultraviolet radiation (UVR) killed the free-living infectious stage of the parasite. Yet, permanent ponds with more UVR exposure had higher infection prevalence. Two habitat-related indirect effects worked together to counteract parasite losses from UVR: (i) UVR reduced the density of parasite predators and (ii) permanent sites fostered multi-season host larvae that fuelled parasite production. Host diversity was unlinked to hydroperiod or UVR but counteracted parasite gains; sites with higher diversity of host species had lower prevalence of infection. Thus, while habitat structure explained considerable variation in infection prevalence through two indirect pathways, it could not account for everything. This study demonstrates the importance of creating mechanistic, food web-based links between multiple habitat dimensions and disease. PMID:27466456

  19. Differential Activation of Diverse Glutathione Transferases of Clonorchis sinensis in Response to the Host Bile and Oxidative Stressors

    PubMed Central

    Bae, Young-An; Ahn, Do-Whan; Lee, Eung-Goo; Kim, Seon-Hee; Cai, Guo-Bin; Kang, Insug; Sohn, Woon-Mok; Kong, Yoon

    2013-01-01

    Background Clonorchis sinensis causes chronic cumulative infections in the human hepatobiliary tract and is intimately associated with cholangiocarcinoma. Approximately 35 million people are infected and 600 million people are at risk of infections worldwide. C. sinensis excretory-secretory products (ESP) constitute the first-line effector system affecting the host-parasite interrelationship by interacting with bile fluids and ductal epithelium. However, the secretory behavior of C. sinensis in an environment close to natural host conditions is unclear. C. sinensis differs from Fasciola hepatica in migration to, and maturation in, the hepatic bile duct, implying that protein profile of the ESP of these two trematodes might be different from each other. Methodology/Principal Findings We conducted systemic approaches to analyze the C. sinensis ESP proteome and the biological reactivity of C. sinensis glutathione transferases (GSTs), such as global expression patterns and induction profiles under oxidative stress and host bile. When we observed ex host excretion behavior of C. sinensis in the presence of 10% host bile, the global proteome pattern was not significantly altered, but the amount of secretory proteins was increased by approximately 3.5-fold. Bioactive molecules secreted by C. sinensis revealed universal/unique features in relation to its intraluminal hydrophobic residing niche. A total of 38 protein spots identified abundantly included enzymes involved in glucose metabolism (11 spots, 28.9%) and diverse-classes of glutathione transferases (GSTs; 10 spots, 26.3%). Cathepsin L/F (four spots, 10.5%) and transporter molecules (three spots, 7.9%) were also recognized. The universal secretory proteins found in other parasites, such as several enzymes involved in glucose metabolism and oxygen transporters, were commonly detected. C. sinensis secreted less cysteine proteases and fatty acid binding proteins compared to other tissue-invading or intravascular

  20. Nonhost diversity and density reduce the strength of parasitoid-host interactions.

    PubMed

    Kehoe, Rachel; Frago, Enric; Barten, Catherin; Jecker, Flurin; van Veen, Frank; Sanders, Dirk

    2016-06-01

    The presence of nonprey or nonhosts is known to reduce the strength of consumer- resource interactions by increasing the consumer's effort needed to find its resource. These interference effects can have a stabilizing effect on consumer-resource dynamics, but have also been invoked to explain parasitoid extinctions. To understand how nonhosts affect parasitoids, we manipulated the density and diversity of nonhost aphids using experimental host-parasitoid communities and tested how this affects parasitation efficiency of two aphid parasitoid species. To further study the behavioral response of parasitoids to nonhosts, we tested for changes in parasitoid time allocation in relation to their host-finding strategies. The proportion of successful attacks (attack rate) in both parasitoid species was reduced by the presence of nonhosts. The parasitoid Aphidius megourae was strongly affected by increasing nonhost diversity with the attack rate dropping from 0.39 without nonhosts to 0.05 with high diversity of nonhosts, while Lysiphlebus fabarum responded less strongly, but in a more pronounced way to an increase in nonhost density. Our experiments further showed that increasing nonhost diversity caused host searching and attacking activity levels to fall in A. megourae, but not in L. fabarum, and that A. megourae changed its behavior after a period of time in the presence of nonhosts by increasing its time spent resting. This study shows that nonhost density and diversity in the environment are crucial determinants for the strength of consumer-resource interactions. Their impact upon a consumer's efficiency strongly depends on its host/prey finding strategy as demonstrated by the different responses for the two parasitoid species. We discuss that these trait-mediated indirect interactions between host and nonhost species are important for community stability, acting either stabilizing or destabilizing depending on the level of nonhost density or diversity present. PMID

  1. The Salmonella SPI2 Effector SseI Mediates Long-Term Systemic Infection by Modulating Host Cell Migration

    PubMed Central

    Gerke, Christiane; Gopinath, Smita; Peng, Kaitian; Laidlaw, Grace; Chien, Yueh-Hsiu; Jeong, Ha-Won; Li, Zhigang; Brown, Matthew D.; Sacks, David B.; Monack, Denise

    2009-01-01

    Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time despite the presence of a robust immune response. Chronically infected hosts are asymptomatic and transmit disease to naïve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. We show that the bacterial effector protein SseI (also called SrfH), which is translocated into host cells by the Salmonella Pathogenicity Island 2 (SPI2) type III secretion system (T3SS), is required for Salmonella typhimurium to maintain a long-term chronic systemic infection in mice. SseI inhibits normal cell migration of primary macrophages and dendritic cells (DC) in vitro, and such inhibition requires the host factor IQ motif containing GTPase activating protein 1 (IQGAP1), an important regulator of cell migration. SseI binds directly to IQGAP1 and co-localizes with this factor at the cell periphery. The C-terminal domain of SseI is similar to PMT/ToxA, a bacterial toxin that contains a cysteine residue (C1165) that is critical for activity. Mutation of the corresponding residue in SseI (C178A) eliminates SseI function in vitro and in vivo, but not binding to IQGAP1. In addition, infection with wild-type (WT) S. typhimurium suppressed DC migration to the spleen in vivo in an SseI-dependent manner. Correspondingly, examination of spleens from mice infected with WT S. typhimurium revealed fewer DC and CD4+ T lymphocytes compared to mice infected with ΔsseI S. typhimurium. Taken together, our results demonstrate that SseI inhibits normal host cell migration, which ultimately counteracts the ability of the host to clear systemic bacteria. PMID:19956712

  2. GENOMIC DIVERSITY OF STREPTOCCOCUS AGALACTIAE ISOLATES FROM MULTIPLE HOSTS AND THEIR INFECTIVITY IN NILE TILAPIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our laboratory has conducted multiple studies to investigate the genomic diversity of GBS isolates from different phylogenetic hosts and geographical regions. We have examined fish and dolphin GBS strains using phenotypic, serological typing and multilocus sequence typing (MLST) techniques and comp...

  3. OUT OF AFRICA: DIVERSITY AND HOST PLANT UTILIZATION IN SUB-SAHARAN BEMISIA TABACI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diversity of Bemisia tabaci in Sub-Saharan Africa is greater than in any other geographic location and suggests Sub-Saharan Africa is the likely evolutionary origin of the species. Sampling in Africa is now quite extensive and includes a number of studies that have analyzed host preference withi...

  4. Host-specific segregation of ribosomal nucleotide sequence diversity in the microsporidian Enterocytozoon bieneusi.

    PubMed

    Widmer, Giovanni; Akiyoshi, Donna E

    2010-01-01

    Enterocytozoon bieneusi is a unicellular enteric fungal pathogen and the most common cause of human microsporidiosis. The frequent detection of this organism in animals, including companion animals, livestock and wildlife, has raised the question of the importance of animal reservoirs in the epidemiology of this pathogen. A partial sequence of the ribosomal internal transcribed spacer (ITS) has been widely used as a genetic marker for studying the molecular epidemiology of E. bieneusi. With the aim of comparing E. bieneusi ITS genotypes originating from different host species, and assess the potential for zoonotic transmission, E. bieneusi ITS sequences retrieved from GenBank were analyzed using two metrics of diversity, rarefaction and phylogenetic distance. In spite of the human ITS sample being geographically more diverse, ITS sequence diversity in animals exceeded that of humans. In both host groups much of the ITS diversity remains to be sampled. Using quantitative phylogenetic tests we found evidence for a partial but significant segregation of E. bieneusi ITS sequences according to host species. Host-specific segregation was confirmed by hierarchical analysis of molecular variation. To improve our understanding of the epidemiology of human microsporidiosis and strengthen the study of E. bieneusi populations, efforts to genotype additional E. bieneusi isolates from wildlife and companion animals should be prioritized and the geographic and species diversify of animal samples should be increased. Due to the possibility of genetic recombination in this species, additional unlinked genetic markers need to be developed and included in future studies. PMID:19931647

  5. Xenorhabdus bovienii Strain Diversity Impacts Coevolution and Symbiotic Maintenance with Steinernema spp. Nematode Hosts

    PubMed Central

    Murfin, Kristen E.; Lee, Ming-Min; Klassen, Jonathan L.; McDonald, Bradon R.; Larget, Bret; Forst, Steven; Stock, S. Patricia; Currie, Cameron R.

    2015-01-01

    ABSTRACT Microbial symbionts provide benefits that contribute to the ecology and fitness of host plants and animals. Therefore, the evolutionary success of plants and animals fundamentally depends on long-term maintenance of beneficial associations. Most work investigating coevolution and symbiotic maintenance has focused on species-level associations, and studies are lacking that assess the impact of bacterial strain diversity on symbiotic associations within a coevolutionary framework. Here, we demonstrate that fitness in mutualism varies depending on bacterial strain identity, and this is consistent with variation shaping phylogenetic patterns and maintenance through fitness benefits. Through genome sequencing of nine bacterial symbiont strains and cophylogenetic analysis, we demonstrate diversity among Xenorhabdus bovienii bacteria. Further, we identified cocladogenesis between Steinernema feltiae nematode hosts and their corresponding X. bovienii symbiont strains, indicating potential specificity within the association. To test the specificity, we performed laboratory crosses of nematode hosts with native and nonnative symbiont strains, which revealed that combinations with the native bacterial symbiont and closely related strains performed significantly better than those with more divergent symbionts. Through genomic analyses we also defined potential factors contributing to specificity between nematode hosts and bacterial symbionts. These results suggest that strain-level diversity (e.g., subspecies-level differences) in microbial symbionts can drive variation in the success of host-microbe associations, and this suggests that these differences in symbiotic success could contribute to maintenance of the symbiosis over an evolutionary time scale. PMID:26045536

  6. Host Determinants of Prion Strain Diversity Independent of Prion Protein Genotype

    PubMed Central

    Crowell, Jenna; Hughson, Andrew; Caughey, Byron

    2015-01-01

    ABSTRACT Phenotypic diversity in prion diseases can be specified by prion strains in which biological traits are propagated through an epigenetic mechanism mediated by distinct PrPSc conformations. We investigated the role of host-dependent factors on phenotypic diversity of chronic wasting disease (CWD) in different host species that express the same prion protein gene (Prnp). Two CWD strains that have distinct biological, biochemical, and pathological features were identified in transgenic mice that express the Syrian golden hamster (SGH) Prnp. The CKY strain of CWD had a shorter incubation period than the WST strain of CWD, but after transmission to SGH, the incubation period of CKY CWD was ∼150 days longer than WST CWD. Limited proteinase K digestion revealed strain-specific PrPSc polypeptide patterns that were maintained in both hosts, but the solubility and conformational stability of PrPSc differed for the CWD strains in a host-dependent manner. WST CWD produced PrPSc amyloid plaques in the brain of the SGH that were partially insoluble and stable at a high concentration of protein denaturant. However, in transgenic mice, PrPSc from WST CWD did not assemble into plaques, was highly soluble, and had low conformational stability. Similar studies using the HY and DY strains of transmissible mink encephalopathy resulted in minor differences in prion biological and PrPSc properties between transgenic mice and SGH. These findings indicate that host-specific pathways that are independent of Prnp can alter the PrPSc conformation of certain prion strains, leading to changes in the biophysical properties of PrPSc, neuropathology, and clinical prion disease. IMPORTANCE Prions are misfolded pathogenic proteins that cause neurodegeneration in humans and animals. Transmissible prion diseases exhibit a spectrum of disease phenotypes and the basis of this diversity is encoded in the structure of the pathogenic prion protein and propagated by an epigenetic mechanism. In

  7. Diverse roles of host RNA binding proteins in RNA virus replication.

    PubMed

    Li, Zhenghe; Nagy, Peter D

    2011-01-01

    Plus-strand +RNA viruses co-opt host RNA-binding proteins (RBPs) to perform many functions during viral replication. A few host RBPs have been identified that affect the recruitment of viral +RNAs for replication. Other subverted host RBPs help the assembly of the membrane-bound replicase complexes, regulate the activity of the replicase and control minus- or plus-strand RNA synthesis. The host RBPs also affect the stability of viral RNAs, which have to escape cellular RNA degradation pathways. While many host RBPs seem to have specialized functions, others participate in multiple events during infection. Several conserved RBPs, such as eEF1A, hnRNP proteins and Lsm 1-7 complex, are co-opted by evolutionarily diverse +RNA viruses, underscoring some common themes in virus-host interactions. On the other hand, viruses also hijack unique RBPs, suggesting that +RNA viruses could utilize different RBPs to perform similar functions. Moreover, different +RNA viruses have adapted unique strategies for co-opting unique RBPs. Altogether, a deeper understanding of the functions of the host RBPs subverted for viral replication will help development of novel antiviral strategies and give new insights into host RNA biology. PMID:21505273

  8. Macrophage Migration Inhibitory Factor Contributes to Host Defense against Acute Trypanosoma cruzi Infection

    PubMed Central

    Reyes, José L.; Terrazas, Luis I.; Espinoza, Bertha; Cruz-Robles, David; Soto, Virgilia; Rivera-Montoya, Irma; Gómez-García, Lorena; Snider, Heidi; Satoskar, Abhay R.; Rodríguez-Sosa, Miriam

    2006-01-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is involved in the host defense against several pathogens. Here we used MIF−/− mice to determine the role of endogenous MIF in the regulation of the host immune response against Trypanosoma cruzi infection. MIF−/− mice displayed high levels of blood and tissue parasitemia, developed severe heart and skeletal muscle immunopathology, and succumbed to T. cruzi infection faster than MIF+/+ mice. The enhanced susceptibility of MIF−/− mice to T. cruzi was associated with reduced levels of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-12 (IL-12), IL-18, gamma interferon (IFN-γ), and IL-1β, in their sera and reduced production of IL-12, IFN-γ, and IL-4 by spleen cells during the early phase of infection. At all time points, antigen-stimulated splenocytes from MIF+/+ and MIF−/− mice produced comparable levels of IL-10. MIF−/− mice also produced significantly less Th1-associated antigen-specific immunoglobulin G2a (IgG2a) throughout the infection, but both groups produced comparable levels of Th2-associated IgG1. Lastly, inflamed hearts from T. cruzi-infected MIF−/− mice expressed increased transcripts for IFN-γ, but fewer for IL-12 p35, IL-12 p40, IL-23, and inducible nitric oxide synthase, compared to MIF+/+ mice. Taken together, our findings show that MIF plays a role in controlling acute T. cruzi infection. PMID:16714544

  9. Comparative assessment of bacterial diversity associated with co-occurring eukaryotic hosts of Palk Bay origin.

    PubMed

    Viszwapriya, Dharmaprakash; Aravindraja, Chairmandurai; Pandian, Shunmugiah Karutha

    2015-06-01

    Epibacterial communities of co-occurring eukaryotic hosts of Palk Bay origin (five seaweed species (Gracilaria sp, Padina sp, Enteromorpha sp, Sargassum sp, and Turbinaria sp) and one seagrass [Cymodaceae sp]) were analyzed for diversity and compared using 16S rRNA based Denaturant Gradient Gel Electrophoresis analysis. Diversity index revealed that Turbinaria sp hosts highest bacterial diversity while it was least in Gracilaria sp. The DGGE band profile showed that the epibacterial community differed considerably among the studied species. Statistical assessment using cluster analysis and Non-metric multidimensional scale analysis also authenticated the observed variability. Despite huge overlap, the composition of bacterial community structure differed significantly among the three closely related species namely Sargassum, Turbinaria and Padina. In addition, Enteromorpha and Sargassum, one being chlorophyta and the other phaeophyta showed about 80% similarity in bacterial composition. This differs from the general notion that epibacterial community composition will vary widely depending on the host phyla. The results extended the phenomenon of host specific epibacterial community irrespective of phylogeny and similarity in geographical location. PMID:26155683

  10. Comparative genetic diversity of Lyme disease bacteria in Northern Californian ticks and their vertebrate hosts.

    PubMed

    Swei, Andrea; Bowie, Verna C; Bowie, Rauri C K

    2015-04-01

    Vector-borne pathogens are transmitted between vertebrate hosts and arthropod vectors, two immensely different environments for the pathogen. There is further differentiation among vertebrate hosts that often have complex, species-specific immunological responses to the pathogen. All this presents a heterogeneous environmental and immunological landscape with possible consequences on the population genetic structure of the pathogen. We evaluated the differential genetic diversity of the Lyme disease pathogen, Borrelia burgdorferi, in its vector, the western black-legged tick (Ixodes pacificus), and in its mammal host community using the 5S-23S rRNA intergenic spacer region. We found differences in haplotype distribution of B. burgdorferi in tick populations from two counties in California as well as between a sympatric tick and vertebrate host community. In addition, we found that three closely related haplotypes consistently occurred in high frequency in all sample types. Lastly, our study found lower species diversity of the B. burgdorferi species complex, known as B. burgdorferi sensu lato, in small mammal hosts versus the tick populations in a sympatric study area. PMID:25843810

  11. Within-Host Nucleotide Diversity of Virus Populations: Insights from Next-Generation Sequencing

    PubMed Central

    Nelson, Chase W.; Hughes, Austin L.

    2014-01-01

    Next-generation sequencing (NGS) technology offers new opportunities for understanding the evolution and dynamics of viral populations within individual hosts over the course of infection. We review simple methods for estimating synonymous and nonsynonymous nucleotide diversity in viral genes from NGS data without the need for inferring linkage. We discuss the potential usefulness of these data for addressing questions of both practical and theoretical interest, including fundamental questions regarding the effective population sizes of within-host viral populations and the modes of natural selection acting on them. PMID:25481279

  12. Congruence and Diversity of Butterfly-Host Plant Associations at Higher Taxonomic Levels

    PubMed Central

    Ferrer-Paris, José R.; Sánchez-Mercado, Ada; Viloria, Ángel L.; Donaldson, John

    2013-01-01

    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages. PMID:23717448

  13. Diversity in host clone performance within a Chinese hamster ovary cell line.

    PubMed

    O'Callaghan, Peter M; Berthelot, Maud E; Young, Robert J; Graham, James W A; Racher, Andrew J; Aldana, Dulce

    2015-01-01

    Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc-fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool-produced Mab and etanercept (by N-glycan ultra performance liquid chromatography (UPLC) and liquid chromatography - tandem mass spectrometry (LC-MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N-glycan micro-heterogeneity and etanercept N and O-linked macro-heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics. PMID:25918883

  14. New host and lineage diversity of avian haemosporidia in the northern Andes.

    PubMed

    Harrigan, Ryan J; Sedano, Raul; Chasar, Anthony C; Chaves, Jaime A; Nguyen, Jennifer T; Whitaker, Alexis; Smith, Thomas B

    2014-08-01

    The northern Andes, with their steep elevational and climate gradients, are home to an exceptional diversity of flora and fauna, particularly rich in avian species that have adapted to divergent ecological conditions. With this diversity comes the opportunity for parasites to exploit a wide breadth of avian hosts. However, little research has focused on examining the patterns of prevalence and lineage diversity of avian parasites in the Andes. Here, we screened a total of 428 birds from 19 species (representing nine families) and identified 133 infections of avian haemosporidia (31%), including lineages of Plasmodium, Haemoproteus, and Leucocytozoon. We document a higher prevalence of haemosporidia at higher elevations and lower temperatures, as well as an overall high diversity of lineages in the northern Andes, including the first sequences of haemosporidians reported in hummingbirds (31 sequences found in 11 species within the family Trochilidae). Double infections were distinguished using PHASE, which enables the separation of distinct parasite lineages. Results suggest that the ecological heterogeneity of the northern Andes that has given rise to a rich diversity of avian hosts may also be particularly conducive to parasite diversification and specialization. PMID:25469161

  15. New host and lineage diversity of avian haemosporidia in the northern Andes

    PubMed Central

    Harrigan, Ryan J; Sedano, Raul; Chasar, Anthony C; Chaves, Jaime A; Nguyen, Jennifer T; Whitaker, Alexis; Smith, Thomas B

    2014-01-01

    The northern Andes, with their steep elevational and climate gradients, are home to an exceptional diversity of flora and fauna, particularly rich in avian species that have adapted to divergent ecological conditions. With this diversity comes the opportunity for parasites to exploit a wide breadth of avian hosts. However, little research has focused on examining the patterns of prevalence and lineage diversity of avian parasites in the Andes. Here, we screened a total of 428 birds from 19 species (representing nine families) and identified 133 infections of avian haemosporidia (31%), including lineages of Plasmodium, Haemoproteus, and Leucocytozoon. We document a higher prevalence of haemosporidia at higher elevations and lower temperatures, as well as an overall high diversity of lineages in the northern Andes, including the first sequences of haemosporidians reported in hummingbirds (31 sequences found in 11 species within the family Trochilidae). Double infections were distinguished using PHASE, which enables the separation of distinct parasite lineages. Results suggest that the ecological heterogeneity of the northern Andes that has given rise to a rich diversity of avian hosts may also be particularly conducive to parasite diversification and specialization. PMID:25469161

  16. The Role of Viral Population Diversity in Adaptation of Bovine Coronavirus to New Host Environments

    PubMed Central

    Borucki, Monica K.; Allen, Jonathan E.; Chen-Harris, Haiyin; Zemla, Adam; Vanier, Gilda; Mabery, Shalini; Torres, Clinton; Hullinger, Pamela; Slezak, Tom

    2013-01-01

    The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing) and 38,000×(Illumina). The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were “selected” from a pre-existing pool rather than through de novo mutation and subsequent population fixation. PMID:23308119

  17. Spring Migration Stopover Ecology of Avian Influenza Virus Shorebird Hosts at Delaware Bay.

    PubMed

    Maxted, Angela M; Sitters, Humphrey P; Luttrell, M Page; Dey, Amanda D; Kalasz, Kevin S; Niles, Lawrence J; Stallknecht, David E

    2016-05-01

    Although low pathogenicity avian influenza viruses (LPAIV) are detected in shorebirds at Delaware Bay annually, little is known about affected species habitat preferences or the movement patterns that might influence virus transmission and spread. During the 5-wk spring migration stopover period during 2007-2008, we conducted a radiotelemetry study of often-infected ruddy turnstones (Arenaria interpres morinella; n = 60) and rarely infected sanderlings (Calidris alba; n = 20) to identify locations and habitats important to these species (during daytime and nighttime), determine the extent of overlap with other AIV reservoir species or poultry production areas, reveal possible movements of AIV around the Bay, and assess whether long-distance movement of AIV is likely after shorebird departure. Ruddy turnstones and sanderlings both fed on Bay beaches during the daytime. However, sanderlings used remote sandy points and islands during the nighttime while ruddy turnstones primarily used salt marsh harboring waterfowl and gull breeding colonies, suggesting that this environment supports AIV circulation. Shorebird locations were farther from agricultural land and poultry operations than were random locations, suggesting selection away from poultry. Further, there was no areal overlap between shorebird home ranges and poultry production areas. Only 37% (22/60) of ruddy turnstones crossed into Delaware from capture sites in New Jersey, suggesting partial site fidelity and AIV gene pool separation between the states. Ruddy turnstones departed en masse around June 1 when AIV prevalence was low or declining, suggesting that a limited number of birds could disperse AIV onto the breeding grounds. This study provides needed insight into AIV and migratory host ecology, and results can inform both domestic animal AIV prevention and shorebird conservation efforts. PMID:27309084

  18. Rapid turnover of intra-host genetic diversity in Zucchini yellow mosaic virus

    PubMed Central

    Simmons, Heather E.; Holmes, Edward C.; Stephenson, Andrew G.

    2010-01-01

    Genetic diversity in RNA viruses is shaped by a variety of evolutionary processes, including the bottlenecks that may occur at inter-host transmission. However, how these processes structure genetic variation at the scale of individual hosts is only partly understood. We obtained intra-host sequence data for the coat protein (CP) gene of Zucchini yellow mosaic virus (ZYMV) from two horizontally transmitted populations – one via aphid, the other without – and with multiple samples from individual plants. We show that although mutations are generated relatively frequently within infected plants, attaining similar levels of genetic diversity to that seen in some animal RNA viruses (mean intra-sample diversity of 0.02%), most mutations are likely to be transient, deleterious, and purged rapidly. We also observed more population structure in the aphid transmitted viral population, including the same mutations in multiple clones, the presence of a sub-lineage, and evidence for the short-term complementation of defective genomes. PMID:21138748

  19. Diverse wild bird host range of Mycoplasma gallisepticum in eastern North America.

    PubMed

    Dhondt, André A; DeCoste, Jonathan C; Ley, David H; Hochachka, Wesley M

    2014-01-01

    Emerging infectious diseases often result from pathogens jumping to novel hosts. Identifying possibilities and constraints on host transfer is therefore an important facet of research in disease ecology. Host transfers can be studied for the bacterium Mycoplasma gallisepticum, predominantly a pathogen of poultry until its 1994 appearance and subsequent epidemic spread in a wild songbird, the house finch Haemorhous mexicanus and some other wild birds. We screened a broad range of potential host species for evidence of infection by M. gallisepticum in order to answer 3 questions: (1) is there a host phylogenetic constraint on the likelihood of host infection (house finches compared to other bird species); (2) does opportunity for close proximity (visiting bird feeders) increase the likelihood of a potential host being infected; and (3) is there seasonal variation in opportunity for host jumping (winter resident versus summer resident species). We tested for pathogen exposure both by using PCR to test for the presence of M. gallisepticum DNA and by rapid plate agglutination to test for the presence of antibodies. We examined 1,941 individual birds of 53 species from 19 avian families. In 27 species (15 families) there was evidence for exposure with M. gallisepticum although conjunctivitis was very rare in non-finches. There was no difference in detection rate between summer and winter residents, nor between feeder birds and species that do not come to feeders. Evidence of M. gallisepticum infection was found in all species for which at least 20 individuals had been sampled. Combining the present results with those of previous studies shows that a diverse range of wild bird species may carry or have been exposed to M. gallisepticum in the USA as well as in Europe and Asia. PMID:25061684

  20. Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes

    PubMed Central

    Gottdenker, Nicole L.; Chaves, Luis Fernando; Calzada, José E.; Saldaña, Azael; Carroll, C. Ronald

    2012-01-01

    Background Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. Methodology/Principal Findings R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site. Conclusions/Significance In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially

  1. Natural Diversity of Frankia Strains in Actinorhizal Root Nodules from Promiscuous Hosts in the Family Myricaceae

    PubMed Central

    Clawson, Michael L.; Benson, David R.

    1999-01-01

    Actinorhizal plants invade nitrogen-poor soils because of their ability to form root nodule symbioses with N2-fixing actinomycetes known as Frankia. Frankia strains are difficult to isolate, so the diversity of strains inhabiting nodules in nature is not known. To address this problem, we have used the variability in bacterial 16S rRNA gene sequences amplified from root nodules as a means to estimate molecular diversity. Nodules were collected from 96 sites primarily in northeastern North America; each site contained one of three species of the family Myricaceae. Plants in this family are considered to be promiscuous hosts because several species are effectively nodulated by most isolated strains of Frankia in the greenhouse. We found that strain evenness varies greatly between the plant species so that estimating total strain richness of Frankia within myricaceous nodules with the sample size used was problematical. Nevertheless, Myrica pensylvanica, the common bayberry, was found to have sufficient diversity to serve as a reservoir host for Frankia strains that infect plants from other actinorhizal families. Myrica gale, sweet gale, yielded a few dominant sequences, indicating either symbiont specialization or niche selection of particular ecotypes. Strains in Comptonia peregrina nodules had an intermediate level of diversity and were all from a single major group of Frankia. PMID:10508084

  2. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites.

    PubMed

    Tai, Vera; James, Erick R; Nalepa, Christine A; Scheffrahn, Rudolf H; Perlman, Steve J; Keeling, Patrick J

    2015-02-01

    The hindguts of lower termites and Cryptocercus cockroaches are home to a distinct community of archaea, bacteria, and protists (primarily parabasalids and some oxymonads). Within a host species, the composition of these hindgut communities appears relatively stable, but the evolutionary and ecological factors structuring community composition and stability are poorly understood, as are differential impacts of these factors on protists, bacteria, and archaea. We analyzed the microbial composition of parabasalids and bacteria in the hindguts of Cryptocercus punctulatus and 23 species spanning 4 families of lower termites by pyrosequencing variable regions of the small-subunit rRNA gene. Especially for the parabasalids, these data revealed undiscovered taxa and provided a phylogenetic basis for a more accurate understanding of diversity, diversification, and community composition. The composition of the parabasalid communities was found to be strongly structured by the phylogeny of their hosts, indicating the importance of historical effects, although exceptions were also identified. Particularly, spirotrichonymphids and trichonymphids likely were transferred between host lineages. In contrast, host phylogeny was not sufficient to explain the majority of bacterial community composition, but the compositions of the Bacteroidetes, Elusimicrobia, Tenericutes, Spirochaetes, and Synergistes were structured by host phylogeny perhaps due to their symbiotic associations with protists. All together, historical effects probably resulting from vertical inheritance have had a prominent role in structuring the hindgut communities, especially of the parabasalids, but dispersal and environmental acquisition have played a larger role in community composition than previously expected. PMID:25452280

  3. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    PubMed

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest. PMID:26661903

  4. The Role of Host Phylogeny Varies in Shaping Microbial Diversity in the Hindguts of Lower Termites

    PubMed Central

    James, Erick R.; Nalepa, Christine A.; Scheffrahn, Rudolf H.; Perlman, Steve J.; Keeling, Patrick J.

    2014-01-01

    The hindguts of lower termites and Cryptocercus cockroaches are home to a distinct community of archaea, bacteria, and protists (primarily parabasalids and some oxymonads). Within a host species, the composition of these hindgut communities appears relatively stable, but the evolutionary and ecological factors structuring community composition and stability are poorly understood, as are differential impacts of these factors on protists, bacteria, and archaea. We analyzed the microbial composition of parabasalids and bacteria in the hindguts of Cryptocercus punctulatus and 23 species spanning 4 families of lower termites by pyrosequencing variable regions of the small-subunit rRNA gene. Especially for the parabasalids, these data revealed undiscovered taxa and provided a phylogenetic basis for a more accurate understanding of diversity, diversification, and community composition. The composition of the parabasalid communities was found to be strongly structured by the phylogeny of their hosts, indicating the importance of historical effects, although exceptions were also identified. Particularly, spirotrichonymphids and trichonymphids likely were transferred between host lineages. In contrast, host phylogeny was not sufficient to explain the majority of bacterial community composition, but the compositions of the Bacteroidetes, Elusimicrobia, Tenericutes, Spirochaetes, and Synergistes were structured by host phylogeny perhaps due to their symbiotic associations with protists. All together, historical effects probably resulting from vertical inheritance have had a prominent role in structuring the hindgut communities, especially of the parabasalids, but dispersal and environmental acquisition have played a larger role in community composition than previously expected. PMID:25452280

  5. Genetic Diversity and Distribution Patterns of Host Insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau

    PubMed Central

    Quan, Qing-Mei; Chen, Ling-Ling; Wang, Xi; Li, Shan; Yang, Xiao-Ling; Zhu, Yun-Guo; Wang, Mu; Cheng, Zhou

    2014-01-01

    The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera) to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotide diversity mainly existed in the areas of Nyingchi, ShangriLa, and around the edge of the Qinghai-Tibet Plateau, where are considered as the diversity center or micro-refuges of the host insects of O. sinensis. However, there was little genetic variation among host insects from 72.1% of all populations, indicating that the host species composition might be relatively simple in large-scale O. sinensis populations. All host insects are monophyletic except for those from four O. sinensis populations around Qinghai Lake. Significant phylogeographic structure (NST>GST, P<0.05) was revealed for the monophyletic host insects, and the three major phylogenetic groups corresponded with specific geographical areas. The divergence of most host insects was estimated to have occurred at ca. 3.7 Ma, shortly before the rapid uplift of the QTP. The geographical distribution and star-like network of the haplotypes implied that most host insects were derived from the relicts of a once-widespread host that subsequently became fragmented. Neutrality tests, mismatch distribution analysis, and expansion time estimation confirmed that most host insects presented recent demographic expansions that began ca. 0.118 Ma in the late Pleistocene. Therefore, the genetic diversity and distribution of the present-day insects should be attributed to effects of the Qinghai-Tibet Plateau uplift and glacial advance/retreat cycles during the Quaternary ice age. These results provide valuable information to guide

  6. Cryptic diversity, high host specificity and reproductive synchronization in army ant-associated Vatesus beetles.

    PubMed

    von Beeren, Christoph; Maruyama, Munetoshi; Kronauer, Daniel J C

    2016-02-01

    Army ants and their arthropod symbionts represent one of the most species-rich animal associations on Earth, and constitute a fascinating example of diverse host-symbiont interaction networks. However, despite decades of research, our knowledge of army ant symbionts remains fragmentary due to taxonomic ambiguity and the inability to study army ants in the laboratory. Here, we present an integrative approach that allows us to reliably determine species boundaries, assess biodiversity, match different developmental stages and sexes, and to study the life cycles of army ant symbionts. This approach is based on a combination of community sampling, DNA barcoding, morphology and physiology. As a test case, we applied this approach to the staphylinid beetle genus Vatesus and its different Eciton army ant host species at La Selva Biological Station, Costa Rica. DNA barcoding led to the discovery of cryptic biodiversity and, in combination with extensive community sampling, revealed strict host partitioning with no overlap in host range. Using DNA barcoding, we were also able to match the larval stages of all focal Vatesus species. In combination with studies of female reproductive physiology, this allowed us to reconstruct almost the complete life cycles of the different beetle species. We show that Vatesus beetles are highly adapted to the symbiosis with army ants, in that their reproduction and larval development are synchronized with the stereotypical reproductive and behavioural cycles of their host colonies. Our approach can now be used to study army ant-symbiont communities more broadly, and to obtain novel insights into co-evolutionary and ecological dynamics in species-rich host-symbiont systems. PMID:26618779

  7. Introduced bullfrogs and their parasites: Haematoloechus longiplexus (Trematoda) exploits diverse damselfly intermediate hosts on Vancouver Island.

    PubMed

    Novak, Colin W; Goater, Timothy M

    2013-02-01

    The lung fluke, Haematoloechus longiplexus, is the most prevalent and abundant parasite of introduced bullfrogs on Vancouver Island, British Columbia, Canada. The ecological success of this trematode in invasive bullfrogs is related to the fluke's ability to utilize native intermediate hosts for transmission. The purpose of this study was to identify the odonate (dragonfly/damselfly) species involved in the transmission of H. longiplexus to the introduced bullfrog. The prevalences and mean intensities of 21 species of odonates (nymphs and adults) were examined for metacercariae infections. Haematoloechus longiplexus is a second intermediate host specialist, being found only in damselflies. Six damselfly species exhibiting the "climber" ecological habit were identified as second intermediate hosts of H. longiplexus. Enallagma carunculatum (prevalence = 75.0%, mean intensity = 17.2 ± 10.8), Ischnura cervula (65.2%, 8.9 ± 4.3), Ischnura perparva (45.5%, 15.4 ± 10.3), and Enallagma boreale (40.7%, 4.8 ± 7.8) were the most commonly infected damselfly species. Metacercariae were absent in damselflies collected from sites lacking bullfrogs. Haematoloechus longiplexus was likely introduced along with the bullfrog, and subsequently adapted to the physid snail and diverse damselfly intermediate hosts present in ponds on Vancouver Island. PMID:22924931

  8. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis.

    PubMed

    Rebollar, Eria A; Hughey, Myra C; Medina, Daniel; Harris, Reid N; Ibáñez, Roberto; Belden, Lisa K

    2016-07-01

    Symbiotic bacteria on amphibian skin can inhibit growth of the fungus Batrachochytrium dendrobatidis (Bd) that has caused dramatic population declines and extinctions of amphibians in the Neotropics. It remains unclear how the amphibians' skin microbiota is influenced by environmental bacterial reservoirs, host-associated factors such as susceptibility to pathogens, and pathogen presence in tropical amphibians. We sampled skin bacteria from five co-occurring frog species that differ in Bd susceptibility at one Bd-naive site, and sampled one of the non-susceptible species from Bd-endemic and Bd-naive sites in Panama. We hypothesized that skin bacterial communities (1) would be distinct from the surrounding environment regardless of the host habitat, (2) would differ between Bd susceptible and non-susceptible species and (3) would differ on hosts in Bd-naive and Bd-endemic sites. We found that skin bacterial communities were enriched in bacterial taxa that had low relative abundances in the environment. Non-susceptible species had very similar skin bacterial communities that were enriched in particular taxa such as the genera Pseudomonas and Acinetobacter. Bacterial communities of Craugastor fitzingeri in Bd-endemic sites were less diverse than in the naive site, and differences in community structure across sites were explained by changes in relative abundance of specific bacterial taxa. Our results indicate that skin microbial structure was associated with host susceptibility to Bd and might be associated to the history of Bd presence at different sites. PMID:26744810

  9. Diversity of alternative hosts of maize stemborers in Trans-Nzoia district of Kenya.

    PubMed

    Kanya, James I; Ngi-Song, Adele J; Sétamou, Mamoudou F; Overholt, William; Ochora, John; Osir, Ellie O

    2004-01-01

    Genetically-engineered (GE) crops such as those expressing insecticidal Bacillus thuringiensis (Bt) toxin genes have the potential to greatly reduce the use of broad spectrum insecticides and increase crop productivity. However, development of resistance by the target insect species is an important consideration in the deployment of this strategy. In areas where GE crops are deployed on a large scale, current resistance management strategies rely on a 'refuge strategy', comprising the incorporation of a certain proportion of non-GE plants in the agro-ecosystems, to conserve susceptible individuals of the target pests. In the USA, simulation models indicate that at least 20% of the crop should be non-Bt plants. In Africa, the target lepidopteran stemborers attack a wide range of wild grass species as well as cultivated cereal crops. Wild grasses generally occur in the vicinity of maize and other cereal fields, and may provide a refuge if GE crops are in the farming systems. To assess the quality of these grasses as refuges, it is critical to obtain information about their size and spatial distribution. In this study, we have assessed the abundance and diversity of alternative refuge of stemborers, mainly wild grasses occurring in the proximity of maize fields, in Trans-Nzoia district, one of the most important maize growing areas in Kenya. The proportion of wild host plants relative to maize was found to decline from 100% during the non-cropping season to <8% during the maize-growing season. The Shannon-Weaver diversity index indicated high variation in the diversity of wild hosts of stemborers between agro-ecological zones in the district. The results of this study are discussed in light of the possible role that wild host plant species might play in stemborer resistance management following the introduction of Bt maize. PMID:15901098

  10. Canine echinococcosis: genetic diversity of Echinococcus granulosus sensu stricto (s.s.) from definitive hosts.

    PubMed

    Boufana, B; Lett, W; Lahmar, S; Griffiths, A; Jenkins, D J; Buishi, I; Engliez, S A; Alrefadi, M A; Eljaki, A A; Elmestiri, F M; Reyes, M M; Pointing, S; Al-Hindi, A; Torgerson, P R; Okamoto, M; Craig, P S

    2015-11-01

    Canids, particularly dogs, constitute the major source of cystic echinococcosis (CE) infection to humans, with the majority of cases being caused by Echinococcus granulosus (G1 genotype). Canine echinococcosis is an asymptomatic disease caused by adult tapeworms of E. granulosus sensu lato (s.l.). Information on the population structure and genetic variation of adult E. granulosus is limited. Using sequenced data of the mitochondrial cytochrome c oxidase subunit 1 (cox1) we examined the genetic diversity and population structure of adult tapeworms of E. granulosus (G1 genotype) from canid definitive hosts originating from various geographical regions and compared it to that reported for the larval metacestode stage from sheep and human hosts. Echinococcus granulosus (s.s) was identified from adult tapeworm isolates from Kenya, Libya, Tunisia, Australia, China, Kazakhstan, United Kingdom and Peru, including the first known molecular confirmation from Gaza and the Falkland Islands. Haplotype analysis showed a star-shaped network with a centrally positioned common haplotype previously described for the metacestode stage from sheep and humans, and the neutrality indices indicated population expansion. Low Fst values suggested that populations of adult E. granulosus were not genetically differentiated. Haplotype and nucleotide diversities for E. granulosus isolates from sheep and human origin were twice as high as those reported from canid hosts. This may be related to self-fertilization of E. granulosus and/or to the longevity of the parasite in the respective intermediate and definitive hosts. Improved nuclear single loci are required to investigate the discrepancies in genetic variation seen in this study. PMID:26442707

  11. Characterization of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus

    PubMed Central

    Stam, Remco; Howden, Andrew J. M.; Delgado-Cerezo, Magdalena; M. M. Amaro, Tiago M.; Motion, Graham B.; Pham, Jasmine; Huitema, Edgar

    2013-01-01

    Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centers on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signaling. Here, we characterized three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localization of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organization, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility. PMID:24155749

  12. Environmental Mapping of Paracoccidioides spp. in Brazil Reveals New Clues into Genetic Diversity, Biogeography and Wild Host Association

    PubMed Central

    Arantes, Thales Domingos; Theodoro, Raquel Cordeiro; Teixeira, Marcus de Melo; Bosco, Sandra de Moraes Gimenes; Bagagli, Eduardo

    2016-01-01

    Background Paracoccidioides brasiliensis and Paracoccidioides lutzii are the etiological agents of Paracoccidioidomycosis (PCM), and are easily isolated from human patients. However, due to human migration and a long latency period, clinical isolates do not reflect the spatial distribution of these pathogens. Molecular detection of P. brasiliensis and P. lutzii from soil, as well as their isolation from wild animals such as armadillos, are important for monitoring their environmental and geographical distribution. This study aimed to detect and, for the first time, evaluate the genetic diversity of P. brasiliensis and P. lutzii for Paracoccidioidomycosis in endemic and non-endemic areas of the environment, by using Nested PCR and in situ hybridization techniques. Methods/Principal Findings Aerosol (n = 16) and soil (n = 34) samples from armadillo burrows, as well as armadillos (n = 7) were collected in endemic and non-endemic areas of PCM in the Southeastern, Midwestern and Northern regions of Brazil. Both P. brasiliensis and P. lutzii were detected in soil (67.5%) and aerosols (81%) by PCR of Internal Transcribed Spacer (ITS) region (60%), and also by in situ hybridization (83%). Fungal isolation from armadillo tissues was not possible. Sequences from both species of P. brasiliensis and P. lutzii were detected in all regions. In addition, we identified genetic Paracoccidioides variants in soil and aerosol samples which have never been reported before in clinical or armadillo samples, suggesting greater genetic variability in the environment than in vertebrate hosts. Conclusions/Significance Data may reflect the actual occurrence of Paracoccidioides species in their saprobic habitat, despite their absence/non-detection in seven armadillos evaluated in regions with high prevalence of PCM infection by P. lutzii. These results may indicate a possible ecological difference between P. brasiliensis and P. lutzii concerning their wild hosts. PMID:27045486

  13. Human genetic diversity (immunoglobulin GM allotypes), linguistic data, and migrations of Amerindian tribes.

    PubMed

    Dugoujon, J M; Mourrieras, B; Senegas, M T; Guitard, E; Sevin, A; Bois, E; Hazout, S

    1995-04-01

    GM haplotype frequencies were examined in 49 Amerindian tribes (from North, Central, and South America) to investigate the congruence of genetic variation with that observed in language and geography. We used two approaches: (1) the mobile site method, which allows a two-dimensional representation of genetic variation where the distances between reference points (i.e., the locations of the populations in the geographic map after displacements) are close to the genetic distances, and (2) a multivariate analysis (factorial correspondence analysis), which permits a visual interpretation of the geographic distribution of GM haplotypes on a map, completed by a cluster analysis. The results show a strong gradient from the Bering Strait to South America. The Eskimo and Na-Dene are genetically different from all other Amerindians, reflecting their more recent migrations. The orientation of most trajectories of the tribes from Central and South America can be interpreted as earlier migrations along the Pacific and Atlantic coasts. We conclude that geographic and linguistic factors played a part in the genetic diversity of Amerindian tribes. PMID:7537245

  14. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally

  15. [Migration].

    PubMed

    Maccotta, W; Perotti, A; Thebaut, F; Cristofanelli, L; Pittau, F; Sergi, N; Pittau, L; Morelli, A; Morsella, M; Grinover, A P

    1990-01-01

    This is a collection of 11 individual articles on aspects of current migration problems affecting developed countries. The geographical focus is on immigration in Europe, with particular reference to Italy, although one paper is concerned with Quebec. The topical focus is on the social problems associated with immigration. The articles are in Italian, with one exception, which is in French. PMID:12343393

  16. Genetic Diversity and Population Structure of Mycobacterium marinum: New Insights into Host and Environmental Specificities

    PubMed Central

    Broutin, Vincent; Bañuls, Anne-Laure; Aubry, Alexandra; Keck, Nicolas; Choisy, Marc; Bernardet, Jean-François; Michel, Christian; Raymond, Jean-Christophe; Libert, Cédric; Barnaud, Antoine; Stragier, Pieter; Portaels, Françoise; Terru, Dominique; Belon, Claudine; Dereure, Olivier; Gutierrez, Cristina; Boschiroli, Maria-Laura; Van De Perre, Philippe; Cambau, Emmanuelle

    2012-01-01

    Mycobacterium marinum causes a systemic tuberculosis-like disease in fish and skin infections in humans that can spread to deeper structures, resulting in tenosynovitis, arthritis, and osteomyelitis. However, little information is available concerning (i) the intraspecific genetic diversity of M. marinum isolated from humans and animals; (ii) M. marinum genotype circulation in the different ecosystems, and (iii) the link between M. marinum genetic diversity and hosts (humans and fish). Here, we conducted a genetic study on 89 M. marinum isolates from humans (n = 68) and fish (n = 21) by using mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing. The results show that the M. marinum population is genetically structured not only according to the host but also according to the ecosystem as well as to tissue tropism in humans. This suggests the existence of different genetic pools in the function of the biological and ecological compartments. Moreover, the presence of only certain M. marinum genotypes in humans suggests a different zoonotic potential of the M. marinum genotypes. Considering that the infection is linked to aquarium activity, a significant genetic difference was also detected when the human tissue tropism of M. marinum was taken into consideration, with a higher genetic polymorphism in strains isolated from patients with cutaneous forms than from individuals with deeper-structure infection. It appears that only few genotypes can produce deeper infections in humans, suggesting that the immune system might play a filtering role. PMID:22952269

  17. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities.

    PubMed

    Baldwin, Andrew H; Jensen, Kai; Schönfeldt, Marisa

    2014-03-01

    Atmospheric warming may influence plant productivity and diversity and induce poleward migration of species, altering communities across latitudes. Complicating the picture is that communities from different continents deviate in evolutionary histories, which may modify responses to warming and migration. We used experimental wetland plant communities grown from seed banks as model systems to determine whether effects of warming on biomass production and species richness are consistent across continents, latitudes, and migration scenarios. We collected soil samples from each of three tidal freshwater marshes in estuaries at three latitudes (north, middle, south) on the Atlantic coasts of Europe and North America. In one experiment, we exposed soil seed bank communities from each latitude and continent to ambient and elevated (+2.8 °C) temperatures in the greenhouse. In a second experiment, soil samples were mixed either within each estuary (limited migration) or among estuaries from different latitudes in each continent (complete migration). Seed bank communities of these migration scenarios were also exposed to ambient and elevated temperatures and contrasted with a no-migration treatment. In the first experiment, warming overall increased biomass (+16%) and decreased species richness (-14%) across latitudes in Europe and North America. Species richness and evenness of south-latitude communities were less affected by warming than those of middle and north latitudes. In the second experiment, warming also stimulated biomass and lowered species richness. In addition, complete migration led to increased species richness (+60% in North America, + 100% in Europe), but this higher diversity did not translate into increased biomass. Species responded idiosyncratically to warming, but Lythrum salicaria and Bidens sp. increased significantly in response to warming in both continents. These results reveal for the first time consistent impacts of warming on biomass and

  18. Community structure of fleas within and among populations of three closely related rodent hosts: nestedness and beta-diversity.

    PubMed

    VAN DER Mescht, Luther; Krasnov, Boris R; Matthee, Conrad A; Matthee, Sonja

    2016-09-01

    We studied nestedness and its relationships with beta-diversity in flea communities harboured by three closely related rodent species (Rhabdomys pumilio, Rhabdomys intermedius, Rhabdomys dilectus) at two spatial scales (within and among host populations) in South Africa and asked (a) whether variation in species composition of flea communities within and among host populations follows a non-random pattern; if yes, (b) what are the contributions of nestedness and species turnover to dissimilarity (= beta-diversity) among flea communities at the two scales; and (c) do the degree of nestedness and its contribution to beta-diversity differ among host species (social vs solitary) and between scales. We found that nestedness in flea assemblages was more pronounced (a) in social than solitary host species and (b) at lower (among host individuals within populations) than at higher scale (among host populations). We also found that higher degree of nestedness was associated with its higher contribution to beta-diversity. Our findings support earlier ideas that parasite community structure results from the processes of parasite accumulation by hosts rather than from the processes acting within parasite communities. PMID:27172891

  19. Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships.

    PubMed

    Van Oppen, M J H; Mieog, J C; Sánchez, C A; Fabricius, K E

    2005-07-01

    The presence, genetic identity and diversity of algal endosymbionts (Symbiodinium) in 114 species from 69 genera (20 families) of octocorals from the Great Barrier Reef (GBR), the far eastern Pacific (EP) and the Caribbean was examined, and patterns of the octocoral-algal symbiosis were compared with patterns in the host phylogeny. Genetic analyses of the zooxanthellae were based on ribosomal DNA internal transcribed spacer 1 (ITS1) region. In the GBR samples, Symbiodinium clades A and G were encountered with A and G being rare. Clade B zooxanthellae have been previously reported from a GBR octocoral, but are also rare in octocorals from this region. Symbiodinium G has so far only been found in Foraminifera, but is rare in these organisms. In the Caribbean samples, only Symbiodinium clades B and C are present. Hence, Symbiodinium diversity at the level of phylogenetic clades is lower in octocorals from the Caribbean compared to those from the GBR. However, an unprecedented level of ITS1 diversity was observed within individual colonies of some Caribbean gorgonians, implying either that these simultaneously harbour multiple strains of clade B zooxanthellae, or that ITS1 heterogeneity exists within the genomes of some zooxanthellae. Intracladal diversity based on ITS should therefore be interpreted with caution, especially in cases where no independent evidence exists to support distinctiveness, such as ecological distribution or physiological characteristics. All samples from EP are azooxanthellate. Three unrelated GBR taxa that are described in the literature as azooxanthellate (Junceella fragilis, Euplexaura nuttingi and Stereonephthya sp. 1) contain clade G zooxanthellae, and their symbiotic association with zooxanthellae was confirmed by histology. These corals are pale in colour, whereas related azooxanthellate species are brightly coloured. The evolutionary loss or gain of zooxanthellae may have altered the light sensitivity of the host tissues, requiring the

  20. Assessment of the Geographic Distribution of Ornithodoros turicata (Argasidae): Climate Variation and Host Diversity

    PubMed Central

    Donaldson, Taylor G.; Pèrez de León, Adalberto A.; Li, Andrew I.; Castro-Arellano, Ivan; Wozniak, Edward; Boyle, William K.; Hargrove, Reid; Wilder, Hannah K.; Kim, Hee J.; Teel, Pete D.; Lopez, Job E.

    2016-01-01

    Background Ornithodoros turicata is a veterinary and medically important argasid tick that is recognized as a vector of the relapsing fever spirochete Borrelia turicatae and African swine fever virus. Historic collections of O. turicata have been recorded from Latin America to the southern United States. However, the geographic distribution of this vector is poorly understood in relation to environmental variables, their hosts, and consequently the pathogens they transmit. Methodology Localities of O. turicata were generated by performing literature searches, evaluating records from the United States National Tick Collection and the Symbiota Collections of Arthropods Network, and by conducting field studies. Maximum entropy species distribution modeling (Maxent) was used to predict the current distribution of O. turicata. Vertebrate host diversity and GIS analyses of their distributions were used to ascertain the area of shared occupancy of both the hosts and vector. Conclusions and Significance Our results predicted previously unrecognized regions of the United States with habitat that may maintain O. turicata and could guide future surveillance efforts for a tick capable of transmitting high–consequence pathogens to human and animal populations. PMID:26829327

  1. Diverse Host Feeding on Nesting Birds May Limit Early-Season West Nile Virus Amplification

    PubMed Central

    Egizi, Andrea M.; Farajollahi, Ary

    2014-01-01

    Abstract Arboviral activity tracks vector availability, which in temperate regions means that transmission ceases during the winter and must be restarted each spring. In the northeastern United States, Culex restuans Theobald resumes its activity earlier than Culex pipiens L. and is thought to be important in restarting West Nile virus (WNV) transmission. Its role in WNV amplification, however, is unclear, because viral levels commonly remain low until the rise of Cx. pipiens later in the season. Because a vector's feeding habits can reveal key information about disease transmission, we identified early-season (April–June) blood meals from Cx. restuans collected throughout New Jersey, and compared them to published datasets from later in the season and also from other parts of the country. We found significantly higher avian diversity, including poor WNV hosts, and fewer blood meals derived from American Robins (17% versus over 40% found in later season). Critically, we identified blood meals from significantly more female than male birds in species where females are the incubating sex, suggesting that Cx. restuans is able to feed on such a wide variety of hosts in early spring because incubating birds are easy targets. Because WNV amplification depends on virus consistently reaching competent hosts, our results indicate that Cx. restuans is unlikely to be an amplifying vector of WNV in the early season. As the season progresses, however, changes in the availability of nesting birds may make it just as capable as Cx. pipiens, although at somewhat lower abundance as the summer progresses. PMID:24745370

  2. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions

    PubMed Central

    Chow, Cheryl-Emiliane T.; Winget, Danielle M.; White, Richard A.; Hallam, Steven J.; Suttle, Curtis A.

    2015-01-01

    Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs), remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10 m) and oxygen-starved basin (200 m) waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs) predicted across all 34 viral fosmids, 77.6% (n = 5010) had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P) waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI's non-redundant “nr” database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems. PMID:25914678

  3. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions.

    PubMed

    Chow, Cheryl-Emiliane T; Winget, Danielle M; White, Richard A; Hallam, Steven J; Suttle, Curtis A

    2015-01-01

    Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs), remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10 m) and oxygen-starved basin (200 m) waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs) predicted across all 34 viral fosmids, 77.6% (n = 5010) had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P) waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI's non-redundant "nr" database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems. PMID:25914678

  4. Antagonistic coevolution with parasites maintains host genetic diversity: an experimental test

    PubMed Central

    Bérénos, Camillo; Wegner, K. Mathias; Schmid-Hempel, Paul

    2011-01-01

    Genetic variation in natural populations is a prime prerequisite allowing populations to respond to selection, but is under constant threat from forces that tend to reduce it, such as genetic drift and many types of selection. Haldane emphasized the potential importance of parasites as a driving force of genetic diversity. His theory has been taken for granted ever since, but despite numerous studies showing correlations between genetic diversity and parasitism, Haldane's hypothesis has rarely been tested experimentally for unambiguous support. We experimentally staged antagonistic coevolution between the host Tribolium castaneum and its natural microsporidian parasite, Nosema whitei, to test for the relative importance of two separate evolutionary forces (drift and parasite-induced selection) on the maintenance of genetic variation. Our results demonstrate that coevolution with parasites indeed counteracts drift as coevolving populations had significantly higher levels of heterozygosity and allelic diversity. Genetic drift remained a strong force, strongly reducing genetic variation and increasing genetic differentiation in small populations. To our surprise, differentiation between the evolving populations was smaller when they coevolved with parasites, suggesting parallel balancing selection. Hence, our results experimentally vindicate Haldane's original hypothesis 60 years after its conception. PMID:20685701

  5. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure

    PubMed Central

    Sandberg, Dustin C.; Battista, Lorna J.; Arnold, A. Elizabeth

    2014-01-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host- and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales. PMID:24402358

  6. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Siano, R.; Alves-de-Souza, C.; Foulon, E.; Bendif, El M.; Simon, N.; Guillou, L.; Not, F.

    2010-10-01

    Sequences affiliated to Syndiniales (Marine alveolate, MALV) regularly dominate 18S rDNA genetic libraries of nearly all marine ecosystems investigated so far. Among them, Amoebophryidae (MALV group II) is composed of numerous and genetically distant environmental sequences, where Amoebophrya is the only known and formally described genus. Amoebophrya species include virulent pathogens for a wide range of dinoflagellate species. Beside their regular occurrence in marine ecosystems, their quantitative distribution and the environmental factors triggering host infection have barely been studied in open oligotrophic waters. In order to understand the functional role of these parasites in natural environments, we studied the distribution and contribution to the eukaryotic community of the small free-living stage of Amoebophryidae (the dinospores) along a transect in the Mediterranean Sea, as well as their host diversity at three oligotrophic stations. Dinospores were more abundant at a coastal station (max. 1.5 × 103 cells ml-1) than in oligotrophic waters (max. 51 ± 16.3 cells ml-1), where they represented 10.3 to 34.9% of the total eukaryotic community at 40 and 30 m depth, respectively and 21.2% on average along the water column. Positive correlation was found between dinospore occurrence and higher concentration of NO3 + NO2 at the coastal station. At selected stations, out of 38 different dinoflagellates taxa identified, 15 were infected, among which a majority were not recognized as Amoebophryidae host so far. Prevalences (percentage of infected cells) generally varied between 2% and 10%, with a notable exception for Blepharocysta paulsenii for which 25% of cells were infected at the station C. The present study shows that dinospores are able to thrive, infects and most probably exert a control on host populations both in coastal and ultra-oligotrophic open waters. Our results emphasize the role of parasitism in microbial food web dynamics and ultimately on

  7. DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response.

    PubMed

    Smith, Trevor Rf; Schultheis, Katherine; Kiosses, William B; Amante, Dinah H; Mendoza, Janess M; Stone, John C; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2014-01-01

    The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response. PMID:26052522

  8. DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response

    PubMed Central

    Smith, Trevor RF; Schultheis, Katherine; Kiosses, William B; Amante, Dinah H; Mendoza, Janess M; Stone, John C; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2014-01-01

    The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response. PMID:26052522

  9. Identity and diversity of blood meal hosts of biting midges (Diptera: Ceratopogonidae: Culicoides Latreille) in Denmark

    PubMed Central

    2012-01-01

    Background Host preference studies in haematophagous insects e.g. Culicoides biting midges are pivotal to assess transmission routes of vector-borne diseases and critical for the development of veterinary contingency plans to identify which species should be included due to their risk potential. Species of Culicoides have been found in almost all parts of the world and known to live in a variety of habitats. Several parasites and viruses are transmitted by Culicoides biting midges including Bluetongue virus and Schmallenberg virus. The aim of the present study was to determine the identity and diversity of blood meals taken from vertebrate hosts in wild-caught Culicoides biting midges near livestock farms. Methods Biting midges were collected at weekly intervals for 20 weeks from May to October 2009 using light traps at four collection sites on the island Sealand, Denmark. Blood-fed female biting midges were sorted and head and wings were removed for morphological species identification. The thoraxes and abdomens including the blood meals of the individual females were subsequently subjected to DNA isolation. The molecular marker cytochrome oxidase I (COI barcode) was applied to identify the species of the collected biting midges (GenBank accessions JQ683259-JQ683374). The blood meals were first screened with a species-specific cytochrome b primer pair for cow and if negative with a universal cytochrome b primer pair followed by sequencing to identify mammal or avian blood meal hosts. Results Twenty-four species of biting midges were identified from the four study sites. A total of 111,356 Culicoides biting midges were collected, of which 2,164 were blood-fed. Specimens of twenty species were identified with blood in their abdomens. Blood meal sources were successfully identified by DNA sequencing from 242 (76%) out of 320 Culicoides specimens. Eight species of mammals and seven species of birds were identified as blood meal hosts. The most common host species was

  10. Male and Female Subpopulations of Salix viminalis Present High Genetic Diversity and High Long-Term Migration Rates between Them.

    PubMed

    Zhai, Feifei; Mao, Jinmei; Liu, Junxiang; Peng, Xiangyong; Han, Lei; Sun, Zhenyuan

    2016-01-01

    Dioecy distributed in 157 flowering plant families and 959 flowering plant genera. Morphological and physiological differences between male and female plants have been studied extensively, but studies of sex-specific genetic diversity are relatively scarce in dioecious plants. In this study, 20 SSR loci were employed to examine the genetic variance of male subpopulations and female subpopulations in Salix viminalis. The results showed that all of the markers were polymorphic (Na = 14.15, He = 0.7566) and workable to reveal the genetic diversity of S. viminalis. No statistically significant difference was detected between male and female subpopulations, but the average genetic diversity of male subpopulations (Na = 7.12, He = 0.7071) and female subpopulations (Na = 7.31, He = 0.7226) were high. Under unfavorable environments (West Liao basin), the genetic diversity between male and female subpopulations was still not significantly different, but the genetic diversity of sexual subpopulations were lower. The differentiation of the ten subpopulations in S. viminalis was moderate (FST = 0.0858), which was conformed by AMOVA that most of genetic variance (94%) existed within subpopulations. Pairwise FST indicated no differentiation between sexual subpopulations, which was accompanied by high long-term migrate between them (M = 0.73~1.26). However, little recent migration was found between sexual subpopulations. Therefore, artificial crossing or/and transplantation by cutting propagation should be carried out so as to increase the migration during the process of ex situ conservation. PMID:27047511

  11. Male and Female Subpopulations of Salix viminalis Present High Genetic Diversity and High Long-Term Migration Rates between Them

    PubMed Central

    Zhai, Feifei; Mao, Jinmei; Liu, Junxiang; Peng, Xiangyong; Han, Lei; Sun, Zhenyuan

    2016-01-01

    Dioecy distributed in 157 flowering plant families and 959 flowering plant genera. Morphological and physiological differences between male and female plants have been studied extensively, but studies of sex-specific genetic diversity are relatively scarce in dioecious plants. In this study, 20 SSR loci were employed to examine the genetic variance of male subpopulations and female subpopulations in Salix viminalis. The results showed that all of the markers were polymorphic (Na = 14.15, He = 0.7566) and workable to reveal the genetic diversity of S. viminalis. No statistically significant difference was detected between male and female subpopulations, but the average genetic diversity of male subpopulations (Na = 7.12, He = 0.7071) and female subpopulations (Na = 7.31, He = 0.7226) were high. Under unfavorable environments (West Liao basin), the genetic diversity between male and female subpopulations was still not significantly different, but the genetic diversity of sexual subpopulations were lower. The differentiation of the ten subpopulations in S. viminalis was moderate (FST = 0.0858), which was conformed by AMOVA that most of genetic variance (94%) existed within subpopulations. Pairwise FST indicated no differentiation between sexual subpopulations, which was accompanied by high long-term migrate between them (M = 0.73~1.26). However, little recent migration was found between sexual subpopulations. Therefore, artificial crossing or/and transplantation by cutting propagation should be carried out so as to increase the migration during the process of ex situ conservation. PMID:27047511

  12. Contribution of landbird migration to the biological diversity of the northwest gulf coastal plain

    USGS Publications Warehouse

    Barrow, W.C., Jr.; Hamilton, R.B.; Powell, M.A.; Ouchley, K.

    2000-01-01

    This study examined seasonal diversity and feeding behavior of those avian species utilizing that region of the Northwest Gulf Coastal Plain known as the Chenier Plain. Field observations were conducted at three forested locations on coastal cheniers for three years (1993-95) in the spring and at one location for three years (1996-98) in autumn to determine species presence and diet. One hundred and twenty-eight species were present during the spring and 103 species in autumn. The majority of these species were migrants (103 species in spring and 89 species in autumn) and the majority of these were Nearctic/Neotropical species (73 species in spring and 66 species in autumn). The diet of these migrants was more variable than expected. Many insectivorous species were observed to consume seeds, fruit and nectar as well as insects. Because of these varied diets, many species serve as seed dispersers, occasional pollinators and important predators of herbivorus insects. Wooded areas were found to be important in providing food, cover and water for migrating species. A review of historical changes in the landscape of this area is presented and management practices designed to restore wooded habitat to this area are proposed.

  13. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host.

    PubMed

    Yun, Ji-Hyun; Roh, Seong Woon; Whon, Tae Woong; Jung, Mi-Ja; Kim, Min-Soo; Park, Doo-Sang; Yoon, Changmann; Nam, Young-Do; Kim, Yun-Ji; Choi, Jung-Hye; Kim, Joon-Yong; Shin, Na-Ri; Kim, Sung-Hee; Lee, Won-Jae; Bae, Jin-Woo

    2014-09-01

    Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (± 97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities. PMID:24928884

  14. Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host

    PubMed Central

    Yun, Ji-Hyun; Roh, Seong Woon; Whon, Tae Woong; Jung, Mi-Ja; Kim, Min-Soo; Park, Doo-Sang; Yoon, Changmann; Nam, Young-Do; Kim, Yun-Ji; Choi, Jung-Hye; Kim, Joon-Yong; Shin, Na-Ri; Kim, Sung-Hee; Lee, Won-Jae

    2014-01-01

    Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (±97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities. PMID:24928884

  15. Sequence Diversity in MIC6 Gene among Toxoplasma gondii Isolates from Different Hosts and Geographical Locations

    PubMed Central

    Li, Zhong-Yuan; Song, Hui-Qun; Chen, Jia; Zhu, Xing-Quan

    2015-01-01

    Toxoplasma gondii is an opportunistic protozoan parasite that can infect almost all warm-blooded animals including humans with a worldwide distribution. Micronemes play an important role in invasion process of T. gondii, associated with the attachment, motility, and host cell recognition. In this research, sequence diversity in microneme protein 6 (MIC6) gene among 16 T. gondii isolates from different hosts and geographical regions and 1 reference strain was examined. The results showed that the sequence of all the examined T. gondii strains was 1,050 bp in length, and their A + T content was between 45.7% and 46.1%. Sequence analysis presented 33 nucleotide mutation positions (0-1.1%), resulting in 23 amino acid substitutions (0-2.3%) aligned with T. gondii RH strain. Moreover, T. gondii strains representing the 3 classical genotypes (Type I, II, and III) were separated into different clusters based on the locus of MIC6 using phylogenetic analyses by Bayesian inference (BI), maximum parsimony (MP), and maximum likelihood (ML), but T. gondii strains belonging to ToxoDB #9 were separated into different clusters. Our results suggested that MIC6 gene is not a suitable marker for T. gondii population genetic studies. PMID:26174829

  16. Sequence Diversity in MIC6 Gene among Toxoplasma gondii Isolates from Different Hosts and Geographical Locations.

    PubMed

    Li, Zhong-Yuan; Song, Hui-Qun; Chen, Jia; Zhu, Xing-Quan

    2015-06-01

    Toxoplasma gondii is an opportunistic protozoan parasite that can infect almost all warm-blooded animals including humans with a worldwide distribution. Micronemes play an important role in invasion process of T. gondii, associated with the attachment, motility, and host cell recognition. In this research, sequence diversity in microneme protein 6 (MIC6) gene among 16 T. gondii isolates from different hosts and geographical regions and 1 reference strain was examined. The results showed that the sequence of all the examined T. gondii strains was 1,050 bp in length, and their A + T content was between 45.7% and 46.1%. Sequence analysis presented 33 nucleotide mutation positions (0-1.1%), resulting in 23 amino acid substitutions (0-2.3%) aligned with T. gondii RH strain. Moreover, T. gondii strains representing the 3 classical genotypes (Type I, II, and III) were separated into different clusters based on the locus of MIC6 using phylogenetic analyses by Bayesian inference (BI), maximum parsimony (MP), and maximum likelihood (ML), but T. gondii strains belonging to ToxoDB #9 were separated into different clusters. Our results suggested that MIC6 gene is not a suitable marker for T. gondii population genetic studies. PMID:26174829

  17. Genetic diversity, host range, and distribution of tomato yellow leaf curl virus in Iran.

    PubMed

    Shirazi, M; Mozafari, J; Rakhshandehroo, F; Shams-Bakhsh, M

    2014-01-01

    Tomato yellow leaf curl virus (TYLCV) is considered one of the most important tomato pathogens in tropical and subtropical regions including Iran. During the years 2007 to 2009, a total number of 510 symptomatic and asymptomatic vegetable, ornamental and weed samples were collected from fields and greenhouses in ten provinces of Iran. Symptoms included stunting, yellowing, leaf curl and flower senescence. PCR with specific primers showed TYLCV infection in 184 samples (36%) such as cucumber, pepper, tomato and several weeds from seven provinces. Based on the geographical origin, host range and symptoms, twenty three representative isolates were selected for phylogenetic analysis. An amplicon with a size about 608 base pair (bp) comprising partial sequence of the coat (CP) and movement protein (MP) coding regions of the viral genome was sequenced and compared with the corresponding selected sequences available in GenBank for Iran and worldwide. Phylogenetic analyses on the basis of the nucleotide sequences indicated two geographically separated clades. Isolates collected from Hormozgan, Khuzestan and Kerman provinces were grouped together with other Iranian isolates including TYLCV-Ir2, TYLCV-Kahnooj, and an isolate from Oman. It was also revealed that isolates collected from Boushehr, Fars, Tehran, and Isfahan placed close to the Iranian isolate TYLCV-Abadeh and isolates from Israel and Egypt. No correlation was found between the genetic variation and the host species, but selected Iranian isolates were grouped on the basis of the geographical origins. Results of this study indicated a high genetic diversity among Iranian TYLCV isolates. PMID:24957717

  18. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Siano, R.; Alves-de-Souza, C.; Foulon, E.; Bendif, El M.; Simon, N.; Guillou, L.; Not, F.

    2011-02-01

    Sequences affiliated to Syndiniales (Marine alveolate, MALV) regularly dominate 18S rDNA genetic libraries of nearly all marine ecosystems investigated so far. Among them, Amoebophryidae (MALV group II) is composed of numerous and genetically distant environmental sequences, where Amoebophrya is the only known and formally described genus. Amoebophrya species include virulent pathogens for a wide range of dinoflagellate species. Beside their regular occurrence in marine ecosystems, their quantitative distribution and the environmental factors triggering host infection have barely been studied in open oligotrophic waters. In order to understand the functional role of these parasites in natural environments, we studied the distribution and contribution to the eukaryotic community of the small free-living stage of Amoebophryidae (the dinospores) along a transect in the Mediterranean Sea, as well as their host diversity at three oligotrophic stations. Dinospores were more abundant at a coastal station (max. 1.5 × 103 cells ml-1) than in oligotrophic waters (max. 51 ± 16.3 cells ml-1), where they represented 10.3 to 34.9% of the total eukaryotic community at 40 and 30 m depth, respectively and 21.2% on average along the water column. Positive correlation was found between dinospore occurrence and higher concentration of NO3 + NO2 at the coastal station. At selected stations, out of 38 different dinoflagellates taxa identified, 15 were infected, among which a majority were not recognized as Amoebophryidae host so far. Prevalences (percentage of infected cells) generally varied between 1% and 10%, with a notable exception for Blepharocysta paulsenii for which 25% of cells were infected at the most oligotrophic station. The present study shows that dinospores are able to thrive and infect dinoflagellates both in coastal and ultra-oligotrophic open waters. Our results emphasize the role of parasitism in microbial food web dynamics and ultimately on biogeochemical cycles.

  19. Rhizobia Indigenous to the Okavango Region in Sub-Saharan Africa: Diversity, Adaptations, and Host Specificity

    PubMed Central

    Grönemeyer, Jann L.; Kulkarni, Ajinkya; Berkelmann, Dirk; Hurek, Thomas

    2014-01-01

    The rhizobial community indigenous to the Okavango region has not yet been characterized. The isolation of indigenous rhizobia can provide a basis for the formulation of a rhizobial inoculant. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Isolates were obtained from nodules of local varieties of the pulses cowpea, Bambara groundnut, peanut, hyacinth bean, and common bean. Ninety-one of them were identified by BOX repetitive element PCR (BOX-PCR) and sequence analyses of the 16S-23S rRNA internally transcribed spacer (ITS) and the recA, glnII, rpoB, and nifH genes. A striking geographical distribution was observed. Bradyrhizobium pachyrhizi dominated at sampling sites in Angola which were characterized by acid soils and a semihumid climate. Isolates from the semiarid sampling sites in Namibia were more diverse, with most of them being related to Bradyrhizobium yuanmingense and Bradyrhizobium daqingense. Host plant specificity was observed only for hyacinth bean, which was nodulated by rhizobia presumably representing yet-undescribed species. Furthermore, the isolates were characterized with respect to their adaptation to high temperatures, drought, and local host plants. The adaptation experiments revealed that the Namibian isolates shared an exceptionally high temperature tolerance, but none of the isolates showed considerable adaptation to drought. Moreover, the isolates' performance on different local hosts showed variable results, with most Namibian isolates inducing better nodulation on peanut and hyacinth bean than the Angolan strains. The local predominance of distinct genotypes implies that indigenous strains may exhibit a better performance in inoculant formulations. PMID:25239908

  20. Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats

    PubMed Central

    Ramasindrazana, Beza; Dellagi, Koussay; Lagadec, Erwan; Randrianarivelojosia, Milijaona; Goodman, Steven M.; Tortosa, Pablo

    2016-01-01

    We investigated filarial infection in Malagasy bats to gain insights into the diversity of these parasites and explore the factors shaping their distribution. Samples were obtained from 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 species currently recognized on the island. Samples were screened for the presence of micro- and macro-parasites through both molecular and morphological approaches. Phylogenetic analyses showed that filarial diversity in Malagasy bats formed three main groups, the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); a second group infecting Pipistrellus cf. hesperidus (Vespertilionidae) embedded within the Litomosoides cluster, which is recognized herein for the first time from Madagascar; and a third group composed of lineages with no clear genetic relationship to both previously described filarial nematodes and found in M. griveaudi, Myotis goudoti, Neoromicia matroka (Vespertilionidae), Otomops madagascariensis (Molossidae), and Paratriaenops furculus (Hipposideridae). We further analyzed the infection rates and distribution pattern of Litomosa spp., which was the most diverse and prevalent filarial taxon in our sample. Filarial infection was disproportionally more common in males than females in Miniopterus spp., which might be explained by some aspect of roosting behavior of these cave-dwelling bats. We also found marked geographic structure in the three Litomosa clades, mainly linked to bioclimatic conditions rather than host-parasite associations. While this study demonstrates distinct patterns of filarial nematode infection in Malagasy bats and highlights potential drivers of associated geographic distributions, future work should focus on their alpha taxonomy and characterize arthropod vectors. PMID:26751792

  1. Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats.

    PubMed

    Ramasindrazana, Beza; Dellagi, Koussay; Lagadec, Erwan; Randrianarivelojosia, Milijaona; Goodman, Steven M; Tortosa, Pablo

    2016-01-01

    We investigated filarial infection in Malagasy bats to gain insights into the diversity of these parasites and explore the factors shaping their distribution. Samples were obtained from 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 species currently recognized on the island. Samples were screened for the presence of micro- and macro-parasites through both molecular and morphological approaches. Phylogenetic analyses showed that filarial diversity in Malagasy bats formed three main groups, the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); a second group infecting Pipistrellus cf. hesperidus (Vespertilionidae) embedded within the Litomosoides cluster, which is recognized herein for the first time from Madagascar; and a third group composed of lineages with no clear genetic relationship to both previously described filarial nematodes and found in M. griveaudi, Myotis goudoti, Neoromicia matroka (Vespertilionidae), Otomops madagascariensis (Molossidae), and Paratriaenops furculus (Hipposideridae). We further analyzed the infection rates and distribution pattern of Litomosa spp., which was the most diverse and prevalent filarial taxon in our sample. Filarial infection was disproportionally more common in males than females in Miniopterus spp., which might be explained by some aspect of roosting behavior of these cave-dwelling bats. We also found marked geographic structure in the three Litomosa clades, mainly linked to bioclimatic conditions rather than host-parasite associations. While this study demonstrates distinct patterns of filarial nematode infection in Malagasy bats and highlights potential drivers of associated geographic distributions, future work should focus on their alpha taxonomy and characterize arthropod vectors. PMID:26751792

  2. Genetic diversity and structure of Neotyphodium species and their host Achnatherum sibiricum in a natural grass-endophyte system.

    PubMed

    Zhang, Xin; Ren, Anzhi; Ci, Huacong; Gao, Yubao

    2010-05-01

    Achnatherum sibiricum (Poaceae) is a perennial bunchgrass native to the Inner Mongolia Steppe of China. This grass is commonly infected by epichloë endophytes with high-infection frequencies. Previously, we identified two predominant Neotyphodium spp., N. sibiricum and N. gansuense. In the present study, genetic diversity and structure were analyzed for the two predominant Neotyphodium spp. as well as the host grass. We obtained 103 fungal isolates from five populations; 33 were identified as N. sibiricum and 61 as N. gansuense. All populations hosted both endophytic species, but genetic variation was much higher for N. gansuense than for N. sibiricum. The majority of fungal isolates were haploid, and 13% of them were heterozygous at one SSR locus, suggesting hybrid origins of those isolates. Significant linkage disequilibrium of fungal SSR loci suggested that both fungal species primarily propagate by clonal growth through plant seeds, whereas variation in genetic diversity and the presence of hybrids in both endophytic species revealed that although clonal propagation was prevalent, occasional recombination might also occur. By comparing genetic differentiation among populations, we found around 4-7-fold greater differentiation of endophyte populations than host populations, implying more restricted gene flow of endophytes than hosts. We proposed that endophyte infection of A. sibiricum might confer the host some selective advantages under certain conditions, which could help to maintain high-endophyte-infection frequencies in host populations, even when their gene flows do not match each other. Furthermore, we suggested that the same genotype of endophyte as well as host should be confirmed if the objective of the study is to know the influence of endophyte or host genotype on their symbiotic relationship, instead of just considering whether the plant is infected by an endophyte or not, since endophytes from the same host species could exhibit high levels of

  3. Dissecting a wildlife disease hotspot: the impact of multiple host species, environmental transmission and seasonality in migration, breeding and mortality

    PubMed Central

    Brown, V. L.; Drake, J. M.; Stallknecht, D. E.; Brown, J. D.; Pedersen, K.; Rohani, P.

    2013-01-01

    Avian influenza viruses (AIVs) have been implicated in all human influenza pandemics in recent history. Despite this, surprisingly little is known about the mechanisms underlying the maintenance and spread of these viruses in their natural bird reservoirs. Surveillance has identified an AIV ‘hotspot’ in shorebirds at Delaware Bay, in which prevalence is estimated to exceed other monitored sites by an order of magnitude. To better understand the factors that create an AIV hotspot, we developed and parametrized a mechanistic transmission model to study the simultaneous epizootiological impacts of multi-species transmission, seasonal breeding, host migration and mixed transmission routes. We scrutinized our model to examine the potential for an AIV hotspot to serve as a ‘gateway’ for the spread of novel viruses into North America. Our findings identify the conditions under which a novel influenza virus, if introduced into the system, could successfully invade and proliferate. PMID:23173198

  4. Genome-Wide Association Studies of HIV-1 Host Control in Ethnically Diverse Chinese Populations

    PubMed Central

    Wei, Zejun; Liu, Yang; Xu, Heng; Tang, Kun; Wu, Hao; Lu, Lin; Wang, Zhe; Chen, Zhengjie; Xu, Junjie; Zhu, Yufei; Hu, Landian; Shang, Hong; Zhao, Guoping; Kong, Xiangyin

    2015-01-01

    Genome-wide association studies (GWASs) have revealed several genetic loci associated with HIV-1 outcome following infection (e.g., HLA-C at 6p21.33) in multi-ethnic populations with genetic heterogeneity and racial/ethnic differences among Caucasians, African-Americans, and Hispanics. To systematically investigate the inherited predisposition to modulate HIV-1 infection in Chinese populations, we performed GWASs in three ethnically diverse HIV-infected patients groups (i.e., HAN, YUN, and XIN, N = 538). The reported loci at 6p21.33 was validated in HAN (e.g., rs9264942, P = 0.0018). An independent association signal (rs2442719, P = 7.85 × 10−7, HAN group) in the same region was observed. Imputation results suggest that haplotype HLA-B*13:02/C*06:02, which can partially account for the GWAS signal, is associated with lower viral load in Han Chinese. Moreover, several novel loci were identified using GWAS approach including the top association signals at 6q13 (KCNQ5, rs947612, P = 2.15 × 10−6), 6p24.1 (PHACTR1, rs202072, P = 3.8 × 10−6), and 11q12.3 (SCGB1D4, rs11231017, P = 7.39 × 10−7) in HAN, YUN, and XIN groups, respectively. Our findings imply shared or specific mechanisms for host control of HIV-1 in ethnically diverse Chinese populations, which may shed new light on individualized HIV/AIDS therapy in China. PMID:26039976

  5. CXCR3 as a molecular target in breast cancer metastasis: inhibition of tumor cell migration and promotion of host anti-tumor immunity

    PubMed Central

    Zhu, Guiquan; Jian, Jiang; Achyut, Bhagelu R.; Liang, Xinhua; Weiss, Jonathan M.; Wiltrout, Robert H.; Hollander, M. Christine; Yang, Li

    2015-01-01

    Chemokines and chemokine receptors have critical roles in cancer metastasis and have emerged as one of the targeting options in cancer therapy. However, the treatment efficacy on both tumor and host compartments needs to be carefully evaluated. Here we report that targeting CXCR3 decreased tumor cell migration and at the same time improved host anti-tumor immunity. We observed an increased expression of CXCR3 in metastatic tumor cells compared to those from non-metastatic tumor cells. Knockdown (KD) of CXCR3 in metastatic tumor cells suppressed tumor cell migration and metastasis. Importantly, CXCR3 expression in clinical breast cancer samples correlated with progression and metastasis. For the host compartment, deletion of CXCR3 in all host cells in 4T1 mammary tumor model significantly decreased metastasis. The underlying mechanisms involve a decreased expression of IL-4, IL-10, iNOs, and Arg-1 in myeloid cells and an increased T cell response. IFN-γ neutralization diminished the metastasis inhibition in the CXCR3 knockout (KO) mice bearing 4T1 tumors, suggesting a critical role of host CXCR3 in immune suppression. Consistently, targeting CXCR3 using a small molecular inhibitor (AMG487) significantly suppressed metastasis and improved host anti-tumor immunity. Our findings demonstrate that targeting CXCR3 is effective in both tumor and host compartments, and suggest that CXCR3 inhibition is likely to avoid adverse effects on host cells. PMID:26485767

  6. A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses

    SciTech Connect

    Kamir,D.; Zierow, S.; Leng, L.; Cho, Y.; Diaz, Y.; Griffith, J.; McDonald, C.; Merk, M.; Mitchell, R.; et al

    2008-01-01

    Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 A). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (K(d) = 2.9 x 10(-8) M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction.

  7. A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses1

    PubMed Central

    Kamir, Daniela; Zierow, Swen; Leng, Lin; Cho, Yoonsang; Diaz, Yira; Griffith, Jason; McDonald, Courtney; Merk, Melanie; Mitchell, Robert A.; Trent, John; Chen, Yibang; Kwong, Yuen-Kwan Amy; Xiong, Huabao; Vermeire, Jon; Cappello, Michael; McMahon-Pratt, Diane; Walker, John; Bernhagen, Jurgen; Lolis, Elias; Bucala, Richard

    2009-01-01

    Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 Å). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (Kd = 2.9 × 10−8 M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction. PMID:18523291

  8. Genetic diversity and host range studies of turnip curly top virus.

    PubMed

    Razavinejad, Sara; Heydarnejad, Jahangir; Kamali, Mehdi; Massumi, Hossain; Kraberger, Simona; Varsani, Arvind

    2013-04-01

    Turnip curly top virus (TCTV) is a unique geminivirus that has recently been characterised as infecting turnips in Iran. The genome of TCTV shares <68 % pairwise identity with other geminiviruses and has a genome organisation similar to that of curtoviruses and topocuvirus. The replication-associated protein (Rep) bears the highest similarity to curtovirus Reps (48.5-69.0 %); however, in the case of the capsid protein (CP), the extent of similarity is only 39.5-44.5 %. We constructed an agroinfectious clone of TCTV and undertook host range studies on ten plant species; in three species (turnip, sugar beet and cowpea), we detected infection which presents curly top symptoms in turnip and sugar beet. The efficiency of TCTV infection in agroinoculated turnip plants was 71.7 %, and the infection was successfully transmitted to 80 % of the healthy turnip plants used in the insect transmission studies by Circulifer haematoceps under greenhouse conditions. We also determined the genome sequence of 14 new TCTV isolates from southern Iran isolated from turnips. We observed ~13 % diversity amongst all the TCTV isolates and found evidence of recombination in the CP- and Rep-coding regions of the genomes. PMID:23225113

  9. The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin

    PubMed Central

    Liu, Jared; Yan, Riceley; Zhong, Qiao; Ngo, Sam; Bangayan, Nathanael J; Nguyen, Lin; Lui, Timothy; Liu, Minghsun; Erfe, Marie C; Craft, Noah; Tomida, Shuta; Li, Huiying

    2015-01-01

    The viral population, including bacteriophages, is an important component of the human microbiota, yet is poorly understood. We aim to determine whether bacteriophages modulate the composition of the bacterial populations, thus potentially playing a role in health or disease. We investigated the diversity and host interactions of the bacteriophages of Propionibacterium acnes, a major human skin commensal implicated in acne pathogenesis. By sequencing 48 P. acnes phages isolated from acne patients and healthy individuals and by analyzing the P. acnes phage populations in healthy skin metagenomes, we revealed that P. acnes phage populations in the skin microbial community are often dominated by one strain. We also found phage strains shared among both related and unrelated individuals, suggesting that a pool of common phages exists in the human population and that transmission of phages may occur between individuals. To better understand the bacterium–phage interactions in the skin microbiota, we determined the outcomes of 74 genetically defined Propionibacterium strains challenged by 15 sequenced phages. Depending on the Propionibacterium lineage, phage infection can result in lysis, pseudolysogeny, or resistance. In type II P. acnes strains, we found that encoding matching clustered regularly interspaced short palindromic repeat spacers is insufficient to confer phage resistance. Overall, our findings suggest that the prey–predator relationship between bacteria and phages may have a role in modulating the composition of the microbiota. Our study also suggests that the microbiome structure of an individual may be an important factor in the design of phage-based therapy. PMID:25848871

  10. The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin.

    PubMed

    Liu, Jared; Yan, Riceley; Zhong, Qiao; Ngo, Sam; Bangayan, Nathanael J; Nguyen, Lin; Lui, Timothy; Liu, Minghsun; Erfe, Marie C; Craft, Noah; Tomida, Shuta; Li, Huiying

    2015-09-01

    The viral population, including bacteriophages, is an important component of the human microbiota, yet is poorly understood. We aim to determine whether bacteriophages modulate the composition of the bacterial populations, thus potentially playing a role in health or disease. We investigated the diversity and host interactions of the bacteriophages of Propionibacterium acnes, a major human skin commensal implicated in acne pathogenesis. By sequencing 48 P. acnes phages isolated from acne patients and healthy individuals and by analyzing the P. acnes phage populations in healthy skin metagenomes, we revealed that P. acnes phage populations in the skin microbial community are often dominated by one strain. We also found phage strains shared among both related and unrelated individuals, suggesting that a pool of common phages exists in the human population and that transmission of phages may occur between individuals. To better understand the bacterium-phage interactions in the skin microbiota, we determined the outcomes of 74 genetically defined Propionibacterium strains challenged by 15 sequenced phages. Depending on the Propionibacterium lineage, phage infection can result in lysis, pseudolysogeny, or resistance. In type II P. acnes strains, we found that encoding matching clustered regularly interspaced short palindromic repeat spacers is insufficient to confer phage resistance. Overall, our findings suggest that the prey-predator relationship between bacteria and phages may have a role in modulating the composition of the microbiota. Our study also suggests that the microbiome structure of an individual may be an important factor in the design of phage-based therapy. PMID:25848871

  11. Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory.

    PubMed

    Medina, R F; Nachappa, P; Tamborindeguy, C

    2011-04-01

    Host-associated differentiation (HAD) is the presence of genetically divergent, host-associated populations. It has been suggested that microbial symbionts of insect herbivores may play a role in HAD by allowing their insect hosts to use different plant species. The objective of this study was to document if host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory corresponded with differences in the composition of their associated bacteria. To test this hypothesis, we characterized the symbionts present in P. notabilis associated with these two tree species through metagenomic analyses using 454 sequencing. Differences in bacterial diversity were found between P. notabilis populations associated with pecan and water hickory. The bacteria, Pantoea agglomerans and Serratia marcescens, were absent in the P. notabilis water hickory population, whereas both species accounted for more than 69.72% of bacterial abundance in the pecan population. PMID:21261774

  12. Contrasting Diversity and Host Association of Ectomycorrhizal Basidiomycetes versus Root-Associated Ascomycetes in a Dipterocarp Rainforest

    PubMed Central

    Sato, Hirotoshi; Tanabe, Akifumi S.; Toju, Hirokazu

    2015-01-01

    Root-associated fungi, including ectomycorrhizal and root-endophytic fungi, are among the most diverse and important belowground plant symbionts in dipterocarp rainforests. Our study aimed to reveal the biodiversity, host association, and community structure of ectomycorrhizal Basidiomycota and root-associated Ascomycota (including root-endophytic Ascomycota) in a lowland dipterocarp rainforest in Southeast Asia. The host plant chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) region and fungal internal transcribed spacer 2 (ITS2) region were sequenced using tag-encoded, massively parallel 454 pyrosequencing to identify host plant and root-associated fungal taxa in root samples. In total, 1245 ascomycetous and 127 putative ectomycorrhizal basidiomycetous taxa were detected from 442 root samples. The putative ectomycorrhizal Basidiomycota were likely to be associated with closely related dipterocarp taxa to greater or lesser extents, whereas host association patterns of the root-associated Ascomycota were much less distinct. The community structure of the putative ectomycorrhizal Basidiomycota was possibly more influenced by host genetic distances than was that of the root-associated Ascomycota. This study also indicated that in dipterocarp rainforests, root-associated Ascomycota were characterized by high biodiversity and indistinct host association patterns, whereas ectomycorrhizal Basidiomycota showed less biodiversity and a strong host phylogenetic preference for dipterocarp trees. Our findings lead to the working hypothesis that root-associated Ascomycota, which might be mainly represented by root-endophytic fungi, have biodiversity hotspots in the tropics, whereas biodiversity of ectomycorrhizal Basidiomycota increases with host genetic diversity. PMID:25884708

  13. Contrasting diversity and host association of ectomycorrhizal basidiomycetes versus root-associated ascomycetes in a dipterocarp rainforest.

    PubMed

    Sato, Hirotoshi; Tanabe, Akifumi S; Toju, Hirokazu

    2015-01-01

    Root-associated fungi, including ectomycorrhizal and root-endophytic fungi, are among the most diverse and important belowground plant symbionts in dipterocarp rainforests. Our study aimed to reveal the biodiversity, host association, and community structure of ectomycorrhizal Basidiomycota and root-associated Ascomycota (including root-endophytic Ascomycota) in a lowland dipterocarp rainforest in Southeast Asia. The host plant chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) region and fungal internal transcribed spacer 2 (ITS2) region were sequenced using tag-encoded, massively parallel 454 pyrosequencing to identify host plant and root-associated fungal taxa in root samples. In total, 1245 ascomycetous and 127 putative ectomycorrhizal basidiomycetous taxa were detected from 442 root samples. The putative ectomycorrhizal Basidiomycota were likely to be associated with closely related dipterocarp taxa to greater or lesser extents, whereas host association patterns of the root-associated Ascomycota were much less distinct. The community structure of the putative ectomycorrhizal Basidiomycota was possibly more influenced by host genetic distances than was that of the root-associated Ascomycota. This study also indicated that in dipterocarp rainforests, root-associated Ascomycota were characterized by high biodiversity and indistinct host association patterns, whereas ectomycorrhizal Basidiomycota showed less biodiversity and a strong host phylogenetic preference for dipterocarp trees. Our findings lead to the working hypothesis that root-associated Ascomycota, which might be mainly represented by root-endophytic fungi, have biodiversity hotspots in the tropics, whereas biodiversity of ectomycorrhizal Basidiomycota increases with host genetic diversity. PMID:25884708

  14. Vascular Epiphyte Diversity Differs with Host Crown Zone and Diameter, but Not Orientation in a Tropical Cloud Forest

    PubMed Central

    Wang, Xixi; Long, Wenxing; Schamp, Brandon S.; Yang, Xiaobo; Kang, Yong; Xie, Zhixu; Xiong, Menghui

    2016-01-01

    Vascular epiphytes are important components of biological diversity in tropical forests. We measured the species richness and abundance of vascular epiphytes along four vertical crown zones and five horizontal orientations on 376 trees, as well as the diameter at breast height (DBH) of host trees in tropical cloud forests in Bawangling, Hainan, China. The relationship between vascular epiphyte species richness and host tree DBH was assessed using a generalized linear model. There were 1,453 vascular individual epiphytes attributed to 9 families, 24 genera and 35 species, with orchids and pteridophytes dominating. Both the species richness and abundance of epiphytes significantly differed among the four crown zones for all collections and each host tree, suggesting that vertical microhabitats contribute to the distribution of epiphytes on host trees. Neither epiphyte abundance nor species richness differed among the eastern, southern, western, and northern orientations for all host trees; however, both richness and abundance were significantly higher for epiphytes that encircled host tree trunks. This suggests that morphological and physiological characteristics of the tree, but not microclimates probably contribute to the distribution of epiphytes on host trees. Epiphyte species richness was positively correlated with tree DBH across the six host tree species studied, with increases in DBH among smaller trees resulting in larger increases in richness, while increases in DBH among larger host trees resulting in more modest increases in ephiphyte richness. Our findings contribute support for a positive relationship between epiphyte species richness and host tree DBH and provide important guidance for future surveys of epiphyte community development. PMID:27391217

  15. Vascular Epiphyte Diversity Differs with Host Crown Zone and Diameter, but Not Orientation in a Tropical Cloud Forest.

    PubMed

    Wang, Xixi; Long, Wenxing; Schamp, Brandon S; Yang, Xiaobo; Kang, Yong; Xie, Zhixu; Xiong, Menghui

    2016-01-01

    Vascular epiphytes are important components of biological diversity in tropical forests. We measured the species richness and abundance of vascular epiphytes along four vertical crown zones and five horizontal orientations on 376 trees, as well as the diameter at breast height (DBH) of host trees in tropical cloud forests in Bawangling, Hainan, China. The relationship between vascular epiphyte species richness and host tree DBH was assessed using a generalized linear model. There were 1,453 vascular individual epiphytes attributed to 9 families, 24 genera and 35 species, with orchids and pteridophytes dominating. Both the species richness and abundance of epiphytes significantly differed among the four crown zones for all collections and each host tree, suggesting that vertical microhabitats contribute to the distribution of epiphytes on host trees. Neither epiphyte abundance nor species richness differed among the eastern, southern, western, and northern orientations for all host trees; however, both richness and abundance were significantly higher for epiphytes that encircled host tree trunks. This suggests that morphological and physiological characteristics of the tree, but not microclimates probably contribute to the distribution of epiphytes on host trees. Epiphyte species richness was positively correlated with tree DBH across the six host tree species studied, with increases in DBH among smaller trees resulting in larger increases in richness, while increases in DBH among larger host trees resulting in more modest increases in ephiphyte richness. Our findings contribute support for a positive relationship between epiphyte species richness and host tree DBH and provide important guidance for future surveys of epiphyte community development. PMID:27391217

  16. Invasion of Ceratomyxa shasta (Myxozoa) and comparison of migration to the intestine between susceptible and resistant fish hosts.

    PubMed

    Bjork, Sarah J; Bartholomew, Jerri L

    2010-08-01

    The myxozoan parasite Ceratomyxa shasta infects salmonids causing ceratomyxosis, a disease elicited by proliferation of the parasite in the intestine. This parasite is endemic to the Pacific Northwest of North America and salmon and trout strains from endemic river basins show increased resistance to the parasite. It has been suggested that these resistant fish (i) exclude the parasite at the site of invasion and/or (ii) prevent establishment in the intestine. Using parasites pre-labeled with a fluorescent stain, carboxyfluorescein succinimidyl diacetate (CFSE), the gills were identified as the site of attachment of C. shasta in a susceptible fish strain. In situ hybridization (ISH) of histological sections was then used to describe the invasion of the parasites in the gill filaments. To investigate differences in the progress of infection between resistant and susceptible fish, a C. shasta-susceptible strain of rainbow trout (Oncorhynchus mykiss) and a C. shasta-resistant strain of Chinook salmon (Oncorhynchus tshawytscha) were sampled at consecutive time points following exposure at an endemic site. Using ISH in both species, the parasite was observed to migrate from the gill epithelium into the gill blood vessels where replication and release of parasite stages occurred. Quantitative PCR verified entry of the parasite into the blood. Parasite levels in blood increased 4days p.i. and remained at a consistent level until the second week when parasite abundance increased further and coincided with host mortality. The timing of parasite replication and migration to the intestine were similar for both fish species. The field exposure dose was unexpectedly high and apparently overwhelmed the Chinook salmon's defenses, as no evidence of resistance to parasite penetration into the gills or prevention of parasite establishment in the intestine was observed. PMID:20385137

  17. Host diversity affects the abundance of the extraradical arbuscular mycorrhizal network.

    PubMed

    Engelmoer, Daniel J P; Kiers, E Toby

    2015-03-01

    Arbuscular mycorrhizal fungi (AMF) can form complex networks in the soil that connect different host plants. Previous studies have focused on the effects of these networks on individual hosts and host communities. However, very little is known about how different host species affect the success of the fungal network itself. Given the potentially strong selection pressure against hosts that invest in a fungal network which benefits their competitors, we predict that the presence of multiple host species negatively affects the growth of the extraradical network. We designed an experiment using an in vitro culture approach to investigate the effect of different hosts (carrot, chichory and medicago) on the formation of a common mycelial network. In vitro root cultures, each inoculated with their own fungal network, were grown in a double split plate design with two host compartments and a common central compartment where fungal networks could form. We found that the size of fungal networks differs depending on the social environment of the host. When host species were propagated in a mixed species environment, the fungal abundance was significantly reduced compared to monoculture predictions. Our work demonstrates how host-to-host conflict can influence the abundance of the fungal partner. PMID:25297948

  18. Silage Collected from Dairy Farms Harbors an Abundance of Listeriaphages with Considerable Host Range and Genome Size Diversity

    PubMed Central

    Vongkamjan, Kitiya; Switt, Andrea Moreno; den Bakker, Henk C.; Fortes, Esther D.

    2012-01-01

    Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools. PMID:23042180

  19. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes.

    PubMed

    Lequime, Sebastian; Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle; Lambrechts, Louis

    2016-06-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  20. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes

    PubMed Central

    Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle

    2016-01-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  1. Phylogenetic Diversity, Distribution, and Cophylogeny of Giant Bacteria (Epulopiscium) with their Surgeonfish Hosts in the Red Sea

    PubMed Central

    Miyake, Sou; Ngugi, David K.; Stingl, Ulrich

    2016-01-01

    Epulopiscium is a group of giant bacteria found in high abundance in intestinal tracts of herbivorous surgeonfish. Despite their peculiarly large cell size (can be up to 600 μm), extreme polyploidy (some with over 100,000 genome copies per cell) and viviparity (whereby mother cells produce live offspring), details about their diversity, distribution or their role in the host gut are lacking. Previous studies have highlighted the existence of morphologically distinct Epulopiscium cell types (defined as morphotypes A to J) in some surgeonfish genera, but the corresponding genetic diversity and distribution among other surgeonfishes remain mostly unknown. Therefore, we investigated the phylogenetic diversity of Epulopiscium, distribution and co-occurrence in multiple hosts. Here, we identified eleven new phylogenetic clades, six of which were also morphologically characterized. Three of these novel clades were phylogenetically and morphologically similar to cigar-shaped type A1 cells, found in a wide range of surgeonfishes including Acanthurus nigrofuscus, while three were similar to smaller, rod-shaped type E that has not been phylogenetically classified thus far. Our results also confirmed that biogeography appears to have relatively little influence on Epulopiscium diversity, as clades found in the Great Barrier Reef and Hawaii were also recovered from the Red Sea. Although multiple symbiont clades inhabited a given species of host surgeonfish and multiple host species possessed a given symbiont clade, statistical analysis of host and symbiont phylogenies indicated significant cophylogeny, which in turn suggests co-evolutionary relationships. A cluster analysis of Epulopiscium sequences from previously published amplicon sequencing dataset revealed a similar pattern, where specific clades were consistently found in high abundance amongst closely related surgeonfishes. Differences in abundance may indicate specialization of clades to certain gut environments

  2. Phylogenetic Diversity, Distribution, and Cophylogeny of Giant Bacteria (Epulopiscium) with their Surgeonfish Hosts in the Red Sea.

    PubMed

    Miyake, Sou; Ngugi, David K; Stingl, Ulrich

    2016-01-01

    Epulopiscium is a group of giant bacteria found in high abundance in intestinal tracts of herbivorous surgeonfish. Despite their peculiarly large cell size (can be up to 600 μm), extreme polyploidy (some with over 100,000 genome copies per cell) and viviparity (whereby mother cells produce live offspring), details about their diversity, distribution or their role in the host gut are lacking. Previous studies have highlighted the existence of morphologically distinct Epulopiscium cell types (defined as morphotypes A to J) in some surgeonfish genera, but the corresponding genetic diversity and distribution among other surgeonfishes remain mostly unknown. Therefore, we investigated the phylogenetic diversity of Epulopiscium, distribution and co-occurrence in multiple hosts. Here, we identified eleven new phylogenetic clades, six of which were also morphologically characterized. Three of these novel clades were phylogenetically and morphologically similar to cigar-shaped type A1 cells, found in a wide range of surgeonfishes including Acanthurus nigrofuscus, while three were similar to smaller, rod-shaped type E that has not been phylogenetically classified thus far. Our results also confirmed that biogeography appears to have relatively little influence on Epulopiscium diversity, as clades found in the Great Barrier Reef and Hawaii were also recovered from the Red Sea. Although multiple symbiont clades inhabited a given species of host surgeonfish and multiple host species possessed a given symbiont clade, statistical analysis of host and symbiont phylogenies indicated significant cophylogeny, which in turn suggests co-evolutionary relationships. A cluster analysis of Epulopiscium sequences from previously published amplicon sequencing dataset revealed a similar pattern, where specific clades were consistently found in high abundance amongst closely related surgeonfishes. Differences in abundance may indicate specialization of clades to certain gut environments

  3. Mechanistic models of animal migration behaviour – their diversity, structure and use

    PubMed Central

    Bauer, Silke; Klaassen, Marcel

    2013-01-01

    Migration is a wide-spread phenomenon in the animal kingdom, including many taxonomic groups and modes of locomotion. Developing an understanding of the proximate and ultimate causes for this behaviour not only addresses fundamental ecological questions but has relevance to many other fields, e.g. in relation to the spread of emerging zoonotic diseases, the proliferation of invasive species, aeronautical safety as well as the conservation of migrants.Theoretical methods can make important contributions to our understanding of migration, by allowing us to integrate findings on this complex behaviour, identify caveats in our understanding and guide future empirical research efforts. Various mechanistic models exist to date but their applications seem to be scattered and far from evenly distributed across taxonomic units.Therefore, we provide an overview of the major mechanistic modelling approaches used in the study of migration behaviour and characterise their fundamental features, assumptions and limitations, and discuss their typical data requirements both for model parameterisation and for scrutinizing model predictions.Furthermore, we review 155 studies that have used mechanistic models to study animal migration and analyse them with regard to the approaches used, focal species and also explore their contribution of advancing current knowledge within six broad migration ecology research themes.This identifies important gaps in our present knowledge, which should be tackled in future research using existing and to-be developed theoretical approaches. PMID:23373515

  4. The Relationship between Ethnic Diversity and Classroom Disruption in the Context of Migration Policies

    ERIC Educational Resources Information Center

    Veerman, Gert-Jan M.

    2015-01-01

    This paper studies the relationship between ethnic school composition and classroom disruption in secondary education in the context of migration policies. We measured classroom disruption using students' reports from 3533 schools in 20 countries provided by cross-national PISA (Programme for International Student Assessment) 2009 data. We…

  5. Species Diversity, Abundance, and Host Preferences of Mosquitoes (Diptera: Culicidae) in Two Different Ecotypes of Madagascar With Recent RVFV Transmission.

    PubMed

    Jean Jose Nepomichene, Thiery Nirina; Elissa, Nohal; Cardinale, Eric; Boyer, Sebastien

    2015-09-01

    Mosquito diversity and abundance were examined in six Madagascan villages in either arid (Toliary II district) or humid (Mampikony district) ecotypes, each with a history of Rift Valley fever virus transmission. Centers for Disease Control and Prevention light traps without CO2 (LT) placed near ruminant parks and animal-baited net trap (NT) baited with either zebu or sheep/goat were used to sample mosquitoes, on two occasions between March 2011 and October 2011. Culex tritaeniorhynchus (Giles) was the most abundant species, followed by Culex antennatus (Becker) and Anopheles squamosus/cydippis (Theobald/de Meillon). These three species comprised more than half of all mosquitoes collected. The NT captured more mosquitoes in diversity and in abundance than the LT, and also caught more individuals of each species, except for An. squamosus/cydippis. Highest diversity and abundance were observed in the humid and warm district of Mampikony. No host preference was highlighted, except for Cx. tritaeniorhynchus presenting a blood preference for zebu baits. The description of species diversity, abundance, and host preference described herein can inform the development of control measures to reduce the risk of mosquito-borne diseases in Madagascar. PMID:26336259

  6. Perlecan Diversely Regulates the Migration and Proliferation of Distinct Cell Types in vitro.

    PubMed

    Nakamura, Ryosuke; Nakamura, Fumio; Fukunaga, Shigeharu

    2015-01-01

    Perlecan is a multifunctional component of the extracellular matrix. It shows different effects on distinct cell types, and therefore it is thought to show potential for therapies targeting multiple cell types. However, the full range of multifunctionality of perlecan remains to be elucidated. We cultured various cell types, which were derived from epithelial/endothelial, connective and muscle tissues, in the presence of either antiserum against perlecan or exogenous perlecan, and examined the effects of perlecan on cell migration and proliferation. Cell migration was determined using a scratch assay. Blocking of perlecan by anti-perlecan antiserum inhibited the migration of vascular endothelial cells (VECs) and bone marrow-derived mesenchymal stem cells, and exogenous perlecan added to the culture medium promoted the migration of these cell types. The migration of other cell types was inhibited or was not promoted by exogenous perlecan. Cell proliferation was measured using a water-soluble tetrazolium dye. When cells were cultured at low densities, perlecan blocking inhibited the proliferation of VECs, and exogenous perlecan promoted the proliferation of keratinocytes. In contrast, the proliferation of fibroblasts, pre-adipocytes and vascular smooth muscle cells cultured at low densities was inhibited by exogenous perlecan. When cells were cultured at high densities, perlecan blocking promoted the proliferation of most cell types, with the exception of skeletal system-derived cells (chondrocytes and osteoblasts), which were inhibited by exogenous perlecan. Our results provide an overview of the multiple functions of perlecan in various cell types, and implicate a potential role of perlecan to inhibit undesirable activities, such as fibrosis, obesity and intimal hyperplasia. PMID:26562025

  7. Patterns of genetic diversity and migration in increasingly fragmented and declining orang-utan (Pongo pygmaeus) populations from Sabah, Malaysia.

    PubMed

    Goossens, B; Chikhi, L; Jalil, M F; Ancrenaz, M; Lackman-Ancrenaz, I; Mohamed, M; Andau, P; Bruford, M W

    2005-02-01

    We investigated the genetic structure within and among Bornean orang-utans (Pongo pygmaeus) in forest fragments of the Lower Kinabatangan flood plain in Sabah, Malaysia. DNA was extracted from hair and faecal samples for 200 wild individuals collected during boat surveys on the Kinabatangan River. Fourteen microsatellite loci were used to characterize patterns of genetic diversity. We found that genetic diversity was high in the set of samples (mean H(E) = 0.74) and that genetic differentiation was significant between the samples (average F(ST) = 0.04, P < 0.001) with F(ST) values ranging from low (0.01) to moderately large (0.12) values. Pairwise F(ST) values were significantly higher across the Kinabatangan River than between samples from the same river side, thereby confirming the role of the river as a natural barrier to gene flow. The correlation between genetic and geographical distance was tested by means of a series of Mantel tests based on different measures of geographical distance. We used a Bayesian method to estimate immigration rates. The results indicate that migration is unlikely across the river but cannot be completely ruled out because of the limited F(ST) values. Assignment tests confirm the overall picture that gene flow is limited across the river. We found that migration between samples from the same side of the river had a high probability indicating that orang-utans used to move relatively freely between neighbouring areas. This strongly suggests that there is a need to maintain migration between isolated forest fragments. This could be done by restoring forest corridors alongside the river banks and between patches. PMID:15660936

  8. A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia

    PubMed Central

    McDevitt, Michael A.; Xie, Jianlin; Shanmugasundaram, Ganapathy; Griffith, Jason; Liu, Aihua; McDonald, Courtney; Thuma, Philip; Gordeuk, Victor R.; Metz, Christine N.; Mitchell, Robert; Keefer, Jeffrey; David, John; Leng, Lin; Bucala, Richard

    2006-01-01

    The pathogenesis of malarial anemia is multifactorial, and the mechanisms responsible for its high mortality are poorly understood. Studies indicate that host mediators produced during malaria infection may suppress erythroid progenitor development (Miller, K.L., J.C. Schooley, K.L. Smith, B. Kullgren, L.J. Mahlmann, and P.H. Silverman. 1989. Exp. Hematol. 17:379–385; Yap, G.S., and M.M. Stevenson. 1991. Ann. NY Acad. Sci. 628:279–281). We describe an intrinsic role for macrophage migration inhibitory factor (MIF) in the development of the anemic complications and bone marrow suppression that are associated with malaria infection. At concentrations found in the circulation of malaria-infected patients, MIF suppressed erythropoietin-dependent erythroid colony formation. MIF synergized with tumor necrosis factor and γ interferon, which are known antagonists of hematopoiesis, even when these cytokines were present in subinhibitory concentrations. MIF inhibited erythroid differentiation and hemoglobin production, and it antagonized the pattern of mitogen-activated protein kinase phosphorylation that normally occurs during erythroid progenitor differentiation. Infection of MIF knockout mice with Plasmodium chabaudi resulted in less severe anemia, improved erythroid progenitor development, and increased survival compared with wild-type controls. We also found that human mononuclear cells carrying highly expressed MIF alleles produced more MIF when stimulated with the malarial product hemozoin compared with cells carrying low expression MIF alleles. These data suggest that polymorphisms at the MIF locus may influence the levels of MIF produced in the innate response to malaria infection and the likelihood of anemic complications. PMID:16636133

  9. Diverse Gastropod Hosts of Angiostrongylus cantonensis, the Rat Lungworm, Globally and with a Focus on the Hawaiian Islands

    PubMed Central

    Kim, Jaynee R.; Hayes, Kenneth A.; Yeung, Norine W.; Cowie, Robert H.

    2014-01-01

    Eosinophilic meningitis caused by the parasitic nematode Angiostrongylus cantonensis is an emerging infectious disease with recent outbreaks primarily in tropical and subtropical locations around the world, including Hawaii. Humans contract the disease primarily through ingestion of infected gastropods, the intermediate hosts of Angiostrongylus cantonensis. Effective prevention of the disease and control of the spread of the parasite require a thorough understanding of the parasite's hosts, including their distributions, as well as the human and environmental factors that contribute to transmission. The aim of this study was to screen a large cross section of gastropod species throughout the main Hawaiian Islands to determine which act as hosts of Angiostrongylus cantonensis and to assess the parasite loads in these species. Molecular screening of 7 native and 30 non-native gastropod species revealed the presence of the parasite in 16 species (2 native, 14 non-native). Four of the species tested are newly recorded hosts, two species introduced to Hawaii (Oxychilus alliarius, Cyclotropis sp.) and two native species (Philonesia sp., Tornatellides sp.). Those species testing positive were from a wide diversity of heterobranch taxa as well as two distantly related caenogastropod taxa. Review of the global literature showed that many gastropod species from 34 additional families can also act as hosts. There was a wide range of parasite loads among and within species, with an estimated maximum of 2.8 million larvae in one individual of Laevicaulis alte. This knowledge of the intermediate host range of Angiostrongylus cantonensis and the range of parasite loads will permit more focused efforts to detect, monitor and control the most important hosts, thereby improving disease prevention in Hawaii as well as globally. PMID:24788772

  10. Population diversity of Puccinia graminis is sustained through sexual cycle on alternate hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high degree of virulence diversity has been maintained in the population of Puccinia graminis f. sp. tritici (Pgt) in northwestern United States. Although Berberis vulgaris is present in the region and Pgt has been isolated from aecial infections on B. vulgaris, the population is too diverse to be...

  11. GENOMIC DIVERSITY OF STREPTOCOCCUS AGALACTIAE FROM FISH, BOVINE AND HUMAN HOSTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Group B Streptococcus agalactiae (GBS) is a cause of infectious disease in multiple poikilothermic and homothermic animal species. Epidemiological and zoonotic considerations necessitate an undertaking of a comparison of S. agalactiae isolates from different phylogenetic hosts and geographical regi...

  12. Parasite Prevalence Corresponds to Host Life History in a Diverse Assemblage of Afrotropical Birds and Haemosporidian Parasites

    PubMed Central

    Lutz, Holly L.; Hochachka, Wesley M.; Engel, Joshua I.; Bell, Jeffrey A.; Tkach, Vasyl V.; Bates, John M.; Hackett, Shannon J.; Weckstein, Jason D.

    2015-01-01

    Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi. PMID:25853491

  13. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity

    PubMed Central

    Schwartz, Allison R.; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V.; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E.; Barak, Jeri D.; White, Frank F.; Miller, Sally A.; Ritchie, David; Goss, Erica; Bart, Rebecca S.; Setubal, João C.; Jones, Jeffrey B.; Staskawicz, Brian J.

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  14. Increased sampling reveals novel lineages of Entamoeba: consequences of genetic diversity and host specificity for taxonomy and molecular detection.

    PubMed

    Stensvold, C Rune; Lebbad, Marianne; Victory, Emma L; Verweij, Jaco J; Tannich, Egbert; Alfellani, Mohammed; Legarraga, Paulette; Clark, C Graham

    2011-07-01

    To expand the representation for phylogenetic analysis, ten additional complete Entamoeba small-subunit rRNA gene sequences were obtained from humans, non-human primates, cattle and a tortoise. For some novel sequences no corresponding morphological data were available, and we suggest that these organisms should be referred to as ribosomal lineages (RL) rather than being assigned species names at present. To investigate genetic diversity and host specificity of selected Entamoeba species, a total of 91 new partial small subunit rRNA gene sequences were obtained, including 49 from Entamoeba coli, 18 from Entamoeba polecki, and 17 from Entamoeba hartmanni. We propose a new nomenclature for significant variants within established Entamoeba species. Based on current data we propose that the uninucleated-cyst-producing Entamoeba infecting humans is called Entamoeba polecki and divided into four subtypes (ST1-ST4) and that Entamoeba coli is divided into two subtypes (ST1-ST2). New hosts for several species were detected and, while host specificity and genetic diversity of several species remain to be clarified, it is clear that previous reliance on cultivated material has given us a misleading and incomplete picture of variation within the genus Entamoeba. PMID:21295520

  15. Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites.

    PubMed

    Lutz, Holly L; Hochachka, Wesley M; Engel, Joshua I; Bell, Jeffrey A; Tkach, Vasyl V; Bates, John M; Hackett, Shannon J; Weckstein, Jason D

    2015-01-01

    Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi. PMID:25853491

  16. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity.

    PubMed

    Schwartz, Allison R; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E; Barak, Jeri D; White, Frank F; Miller, Sally A; Ritchie, David; Goss, Erica; Bart, Rebecca S; Setubal, João C; Jones, Jeffrey B; Staskawicz, Brian J

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  17. Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain.

    PubMed

    Lima, L B; Bellay, S; Giacomini, H C; Isaac, A; Lima-Junior, D P

    2016-03-01

    The patterns of parasite sharing among hosts have important implications for ecosystem structure and functioning, and are influenced by several ecological and evolutionary factors associated with both hosts and parasites. Here we evaluated the influence of fish diet and phylogenetic relatedness on the pattern of infection by parasites with contrasting life history strategies in a freshwater ecosystem of key ecological importance in South America. The studied network of interactions included 52 fish species, which consumed 58 food types and were infected with 303 parasite taxa. Our results show that both diet and evolutionary history of hosts significantly explained parasite sharing; phylogenetically close fish species and/or species sharing food types tend to share more parasites. However, the effect of diet was observed only for endoparasites in contrast to ectoparasites. These results are consistent with the different life history strategies and selective pressures imposed on these groups: endoparasites are in general acquired via ingestion by their intermediate hosts, whereas ectoparasites actively seek and attach to the gills, body surface or nostrils of its sole host, thus not depending directly on its feeding habits. PMID:26647725

  18. Intestinal Microbiota and Species Diversity of Campylobacter and Helicobacter spp. in Migrating Shorebirds in Delaware Bay

    EPA Science Inventory

    Using rDNA sequencing analysis, we examined the bacterial diversity and the presence of opportunistic bacterial pathogens (i.e., Campylobacter and Helicobacter) in Red Knot (Calidris canutus, n=40), Ruddy Turnstone (Arenaria interpres, n=35), and Semipalmated Sandpiper (Calidris ...

  19. Divergence of Borrelia burgdorferi sensu lato spirochetes could be driven by the host: diversity of Borrelia strains isolated from ticks feeding on a single bird

    PubMed Central

    2014-01-01

    Background The controversy surrounding the potential impact of birds in spirochete transmission dynamics and their capacity to serve as a reservoir has existed for a long time. The majority of analyzed bird species are able to infect larval ticks with Borrelia. Dispersal of infected ticks due to bird migration is a key to the establishment of new foci of Lyme borreliosis. The dynamics of infection in birds supports the mixing of different species, the horizontal exchange of genetic information, and appearance of recombinant genotypes. Methods Four Borrelia burgdorferi sensu lato strains were cultured from Ixodes minor larvae and four strains were isolated from Ixodes minor nymphs collected from a single Carolina Wren (Thryothorus ludovicianus). A multilocus sequence analysis that included 16S rRNA, a 5S-23S intergenic spacer region, a 16S-23S internal transcribed spacer, flagellin, p66, and ospC separated 8 strains into 3 distinct groups. Additional multilocus sequence typing of 8 housekeeping genes, clpA, clpX, nifS, pepX, pyrG, recG, rplB, and uvrA was used to resolve the taxonomic status of bird-associated strains. Results Results of analysis of 14 genes confirmed that the level of divergence among strains is significantly higher than what would be expected for strains within a single species. The presence of cross-species recombination was revealed: Borrelia burgdorferi sensu stricto housekeeping gene nifS was incorporated into homologous locus of strain, previously assigned to B. americana. Conclusions Genetically diverse Borrelia strains are often found within the same tick or same vertebrate host, presenting a wide opportunity for genetic exchange. We report the cross-species recombination that led to incorporation of a housekeeping gene from the B. burgdorferi sensu stricto strain into a homologous locus of another bird-associated strain. Our results support the hypothesis that recombination maintains a majority of sequence polymorphism within Borrelia

  20. Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Bridge, T.; Scott, A.; Steinberg, D.

    2012-12-01

    Anemonefishes and their host sea anemones are iconic inhabitants of coral reef ecosystems. While studies have documented their abundance in shallow-water reef habitats in parts of the Indo-Pacific, none have examined these species on mesophotic reefs. In this study, we used autonomous underwater vehicle imagery to examine the abundance and diversity of anemones and anemonefishes at Viper Reef and Hydrographers Passage in the central Great Barrier Reef at depths between 50 and 65 m. A total of 37 host sea anemones (31 Entacmaea quadricolor and 6 Heteractis crispa) and 24 anemonefishes (23 Amphiprion akindynos and 1 A. perideraion) were observed. Densities were highest at Viper Reef, with 8.48 E. quadricolor and A. akindynos per 100 m2 of reef substratum. These results support the hypothesis that mesophotic reefs have many species common to shallow-water coral reefs and that many taxa may occur at depths greater than currently recognised.

  1. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments.

    PubMed

    Alteri, Christopher J; Mobley, Harry L T

    2012-02-01

    Bacterial growth in the host is required for pathogenesis. To successfully grow in vivo, pathogens have adapted their metabolism to replicate in specific host microenvironments. These adaptations reflect the nutritional composition of their host niches, inter-bacterial competition for carbon and energy sources, and survival in the face of bactericidal defense mechanisms. A subgroup of Escherichia coli, which cause urinary tract infection, bacteremia, sepsis, and meningitis, have adapted to grow as a harmless commensal in the nutrient-replete, carbon-rich human intestine but rapidly transition to pathogenic lifestyle in the nutritionally poorer, nitrogen-rich urinary tract. We discuss bacterial adaptations that allow extraintestinal pathogenic E. coli to establish both commensal associations and virulence as the bacterium transits between disparate microenvironments within the same individual. PMID:22204808

  2. Phylogenetic and chemotypic diversity of Periglandula species in eight new morning glory hosts (Convolvulaceae).

    PubMed

    Beaulieu, Wesley T; Panaccione, Daniel G; Ryan, Katy L; Kaonongbua, Wittaya; Clay, Keith

    2015-01-01

    Periglandula ipomoeae and P. turbinae (Ascomycota, Clavicipitaceae) are recently described fungi that form symbiotic associations with the morning glories (Convolvulaceae) Ipomoea asarifolia and Turbina corymbosa, respectively. These Periglandula species are vertically transmitted and produce bioactive ergot alkaloids in seeds of infected plants and ephemeral mycelia on the adaxial surface of young leaves. Whether other morning glories that contain ergot alkaloids also are infected by Periglandula fungi is a central question. Here we report on a survey of eight species of Convolvulaceae (Argyreia nervosa, I. amnicola, I. argillicola, I. gracilis, I. hildebrandtii, I. leptophylla, I. muelleri, I. pes-caprae) for ergot alkaloids in seeds and associated clavicipitaceous fungi potentially responsible for their production. All host species contained ergot alkaloids in four distinct chemotypes with concentrations of 15.8-3223.0 μg/g. Each chemotype was a combination of four or five ergot alkaloids out of seven alkaloids detected across all hosts. In addition, each host species exhibited characteristic epiphytic mycelia on adaxial surfaces of young leaves with considerable interspecific differences in mycelial density. We sequenced three loci from fungi infecting each host: the nuclear rDNA internal transcribed spacer region (ITS), introns of the translation factor 1-α gene (tefA) and the dimethylallyl-tryptophan synthase gene (dmaW), which codes for the enzyme that catalyzes the first step in ergot alkaloid biosynthesis. Phylogenetic analyses confirmed that these fungi are in the family Clavicipitaceae and form a monophyletic group with the two described Periglandula species. This study is the first to report Periglandula spp. from Asian, Australian, African and North American species of Convolvulaceae, including host species with a shrub growth form and host species occurring outside of the tropics. This study demonstrates that ergot alkaloids in morning glories

  3. Genetic Diversity and Host Alternation of the Egg Parasitoid Ooencyrtus pityocampae between the Pine Processionary Moth and the Caper Bug

    PubMed Central

    Samra, Shahar; Ghanim, Murad; Protasov, Alex; Branco, Manuela; Mendel, Zvi

    2015-01-01

    The increased use of molecular tools for species identification in recent decades revealed that each of many apparently generalist parasitoids are actually a complex of morphologically similar congeners, most of which have a rather narrow host range. Ooencyrtus pityocampae (OP), an important egg parasitoid of the pine processionary moth (PPM), is considered a generalist parasitoid. OP emerges from PPM eggs after winter hibernation, mainly in spring and early summer, long before the eggs of the next PPM generation occurs. The occurrence of OP in eggs of the variegated caper bug (CB) Stenozygum coloratum in spring and summer suggests that OP populations alternate seasonally between PPM and CB. However, the identity of OP population on CB eggs seemed uncertain; unlike OP-PPM populations, the former displayed apparently high male/female ratios and lack of attraction to the PPM sex pheromone. We studied the molecular identities of the two populations since the morphological identification of the genus Ooencyrtus, and OP in particular, is difficult. Sequencing of COI and ITS2 DNA fragments and AFLP analysis of individuals from both hosts revealed no apparent differences between the OP-PPM and the OP-CB populations for both the Israeli and the Turkish OPs, which therefore supported the possibility of host alternation. Sequencing data extended our knowledge of the genetic structure of OP populations in the Mediterranean area, and revealed clear separation between East and West Mediterranean populations. The overall level of genetic diversity was rather small, with the Israeli population much less diverse than all others; possible explanations for this finding are discussed. The findings support the possibility of utilizing the CB and other hosts for enhancing biological control of the PPM. PMID:25856082

  4. Ostertagia ostertagi macrophage migration inhibition factor is present at all developmental stages and may cross-regulate host functions through host receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibition factor (MIF) of Ostertagia ostertagi, a parasitic nematode infecting the bovine abomasum, is characterized in the present study. Phylogenetic analysis indicates that there appears to be at least 3 OoMIFs encoded by distinct transcripts, including OoMIF1a, OoMIF1b, and...

  5. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific.

    PubMed

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems. PMID:26067836

  6. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific

    PubMed Central

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems. PMID:26067836

  7. Host and habitat filtering in seedling root-associated fungal communities: taxonomic and functional diversity are altered in 'novel' soils.

    PubMed

    Pickles, Brian J; Gorzelak, Monika A; Green, D Scott; Egger, Keith N; Massicotte, Hugues B

    2015-10-01

    Climatic and land use changes have significant consequences for the distribution of tree species, both through natural dispersal processes and following management prescriptions. Responses to these changes will be expressed most strongly in seedlings near current species range boundaries. In northern temperate forest ecosystems, where changes are already being observed, ectomycorrhizal fungi contribute significantly to successful tree establishment. We hypothesised that communities of fungal symbionts might therefore play a role in facilitating, or limiting, host seedling range expansion. To test this hypothesis, ectomycorrhizal communities of interior Douglas-fir and interior lodgepole pine seedlings were analysed in a common greenhouse environment following growth in five soils collected along an ecosystem gradient. Currently, Douglas-fir's natural distribution encompasses three of the five soils, whereas lodgepole pine's extends much further north. Host filtering was evident amongst the 29 fungal species encountered: 7 were shared, 9 exclusive to Douglas-fir and 13 exclusive to lodgepole pine. Seedlings of both host species formed symbioses with each soil fungal community, thus Douglas-fir did so even where those soils came from outside its current distribution. However, these latter communities displayed significant taxonomic and functional differences to those found within the host distribution, indicative of habitat filtering. In contrast, lodgepole pine fungal communities displayed high functional similarity across the soil gradient. Taxonomic and/or functional shifts in Douglas-fir fungal communities may prove ecologically significant during the predicted northward migration of this species; especially in combination with changes in climate and management operations, such as seed transfer across geographical regions for forestry purposes. PMID:25694036

  8. Similarly Lethal Strains of Extraintestinal Pathogenic Escherichia coli Trigger Markedly Diverse Host Responses in a Zebrafish Model of Sepsis

    PubMed Central

    Barber, Amelia E.; Fleming, Brittany A.

    2016-01-01

    ABSTRACT In individuals with sepsis, the infecting microbes are commonly viewed as generic inducers of inflammation while the host background is considered the primary variable affecting disease progression and outcome. To study the effects of bacterial strain differences on the maladaptive immune responses that are induced during sepsis, we employed a novel zebrafish embryo infection model using extraintestinal pathogenic Escherichia coli (ExPEC) isolates. These genetically diverse pathogens are a leading cause of sepsis and are becoming increasingly dangerous because of the rise of multidrug-resistant strains. Zebrafish infected with ExPEC isolates exhibit many of the pathophysiological features seen in septic human patients, including dysregulated inflammatory responses (cytokine storms), tachycardia, endothelial leakage, and progressive edema. However, only a limited subset of ExPEC isolates can trigger a sepsis-like state and death of the host when introduced into the bloodstream. Mirroring the situation in human patients, antibiotic therapy reduced ExPEC titers and improved host survival rates but was only effective within limited time frames that varied, depending on the infecting pathogen. Intriguingly, we find that phylogenetically distant but similarly lethal ExPEC isolates can stimulate markedly different host transcriptional responses, including disparate levels of inflammatory mediators. These differences correlate with the amounts of bacterial flagellin expression during infection, as well as differential activation of Toll-like receptor 5 by discrete flagellar serotypes. Altogether, this work establishes zebrafish as a relevant model of key aspects of human sepsis and highlights the ability of genetically distinct ExPEC isolates to induce divergent host responses independently of baseline host attributes. IMPORTANCE Sepsis is a life-threatening systemic inflammatory condition that is initiated by the presence of microorganisms in the bloodstream. In

  9. Similarly Lethal Strains of Extraintestinal Pathogenic Escherichia coli Trigger Markedly Diverse Host Responses in a Zebrafish Model of Sepsis.

    PubMed

    Barber, Amelia E; Fleming, Brittany A; Mulvey, Matthew A

    2016-01-01

    In individuals with sepsis, the infecting microbes are commonly viewed as generic inducers of inflammation while the host background is considered the primary variable affecting disease progression and outcome. To study the effects of bacterial strain differences on the maladaptive immune responses that are induced during sepsis, we employed a novel zebrafish embryo infection model using extraintestinal pathogenic Escherichia coli (ExPEC) isolates. These genetically diverse pathogens are a leading cause of sepsis and are becoming increasingly dangerous because of the rise of multidrug-resistant strains. Zebrafish infected with ExPEC isolates exhibit many of the pathophysiological features seen in septic human patients, including dysregulated inflammatory responses (cytokine storms), tachycardia, endothelial leakage, and progressive edema. However, only a limited subset of ExPEC isolates can trigger a sepsis-like state and death of the host when introduced into the bloodstream. Mirroring the situation in human patients, antibiotic therapy reduced ExPEC titers and improved host survival rates but was only effective within limited time frames that varied, depending on the infecting pathogen. Intriguingly, we find that phylogenetically distant but similarly lethal ExPEC isolates can stimulate markedly different host transcriptional responses, including disparate levels of inflammatory mediators. These differences correlate with the amounts of bacterial flagellin expression during infection, as well as differential activation of Toll-like receptor 5 by discrete flagellar serotypes. Altogether, this work establishes zebrafish as a relevant model of key aspects of human sepsis and highlights the ability of genetically distinct ExPEC isolates to induce divergent host responses independently of baseline host attributes. IMPORTANCE Sepsis is a life-threatening systemic inflammatory condition that is initiated by the presence of microorganisms in the bloodstream. In the

  10. Biotypic diversity in greenbug (Hemiptera: Aphididae): Microsatellite-based regional divergence and host-adapted differentiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nineteen isolates of the cereal aphid pest greenbug were collected from wheat, barley or noncultivated grass hosts in five locations from the states of Colorado and Wyoming in the U.S., and parthenogenetic colonies were established. Biotypic profiles of the 19 isolates were determined based on their...

  11. Genomic Diversity of Streptoccocus agalactiae Isolates from Multiple Hosts and Their Infectivity in Nile Tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae, the Lancefield group B Streptococcus (GBS), has a broad host range and can be pathogenic to numerous animals, including fish. GBS is most recognized for causing cattle mastitis and human neonatal meningitis, it also causes fatal meningo-encephalitis in fish. We investigat...

  12. Do pathogens reduce genetic diversity of their hosts? Variable effects of sylvatic plague in black-tailed prairie dogs.

    PubMed

    Sackett, Loren C; Collinge, Sharon K; Martin, Andrew P

    2013-05-01

    Introduced diseases can cause dramatic declines in-and even the loss of-natural populations. Extirpations may be followed by low recolonization rates, leading to inbreeding and a loss of genetic variation, with consequences on population viability. Conversely, extirpations may create vacant habitat patches that individuals from multiple source populations can colonize, potentially leading to an influx of variation. We tested these alternative hypotheses by sampling 15 colonies in a prairie dog metapopulation during 7 years that encompassed an outbreak of sylvatic plague, providing the opportunity to monitor genetic diversity before, during and after the outbreak. Analysis of nine microsatellite loci revealed that within the metapopulation, there was no change in diversity. However, within extirpated colonies, patterns varied: In half of the colonies, allelic richness after recovery was less than the preplague conditions, and in the other half, richness was greater than the preplague conditions. Finally, analysis of variation within individuals revealed that prairie dogs present in recolonized colonies had higher heterozygosity than those present before plague. We confirmed plague survivorship in six founders; these individuals had significantly higher heterozygosity than expected by chance. Collectively, our results suggest that high immigration rates can maintain genetic variation at a regional scale despite simultaneous extirpations in spatially proximate populations. Thus, virulent diseases may increase genetic diversity of host populations by creating vacant habitats that allow an influx of genetic diversity. Furthermore, even highly virulent diseases may not eliminate individuals randomly; rather, they may selectively remove the most inbred individuals. PMID:23452304

  13. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus).

    PubMed

    Richardson, David E; Marancik, Katrin E; Guyon, Jeffrey R; Lutcavage, Molly E; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J; Wildes, Sharon; Yates, Douglas A; Hare, Jonathan A

    2016-03-22

    Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors. PMID:26951668

  14. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus)

    PubMed Central

    Richardson, David E.; Marancik, Katrin E.; Guyon, Jeffrey R.; Lutcavage, Molly E.; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J.; Wildes, Sharon; Yates, Douglas A.; Hare, Jonathan A.

    2016-01-01

    Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors. PMID:26951668

  15. Genetic diversities of cytochrome B in Xinjiang Uyghur unveiled its origin and migration history

    PubMed Central

    2013-01-01

    Background Uyghurs are one of the many populations of Central Eurasia that is considered to be genetically related to Eastern and Western Eurasian populations. However, there are some different opinions on the relative importance of the degree of Eastern and Western Eurasian genetic influence. In addition, the genetic diversity of the Uyghur in different geographic locations has not been clearly studied. Results In this study, we are the first to report on the DNA polymorphism of cytochrome B in the Uyghur population located in Xinjiang in northwest China. We observed a total of 102 mutant sites in the 240 samples that were studied. The average number of mutated nucleotides in the samples was 5.126. A total of 93 different haplotypes were observed. The gene diversity and discrimination power were 0.9480 and 0.9440, respectively. There were founder and bottleneck haplotypes observed in Xinjiang Uyghurs. Xinjiang Uyghurs are more genetically related to Chinese population in genetics than to Caucasians. Moreover, there was genetic diversity between Uyghurs from the southern and northern regions. There was significance in genetic distance between the southern Xinjiang Uyghurs and Chinese population, but not between the northern Xinjiang Uyghurs and Chinese. The European vs. East Asian contribution to the ten regional Uyghur groups varies among the groups and the European contribution to the Uyghur increases from north to south geographically. Conclusion This study is the first report on DNA polymorphisms of cytochrome B in the Uyghur population. The study also further confirms that there are significant genetic differences among the Uyghurs in different geographical locations. PMID:24103151

  16. Genetic Diversity of Spiroplasma citri strains from Different Regions, Hosts, and Isolation Dates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spiroplasma citri, a phloem-limited, leafhopper-transmitted pathogen, causes citrus stubborn disease (CSD). Losses due to CSD in California orchards has grown over the past decade. To investigate the possibility of introduction or emergence of a new spiroplasma strain, a study of genetic diversity ...

  17. Microbial diversity and host-specific sequences of Canada goose feces.

    PubMed

    Lu, Jingrang; Santo Domingo, Jorge W; Hill, Stephen; Edge, Thomas A

    2009-09-01

    Methods to assess the impact of goose fecal contamination are needed as the result of the increasing number of Canada geese (Branta canadensis) near North American inland waters. However, there is little information on goose fecal microbial communities, and such data are important for the development of host-specific source-tracking methods. To address this issue, 16S rRNA gene clone libraries for Canada goose fecal samples from Ontario, Canada, and Ohio were analyzed. Analyses of fecal clones from Ontario (447) and Ohio (302) showed that goose fecal communities are dominated by the classes "Clostridia" (represented by 33.7% of clones) and "Bacilli" (38.1% of clones) and the phylum "Bacteroidetes" (10.1% of clones). Sequences not previously found in other avian fecal communities were used to develop host-specific assays. Fecal DNA extracts from sewage plants (10 samples) and different species of birds (11 samples) and mammals (18 samples) were used to test for host specificity. Of all the assays tested, one assay showed specificity for Canada goose fecal DNA. The PCR assay was positive for Canada goose fecal DNA extracts collected from three locations in North America (Ohio, Oregon, and Ontario, Canada). Additionally, of 48 DNA extracts from Lake Ontario waters presumed to be impacted by waterfowl feces, 19 tested positive by the assay, although 10 were positive only after a nested PCR approach was used. Due to the level of host specificity and the presence of signals in environmental waters, the assay is proposed as a part of the toolbox to detect Canada goose contamination in waterfowl-contaminated waters. PMID:19633110

  18. A Generalized Entropy Measure of Within-Host Viral Diversity for Identifying Recent HIV-1 Infections.

    PubMed

    Wu, Julia Wei; Patterson-Lomba, Oscar; Novitsky, Vladimir; Pagano, Marcello

    2015-10-01

    There is a need for incidence assays that accurately estimate HIV incidence based on cross-sectional specimens. Viral diversity-based assays have shown promises but are not particularly accurate. We hypothesize that certain viral genetic regions are more predictive of recent infection than others and aim to improve assay accuracy by using classification algorithms that focus on highly informative regions (HIRs).We analyzed HIV gag sequences from a cohort in Botswana. Forty-two subjects newly infected by HIV-1 Subtype C were followed through 500 days post-seroconversion. Using sliding window analysis, we screened for genetic regions within gag that best differentiate recent versus chronic infections. We used both nonparametric and parametric approaches to evaluate the discriminatory abilities of sequence regions. Segmented Shannon Entropy measures of HIRs were aggregated to develop generalized entropy measures to improve prediction of recency. Using logistic regression as the basis for our classification algorithm, we evaluated the predictive power of these novel biomarkers and compared them with recently reported viral diversity measures using area under the curve (AUC) analysis.Change of diversity over time varied across different sequence regions within gag. We identified the top 50% of the most informative regions by both nonparametric and parametric approaches. In both cases, HIRs were in more variable regions of gag and less likely in the p24 coding region. Entropy measures based on HIRs outperformed previously reported viral-diversity-based biomarkers. These methods are better suited for population-level estimation of HIV recency.The patterns of diversification of certain regions within the gag gene are more predictive of recency of infection than others. We expect this result to apply in other HIV genetic regions as well. Focusing on these informative regions, our generalized entropy measure of viral diversity demonstrates the potential for improving

  19. Comparison of Genotypes I and III in Japanese Encephalitis Virus Reveals Distinct Differences in Their Genetic and Host Diversity

    PubMed Central

    Han, Na; Adams, James; Chen, Ping; Guo, Zhen-yang; Zhong, Xiang-fu; Fang, Wei; Li, Na; Wen, Lei; Tao, Xiao-yan; Yuan, Zhi-ming

    2014-01-01

    ABSTRACT Japanese encephalitis (JE) is an arthropod-borne disease associated with the majority of viral encephalitis cases in the Asia-Pacific region. The causative agent, Japanese encephalitis virus (JEV), has been phylogenetically divided into five genotypes. Recent surveillance data indicate that genotype I (GI) is gradually replacing genotype III (GIII) as the dominant genotype. To investigate the mechanism behind the genotype shift and the potential consequences in terms of vaccine efficacy, human cases, and virus dissemination, we collected (i) all full-length and partial JEV molecular sequences and (ii) associated genotype and host information comprising a data set of 873 sequences. We then examined differences between the two genotypes at the genetic and epidemiological level by investigating amino acid mutations, positive selection, and host range. We found that although GI is dominant, it has fewer sites predicted to be under positive selection, a narrower host range, and significantly fewer human isolates. For the E protein, the sites under positive selection define a haplotype set for each genotype that shows striking differences in their composition and diversity, with GIII showing significantly more variety than GI. Our results suggest that GI has displaced GIII by achieving a replication cycle that is more efficient but is also more restricted in its host range. IMPORTANCE Japanese encephalitis is an arthropod-borne disease associated with the majority of viral encephalitis cases in the Asia-Pacific region. The causative agent, Japanese encephalitis virus (JEV), has been divided into five genotypes based on sequence similarity. Recent data indicate that genotype I (GI) is gradually replacing genotype III (GIII) as the dominant genotype. Understanding the reasons behind this shift and the potential consequences in terms of vaccine efficacy, human cases, and virus dissemination is important for controlling the spread of the virus and reducing human

  20. Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals

    PubMed Central

    Hu, Xiaozhen; Zhao, Jinlei; DeGrado, William F.; Binns, Andrew N.

    2013-01-01

    Agrobacterium tumefaciens is a broad host range plant pathogen that combinatorially recognizes diverse host molecules including phenolics, low pH, and aldose monosaccharides to activate its pathogenic pathways. Chromosomal virulence gene E (chvE) encodes a periplasmic-binding protein that binds several neutral sugars and sugar acids, and subsequently interacts with the VirA/VirG regulatory system to stimulate virulence (vir) gene expression. Here, a combination of genetics, X-ray crystallography, and isothermal calorimetry reveals how ChvE binds the different monosaccharides and also shows that binding of sugar acids is pH dependent. Moreover, the potency of a sugar for vir gene expression is modulated by a transport system that also relies on ChvE. These two circuits tune the overall system to respond to sugar concentrations encountered in vivo. Finally, using chvE mutants with restricted sugar specificities, we show that there is host variation in regard to the types of sugars that are limiting for vir induction. PMID:23267119

  1. Diversity of beet curly top Iran virus isolated from different hosts in Iran.

    PubMed

    Gharouni Kardani, Sara; Heydarnejad, Jahangir; Zakiaghl, Mohammad; Mehrvar, Mohsen; Kraberger, Simona; Varsani, Arvind

    2013-06-01

    Beet curly top Iran virus (BCTIV) is a major pathogen of sugar beet in Iran. In order to study diversity of BCTIV, we sampled 68 plants in Iran during the summer of 2010 with curly top disease symptoms on beans (Phaseolus vulgaris), cowpeas (Vigna unguiculata), tomatoes (Solanum lycopersicum L.), sea beets (Beta vulgaris subsp. maritima), and sugar beets (Beta vulgaris). Plant samples showing leaf curling, yellowing, and/or swelling of veins on the lower leaf surfaces were collected from various fields in Khorasan Razavi, Northern Khorasan (north-eastern Iran), East Azarbayejan, West Azarbayejan (north-western Iran), and Fars (southern Iran) provinces. Using rolling circle amplification coupled with restriction digests, cloning, and Sanger sequencing, we determined the genomes of nine new BCTIV isolates from bean, cowpea, tomato, sea beet, and sugar beet in Iran. Our analysis reveals ~11 % diversity amongst BCTIV isolates and we detect evidence of recombination within these genomes. PMID:23329008

  2. Genetic diversity of avian and mammalian Chlamydia psittaci strains and relation to host origin.

    PubMed Central

    Fukushi, H; Hirai, K

    1989-01-01

    Genetic relationships were reported for Chlamydia psittaci derived from psittacine birds, pigeons, turkeys, humans, cats, muskrats, cattle, and sheep and for C. trachomatis, including representative strains of the three biovars, through physical analysis of genomic DNA including DNA fingerprinting with restriction endonuclease SalI, DNA-DNA hybridization in solution with S1 nuclease, and Southern analysis with genomic DNA probes. A total of 26 strains were divided into four groups of C. psittaci and two groups of C. trachomatis, on the basis of DNA fingerprints. The six groups of Chlamydia spp. were related to host origin: two avian groups (Av1 and Av2), one feline and muskrat group (Fe1), one ruminant group (Ru1), one C. trachomatis biovars trachoma and lymphogranuloma group (CtHu), and one C. trachomatis mouse biovar group (CtMo), although an ovine abortion strain belonged to the avian group Av2. DNA-DNA hybridization assay and Southern analysis with genomic DNA probes indicated three DNA homology groups in the genus Chlamydia: an avian-feline group (groups Av1, Av2, and Fe1), a ruminant group (group Ru1), and a C. trachomatis group (groups CtHu and CtMo). Furthermore, the Southern analysis indicated that the homologous sequences (DNA homology of at least 14%) within the avian-feline group were distributed along the whole genome, whereas the homologous sequences (DNA homology of less than 24%) among the three DNA homology groups were localized in distinct regions of the genome DNA. These results suggest that Chlamydia spp. are derived from a common ancestor and have diverged into various groups showing restricted host ranges as a natural characteristic and that the species C. psittaci should be differentiated into groups related to host origin and DNA homology. Images PMID:2565333

  3. Genetic Diversity and Host Specificity Varies across Three Genera of Blood Parasites in Ducks of the Pacific Americas Flyway

    PubMed Central

    Reeves, Andrew B.; Smith, Mathew M.; Meixell, Brandt W.; Fleskes, Joseph P; Ramey, Andrew M.

    2015-01-01

    Birds of the order Anseriformes, commonly referred to as waterfowl, are frequently infected by Haemosporidia of the genera Haemoproteus, Plasmodium, and Leucocytozoon via dipteran vectors. We analyzed nucleotide sequences of the Cytochrome b (Cytb) gene from parasites of these genera detected in six species of ducks from Alaska and California, USA to characterize the genetic diversity of Haemosporidia infecting waterfowl at two ends of the Pacific Americas Flyway. In addition, parasite Cytb sequences were compared to those available on a public database to investigate specificity of genetic lineages to hosts of the order Anseriformes. Haplotype and nucleotide diversity of Haemoproteus Cytb sequences was lower than was detected for Plasmodium and Leucocytozoon parasites. Although waterfowl are presumed to be infected by only a single species of Leucocytozoon, L. simondi, diversity indices were highest for haplotypes from this genus and sequences formed five distinct clades separated by genetic distances of 4.9%–7.6%, suggesting potential cryptic speciation. All Haemoproteus and Leucocytozoon haplotypes derived from waterfowl samples formed monophyletic clades in phylogenetic analyses and were unique to the order Anseriformes with few exceptions. In contrast, waterfowl-origin Plasmodium haplotypes were identical or closely related to lineages found in other avian orders. Our results suggest a more generalist strategy for Plasmodium parasites infecting North American waterfowl as compared to those of the genera Haemoproteus and Leucocytozoon. PMID:25710468

  4. Frequent cross-species transmission of parvoviruses among diverse carnivore hosts

    USGS Publications Warehouse

    Allison, Andrew B.; Kohler, Dennis J.; Fox, Karen A.; Brown, Justin D.; Gerhold, Richard W.; Shearn-Bochsler, Valerie I.; Dubovi, Edward J.; Parrish, Colin R.; Holmes, Edward C.

    2013-01-01

    Although parvoviruses are commonly described in domestic carnivores, little is known about their biodiversity in nondomestic species. A phylogenetic analysis of VP2 gene sequences from puma, coyote, gray wolf, bobcat, raccoon, and striped skunk revealed two major groups related to either feline panleukopenia virus (“FPV-like”) or canine parvovirus (“CPV-like”). Cross-species transmission was commonplace, with multiple introductions into each host species but, with the exception of raccoons, relatively little evidence for onward transmission in nondomestic species.

  5. Frequent Cross-Species Transmission of Parvoviruses among Diverse Carnivore Hosts

    PubMed Central

    Allison, Andrew B.; Kohler, Dennis J.; Fox, Karen A.; Brown, Justin D.; Gerhold, Richard W.; Shearn-Bochsler, Valerie I.; Dubovi, Edward J.; Parrish, Colin R.

    2013-01-01

    Although parvoviruses are commonly described in domestic carnivores, little is known about their biodiversity in nondomestic species. A phylogenetic analysis of VP2 gene sequences from puma, coyote, gray wolf, bobcat, raccoon, and striped skunk revealed two major groups related to either feline panleukopenia virus (“FPV-like”) or canine parvovirus (“CPV-like”). Cross-species transmission was commonplace, with multiple introductions into each host species but, with the exception of raccoons, relatively little evidence for onward transmission in nondomestic species. PMID:23221559

  6. Frequent cross-species transmission of parvoviruses among diverse carnivore hosts.

    PubMed

    Allison, Andrew B; Kohler, Dennis J; Fox, Karen A; Brown, Justin D; Gerhold, Richard W; Shearn-Bochsler, Valerie I; Dubovi, Edward J; Parrish, Colin R; Holmes, Edward C

    2013-02-01

    Although parvoviruses are commonly described in domestic carnivores, little is known about their biodiversity in nondomestic species. A phylogenetic analysis of VP2 gene sequences from puma, coyote, gray wolf, bobcat, raccoon, and striped skunk revealed two major groups related to either feline panleukopenia virus ("FPV-like") or canine parvovirus ("CPV-like"). Cross-species transmission was commonplace, with multiple introductions into each host species but, with the exception of raccoons, relatively little evidence for onward transmission in nondomestic species. PMID:23221559

  7. Common Origins and Host-Dependent Diversity of Plant and Animal Viromes

    PubMed Central

    Dolja, Valerian V.; Koonin, Eugene V.

    2012-01-01

    Many viruses infecting animals and plants share common cores of homologous genes involved in the key processes of viral replication. In contrast, genes that mediate virus – host interactions including in many cases capsid protein genes are markedly different. There are three distinct scenarios for the origin of related viruses of plants and animals: i) evolution from a common ancestral virus predating the divergence of plants and animals; ii) horizontal transfer of viruses, for example, through insect vectors; iii) parallel origin from related genetic elements. We present evidence that each of these scenarios contributed, to a varying extent, to the evolution of different groups of viruses. PMID:22408703

  8. The genetic diversity of Citrus dwarfing viroid populations is mainly dependent on the infected host species.

    PubMed

    Tessitori, Matilde; Rizza, Serena; Reina, Antonella; Causarano, Giovanni; Di Serio, Francesco

    2013-03-01

    As with viruses, viroids infect their hosts as polymorphic populations of variants. Identifying possible sources of genetic variability is significant in the case of the species Citrus dwarfing viroid (CDVd) which has been proposed as a dwarfing agent for high-density citrus plantings. Here, a natural CDVd isolate (CMC) was used as an inoculum source for long-term (25 years) and short-term (1 year) bioassays in different citrus host species. Characterization of progenies indicated that the genetic stability of CDVd populations was high in certain hosts (trifoliate orange, Troyer citrange, Etrog citron, Navelina sweet orange), which preserve viroid populations similar to the original CMC isolate even after 25 years. By contrast, CDVd variant populations in Interdonato lemon and Volkamer lemon were completely different to those in the inoculated sources, highlighting how influential the host is on the genetic variability of CDVd populations. Implications for risk assessment of CDVd as a dwarfing agent are discussed. The GenBank/EMBL/DDBJ accession numbers for the complete sequences of the Citrus dwarfing viroid variants are JF970266.1 forH2-2, JF970267.1 for H2-7, EU938647.1 for H6-2, EU938651.1 forH6-10, JF970268.1 for H10-7, EU938652.1 for H14-13, EU938653.1for H14-14, JF970269.1 for H14-16, EU938648.1 for H15-9,EU938649.1 for H16-2, JF970265.1 for H16-9, EU938654.1 forH16-13, EU938650.1 for H20-3, JF970270.1 for H20-7, EU938641.1for PR-1, EU938642.1 for PR-3, EU938643.1 for PR-7, EU938644.1for CR-1, EU938639.1 for VR-4, JF12070.1 for VR-15, JF812069.1LS-4, EU938640.1 for LS-10 and JF970264.1 for LS-11. PMID:23152366

  9. Conventional and PCR Detection of Aphelenchoides fragariae in Diverse Ornamental Host Plant Species

    PubMed Central

    McCuiston, Jamie L.; Hudson, Laura C.; Subbotin, Sergei A.; Davis, Eric L.; Warfield, Colleen Y.

    2007-01-01

    A PCR-based diagnostic assay was developed for early detection and identification of Aphelenchoides fragariae directly in host plant tissues using the species-specific primers AFragFl and AFragRl that amplify a 169-bp fragment in the internal transcribed spacer (ITS1) region of ribosomal DNA. These species-specific primers did not amplify DNA from Aphelenchoides besseyi or Aphelenchoides ritzemabosi. The PCR assay was sensitive, detecting a single nematode in a background of plant tissue extract. The assay accurately detected A. fragariae in more than 100 naturally infected, ornamental plant samples collected in North Carolina nurseries, garden centers and landscapes, including 50 plant species not previously reported as hosts of Aphelenchoides spp. The detection sensitivity of the PCR-based assay was higher for infected yet asymptomatic plants when compared to the traditional, water extraction method for Aphelenchoides spp. detection. The utility of using NaOH extraction for rapid preparation of total DNA from plant samples infected with A. fragariae was demonstrated. PMID:19259510

  10. Phylogeny, Diversity, Distribution, and Host Specificity of Haemoproteus spp. (Apicomplexa: Haemosporida: Haemoproteidae) of Palaearctic Tortoises.

    PubMed

    Javanbakht, Hossein; Kvičerová, Jana; Dvořáková, Nela; Mikulíček, Peter; Sharifi, Mozafar; Kautman, Matej; Maršíková, Aneta; Široký, Pavel

    2015-01-01

    A complex wide-range study on the haemoproteid parasites of chelonians was carried out for the first time. Altogether, 811 samples from four tortoise species from an extensive area between western Morocco and eastern Afghanistan and between Romania and southern Syria were studied by a combination of microscopic and molecular-genetic methods. Altogether 160 Haemoproteus-positive samples were gathered in the area between central Anatolia and eastern Afghanistan. According to variability in the cytochrome b gene, two monophyletic evolutionary lineages were distinguished; by means of microscopic analysis it was revealed that they corresponded to two previously described species-Haemoproteus anatolicum and Haemoproteus caucasica. Their distribution areas overlap only in a narrow strip along the Zagros Mts. range in Iran. This fact suggests the involvement of two different vector species with separated distribution. Nevertheless, no vectors were confirmed. According to phylogenetic analyses, H. caucasica represented a sister group to H. anatolicum, and both of them were most closely related to H. pacayae and H. peltocephali, described from South American river turtles. Four unique haplotypes were revealed in the population of H. caucasica, compared with seven haplotypes in H. anatolicum. Furthermore, H. caucasica was detected in two tortoise species, Testudo graeca and Testudo horsfieldii, providing evidence that Haemoproteus is not strictly host-specific to the tortoise host species. PMID:25939459

  11. Molecular characterization reveals distinct genospecies of Anaplasma phagocytophilum from diverse North American hosts

    PubMed Central

    Bradburd, Gideon; Foley, Janet

    2012-01-01

    Anaplasma phagocytophilum is an emerging tick-borne pathogen that infects humans, domestic animals and wildlife throughout the Holarctic. In the far-western United States, multiple rodent species have been implicated as natural reservoirs for A. phagocytophilum. However, the presence of multiple A. phagocytophilum strains has made it difficult to determine which reservoir hosts pose the greatest risk to humans and domestic animals. Here we characterized three genetic markers (23S–5S rRNA intergenic spacer, ank and groESL) from 73 real-time TaqMan PCR-positive A. phagocytophilum strains infecting multiple rodent and reptile species, as well as a dog and a horse, from California. Bayesian and maximum-likelihood phylogenetic analyses of all three genetic markers consistently identified two major clades, one of which consisted of A. phagocytophilum strains infecting woodrats and the other consisting of strains infecting sciurids (chipmunks and squirrels) as well as the dog and horse strains. In addition, analysis of the 23S–5S rRNA spacer region identified two unique and highly dissimilar clades of A. phagocytophilum strains infecting several lizard species. Our findings indicate that multiple unique strains of A. phagocytophilum with distinct host tropisms exist in California. Future epidemiological studies evaluating human and domestic animal risk should incorporate these distinctions. PMID:21921109

  12. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens

    PubMed Central

    Miao, Cui-Ping; Mi, Qi-Li; Qiao, Xin-Guo; Zheng, You-Kun; Chen, You-Wei; Xu, Li-Hua; Guan, Hui-Lin; Zhao, Li-Xing

    2015-01-01

    Background Rhizospheric fungi play an essential role in the plant–soil ecosystem, affecting plant growth and health. In this study, we evaluated the fungal diversity in the rhizosphere soil of 2-yr-old healthy Panax notoginseng cultivated in Wenshan, China. Methods Culture-independent Illumina MiSeq and culture-dependent techniques, combining molecular and morphological characteristics, were used to analyze the rhizospheric fungal diversity. A diffusion test was used to challenge the phytopathogens of P. notoginseng. Results A total of 16,130 paired-end reads of the nuclear ribosomal internal transcribed spacer 2 were generated and clustered into 860 operational taxonomic units at 97% sequence similarity. All the operational taxonomic units were assigned to five phyla and 79 genera. Zygomycota (46.2%) and Ascomycota (37.8%) were the dominant taxa; Mortierella and unclassified Mortierellales accounted for a large proportion (44.9%) at genus level. The relative abundance of Fusarium and Phoma sequences was high, accounting for 12.9% and 5.5%, respectively. In total, 113 fungal isolates were isolated from rhizosphere soil. They were assigned to five classes, eight orders (except for an Incertae sedis), 26 genera, and 43 species based on morphological characteristics and phylogenetic analysis of the internal transcribed spacer. Fusarium was the most isolated genus with six species (24 isolates, 21.2%). The abundance of Phoma was also relatively high (8.0%). Thirteen isolates displayed antimicrobial activity against at least one test fungus. Conclusion Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens. PMID:27158233

  13. Plant-Dependent Genotypic and Phenotypic Diversity of Antagonistic Rhizobacteria Isolated from Different Verticillium Host Plants

    PubMed Central

    Berg, Gabriele; Roskot, Nicolle; Steidle, Anette; Eberl, Leo; Zock, Angela; Smalla, Kornelia

    2002-01-01

    To study the effect of plant species on the abundance and diversity of bacterial antagonists, the abundance, the phenotypic diversity, and the genotypic diversity of rhizobacteria isolated from potato, oilseed rape, and strawberry and from bulk soil which showed antagonistic activity towards the soilborne pathogen Verticillium dahliae Kleb. were analyzed. Rhizosphere and soil samples were taken five times over two growing seasons in 1998 and 1999 from a randomized field trial. Bacterial isolates were obtained after plating on R2A (Difco, Detroit, Mich.) or enrichment in microtiter plates containing high-molecular-weight substrates followed by plating on R2A. A total of 5,854 bacteria isolated from the rhizosphere of strawberry, potato, or oilseed rape or bulk soil from fallow were screened by dual testing for in vitro antagonism towards Verticillium. The proportion of isolates with antagonistic activity was highest for strawberry rhizosphere (9.5%), followed by oilseed rape (6.3%), potato (3.7%), and soil (3.3%). The 331 Verticillium antagonists were identified by their fatty acid methyl ester profiles. They were characterized by testing their in vitro antagonism against other pathogenic fungi; their glucanolytic, chitinolytic, and proteolytic activities; and their BOX-PCR fingerprints. The abundance and composition of Verticillium antagonists was plant species dependent. A rather high proportion of antagonists from the strawberry rhizosphere was identified as Pseudomonas putida B (69%), while antagonists belonging to the Enterobacteriaceae (Serratia spp., Pantoea agglomerans) were mainly isolated from the rhizosphere of oilseed rape. For P. putida A and B plant-specific genotypes were observed, suggesting that these bacteria were specifically enriched in each rhizosphere. PMID:12089011

  14. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants.

    PubMed

    Berg, Gabriele; Roskot, Nicolle; Steidle, Anette; Eberl, Leo; Zock, Angela; Smalla, Kornelia

    2002-07-01

    To study the effect of plant species on the abundance and diversity of bacterial antagonists, the abundance, the phenotypic diversity, and the genotypic diversity of rhizobacteria isolated from potato, oilseed rape, and strawberry and from bulk soil which showed antagonistic activity towards the soilborne pathogen Verticillium dahliae Kleb. were analyzed. Rhizosphere and soil samples were taken five times over two growing seasons in 1998 and 1999 from a randomized field trial. Bacterial isolates were obtained after plating on R2A (Difco, Detroit, Mich.) or enrichment in microtiter plates containing high-molecular-weight substrates followed by plating on R2A. A total of 5,854 bacteria isolated from the rhizosphere of strawberry, potato, or oilseed rape or bulk soil from fallow were screened by dual testing for in vitro antagonism towards VERTICILLIUM: The proportion of isolates with antagonistic activity was highest for strawberry rhizosphere (9.5%), followed by oilseed rape (6.3%), potato (3.7%), and soil (3.3%). The 331 Verticillium antagonists were identified by their fatty acid methyl ester profiles. They were characterized by testing their in vitro antagonism against other pathogenic fungi; their glucanolytic, chitinolytic, and proteolytic activities; and their BOX-PCR fingerprints. The abundance and composition of Verticillium antagonists was plant species dependent. A rather high proportion of antagonists from the strawberry rhizosphere was identified as Pseudomonas putida B (69%), while antagonists belonging to the Enterobacteriaceae (Serratia spp., Pantoea agglomerans) were mainly isolated from the rhizosphere of oilseed rape. For P. putida A and B plant-specific genotypes were observed, suggesting that these bacteria were specifically enriched in each rhizosphere. PMID:12089011

  15. Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland

    PubMed Central

    Hanke, Dennis; Freuling, Conrad M.; Fischer, Susanne; Hueffer, Karsten; Hundertmark, Kris; Nadin-Davis, Susan; Marston, Denise; Fooks, Anthony R.; Bøtner, Anette; Mettenleiter, Thomas C.; Beer, Martin; Rasmussen, Thomas B.; Müller, Thomas F.; Höper, Dirk

    2016-01-01

    There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV) lineage (arctic-3), but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska) and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1–4) with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I – 3.VII) with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population structure

  16. Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland.

    PubMed

    Hanke, Dennis; Freuling, Conrad M; Fischer, Susanne; Hueffer, Karsten; Hundertmark, Kris; Nadin-Davis, Susan; Marston, Denise; Fooks, Anthony R; Bøtner, Anette; Mettenleiter, Thomas C; Beer, Martin; Rasmussen, Thomas B; Müller, Thomas F; Höper, Dirk

    2016-07-01

    There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV) lineage (arctic-3), but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska) and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1-4) with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I - 3.VII) with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population structure in

  17. Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome.

    PubMed

    Quinn, Robert A; Phelan, Vanessa V; Whiteson, Katrine L; Garg, Neha; Bailey, Barbara A; Lim, Yan Wei; Conrad, Douglas J; Dorrestein, Pieter C; Rohwer, Forest L

    2016-06-01

    Cystic fibrosis (CF) lungs are filled with thick mucus that obstructs airways and facilitates chronic infections. Pseudomonas aeruginosa is a significant pathogen of this disease that produces a variety of toxic small molecules. We used molecular networking-based metabolomics to investigate the chemistry of CF sputa and assess how the microbial molecules detected reflect the microbiome and clinical culture history of the patients. Metabolites detected included xenobiotics, P. aeruginosa specialized metabolites and host sphingolipids. The clinical culture and microbiome profiles did not correspond to the detection of P. aeruginosa metabolites in the same samples. The P. aeruginosa molecules that were detected in sputum did not match those from laboratory cultures. The pseudomonas quinolone signal (PQS) was readily detectable from cultured strains, but absent from sputum, even when its precursor molecules were present. The lack of PQS production in vivo is potentially due to the chemical nature of the CF lung environment, indicating that culture-based studies of this pathogen may not explain its behavior in the lung. The most differentially abundant molecules between CF and non-CF sputum were sphingolipids, including sphingomyelins, ceramides and lactosylceramide. As these highly abundant molecules contain the inflammatory mediator ceramide, they may have a significant role in CF hyperinflammation. This study demonstrates that the chemical makeup of CF sputum is a complex milieu of microbial, host and xenobiotic molecules. Detection of a bacterium by clinical culturing and 16S rRNA gene profiling do not necessarily reflect the active production of metabolites from that bacterium in a sputum sample. PMID:26623545

  18. Intestinal microbiota and species diversity of Campylobacter and Helicobacter spp. in migrating shorebirds in Delaware Bay.

    PubMed

    Ryu, Hodon; Grond, Kirsten; Verheijen, Bram; Elk, Michael; Buehler, Deborah M; Santo Domingo, Jorge W

    2014-03-01

    Using 16S rRNA gene sequencing analysis, we examined the bacterial diversity and the presence of opportunistic bacterial pathogens (i.e., Campylobacter and Helicobacter) in red knot (Calidris canutus; n = 40), ruddy turnstone (Arenaria interpres; n = 35), and semipalmated sandpiper (Calidris pusilla; n = 22) fecal samples collected during a migratory stopover in Delaware Bay. Additionally, we studied the occurrence of Campylobacter spp., enterococci, and waterfowl fecal source markers using quantitative PCR (qPCR) assays. Of 3,889 16S rRNA clone sequences analyzed, the bacterial community was mostly composed of Bacilli (63.5%), Fusobacteria (12.7%), Epsilonproteobacteria (6.5%), and Clostridia (5.8%). When epsilonproteobacterium-specific 23S rRNA gene clone libraries (i.e., 1,414 sequences) were analyzed, the sequences were identified as Campylobacter (82.3%) or Helicobacter (17.7%) spp. Specifically, 38.4%, 10.1%, and 26.0% of clone sequences were identified as C. lari (>99% sequence identity) in ruddy turnstone, red knot, and semipalmated sandpiper clone libraries, respectively. Other pathogenic species of Campylobacter, such as C. jejuni and C. coli, were not detected in excreta of any of the three bird species. Most Helicobacter-like sequences identified were closely related to H. pametensis (>99% sequence identity) and H. anseris (92% sequence identity). qPCR results showed that the occurrence and abundance of Campylobacter spp. was relatively high compared to those of fecal indicator bacteria, such as Enterococcus spp., E. faecalis, and Catellicoccus marimammalium. Overall, the results provide insights into the complexity of the shorebird gut microbial community and suggest that these migratory birds are important reservoirs of pathogenic Campylobacter species. PMID:24413599

  19. Intestinal Microbiota and Species Diversity of Campylobacter and Helicobacter spp. in Migrating Shorebirds in Delaware Bay

    PubMed Central

    Ryu, Hodon; Grond, Kirsten; Verheijen, Bram; Elk, Michael; Buehler, Deborah M.

    2014-01-01

    Using 16S rRNA gene sequencing analysis, we examined the bacterial diversity and the presence of opportunistic bacterial pathogens (i.e., Campylobacter and Helicobacter) in red knot (Calidris canutus; n = 40), ruddy turnstone (Arenaria interpres; n = 35), and semipalmated sandpiper (Calidris pusilla; n = 22) fecal samples collected during a migratory stopover in Delaware Bay. Additionally, we studied the occurrence of Campylobacter spp., enterococci, and waterfowl fecal source markers using quantitative PCR (qPCR) assays. Of 3,889 16S rRNA clone sequences analyzed, the bacterial community was mostly composed of Bacilli (63.5%), Fusobacteria (12.7%), Epsilonproteobacteria (6.5%), and Clostridia (5.8%). When epsilonproteobacterium-specific 23S rRNA gene clone libraries (i.e., 1,414 sequences) were analyzed, the sequences were identified as Campylobacter (82.3%) or Helicobacter (17.7%) spp. Specifically, 38.4%, 10.1%, and 26.0% of clone sequences were identified as C. lari (>99% sequence identity) in ruddy turnstone, red knot, and semipalmated sandpiper clone libraries, respectively. Other pathogenic species of Campylobacter, such as C. jejuni and C. coli, were not detected in excreta of any of the three bird species. Most Helicobacter-like sequences identified were closely related to H. pametensis (>99% sequence identity) and H. anseris (92% sequence identity). qPCR results showed that the occurrence and abundance of Campylobacter spp. was relatively high compared to those of fecal indicator bacteria, such as Enterococcus spp., E. faecalis, and Catellicoccus marimammalium. Overall, the results provide insights into the complexity of the shorebird gut microbial community and suggest that these migratory birds are important reservoirs of pathogenic Campylobacter species. PMID:24413599

  20. A Family of Diverse Kunitz Inhibitors from Echinococcus granulosus Potentially Involved in Host-Parasite Cross-Talk

    PubMed Central

    Margenat, Mariana; Durán, Rosario; González-Sapienza, Gualberto; Graña, Martín; Parkinson, John; Maizels, Rick M.; Salinas, Gustavo; Alvarez, Beatriz; Fernández, Cecilia

    2009-01-01

    The cestode Echinococcus granulosus, the agent of hydatidosis/echinococcosis, is remarkably well adapted to its definitive host. However, the molecular mechanisms underlying the successful establishment of larval worms (protoscoleces) in the dog duodenum are unknown. With the aim of identifying molecules participating in the E. granulosus-dog cross-talk, we surveyed the transcriptomes of protoscoleces and protoscoleces treated with pepsin at pH 2. This analysis identified a multigene family of secreted monodomain Kunitz proteins associated mostly with pepsin/H+-treated worms, suggesting that they play a role at the onset of infection. We present the relevant molecular features of eight members of the E. granulosus Kunitz family (EgKU-1 – EgKU-8). Although diverse, the family includes three pairs of close paralogs (EgKU-1/EgKU-4; EgKU-3/EgKU-8; EgKU-6/EgKU-7), which would be the products of recent gene duplications. In addition, we describe the purification of EgKU-1 and EgKU-8 from larval worms, and provide data indicating that some members of the family (notably, EgKU-3 and EgKU-8) are secreted by protoscoleces. Detailed kinetic studies with native EgKU-1 and EgKU-8 highlighted their functional diversity. Like most monodomain Kunitz proteins, EgKU-8 behaved as a slow, tight-binding inhibitor of serine proteases, with global inhibition constants (KI*) versus trypsins in the picomolar range. In sharp contrast, EgKU-1 did not inhibit any of the assayed peptidases. Interestingly, molecular modeling revealed structural elements associated with activity in Kunitz cation-channel blockers. We propose that this family of inhibitors has the potential to act at the E. granulosus-dog interface and interfere with host physiological processes at the initial stages of infection. PMID:19759914

  1. Ectomycorrhizal fungus diversity and community structure with natural and cultivated truffle hosts: applying lessons learned to future truffle culture.

    PubMed

    De Miguel, Ana María; Águeda, Beatriz; Sánchez, Sergio; Parladé, Javier

    2014-04-01

    Since the first truffle plantations were established in France, Italy and other parts in the world, many studies have been carried out to improve their productivity and sustainability. Success of plantations is clearly related to the mycorrhizal status of the host trees over the years, from inoculated seedlings to truffle-producing trees. The experience gained in monitoring the ectomycorrhizal fungus status in cultivated truffle grounds has allowed us to develop an extensive catalogue of the ectomycorrhizal fungi present in truffle plantations. Herein, we summarize fungal community data from 85 references that represent different truffle studies in natural habitats and plantations. Approximately 25% of the ectomycorrhizae reported in the 85 references are common to most of the studies. In general, more fungal species are detected in productive plantations than in the non-productive ones. Truffle plantations display a diverse ectomycorrhizal fungal community, in which species of the genus Tuber are well represented. Tuber rufum and some members of Boletales are typically restricted to productive truffle plots. On the other hand, Hebeloma, Laccaria and Russula species are mostly associated with unproductive plots. Ectomycorrhizae belonging to Thelephoraceae are frequently found in mature truffle orchards but do not seem to affect sporocarp production. Several biotic and abiotic factors affect the ectomycorrhizal fungus communities associated with truffle orchards. Among them are plantation age, host species and its growth, the surrounding environment (particularly the presence of other ectomycorrhizal hosts), and plantation management. Understanding the ectomycorrhizal fungal communities inhabiting different plantations may give us clues about the dynamics of the targeted truffles and the possibility of identifying mycorrhizal fungal species that are good indicators of successful truffle plantations. PMID:24424507

  2. Host plant richness explains diversity of ectomycorrhizal fungi: Response to the comment of Tedersoo et al. (2014).

    PubMed

    Gao, Cheng; Shi, Nan-Nan; Liu, Yue-Xing; Zheng, Yong; Ding, Qiong; Mi, Xiang-Cheng; Ma, Ke-Ping; Wubet, Tesfaye; Buscot, François; Guo, Liang-Dong

    2014-03-01

    Exploring the relationships between the biodiversity of groups of interacting organisms yields insight into ecosystem stability and function (Hooper et al. ; Wardle ). We demonstrated positive relationships between host plant richness and ectomycorrhizal (EM) fungal diversity both in a field study in subtropical China (Gutianshan) and in a meta-analysis of temperate and tropical studies (Gao et al. ). However, based on re-evaluation of our data sets, Tedersoo et al. () argue that the observed positive correlation between EM fungal richness and EM plant richness at Gutianshan and also in our metastudies was based mainly from (i) a sampling design with inconsistent species pool and (ii) poor data compilation for the meta-analysis. Accordingly, we checked our data sets and repeated the analysis performed by Tedersoo et al. (). In contrast to Tedersoo et al. (), our re-analysis still confirms a positive effect of plant richness on EM fungal diversity in Gutianshan, temperate and tropical ecosystems, respectively. PMID:24428237

  3. Diversity, host switching and evolution of Plasmodium vivax infecting African great apes

    PubMed Central

    Prugnolle, Franck; Rougeron, Virginie; Becquart, Pierre; Berry, Antoine; Makanga, Boris; Rahola, Nil; Arnathau, Céline; Ngoubangoye, Barthélémy; Menard, Sandie; Willaume, Eric; Ayala, Francisco J.; Fontenille, Didier; Ollomo, Benjamin; Durand, Patrick; Paupy, Christophe; Renaud, François

    2013-01-01

    Plasmodium vivax is considered to be absent from Central and West Africa because of the protective effect of Duffy negativity. However, there are reports of persons returning from these areas infected with this parasite and observations suggesting the existence of transmission. Among the possible explanations for this apparent paradox, the existence of a zoonotic reservoir has been proposed. May great apes be this reservoir? We analyze the mitochondrial and nuclear genetic diversity of P. vivax parasites isolated from great apes in Africa and compare it to parasites isolated from travelers returning from these regions of Africa, as well as to human isolates distributed all over the world. We show that the P. vivax sequences from parasites of great apes form a clade genetically distinct from the parasites circulating in humans. We show that this clade’s parasites can be infectious to humans by describing the case of a traveler returning from the Central African Republic infected with one of them. The relationship between this P. vivax clade in great apes and the human isolates is discussed. PMID:23637341

  4. Grass Hosts Harbor More Diverse Isolates of Puccinia striiformis Than Cereal Crops.

    PubMed

    Cheng, P; Chen, X M; See, D R

    2016-04-01

    Puccinia striiformis causes stripe rust on cereal crops and many grass species. However, it is not clear whether the stripe rust populations on grasses are able to infect cereal crops and how closely they are related to each other. In this study, 103 isolates collected from wheat, barley, triticale, rye, and grasses in the United States were characterized by virulence tests and simple sequence repeat (SSR) markers. Of 69 pathotypes identified, 41 were virulent on some differentials of wheat only, 10 were virulent on some differentials of barley only, and 18 were virulent on some differentials of both wheat and barley. These pathotypes were clustered into three groups: group one containing isolates from wheat, triticale, rye, and grasses; group two isolates were from barley and grasses; and group three isolates were from grasses and wheat. SSR markers identified 44 multilocus genotypes (MLGs) and clustered them into three major molecular groups (MG) with MLGs in MG3 further classified into three subgroups. Isolates from cereal crops were present in one or more of the major or subgroups, but not all, whereas grass isolates were present in all of the major and subgroups. The results indicate that grasses harbor more diverse isolates of P. striiformis than the cereals. PMID:26667189

  5. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs.

    PubMed

    Wang, Weimin; Li, Chong; Li, Fadi; Wang, Xiaojuan; Zhang, Xiaoxue; Liu, Ting; Nian, Fang; Yue, Xiangpeng; Li, Fei; Pan, Xiangyu; La, Yongfu; Mo, Futao; Wang, Fangbin; Li, Baosheng

    2016-01-01

    Early consumption of starter feed promotes rumen development in lambs. We examined rumen development in lambs fed starter feed for 5 weeks using histological and biochemical analyses and by performing high-throughput sequencing in rumen tissues. Additionally, rumen contents of starter feed-fed lambs were compared to those of breast milk-fed controls. Our physiological and biochemical findings revealed that early starter consumption facilitated rumen development, changed the pattern of ruminal fermentation, and increased the amylase and carboxymethylcellulase activities of rumen micro-organisms. RNA-seq analysis revealed 225 differentially expressed genes between the rumens of breast milk- and starter feed-fed lambs. These DEGs were involved in many metabolic pathways, particularly lipid and carbohydrate metabolism, and included HMGCL and HMGCS2. Sequencing analysis of 16S rRNA genes revealed that ruminal bacterial communities were more diverse in breast milk-than in starter feed-fed lambs, and each group had a distinct microbiota. We conclude that early starter feeding is beneficial to rumen development and physiological function in lambs. The underlying mechanism may involve the stimulation of ruminal ketogenesis and butanoate metabolism via HMGCL and HMGCS2 combined with changes in the fermentation type induced by ruminal microbiota. Overall, this study provides insights into the molecular mechanisms of rumen development in sheep. PMID:27576848

  6. Differential host susceptibility and bacterial virulence factors driving Klebsiella liver abscess in an ethnically diverse population.

    PubMed

    Lee, I Russel; Molton, James S; Wyres, Kelly L; Gorrie, Claire; Wong, Jocelyn; Hoh, Chu Han; Teo, Jeanette; Kalimuddin, Shirin; Lye, David C; Archuleta, Sophia; Holt, Kathryn E; Gan, Yunn-Hwen

    2016-01-01

    Hypervirulent Klebsiella pneumoniae is an emerging cause of community-acquired pyogenic liver abscess. First described in Asia, it is now increasingly recognized in Western countries, commonly afflicting those with Asian descent. This raises the question of genetic predisposition versus geospecific strain acquisition. We leveraged on the Antibiotics for Klebsiella Liver Abscess Syndrome Study (A-KLASS) clinical trial ongoing in ethnically diverse Singapore, to prospectively examine the profiles of 70 patients together with their isolates' genotypic and phenotypic characteristics. The majority of isolates belonged to capsule type K1, a genetically homogenous group corresponding to sequence-type 23. The remaining K2, K5, K16, K28, K57 and K63 isolates as well as two novel cps isolates were genetically heterogeneous. K1 isolates carried higher frequencies of virulence-associated genes including rmpA (regulator of mucoid phenotype A), kfu (Klebsiella ferric uptake transporter), iuc (aerobactin), iro (salmochelin) and irp (yersiniabactin) than non-K1 isolates. The Chinese in our patient cohort, mostly non-diabetic, had higher prevalence of K1 infection than the predominantly diabetic non-Chinese (Malays, Indian and Caucasian). This differential susceptibility to different capsule types among the various ethnic groups suggests patterns of transmission (e.g. environmental source, familial transmission) and/or genetic predisposition unique to each race despite being in the same geographical location. PMID:27406977

  7. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs

    PubMed Central

    Wang, Weimin; Li, Chong; Li, Fadi; Wang, Xiaojuan; Zhang, Xiaoxue; Liu, Ting; Nian, Fang; Yue, Xiangpeng; Li, Fei; Pan, Xiangyu; La, Yongfu; Mo, Futao; Wang, Fangbin; Li, Baosheng

    2016-01-01

    Early consumption of starter feed promotes rumen development in lambs. We examined rumen development in lambs fed starter feed for 5 weeks using histological and biochemical analyses and by performing high-throughput sequencing in rumen tissues. Additionally, rumen contents of starter feed-fed lambs were compared to those of breast milk-fed controls. Our physiological and biochemical findings revealed that early starter consumption facilitated rumen development, changed the pattern of ruminal fermentation, and increased the amylase and carboxymethylcellulase activities of rumen micro-organisms. RNA-seq analysis revealed 225 differentially expressed genes between the rumens of breast milk- and starter feed-fed lambs. These DEGs were involved in many metabolic pathways, particularly lipid and carbohydrate metabolism, and included HMGCL and HMGCS2. Sequencing analysis of 16S rRNA genes revealed that ruminal bacterial communities were more diverse in breast milk-than in starter feed-fed lambs, and each group had a distinct microbiota. We conclude that early starter feeding is beneficial to rumen development and physiological function in lambs. The underlying mechanism may involve the stimulation of ruminal ketogenesis and butanoate metabolism via HMGCL and HMGCS2 combined with changes in the fermentation type induced by ruminal microbiota. Overall, this study provides insights into the molecular mechanisms of rumen development in sheep. PMID:27576848

  8. Differential host susceptibility and bacterial virulence factors driving Klebsiella liver abscess in an ethnically diverse population

    PubMed Central

    Lee, I. Russel; Molton, James S.; Wyres, Kelly L.; Gorrie, Claire; Wong, Jocelyn; Hoh, Chu Han; Teo, Jeanette; Kalimuddin, Shirin; Lye, David C.; Archuleta, Sophia; Holt, Kathryn E.; Gan, Yunn-Hwen

    2016-01-01

    Hypervirulent Klebsiella pneumoniae is an emerging cause of community-acquired pyogenic liver abscess. First described in Asia, it is now increasingly recognized in Western countries, commonly afflicting those with Asian descent. This raises the question of genetic predisposition versus geospecific strain acquisition. We leveraged on the Antibiotics for Klebsiella Liver Abscess Syndrome Study (A-KLASS) clinical trial ongoing in ethnically diverse Singapore, to prospectively examine the profiles of 70 patients together with their isolates’ genotypic and phenotypic characteristics. The majority of isolates belonged to capsule type K1, a genetically homogenous group corresponding to sequence-type 23. The remaining K2, K5, K16, K28, K57 and K63 isolates as well as two novel cps isolates were genetically heterogeneous. K1 isolates carried higher frequencies of virulence-associated genes including rmpA (regulator of mucoid phenotype A), kfu (Klebsiella ferric uptake transporter), iuc (aerobactin), iro (salmochelin) and irp (yersiniabactin) than non-K1 isolates. The Chinese in our patient cohort, mostly non-diabetic, had higher prevalence of K1 infection than the predominantly diabetic non-Chinese (Malays, Indian and Caucasian). This differential susceptibility to different capsule types among the various ethnic groups suggests patterns of transmission (e.g. environmental source, familial transmission) and/or genetic predisposition unique to each race despite being in the same geographical location. PMID:27406977

  9. Uranium-series disequilibria as a means to study recent migration of uranium in a sandstone-hosted uranium deposit, NW China.

    PubMed

    Min, Maozhong; Peng, Xinjian; Wang, Jinping; Osmond, J K

    2005-07-01

    Uranium concentration and alpha specific activities of uranium decay series nuclides (234)U, (238)U, (230)Th, (232)Th and (226)Ra were measured for 16 oxidized host sandstone samples, 36 oxic-anoxic (mineralized) sandstone samples and three unaltered primary sandstone samples collected from the Shihongtan deposit. The results show that most of the ores and host sandstones have close to secular equilibrium alpha activity ratios for (234)U/(238)U, (230)Th/(238)U, (230)Th/(234)U and (226)Ra/(230)Th, indicating that intensive groundwater-rock/ore interaction and uranium migration have not taken place in the deposit during the last 1.0 Ma. However, some of the old uranium ore bodies have locally undergone leaching in the oxidizing environment during the past 300 ka to 1.0 Ma or to the present, and a number of new U ore bodies have grown in the oxic-anoxic transition (mineralized) subzone during the past 1.0 Ma. Locally, uranium leaching has taken place during the past 300 ka to 1.0 Ma, and perhaps is still going on now in some sandstones of the oxidizing subzone. However, uranium accumulation has locally occurred in some sandstones of the oxidizing environment during the past 1 ka to 1.0 Ma, which may be attributed to adsorption of U(VI) by clays contained in oxidized sandstones. A recent accumulation of uranium has locally taken place within the unaltered sandstones of the primary subzone close to the oxic-anoxic transition environment during the past 300 ka to 1.0 Ma. Results from the present study also indicate that uranium-series disequilibrium is an important tool to trace recent migration of uranium occurring in sandstone-hosted U deposits during the past 1.0 Ma and to distinguish the oxidation-reduction boundary. PMID:15866456

  10. Diversity of host species and strains of Pneumocystis carinii is based on rRNA sequences.

    PubMed Central

    Shah, J S; Pieciak, W; Liu, J; Buharin, A; Lane, D J

    1996-01-01

    We have amplified by PCR Pneumocystis carinii cytoplasmic small-subunit rRNA (variously referred to as 16S-like or 18S-like rRNA) genes from DNA extracted from bronchoalveolar lavage and induced sputum specimens from patients positive for P. carinii and from infected ferret lung tissue. The amplification products were cloned into pUC18, and individual clones were sequenced. Comparison of the determined sequences with each other and with published rat and partial human P.carinii small-subunit rRNA gene sequences reveals that, although all P. carinii small-subunit rRNAs are closely related (approximately 96% identity), small-subunit rRNA genes isolated from different host species (human, rat, and ferret) exhibit distinctive patterns of sequence variation. Two types of sequences were isolated from the infected ferret lung tissue, one as a predominant species and the other as a minor species. There was 96% identity between the two types. In situ hybridization of the infected ferret lung tissue with oligonucleotide probes specific for each type revealed that there were two distinct strains of P. carinii present in the ferret lung tissue. Unlike the ferret P. carinii isolates, the small-subunit rRNA gene sequences from different human P. carinii isolates have greater than 99% identity and are distinct from all rat and ferret sequences so far inspected or reported in the literature. Southern blot hybridization analysis of PCR amplification products from several additional bronchoalveolar lavage or induced sputum specimens from P. carinii-infected patients, using a 32P-labeled oligonucleotide probe specific for human P. carinii, also suggests that all of the human P. carinii isolates are identical. These findings indicate that human P. carinii isolates may represent a distinct species of P. carinii distinguishable from rat and ferret P. carinii on the basis of characterization of small-subunit rRNA gene sequences. PMID:8770515

  11. Correlative Association between Resident Plasmids and the Host Chromosome in a Diverse Agrobacterium Soil Population

    PubMed Central

    Bouzar, Hacène; Ouadah, Djaouida; Krimi, Zoulikha; Jones, Jeffrey B.; Trovato, Maurizio; Petit, Annik; Dessaux, Yves

    1993-01-01

    Soil samples collected from a fallow field which had not been cultivated for 5 years harbored a population of Agrobacterium spp. estimated at 3 × 107 CFU/g. Characterization of 72 strains selected from four different isolation media showed the presence of biovar 1 (56%) and bv. 2 (44%) strains. Pathogenicity assays on five different test plants revealed a high proportion (33%) of tumorigenic strains in the resident population. All tumorigenic strains belonged to bv. 1. Differentiation of the strains by restriction fragment length polymorphism analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cellular proteins, and utilization patterns of 95 carbon substrates (Biolog GN microplate) revealed a diversified bv. 1 population, composed of five distinct chromosomal backgrounds (chr A, C, D, E, and F), and a homogeneous bv. 2 population (chr B). chr A, B, C, and D were detected at similar levels throughout the study site. According to opine metabolism, pathogenicity, and agrocin sensitivity, chr A strains carried a nopaline Ti plasmid (pTi), whereas chr C strains had an octopine pTi. In addition, four of six nontumorigenic bv. 1 strains (two chr D, one chr E, and one chr F) had distinct and unusual opine catabolism patterns. chr B (bv. 2) strains were nonpathogenic and catabolized nopaline. Although agrocin sensitivity is a pTi-borne trait, 14 chr B strains were sensitive to agrocin 84, apparently harboring a defective nopaline pTi similar to pAtK84b. The other two chr B strains were agrocin resistant. The present analysis of chromosomal and plasmid phenotypes suggests that in this Agrobacterium soil population, there is a preferential association between the resident plasmids and their bacterial host. Images PMID:16348927

  12. DIVERSITY OF SHORT GAMMA-RAY BURST AFTERGLOWS FROM COMPACT BINARY MERGERS HOSTING PULSARS

    SciTech Connect

    Holcomb, Cole; Ramirez-Ruiz, Enrico; De Colle, Fabio; Montes, Gabriela

    2014-07-20

    Short-duration gamma-ray bursts (sGRBs) are widely believed to result from the mergers of compact binaries. This model predicts an afterglow that bears the characteristic signatures of a constant, low-density medium, including a smooth prompt-afterglow transition, and a simple temporal evolution. However, these expectations are in conflict with observations for a non-negligible fraction of sGRB afterglows. In particular, the onset of the afterglow phase for some of these events appears to be delayed and, in addition, a few of them exhibit late-time rapid fading in their light curves. We show that these peculiar observations can be explained independently of ongoing central engine activity if some sGRB progenitors are compact binaries hosting at least one pulsar. The Poynting flux emanating from the pulsar companion can excavate a bow-shock cavity surrounding the binary. If this cavity is larger than the shock deceleration length scale in the undisturbed interstellar medium, then the onset of the afterglow will be delayed. Should the deceleration occur entirely within the swept-up thin shell, a rapid fade in the light curve will ensue. We identify two types of pulsar that can achieve the conditions necessary for altering the afterglow: low-field, long-lived pulsars, and high-field pulsars. We find that a sizable fraction (≈20%-50%) of low-field pulsars are likely to reside in neutron star binaries based on observations, while their high-field counterparts are not. Hydrodynamical calculations motivated by this model are shown to be in good agreement with observations of sGRB afterglow light curves.

  13. Identifying Host Sources of Fecal Pollution: Diversity of Escherichia coli in Confined Dairy and Swine Production Systems

    PubMed Central

    Lu, Zexun; Lapen, David; Scott, Andrew; Dang, Angela; Topp, Edward

    2005-01-01

    Repetitive extragenic palindromic PCR fingerprinting of Escherichia coli is one microbial source tracking approach for identifying the host source origin of fecal pollution in aquatic systems. The construction of robust known-source libraries is expensive and requires an informed sampling strategy. In many types of farming systems, waste is stored for several months before being released into the environment. In this study we analyzed, by means of repetitive extragenic palindromic PCR using the enterobacterial repetitive intergenic consensus primers and comparative analysis using the Bionumerics software, collections of E. coli obtained from a dairy farm and from a swine farm, both of which stored their waste as a slurry in holding tanks. In all fecal samples, obtained from either barns or holding tanks, the diversity of the E. coli populations was underrepresented by collections of 500 isolates. In both the dairy and the swine farms, the diversity of the E. coli community was greater in the manure holding tank than in the barn, when they were sampled on the same date. In both farms, a comparison of stored manure samples collected several months apart suggested that the community composition changed substantially in terms of the detected number, absolute identity, and relative abundance of genotypes. Comparison of E. coli populations obtained from 10 different locations in either holding tank suggested that spatial variability in the E. coli community should be accounted for when sampling. Overall, the diversity in E. coli populations in manure slurry storage facilities is significant and likely is problematic with respect to library construction for microbial source tracking applications. PMID:16204513

  14. Genetic diversity and tissue and host specificity of Grapevine vein clearing virus.

    PubMed

    Guo, Qiang; Honesty, Shae; Xu, Mei Long; Zhang, Yu; Schoelz, James; Qiu, Wenping

    2014-05-01

    Grapevine vein clearing virus (GVCV) is a new badnavirus in the family Caulimoviridae that is closely associated with an emerging vein-clearing and vine decline disease in the Midwest region of the United States. It has a circular, double-stranded DNA genome of 7,753 bp that is predicted to encode three open reading frames (ORFs) on the plus-strand DNA. The largest ORF encodes a polyprotein that contains domains for a reverse transcriptase (RT), an RNase H, and a DNA-binding zinc-finger protein (ZF). In this study, two genomic regions, a 570-bp region of the RT domain and a 540-bp region of the ZF domain were used for an analysis of the genetic diversity of GVCV populations. In total, 39 recombinant plasmids were sequenced. These plasmids consisted of three individual clones from each of 13 isolates sampled from five grape varieties in three states. The sequence variants of GVCV could not be phylogenetically grouped into clades according to geographical location and grape variety. Codons of RT or ZF regions are subject to purifying selection pressure. Quantitative polymerase chain reaction assays indicated that GVCV accumulates abundantly in the petioles and least in the root tip tissue. Upon grafting of GVCV-infected buds onto four major grape cultivars, GVCV was not detected in the grafted 'Chambourcin' vine but was present in the grafted 'Vidal Blanc', 'Cayuga White', and 'Traminette' vines, suggesting that Chambourcin is resistant to GVCV. Furthermore, seven nucleotides were changed in the sequenced RT and ZF regions of GVCV from a grafted Traminette vine and one in the sequenced regions of GVCV from grafted Cayuga White but no changes were found in the sequenced regions of GVCV in the grafted Vidal Blanc. The results provide a genetic snapshot of GVCV populations, which will yield knowledge important for monitoring GVCV epidemics and for preventing the loss of grape production that is associated with GVCV. PMID:24502205

  15. Mitochondrial genome diversity at the Bering Strait area highlights prehistoric human migrations from Siberia to northern North America.

    PubMed

    Dryomov, Stanislav V; Nazhmidenova, Azhar M; Shalaurova, Sophia A; Morozov, Igor V; Tabarev, Andrei V; Starikovskaya, Elena B; Sukernik, Rem I

    2015-10-01

    The patterns of prehistoric migrations across the Bering Land Bridge are far from being completely understood: there still exists a significant gap in our knowledge of the population history of former Beringia. Here, through comprehensive survey of mitochondrial DNA genomes retained in 'relic' populations, the Maritime Chukchi, Siberian Eskimos, and Commander Aleuts, we explore genetic contribution of prehistoric Siberians/Asians to northwestern Native Americans. Overall, 201 complete mitochondrial sequences (52 new and 149 published) were selected in the reconstruction of trees encompassing mtDNA lineages that are restricted to Coastal Chukotka and Alaska, the Canadian Arctic, Greenland, and the Aleutian chain. Phylogeography of the resulting mtDNA genomes (mitogenomes) considerably extends the range and intrinsic diversity of haplogroups (eg, A2a, A2b, D2a, and D4b1a2a1) that emerged and diversified in postglacial central Beringia, defining independent origins of Neo-Eskimos versus Paleo-Eskimos, Aleuts, and Tlingit (Na-Dene). Specifically, Neo-Eskimos, ancestral to modern Inuit, not only appear to be of the High Arctic origin but also to harbor Altai/Sayan-related ancestry. The occurrence of the haplogroup D2a1b haplotypes in Chukotka (Sireniki) introduces the possibility that the traces of Paleo-Eskimos have not been fully erased by spread of the Neo-Eskimos or their descendants. Our findings are consistent with the recurrent gene flow model of multiple streams of expansions to northern North America from northeastern Eurasia in late Pleistocene-early Holocene. PMID:25564040

  16. Genetic Diversity in Enterocytozoon bieneusi Isolates from Dogs and Cats in China: Host Specificity and Public Health Implications

    PubMed Central

    Karim, Md Robiul; Dong, Haiju; Yu, Fuchang; Jian, Fuchun; Wang, Rongjun; Zhang, Sumei; Rume, Farzana Islam; Ning, Changshen

    2014-01-01

    To explore the genetic diversity, host specificity, and zoonotic potential of Enterocytozoon bieneusi, feces from 348 stray and pet dogs and 96 pet cats from different locations in China were examined by internal transcribed spacer (ITS)-based PCR. E. bieneusi was detected in 15.5% of the dogs, including 20.5% of stray dogs and 11.7% of pet dogs, and in 11.5% of the pet cats. Higher infection rates were recorded in the >2-year and the 1- to 2-year age groups in dogs and cats, respectively. Altogether, 24 genotypes, including 11 known and 13 new, were detected in 65 infected animals. In 54 positive dogs, 18 genotypes, 9 known (PtEbIX, O, D, CM1, EbpA, Peru8, type IV, EbpC, and PigEBITS5) and 9 new (CD1 to CD9), were found. In contrast, 8 genotypes, 4 known (D, BEB6, I, and PtEbIX) and 4 new (CC1 to CC4), were identified in 11 infected cats. The dominant genotype in dogs was PtEbIX (26/54). Phylogenetic analysis revealed that 8 known genotypes (D, Peru8, type IV, CM1, EbpC, PigEBITS5, O, and EbpA) and 7 new genotypes (CD1 to CD4 and CC2 to CC4) were the members of zoonotic group 1, whereas genotypes CD7, CD8, and CD9 together with PtEbIX belonged to the dog-specific group, and genotypes CD6 and CC1 were placed in group 2 with BEB6 and I. Conversely, genotype CD5 clustered with CM4 without belonging to any previous groups. We conclude that zoonotic genotypes are common in dogs and cats, as are host-specific genotypes in dogs. PMID:24989604

  17. Clonal diversity of a lizard malaria parasite, Plasmodium mexicanum, in its vertebrate host, the western fence lizard: role of variation in transmission intensity over time and space.

    PubMed

    Vardo, A M; Schall, J J

    2007-07-01

    Within the vertebrate host, infections of a malaria parasite (Plasmodium) could include a single genotype of cells (single-clone infections) or two to several genotypes (multiclone infections). Clonal diversity of infection plays an important role in the biology of the parasite, including its life history, virulence, and transmission. We determined the clonal diversity of Plasmodium mexicanum, a lizard malaria parasite at a study region in northern California, using variable microsatellite markers, the first such study for any malaria parasite of lizards or birds (the most common hosts for Plasmodium species). Multiclonal infections are common (50-88% of infections among samples), and measures of genetic diversity for the metapopulation (expected heterozygosity, number of alleles per locus, allele length variation, and effective population size) all indicated a substantial overall genetic diversity. Comparing years with high prevalence (1996-1998 = 25-32% lizards infected), and years with low prevalence (2001-2005 = 6-12%) found fewer alleles in samples taken from the low-prevalence years, but no reduction in overall diversity (H = 0.64-0.90 among loci). In most cases, rare alleles appeared to be lost as prevalence declined. For sites chronically experiencing low transmission intensity (prevalence approximately 1%), overall diversity was also high (H = 0.79-0.91), but there were fewer multiclonal infections. Theory predicts an apparent excess in expected heterozygosity follows a genetic bottleneck. Evidence for such a distortion in genetic diversity was observed after the drop in parasite prevalence under the infinite alleles mutation model but not for the stepwise mutation model. The results are similar to those reported for the human malaria parasite, Plasmodium falciparum, worldwide, and support the conclusion that malaria parasites maintain high genetic diversity in host populations despite the potential for loss in alleles during the transmission cycle or

  18. Molecular expression and characterization of a homologue of host cytokine macrophage migration inhibitory factor from Trichinella spp.

    PubMed

    Wu, Z; Boonmars, T; Nagano, I; Nakada, T; Takahashi, Y

    2003-06-01

    A homologue of cytokine macrophage migration inhibitory factor (MIF) from complementary DNA (cDNA) of Trichinella spiralis and Trichinella pseudospiralis was expressed in Escherichia coli and characterized. The sequence analysis indicated that the predicted amino acid sequence has an identity of 57 and 44% with the MIF of nematodes Trichuris trichiura and Brugia malayi respectively, and 41 and 40% with that of a human and a mouse, respectively. The identity in sequences of cDNA and amino acids between T. spiralis and T. pseudospiralis was 91 and 86%, respectively. Western blot analysis showed that anti-MIF antibodies positively stained proteins from the extracts of adult worms or muscle larvae migrating at about 12.5 kDa (3 isoforms with isoelectric point 5.23, 5.72, and 6.29). Semiquantitative reverse transcriptase-polymerase chain reaction revealed that the gene was expressed in various developmental stages, including in adult worms, newborn larvae, precyst muscle larvae, and postcyst muscle larvae, although there was difference in the expression level among these stages. The immunohistochemical analysis showed the MIF exists in the muscle cells of the body wall and some stichocytes of larvae. Histopathology of T. spiralis-infected muscles revealed an accumulation of mononuclear cells around the worms, and immunocytochemical staining showed these cells were not macrophages. Mononuclear cells, including macrophages, were, however, observed in cardiac muscles where the parasite did not encyst. Macrophages accumulated around the Sephadex beads transplanted in mice subcutaneously, but this accumulation was profoundly inhibited when the beads were pretreated with MIF recombinant protein. PMID:12880250

  19. Disease ecology in the Galápagos Hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies.

    PubMed

    Whiteman, Noah Kerness; Matson, Kevin D; Bollmer, Jennifer L; Parker, Patricia G

    2006-04-01

    An increased susceptibility to disease is one hypothesis explaining how inbreeding hastens extinction in island endemics and threatened species. Experimental studies show that disease resistance declines as inbreeding increases, but data from in situ wildlife systems are scarce. Genetic diversity increases with island size across the entire range of an extremely inbred Galápagos endemic bird, providing the context for a natural experiment examining the effects of inbreeding on disease susceptibility. Extremely inbred populations of Galápagos hawks had higher parasite abundances than relatively outbred populations. We found a significant island effect on constitutively produced natural antibody (NAb) levels and inbred populations generally harboured lower average and less variable NAb levels than relatively outbred populations. Furthermore, NAb levels explained abundance of amblyceran lice, which encounter the host immune system. This is the first study linking inbreeding, innate immunity and parasite load in an endemic, in situ wildlife population and provides a clear framework for assessment of disease risk in a Galápagos endemic. PMID:16618672

  20. Correlations between the ages of Alnus host species and the genetic diversity of associated endosymbiotic Frankia strains from nodules.

    PubMed

    Dai, Yumei; Zhang, Chenggang; Xiong, Zhi; Zhang, Zhongze

    2005-05-01

    Nodule samples were collected from four alder species: Alnus nepalensis, A. sibirica, A. tinctoria and A. mandshurica growing in different environments on Gaoligong Mountains, Yunnan Province of Southwest China and on Changbai Mountains, Jilin Province of Northeast China. PCR-RFLP analysis of the IGS between nifD and nifK genes was directly applied to uncultured Frankia strains in the nodules. A total of 21 restriction patterns were obtained. The Frankia population in the nodules of A. nepalensis had the highest genetic diversity among all four Frankia populations; by contrast, the population in the nodules of A. mandshurica had the lowest degree of divergence; the ones in the nodules of A. sibirica and A. tinctoria were intermediate. A dendrogram, which was constructed based on the genetic distance between the restriction patterns, indicated that Frankia strains from A. sibirica and A. tinctoria had a close genetic relationship. Frankia strains from A. nepalensis might be the ancestor of Frankia strains infecting other Alnus species. From these results and the inference of the ages of Alnus host species, it is deduced that there was a co-evolution between Alnus and its microsymbiont Frankia in China. PMID:16089332

  1. Disease ecology in the Galápagos Hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies

    PubMed Central

    Whiteman, Noah Kerness; Matson, Kevin D; Bollmer, Jennifer L; Parker, Patricia G

    2005-01-01

    An increased susceptibility to disease is one hypothesis explaining how inbreeding hastens extinction in island endemics and threatened species. Experimental studies show that disease resistance declines as inbreeding increases, but data from in situ wildlife systems are scarce. Genetic diversity increases with island size across the entire range of an extremely inbred Galápagos endemic bird, providing the context for a natural experiment examining the effects of inbreeding on disease susceptibility. Extremely inbred populations of Galápagos hawks had higher parasite abundances than relatively outbred populations. We found a significant island effect on constitutively produced natural antibody (NAb) levels and inbred populations generally harboured lower average and less variable NAb levels than relatively outbred populations. Furthermore, NAb levels explained abundance of amblyceran lice, which encounter the host immune system. This is the first study linking inbreeding, innate immunity and parasite load in an endemic, in situ wildlife population and provides a clear framework for assessment of disease risk in a Galápagos endemic. PMID:16618672

  2. Pseudomonas aeruginosa Cell Membrane Protein Expression from Phenotypically Diverse Cystic Fibrosis Isolates Demonstrates Host-Specific Adaptations.

    PubMed

    Kamath, Karthik Shantharam; Pascovici, Dana; Penesyan, Anahit; Goel, Apurv; Venkatakrishnan, Vignesh; Paulsen, Ian T; Packer, Nicolle H; Molloy, Mark P

    2016-07-01

    Pseudomonas aeruginosa is a Gram-negative, nosocomial, highly adaptable opportunistic pathogen especially prevalent in immuno-compromised cystic fibrosis (CF) patients. The bacterial cell surface proteins are important contributors to virulence, yet the membrane subproteomes of phenotypically diverse P. aeruginosa strains are poorly characterized. We carried out mass spectrometry (MS)-based proteome analysis of the membrane proteins of three novel P. aeruginosa strains isolated from the sputum of CF patients and compared protein expression to the widely used laboratory strain, PAO1. Microbes were grown in planktonic growth condition using minimal M9 media, and a defined synthetic lung nutrient mimicking medium (SCFM) limited passaging. Two-dimensional LC-MS/MS using iTRAQ labeling enabled quantitative comparisons among 3171 and 2442 proteins from the minimal M9 medium and in the SCFM, respectively. The CF isolates showed marked differences in membrane protein expression in comparison with PAO1 including up-regulation of drug resistance proteins (MexY, MexB, MexC) and down-regulation of chemotaxis and aerotaxis proteins (PA1561, PctA, PctB) and motility and adhesion proteins (FliK, FlgE, FliD, PilJ). Phenotypic analysis using adhesion, motility, and drug susceptibility assays confirmed the proteomics findings. These results provide evidence of host-specific microevolution of P. aeruginosa in the CF lung and shed light on the adaptation strategies used by CF pathogens. PMID:27246823

  3. Do-or-die life cycles and diverse post-infection resistance mechanisms limit the evolution of parasite host ranges.

    PubMed

    Sieber, Michael; Gudelj, Ivana

    2014-04-01

    In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host-use trade-offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade-offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria-phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade-offs. PMID:24495077

  4. Stable symbionts across the HMA-LMA dichotomy: low seasonal and interannual variation in sponge-associated bacteria from taxonomically diverse hosts.

    PubMed

    Erwin, Patrick M; Coma, Rafel; López-Sendino, Paula; Serrano, Eduard; Ribes, Marta

    2015-10-01

    Marine sponges host bacterial communities with important ecological and economic roles in nature and society, yet these benefits depend largely on the stability of host-symbiont interactions and their susceptibility to changing environmental conditions. Here, we investigated the temporal stability of complex host-microbe symbioses in a temperate, seasonal environment over three years, targeting sponges across a range of symbiont density (high and low microbial abundance, HMA and LMA) and host taxonomy (six orders). Symbiont profiling by terminal restriction fragment length polymorphism analysis of 16S rRNA gene sequences revealed that bacterial communities in all sponges exhibited a high degree of host specificity, low seasonal dynamics and low interannual variability: results that represent an emerging trend in the field of sponge microbiology and contrast sharply with the seasonal dynamics of free-living bacterioplankton. Further, HMA sponges hosted more diverse, even and similar symbiont communities than LMA sponges and these differences in community structure extended to core members of the microbiome. Together, these findings show clear distinctions in symbiont structure between HMA and LMA sponges while resolving notable similarities in their stability over seasonal and inter-annual scales, thus providing insight into the ecological consequences of the HMA-LMA dichotomy and the temporal stability of complex host-microbe symbioses. PMID:26405300

  5. Low haemosporidian diversity and one key-host species in a bird malaria community on a mid-Atlantic island (São Miguel, Azores).

    PubMed

    Hellgren, Olof; Križanauskienė, Asta; Hasselquist, Dennis; Bensch, Staffan

    2011-10-01

    When host species colonize new areas, the parasite assemblage infecting the hosts might change, with some parasite species being lost and others newly acquired. These changes would likely lead to novel selective forces on both host and its parasites. We investigated the avian blood parasites in the passerine bird community on the mid-Atlantic island of São Miguel, Azores, a bird community originating from continental Europe. The presence of haemosporidian blood parasites belonging to the genera Haemoproteus, Plasmodium, and Leucocytozoon was assessed using polymerase chain reaction. We found two Plasmodium lineages and two Leucocytozoon lineages in 11 bird species (84% of all breeding passerine species) on the island. These lineages were unevenly distributed across bird species. The Eurasian Blackbird (Turdus merula) was the key-host species (total parasite prevalence of 57%), harboring the main proportion of parasite infections. Except for Eurasian Blackbirds, all bird species had significantly lower prevalence and parasite diversity compared to their continental populations. We propose that in evolutionary novel bird communities, single species may act as key hosts by harboring the main part of the parasite fauna from which parasites "leak" into the other species. This would create very different host-parasite associations in areas recently colonized by hosts as compared to in their source populations. PMID:22102655

  6. Phylogenetic analysis reveals positive correlations between adaptations to diverse hosts in a group of pathogen-like herbivores.

    PubMed

    Peterson, Daniel A; Hardy, Nate B; Morse, Geoffrey E; Stocks, Ian C; Okusu, Akiko; Normark, Benjamin B

    2015-10-01

    A jack of all trades can be master of none-this intuitive idea underlies most theoretical models of host-use evolution in plant-feeding insects, yet empirical support for trade-offs in performance on distinct host plants is weak. Trade-offs may influence the long-term evolution of host use while being difficult to detect in extant populations, but host-use evolution may also be driven by adaptations for generalism. Here we used host-use data from insect collection records to parameterize a phylogenetic model of host-use evolution in armored scale insects, a large family of plant-feeding insects with a simple, pathogen-like life history. We found that a model incorporating positive correlations between evolutionary changes in host performance best fit the observed patterns of diaspidid presence and absence on nearly all focal host taxa, suggesting that adaptations to particular hosts also enhance performance on other hosts. In contrast to the widely invoked trade-off model, we advocate a "toolbox" model of host-use evolution in which armored scale insects accumulate a set of independent genetic tools, each of which is under selection for a single function but may be useful on multiple hosts. PMID:26374400

  7. Host population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract and wider Caribbean

    NASA Astrophysics Data System (ADS)

    Baums, I. B.; Johnson, M. E.; Devlin-Durante, M. K.; Miller, M. W.

    2010-12-01

    In preparation for a large-scale coral restoration project, we surveyed host population genetic structure and symbiont diversity of two reef-building corals in four reef zones along the Florida reef tract (FRT). There was no evidence for coral population subdivision along the FRT in Acropora cervicornis or Montastraea faveolata based on microsatellite markers. However, in A. cervicornis, significant genetic differentiation was apparent when extending the analysis to broader scales (Caribbean). Clade diversity of the zooxanthellae differed along the FRT. A. cervicornis harbored mostly clade A with clade D zooxanthellae being prominent in colonies growing inshore and in the mid-channel zones that experience greater temperature fluctuations and receive significant nutrient and sediment input. M. faveolata harbored a more diverse array of symbionts, and variation in symbiont diversity among four habitat zones was more subtle but still significant. Implications of these results are discussed for ongoing restoration and conservation work.

  8. Richness and diversity of helminth communities in the Japanese grenadier anchovy, Coilia nasus, during its anadromous migration in the Yangtze River, China.

    PubMed

    Li, Wen X; Zou, Hong; Wu, Shan G; Song, Rui; Wang, Gui T

    2012-06-01

    To determine the relationship between the species richness, diversity of helminth communities, and migration distance during upward migration from coast to freshwater, helminth communities in the anadromous fish Coilia nasus were investigated along the coast of the East China Sea, the Yangtze Estuary, and 3 localities on the Yangtze River. Six helminth species were found in 224 C. nasus . Changes in salinity usually reduced the survival time of parasites, and thus the number of helminth species and their abundance. Except for the 2 dominant helminths, the acanthocephalan Acanthosentis cheni and the nematode Contracaecum sp., mean abundance of other 4 species of helminths was rather low (<1.0) during the upward migration in the Yangtze River. Mean abundance of the 2 dominant helminths peaked in the Yangtze Estuary and showed no obvious decrease among the 3 localities on the Yangtze River. Mean species richness, Brillouin's index, and Shannon index were also highest in the estuary (1.93 ± 0.88, 0.28 ± 0.25, and 0.37 ± 0.34, respectively) and did not exhibit marked decline at the 3 localities on the Yangtze River. A significant negative correlation was not seen between the similarity and the geographical distance (R  =  -0.5104, P  =  0.1317). The strong salinity tolerance of intestinal helminths, relatively brief stay in the Yangtze River, and large amount of feeding on small fish and shrimp when commencing spawning migration perhaps were responsible for the results. PMID:22257179

  9. Discovery of Novel dsRNA Viral Sequences by In Silico Cloning and Implications for Viral Diversity, Host Range and Evolution

    PubMed Central

    Liu, Huiquan; Fu, Yanping; Xie, Jiatao; Cheng, Jiasen; Ghabrial, Said A.; Li, Guoqing; Yi, Xianhong; Jiang, Daohong

    2012-01-01

    Genome sequence of viruses can contribute greatly to the study of viral evolution, diversity and the interaction between viruses and hosts. Traditional molecular cloning methods for obtaining RNA viral genomes are time-consuming and often difficult because many viruses occur in extremely low titers. DsRNA viruses in the families, Partitiviridae, Totiviridae, Endornaviridae, Chrysoviridae, and other related unclassified dsRNA viruses are generally associated with symptomless or persistent infections of their hosts. These characteristics indicate that samples or materials derived from eukaryotic organisms used to construct cDNA libraries and EST sequencing might carry these viruses, which were not easily detected by the researchers. Therefore, the EST databases may include numerous unknown viral sequences. In this study, we performed in silico cloning, a procedure for obtaining full or partial cDNA sequence of a gene by bioinformatics analysis, using known dsRNA viral sequences as queries to search against NCBI Expressed Sequence Tag (EST) database. From this analysis, we obtained 119 novel virus-like sequences related to members of the families, Endornaviridae, Chrysoviridae, Partitiviridae, and Totiviridae. Many of them were identified in cDNA libraries of eukaryotic lineages, which were not known to be hosts for these viruses. Furthermore, comprehensive phylogenetic analysis of these newly discovered virus-like sequences with known dsRNA viruses revealed that these dsRNA viruses may have co-evolved with respective host supergroups over a long evolutionary time while potential horizontal transmissions of viruses between different host supergroups also is possible. We also found that some of the plant partitiviruses may have originated from fungal viruses by horizontal transmissions. These findings extend our knowledge of the diversity and possible host range of dsRNA viruses and offer insight into the origin and evolution of relevant viruses with their hosts. PMID

  10. Molecular Epidemiology of Novel Pathogen “Brachyspira hampsonii” Reveals Relationships between Diverse Genetic Groups, Regions, Host Species, and Other Pathogenic and Commensal Brachyspira Species

    PubMed Central

    Mirajkar, Nandita S.; Bekele, Aschalew Z.; Chander, Yogesh Y.

    2015-01-01

    Outbreaks of bloody diarrhea in swine herds in the late 2000s signaled the reemergence of an economically significant disease, swine dysentery, in the United States. Investigations confirmed the emergence of a novel spirochete in swine, provisionally designated “Brachyspira hampsonii,” with two genetically distinct clades. Although it has since been detected in swine and migratory birds in Europe and North America, little is known about its genetic diversity or its relationships with other Brachyspira species. This study characterizes B. hampsonii using a newly developed multilocus sequence typing (MLST) approach and elucidates the diversity, distribution, population structure, and genetic relationships of this pathogen from diverse epidemiological sources globally. Genetic characterization of 81 B. hampsonii isolates, originating from six countries, with our newly established MLST scheme identified a total of 20 sequence types (STs) belonging to three clonal complexes (CCs). B. hampsonii showed a heterogeneous population structure with evidence of microevolution locally in swine production systems, while its clustering patterns showed associations with its epidemiological origins (country, swine production system, and host species). The close genetic relatedness of B. hampsonii isolates from different countries and host species highlights the importance of strict biosecurity control measures. A comparative analysis of 430 isolates representing seven Brachyspira species (pathogens and commensals) from 19 countries and 10 host species depicted clustering by microbial species. It revealed the close genetic relatedness of B. hampsonii with commensal Brachyspira species and also provided support for the two clades of B. hampsonii to be considered a single species. PMID:26135863

  11. Molecular Epidemiology of Novel Pathogen "Brachyspira hampsonii" Reveals Relationships between Diverse Genetic Groups, Regions, Host Species, and Other Pathogenic and Commensal Brachyspira Species.

    PubMed

    Mirajkar, Nandita S; Bekele, Aschalew Z; Chander, Yogesh Y; Gebhart, Connie J

    2015-09-01

    Outbreaks of bloody diarrhea in swine herds in the late 2000s signaled the reemergence of an economically significant disease, swine dysentery, in the United States. Investigations confirmed the emergence of a novel spirochete in swine, provisionally designated "Brachyspira hampsonii," with two genetically distinct clades. Although it has since been detected in swine and migratory birds in Europe and North America, little is known about its genetic diversity or its relationships with other Brachyspira species. This study characterizes B. hampsonii using a newly developed multilocus sequence typing (MLST) approach and elucidates the diversity, distribution, population structure, and genetic relationships of this pathogen from diverse epidemiological sources globally. Genetic characterization of 81 B. hampsonii isolates, originating from six countries, with our newly established MLST scheme identified a total of 20 sequence types (STs) belonging to three clonal complexes (CCs). B. hampsonii showed a heterogeneous population structure with evidence of microevolution locally in swine production systems, while its clustering patterns showed associations with its epidemiological origins (country, swine production system, and host species). The close genetic relatedness of B. hampsonii isolates from different countries and host species highlights the importance of strict biosecurity control measures. A comparative analysis of 430 isolates representing seven Brachyspira species (pathogens and commensals) from 19 countries and 10 host species depicted clustering by microbial species. It revealed the close genetic relatedness of B. hampsonii with commensal Brachyspira species and also provided support for the two clades of B. hampsonii to be considered a single species. PMID:26135863

  12. Gastric nematode diversity between estuarine and inland freshwater populations of the American alligator (Alligator mississippiensis, daudin 1802), and the prediction of intermediate hosts

    PubMed Central

    Tellez, Marisa; Nifong, James

    2014-01-01

    We examined the variation of stomach nematode intensity and species richness of Alligator mississippiensis from coastal estuarine and inland freshwater habitats in Florida and Georgia, and integrated prey content data to predict possible intermediate hosts. Nematode parasitism within inland freshwater inhabiting populations was found to have a higher intensity and species richness than those inhabiting coastal estuarine systems. This pattern potentially correlates with the difference and diversity of prey available between inland freshwater and coastal estuarine habitats. Increased consumption of a diverse array of prey was also correlated with increased nematode intensity in larger alligators. Parasitic nematodes Dujardinascaris waltoni, Brevimulticaecum tenuicolle, Ortleppascaris antipini, Goezia sp., and Contracaecum sp. were present in alligators from both habitat types. Dujardinascaris waltoni, B. tenuicolle, and O. antipini had a significantly higher abundance among inland inhabiting alligators than hosts from estuarine populations. Our findings also suggest that host specific nematode parasites of alligators may have evolved to infect multiple intermediate hosts, particularly fishes, crabs, and turtles, perhaps in response to the opportunistic predatory behaviors of alligators. PMID:25426417

  13. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador.

    PubMed

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J

    2015-12-01

    Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579

  14. Anthracycline inhibits recruitment of hypoxia-inducible transcription factors and suppresses tumor cell migration and cardiac angiogenic response in the host.

    PubMed

    Tanaka, Tetsuhiro; Yamaguchi, Junna; Shoji, Kumi; Nangaku, Masaomi

    2012-10-12

    Anthracycline chemotherapeutic agents of the topoisomerase inhibitor family are widely used for the treatment of various tumors. Although targeted tumor tissues are generally situated in a hypoxic environment, the connection between efficacy of anthracycline agents and cellular hypoxia response has not been investigated in depth. Here, we report that doxorubicin (DXR) impairs the transcriptional response of the hypoxia-inducible factor (HIF) by inhibiting the binding of the HIF heterodimer to the consensus -RCGTG- enhancer element. This pleiotropic effect retarded migration of von Hippel-Lindau (VHL)-defective renal cell carcinoma and that of VHL-competent renal cell carcinoma in hypoxia. This effect was accompanied by a coordinated down-regulation of HIF target lysyl oxidase (LOX) family members LOX, LOX-like2 (LOXL2), and LOXL4. Furthermore, DXR suppressed HIF target genes in tumor xenografts, inhibited cardiac induction of HIF targets in rats with acute anemia, and impaired the angiogenic response in the isoproterenol-induced heart failure model, which may account for the clinical fragility of doxorubicin cardiomyopathy. Collectively, these findings highlight the impaired hypoxia response by anthracycline agents affecting both tumors and organs of the cancer host and offer a promising opportunity to develop HIF inhibitors using DXR as a chemical template. PMID:22908232

  15. Whose truffle is this? Distribution patterns of ectomycorrhizal fungal diversity in Tuber melanosporum brûlés developed in multi-host Mediterranean plant communities.

    PubMed

    Taschen, Elisa; Sauve, Mathieu; Taudiere, Adrien; Parlade, Javier; Selosse, Marc-André; Richard, Franck

    2015-08-01

    In the Mediterranean region, patches of vegetation recovering from disturbance and transiently dominated by shrubs produce one of the world's most prized fungi, the black truffle (Tuber melanosporum). In these successional plant communities, we have fragmentary knowledge of the distribution of T. melanosporum in space among ectomycorrhizal (ECM) host species and in time. Molecular identification of hosts (Restriction Fragment Length Polymorphism) and fungi (Internal Transcribed Spacer sequencing) and quantification of T. melanosporum mycelium (quantitative Polymerase Chain Reaction) were employed to evaluate the presence of T. melanosporum on four dominant ECM host species (Quercus ilex, Quercus  coccifera, Arbutus unedo, Cistus albidus) and the extent to which their respective ECM communities shared fungal diversity, over the course of development of truffle grounds, from recent unproductive brûlés to senescent ones where production has stopped. We found that truffle grounds host rich communities in which multi-host fungal species dominate in frequency. When considering both ECM tips and soil mycelia, we documented a dynamic and spatially heterogeneous pattern of T. melanosporum distribution in soils and a presence of ECM tips restricted to Q. ilex roots. This study advances our knowledge of the ecology of T. melanosporum, and provides insight into the extent of ECM fungal sharing among plant species that dominate Mediterranean landscapes. PMID:25522815

  16. Evolution of foot-and-mouth disease virus intra-sample sequence diversity during serial transmission in bovine hosts.

    PubMed

    Morelli, Marco J; Wright, Caroline F; Knowles, Nick J; Juleff, Nicholas; Paton, David J; King, Donald P; Haydon, Daniel T

    2013-01-01

    RNA virus populations within samples are highly heterogeneous, containing a large number of minority sequence variants which can potentially be transmitted to other susceptible hosts. Consequently, consensus genome sequences provide an incomplete picture of the within- and between-host viral evolutionary dynamics during transmission. Foot-and-mouth disease virus (FMDV) is an RNA virus that can spread from primary sites of replication, via the systemic circulation, to found distinct sites of local infection at epithelial surfaces. Viral evolution in these different tissues occurs independently, each of them potentially providing a source of virus to seed subsequent transmission events. This study employed the Illumina Genome Analyzer platform to sequence 18 FMDV samples collected from a chain of sequentially infected cattle. These data generated snap-shots of the evolving viral population structures within different animals and tissues. Analyses of the mutation spectra revealed polymorphisms at frequencies >0.5% at between 21 and 146 sites across the genome for these samples, while 13 sites acquired mutations in excess of consensus frequency (50%). Analysis of polymorphism frequency revealed that a number of minority variants were transmitted during host-to-host infection events, while the size of the intra-host founder populations appeared to be smaller. These data indicate that viral population complexity is influenced by small intra-host bottlenecks and relatively large inter-host bottlenecks. The dynamics of minority variants are consistent with the actions of genetic drift rather than strong selection. These results provide novel insights into the evolution of FMDV that can be applied to reconstruct both intra- and inter-host transmission routes. PMID:23452550

  17. Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes

    PubMed Central

    Delwart, Eric; Li, Linlin

    2011-01-01

    The genomes of numerous circoviruses and distantly related circular DNA viruses encoding a rolling circle replication initiator protein (Rep) have been characterized from the tissues of mammals, fish, insects, and plants (geminivirus and nanovirus), human and animal feces, in an algae cell, and in diverse environmental samples. We review the genome organization, phylogenetic relationships and initial prevalence studies of cycloviruses, a proposed new genus in the Circoviridae family. Viral fossil rep sequences were also identified integrated on the chromosomes of mammals, frogs, lancelets, crustaceans, mites, gastropods, roundworms, placozoans, hydrozoans, protozoans, land plants, fungi, algae, and phytoplasma bacterias and their plasmids, reflecting their past host range. An ancient origin for viruses with rep-encoding single stranded small circular genomes, predating the diversification of eukaryotes, is discussed. The cellular hosts and pathogenicity of many recently described rep-containing circular genomes remain to be determined. Future studies of the virome of single cell and multi-cellular eukaryotes are likely to further extend the known diversity and host-range of small rep-containing circular viral genomes. PMID:22155583

  18. Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes.

    PubMed

    Delwart, Eric; Li, Linlin

    2012-03-01

    The genomes of numerous circoviruses and distantly related circular ssDNA viruses encoding a rolling circle replication initiator protein (Rep) have been characterized from the tissues of mammals, fish, insects, plants (geminivirus and nanovirus), in human and animal feces, in an algae cell, and in diverse environmental samples. We review the genome organization, phylogenetic relationships and initial prevalence studies of cycloviruses, a proposed new genus in the Circoviridae family. Viral fossil rep sequences were also recently identified integrated on the chromosomes of mammals, frogs, lancelets, crustaceans, mites, gastropods, roundworms, placozoans, hydrozoans, protozoans, land plants, fungi, algae, and phytoplasma bacterias and their plasmids, reflecting the very wide past host range of rep bearing viruses. An ancient origin for viruses with Rep-encoding small circular ssDNA genomes, predating the diversification of eukaryotes, is discussed. The cellular hosts and pathogenicity of many recently described rep-containing circular ssDNA genomes remain to be determined. Future studies of the virome of single cell and multi-cellular eukaryotes are likely to further extend the known diversity and host-range of small rep-containing circular ssDNA viral genomes. PMID:22155583

  19. Cold-active bacteriophages from the Baltic Sea ice have diverse genomes and virus-host interactions.

    PubMed

    Senčilo, Ana; Luhtanen, Anne-Mari; Saarijärvi, Mikko; Bamford, Dennis H; Roine, Elina

    2015-10-01

    Heterotrophic bacteria are the major prokaryotic component of the Baltic Sea ice microbiome, and it is postulated that phages are among their major parasites. In this study, we sequenced the complete genomes of six earlier reported phage isolates from the Baltic Sea ice infecting Shewanella sp. and Flavobacterium sp. hosts as well as characterized the phage-host interactions. Based on the genome sequences, the six phages were classified into five new genera. Only two phages, 1/4 and 1/40, both infecting Shewanella sp. strains, showed significant nucleotide sequence similarity to each other and could be grouped into the same genus. These two phages are also related to Vibrio-specific phages sharing approximately 25% of the predicted gene products. Nevertheless, cross-titrations showed that the cold-active phages studied are host specific: none of the seven additionally tested, closely related Shewanella strains served as hosts for the phages. Adsorption experiments of two Shewanella phages, 1/4 and 3/49, conducted at 4 °C and at 15 °C revealed relatively fast adsorption rates that are, for example, comparable with those of phages infective in mesophilic conditions. Despite the small number of Shewanella phages characterized here, we could already find different types of phage-host interactions including a putative abortive infection. PMID:25156651

  20. Host-plant diversity of the European corn borer Ostrinia nubilalis: what value for sustainable transgenic insecticidal Bt maize?

    PubMed

    Bourguet, D; Bethenod, M T; Trouvé, C; Viard, F

    2000-06-22

    The strategies proposed for delaying the development of resistance to the Bacillus thuringiensis toxins produced by transgenic maize require high levels of gene flow between individuals feeding on transgenic and refuge plants. The European corn borer Ostrinia nubilalis (Hübner) may be found on several host plants, which may act as natural refuges. The genetic variability of samples collected on sagebrush (Artemisia sp.), hop (Humulus lupulus L.) and maize (Zea mays L.) was studied by comparing the allozyme frequencies for six polymorphic loci. We found a high level of gene flow within and between samples collected on the same host plant. The level of gene flow between the sagebrush and hop insect samples appeared to be sufficiently high for these populations to be considered a single genetic panmictic unit. Conversely, the samples collected on maize were genetically different from those collected on sagebrush and hop. Three of the six loci considered displayed greater between-host-plant than within-host-plant differentiation in comparisons of the group of samples collected on sagebrush or hop with the group of samples collected on maize. This indicates that either there is genetic isolation of the insects feeding on maize or that there is host-plant divergent selection at these three loci or at linked loci. These results have important implications for the potential sustainability of transgenic insecticidal maize. PMID:10902683

  1. Evolutionary co-variation of host and parasite diversity-the first test of Eichler's rule using parasitic lice (Insecta: Phthiraptera).

    PubMed

    Vas, Zoltán; Csorba, Gábor; Rózsa, Lajos

    2012-07-01

    The taxonomic richness of lice (Phthiraptera) varies considerably among their avian and mammalian hosts. Previous studies explored some factors shaping louse diversity; however, the so-called Eichler's rule-according to which taxonomic richness of parasites co-varies with that of their hosts-has never been tested. Our study incorporates all families of birds and mammals and the whole order of lice to test this co-variation, thus we present the widest taxonomic range to test any correlates of louse richness. Louse richness data were controlled for uneven sampling effort. We used the method of independent contrasts to control for phylogenetic effects. We found a strong correlation between the species richness of avian and mammalian families and generic richness of their lice. We discuss some alternative macroevolutionary and macroecological hypotheses that may explain this phenomenon that may well be a general feature of parasitism and it seems possible that this effect contribute considerably to global biodiversity. PMID:22350674

  2. Visualizing Intercultural Literacy: Engaging Critically with Diversity and Migration in the Classroom through an Image-Based Approach

    ERIC Educational Resources Information Center

    Arizpe, Evelyn; Bagelman, Caroline; Devlin, Alison M.; Farrell, Maureen; McAdam, Julie E.

    2014-01-01

    Accessible forms of language, learning and literacy, as well as strategies that support intercultural communication are needed for the diverse population of refugee, asylum seeker and migrant children within schools. The research project "Journeys from Images to Words" explored the potential of visual texts to address these issues.…

  3. Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes.

    PubMed Central

    Krueger, D M; Cavanaugh, C M

    1997-01-01

    The bacterial endosymbionts of two species of the bivalve genus Solemya from the Pacific Ocean, Solemya terraeregina and Solemya pusilla, were characterized. Prokaryotic cells resembling gram-negative bacteria were observed in the gills of both host species by transmission electron microscopy. The ultrastructure of the symbiosis in both host species is remarkably similar to that of all previously described Solemya spp. By using sequence data from 16S rRNA, the identity and evolutionary origins of the S. terraeregina and S. pusilla symbionts were also determined. Direct sequencing of PCR-amplified products from host gill DNA with primers specific for Bacteria 16S rRNA genes gave a single, unambiguous sequence for each of the two symbiont species. In situ hybridization with symbiont-specific oligonucleotide probes confirmed that these gene sequences belong to the bacteria residing in the hosts gills. Phylogenetic analyses of the 16S rRNA gene sequences by both distance and parsimony methods identify the S. terraeregina and S. pusilla symbionts as members of the gamma subdivision of the Proteobacteria. In contrast to symbionts of other bivalve families, which appear to be monophyletic, the S. terraeregina and S. pusilla symbionts share a more recent common ancestry with bacteria associating endosymbiotically with bivalves of the superfamily Lucinacea than with other Solemya symbionts (host species S. velum, S. occidentalis, and S. reidi). Overall, the 16S rRNA gene sequence data suggest that the symbionts of Solemya hosts represent at least two distinct bacterial lineages within the gamma-Proteobacteria. While it is increasingly clear that all extant species of Solemya live in symbiosis with specific bacteria, the associations appear to have multiple evolutionary origins. PMID:8979342

  4. Genetic Diversity and Host Range of Rhizobia Nodulating Lotus tenuis in Typical Soils of the Salado River Basin (Argentina)▿ †

    PubMed Central

    Estrella, María Julia; Muñoz, Socorro; Soto, María José; Ruiz, Oscar; Sanjuán, Juan

    2009-01-01

    A total of 103 root nodule isolates were used to estimate the diversity of bacteria nodulating Lotus tenuis in typical soils of the Salado River Basin. A high level of genetic diversity was revealed by repetitive extragenic palindromic PCR, and 77 isolates with unique genomic fingerprints were further differentiated into two clusters, clusters A and B, after 16S rRNA restriction fragment length polymorphism analysis. Cluster A strains appeared to be related to the genus Mesorhizobium, whereas cluster B was related to the genus Rhizobium. 16S rRNA sequence and phylogenetic analysis further supported the distribution of most of the symbiotic isolates in either Rhizobium or Mesorhizobium: the only exception was isolate BA135, whose 16S rRNA gene was closely related to the 16S rRNA gene of the genus Aminobacter. Most Mesorhizobium-like isolates were closely related to Mesorhizobium amorphae, Mesorhizobium mediterraneum, Mesorhizobium tianshanense, or the broad-host-range strain NZP2037, but surprisingly few isolates grouped with Mesorhizobium loti type strain NZP2213. Rhizobium-like strains were related to Rhizobium gallicum, Rhizobium etli, or Rhizobium tropici, for which Phaseolus vulgaris is a common host. However, no nodC or nifH genes could be amplified from the L. tenuis isolates, suggesting that they have rather divergent symbiosis genes. In contrast, nodC genes from the Mesorhizobium and Aminobacter strains were closely related to nodC genes from narrow-host-range M. loti strains. Likewise, nifH gene sequences were very highly conserved among the Argentinian isolates and reference Lotus rhizobia. The high levels of conservation of the nodC and nifH genes suggest that there was a common origin of the symbiosis genes in narrow-host-range Lotus symbionts, supporting the hypothesis that both intrageneric horizontal gene transfer and intergeneric horizontal gene transfer are important mechanisms for the spread of symbiotic capacity in the Salado River Basin. PMID

  5. Diversity and geographical distribution of Flavobacterium psychrophilum isolates and their phages: patterns of susceptibility to phage infection and phage host range.

    PubMed

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio; Middelboe, Mathias

    2014-05-01

    Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that "enhanced infection" is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed. PMID:24557506

  6. Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombination and reassortment of viral genomes are major processes contributing to emerging viruses. These processes are especially significant in long-term persistent infections where multiple viral genotypes co-replicate in a single host, generating abundant genotypic variants, some of which may ...

  7. Host plant resistance to megacopta cribraria (Hemiptera: Plataspidae) in diverse soybean germplasm maturity groups V through VIII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initially discovered in Georgia in 2009, the exotic invasive plataspid, Megacopta cribraria Fabricius has become a serious pest of soybean. Managing M. cribraria in soybean typically involves the application of broad-spectrum insecticides. Soybean host plant resistance is an attractive alternative...

  8. Untangling the Diverse Interior and Multiple Exterior Guest Interactions of a Supramolecular Host by the Simultaneous Analysis of Complementary Observables.

    PubMed

    Sgarlata, Carmelo; Raymond, Kenneth N

    2016-07-01

    The entropic and enthalpic driving forces for encapsulation versus sequential exterior guest binding to the [Ga4L6](12-) supramolecular host in solution are very different, which significantly complicates the determination of these thermodynamic parameters. The simultaneous use of complementary techniques, such as NMR, UV-vis, and isothermal titration calorimetry, enables the disentanglement of such multiple host-guest interactions. Indeed, data collected by each technique measure different components of the host-guest equilibria and together provide a complete picture of the solution thermodynamics. Unfortunately, commercially available programs do not allow for global analysis of different physical observables. We thus resorted to a novel procedure for the simultaneous refinement of multiple parameters (ΔG°, ΔH°, and ΔS°) by treating different observables through a weighted nonlinear least-squares analysis of a constrained model. The refinement procedure is discussed for the multiple binding of the Et4N(+) guest, but it is broadly applicable to the deconvolution of other intricate host-guest equilibria. PMID:27244346

  9. Diversity in destinations, routes and timing of small adult and sub-adult striped bass Morone saxatilis on their southward autumn migration

    USGS Publications Warehouse

    Mather, Martha E.; Finn, John T.; Pautzke, Sarah M.; Fox, Dewayne A.; Savoy, Tom; Brundage, Harold M., III; Deegan, Linda A.; Muth, Robert M.

    2010-01-01

    Almost three-quarters of the 46 young adult and sub-adult striped bass Morone saxatilis that were acoustically tagged in Plum Island Estuary, Massachusetts, U.S.A., in the summer of 2006 were detected in one or more southern coastal arrays during their autumn migration. On the basis of the trajectories along which these M. saxatilis moved from feeding to overwintering areas, three migratory groups emerged. After leaving Plum Island Estuary, about half of the fish were detected only in a mid-latitude array, Long Island Sound. The other half of the tagged fish were detected during autumn and winter in a more southern array, the Delaware Estuary. This latter group of fish may have used two routes. Some travelled to the Delaware Estuary through Long Island Sound while other fish may have taken a second, more direct, coastal route that did not include Long Island Sound. Consequently, a seemingly homogeneous group of fish tagged at the same time in the same non-natal feeding location exhibited a diversity of southward movement patterns that could affect population-level processes. These three groups that differed in overwintering location and migration route could be movement contingents with migratory connectivity.

  10. Macrophage Migration Inhibitory Factor (MIF) of the protozoan parasite Eimeria influences the components of the immune system of its host, the chicken

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is a soluble factor produced by sensitized T lymphocytes that inhibits the random migration of macrophages. Homologues of MIF from invertebrates have been identified making it an interesting molecule from a functional perspective. In the present study, ...