Science.gov

Sample records for host migration diversity

  1. Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents

    PubMed Central

    Nazir, Rashid; Tazetdinova, Diana I.; van Elsas, Jan Dirk

    2014-01-01

    Soil bacteria can benefit from co-occurring soil fungi in respect of the acquisition of carbonaceous nutrients released by fungal hyphae and the access to novel territories in soil. Here, we investigated the capacity of the mycosphere-isolated bacterium Burkholderia terrae BS001 to comigrate through soil along with hyphae of the soil fungi Trichoderma asperellum, Rhizoctonia solani, Fusarium oxysporum, F. oxysporum pv lini, Coniochaeta ligniaria, Phanerochaete velutina, and Phallus impudicus. We used Lyophyllum sp. strain Karsten as the reference migration-inciting fungus. Bacterial migration through presterilized soil on the extending fungal hyphae was detected with six of the seven test fungi, with only Phallus impudicus not showing any bacterial transport. Much like with Lyophyllum sp. strain Karsten, intermediate (106–108 CFU g-1 dry soil) to high (>108 CFU g-1 dry soil) strain BS001 cell population sizes were found at the hyphal migration fronts of four fungi, i.e., T. asperellum, Rhizoctonia solani, F. oxysporum and F. oxysporum pv lini, whereas for two fungi, Coniochaeta ligniaria and Phanerochaete velutina, the migration responses were retarded and population sizes were lower (103–106 CFU g-1 dry soil). Consistent with previous data obtained with the reference fungus, migration with the migration-inciting fungi occurred only in the direction of the hyphal growth front. Remarkably, Burkholderia terrae BS001 provided protection from several antifungal agents to the canonical host Lyophyllum sp. strain Karsten. Specifically, this host was protected from Pseudomonas fluorescens strain CHA0 metabolites, as well as from the anti-fungal agent cycloheximide. Similar protection by strain BS001was observed for T. asperellum, and, to a lower extent, F. oxysporum and Rhizoctonia solani. The protective effect may be related to the consistent occurrence of biofilm-like cell layers or agglomerates at the surfaces of the protected fungi. The current study represents

  2. Age-specific migration and regional diversity.

    PubMed

    Morrill, R

    1994-11-01

    "This author examines patterns of age-specific migration between 1980 and 1990 for a small, growing region, the Pacific Northwest of the U.S.A., with the purpose of assessing the degree of geographic diversity in experience. A simple typology of the expected spatial and structural pattern of age-specific migration is proposed. Cluster analysis is used to group counties on the basis of age-specific rates of net migration. Even this fairly small region is found to exemplify most of the patterns that might be expected to occur in the nation as a whole." PMID:12288335

  3. Host diversity begets parasite diversity: Bird final hosts and trematodes in snail intermediate hosts

    USGS Publications Warehouse

    Hechinger, R.F.; Lafferty, K.D.

    2005-01-01

    An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management. ?? 2005 The Royal Society.

  4. Salmonella bacteriophage diversity reflects host diversity on dairy farms.

    PubMed

    Switt, Andrea I Moreno; den Bakker, Henk C; Vongkamjan, Kitiya; Hoelzer, Karin; Warnick, Lorin D; Cummings, Kevin J; Wiedmann, Martin

    2013-12-01

    Salmonella is an animal and human pathogen of worldwide concern. Surveillance programs indicate that the incidence of Salmonella serovars fluctuates over time. While bacteriophages are likely to play a role in driving microbial diversity, our understanding of the ecology and diversity of Salmonella phages is limited. Here we report the isolation of Salmonella phages from manure samples from 13 dairy farms with a history of Salmonella presence. Salmonella phages were isolated from 10 of the 13 farms; overall 108 phage isolates were obtained on serovar Newport, Typhimurium, Dublin, Kentucky, Anatum, Mbandaka, and Cerro hosts. Host range characterization found that 51% of phage isolates had a narrow host range, while 49% showed a broad host range. The phage isolates represented 65 lysis profiles; genome size profiling of 94 phage isolates allowed for classification of phage isolates into 11 groups with subsequent restriction fragment length polymorphism analysis showing considerable variation within a given group. Our data not only show an abundance of diverse Salmonella phage isolates in dairy farms, but also show that phage isolates that lyse the most common serovars causing salmonellosis in cattle are frequently obtained, suggesting that phages may play an important role in the ecology of Salmonella on dairy farms. PMID:24010608

  5. Uncovering Wolbachia Diversity upon Artificial Host Transfer

    PubMed Central

    Schneider, Daniela I.; Riegler, Markus; Arthofer, Wolfgang; Merçot, Hervé; Stauffer, Christian; Miller, Wolfgang J.

    2013-01-01

    The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system. PMID:24376534

  6. Does genetic diversity limit disease spread in natural host populations?

    PubMed Central

    King, K C; Lively, C M

    2012-01-01

    It is a commonly held view that genetically homogenous host populations are more vulnerable to infection than genetically diverse populations. The underlying idea, known as the ‘monoculture effect,' is well documented in agricultural studies. Low genetic diversity in the wild can result from bottlenecks (that is, founder effects), biparental inbreeding or self-fertilization, any of which might increase the risk of epidemics. Host genetic diversity could buffer populations against epidemics in nature, but it is not clear how much diversity is required to prevent disease spread. Recent theoretical and empirical studies, particularly in Daphnia populations, have helped to establish that genetic diversity can reduce parasite transmission. Here, we review the present theoretical work and empirical evidence, and we suggest a new focus on finding ‘diversity thresholds.' PMID:22713998

  7. Multiple effects of host-species diversity on coexisting host-specific and host-opportunistic microbes.

    PubMed

    Kedem, Hadar; Cohen, Carmit; Messika, Irit; Einav, Monica; Pilosof, Shai; Hawlena, Hadas

    2014-05-01

    While host-species diversity often influences microbial prevalence, there may be multiple mechanisms causing such effects that may also depend on the foraging strategy of the microbes. We employed a natural gradient of rodent-species richness to examine competing hypotheses describing possible mechanisms mediating the relationship between host-species richness and the prevalence of the most dominant microbes, along with microbe specificity to the different rodent host species. We sampled blood from three gerbil species in plots differing in terms of the proportion of the different species and screened for the most dominant bacteria. Two dominant bacterial lineages were detected: host-specific bacteria and host-opportunistic bacteria. Using a model selection approach, we detected evidence for both direct and indirect effects of host-species richness on the prevalence of these bacteria. Infection probability of the host-specific lineage was lower in richer host communities, most likely due to increased frequency and density of the least suitable host species. In contrast, field observations suggest that the effect of host-species richness on infection probability of the opportunistic lineage was both direct and indirect, mostly mediated by changes in flea densities on the host and by the presence of the host-specific lineage. Our results thus suggest that host-species richness has multiple effects on microbial prevalence, depending on the degree of host-specificity of the microbe in question. PMID:25000749

  8. Host Density and Competency Determine the Effects of Host Diversity on Trematode Parasite Infection

    PubMed Central

    Wojdak, Jeremy M.; Edman, Robert M.; Wyderko, Jennie A.; Zemmer, Sally A.; Belden, Lisa K.

    2014-01-01

    Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other’s densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts) for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans), in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1) replace the focal host species so that the total number of individuals remains constant (substitution) or (2) add to total host density (addition). For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly) when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns. PMID:25119568

  9. Host specialization and phylogenetic diversity of Corynespora cassiicola.

    PubMed

    Dixon, L J; Schlub, R L; Pernezny, K; Datnoff, L E

    2009-09-01

    The fungus Corynespora cassiicola is primarily found in the tropics and subtropics, and is widely diverse in substrate utilization and host association. Isolate characterization within C. cassiicola was undertaken to investigate how genetic diversity correlates with host specificity, growth rate, and geographic distribution. C. cassiicola isolates were collected from 68 different plant species in American Samoa, Brazil, Malaysia, and Micronesia, and Florida, Mississippi, and Tennessee within the United States. Phylogenetic analyses using four loci were performed with 143 Corynespora spp. isolates, including outgroup taxa obtained from culture collections: C. citricola, C. melongenae, C. olivacea, C. proliferata, C. sesamum, and C. smithii. Phylogenetic trees were congruent from the ribosomal DNA internal transcribed spacer region, two random hypervariable loci (caa5 and ga4), and the actin-encoding locus act1, indicating a lack of recombination within the species and asexual propagation. Fifty isolates were tested for pathogenicity on eight known C. cassiicola crop hosts: basil, bean, cowpea, cucumber, papaya, soybean, sweet potato, and tomato. Pathogenicity profiles ranged from one to four hosts, with cucumber appearing in 14 of the 16 profiles. Bootstrap analyses and Bayesian posterior probability values identified six statistically significant phylogenetic lineages. The six phylogenetic lineages correlated with host of origin, pathogenicity, and growth rate but not with geographic location. Common fungal genotypes were widely distributed geographically, indicating long-distance and global dispersal of clonal lineages. This research reveals an abundance of previously unrecognized genetic diversity within the species and provides evidence for host specialization on papaya. PMID:19671003

  10. Habitat heterogeneity drives the host-diversity-begets-parasite-diversity relationship: evidence from experimental and field studies.

    PubMed

    Johnson, Pieter T J; Wood, Chelsea L; Joseph, Maxwell B; Preston, Daniel L; Haas, Sarah E; Springer, Yuri P

    2016-07-01

    Despite a century of research into the factors that generate and maintain biodiversity, we know remarkably little about the drivers of parasite diversity. To identify the mechanisms governing parasite diversity, we combined surveys of 8100 amphibian hosts with an outdoor experiment that tested theory developed for free-living species. Our analyses revealed that parasite diversity increased consistently with host diversity due to habitat (i.e. host) heterogeneity, with secondary contributions from parasite colonisation and host abundance. Results of the experiment, in which host diversity was manipulated while parasite colonisation and host abundance were fixed, further reinforced this conclusion. Finally, the coefficient of host diversity on parasite diversity increased with spatial grain, which was driven by differences in their species-area curves: while host richness quickly saturated, parasite richness continued to increase with neighbourhood size. These results offer mechanistic insights into drivers of parasite diversity and provide a hierarchical framework for multi-scale disease research. PMID:27147106

  11. THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. II. MIGRATION SIMULATIONS

    SciTech Connect

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2012-11-20

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extrasolar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994, and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results in large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to (1) increase the typical abundance of Mg-rich silicates in the terrestrial planets' feeding zones and thus increase the frequency of planets with Earth-like compositions compared with simulations with static giant planet orbits, and (2) drastically increase the efficiency of the delivery of hydrous phases (water and serpentine) to terrestrial planets and thus produce waterworlds and/or wet Earths. Our results demonstrate that although a wide variety of terrestrial planet compositions can still be produced, planets with Earth-like compositions should be common within extrasolar planetary systems.

  12. The Compositional Diversity of Extrasolar Terrestrial Planets. II. Migration Simulations

    NASA Astrophysics Data System (ADS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2012-11-01

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extrasolar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994, and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results in large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to (1) increase the typical abundance of Mg-rich silicates in the terrestrial planets' feeding zones and thus increase the frequency of planets with Earth-like compositions compared with simulations with static giant planet orbits, and (2) drastically increase the efficiency of the delivery of hydrous phases (water and serpentine) to terrestrial planets and thus produce waterworlds and/or wet Earths. Our results demonstrate that although a wide variety of terrestrial planet compositions can still be produced, planets with Earth-like compositions should be common within extrasolar planetary systems.

  13. The Great Migration and African-American Genomic Diversity

    PubMed Central

    Barakatt, Maxime; Gignoux, Christopher R.; Errington, Jacob; Blot, William J.; Bustamante, Carlos D.; Kenny, Eimear E.; Williams, Scott M.; Aldrich, Melinda C.; Gravel, Simon

    2016-01-01

    We present a comprehensive assessment of genomic diversity in the African-American population by studying three genotyped cohorts comprising 3,726 African-Americans from across the United States that provide a representative description of the population across all US states and socioeconomic status. An estimated 82.1% of ancestors to African-Americans lived in Africa prior to the advent of transatlantic travel, 16.7% in Europe, and 1.2% in the Americas, with increased African ancestry in the southern United States compared to the North and West. Combining demographic models of ancestry and those of relatedness suggests that admixture occurred predominantly in the South prior to the Civil War and that ancestry-biased migration is responsible for regional differences in ancestry. We find that recent migrations also caused a strong increase in genetic relatedness among geographically distant African-Americans. Long-range relatedness among African-Americans and between African-Americans and European-Americans thus track north- and west-bound migration routes followed during the Great Migration of the twentieth century. By contrast, short-range relatedness patterns suggest comparable mobility of ∼15–16km per generation for African-Americans and European-Americans, as estimated using a novel analytical model of isolation-by-distance. PMID:27232753

  14. The Great Migration and African-American Genomic Diversity.

    PubMed

    Baharian, Soheil; Barakatt, Maxime; Gignoux, Christopher R; Shringarpure, Suyash; Errington, Jacob; Blot, William J; Bustamante, Carlos D; Kenny, Eimear E; Williams, Scott M; Aldrich, Melinda C; Gravel, Simon

    2016-05-01

    We present a comprehensive assessment of genomic diversity in the African-American population by studying three genotyped cohorts comprising 3,726 African-Americans from across the United States that provide a representative description of the population across all US states and socioeconomic status. An estimated 82.1% of ancestors to African-Americans lived in Africa prior to the advent of transatlantic travel, 16.7% in Europe, and 1.2% in the Americas, with increased African ancestry in the southern United States compared to the North and West. Combining demographic models of ancestry and those of relatedness suggests that admixture occurred predominantly in the South prior to the Civil War and that ancestry-biased migration is responsible for regional differences in ancestry. We find that recent migrations also caused a strong increase in genetic relatedness among geographically distant African-Americans. Long-range relatedness among African-Americans and between African-Americans and European-Americans thus track north- and west-bound migration routes followed during the Great Migration of the twentieth century. By contrast, short-range relatedness patterns suggest comparable mobility of ∼15-16km per generation for African-Americans and European-Americans, as estimated using a novel analytical model of isolation-by-distance. PMID:27232753

  15. Unexpected absence of genetic separation of a highly diverse population of hookworms from geographically isolated hosts.

    PubMed

    Haynes, Benjamin T; Marcus, Alan D; Higgins, Damien P; Gongora, Jaime; Gray, Rachael; Šlapeta, Jan

    2014-12-01

    The high natal site fidelity of endangered Australian sea lions (Neophoca cinerea) along the southern Australian coast suggests that their maternally transmitted parasitic species, such as hookworms, will have restricted potential for dispersal. If this is the case, we would expect to find a hookworm haplotype structure corresponding to that of the host mtDNA haplotype structure; that is, restricted among geographically separated colonies. In this study, we used a fragment of the cytochrome c oxidase I mitochondrial DNA (mtDNA) gene to investigate the diversity of hookworms (Uncinaria sanguinis) in N. cinerea to assess the importance of host distribution and ecology on the evolutionary history of the parasite. High haplotype (h=0.986) and nucleotide diversity (π=0.013) were seen, with 45 unique hookworm mtDNA haplotypes across N. cinerea colonies; with most of the variation (78%) arising from variability within hookworms from individual colonies. This is supported by the low genetic differentiation co-efficient (GST=0.007) and a high gene flow (Nm=35.25) indicating a high migration rate between the populations of hookworms. The haplotype network demonstrated no clear distribution and delineation of haplotypes according to geographical location. Our data rejects the vicariance hypothesis; that female host natal site fidelity and the transmammary route of infection restrict hookworm gene flow between N. cinerea populations and highlights the value of studies of parasite diversity and dispersal to challenge our understanding of parasite and host ecology. PMID:25262830

  16. Host jumps shaped the diversity of extant rust fungi (Pucciniales).

    PubMed

    McTaggart, Alistair R; Shivas, Roger G; van der Nest, Magriet A; Roux, Jolanda; Wingfield, Brenda D; Wingfield, Michael J

    2016-02-01

    The aim of this study was to determine the evolutionary time line for rust fungi and date key speciation events using a molecular clock. Evidence is provided that supports a contemporary view for a recent origin of rust fungi, with a common ancestor on a flowering plant. Divergence times for > 20 genera of rust fungi were studied with Bayesian evolutionary analyses. A relaxed molecular clock was applied to ribosomal and mitochondrial genes, calibrated against estimated divergence times for the hosts of rust fungi, such as Acacia (Fabaceae), angiosperms and the cupressophytes. Results showed that rust fungi shared a most recent common ancestor with a mean age between 113 and 115 million yr. This dates rust fungi to the Cretaceous period, which is much younger than previous estimations. Host jumps, whether taxonomically large or between host genera in the same family, most probably shaped the diversity of rust genera. Likewise, species diversified by host shifts (through coevolution) or via subsequent host jumps. This is in contrast to strict coevolution with their hosts. Puccinia psidii was recovered in Sphaerophragmiaceae, a family distinct from Raveneliaceae, which were regarded as confamilial in previous studies. PMID:26459939

  17. Diversity begets diversity: host expansions and the diversification of plant-feeding insects

    PubMed Central

    Janz, Niklas; Nylin, Sören; Wahlberg, Niklas

    2006-01-01

    Background Plant-feeding insects make up a large part of earth's total biodiversity. While it has been shown that herbivory has repeatedly led to increased diversification rates in insects, there has been no compelling explanation for how plant-feeding has promoted speciation rates. There is a growing awareness that ecological factors can lead to rapid diversification and, as one of the most prominent features of most insect-plant interactions, specialization onto a diverse resource has often been assumed to be the main process behind this diversification. However, specialization is mainly a pruning process, and is not able to actually generate diversity by itself. Here we investigate the role of host colonizations in generating insect diversity, by testing if insect speciation rate is correlated with resource diversity. Results By applying a variant of independent contrast analysis, specially tailored for use on questions of species richness (MacroCAIC), we show that species richness is strongly correlated with diversity of host use in the butterfly family Nymphalidae. Furthermore, by comparing the results from reciprocal sister group selection, where sister groups were selected either on the basis of diversity of host use or species richness, we find that it is likely that diversity of host use is driving species richness, rather than vice versa. Conclusion We conclude that resource diversity is correlated with species richness in the Nymphalidae and suggest a scenario based on recurring oscillations between host expansions – the incorporation of new plants into the repertoire – and specialization, as an important driving force behind the diversification of plant-feeding insects. PMID:16420707

  18. Host density drives the postglacial migration of the tree parasite, Epifagus virginiana

    PubMed Central

    Tsai, Yi-Hsin Erica; Manos, Paul S.

    2010-01-01

    To survive changes in climate, successful species shift their geographic ranges to remain in suitable habitats. For parasites and other highly specialized species, distributional changes not only are dictated by climate but can also be engineered by their hosts. The extent of host control on parasite range expansion is revealed through comparisons of host and parasite migration and demographic histories. However, understanding the codistributional history of entire forest communities is complicated by challenges in synthesizing datasets from multiple interacting species of differing datatypes. Here we integrate genetic and fossil pollen datasets from a host–parasite pair; specifically, the population structure of the parasitic plant (Epifagus virginiana) was compared with both its host (Fagus grandifolia) genetic patterns and abundance data from the paleopollen record of the last 21,000 y. Through tests of phylogeographic structure and spatial linear regression models we find, surprisingly, host range changes had little effect on the parasite's range expansion and instead host density is the main driver of parasite spread. Unlike other symbionts that have been used as proxies to track their host's movements, this parasite's migration routes are incongruent with the host and instead reflect the greater importance of host density in this community's assembly. Furthermore, these results confirm predictions of disease ecological models regarding the role of host density in the spread of pathogens. Due to host density constraints, highly specialized species may have low migration capacities and long lag times before colonization of new areas. PMID:20841421

  19. Tree phylogenetic diversity promotes host-parasitoid interactions.

    PubMed

    Staab, Michael; Bruelheide, Helge; Durka, Walter; Michalski, Stefan; Purschke, Oliver; Zhu, Chao-Dong; Klein, Alexandra-Maria

    2016-07-13

    Evidence from grassland experiments suggests that a plant community's phylogenetic diversity (PD) is a strong predictor of ecosystem processes, even stronger than species richness per se This has, however, never been extended to species-rich forests and host-parasitoid interactions. We used cavity-nesting Hymenoptera and their parasitoids collected in a subtropical forest as a model system to test whether hosts, parasitoids, and their interactions are influenced by tree PD and a comprehensive set of environmental variables, including tree species richness. Parasitism rate and parasitoid abundance were positively correlated with tree PD. All variables describing parasitoids decreased with elevation, and were, except parasitism rate, dependent on host abundance. Quantitative descriptors of host-parasitoid networks were independent of the environment. Our study indicates that host-parasitoid interactions in species-rich forests are related to the PD of the tree community, which influences parasitism rates through parasitoid abundance. We show that effects of tree community PD are much stronger than effects of tree species richness, can cascade to high trophic levels, and promote trophic interactions. As during habitat modification phylogenetic information is usually lost non-randomly, even species-rich habitats may not be able to continuously provide the ecosystem process parasitism if the evolutionarily most distinct plant lineages vanish. PMID:27383815

  20. Parallel Exploitation of Diverse Host Nutrients Enhances Salmonella Virulence

    PubMed Central

    Steeb, Benjamin; Claudi, Beatrice; Burton, Neil A.; Tienz, Petra; Schmidt, Alexander; Farhan, Hesso; Mazé, Alain; Bumann, Dirk

    2013-01-01

    Pathogen access to host nutrients in infected tissues is fundamental for pathogen growth and virulence, disease progression, and infection control. However, our understanding of this crucial process is still rather limited because of experimental and conceptual challenges. Here, we used proteomics, microbial genetics, competitive infections, and computational approaches to obtain a comprehensive overview of Salmonella nutrition and growth in a mouse typhoid fever model. The data revealed that Salmonella accessed an unexpectedly diverse set of at least 31 different host nutrients in infected tissues but the individual nutrients were available in only scarce amounts. Salmonella adapted to this situation by expressing versatile catabolic pathways to simultaneously exploit multiple host nutrients. A genome-scale computational model of Salmonella in vivo metabolism based on these data was fully consistent with independent large-scale experimental data on Salmonella enzyme quantities, and correctly predicted 92% of 738 reported experimental mutant virulence phenotypes, suggesting that our analysis provided a comprehensive overview of host nutrient supply, Salmonella metabolism, and Salmonella growth during infection. Comparison of metabolic networks of other pathogens suggested that complex host/pathogen nutritional interfaces are a common feature underlying many infectious diseases. PMID:23633950

  1. Dynamic Quantification of Host Schwann Cell Migration into Peripheral Nerve Allografts

    PubMed Central

    Whitlock, Elizabeth L.; Myckatyn, Terence M.; Tong, Alice Y.; Yee, Andrew; Yan, Ying; Magill, Christina K.; Johnson, Philip J.; Mackinnon, Susan E.

    2010-01-01

    Host Schwann cell (SC) migration into nerve allografts is the limiting factor in the duration of immunosuppression following peripheral nerve allotransplantation, and may be affected by different immunosuppressive regimens. Our objective was to compare SC migration patterns between clinical and experimental immunosuppression regimens both over time and at the harvest endpoint. Eighty mice that express GFP under the control of the Schwann cell specific S100 promoter were engrafted with allogeneic, nonfluorescent sciatic nerve grafts. Mice received immunosuppression with either tacrolimus (FK506), or experimental T-cell triple costimulation blockade (CSB), consisting of CTLA4-immunoglobulin fusion protein, anti-CD40 monoclonal antibody, and anti-inducible costimulator monoclonal antibody. Migration of GFP-expressing host SCs into wild-type allografts was assessed in vivo every 3 weeks until 15 weeks postoperatively, and explanted allografts were evaluated for immunohistochemical staining patterns to differentiate graft from host SCs. Immunosuppression with tacrolimus exhibited a plateau of SC migration, characterized by significant early migration (< 3 weeks) followed by a constant level of host SCs in the graft (15 weeks). At the endpoint, graft fluorescence was decreased relative to surrounding host nerve, and donor SCs persisted within the graft. CSB-treated mice displayed gradually increasing migration of host SCs into the graft, without the plateau noted in tacrolimus-treated mice, and also maintained a population of donor SCs at the 15-week endpoint. SC migration patterns are affected by immunosuppressant choice, particularly in the immediate postoperative period, and the use of a single treatment of CSB may allow for gradual population of nerve allografts with host SCs. PMID:20633557

  2. Diversity of endophytic enterobacteria associated with different host plants.

    PubMed

    Torres, Adalgisa Ribeiro; Araújo, Welington Luiz; Cursino, Luciana; Hungria, Mariangela; Plotegher, Fábio; Mostasso, Fábio Luís; Azevedo, João Lúcio

    2008-08-01

    Fifty-three endophytic enterobacteria isolates from citrus, cocoa, eucalyptus, soybean, and sugar cane were evaluated for susceptibility to the antibiotics ampicillin and kanamycin, and cellulase production. Susceptibility was found on both tested antibiotics. However, in the case of ampicillin susceptibility changed according to the host plant, while all isolates were susceptible to kanamycin. Cellulase production also changed according to host plants. The diversity of these isolates was estimated by employing BOX-PCR genomic fingerprints and 16S rDNA sequencing. In total, twenty-three distinct operational taxonomic units (OTUs) were identified by employing a criterion of 60% fingerprint similarity as a surrogate for an OTU. The 23 OTUs belong to the Pantoea and Enterobacter genera, while their high diversity could be an indication of paraphyletic classification. Isolates representing nine different OTUs belong to Pantoea agglomerans, P. ananatis, P. stewartii, Enterobacter sp., and E. homaechei. The results of this study suggest that plant species may select endophytic bacterial genotypes. It has also become apparent that a review of the Pantoea/Enterobacter genera may be necessary. PMID:18758726

  3. Probiotics stimulate enterocyte migration and microbial diversity in the neonatal mouse intestine.

    PubMed

    Preidis, Geoffrey A; Saulnier, Delphine M; Blutt, Sarah E; Mistretta, Toni-Ann; Riehle, Kevin P; Major, Angela M; Venable, Susan F; Finegold, Milton J; Petrosino, Joseph F; Conner, Margaret E; Versalovic, James

    2012-05-01

    Beneficial microbes and probiotics show promise for the treatment of pediatric gastrointestinal diseases. However, basic mechanisms of probiosis are not well understood, and most investigations have been performed in germ-free or microbiome-depleted animals. We sought to functionally characterize probiotic-host interactions in the context of normal early development. Outbred CD1 neonatal mice were orally gavaged with one of two strains of human-derived Lactobacillus reuteri or an equal volume of vehicle. Transcriptome analysis was performed on enterocyte RNA isolated by laser-capture microdissection. Enterocyte migration and proliferation were assessed by labeling cells with 5-bromo-2'-deoxyuridine, and fecal microbial community composition was determined by 16S metagenomic sequencing. Probiotic ingestion altered gene expression in multiple canonical pathways involving cell motility. L. reuteri strain DSM 17938 dramatically increased enterocyte migration (3-fold), proliferation (34%), and crypt height (29%) compared to vehicle-treated mice, whereas strain ATCC PTA 6475 increased cell migration (2-fold) without affecting crypt proliferative activity. In addition, both probiotic strains increased the phylogenetic diversity and evenness between taxa of the fecal microbiome 24 h after a single probiotic gavage. These experiments identify two targets of probiosis in early development, the intestinal epithelium and the gut microbiome, and suggest novel mechanisms for probiotic strain-specific effects. PMID:22267340

  4. Methane Seep Carbonates Host Distinct, Diverse, and Dynamic Microbial Assemblages

    PubMed Central

    Pasulka, Alexis L.; Marlow, Jeffrey J.; Grupe, Benjamin M.; Levin, Lisa A.

    2015-01-01

    ABSTRACT Marine methane seeps are globally distributed geologic features in which reduced fluids, including methane, are advected upward from the subsurface. As a result of alkalinity generation during sulfate-coupled methane oxidation, authigenic carbonates form slabs, nodules, and extensive pavements. These carbonates shape the landscape within methane seeps, persist long after methane flux is diminished, and in some cases are incorporated into the geologic record. In this study, microbial assemblages from 134 native and experimental samples across 5,500 km, representing a range of habitat substrates (carbonate nodules and slabs, sediment, bottom water, and wood) and seepage conditions (active and low activity), were analyzed to address two fundamental questions of seep microbial ecology: (i) whether carbonates host distinct microbial assemblages and (ii) how sensitive microbial assemblages are to habitat substrate type and temporal shifts in methane seepage flux. Through massively parallel 16S rRNA gene sequencing and statistical analysis, native carbonates are shown to be reservoirs of distinct and highly diverse seep microbial assemblages. Unique coupled transplantation and colonization experiments on the seafloor demonstrated that carbonate-associated microbial assemblages are resilient to seep quiescence and reactive to seep activation over 13 months. Various rates of response to simulated seep quiescence and activation are observed among similar phylogenies (e.g., Chloroflexi operational taxonomic units) and similar metabolisms (e.g., putative S oxidizers), demonstrating the wide range of microbial sensitivity to changes in seepage flux. These results imply that carbonates do not passively record a time-integrated history of seep microorganisms but rather host distinct, diverse, and dynamic microbial assemblages. PMID:26695630

  5. Host range, prevalence, and genetic diversity of adenoviruses in bats.

    PubMed

    Li, Yan; Ge, Xingyi; Zhang, Huajun; Zhou, Peng; Zhu, Yan; Zhang, Yunzhi; Yuan, Junfa; Wang, Lin-Fa; Shi, Zhengli

    2010-04-01

    Bats are the second largest group of mammals on earth and act as reservoirs of many emerging viruses. In this study, a novel bat adenovirus (AdV) (BtAdV-TJM) was isolated from bat fecal samples by using a bat primary kidney cell line. Infection studies indicated that most animal and human cell lines are susceptible to BtAdV-TJM, suggesting a possible wide host range. Genome analysis revealed 30 putative genes encoding proteins homologous to their counterparts in most known AdVs. Phylogenetic analysis placed BtAdV-TJM within the genus Mastadenovirus, most closely related to tree shrew and canine AdVs. PCR analysis of 350 bat fecal samples, collected from 19 species in five Chinese provinces during 2007 and 2008, indicated that 28 (or 8%) samples were positive for AdVs. The samples were from five bat species, Hipposideros armiger, Myotis horsfieldii, M. ricketti, Myotis spp., and Scotophilus kuhlii. The prevalence ranged from 6.25% (H. armiger in 2007) to 40% (M. ricketti in 2007). Comparison studies based on available partial sequences of the pol gene demonstrated a great genetic diversity among bat AdVs infecting different bat species as well as those infecting the same bat species. This is the first report of a genetically diverse group of DNA viruses in bats. Our results support the notion, derived from previous studies based on RNA viruses (especially coronaviruses and astroviruses), that bats seem to have the unusual ability to harbor a large number of genetically diverse viruses within a geographic location and/or within a taxonomic group. PMID:20089640

  6. Phosphorus source alters host plant response to ectomycorrhizal diversity.

    PubMed

    Baxter, James W; Dighton, John

    2005-11-01

    We examined the influence of phosphorus source and availability on host plant (Pinus rigida) response to ectomycorrhizal diversity under contrasting P conditions. An ectomycorrhizal richness gradient was established with equimolar P supplied as either inorganic phosphate or organic inositol hexaphosphate. We measured growth and N and P uptake of individual P. rigida seedlings inoculated with one, two, or four species of ectomycorrhizal fungi simultaneously and without mycorrhizas in axenic culture. Whereas colonization of P. rigida by individual species of ectomycorrhizal fungi decreased with increasing fungal richness, colonization of all species combined increased. Plant biomass and N content increased across the ectomycorrhizal richness gradient in the organic but not the inorganic P treatment. Plants grown under organic P conditions had higher N concentration than those grown under inorganic P conditions, but there was no effect of richness. Phosphorus content of plants grown in the organic P treatment increased with increasing ectomycorrhizal richness, but there was no response in the inorganic P treatment. Phosphorus concentration was higher in plants grown at the four-species richness level in the organic P treatment, but there was no effect of diversity under inorganic P conditions. Overall, few ectomycorrhizal composition effects were found on plant growth or nutrient status. Phosphatase activities of individual ectomycorrhizal fungi differed under organic P conditions, but there was no difference in total root system phosphatase expression between the inorganic or organic P treatments or across richness levels. Our results provide evidence that plant response to ectomycorrhizal diversity is dependent on the source and availability of P. PMID:15809869

  7. Pediatric migration and hepatitis A risk in host population.

    PubMed

    Castelli, F; Matteelli, A; Signorini, L; Scalvini, C; Romano, L; Tanzi, E; Brunori, A; Cadeo, G P; Zanetti, A R

    1999-09-01

    Hepatitis A virus (HAV) circulation in a given area is closely related to socioeconomic standards. Following the improvement of living conditions, HAV seroprevalence rates in the population have decreased steadily during the last decades in many Western European countries, including Italy, thereby leading to a shift of risk of disease towards older age groups. Since the severity of the disease closely parallels age, a higher incidence of symptomatic cases in adults is now reported in Europe and the United States, being travel-related to a large extent. Intrafamilial person-to-person spread is also an important source of infection and transmission from children to parents may occur due to the lack of immunity in the general population. In the last two decades, Italy has been the destination of an increasing number of migrants from developing countries, where HAV is highly endemic. Furthermore, international adoption programmes cause pediatric populations from HAV endemic countries to increase in low endemic areas, possibly leading to secondary cases in close contacts.7 The aim of this paper is to report the epidemic HAV outbreak which occurred among the voluntary nursing staff of a pediatric Rwandan refugee community hosted in a village of the Brescia Province, in northern Italy. PMID:10467157

  8. Distinct immunoregulatory properties of macrophage migration inhibitory factors encoded by Eimeria parasites and their chicken host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays an important role in host defense against a variety of microorganisms including protozoan parasites. Interestingly, some microbial pathogens also express a MIF-like protein, although its role in disease pathogenesi...

  9. Ectomycorrhizal fungi in Mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns in phylogeography.

    PubMed

    Kennedy, Peter G; Garibay-Orijel, Roberto; Higgins, Logan M; Angeles-Arguiz, Rodolfo

    2011-08-01

    To examine the geographic patterns in Alnus-associated ectomycorrhizal (ECM) fungal assemblages and determine how they may relate to host plant biogeography, we studied ECM assemblages associated with two Alnus species (Alnus acuminata and Alnus jorullensis) in montane Mexico and compared them with Alnus-associated ECM assemblages located elsewhere in the Americas. ECM root samples were collected from four sites in Mexico (two per host species), identified with ITS and LSU rRNA gene sequences, and assessed using both taxon- (richness, diversity, evenness indices) and sequence divergence-based (UniFrac clustering and significance) analyses. Only 23 ECM taxa were encountered. Clavulina, an ECM lineage never before reported with Alnus, contained the dominant taxon overall. ECM assemblage structure varied between hosts, but UniFrac significance tests indicated that both associated with similar ECM lineage diversity. There was a strikingly high sequence similarity among a diverse array of the ECM taxa in Mexico and those in Alnus forests in Argentina, the United States, and Europe. The Mexican and United States assemblages had greater overlap than those present in Argentina, supporting the host-ECM fungi co-migration hypothesis from a common north temperate origin. Our results indicate that Alnus-associated ECM assemblages have clear patterns in richness and composition across a wide range of geographic locations. Additional data from boreal western North America as well as the eastern United States and Canada will be particularly informative in further understanding the co-biogeographic patterns of Alnus and ECM fungi in the Americas. PMID:21331794

  10. Downstream Migration of Masu Salmon Smolt at a Diversion Facility of Dam

    NASA Astrophysics Data System (ADS)

    Hayashida, K.; Nii, H.; Kasuga, K.; Watanabe, K.

    2014-12-01

    A diversion facility was installed on the upstream of Pirika Dam in Northern Japan that produced a downstream flow into the fishway, thus allowing the fish to migrate to the sea. On the other hand, if the flow rate in the river was more than 7.00 m 3/s (design flow rate of diversion facility), masu salmon smolt were concerned about accessing the dam reservoir, because the smolt can't migrate to the sea through the diversion facility unfortunately. Therefore, the downstream migration of smolt was investigated around the diversion facility. The PIT tag system and radio transmitters as the biotelemetry were used to determine 1) whether masu salmon smolt were able to migrate downstream through the diversion facility and fishway at Pirika Dam, 2) when the smolt started to migrate downstream, 3) whether the downstream migration of smolt were affected by the flow increase in the river. It was clarified that 88% of the smolt were able to enter the diversion facility, and then 81% of the smolt were able to access the fishway. It was also clarified that smolt downstream migration had two peaks in a day (5:00 and 18:00). During the study period, although the flow rate was in the 2.21 m3/s to 30.44 m3/s range (average 6.70 m3/s), it was revealed that the diversion facility has a satisfactory function for the downstream migration of smolt as presented above. The survey clarified the downstream migration behavior of masu salmon by using two types of biotelemetry equipment. PIT tag and radio transmitter were found to be very effective in tracking the behavior of small fish such as smolt. PIT tags, in particular, require very little operating cost, because once they are inserted in the fish, they do not need human labor for tracking. It is desirable to actively introduce the biotelemetry as tracking equipment when surveying the fish migration in the river.

  11. Prevalence and beta diversity in avian malaria communities: host species is a better predictor than geography.

    PubMed

    Scordato, Elizabeth S C; Kardish, Melissa R

    2014-11-01

    Patterns of diversity and turnover in macroorganism communities can often be predicted from differences in habitat, phylogenetic relationships among species and the geographical scale of comparisons. In this study, we asked whether these factors also predict diversity and turnover in parasite communities. We studied communities of avian malaria in two sympatric, ecologically similar, congeneric host species at three different sites. We asked whether parasite prevalence and community structure varied with host population, host phylogeography or geographical distance. We used PCR to screen birds for infections and then used Bayesian methods to determine phylogenetic relationships among malaria strains. Metrics of both community and phylogenetic beta diversity were used to examine patterns of malaria strain turnover between host populations, and partial Mantel tests were used determine the correlation between malaria beta diversity and geographical distance. Finally, we developed microsatellite markers to describe the genetic structure of host populations and assess the relationship between host phylogeography and parasite beta diversity. We found that different genera of malaria parasites infect the two hosts at different rates. Within hosts, parasite communities in one population were phylogenetically clustered, but there was otherwise no correlation between metrics of parasite beta diversity and geographical or genetic distance between host populations. Patterns of parasite turnover among host populations are consistent with malaria transmission occurring in the winter rather than on the breeding grounds. Our results indicate greater turnover in parasite communities between different hosts than between different study sites. Differences in host species, as well as transmission location and vector ecology, seem to be more important in structuring malaria communities than the distance-decay relationships frequently found in macroorganisms. Determining the factors

  12. Partitioning the net effect of host diversity on an emerging amphibian pathogen

    PubMed Central

    Becker, C. Guilherme; Rodriguez, David; Toledo, L. Felipe; Longo, Ana V.; Lambertini, Carolina; Corrêa, Décio T.; Leite, Domingos S.; Haddad, Célio F. B.; Zamudio, Kelly R.

    2014-01-01

    The ‘dilution effect’ (DE) hypothesis predicts that diverse host communities will show reduced disease. The underlying causes of pathogen dilution are complex, because they involve non-additive (driven by host interactions and differential habitat use) and additive (controlled by host species composition) mechanisms. Here, we used measures of complementarity and selection traditionally employed in the field of biodiversity–ecosystem function (BEF) to quantify the net effect of host diversity on disease dynamics of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd). Complementarity occurs when average infection load in diverse host assemblages departs from that of each component species in uniform populations. Selection measures the disproportionate impact of a particular species in diverse assemblages compared with its performance in uniform populations, and therefore has strong additive and non-additive properties. We experimentally infected tropical amphibian species of varying life histories, in single- and multi-host treatments, and measured individual Bd infection loads. Host diversity reduced Bd infection in amphibians through a mechanism analogous to complementarity (sensu BEF), potentially by reducing shared habitat use and transmission among hosts. Additionally, the selection component indicated that one particular terrestrial species showed reduced infection loads in diverse assemblages at the expense of neighbouring aquatic hosts becoming heavily infected. By partitioning components of diversity, our findings underscore the importance of additive and non-additive mechanisms underlying the DE. PMID:25297867

  13. Influenza A virus on oceanic islands: host and viral diversity in seabirds in the Western Indian Ocean.

    PubMed

    Lebarbenchon, Camille; Jaeger, Audrey; Feare, Chris; Bastien, Matthieu; Dietrich, Muriel; Larose, Christine; Lagadec, Erwan; Rocamora, Gérard; Shah, Nirmal; Pascalis, Hervé; Boulinier, Thierry; Le Corre, Matthieu; Stallknecht, David E; Dellagi, Koussay

    2015-05-01

    Ducks and seabirds are natural hosts for influenza A viruses (IAV). On oceanic islands, the ecology of IAV could be affected by the relative diversity, abundance and density of seabirds and ducks. Seabirds are the most abundant and widespread avifauna in the Western Indian Ocean and, in this region, oceanic islands represent major breeding sites for a large diversity of potential IAV host species. Based on serological assays, we assessed the host range of IAV and the virus subtype diversity in terns of the islands of the Western Indian Ocean. We further investigated the spatial variation in virus transmission patterns between islands and identified the origin of circulating viruses using a molecular approach. Our findings indicate that terns represent a major host for IAV on oceanic islands, not only for seabird-related virus subtypes such as H16, but also for those commonly isolated in wild and domestic ducks (H3, H6, H9, H12 subtypes). We also identified strong species-associated variation in virus exposure that may be associated to differences in the ecology and behaviour of terns. We discuss the role of tern migrations in the spread of viruses to and between oceanic islands, in particular for the H2 and H9 IAV subtypes. PMID:25996394

  14. Influenza A Virus on Oceanic Islands: Host and Viral Diversity in Seabirds in the Western Indian Ocean

    PubMed Central

    Lebarbenchon, Camille; Jaeger, Audrey; Feare, Chris; Bastien, Matthieu; Dietrich, Muriel; Larose, Christine; Lagadec, Erwan; Rocamora, Gérard; Shah, Nirmal; Pascalis, Hervé; Boulinier, Thierry; Le Corre, Matthieu; Stallknecht, David E.; Dellagi, Koussay

    2015-01-01

    Ducks and seabirds are natural hosts for influenza A viruses (IAV). On oceanic islands, the ecology of IAV could be affected by the relative diversity, abundance and density of seabirds and ducks. Seabirds are the most abundant and widespread avifauna in the Western Indian Ocean and, in this region, oceanic islands represent major breeding sites for a large diversity of potential IAV host species. Based on serological assays, we assessed the host range of IAV and the virus subtype diversity in terns of the islands of the Western Indian Ocean. We further investigated the spatial variation in virus transmission patterns between islands and identified the origin of circulating viruses using a molecular approach. Our findings indicate that terns represent a major host for IAV on oceanic islands, not only for seabird-related virus subtypes such as H16, but also for those commonly isolated in wild and domestic ducks (H3, H6, H9, H12 subtypes). We also identified strong species-associated variation in virus exposure that may be associated to differences in the ecology and behaviour of terns. We discuss the role of tern migrations in the spread of viruses to and between oceanic islands, in particular for the H2 and H9 IAV subtypes. PMID:25996394

  15. Cryptosporidium within-host genetic diversity: systematic bibliographical search and narrative overview.

    PubMed

    Grinberg, Alex; Widmer, Giovanni

    2016-07-01

    Knowledge of the within-host genetic diversity of a pathogen often has broad implications for disease management. Cryptosporidium protozoan parasites are among the most common causative agents of infectious diarrhoea. Current limitations of in vitro culture impose the use of uncultured isolates obtained directly from the hosts as operational units of Cryptosporidium genotyping. The validity of this practice is centred on the assumption of genetic homogeneity of the parasite within the host, and genetic studies often take little account of the within-host genetic diversity of Cryptosporidium. Yet, theory and experimental evidence contemplate genetic diversity of Cryptosporidium at the within-host scale, but this diversity is not easily identified by genotyping methods ill-suited for the resolution of DNA mixtures. We performed a systematic bibliographical search of the occurrence of within-host genetic diversity of Cryptosporidium parasites in epidemiological samples, between 2005 and 2015. Our results indicate that genetic diversity at the within-host scale, in the form of mixed species or intra-species diversity, has been identified in a large number (n=55) of epidemiological surveys of cryptosporidiosis in variable proportions, but has often been treated as a secondary finding and not analysed. As in malaria, there are indications that the scale of this diversity varies between geographical regions, perhaps depending on the prevailing transmission pathways. These results provide a significant knowledge base from which to draw alternative population genetic structure models, some of which are discussed in this paper. PMID:27021167

  16. Migration, Prospecting, Dispersal? What Host Movement Matters for Infectious Agent Circulation?

    PubMed

    Boulinier, Thierry; Kada, Sarah; Ponchon, Aurore; Dupraz, Marlène; Dietrich, Muriel; Gamble, Amandine; Bourret, Vincent; Duriez, Olivier; Bazire, Romain; Tornos, Jérémy; Tveraa, Torkild; Chambert, Thierry; Garnier, Romain; McCoy, Karen D

    2016-08-01

    Spatial disease ecology is emerging as a new field that requires the integration of complementary approaches to address how the distribution and movements of hosts and parasites may condition the dynamics of their interactions. In this context, migration, the seasonal movement of animals to different zones of their distribution, is assumed to play a key role in the broad scale circulation of parasites and pathogens. Nevertheless, migration is not the only type of host movement that can influence the spatial ecology, evolution, and epidemiology of infectious diseases. Dispersal, the movement of individuals between the location where they were born or bred to a location where they breed, has attracted attention as another important type of movement for the spatial dynamics of infectious diseases. Host dispersal has notably been identified as a key factor for the evolution of host-parasite interactions as it implies gene flow among local host populations and thus can alter patterns of coevolution with infectious agents across spatial scales. However, not all movements between host populations lead to dispersal per se. One type of host movement that has been neglected, but that may also play a role in parasite spread is prospecting, i.e., movements targeted at selecting and securing new habitat for future breeding. Prospecting movements, which have been studied in detail in certain social species, could result in the dispersal of infectious agents among different host populations without necessarily involving host dispersal. In this article, we outline how these various types of host movements might influence the circulation of infectious disease agents and discuss methodological approaches that could be used to assess their importance. We specifically focus on examples from work on colonial seabirds, ticks, and tick-borne infectious agents. These are convenient biological models because they are strongly spatially structured and involve relatively simple communities

  17. Association of Host and Microbial Species Diversity across Spatial Scales in Desert Rodent Communities

    PubMed Central

    Messika, Irit; Cohen, Carmit; Toh, Evelyn; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith; Hawlena, Hadas

    2014-01-01

    Relationships between host and microbial diversity have important ecological and applied implications. Theory predicts that these relationships will depend on the spatio-temporal scale of the analysis and the niche breadth of the organisms in question, but representative data on host-microbial community assemblage in nature is lacking. We employed a natural gradient of rodent species richness and quantified bacterial communities in rodent blood at several hierarchical spatial scales to test the hypothesis that associations between host and microbial species diversity will be positive in communities dominated by organisms with broad niches sampled at large scales. Following pyrosequencing of rodent blood samples, bacterial communities were found to be comprised primarily of broad niche lineages. These communities exhibited positive correlations between host diversity, microbial diversity and the likelihood for rare pathogens at the regional scale but not at finer scales. These findings demonstrate how microbial diversity is affected by host diversity at different spatial scales and suggest that the relationships between host diversity and overall disease risk are not always negative, as the dilution hypothesis predicts. PMID:25343259

  18. Association of host and microbial species diversity across spatial scales in desert rodent communities.

    PubMed

    Gavish, Yoni; Kedem, Hadar; Messika, Irit; Cohen, Carmit; Toh, Evelyn; Munro, Daniel; Dong, Qunfeng; Fuqua, Clay; Clay, Keith; Hawlena, Hadas

    2014-01-01

    Relationships between host and microbial diversity have important ecological and applied implications. Theory predicts that these relationships will depend on the spatio-temporal scale of the analysis and the niche breadth of the organisms in question, but representative data on host-microbial community assemblage in nature is lacking. We employed a natural gradient of rodent species richness and quantified bacterial communities in rodent blood at several hierarchical spatial scales to test the hypothesis that associations between host and microbial species diversity will be positive in communities dominated by organisms with broad niches sampled at large scales. Following pyrosequencing of rodent blood samples, bacterial communities were found to be comprised primarily of broad niche lineages. These communities exhibited positive correlations between host diversity, microbial diversity and the likelihood for rare pathogens at the regional scale but not at finer scales. These findings demonstrate how microbial diversity is affected by host diversity at different spatial scales and suggest that the relationships between host diversity and overall disease risk are not always negative, as the dilution hypothesis predicts. PMID:25343259

  19. Cryptic diversity and female host specificity in a parasitoid where the sexes utilize hosts from separate orders.

    PubMed

    Hayward, Alexander; McMahon, Dino P; Kathirithamby, Jeyaraney

    2011-04-01

    Investigating complex parasitic life cycles is important for understanding the major fitness components that drive the evolution of host-parasite systems. The rare condition of heterotrophic heteronomy, in which the sexes utilize disparate host taxa, is a poorly understood complex parasitic lifestyle. One of only two known examples occurs in the Myrmecolacidae, an unusual family of the parasitoid order Strepsiptera (Insecta), in which males parasitize ants while females parasitize grasshoppers, crickets, and praying mantids. Here, we reconstruct the evolutionary pattern and timescale of host-use in a set of morphologically cryptic myrmecolacid taxa currently identified as Caenocholax fenyesi. We find that (i) C. fenyesi contains at least ten cryptic lineages consistent with separate species; (ii) Fossil evidence suggests a very low molecular clock rate and an ancient origin for cryptic lineages; (iii) Diversity among Caenocholax species is partitioned by geography and host association of the female; and (iv) Switches in host usage are uncoupled between the sexes, with changes in female host preference accompanying diversification. This study represents the first phylogeographical analysis of any strepsipteran, and the first molecular examination of host-use for a heterotrophic heteronomous taxon. Our results have implications for the understanding of evolution, host usage and estimated species richness in parasitic taxa. PMID:21382110

  20. Nile Tilapia Infectivity by Genomically Diverse Streptoccocus agalactiae Isolates from Multiple Hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae, Lancefield group B Streptococcus (GBS), is recognized for causing cattle mastitis, human neonatal meningitis, and fish meningo-encephalitis. We investigated the genomic diversity of GBS isolates from different phylogenetic hosts and geographical regions using serological t...

  1. Analysis of host genetic diversity and viral entry as sources of between-host variation in viral load

    USGS Publications Warehouse

    Wargo, Andrew R.; Kell, Alison M.; Scott, Robert J.; Thorgaard, Gary H.; Kurath, Gael

    2012-01-01

    Little is known about the factors that drive the high levels of between-host variation in pathogen burden that are frequently observed in viral infections. Here, two factors thought to impact viral load variability, host genetic diversity and stochastic processes linked with viral entry into the host, were examined. This work was conducted with the aquatic vertebrate virus, Infectious hematopoietic necrosis virus (IHNV), in its natural host, rainbow trout. It was found that in controlled in vivo infections of IHNV, a suggestive trend of reduced between-fish viral load variation was observed in a clonal population of isogenic trout compared to a genetically diverse population of out-bred trout. However, this trend was not statistically significant for any of the four viral genotypes examined, and high levels of fish-to-fish variation persisted even in the isogenic trout population. A decrease in fish-to-fish viral load variation was also observed in virus injection challenges that bypassed the host entry step, compared to fish exposed to the virus through the natural water-borne immersion route of infection. This trend was significant for three of the four virus genotypes examined and suggests host entry may play a role in viral load variability. However, high levels of viral load variation also remained in the injection challenges. Together, these results indicate that although host genetic diversity and viral entry may play some role in between-fish viral load variation, they are not major factors. Other biological and non-biological parameters that may influence viral load variation are discussed.

  2. Molecular Diversity of the peanut rust pathogen and its host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Puccinia arachidis Speg is the causal agent of peanut rust, an important foliar disease of peanut in mainly low input peanut (Arachis hypogaea) producing countries with warm, tropical climates. Management of this disease in these countries is best realized through host resistance. Knowledge on the v...

  3. The Global Diversity of Parasitic Isopods Associated with Crustacean Hosts (Isopoda: Bopyroidea and Cryptoniscoidea)

    PubMed Central

    Williams, Jason D.; Boyko, Christopher B.

    2012-01-01

    Parasitic isopods of Bopyroidea and Cryptoniscoidea (commonly referred to as epicarideans) are unique in using crustaceans as both intermediate and definitive hosts. In total, 795 epicarideans are known, representing ∼7.7% of described isopods. The rate of description of parasitic species has not matched that of free-living isopods and this disparity will likely continue due to the more cryptic nature of these parasites. Distribution patterns of epicarideans are influenced by a combination of their definitive (both benthic and pelagic species) and intermediate (pelagic copepod) host distributions, although host specificity is poorly known for most species. Among epicarideans, nearly all species in Bopyroidea are ectoparasitic on decapod hosts. Bopyrids are the most diverse taxon (605 species), with their highest diversity in the North West Pacific (139 species), East Asian Sea (120 species), and Central Indian Ocean (44 species). The diversity patterns of Cryptoniscoidea (99 species, endoparasites of a diverse assemblage of crustacean hosts) are distinct from bopyrids, with the greatest diversity of cryptoniscoids in the North East Atlantic (18 species) followed by the Antarctic, Mediterranean, and Arctic regions (13, 12, and 8 species, respectively). Dajidae (54 species, ectoparasites of shrimp, mysids, and euphausids) exhibits highest diversity in the Antarctic (7 species) with 14 species in the Arctic and North East Atlantic regions combined. Entoniscidae (37 species, endoparasites within anomuran, brachyuran and shrimp hosts) show highest diversity in the North West Pacific (10 species) and North East Atlantic (8 species). Most epicarideans are known from relatively shallow waters, although some bopyrids are known from depths below 4000 m. Lack of parasitic groups in certain geographic areas is likely a sampling artifact and we predict that the Central Indian Ocean and East Asian Sea (in particular, the Indo-Malay-Philippines Archipelago) hold a wealth of

  4. Endophytic Phomopsis species: host range and implications for diversity estimates.

    PubMed

    Murali, T S; Suryanarayanan, T S; Geeta, R

    2006-07-01

    Foliar endophyte assemblages of teak trees growing in dry deciduous and moist deciduous forests of Nilgiri Biosphere Reserve were compared. A species of Phomopsis dominated the endophyte assemblages of teak, irrespective of the location of the host trees. Internal transcribed spacer sequence analysis of 11 different Phomopsis isolates (ten from teak and one from Cassia fistula) showed that they fall into two groups, which are separated by a relatively long branch that is strongly supported. The results showed that this fungus is not host restricted and that it continues to survive as a saprotroph in teak leaf, possibly by exploiting senescent leaves as well as the litter. Although the endophyte assemblage of a teak tree growing about 500 km from the forests was also dominated by a Phomopsis sp., it separated into a different group based on internal transcribed spacer sequence analysis. Our results with an endophytic Phomopsis sp. reinforce the earlier conclusions reached by others for pathogenic Phomopsis sp., i.e., that this fungus is not host specific, and the species concept of Phomopsis needs to be redefined. PMID:16917524

  5. Tracking Dengue Virus Intra-host Genetic Diversity during Human-to-Mosquito Transmission

    PubMed Central

    Sim, Shuzhen; Aw, Pauline P. K.; Wilm, Andreas; Teoh, Garrett; Hue, Kien Duong Thi; Nguyen, Nguyet Minh; Nagarajan, Niranjan; Simmons, Cameron P.; Hibberd, Martin L.

    2015-01-01

    Dengue virus (DENV) infection of an individual human or mosquito host produces a dynamic population of closely-related sequences. This intra-host genetic diversity is thought to offer an advantage for arboviruses to adapt as they cycle between two very different host species, but it remains poorly characterized. To track changes in viral intra-host genetic diversity during horizontal transmission, we infected Aedes aegypti mosquitoes by allowing them to feed on DENV2-infected patients. We then performed whole-genome deep-sequencing of human- and matched mosquito-derived DENV samples on the Illumina platform and used a sensitive variant-caller to detect single nucleotide variants (SNVs) within each sample. >90% of SNVs were lost upon transition from human to mosquito, as well as from mosquito abdomen to salivary glands. Levels of viral diversity were maintained, however, by the regeneration of new SNVs at each stage of transmission. We further show that SNVs maintained across transmission stages were transmitted as a unit of two at maximum, suggesting the presence of numerous variant genomes carrying only one or two SNVs each. We also present evidence for differences in selection pressures between human and mosquito hosts, particularly on the structural and NS1 genes. This analysis provides insights into how population drops during transmission shape RNA virus genetic diversity, has direct implications for virus evolution, and illustrates the value of high-coverage, whole-genome next-generation sequencing for understanding viral intra-host genetic diversity. PMID:26325059

  6. Migration of human lymphocytes. I. A model using the mouse as host.

    PubMed Central

    Morgan, K; Holt, P J

    1978-01-01

    The distribution of radioactivity after the intravenous injection of 51Cr-labelled human lymphocytes has been examined in normal mice, irradiated mice, mice treated with anti-platelet antiserum and in mice treated with colloidal carbon. Pre-treatment with carbon and anti-platelet antiserum appears to protect the human lymphocytes from uptake by the host's reticuloendothelial system (RES). Comparison of tissue radioactivity in carbon-treated mice after the injection of viable human lymphocytes with that found after the injection of dead cells and soluble or insoluble cell debris showed that radioactivity recovered in the spleen and lymph nodes is primarily due to the migration of viable lymphocytes into these tissues. Thus the measurement of radioactivity in lymph nodes of carbon-treated mice after the injection of 51Cr-labelled human lymphocytes can be used as a model of these lymphocytes' ability to migrate into the lymph nodes during recirculation and to study factors influencing this migration. PMID:721139

  7. Effect of host species diversity on multiparasite systems in rodent communities.

    PubMed

    Rendón-Franco, Emilio; Muñoz-García, Claudia I; Romero-Callejas, Evangelina; Moreno-Torres, Karla I; Suzán, Gerardo

    2014-01-01

    Reduced species diversity has been suggested to increase transmission rates and prevalence of infectious diseases. While this theory has been studied mostly in single pathogen systems, little is known regarding multiple pathogens systems in vertebrates at the community level. The aim of this study was to evaluate the effect of host richness and diversity on multiple parasite systems on a local scale. We captured small rodents and collected feces in three different vegetation types in a natural protected area in Janos, Chihuahua, Mexico. The flotation technique was used to identify parasite eggs or oocysts. Analysis of linear correlations was conducted between parasite prevalence and host and parasite diversity and richness. Negative correlation was detected between parasite prevalence and host diversity (p = 0.02 r(2) =-0.86), but no significant correlations was detected between parasite prevalence and host richness or parasite diversity or richness. Our study shows that at local scale, host diversity could affect multiple parasite systems in the same way that single pathogens do. Further studies should be performed on larger temporal and spatial scales to more thoroughly investigate the correlation observed in our analysis. PMID:24337614

  8. Differential Impacts of Virus Diversity on Biomass Production of a Native and an Exotic Grass Host.

    PubMed

    Mordecai, Erin A; Hindenlang, Madeleine; Mitchell, Charles E

    2015-01-01

    Pathogens are common and diverse in natural communities and have been implicated in the success of host invasions. Yet few studies have experimentally measured how pathogens impact native versus exotic hosts, particularly when individual hosts are simultaneously coinfected by diverse pathogens. To estimate effects of interactions among multiple pathogens within host individuals on both transmission of pathogens and fitness consequences for hosts, we conducted a greenhouse experiment using California grassland species: the native perennial grass Nassella (Stipa) pulchra, the exotic annual grass Bromus hordeaceus, and three virus species, Barley yellow dwarf virus-PAV, Barley yellow dwarf virus-MAV, and Cereal yellow dwarf virus-RPV. In terms of virus transmission, the native host was less susceptible than the exotic host to MAV. Coinfection of PAV and MAV did not occur in any of the 157 co-inoculated native host plants. In the exotic host, PAV infection most strongly reduced root and shoot biomass, and coinfections that included PAV severely reduced biomass. Infection with single or multiple viruses did not affect biomass in the native host. However, in this species the most potentially pathogenic coinfections (PAV + MAV and PAV + MAV + RPV) did not occur. Together, these results suggest that interactions among multiple pathogens can have important consequences for host health, which may not be predictable from interactions between hosts and individual pathogens. This work addresses a key empirical gap in understanding the impact of multiple generalist pathogens on competing host species, with potential implications for population and community dynamics of native and exotic species. It also demonstrates how pathogens with relatively mild impacts independently can more substantially reduce host performance in coinfection. PMID:26230720

  9. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence.

    PubMed

    Holowka, Thomas; Castilho, Tiago M; Garcia, Alvaro Baeza; Sun, Tiffany; McMahon-Pratt, Diane; Bucala, Richard

    2016-06-01

    Leishmania major encodes 2 orthologs of the cytokine macrophage migration inhibitory factor (MIF), whose functions in parasite growth or in the host-parasite interaction are unknown. To determine the importance of Leishmania-encoded MIF, both LmMIF genes were removed to produce an mif(-/-) strain of L. major This mutant strain replicated normally in vitro but had a 2-fold increased susceptibility to clearance by macrophages. Mice infected with mif(-/-) L. major, when compared to the wild-type strain, also showed a 3-fold reduction in parasite burden. Microarray and functional analyses revealed a reduced ability of mif(-/-) L. major to activate antigen-presenting cells, resulting in a 2-fold reduction in T-cell priming. In addition, there was a reduction in inflammation and effector CD4 T-cell formation in mif(-/-) L. major-infected mice when compared to mice infected with wild-type L. major Notably, effector CD4 T cells that developed during infection with mif(-/-) L. major demonstrated statistically significant differences in markers of functional exhaustion, including increased expression of IFN-γ and IL-7R, reduced expression of programmed death-1, and decreased apoptosis. These data support a role for LmMIF in promoting parasite persistence by manipulating the host response to increase the exhaustion and depletion of protective CD4 T cells.-Holowka, T., Castilho, T. M., Baeza Garcia, A., Sun, T., McMahon-Pratt, D., Bucala, R. Leishmania-encoded orthologs of macrophage migration inhibitory factor regulate host immunity to promote parasite persistence. PMID:26956417

  10. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity

    PubMed Central

    Bashey, Farrah

    2015-01-01

    Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases. PMID:26150667

  11. Serial infection of diverse host (Mus) genotypes rapidly impedes pathogen fitness and virulence.

    PubMed

    Kubinak, Jason L; Cornwall, Douglas H; Hasenkrug, Kim J; Adler, Frederick R; Potts, Wayne K

    2015-01-01

    Reduced genetic variation among hosts may favour the emergence of virulent infectious diseases by enhancing pathogen replication and its associated virulence due to adaptation to a limited set of host genotypes. Here, we test this hypothesis using experimental evolution of a mouse-specific retroviral pathogen, Friend virus (FV) complex. We demonstrate rapid fitness (i.e. viral titre) and virulence increases when FV complex serially infects a series of inbred mice representing the same genotype, but not when infecting a diverse array of inbred mouse strains modelling the diversity in natural host populations. Additionally, a single infection of a different host genotype was sufficient to constrain the emergence of a high fitness/high virulence FV complex phenotype in these experiments. The potent inhibition of viral fitness and virulence was associated with an observed loss of the defective retroviral genome (spleen focus-forming virus), whose presence exacerbates infection and drives disease in susceptible mice. Results from our experiments provide an important first step in understanding how genetic variation among vertebrate hosts influences pathogen evolution and suggests that serial exposure to different genotypes within a single host species may act as a constraint on pathogen adaptation that prohibits the emergence of more virulent infections. From a practical perspective, these results have implications for low-diversity host populations such as endangered species and domestic animals. PMID:25392466

  12. Malagasy bats shelter a considerable genetic diversity of pathogenic Leptospira suggesting notable host-specificity patterns.

    PubMed

    Gomard, Yann; Dietrich, Muriel; Wieseke, Nicolas; Ramasindrazana, Beza; Lagadec, Erwan; Goodman, Steven M; Dellagi, Koussay; Tortosa, Pablo

    2016-04-01

    Pathogenic Leptospira are the causative agents of leptospirosis, a disease of global concern with major impact in tropical regions. Despite the importance of this zoonosis for human health, the evolutionary and ecological drivers shaping bacterial communities in host reservoirs remain poorly investigated. Here, we describe Leptospira communities hosted by Malagasy bats, composed of mostly endemic species, in order to characterize host-pathogen associations and investigate their evolutionary histories. We screened 947 individual bats (representing 31 species, 18 genera and seven families) for Leptospira infection and subsequently genotyped positive samples using three different bacterial loci. Molecular identification showed that these Leptospira are notably diverse and include several distinct lineages mostly belonging to Leptospira borgpetersenii and L. kirschneri. The exploration of the most probable host-pathogen evolutionary scenarios suggests that bacterial genetic diversity results from a combination of events related to the ecology and the evolutionary history of their hosts. Importantly, based on the data set presented herein, the notable host-specificity we have uncovered, together with a lack of geographical structuration of bacterial genetic diversity, indicates that the Leptospira community at a given site depends on the co-occurring bat species assemblage. The implications of such tight host-specificity on the epidemiology of leptospirosis are discussed. PMID:26902801

  13. Host Suitability of Diverse Lines of Phaseolus vulgaris to Multiple Populations of Heterodera glycines

    PubMed Central

    Smith, James R.; Young, Lawrence D.

    2003-01-01

    The host suitability of diverse races and gene pools of common bean (Phaseolus vulgaris) for multiple isolates of Heterodera glycines was studied. Twenty P. vulgaris genotypes, representing three of the six races within the two major germplasm pools, were tested in greenhouse experiments to determine their host suitability to five H. glycines isolates. Phaseolus vulgaris genotypes differed in their host suitability to different H. glycines isolates. While some common bean lines were excellent hosts for some H. glycines isolates, no common bean line was a good host for all isolates. Some bean lines from races Durango and Mesoamerica, representing the Middle America gene pool, were resistant to all five nematode isolates. Other lines, from both the Andean and Middle America gene pools, had differential responses for host suitability to the different isolates of H. glycines. PMID:19265970

  14. The impact of small irrigation diversion dams on the recent migration rates of steelhead and redband trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Weigel, Dana E.; Connolly, Patrick J.; Powell, Madison S.

    2013-01-01

    Barriers to migration are numerous in stream environments and can occur from anthropogenic activities (such as dams and culverts) or natural processes (such as log jams or dams constructed by beaver (Castor canadensis)). Identification of barriers can be difficult when obstructions are temporary or incomplete providing passage periodically. We examine the effect of several small irrigation diversion dams on the recent migration rates of steelhead (Oncorhynchus mykiss) in three tributaries to the Methow River, Washington. The three basins had different recent migration patterns: Beaver Creek did not have any recent migration between sites, Libby Creek had two-way migration between sites and Gold Creek had downstream migration between sites. Sites with migration were significantly different from sites without migration in distance, number of obstructions, obstruction height to depth ratio and maximum stream gradient. When comparing the sites without migration in Beaver Creek to the sites with migration in Libby and Gold creeks, the number of obstructions was the only significant variable. Multinomial logistic regression identified obstruction height to depth ratio and maximum stream gradient as the best fitting model to predict the level of migration among sites. Small irrigation diversion dams were limiting population interactions in Beaver Creek and collectively blocking steelhead migration into the stream. Variables related to stream resistance (gradient, obstruction number and obstruction height to depth ratio) were better predictors of recent migration rates than distance, and can provide important insight into migration and population demographic processes in lotic species.

  15. Exploring Child Mortality Risks Associated with Diverse Patterns of Maternal Migration in Haiti

    PubMed Central

    Smith-Greenaway, Emily; Thomas, Kevin

    2014-01-01

    Internal migration is a salient dimension of adulthood in Haiti, particularly among women. Despite the prevalence of migration in Haiti, it remains unknown whether Haitian women’s diverse patterns of migration influence their children’s health and survival. In this paper, we introduce the concept of lateral (i.e., rural-to-rural, urban-to-urban) versus nonlateral (i.e., rural-to-urban, urban-to-rural) migration to describe how some patterns of mothers’ internal migration may be associated with particularly high mortality among children. We use the 2006 Haitian Demographic and Health Survey to estimate a series of discrete-time hazard models among 7,409 rural children and 3,864 urban children. We find that, compared with their peers with nonmigrant mothers, children born to lateral migrants generally experience lower mortality whereas those born to nonlateral migrants generally experience higher mortality. Although there are important distinctions across Haiti’s rural and urban contexts, these associations remain net of socioeconomic factors, suggesting they are not entirely attributable to migrant selection. Considering the timing of maternal migration uncovers even more variation in the child health implications of maternal migration; however, the results counter the standard disruption and adaptation perspective. Although future work is needed to identify the processes underlying the differential risk of child mortality across lateral versus nonlateral migrants, the study demonstrates that looking beyond rural-to-urban migration and considering the timing of maternal migration can provide a fuller, more complex understanding of migration’s association with child health. PMID:25506111

  16. Exposing malaria in-host diversity and estimating population diversity by capture-recapture using massively parallel pyrosequencing

    PubMed Central

    Juliano, Jonathan J.; Porter, Kimberly; Mwapasa, Victor; Sem, Rithy; Rogers, William O.; Ariey, Frédéric; Wongsrichanalai, Chansuda; Read, Andrew; Meshnick, Steven R.

    2010-01-01

    Malaria infections commonly contain multiple genetically distinct variants. Mathematical and animal models suggest that interactions among these variants have a profound impact on the emergence of drug resistance. However, methods currently used for quantifying parasite diversity in individual infections are insensitive to low-abundance variants and are not quantitative for variant population sizes. To more completely describe the in-host complexity and ecology of malaria infections, we used massively parallel pyrosequencing to characterize malaria parasite diversity in the infections of a group of patients. By individually sequencing single strands of DNA in a complex mixture, this technique can quantify uncommon variants in mixed infections. The in-host diversity revealed by this method far exceeded that described by currently recommended genotyping methods, with as many as sixfold more variants per infection. In addition, in paired pre- and posttreatment samples, we show a complex milieu of parasites, including variants likely up-selected and down-selected by drug therapy. As with all surveys of diversity, sampling limitations prevent full discovery and differences in sampling effort can confound comparisons among samples, hosts, and populations. Here, we used ecological approaches of species accumulation curves and capture-recapture to estimate the number of variants we failed to detect in the population, and show that these methods enable comparisons of diversity before and after treatment, as well as between malaria populations. The combination of ecological statistics and massively parallel pyrosequencing provides a powerful tool for studying the evolution of drug resistance and the in-host ecology of malaria infections. PMID:21041629

  17. Parasite diversity drives rapid host dynamics and evolution of resistance in a bacteria‐phage system

    PubMed Central

    Betts, Alex; Gifford, Danna R.; MacLean, R. Craig; King, Kayla C.

    2016-01-01

    Host–parasite evolutionary interactions are typically considered in a pairwise species framework. However, natural infections frequently involve multiple parasites. Altering parasite diversity alters ecological and evolutionary dynamics as parasites compete and hosts resist multiple infection. We investigated the effects of parasite diversity on host–parasite population dynamics and evolution using the pathogen Pseudomonas aeruginosa and five lytic bacteriophage parasites. To manipulate parasite diversity, bacterial populations were exposed for 24 hours to either phage monocultures or diverse communities containing up to five phages. Phage communities suppressed host populations more rapidly but also showed reduced phage density, likely due to interphage competition. The evolution of resistance allowed rapid bacterial recovery that was greater in magnitude with increases in phage diversity. We observed no difference in the extent of resistance with increased parasite diversity, but there was a profound impact on the specificity of resistance; specialized resistance evolved to monocultures through mutations in a diverse set of genes. In summary, we demonstrate that parasite diversity has rapid effects on host–parasite population dynamics and evolution by selecting for different resistance mutations and affecting the magnitude of bacterial suppression and recovery. Finally, we discuss the implications of phage diversity for their use as biological control agents. PMID:27005577

  18. Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid.

    PubMed

    Hite, Jessica L; Bosch, Jaime; Fernández-Beaskoetxea, Saioa; Medina, Daniel; Hall, Spencer R

    2016-07-27

    Why does the severity of parasite infection differ dramatically across habitats? This question remains challenging to answer because multiple correlated pathways drive disease. Here, we examined habitat-disease links through direct effects on parasites and indirect effects on parasite predators (zooplankton), host diversity and key life stages of hosts. We used a case study of amphibian hosts and the chytrid fungus, Batrachochytrium dendrobatidis, in a set of permanent and ephemeral alpine ponds. A field experiment showed that ultraviolet radiation (UVR) killed the free-living infectious stage of the parasite. Yet, permanent ponds with more UVR exposure had higher infection prevalence. Two habitat-related indirect effects worked together to counteract parasite losses from UVR: (i) UVR reduced the density of parasite predators and (ii) permanent sites fostered multi-season host larvae that fuelled parasite production. Host diversity was unlinked to hydroperiod or UVR but counteracted parasite gains; sites with higher diversity of host species had lower prevalence of infection. Thus, while habitat structure explained considerable variation in infection prevalence through two indirect pathways, it could not account for everything. This study demonstrates the importance of creating mechanistic, food web-based links between multiple habitat dimensions and disease. PMID:27466456

  19. Differential Activation of Diverse Glutathione Transferases of Clonorchis sinensis in Response to the Host Bile and Oxidative Stressors

    PubMed Central

    Bae, Young-An; Ahn, Do-Whan; Lee, Eung-Goo; Kim, Seon-Hee; Cai, Guo-Bin; Kang, Insug; Sohn, Woon-Mok; Kong, Yoon

    2013-01-01

    Background Clonorchis sinensis causes chronic cumulative infections in the human hepatobiliary tract and is intimately associated with cholangiocarcinoma. Approximately 35 million people are infected and 600 million people are at risk of infections worldwide. C. sinensis excretory-secretory products (ESP) constitute the first-line effector system affecting the host-parasite interrelationship by interacting with bile fluids and ductal epithelium. However, the secretory behavior of C. sinensis in an environment close to natural host conditions is unclear. C. sinensis differs from Fasciola hepatica in migration to, and maturation in, the hepatic bile duct, implying that protein profile of the ESP of these two trematodes might be different from each other. Methodology/Principal Findings We conducted systemic approaches to analyze the C. sinensis ESP proteome and the biological reactivity of C. sinensis glutathione transferases (GSTs), such as global expression patterns and induction profiles under oxidative stress and host bile. When we observed ex host excretion behavior of C. sinensis in the presence of 10% host bile, the global proteome pattern was not significantly altered, but the amount of secretory proteins was increased by approximately 3.5-fold. Bioactive molecules secreted by C. sinensis revealed universal/unique features in relation to its intraluminal hydrophobic residing niche. A total of 38 protein spots identified abundantly included enzymes involved in glucose metabolism (11 spots, 28.9%) and diverse-classes of glutathione transferases (GSTs; 10 spots, 26.3%). Cathepsin L/F (four spots, 10.5%) and transporter molecules (three spots, 7.9%) were also recognized. The universal secretory proteins found in other parasites, such as several enzymes involved in glucose metabolism and oxygen transporters, were commonly detected. C. sinensis secreted less cysteine proteases and fatty acid binding proteins compared to other tissue-invading or intravascular

  20. Nonhost diversity and density reduce the strength of parasitoid-host interactions.

    PubMed

    Kehoe, Rachel; Frago, Enric; Barten, Catherin; Jecker, Flurin; van Veen, Frank; Sanders, Dirk

    2016-06-01

    The presence of nonprey or nonhosts is known to reduce the strength of consumer- resource interactions by increasing the consumer's effort needed to find its resource. These interference effects can have a stabilizing effect on consumer-resource dynamics, but have also been invoked to explain parasitoid extinctions. To understand how nonhosts affect parasitoids, we manipulated the density and diversity of nonhost aphids using experimental host-parasitoid communities and tested how this affects parasitation efficiency of two aphid parasitoid species. To further study the behavioral response of parasitoids to nonhosts, we tested for changes in parasitoid time allocation in relation to their host-finding strategies. The proportion of successful attacks (attack rate) in both parasitoid species was reduced by the presence of nonhosts. The parasitoid Aphidius megourae was strongly affected by increasing nonhost diversity with the attack rate dropping from 0.39 without nonhosts to 0.05 with high diversity of nonhosts, while Lysiphlebus fabarum responded less strongly, but in a more pronounced way to an increase in nonhost density. Our experiments further showed that increasing nonhost diversity caused host searching and attacking activity levels to fall in A. megourae, but not in L. fabarum, and that A. megourae changed its behavior after a period of time in the presence of nonhosts by increasing its time spent resting. This study shows that nonhost density and diversity in the environment are crucial determinants for the strength of consumer-resource interactions. Their impact upon a consumer's efficiency strongly depends on its host/prey finding strategy as demonstrated by the different responses for the two parasitoid species. We discuss that these trait-mediated indirect interactions between host and nonhost species are important for community stability, acting either stabilizing or destabilizing depending on the level of nonhost density or diversity present. PMID

  1. The Salmonella SPI2 Effector SseI Mediates Long-Term Systemic Infection by Modulating Host Cell Migration

    PubMed Central

    Gerke, Christiane; Gopinath, Smita; Peng, Kaitian; Laidlaw, Grace; Chien, Yueh-Hsiu; Jeong, Ha-Won; Li, Zhigang; Brown, Matthew D.; Sacks, David B.; Monack, Denise

    2009-01-01

    Host-adapted strains of Salmonella enterica cause systemic infections and have the ability to persist systemically for long periods of time despite the presence of a robust immune response. Chronically infected hosts are asymptomatic and transmit disease to naïve hosts via fecal shedding of bacteria, thereby serving as a critical reservoir for disease. We show that the bacterial effector protein SseI (also called SrfH), which is translocated into host cells by the Salmonella Pathogenicity Island 2 (SPI2) type III secretion system (T3SS), is required for Salmonella typhimurium to maintain a long-term chronic systemic infection in mice. SseI inhibits normal cell migration of primary macrophages and dendritic cells (DC) in vitro, and such inhibition requires the host factor IQ motif containing GTPase activating protein 1 (IQGAP1), an important regulator of cell migration. SseI binds directly to IQGAP1 and co-localizes with this factor at the cell periphery. The C-terminal domain of SseI is similar to PMT/ToxA, a bacterial toxin that contains a cysteine residue (C1165) that is critical for activity. Mutation of the corresponding residue in SseI (C178A) eliminates SseI function in vitro and in vivo, but not binding to IQGAP1. In addition, infection with wild-type (WT) S. typhimurium suppressed DC migration to the spleen in vivo in an SseI-dependent manner. Correspondingly, examination of spleens from mice infected with WT S. typhimurium revealed fewer DC and CD4+ T lymphocytes compared to mice infected with ΔsseI S. typhimurium. Taken together, our results demonstrate that SseI inhibits normal host cell migration, which ultimately counteracts the ability of the host to clear systemic bacteria. PMID:19956712

  2. GENOMIC DIVERSITY OF STREPTOCCOCUS AGALACTIAE ISOLATES FROM MULTIPLE HOSTS AND THEIR INFECTIVITY IN NILE TILAPIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our laboratory has conducted multiple studies to investigate the genomic diversity of GBS isolates from different phylogenetic hosts and geographical regions. We have examined fish and dolphin GBS strains using phenotypic, serological typing and multilocus sequence typing (MLST) techniques and comp...

  3. Host-specific segregation of ribosomal nucleotide sequence diversity in the microsporidian Enterocytozoon bieneusi.

    PubMed

    Widmer, Giovanni; Akiyoshi, Donna E

    2010-01-01

    Enterocytozoon bieneusi is a unicellular enteric fungal pathogen and the most common cause of human microsporidiosis. The frequent detection of this organism in animals, including companion animals, livestock and wildlife, has raised the question of the importance of animal reservoirs in the epidemiology of this pathogen. A partial sequence of the ribosomal internal transcribed spacer (ITS) has been widely used as a genetic marker for studying the molecular epidemiology of E. bieneusi. With the aim of comparing E. bieneusi ITS genotypes originating from different host species, and assess the potential for zoonotic transmission, E. bieneusi ITS sequences retrieved from GenBank were analyzed using two metrics of diversity, rarefaction and phylogenetic distance. In spite of the human ITS sample being geographically more diverse, ITS sequence diversity in animals exceeded that of humans. In both host groups much of the ITS diversity remains to be sampled. Using quantitative phylogenetic tests we found evidence for a partial but significant segregation of E. bieneusi ITS sequences according to host species. Host-specific segregation was confirmed by hierarchical analysis of molecular variation. To improve our understanding of the epidemiology of human microsporidiosis and strengthen the study of E. bieneusi populations, efforts to genotype additional E. bieneusi isolates from wildlife and companion animals should be prioritized and the geographic and species diversify of animal samples should be increased. Due to the possibility of genetic recombination in this species, additional unlinked genetic markers need to be developed and included in future studies. PMID:19931647

  4. OUT OF AFRICA: DIVERSITY AND HOST PLANT UTILIZATION IN SUB-SAHARAN BEMISIA TABACI

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diversity of Bemisia tabaci in Sub-Saharan Africa is greater than in any other geographic location and suggests Sub-Saharan Africa is the likely evolutionary origin of the species. Sampling in Africa is now quite extensive and includes a number of studies that have analyzed host preference withi...

  5. Xenorhabdus bovienii Strain Diversity Impacts Coevolution and Symbiotic Maintenance with Steinernema spp. Nematode Hosts

    PubMed Central

    Murfin, Kristen E.; Lee, Ming-Min; Klassen, Jonathan L.; McDonald, Bradon R.; Larget, Bret; Forst, Steven; Stock, S. Patricia; Currie, Cameron R.

    2015-01-01

    ABSTRACT Microbial symbionts provide benefits that contribute to the ecology and fitness of host plants and animals. Therefore, the evolutionary success of plants and animals fundamentally depends on long-term maintenance of beneficial associations. Most work investigating coevolution and symbiotic maintenance has focused on species-level associations, and studies are lacking that assess the impact of bacterial strain diversity on symbiotic associations within a coevolutionary framework. Here, we demonstrate that fitness in mutualism varies depending on bacterial strain identity, and this is consistent with variation shaping phylogenetic patterns and maintenance through fitness benefits. Through genome sequencing of nine bacterial symbiont strains and cophylogenetic analysis, we demonstrate diversity among Xenorhabdus bovienii bacteria. Further, we identified cocladogenesis between Steinernema feltiae nematode hosts and their corresponding X. bovienii symbiont strains, indicating potential specificity within the association. To test the specificity, we performed laboratory crosses of nematode hosts with native and nonnative symbiont strains, which revealed that combinations with the native bacterial symbiont and closely related strains performed significantly better than those with more divergent symbionts. Through genomic analyses we also defined potential factors contributing to specificity between nematode hosts and bacterial symbionts. These results suggest that strain-level diversity (e.g., subspecies-level differences) in microbial symbionts can drive variation in the success of host-microbe associations, and this suggests that these differences in symbiotic success could contribute to maintenance of the symbiosis over an evolutionary time scale. PMID:26045536

  6. Host Determinants of Prion Strain Diversity Independent of Prion Protein Genotype

    PubMed Central

    Crowell, Jenna; Hughson, Andrew; Caughey, Byron

    2015-01-01

    ABSTRACT Phenotypic diversity in prion diseases can be specified by prion strains in which biological traits are propagated through an epigenetic mechanism mediated by distinct PrPSc conformations. We investigated the role of host-dependent factors on phenotypic diversity of chronic wasting disease (CWD) in different host species that express the same prion protein gene (Prnp). Two CWD strains that have distinct biological, biochemical, and pathological features were identified in transgenic mice that express the Syrian golden hamster (SGH) Prnp. The CKY strain of CWD had a shorter incubation period than the WST strain of CWD, but after transmission to SGH, the incubation period of CKY CWD was ∼150 days longer than WST CWD. Limited proteinase K digestion revealed strain-specific PrPSc polypeptide patterns that were maintained in both hosts, but the solubility and conformational stability of PrPSc differed for the CWD strains in a host-dependent manner. WST CWD produced PrPSc amyloid plaques in the brain of the SGH that were partially insoluble and stable at a high concentration of protein denaturant. However, in transgenic mice, PrPSc from WST CWD did not assemble into plaques, was highly soluble, and had low conformational stability. Similar studies using the HY and DY strains of transmissible mink encephalopathy resulted in minor differences in prion biological and PrPSc properties between transgenic mice and SGH. These findings indicate that host-specific pathways that are independent of Prnp can alter the PrPSc conformation of certain prion strains, leading to changes in the biophysical properties of PrPSc, neuropathology, and clinical prion disease. IMPORTANCE Prions are misfolded pathogenic proteins that cause neurodegeneration in humans and animals. Transmissible prion diseases exhibit a spectrum of disease phenotypes and the basis of this diversity is encoded in the structure of the pathogenic prion protein and propagated by an epigenetic mechanism. In

  7. Diverse roles of host RNA binding proteins in RNA virus replication.

    PubMed

    Li, Zhenghe; Nagy, Peter D

    2011-01-01

    Plus-strand +RNA viruses co-opt host RNA-binding proteins (RBPs) to perform many functions during viral replication. A few host RBPs have been identified that affect the recruitment of viral +RNAs for replication. Other subverted host RBPs help the assembly of the membrane-bound replicase complexes, regulate the activity of the replicase and control minus- or plus-strand RNA synthesis. The host RBPs also affect the stability of viral RNAs, which have to escape cellular RNA degradation pathways. While many host RBPs seem to have specialized functions, others participate in multiple events during infection. Several conserved RBPs, such as eEF1A, hnRNP proteins and Lsm 1-7 complex, are co-opted by evolutionarily diverse +RNA viruses, underscoring some common themes in virus-host interactions. On the other hand, viruses also hijack unique RBPs, suggesting that +RNA viruses could utilize different RBPs to perform similar functions. Moreover, different +RNA viruses have adapted unique strategies for co-opting unique RBPs. Altogether, a deeper understanding of the functions of the host RBPs subverted for viral replication will help development of novel antiviral strategies and give new insights into host RNA biology. PMID:21505273

  8. Macrophage Migration Inhibitory Factor Contributes to Host Defense against Acute Trypanosoma cruzi Infection

    PubMed Central

    Reyes, José L.; Terrazas, Luis I.; Espinoza, Bertha; Cruz-Robles, David; Soto, Virgilia; Rivera-Montoya, Irma; Gómez-García, Lorena; Snider, Heidi; Satoskar, Abhay R.; Rodríguez-Sosa, Miriam

    2006-01-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is involved in the host defense against several pathogens. Here we used MIF−/− mice to determine the role of endogenous MIF in the regulation of the host immune response against Trypanosoma cruzi infection. MIF−/− mice displayed high levels of blood and tissue parasitemia, developed severe heart and skeletal muscle immunopathology, and succumbed to T. cruzi infection faster than MIF+/+ mice. The enhanced susceptibility of MIF−/− mice to T. cruzi was associated with reduced levels of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-12 (IL-12), IL-18, gamma interferon (IFN-γ), and IL-1β, in their sera and reduced production of IL-12, IFN-γ, and IL-4 by spleen cells during the early phase of infection. At all time points, antigen-stimulated splenocytes from MIF+/+ and MIF−/− mice produced comparable levels of IL-10. MIF−/− mice also produced significantly less Th1-associated antigen-specific immunoglobulin G2a (IgG2a) throughout the infection, but both groups produced comparable levels of Th2-associated IgG1. Lastly, inflamed hearts from T. cruzi-infected MIF−/− mice expressed increased transcripts for IFN-γ, but fewer for IL-12 p35, IL-12 p40, IL-23, and inducible nitric oxide synthase, compared to MIF+/+ mice. Taken together, our findings show that MIF plays a role in controlling acute T. cruzi infection. PMID:16714544

  9. Comparative assessment of bacterial diversity associated with co-occurring eukaryotic hosts of Palk Bay origin.

    PubMed

    Viszwapriya, Dharmaprakash; Aravindraja, Chairmandurai; Pandian, Shunmugiah Karutha

    2015-06-01

    Epibacterial communities of co-occurring eukaryotic hosts of Palk Bay origin (five seaweed species (Gracilaria sp, Padina sp, Enteromorpha sp, Sargassum sp, and Turbinaria sp) and one seagrass [Cymodaceae sp]) were analyzed for diversity and compared using 16S rRNA based Denaturant Gradient Gel Electrophoresis analysis. Diversity index revealed that Turbinaria sp hosts highest bacterial diversity while it was least in Gracilaria sp. The DGGE band profile showed that the epibacterial community differed considerably among the studied species. Statistical assessment using cluster analysis and Non-metric multidimensional scale analysis also authenticated the observed variability. Despite huge overlap, the composition of bacterial community structure differed significantly among the three closely related species namely Sargassum, Turbinaria and Padina. In addition, Enteromorpha and Sargassum, one being chlorophyta and the other phaeophyta showed about 80% similarity in bacterial composition. This differs from the general notion that epibacterial community composition will vary widely depending on the host phyla. The results extended the phenomenon of host specific epibacterial community irrespective of phylogeny and similarity in geographical location. PMID:26155683

  10. Comparative genetic diversity of Lyme disease bacteria in Northern Californian ticks and their vertebrate hosts.

    PubMed

    Swei, Andrea; Bowie, Verna C; Bowie, Rauri C K

    2015-04-01

    Vector-borne pathogens are transmitted between vertebrate hosts and arthropod vectors, two immensely different environments for the pathogen. There is further differentiation among vertebrate hosts that often have complex, species-specific immunological responses to the pathogen. All this presents a heterogeneous environmental and immunological landscape with possible consequences on the population genetic structure of the pathogen. We evaluated the differential genetic diversity of the Lyme disease pathogen, Borrelia burgdorferi, in its vector, the western black-legged tick (Ixodes pacificus), and in its mammal host community using the 5S-23S rRNA intergenic spacer region. We found differences in haplotype distribution of B. burgdorferi in tick populations from two counties in California as well as between a sympatric tick and vertebrate host community. In addition, we found that three closely related haplotypes consistently occurred in high frequency in all sample types. Lastly, our study found lower species diversity of the B. burgdorferi species complex, known as B. burgdorferi sensu lato, in small mammal hosts versus the tick populations in a sympatric study area. PMID:25843810

  11. Within-Host Nucleotide Diversity of Virus Populations: Insights from Next-Generation Sequencing

    PubMed Central

    Nelson, Chase W.; Hughes, Austin L.

    2014-01-01

    Next-generation sequencing (NGS) technology offers new opportunities for understanding the evolution and dynamics of viral populations within individual hosts over the course of infection. We review simple methods for estimating synonymous and nonsynonymous nucleotide diversity in viral genes from NGS data without the need for inferring linkage. We discuss the potential usefulness of these data for addressing questions of both practical and theoretical interest, including fundamental questions regarding the effective population sizes of within-host viral populations and the modes of natural selection acting on them. PMID:25481279

  12. Congruence and Diversity of Butterfly-Host Plant Associations at Higher Taxonomic Levels

    PubMed Central

    Ferrer-Paris, José R.; Sánchez-Mercado, Ada; Viloria, Ángel L.; Donaldson, John

    2013-01-01

    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages. PMID:23717448

  13. Diversity in host clone performance within a Chinese hamster ovary cell line.

    PubMed

    O'Callaghan, Peter M; Berthelot, Maud E; Young, Robert J; Graham, James W A; Racher, Andrew J; Aldana, Dulce

    2015-01-01

    Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc-fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool-produced Mab and etanercept (by N-glycan ultra performance liquid chromatography (UPLC) and liquid chromatography - tandem mass spectrometry (LC-MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N-glycan micro-heterogeneity and etanercept N and O-linked macro-heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics. PMID:25918883

  14. New host and lineage diversity of avian haemosporidia in the northern Andes

    PubMed Central

    Harrigan, Ryan J; Sedano, Raul; Chasar, Anthony C; Chaves, Jaime A; Nguyen, Jennifer T; Whitaker, Alexis; Smith, Thomas B

    2014-01-01

    The northern Andes, with their steep elevational and climate gradients, are home to an exceptional diversity of flora and fauna, particularly rich in avian species that have adapted to divergent ecological conditions. With this diversity comes the opportunity for parasites to exploit a wide breadth of avian hosts. However, little research has focused on examining the patterns of prevalence and lineage diversity of avian parasites in the Andes. Here, we screened a total of 428 birds from 19 species (representing nine families) and identified 133 infections of avian haemosporidia (31%), including lineages of Plasmodium, Haemoproteus, and Leucocytozoon. We document a higher prevalence of haemosporidia at higher elevations and lower temperatures, as well as an overall high diversity of lineages in the northern Andes, including the first sequences of haemosporidians reported in hummingbirds (31 sequences found in 11 species within the family Trochilidae). Double infections were distinguished using PHASE, which enables the separation of distinct parasite lineages. Results suggest that the ecological heterogeneity of the northern Andes that has given rise to a rich diversity of avian hosts may also be particularly conducive to parasite diversification and specialization. PMID:25469161

  15. New host and lineage diversity of avian haemosporidia in the northern Andes.

    PubMed

    Harrigan, Ryan J; Sedano, Raul; Chasar, Anthony C; Chaves, Jaime A; Nguyen, Jennifer T; Whitaker, Alexis; Smith, Thomas B

    2014-08-01

    The northern Andes, with their steep elevational and climate gradients, are home to an exceptional diversity of flora and fauna, particularly rich in avian species that have adapted to divergent ecological conditions. With this diversity comes the opportunity for parasites to exploit a wide breadth of avian hosts. However, little research has focused on examining the patterns of prevalence and lineage diversity of avian parasites in the Andes. Here, we screened a total of 428 birds from 19 species (representing nine families) and identified 133 infections of avian haemosporidia (31%), including lineages of Plasmodium, Haemoproteus, and Leucocytozoon. We document a higher prevalence of haemosporidia at higher elevations and lower temperatures, as well as an overall high diversity of lineages in the northern Andes, including the first sequences of haemosporidians reported in hummingbirds (31 sequences found in 11 species within the family Trochilidae). Double infections were distinguished using PHASE, which enables the separation of distinct parasite lineages. Results suggest that the ecological heterogeneity of the northern Andes that has given rise to a rich diversity of avian hosts may also be particularly conducive to parasite diversification and specialization. PMID:25469161

  16. The Role of Viral Population Diversity in Adaptation of Bovine Coronavirus to New Host Environments

    PubMed Central

    Borucki, Monica K.; Allen, Jonathan E.; Chen-Harris, Haiyin; Zemla, Adam; Vanier, Gilda; Mabery, Shalini; Torres, Clinton; Hullinger, Pamela; Slezak, Tom

    2013-01-01

    The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing) and 38,000×(Illumina). The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were “selected” from a pre-existing pool rather than through de novo mutation and subsequent population fixation. PMID:23308119

  17. Spring Migration Stopover Ecology of Avian Influenza Virus Shorebird Hosts at Delaware Bay.

    PubMed

    Maxted, Angela M; Sitters, Humphrey P; Luttrell, M Page; Dey, Amanda D; Kalasz, Kevin S; Niles, Lawrence J; Stallknecht, David E

    2016-05-01

    Although low pathogenicity avian influenza viruses (LPAIV) are detected in shorebirds at Delaware Bay annually, little is known about affected species habitat preferences or the movement patterns that might influence virus transmission and spread. During the 5-wk spring migration stopover period during 2007-2008, we conducted a radiotelemetry study of often-infected ruddy turnstones (Arenaria interpres morinella; n = 60) and rarely infected sanderlings (Calidris alba; n = 20) to identify locations and habitats important to these species (during daytime and nighttime), determine the extent of overlap with other AIV reservoir species or poultry production areas, reveal possible movements of AIV around the Bay, and assess whether long-distance movement of AIV is likely after shorebird departure. Ruddy turnstones and sanderlings both fed on Bay beaches during the daytime. However, sanderlings used remote sandy points and islands during the nighttime while ruddy turnstones primarily used salt marsh harboring waterfowl and gull breeding colonies, suggesting that this environment supports AIV circulation. Shorebird locations were farther from agricultural land and poultry operations than were random locations, suggesting selection away from poultry. Further, there was no areal overlap between shorebird home ranges and poultry production areas. Only 37% (22/60) of ruddy turnstones crossed into Delaware from capture sites in New Jersey, suggesting partial site fidelity and AIV gene pool separation between the states. Ruddy turnstones departed en masse around June 1 when AIV prevalence was low or declining, suggesting that a limited number of birds could disperse AIV onto the breeding grounds. This study provides needed insight into AIV and migratory host ecology, and results can inform both domestic animal AIV prevention and shorebird conservation efforts. PMID:27309084

  18. Rapid turnover of intra-host genetic diversity in Zucchini yellow mosaic virus

    PubMed Central

    Simmons, Heather E.; Holmes, Edward C.; Stephenson, Andrew G.

    2010-01-01

    Genetic diversity in RNA viruses is shaped by a variety of evolutionary processes, including the bottlenecks that may occur at inter-host transmission. However, how these processes structure genetic variation at the scale of individual hosts is only partly understood. We obtained intra-host sequence data for the coat protein (CP) gene of Zucchini yellow mosaic virus (ZYMV) from two horizontally transmitted populations – one via aphid, the other without – and with multiple samples from individual plants. We show that although mutations are generated relatively frequently within infected plants, attaining similar levels of genetic diversity to that seen in some animal RNA viruses (mean intra-sample diversity of 0.02%), most mutations are likely to be transient, deleterious, and purged rapidly. We also observed more population structure in the aphid transmitted viral population, including the same mutations in multiple clones, the presence of a sub-lineage, and evidence for the short-term complementation of defective genomes. PMID:21138748

  19. Diverse wild bird host range of Mycoplasma gallisepticum in eastern North America.

    PubMed

    Dhondt, André A; DeCoste, Jonathan C; Ley, David H; Hochachka, Wesley M

    2014-01-01

    Emerging infectious diseases often result from pathogens jumping to novel hosts. Identifying possibilities and constraints on host transfer is therefore an important facet of research in disease ecology. Host transfers can be studied for the bacterium Mycoplasma gallisepticum, predominantly a pathogen of poultry until its 1994 appearance and subsequent epidemic spread in a wild songbird, the house finch Haemorhous mexicanus and some other wild birds. We screened a broad range of potential host species for evidence of infection by M. gallisepticum in order to answer 3 questions: (1) is there a host phylogenetic constraint on the likelihood of host infection (house finches compared to other bird species); (2) does opportunity for close proximity (visiting bird feeders) increase the likelihood of a potential host being infected; and (3) is there seasonal variation in opportunity for host jumping (winter resident versus summer resident species). We tested for pathogen exposure both by using PCR to test for the presence of M. gallisepticum DNA and by rapid plate agglutination to test for the presence of antibodies. We examined 1,941 individual birds of 53 species from 19 avian families. In 27 species (15 families) there was evidence for exposure with M. gallisepticum although conjunctivitis was very rare in non-finches. There was no difference in detection rate between summer and winter residents, nor between feeder birds and species that do not come to feeders. Evidence of M. gallisepticum infection was found in all species for which at least 20 individuals had been sampled. Combining the present results with those of previous studies shows that a diverse range of wild bird species may carry or have been exposed to M. gallisepticum in the USA as well as in Europe and Asia. PMID:25061684

  20. Host Life History Strategy, Species Diversity, and Habitat Influence Trypanosoma cruzi Vector Infection in Changing Landscapes

    PubMed Central

    Gottdenker, Nicole L.; Chaves, Luis Fernando; Calzada, José E.; Saldaña, Azael; Carroll, C. Ronald

    2012-01-01

    Background Anthropogenic land use may influence transmission of multi-host vector-borne pathogens by changing diversity, relative abundance, and community composition of reservoir hosts. These reservoir hosts may have varying competence for vector-borne pathogens depending on species-specific characteristics, such as life history strategy. The objective of this study is to evaluate how anthropogenic land use change influences blood meal species composition and the effects of changing blood meal species composition on the parasite infection rate of the Chagas disease vector Rhodnius pallescens in Panama. Methodology/Principal Findings R. pallescens vectors (N = 643) were collected in different habitat types across a gradient of anthropogenic disturbance. Blood meal species in DNA extracted from these vectors was identified in 243 (40.3%) vectors by amplification and sequencing of a vertebrate-specific fragment of the 12SrRNA gene, and T. cruzi vector infection was determined by pcr. Vector infection rate was significantly greater in deforested habitats as compared to contiguous forests. Forty-two different species of blood meal were identified in R. pallescens, and species composition of blood meals varied across habitat types. Mammals (88.3%) dominated R. pallescens blood meals. Xenarthrans (sloths and tamanduas) were the most frequently identified species in blood meals across all habitat types. A regression tree analysis indicated that blood meal species diversity, host life history strategy (measured as rmax, the maximum intrinsic rate of population increase), and habitat type (forest fragments and peridomiciliary sites) were important determinants of vector infection with T. cruzi. The mean intrinsic rate of increase and the skewness and variability of rmax were positively associated with higher vector infection rate at a site. Conclusions/Significance In this study, anthropogenic landscape disturbance increased vector infection with T. cruzi, potentially

  1. Natural Diversity of Frankia Strains in Actinorhizal Root Nodules from Promiscuous Hosts in the Family Myricaceae

    PubMed Central

    Clawson, Michael L.; Benson, David R.

    1999-01-01

    Actinorhizal plants invade nitrogen-poor soils because of their ability to form root nodule symbioses with N2-fixing actinomycetes known as Frankia. Frankia strains are difficult to isolate, so the diversity of strains inhabiting nodules in nature is not known. To address this problem, we have used the variability in bacterial 16S rRNA gene sequences amplified from root nodules as a means to estimate molecular diversity. Nodules were collected from 96 sites primarily in northeastern North America; each site contained one of three species of the family Myricaceae. Plants in this family are considered to be promiscuous hosts because several species are effectively nodulated by most isolated strains of Frankia in the greenhouse. We found that strain evenness varies greatly between the plant species so that estimating total strain richness of Frankia within myricaceous nodules with the sample size used was problematical. Nevertheless, Myrica pensylvanica, the common bayberry, was found to have sufficient diversity to serve as a reservoir host for Frankia strains that infect plants from other actinorhizal families. Myrica gale, sweet gale, yielded a few dominant sequences, indicating either symbiont specialization or niche selection of particular ecotypes. Strains in Comptonia peregrina nodules had an intermediate level of diversity and were all from a single major group of Frankia. PMID:10508084

  2. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees.

    PubMed

    Vincent, J B; Weiblen, G D; May, G

    2016-02-01

    Processes shaping the distribution of foliar fungal endophyte species remain poorly understood. Despite increasing evidence that these cryptic fungal symbionts of plants mediate interactions with pathogens and herbivores, there remain basic questions regarding the extent to which dispersal limitation and host specificity might shape fungal endophyte community composition in rainforests. To assess the relative importance of spatial pattern and host specificity, we isolated fungi from a sample of mapped trees in lowland Papua New Guinea. Sequences of the internal transcribed spacer (ITS) region were obtained for 2079 fungal endophytes from three sites and clustered into molecular operational taxonomic units (MOTUs) at 95% similarity. Multivariate analyses suggest that host affinity plays a significant role in structuring endophyte community composition whereas there was no evidence of endophyte spatial pattern at the scale of tens to hundreds of metres. Differences in endophyte communities between sampled trees were weakly correlated with variation in foliar traits but not with tree species relatedness. The dominance of relatively few generalist endophytes and the presence of a large number of rare MOTUs was a consistent observation at three sites separated by hundreds of kilometres and regional turnover was low. Host specificity appears to play a relatively weak but more important role than dispersal limitation in shaping the distribution of fungal endophyte communities in New Guinea forests. Our results suggest that in the absence of strong ecological gradients and host turnover, beta diversity of endophyte communities could be low in large areas of contiguous forest. PMID:26661903

  3. The Role of Host Phylogeny Varies in Shaping Microbial Diversity in the Hindguts of Lower Termites

    PubMed Central

    James, Erick R.; Nalepa, Christine A.; Scheffrahn, Rudolf H.; Perlman, Steve J.; Keeling, Patrick J.

    2014-01-01

    The hindguts of lower termites and Cryptocercus cockroaches are home to a distinct community of archaea, bacteria, and protists (primarily parabasalids and some oxymonads). Within a host species, the composition of these hindgut communities appears relatively stable, but the evolutionary and ecological factors structuring community composition and stability are poorly understood, as are differential impacts of these factors on protists, bacteria, and archaea. We analyzed the microbial composition of parabasalids and bacteria in the hindguts of Cryptocercus punctulatus and 23 species spanning 4 families of lower termites by pyrosequencing variable regions of the small-subunit rRNA gene. Especially for the parabasalids, these data revealed undiscovered taxa and provided a phylogenetic basis for a more accurate understanding of diversity, diversification, and community composition. The composition of the parabasalid communities was found to be strongly structured by the phylogeny of their hosts, indicating the importance of historical effects, although exceptions were also identified. Particularly, spirotrichonymphids and trichonymphids likely were transferred between host lineages. In contrast, host phylogeny was not sufficient to explain the majority of bacterial community composition, but the compositions of the Bacteroidetes, Elusimicrobia, Tenericutes, Spirochaetes, and Synergistes were structured by host phylogeny perhaps due to their symbiotic associations with protists. All together, historical effects probably resulting from vertical inheritance have had a prominent role in structuring the hindgut communities, especially of the parabasalids, but dispersal and environmental acquisition have played a larger role in community composition than previously expected. PMID:25452280

  4. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites.

    PubMed

    Tai, Vera; James, Erick R; Nalepa, Christine A; Scheffrahn, Rudolf H; Perlman, Steve J; Keeling, Patrick J

    2015-02-01

    The hindguts of lower termites and Cryptocercus cockroaches are home to a distinct community of archaea, bacteria, and protists (primarily parabasalids and some oxymonads). Within a host species, the composition of these hindgut communities appears relatively stable, but the evolutionary and ecological factors structuring community composition and stability are poorly understood, as are differential impacts of these factors on protists, bacteria, and archaea. We analyzed the microbial composition of parabasalids and bacteria in the hindguts of Cryptocercus punctulatus and 23 species spanning 4 families of lower termites by pyrosequencing variable regions of the small-subunit rRNA gene. Especially for the parabasalids, these data revealed undiscovered taxa and provided a phylogenetic basis for a more accurate understanding of diversity, diversification, and community composition. The composition of the parabasalid communities was found to be strongly structured by the phylogeny of their hosts, indicating the importance of historical effects, although exceptions were also identified. Particularly, spirotrichonymphids and trichonymphids likely were transferred between host lineages. In contrast, host phylogeny was not sufficient to explain the majority of bacterial community composition, but the compositions of the Bacteroidetes, Elusimicrobia, Tenericutes, Spirochaetes, and Synergistes were structured by host phylogeny perhaps due to their symbiotic associations with protists. All together, historical effects probably resulting from vertical inheritance have had a prominent role in structuring the hindgut communities, especially of the parabasalids, but dispersal and environmental acquisition have played a larger role in community composition than previously expected. PMID:25452280

  5. Genetic Diversity and Distribution Patterns of Host Insects of Caterpillar Fungus Ophiocordyceps sinensis in the Qinghai-Tibet Plateau

    PubMed Central

    Quan, Qing-Mei; Chen, Ling-Ling; Wang, Xi; Li, Shan; Yang, Xiao-Ling; Zhu, Yun-Guo; Wang, Mu; Cheng, Zhou

    2014-01-01

    The caterpillar fungus Ophiocordyceps sinensis is one of the most valuable medicinal fungi in the world, and it requires host insects in family Hepialidae (Lepidoptera) to complete its life cycle. However, the genetic diversity and phylogeographic structures of the host insects remain to be explored. We analyzed the genetic diversity and temporal and spatial distribution patterns of genetic variation of the host insects throughout the O. sinensis distribution. Abundant haplotype and nucleotide diversity mainly existed in the areas of Nyingchi, ShangriLa, and around the edge of the Qinghai-Tibet Plateau, where are considered as the diversity center or micro-refuges of the host insects of O. sinensis. However, there was little genetic variation among host insects from 72.1% of all populations, indicating that the host species composition might be relatively simple in large-scale O. sinensis populations. All host insects are monophyletic except for those from four O. sinensis populations around Qinghai Lake. Significant phylogeographic structure (NST>GST, P<0.05) was revealed for the monophyletic host insects, and the three major phylogenetic groups corresponded with specific geographical areas. The divergence of most host insects was estimated to have occurred at ca. 3.7 Ma, shortly before the rapid uplift of the QTP. The geographical distribution and star-like network of the haplotypes implied that most host insects were derived from the relicts of a once-widespread host that subsequently became fragmented. Neutrality tests, mismatch distribution analysis, and expansion time estimation confirmed that most host insects presented recent demographic expansions that began ca. 0.118 Ma in the late Pleistocene. Therefore, the genetic diversity and distribution of the present-day insects should be attributed to effects of the Qinghai-Tibet Plateau uplift and glacial advance/retreat cycles during the Quaternary ice age. These results provide valuable information to guide

  6. Cryptic diversity, high host specificity and reproductive synchronization in army ant-associated Vatesus beetles.

    PubMed

    von Beeren, Christoph; Maruyama, Munetoshi; Kronauer, Daniel J C

    2016-02-01

    Army ants and their arthropod symbionts represent one of the most species-rich animal associations on Earth, and constitute a fascinating example of diverse host-symbiont interaction networks. However, despite decades of research, our knowledge of army ant symbionts remains fragmentary due to taxonomic ambiguity and the inability to study army ants in the laboratory. Here, we present an integrative approach that allows us to reliably determine species boundaries, assess biodiversity, match different developmental stages and sexes, and to study the life cycles of army ant symbionts. This approach is based on a combination of community sampling, DNA barcoding, morphology and physiology. As a test case, we applied this approach to the staphylinid beetle genus Vatesus and its different Eciton army ant host species at La Selva Biological Station, Costa Rica. DNA barcoding led to the discovery of cryptic biodiversity and, in combination with extensive community sampling, revealed strict host partitioning with no overlap in host range. Using DNA barcoding, we were also able to match the larval stages of all focal Vatesus species. In combination with studies of female reproductive physiology, this allowed us to reconstruct almost the complete life cycles of the different beetle species. We show that Vatesus beetles are highly adapted to the symbiosis with army ants, in that their reproduction and larval development are synchronized with the stereotypical reproductive and behavioural cycles of their host colonies. Our approach can now be used to study army ant-symbiont communities more broadly, and to obtain novel insights into co-evolutionary and ecological dynamics in species-rich host-symbiont systems. PMID:26618779

  7. Introduced bullfrogs and their parasites: Haematoloechus longiplexus (Trematoda) exploits diverse damselfly intermediate hosts on Vancouver Island.

    PubMed

    Novak, Colin W; Goater, Timothy M

    2013-02-01

    The lung fluke, Haematoloechus longiplexus, is the most prevalent and abundant parasite of introduced bullfrogs on Vancouver Island, British Columbia, Canada. The ecological success of this trematode in invasive bullfrogs is related to the fluke's ability to utilize native intermediate hosts for transmission. The purpose of this study was to identify the odonate (dragonfly/damselfly) species involved in the transmission of H. longiplexus to the introduced bullfrog. The prevalences and mean intensities of 21 species of odonates (nymphs and adults) were examined for metacercariae infections. Haematoloechus longiplexus is a second intermediate host specialist, being found only in damselflies. Six damselfly species exhibiting the "climber" ecological habit were identified as second intermediate hosts of H. longiplexus. Enallagma carunculatum (prevalence = 75.0%, mean intensity = 17.2 ± 10.8), Ischnura cervula (65.2%, 8.9 ± 4.3), Ischnura perparva (45.5%, 15.4 ± 10.3), and Enallagma boreale (40.7%, 4.8 ± 7.8) were the most commonly infected damselfly species. Metacercariae were absent in damselflies collected from sites lacking bullfrogs. Haematoloechus longiplexus was likely introduced along with the bullfrog, and subsequently adapted to the physid snail and diverse damselfly intermediate hosts present in ponds on Vancouver Island. PMID:22924931

  8. Skin bacterial diversity of Panamanian frogs is associated with host susceptibility and presence of Batrachochytrium dendrobatidis.

    PubMed

    Rebollar, Eria A; Hughey, Myra C; Medina, Daniel; Harris, Reid N; Ibáñez, Roberto; Belden, Lisa K

    2016-07-01

    Symbiotic bacteria on amphibian skin can inhibit growth of the fungus Batrachochytrium dendrobatidis (Bd) that has caused dramatic population declines and extinctions of amphibians in the Neotropics. It remains unclear how the amphibians' skin microbiota is influenced by environmental bacterial reservoirs, host-associated factors such as susceptibility to pathogens, and pathogen presence in tropical amphibians. We sampled skin bacteria from five co-occurring frog species that differ in Bd susceptibility at one Bd-naive site, and sampled one of the non-susceptible species from Bd-endemic and Bd-naive sites in Panama. We hypothesized that skin bacterial communities (1) would be distinct from the surrounding environment regardless of the host habitat, (2) would differ between Bd susceptible and non-susceptible species and (3) would differ on hosts in Bd-naive and Bd-endemic sites. We found that skin bacterial communities were enriched in bacterial taxa that had low relative abundances in the environment. Non-susceptible species had very similar skin bacterial communities that were enriched in particular taxa such as the genera Pseudomonas and Acinetobacter. Bacterial communities of Craugastor fitzingeri in Bd-endemic sites were less diverse than in the naive site, and differences in community structure across sites were explained by changes in relative abundance of specific bacterial taxa. Our results indicate that skin microbial structure was associated with host susceptibility to Bd and might be associated to the history of Bd presence at different sites. PMID:26744810

  9. Diversity of alternative hosts of maize stemborers in Trans-Nzoia district of Kenya.

    PubMed

    Kanya, James I; Ngi-Song, Adele J; Sétamou, Mamoudou F; Overholt, William; Ochora, John; Osir, Ellie O

    2004-01-01

    Genetically-engineered (GE) crops such as those expressing insecticidal Bacillus thuringiensis (Bt) toxin genes have the potential to greatly reduce the use of broad spectrum insecticides and increase crop productivity. However, development of resistance by the target insect species is an important consideration in the deployment of this strategy. In areas where GE crops are deployed on a large scale, current resistance management strategies rely on a 'refuge strategy', comprising the incorporation of a certain proportion of non-GE plants in the agro-ecosystems, to conserve susceptible individuals of the target pests. In the USA, simulation models indicate that at least 20% of the crop should be non-Bt plants. In Africa, the target lepidopteran stemborers attack a wide range of wild grass species as well as cultivated cereal crops. Wild grasses generally occur in the vicinity of maize and other cereal fields, and may provide a refuge if GE crops are in the farming systems. To assess the quality of these grasses as refuges, it is critical to obtain information about their size and spatial distribution. In this study, we have assessed the abundance and diversity of alternative refuge of stemborers, mainly wild grasses occurring in the proximity of maize fields, in Trans-Nzoia district, one of the most important maize growing areas in Kenya. The proportion of wild host plants relative to maize was found to decline from 100% during the non-cropping season to <8% during the maize-growing season. The Shannon-Weaver diversity index indicated high variation in the diversity of wild hosts of stemborers between agro-ecological zones in the district. The results of this study are discussed in light of the possible role that wild host plant species might play in stemborer resistance management following the introduction of Bt maize. PMID:15901098

  10. Canine echinococcosis: genetic diversity of Echinococcus granulosus sensu stricto (s.s.) from definitive hosts.

    PubMed

    Boufana, B; Lett, W; Lahmar, S; Griffiths, A; Jenkins, D J; Buishi, I; Engliez, S A; Alrefadi, M A; Eljaki, A A; Elmestiri, F M; Reyes, M M; Pointing, S; Al-Hindi, A; Torgerson, P R; Okamoto, M; Craig, P S

    2015-11-01

    Canids, particularly dogs, constitute the major source of cystic echinococcosis (CE) infection to humans, with the majority of cases being caused by Echinococcus granulosus (G1 genotype). Canine echinococcosis is an asymptomatic disease caused by adult tapeworms of E. granulosus sensu lato (s.l.). Information on the population structure and genetic variation of adult E. granulosus is limited. Using sequenced data of the mitochondrial cytochrome c oxidase subunit 1 (cox1) we examined the genetic diversity and population structure of adult tapeworms of E. granulosus (G1 genotype) from canid definitive hosts originating from various geographical regions and compared it to that reported for the larval metacestode stage from sheep and human hosts. Echinococcus granulosus (s.s) was identified from adult tapeworm isolates from Kenya, Libya, Tunisia, Australia, China, Kazakhstan, United Kingdom and Peru, including the first known molecular confirmation from Gaza and the Falkland Islands. Haplotype analysis showed a star-shaped network with a centrally positioned common haplotype previously described for the metacestode stage from sheep and humans, and the neutrality indices indicated population expansion. Low Fst values suggested that populations of adult E. granulosus were not genetically differentiated. Haplotype and nucleotide diversities for E. granulosus isolates from sheep and human origin were twice as high as those reported from canid hosts. This may be related to self-fertilization of E. granulosus and/or to the longevity of the parasite in the respective intermediate and definitive hosts. Improved nuclear single loci are required to investigate the discrepancies in genetic variation seen in this study. PMID:26442707

  11. Characterization of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus

    PubMed Central

    Stam, Remco; Howden, Andrew J. M.; Delgado-Cerezo, Magdalena; M. M. Amaro, Tiago M.; Motion, Graham B.; Pham, Jasmine; Huitema, Edgar

    2013-01-01

    Plant-Microbe interactions are complex associations that feature recognition of Pathogen Associated Molecular Patterns by the plant immune system and dampening of subsequent responses by pathogen encoded secreted effectors. With large effector repertoires now identified in a range of sequenced microbial genomes, much attention centers on understanding their roles in immunity or disease. These studies not only allow identification of pathogen virulence factors and strategies, they also provide an important molecular toolset suited for studying immunity in plants. The Phytophthora intracellular effector repertoire encodes a large class of proteins that translocate into host cells and exclusively target the host nucleus. Recent functional studies have implicated the CRN protein family as an important class of diverse effectors that target distinct subnuclear compartments and modify host cell signaling. Here, we characterized three necrosis inducing CRNs and show that there are differences in the levels of cell death. We show that only expression of CRN20_624 has an additive effect on PAMP induced cell death but not AVR3a induced ETI. Given their distinctive phenotypes, we assessed localization of each CRN with a set of nuclear markers and found clear differences in CRN subnuclear distribution patterns. These assays also revealed that expression of CRN83_152 leads to a distinct change in nuclear chromatin organization, suggesting a distinct series of events that leads to cell death upon over-expression. Taken together, our results suggest diverse functions carried by CRN C-termini, which can be exploited to identify novel processes that take place in the host nucleus and are required for immunity or susceptibility. PMID:24155749

  12. Environmental Mapping of Paracoccidioides spp. in Brazil Reveals New Clues into Genetic Diversity, Biogeography and Wild Host Association

    PubMed Central

    Arantes, Thales Domingos; Theodoro, Raquel Cordeiro; Teixeira, Marcus de Melo; Bosco, Sandra de Moraes Gimenes; Bagagli, Eduardo

    2016-01-01

    Background Paracoccidioides brasiliensis and Paracoccidioides lutzii are the etiological agents of Paracoccidioidomycosis (PCM), and are easily isolated from human patients. However, due to human migration and a long latency period, clinical isolates do not reflect the spatial distribution of these pathogens. Molecular detection of P. brasiliensis and P. lutzii from soil, as well as their isolation from wild animals such as armadillos, are important for monitoring their environmental and geographical distribution. This study aimed to detect and, for the first time, evaluate the genetic diversity of P. brasiliensis and P. lutzii for Paracoccidioidomycosis in endemic and non-endemic areas of the environment, by using Nested PCR and in situ hybridization techniques. Methods/Principal Findings Aerosol (n = 16) and soil (n = 34) samples from armadillo burrows, as well as armadillos (n = 7) were collected in endemic and non-endemic areas of PCM in the Southeastern, Midwestern and Northern regions of Brazil. Both P. brasiliensis and P. lutzii were detected in soil (67.5%) and aerosols (81%) by PCR of Internal Transcribed Spacer (ITS) region (60%), and also by in situ hybridization (83%). Fungal isolation from armadillo tissues was not possible. Sequences from both species of P. brasiliensis and P. lutzii were detected in all regions. In addition, we identified genetic Paracoccidioides variants in soil and aerosol samples which have never been reported before in clinical or armadillo samples, suggesting greater genetic variability in the environment than in vertebrate hosts. Conclusions/Significance Data may reflect the actual occurrence of Paracoccidioides species in their saprobic habitat, despite their absence/non-detection in seven armadillos evaluated in regions with high prevalence of PCM infection by P. lutzii. These results may indicate a possible ecological difference between P. brasiliensis and P. lutzii concerning their wild hosts. PMID:27045486

  13. Tree diversity and the role of non-host neighbour tree species in reducing fungal pathogen infestation

    PubMed Central

    Hantsch, Lydia; Bien, Steffen; Radatz, Stine; Braun, Uwe; Auge, Harald; Bruelheide, Helge

    2014-01-01

    The degree to which plant pathogen infestation occurs in a host plant is expected to be strongly influenced by the level of species diversity among neighbouring host and non-host plant species. Since pathogen infestation can negatively affect host plant performance, it can mediate the effects of local biodiversity on ecosystem functioning. We tested the effects of tree diversity and the proportion of neighbouring host and non-host species with respect to the foliar fungal pathogens of Tilia cordata and Quercus petraea in the Kreinitz tree diversity experiment in Germany. We hypothesized that fungal pathogen richness increases while infestation decreases with increasing local tree diversity. In addition, we tested whether fungal pathogen richness and infestation are dependent on the proportion of host plant species present or on the proportion of particular non-host neighbouring tree species. Leaves of the two target species were sampled across three consecutive years with visible foliar fungal pathogens on the leaf surface being identified macro- and microscopically. Effects of diversity among neighbouring trees were analysed: (i) for total fungal species richness and fungal infestation on host trees and (ii) for infestation by individual fungal species. We detected four and five fungal species on T. cordata and Q. petraea, respectively. High local tree diversity reduced (i) total fungal species richness and infestation of T. cordata and fungal infestation of Q. petraea and (ii) infestation by three host-specialized fungal pathogen species. These effects were brought about by local tree diversity and were independent of host species proportion. In general, host species proportion had almost no effect on fungal species richness and infestation. Strong effects associated with the proportion of particular non-host neighbouring tree species on fungal species richness and infestation were, however, recorded. Synthesis. For the first time, we experimentally

  14. Human genetic diversity (immunoglobulin GM allotypes), linguistic data, and migrations of Amerindian tribes.

    PubMed

    Dugoujon, J M; Mourrieras, B; Senegas, M T; Guitard, E; Sevin, A; Bois, E; Hazout, S

    1995-04-01

    GM haplotype frequencies were examined in 49 Amerindian tribes (from North, Central, and South America) to investigate the congruence of genetic variation with that observed in language and geography. We used two approaches: (1) the mobile site method, which allows a two-dimensional representation of genetic variation where the distances between reference points (i.e., the locations of the populations in the geographic map after displacements) are close to the genetic distances, and (2) a multivariate analysis (factorial correspondence analysis), which permits a visual interpretation of the geographic distribution of GM haplotypes on a map, completed by a cluster analysis. The results show a strong gradient from the Bering Strait to South America. The Eskimo and Na-Dene are genetically different from all other Amerindians, reflecting their more recent migrations. The orientation of most trajectories of the tribes from Central and South America can be interpreted as earlier migrations along the Pacific and Atlantic coasts. We conclude that geographic and linguistic factors played a part in the genetic diversity of Amerindian tribes. PMID:7537245

  15. [Migration].

    PubMed

    Maccotta, W; Perotti, A; Thebaut, F; Cristofanelli, L; Pittau, F; Sergi, N; Pittau, L; Morelli, A; Morsella, M; Grinover, A P

    1990-01-01

    This is a collection of 11 individual articles on aspects of current migration problems affecting developed countries. The geographical focus is on immigration in Europe, with particular reference to Italy, although one paper is concerned with Quebec. The topical focus is on the social problems associated with immigration. The articles are in Italian, with one exception, which is in French. PMID:12343393

  16. Genetic Diversity and Population Structure of Mycobacterium marinum: New Insights into Host and Environmental Specificities

    PubMed Central

    Broutin, Vincent; Bañuls, Anne-Laure; Aubry, Alexandra; Keck, Nicolas; Choisy, Marc; Bernardet, Jean-François; Michel, Christian; Raymond, Jean-Christophe; Libert, Cédric; Barnaud, Antoine; Stragier, Pieter; Portaels, Françoise; Terru, Dominique; Belon, Claudine; Dereure, Olivier; Gutierrez, Cristina; Boschiroli, Maria-Laura; Van De Perre, Philippe; Cambau, Emmanuelle

    2012-01-01

    Mycobacterium marinum causes a systemic tuberculosis-like disease in fish and skin infections in humans that can spread to deeper structures, resulting in tenosynovitis, arthritis, and osteomyelitis. However, little information is available concerning (i) the intraspecific genetic diversity of M. marinum isolated from humans and animals; (ii) M. marinum genotype circulation in the different ecosystems, and (iii) the link between M. marinum genetic diversity and hosts (humans and fish). Here, we conducted a genetic study on 89 M. marinum isolates from humans (n = 68) and fish (n = 21) by using mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing. The results show that the M. marinum population is genetically structured not only according to the host but also according to the ecosystem as well as to tissue tropism in humans. This suggests the existence of different genetic pools in the function of the biological and ecological compartments. Moreover, the presence of only certain M. marinum genotypes in humans suggests a different zoonotic potential of the M. marinum genotypes. Considering that the infection is linked to aquarium activity, a significant genetic difference was also detected when the human tissue tropism of M. marinum was taken into consideration, with a higher genetic polymorphism in strains isolated from patients with cutaneous forms than from individuals with deeper-structure infection. It appears that only few genotypes can produce deeper infections in humans, suggesting that the immune system might play a filtering role. PMID:22952269

  17. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities.

    PubMed

    Baldwin, Andrew H; Jensen, Kai; Schönfeldt, Marisa

    2014-03-01

    Atmospheric warming may influence plant productivity and diversity and induce poleward migration of species, altering communities across latitudes. Complicating the picture is that communities from different continents deviate in evolutionary histories, which may modify responses to warming and migration. We used experimental wetland plant communities grown from seed banks as model systems to determine whether effects of warming on biomass production and species richness are consistent across continents, latitudes, and migration scenarios. We collected soil samples from each of three tidal freshwater marshes in estuaries at three latitudes (north, middle, south) on the Atlantic coasts of Europe and North America. In one experiment, we exposed soil seed bank communities from each latitude and continent to ambient and elevated (+2.8 °C) temperatures in the greenhouse. In a second experiment, soil samples were mixed either within each estuary (limited migration) or among estuaries from different latitudes in each continent (complete migration). Seed bank communities of these migration scenarios were also exposed to ambient and elevated temperatures and contrasted with a no-migration treatment. In the first experiment, warming overall increased biomass (+16%) and decreased species richness (-14%) across latitudes in Europe and North America. Species richness and evenness of south-latitude communities were less affected by warming than those of middle and north latitudes. In the second experiment, warming also stimulated biomass and lowered species richness. In addition, complete migration led to increased species richness (+60% in North America, + 100% in Europe), but this higher diversity did not translate into increased biomass. Species responded idiosyncratically to warming, but Lythrum salicaria and Bidens sp. increased significantly in response to warming in both continents. These results reveal for the first time consistent impacts of warming on biomass and

  18. Community structure of fleas within and among populations of three closely related rodent hosts: nestedness and beta-diversity.

    PubMed

    VAN DER Mescht, Luther; Krasnov, Boris R; Matthee, Conrad A; Matthee, Sonja

    2016-09-01

    We studied nestedness and its relationships with beta-diversity in flea communities harboured by three closely related rodent species (Rhabdomys pumilio, Rhabdomys intermedius, Rhabdomys dilectus) at two spatial scales (within and among host populations) in South Africa and asked (a) whether variation in species composition of flea communities within and among host populations follows a non-random pattern; if yes, (b) what are the contributions of nestedness and species turnover to dissimilarity (= beta-diversity) among flea communities at the two scales; and (c) do the degree of nestedness and its contribution to beta-diversity differ among host species (social vs solitary) and between scales. We found that nestedness in flea assemblages was more pronounced (a) in social than solitary host species and (b) at lower (among host individuals within populations) than at higher scale (among host populations). We also found that higher degree of nestedness was associated with its higher contribution to beta-diversity. Our findings support earlier ideas that parasite community structure results from the processes of parasite accumulation by hosts rather than from the processes acting within parasite communities. PMID:27172891

  19. Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships.

    PubMed

    Van Oppen, M J H; Mieog, J C; Sánchez, C A; Fabricius, K E

    2005-07-01

    The presence, genetic identity and diversity of algal endosymbionts (Symbiodinium) in 114 species from 69 genera (20 families) of octocorals from the Great Barrier Reef (GBR), the far eastern Pacific (EP) and the Caribbean was examined, and patterns of the octocoral-algal symbiosis were compared with patterns in the host phylogeny. Genetic analyses of the zooxanthellae were based on ribosomal DNA internal transcribed spacer 1 (ITS1) region. In the GBR samples, Symbiodinium clades A and G were encountered with A and G being rare. Clade B zooxanthellae have been previously reported from a GBR octocoral, but are also rare in octocorals from this region. Symbiodinium G has so far only been found in Foraminifera, but is rare in these organisms. In the Caribbean samples, only Symbiodinium clades B and C are present. Hence, Symbiodinium diversity at the level of phylogenetic clades is lower in octocorals from the Caribbean compared to those from the GBR. However, an unprecedented level of ITS1 diversity was observed within individual colonies of some Caribbean gorgonians, implying either that these simultaneously harbour multiple strains of clade B zooxanthellae, or that ITS1 heterogeneity exists within the genomes of some zooxanthellae. Intracladal diversity based on ITS should therefore be interpreted with caution, especially in cases where no independent evidence exists to support distinctiveness, such as ecological distribution or physiological characteristics. All samples from EP are azooxanthellate. Three unrelated GBR taxa that are described in the literature as azooxanthellate (Junceella fragilis, Euplexaura nuttingi and Stereonephthya sp. 1) contain clade G zooxanthellae, and their symbiotic association with zooxanthellae was confirmed by histology. These corals are pale in colour, whereas related azooxanthellate species are brightly coloured. The evolutionary loss or gain of zooxanthellae may have altered the light sensitivity of the host tissues, requiring the

  20. Assessment of the Geographic Distribution of Ornithodoros turicata (Argasidae): Climate Variation and Host Diversity

    PubMed Central

    Donaldson, Taylor G.; Pèrez de León, Adalberto A.; Li, Andrew I.; Castro-Arellano, Ivan; Wozniak, Edward; Boyle, William K.; Hargrove, Reid; Wilder, Hannah K.; Kim, Hee J.; Teel, Pete D.; Lopez, Job E.

    2016-01-01

    Background Ornithodoros turicata is a veterinary and medically important argasid tick that is recognized as a vector of the relapsing fever spirochete Borrelia turicatae and African swine fever virus. Historic collections of O. turicata have been recorded from Latin America to the southern United States. However, the geographic distribution of this vector is poorly understood in relation to environmental variables, their hosts, and consequently the pathogens they transmit. Methodology Localities of O. turicata were generated by performing literature searches, evaluating records from the United States National Tick Collection and the Symbiota Collections of Arthropods Network, and by conducting field studies. Maximum entropy species distribution modeling (Maxent) was used to predict the current distribution of O. turicata. Vertebrate host diversity and GIS analyses of their distributions were used to ascertain the area of shared occupancy of both the hosts and vector. Conclusions and Significance Our results predicted previously unrecognized regions of the United States with habitat that may maintain O. turicata and could guide future surveillance efforts for a tick capable of transmitting high–consequence pathogens to human and animal populations. PMID:26829327

  1. Diverse Host Feeding on Nesting Birds May Limit Early-Season West Nile Virus Amplification

    PubMed Central

    Egizi, Andrea M.; Farajollahi, Ary

    2014-01-01

    Abstract Arboviral activity tracks vector availability, which in temperate regions means that transmission ceases during the winter and must be restarted each spring. In the northeastern United States, Culex restuans Theobald resumes its activity earlier than Culex pipiens L. and is thought to be important in restarting West Nile virus (WNV) transmission. Its role in WNV amplification, however, is unclear, because viral levels commonly remain low until the rise of Cx. pipiens later in the season. Because a vector's feeding habits can reveal key information about disease transmission, we identified early-season (April–June) blood meals from Cx. restuans collected throughout New Jersey, and compared them to published datasets from later in the season and also from other parts of the country. We found significantly higher avian diversity, including poor WNV hosts, and fewer blood meals derived from American Robins (17% versus over 40% found in later season). Critically, we identified blood meals from significantly more female than male birds in species where females are the incubating sex, suggesting that Cx. restuans is able to feed on such a wide variety of hosts in early spring because incubating birds are easy targets. Because WNV amplification depends on virus consistently reaching competent hosts, our results indicate that Cx. restuans is unlikely to be an amplifying vector of WNV in the early season. As the season progresses, however, changes in the availability of nesting birds may make it just as capable as Cx. pipiens, although at somewhat lower abundance as the summer progresses. PMID:24745370

  2. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions.

    PubMed

    Chow, Cheryl-Emiliane T; Winget, Danielle M; White, Richard A; Hallam, Steven J; Suttle, Curtis A

    2015-01-01

    Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs), remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10 m) and oxygen-starved basin (200 m) waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs) predicted across all 34 viral fosmids, 77.6% (n = 5010) had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P) waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI's non-redundant "nr" database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems. PMID:25914678

  3. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions

    PubMed Central

    Chow, Cheryl-Emiliane T.; Winget, Danielle M.; White, Richard A.; Hallam, Steven J.; Suttle, Curtis A.

    2015-01-01

    Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs), remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10 m) and oxygen-starved basin (200 m) waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs) predicted across all 34 viral fosmids, 77.6% (n = 5010) had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P) waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI's non-redundant “nr” database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems. PMID:25914678

  4. Antagonistic coevolution with parasites maintains host genetic diversity: an experimental test

    PubMed Central

    Bérénos, Camillo; Wegner, K. Mathias; Schmid-Hempel, Paul

    2011-01-01

    Genetic variation in natural populations is a prime prerequisite allowing populations to respond to selection, but is under constant threat from forces that tend to reduce it, such as genetic drift and many types of selection. Haldane emphasized the potential importance of parasites as a driving force of genetic diversity. His theory has been taken for granted ever since, but despite numerous studies showing correlations between genetic diversity and parasitism, Haldane's hypothesis has rarely been tested experimentally for unambiguous support. We experimentally staged antagonistic coevolution between the host Tribolium castaneum and its natural microsporidian parasite, Nosema whitei, to test for the relative importance of two separate evolutionary forces (drift and parasite-induced selection) on the maintenance of genetic variation. Our results demonstrate that coevolution with parasites indeed counteracts drift as coevolving populations had significantly higher levels of heterozygosity and allelic diversity. Genetic drift remained a strong force, strongly reducing genetic variation and increasing genetic differentiation in small populations. To our surprise, differentiation between the evolving populations was smaller when they coevolved with parasites, suggesting parallel balancing selection. Hence, our results experimentally vindicate Haldane's original hypothesis 60 years after its conception. PMID:20685701

  5. Fungal endophytes of aquatic macrophytes: diverse host-generalists characterized by tissue preferences and geographic structure

    PubMed Central

    Sandberg, Dustin C.; Battista, Lorna J.; Arnold, A. Elizabeth

    2014-01-01

    Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host- and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales. PMID:24402358

  6. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Siano, R.; Alves-de-Souza, C.; Foulon, E.; Bendif, El M.; Simon, N.; Guillou, L.; Not, F.

    2010-10-01

    Sequences affiliated to Syndiniales (Marine alveolate, MALV) regularly dominate 18S rDNA genetic libraries of nearly all marine ecosystems investigated so far. Among them, Amoebophryidae (MALV group II) is composed of numerous and genetically distant environmental sequences, where Amoebophrya is the only known and formally described genus. Amoebophrya species include virulent pathogens for a wide range of dinoflagellate species. Beside their regular occurrence in marine ecosystems, their quantitative distribution and the environmental factors triggering host infection have barely been studied in open oligotrophic waters. In order to understand the functional role of these parasites in natural environments, we studied the distribution and contribution to the eukaryotic community of the small free-living stage of Amoebophryidae (the dinospores) along a transect in the Mediterranean Sea, as well as their host diversity at three oligotrophic stations. Dinospores were more abundant at a coastal station (max. 1.5 × 103 cells ml-1) than in oligotrophic waters (max. 51 ± 16.3 cells ml-1), where they represented 10.3 to 34.9% of the total eukaryotic community at 40 and 30 m depth, respectively and 21.2% on average along the water column. Positive correlation was found between dinospore occurrence and higher concentration of NO3 + NO2 at the coastal station. At selected stations, out of 38 different dinoflagellates taxa identified, 15 were infected, among which a majority were not recognized as Amoebophryidae host so far. Prevalences (percentage of infected cells) generally varied between 2% and 10%, with a notable exception for Blepharocysta paulsenii for which 25% of cells were infected at the station C. The present study shows that dinospores are able to thrive, infects and most probably exert a control on host populations both in coastal and ultra-oligotrophic open waters. Our results emphasize the role of parasitism in microbial food web dynamics and ultimately on

  7. DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response.

    PubMed

    Smith, Trevor Rf; Schultheis, Katherine; Kiosses, William B; Amante, Dinah H; Mendoza, Janess M; Stone, John C; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2014-01-01

    The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response. PMID:26052522

  8. DNA vaccination strategy targets epidermal dendritic cells, initiating their migration and induction of a host immune response

    PubMed Central

    Smith, Trevor RF; Schultheis, Katherine; Kiosses, William B; Amante, Dinah H; Mendoza, Janess M; Stone, John C; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2014-01-01

    The immunocompetence and clinical accessibility of dermal tissue offers an appropriate and attractive target for vaccination. We previously demonstrated that pDNA injection into the skin in combination with surface electroporation (SEP), results in rapid and robust expression of the encoded antigen in the epidermis. Here, we demonstrate that intradermally EP-enhanced pDNA vaccination results in the rapid induction of a host humoral immune response. In the dermally relevant guinea pig model, we used high-resolution laser scanning confocal microscopy to observe direct dendritic cell (DC) transfections in the epidermis, to determine the migration kinetics of these cells from the epidermal layer into the dermis, and to follow them sequentially to the immediate draining lymph nodes. Furthermore, we delineate the relationship between the migration of directly transfected epidermal DCs and the generation of the host immune response. In summary, these data indicate that direct presentation of antigen to the immune system by DCs through SEP-based in vivo transfection in the epidermis, is related to the generation of a humoral immune response. PMID:26052522

  9. Identity and diversity of blood meal hosts of biting midges (Diptera: Ceratopogonidae: Culicoides Latreille) in Denmark

    PubMed Central

    2012-01-01

    Background Host preference studies in haematophagous insects e.g. Culicoides biting midges are pivotal to assess transmission routes of vector-borne diseases and critical for the development of veterinary contingency plans to identify which species should be included due to their risk potential. Species of Culicoides have been found in almost all parts of the world and known to live in a variety of habitats. Several parasites and viruses are transmitted by Culicoides biting midges including Bluetongue virus and Schmallenberg virus. The aim of the present study was to determine the identity and diversity of blood meals taken from vertebrate hosts in wild-caught Culicoides biting midges near livestock farms. Methods Biting midges were collected at weekly intervals for 20 weeks from May to October 2009 using light traps at four collection sites on the island Sealand, Denmark. Blood-fed female biting midges were sorted and head and wings were removed for morphological species identification. The thoraxes and abdomens including the blood meals of the individual females were subsequently subjected to DNA isolation. The molecular marker cytochrome oxidase I (COI barcode) was applied to identify the species of the collected biting midges (GenBank accessions JQ683259-JQ683374). The blood meals were first screened with a species-specific cytochrome b primer pair for cow and if negative with a universal cytochrome b primer pair followed by sequencing to identify mammal or avian blood meal hosts. Results Twenty-four species of biting midges were identified from the four study sites. A total of 111,356 Culicoides biting midges were collected, of which 2,164 were blood-fed. Specimens of twenty species were identified with blood in their abdomens. Blood meal sources were successfully identified by DNA sequencing from 242 (76%) out of 320 Culicoides specimens. Eight species of mammals and seven species of birds were identified as blood meal hosts. The most common host species was

  10. Male and Female Subpopulations of Salix viminalis Present High Genetic Diversity and High Long-Term Migration Rates between Them.

    PubMed

    Zhai, Feifei; Mao, Jinmei; Liu, Junxiang; Peng, Xiangyong; Han, Lei; Sun, Zhenyuan

    2016-01-01

    Dioecy distributed in 157 flowering plant families and 959 flowering plant genera. Morphological and physiological differences between male and female plants have been studied extensively, but studies of sex-specific genetic diversity are relatively scarce in dioecious plants. In this study, 20 SSR loci were employed to examine the genetic variance of male subpopulations and female subpopulations in Salix viminalis. The results showed that all of the markers were polymorphic (Na = 14.15, He = 0.7566) and workable to reveal the genetic diversity of S. viminalis. No statistically significant difference was detected between male and female subpopulations, but the average genetic diversity of male subpopulations (Na = 7.12, He = 0.7071) and female subpopulations (Na = 7.31, He = 0.7226) were high. Under unfavorable environments (West Liao basin), the genetic diversity between male and female subpopulations was still not significantly different, but the genetic diversity of sexual subpopulations were lower. The differentiation of the ten subpopulations in S. viminalis was moderate (FST = 0.0858), which was conformed by AMOVA that most of genetic variance (94%) existed within subpopulations. Pairwise FST indicated no differentiation between sexual subpopulations, which was accompanied by high long-term migrate between them (M = 0.73~1.26). However, little recent migration was found between sexual subpopulations. Therefore, artificial crossing or/and transplantation by cutting propagation should be carried out so as to increase the migration during the process of ex situ conservation. PMID:27047511

  11. Male and Female Subpopulations of Salix viminalis Present High Genetic Diversity and High Long-Term Migration Rates between Them

    PubMed Central

    Zhai, Feifei; Mao, Jinmei; Liu, Junxiang; Peng, Xiangyong; Han, Lei; Sun, Zhenyuan

    2016-01-01

    Dioecy distributed in 157 flowering plant families and 959 flowering plant genera. Morphological and physiological differences between male and female plants have been studied extensively, but studies of sex-specific genetic diversity are relatively scarce in dioecious plants. In this study, 20 SSR loci were employed to examine the genetic variance of male subpopulations and female subpopulations in Salix viminalis. The results showed that all of the markers were polymorphic (Na = 14.15, He = 0.7566) and workable to reveal the genetic diversity of S. viminalis. No statistically significant difference was detected between male and female subpopulations, but the average genetic diversity of male subpopulations (Na = 7.12, He = 0.7071) and female subpopulations (Na = 7.31, He = 0.7226) were high. Under unfavorable environments (West Liao basin), the genetic diversity between male and female subpopulations was still not significantly different, but the genetic diversity of sexual subpopulations were lower. The differentiation of the ten subpopulations in S. viminalis was moderate (FST = 0.0858), which was conformed by AMOVA that most of genetic variance (94%) existed within subpopulations. Pairwise FST indicated no differentiation between sexual subpopulations, which was accompanied by high long-term migrate between them (M = 0.73~1.26). However, little recent migration was found between sexual subpopulations. Therefore, artificial crossing or/and transplantation by cutting propagation should be carried out so as to increase the migration during the process of ex situ conservation. PMID:27047511

  12. Contribution of landbird migration to the biological diversity of the northwest gulf coastal plain

    USGS Publications Warehouse

    Barrow, W.C., Jr.; Hamilton, R.B.; Powell, M.A.; Ouchley, K.

    2000-01-01

    This study examined seasonal diversity and feeding behavior of those avian species utilizing that region of the Northwest Gulf Coastal Plain known as the Chenier Plain. Field observations were conducted at three forested locations on coastal cheniers for three years (1993-95) in the spring and at one location for three years (1996-98) in autumn to determine species presence and diet. One hundred and twenty-eight species were present during the spring and 103 species in autumn. The majority of these species were migrants (103 species in spring and 89 species in autumn) and the majority of these were Nearctic/Neotropical species (73 species in spring and 66 species in autumn). The diet of these migrants was more variable than expected. Many insectivorous species were observed to consume seeds, fruit and nectar as well as insects. Because of these varied diets, many species serve as seed dispersers, occasional pollinators and important predators of herbivorus insects. Wooded areas were found to be important in providing food, cover and water for migrating species. A review of historical changes in the landscape of this area is presented and management practices designed to restore wooded habitat to this area are proposed.

  13. Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host

    PubMed Central

    Yun, Ji-Hyun; Roh, Seong Woon; Whon, Tae Woong; Jung, Mi-Ja; Kim, Min-Soo; Park, Doo-Sang; Yoon, Changmann; Nam, Young-Do; Kim, Yun-Ji; Choi, Jung-Hye; Kim, Joon-Yong; Shin, Na-Ri; Kim, Sung-Hee; Lee, Won-Jae

    2014-01-01

    Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (±97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities. PMID:24928884

  14. Sequence Diversity in MIC6 Gene among Toxoplasma gondii Isolates from Different Hosts and Geographical Locations

    PubMed Central

    Li, Zhong-Yuan; Song, Hui-Qun; Chen, Jia; Zhu, Xing-Quan

    2015-01-01

    Toxoplasma gondii is an opportunistic protozoan parasite that can infect almost all warm-blooded animals including humans with a worldwide distribution. Micronemes play an important role in invasion process of T. gondii, associated with the attachment, motility, and host cell recognition. In this research, sequence diversity in microneme protein 6 (MIC6) gene among 16 T. gondii isolates from different hosts and geographical regions and 1 reference strain was examined. The results showed that the sequence of all the examined T. gondii strains was 1,050 bp in length, and their A + T content was between 45.7% and 46.1%. Sequence analysis presented 33 nucleotide mutation positions (0-1.1%), resulting in 23 amino acid substitutions (0-2.3%) aligned with T. gondii RH strain. Moreover, T. gondii strains representing the 3 classical genotypes (Type I, II, and III) were separated into different clusters based on the locus of MIC6 using phylogenetic analyses by Bayesian inference (BI), maximum parsimony (MP), and maximum likelihood (ML), but T. gondii strains belonging to ToxoDB #9 were separated into different clusters. Our results suggested that MIC6 gene is not a suitable marker for T. gondii population genetic studies. PMID:26174829

  15. Sequence Diversity in MIC6 Gene among Toxoplasma gondii Isolates from Different Hosts and Geographical Locations.

    PubMed

    Li, Zhong-Yuan; Song, Hui-Qun; Chen, Jia; Zhu, Xing-Quan

    2015-06-01

    Toxoplasma gondii is an opportunistic protozoan parasite that can infect almost all warm-blooded animals including humans with a worldwide distribution. Micronemes play an important role in invasion process of T. gondii, associated with the attachment, motility, and host cell recognition. In this research, sequence diversity in microneme protein 6 (MIC6) gene among 16 T. gondii isolates from different hosts and geographical regions and 1 reference strain was examined. The results showed that the sequence of all the examined T. gondii strains was 1,050 bp in length, and their A + T content was between 45.7% and 46.1%. Sequence analysis presented 33 nucleotide mutation positions (0-1.1%), resulting in 23 amino acid substitutions (0-2.3%) aligned with T. gondii RH strain. Moreover, T. gondii strains representing the 3 classical genotypes (Type I, II, and III) were separated into different clusters based on the locus of MIC6 using phylogenetic analyses by Bayesian inference (BI), maximum parsimony (MP), and maximum likelihood (ML), but T. gondii strains belonging to ToxoDB #9 were separated into different clusters. Our results suggested that MIC6 gene is not a suitable marker for T. gondii population genetic studies. PMID:26174829

  16. Genetic diversity, host range, and distribution of tomato yellow leaf curl virus in Iran.

    PubMed

    Shirazi, M; Mozafari, J; Rakhshandehroo, F; Shams-Bakhsh, M

    2014-01-01

    Tomato yellow leaf curl virus (TYLCV) is considered one of the most important tomato pathogens in tropical and subtropical regions including Iran. During the years 2007 to 2009, a total number of 510 symptomatic and asymptomatic vegetable, ornamental and weed samples were collected from fields and greenhouses in ten provinces of Iran. Symptoms included stunting, yellowing, leaf curl and flower senescence. PCR with specific primers showed TYLCV infection in 184 samples (36%) such as cucumber, pepper, tomato and several weeds from seven provinces. Based on the geographical origin, host range and symptoms, twenty three representative isolates were selected for phylogenetic analysis. An amplicon with a size about 608 base pair (bp) comprising partial sequence of the coat (CP) and movement protein (MP) coding regions of the viral genome was sequenced and compared with the corresponding selected sequences available in GenBank for Iran and worldwide. Phylogenetic analyses on the basis of the nucleotide sequences indicated two geographically separated clades. Isolates collected from Hormozgan, Khuzestan and Kerman provinces were grouped together with other Iranian isolates including TYLCV-Ir2, TYLCV-Kahnooj, and an isolate from Oman. It was also revealed that isolates collected from Boushehr, Fars, Tehran, and Isfahan placed close to the Iranian isolate TYLCV-Abadeh and isolates from Israel and Egypt. No correlation was found between the genetic variation and the host species, but selected Iranian isolates were grouped on the basis of the geographical origins. Results of this study indicated a high genetic diversity among Iranian TYLCV isolates. PMID:24957717

  17. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host.

    PubMed

    Yun, Ji-Hyun; Roh, Seong Woon; Whon, Tae Woong; Jung, Mi-Ja; Kim, Min-Soo; Park, Doo-Sang; Yoon, Changmann; Nam, Young-Do; Kim, Yun-Ji; Choi, Jung-Hye; Kim, Joon-Yong; Shin, Na-Ri; Kim, Sung-Hee; Lee, Won-Jae; Bae, Jin-Woo

    2014-09-01

    Insects are the most abundant animals on Earth, and the microbiota within their guts play important roles by engaging in beneficial and pathological interactions with these hosts. In this study, we comprehensively characterized insect-associated gut bacteria of 305 individuals belonging to 218 species in 21 taxonomic orders, using 454 pyrosequencing of 16S rRNA genes. In total, 174,374 sequence reads were obtained, identifying 9,301 bacterial operational taxonomic units (OTUs) at the 3% distance level from all samples, with an average of 84.3 (± 97.7) OTUs per sample. The insect gut microbiota were dominated by Proteobacteria (62.1% of the total reads, including 14.1% Wolbachia sequences) and Firmicutes (20.7%). Significant differences were found in the relative abundances of anaerobes in insects and were classified according to the criteria of host environmental habitat, diet, developmental stage, and phylogeny. Gut bacterial diversity was significantly higher in omnivorous insects than in stenophagous (carnivorous and herbivorous) insects. This insect-order-spanning investigation of the gut microbiota provides insights into the relationships between insects and their gut bacterial communities. PMID:24928884

  18. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Siano, R.; Alves-de-Souza, C.; Foulon, E.; Bendif, El M.; Simon, N.; Guillou, L.; Not, F.

    2011-02-01

    Sequences affiliated to Syndiniales (Marine alveolate, MALV) regularly dominate 18S rDNA genetic libraries of nearly all marine ecosystems investigated so far. Among them, Amoebophryidae (MALV group II) is composed of numerous and genetically distant environmental sequences, where Amoebophrya is the only known and formally described genus. Amoebophrya species include virulent pathogens for a wide range of dinoflagellate species. Beside their regular occurrence in marine ecosystems, their quantitative distribution and the environmental factors triggering host infection have barely been studied in open oligotrophic waters. In order to understand the functional role of these parasites in natural environments, we studied the distribution and contribution to the eukaryotic community of the small free-living stage of Amoebophryidae (the dinospores) along a transect in the Mediterranean Sea, as well as their host diversity at three oligotrophic stations. Dinospores were more abundant at a coastal station (max. 1.5 × 103 cells ml-1) than in oligotrophic waters (max. 51 ± 16.3 cells ml-1), where they represented 10.3 to 34.9% of the total eukaryotic community at 40 and 30 m depth, respectively and 21.2% on average along the water column. Positive correlation was found between dinospore occurrence and higher concentration of NO3 + NO2 at the coastal station. At selected stations, out of 38 different dinoflagellates taxa identified, 15 were infected, among which a majority were not recognized as Amoebophryidae host so far. Prevalences (percentage of infected cells) generally varied between 1% and 10%, with a notable exception for Blepharocysta paulsenii for which 25% of cells were infected at the most oligotrophic station. The present study shows that dinospores are able to thrive and infect dinoflagellates both in coastal and ultra-oligotrophic open waters. Our results emphasize the role of parasitism in microbial food web dynamics and ultimately on biogeochemical cycles.

  19. Rhizobia Indigenous to the Okavango Region in Sub-Saharan Africa: Diversity, Adaptations, and Host Specificity

    PubMed Central

    Grönemeyer, Jann L.; Kulkarni, Ajinkya; Berkelmann, Dirk; Hurek, Thomas

    2014-01-01

    The rhizobial community indigenous to the Okavango region has not yet been characterized. The isolation of indigenous rhizobia can provide a basis for the formulation of a rhizobial inoculant. Moreover, their identification and characterization contribute to the general understanding of species distribution and ecology. Isolates were obtained from nodules of local varieties of the pulses cowpea, Bambara groundnut, peanut, hyacinth bean, and common bean. Ninety-one of them were identified by BOX repetitive element PCR (BOX-PCR) and sequence analyses of the 16S-23S rRNA internally transcribed spacer (ITS) and the recA, glnII, rpoB, and nifH genes. A striking geographical distribution was observed. Bradyrhizobium pachyrhizi dominated at sampling sites in Angola which were characterized by acid soils and a semihumid climate. Isolates from the semiarid sampling sites in Namibia were more diverse, with most of them being related to Bradyrhizobium yuanmingense and Bradyrhizobium daqingense. Host plant specificity was observed only for hyacinth bean, which was nodulated by rhizobia presumably representing yet-undescribed species. Furthermore, the isolates were characterized with respect to their adaptation to high temperatures, drought, and local host plants. The adaptation experiments revealed that the Namibian isolates shared an exceptionally high temperature tolerance, but none of the isolates showed considerable adaptation to drought. Moreover, the isolates' performance on different local hosts showed variable results, with most Namibian isolates inducing better nodulation on peanut and hyacinth bean than the Angolan strains. The local predominance of distinct genotypes implies that indigenous strains may exhibit a better performance in inoculant formulations. PMID:25239908

  20. Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats.

    PubMed

    Ramasindrazana, Beza; Dellagi, Koussay; Lagadec, Erwan; Randrianarivelojosia, Milijaona; Goodman, Steven M; Tortosa, Pablo

    2016-01-01

    We investigated filarial infection in Malagasy bats to gain insights into the diversity of these parasites and explore the factors shaping their distribution. Samples were obtained from 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 species currently recognized on the island. Samples were screened for the presence of micro- and macro-parasites through both molecular and morphological approaches. Phylogenetic analyses showed that filarial diversity in Malagasy bats formed three main groups, the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); a second group infecting Pipistrellus cf. hesperidus (Vespertilionidae) embedded within the Litomosoides cluster, which is recognized herein for the first time from Madagascar; and a third group composed of lineages with no clear genetic relationship to both previously described filarial nematodes and found in M. griveaudi, Myotis goudoti, Neoromicia matroka (Vespertilionidae), Otomops madagascariensis (Molossidae), and Paratriaenops furculus (Hipposideridae). We further analyzed the infection rates and distribution pattern of Litomosa spp., which was the most diverse and prevalent filarial taxon in our sample. Filarial infection was disproportionally more common in males than females in Miniopterus spp., which might be explained by some aspect of roosting behavior of these cave-dwelling bats. We also found marked geographic structure in the three Litomosa clades, mainly linked to bioclimatic conditions rather than host-parasite associations. While this study demonstrates distinct patterns of filarial nematode infection in Malagasy bats and highlights potential drivers of associated geographic distributions, future work should focus on their alpha taxonomy and characterize arthropod vectors. PMID:26751792

  1. Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats

    PubMed Central

    Ramasindrazana, Beza; Dellagi, Koussay; Lagadec, Erwan; Randrianarivelojosia, Milijaona; Goodman, Steven M.; Tortosa, Pablo

    2016-01-01

    We investigated filarial infection in Malagasy bats to gain insights into the diversity of these parasites and explore the factors shaping their distribution. Samples were obtained from 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 species currently recognized on the island. Samples were screened for the presence of micro- and macro-parasites through both molecular and morphological approaches. Phylogenetic analyses showed that filarial diversity in Malagasy bats formed three main groups, the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); a second group infecting Pipistrellus cf. hesperidus (Vespertilionidae) embedded within the Litomosoides cluster, which is recognized herein for the first time from Madagascar; and a third group composed of lineages with no clear genetic relationship to both previously described filarial nematodes and found in M. griveaudi, Myotis goudoti, Neoromicia matroka (Vespertilionidae), Otomops madagascariensis (Molossidae), and Paratriaenops furculus (Hipposideridae). We further analyzed the infection rates and distribution pattern of Litomosa spp., which was the most diverse and prevalent filarial taxon in our sample. Filarial infection was disproportionally more common in males than females in Miniopterus spp., which might be explained by some aspect of roosting behavior of these cave-dwelling bats. We also found marked geographic structure in the three Litomosa clades, mainly linked to bioclimatic conditions rather than host-parasite associations. While this study demonstrates distinct patterns of filarial nematode infection in Malagasy bats and highlights potential drivers of associated geographic distributions, future work should focus on their alpha taxonomy and characterize arthropod vectors. PMID:26751792

  2. Genetic diversity and structure of Neotyphodium species and their host Achnatherum sibiricum in a natural grass-endophyte system.

    PubMed

    Zhang, Xin; Ren, Anzhi; Ci, Huacong; Gao, Yubao

    2010-05-01

    Achnatherum sibiricum (Poaceae) is a perennial bunchgrass native to the Inner Mongolia Steppe of China. This grass is commonly infected by epichloë endophytes with high-infection frequencies. Previously, we identified two predominant Neotyphodium spp., N. sibiricum and N. gansuense. In the present study, genetic diversity and structure were analyzed for the two predominant Neotyphodium spp. as well as the host grass. We obtained 103 fungal isolates from five populations; 33 were identified as N. sibiricum and 61 as N. gansuense. All populations hosted both endophytic species, but genetic variation was much higher for N. gansuense than for N. sibiricum. The majority of fungal isolates were haploid, and 13% of them were heterozygous at one SSR locus, suggesting hybrid origins of those isolates. Significant linkage disequilibrium of fungal SSR loci suggested that both fungal species primarily propagate by clonal growth through plant seeds, whereas variation in genetic diversity and the presence of hybrids in both endophytic species revealed that although clonal propagation was prevalent, occasional recombination might also occur. By comparing genetic differentiation among populations, we found around 4-7-fold greater differentiation of endophyte populations than host populations, implying more restricted gene flow of endophytes than hosts. We proposed that endophyte infection of A. sibiricum might confer the host some selective advantages under certain conditions, which could help to maintain high-endophyte-infection frequencies in host populations, even when their gene flows do not match each other. Furthermore, we suggested that the same genotype of endophyte as well as host should be confirmed if the objective of the study is to know the influence of endophyte or host genotype on their symbiotic relationship, instead of just considering whether the plant is infected by an endophyte or not, since endophytes from the same host species could exhibit high levels of

  3. Dissecting a wildlife disease hotspot: the impact of multiple host species, environmental transmission and seasonality in migration, breeding and mortality

    PubMed Central

    Brown, V. L.; Drake, J. M.; Stallknecht, D. E.; Brown, J. D.; Pedersen, K.; Rohani, P.

    2013-01-01

    Avian influenza viruses (AIVs) have been implicated in all human influenza pandemics in recent history. Despite this, surprisingly little is known about the mechanisms underlying the maintenance and spread of these viruses in their natural bird reservoirs. Surveillance has identified an AIV ‘hotspot’ in shorebirds at Delaware Bay, in which prevalence is estimated to exceed other monitored sites by an order of magnitude. To better understand the factors that create an AIV hotspot, we developed and parametrized a mechanistic transmission model to study the simultaneous epizootiological impacts of multi-species transmission, seasonal breeding, host migration and mixed transmission routes. We scrutinized our model to examine the potential for an AIV hotspot to serve as a ‘gateway’ for the spread of novel viruses into North America. Our findings identify the conditions under which a novel influenza virus, if introduced into the system, could successfully invade and proliferate. PMID:23173198

  4. Genome-Wide Association Studies of HIV-1 Host Control in Ethnically Diverse Chinese Populations

    PubMed Central

    Wei, Zejun; Liu, Yang; Xu, Heng; Tang, Kun; Wu, Hao; Lu, Lin; Wang, Zhe; Chen, Zhengjie; Xu, Junjie; Zhu, Yufei; Hu, Landian; Shang, Hong; Zhao, Guoping; Kong, Xiangyin

    2015-01-01

    Genome-wide association studies (GWASs) have revealed several genetic loci associated with HIV-1 outcome following infection (e.g., HLA-C at 6p21.33) in multi-ethnic populations with genetic heterogeneity and racial/ethnic differences among Caucasians, African-Americans, and Hispanics. To systematically investigate the inherited predisposition to modulate HIV-1 infection in Chinese populations, we performed GWASs in three ethnically diverse HIV-infected patients groups (i.e., HAN, YUN, and XIN, N = 538). The reported loci at 6p21.33 was validated in HAN (e.g., rs9264942, P = 0.0018). An independent association signal (rs2442719, P = 7.85 × 10−7, HAN group) in the same region was observed. Imputation results suggest that haplotype HLA-B*13:02/C*06:02, which can partially account for the GWAS signal, is associated with lower viral load in Han Chinese. Moreover, several novel loci were identified using GWAS approach including the top association signals at 6q13 (KCNQ5, rs947612, P = 2.15 × 10−6), 6p24.1 (PHACTR1, rs202072, P = 3.8 × 10−6), and 11q12.3 (SCGB1D4, rs11231017, P = 7.39 × 10−7) in HAN, YUN, and XIN groups, respectively. Our findings imply shared or specific mechanisms for host control of HIV-1 in ethnically diverse Chinese populations, which may shed new light on individualized HIV/AIDS therapy in China. PMID:26039976

  5. CXCR3 as a molecular target in breast cancer metastasis: inhibition of tumor cell migration and promotion of host anti-tumor immunity

    PubMed Central

    Zhu, Guiquan; Jian, Jiang; Achyut, Bhagelu R.; Liang, Xinhua; Weiss, Jonathan M.; Wiltrout, Robert H.; Hollander, M. Christine; Yang, Li

    2015-01-01

    Chemokines and chemokine receptors have critical roles in cancer metastasis and have emerged as one of the targeting options in cancer therapy. However, the treatment efficacy on both tumor and host compartments needs to be carefully evaluated. Here we report that targeting CXCR3 decreased tumor cell migration and at the same time improved host anti-tumor immunity. We observed an increased expression of CXCR3 in metastatic tumor cells compared to those from non-metastatic tumor cells. Knockdown (KD) of CXCR3 in metastatic tumor cells suppressed tumor cell migration and metastasis. Importantly, CXCR3 expression in clinical breast cancer samples correlated with progression and metastasis. For the host compartment, deletion of CXCR3 in all host cells in 4T1 mammary tumor model significantly decreased metastasis. The underlying mechanisms involve a decreased expression of IL-4, IL-10, iNOs, and Arg-1 in myeloid cells and an increased T cell response. IFN-γ neutralization diminished the metastasis inhibition in the CXCR3 knockout (KO) mice bearing 4T1 tumors, suggesting a critical role of host CXCR3 in immune suppression. Consistently, targeting CXCR3 using a small molecular inhibitor (AMG487) significantly suppressed metastasis and improved host anti-tumor immunity. Our findings demonstrate that targeting CXCR3 is effective in both tumor and host compartments, and suggest that CXCR3 inhibition is likely to avoid adverse effects on host cells. PMID:26485767

  6. A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses1

    PubMed Central

    Kamir, Daniela; Zierow, Swen; Leng, Lin; Cho, Yoonsang; Diaz, Yira; Griffith, Jason; McDonald, Courtney; Merk, Melanie; Mitchell, Robert A.; Trent, John; Chen, Yibang; Kwong, Yuen-Kwan Amy; Xiong, Huabao; Vermeire, Jon; Cappello, Michael; McMahon-Pratt, Diane; Walker, John; Bernhagen, Jurgen; Lolis, Elias; Bucala, Richard

    2009-01-01

    Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 Å). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (Kd = 2.9 × 10−8 M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction. PMID:18523291

  7. A Leishmania Ortholog of Macrophage Migration Inhibitory Factor Modulates Host Macrophage Responses

    SciTech Connect

    Kamir,D.; Zierow, S.; Leng, L.; Cho, Y.; Diaz, Y.; Griffith, J.; McDonald, C.; Merk, M.; Mitchell, R.; et al

    2008-01-01

    Parasitic organisms have evolved specialized strategies to evade immune defense mechanisms. We describe herein an ortholog of the cytokine, macrophage migration inhibitory factor (MIF), which is produced by the obligate intracellular parasite, Leishmania major. The Leishmania MIF protein, Lm1740MIF, shows significant structural homology with human MIF as revealed by a high-resolution x-ray crystal structure (1.03 A). Differences between the two proteins in the N-terminal tautomerization site are evident, and we provide evidence for the selective, species-specific inhibition of MIF by small-molecule antagonists that target this site. Lm1740MIF shows significant binding interaction with the MIF receptor, CD74 (K(d) = 2.9 x 10(-8) M). Like its mammalian counterpart, Lm1740MIF induces ERK1/2 MAP kinase activation in a CD74-dependent manner and inhibits the activation-induced apoptosis of macrophages. The ability of Lm1740MIF to inhibit apoptosis may facilitate the persistence of Leishmania within the macrophage and contribute to its evasion from immune destruction.

  8. Genetic diversity and host range studies of turnip curly top virus.

    PubMed

    Razavinejad, Sara; Heydarnejad, Jahangir; Kamali, Mehdi; Massumi, Hossain; Kraberger, Simona; Varsani, Arvind

    2013-04-01

    Turnip curly top virus (TCTV) is a unique geminivirus that has recently been characterised as infecting turnips in Iran. The genome of TCTV shares <68 % pairwise identity with other geminiviruses and has a genome organisation similar to that of curtoviruses and topocuvirus. The replication-associated protein (Rep) bears the highest similarity to curtovirus Reps (48.5-69.0 %); however, in the case of the capsid protein (CP), the extent of similarity is only 39.5-44.5 %. We constructed an agroinfectious clone of TCTV and undertook host range studies on ten plant species; in three species (turnip, sugar beet and cowpea), we detected infection which presents curly top symptoms in turnip and sugar beet. The efficiency of TCTV infection in agroinoculated turnip plants was 71.7 %, and the infection was successfully transmitted to 80 % of the healthy turnip plants used in the insect transmission studies by Circulifer haematoceps under greenhouse conditions. We also determined the genome sequence of 14 new TCTV isolates from southern Iran isolated from turnips. We observed ~13 % diversity amongst all the TCTV isolates and found evidence of recombination in the CP- and Rep-coding regions of the genomes. PMID:23225113

  9. The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin

    PubMed Central

    Liu, Jared; Yan, Riceley; Zhong, Qiao; Ngo, Sam; Bangayan, Nathanael J; Nguyen, Lin; Lui, Timothy; Liu, Minghsun; Erfe, Marie C; Craft, Noah; Tomida, Shuta; Li, Huiying

    2015-01-01

    The viral population, including bacteriophages, is an important component of the human microbiota, yet is poorly understood. We aim to determine whether bacteriophages modulate the composition of the bacterial populations, thus potentially playing a role in health or disease. We investigated the diversity and host interactions of the bacteriophages of Propionibacterium acnes, a major human skin commensal implicated in acne pathogenesis. By sequencing 48 P. acnes phages isolated from acne patients and healthy individuals and by analyzing the P. acnes phage populations in healthy skin metagenomes, we revealed that P. acnes phage populations in the skin microbial community are often dominated by one strain. We also found phage strains shared among both related and unrelated individuals, suggesting that a pool of common phages exists in the human population and that transmission of phages may occur between individuals. To better understand the bacterium–phage interactions in the skin microbiota, we determined the outcomes of 74 genetically defined Propionibacterium strains challenged by 15 sequenced phages. Depending on the Propionibacterium lineage, phage infection can result in lysis, pseudolysogeny, or resistance. In type II P. acnes strains, we found that encoding matching clustered regularly interspaced short palindromic repeat spacers is insufficient to confer phage resistance. Overall, our findings suggest that the prey–predator relationship between bacteria and phages may have a role in modulating the composition of the microbiota. Our study also suggests that the microbiome structure of an individual may be an important factor in the design of phage-based therapy. PMID:25848871

  10. The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin.

    PubMed

    Liu, Jared; Yan, Riceley; Zhong, Qiao; Ngo, Sam; Bangayan, Nathanael J; Nguyen, Lin; Lui, Timothy; Liu, Minghsun; Erfe, Marie C; Craft, Noah; Tomida, Shuta; Li, Huiying

    2015-09-01

    The viral population, including bacteriophages, is an important component of the human microbiota, yet is poorly understood. We aim to determine whether bacteriophages modulate the composition of the bacterial populations, thus potentially playing a role in health or disease. We investigated the diversity and host interactions of the bacteriophages of Propionibacterium acnes, a major human skin commensal implicated in acne pathogenesis. By sequencing 48 P. acnes phages isolated from acne patients and healthy individuals and by analyzing the P. acnes phage populations in healthy skin metagenomes, we revealed that P. acnes phage populations in the skin microbial community are often dominated by one strain. We also found phage strains shared among both related and unrelated individuals, suggesting that a pool of common phages exists in the human population and that transmission of phages may occur between individuals. To better understand the bacterium-phage interactions in the skin microbiota, we determined the outcomes of 74 genetically defined Propionibacterium strains challenged by 15 sequenced phages. Depending on the Propionibacterium lineage, phage infection can result in lysis, pseudolysogeny, or resistance. In type II P. acnes strains, we found that encoding matching clustered regularly interspaced short palindromic repeat spacers is insufficient to confer phage resistance. Overall, our findings suggest that the prey-predator relationship between bacteria and phages may have a role in modulating the composition of the microbiota. Our study also suggests that the microbiome structure of an individual may be an important factor in the design of phage-based therapy. PMID:25848871

  11. Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory.

    PubMed

    Medina, R F; Nachappa, P; Tamborindeguy, C

    2011-04-01

    Host-associated differentiation (HAD) is the presence of genetically divergent, host-associated populations. It has been suggested that microbial symbionts of insect herbivores may play a role in HAD by allowing their insect hosts to use different plant species. The objective of this study was to document if host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory corresponded with differences in the composition of their associated bacteria. To test this hypothesis, we characterized the symbionts present in P. notabilis associated with these two tree species through metagenomic analyses using 454 sequencing. Differences in bacterial diversity were found between P. notabilis populations associated with pecan and water hickory. The bacteria, Pantoea agglomerans and Serratia marcescens, were absent in the P. notabilis water hickory population, whereas both species accounted for more than 69.72% of bacterial abundance in the pecan population. PMID:21261774

  12. Contrasting Diversity and Host Association of Ectomycorrhizal Basidiomycetes versus Root-Associated Ascomycetes in a Dipterocarp Rainforest

    PubMed Central

    Sato, Hirotoshi; Tanabe, Akifumi S.; Toju, Hirokazu

    2015-01-01

    Root-associated fungi, including ectomycorrhizal and root-endophytic fungi, are among the most diverse and important belowground plant symbionts in dipterocarp rainforests. Our study aimed to reveal the biodiversity, host association, and community structure of ectomycorrhizal Basidiomycota and root-associated Ascomycota (including root-endophytic Ascomycota) in a lowland dipterocarp rainforest in Southeast Asia. The host plant chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) region and fungal internal transcribed spacer 2 (ITS2) region were sequenced using tag-encoded, massively parallel 454 pyrosequencing to identify host plant and root-associated fungal taxa in root samples. In total, 1245 ascomycetous and 127 putative ectomycorrhizal basidiomycetous taxa were detected from 442 root samples. The putative ectomycorrhizal Basidiomycota were likely to be associated with closely related dipterocarp taxa to greater or lesser extents, whereas host association patterns of the root-associated Ascomycota were much less distinct. The community structure of the putative ectomycorrhizal Basidiomycota was possibly more influenced by host genetic distances than was that of the root-associated Ascomycota. This study also indicated that in dipterocarp rainforests, root-associated Ascomycota were characterized by high biodiversity and indistinct host association patterns, whereas ectomycorrhizal Basidiomycota showed less biodiversity and a strong host phylogenetic preference for dipterocarp trees. Our findings lead to the working hypothesis that root-associated Ascomycota, which might be mainly represented by root-endophytic fungi, have biodiversity hotspots in the tropics, whereas biodiversity of ectomycorrhizal Basidiomycota increases with host genetic diversity. PMID:25884708

  13. Contrasting diversity and host association of ectomycorrhizal basidiomycetes versus root-associated ascomycetes in a dipterocarp rainforest.

    PubMed

    Sato, Hirotoshi; Tanabe, Akifumi S; Toju, Hirokazu

    2015-01-01

    Root-associated fungi, including ectomycorrhizal and root-endophytic fungi, are among the most diverse and important belowground plant symbionts in dipterocarp rainforests. Our study aimed to reveal the biodiversity, host association, and community structure of ectomycorrhizal Basidiomycota and root-associated Ascomycota (including root-endophytic Ascomycota) in a lowland dipterocarp rainforest in Southeast Asia. The host plant chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) region and fungal internal transcribed spacer 2 (ITS2) region were sequenced using tag-encoded, massively parallel 454 pyrosequencing to identify host plant and root-associated fungal taxa in root samples. In total, 1245 ascomycetous and 127 putative ectomycorrhizal basidiomycetous taxa were detected from 442 root samples. The putative ectomycorrhizal Basidiomycota were likely to be associated with closely related dipterocarp taxa to greater or lesser extents, whereas host association patterns of the root-associated Ascomycota were much less distinct. The community structure of the putative ectomycorrhizal Basidiomycota was possibly more influenced by host genetic distances than was that of the root-associated Ascomycota. This study also indicated that in dipterocarp rainforests, root-associated Ascomycota were characterized by high biodiversity and indistinct host association patterns, whereas ectomycorrhizal Basidiomycota showed less biodiversity and a strong host phylogenetic preference for dipterocarp trees. Our findings lead to the working hypothesis that root-associated Ascomycota, which might be mainly represented by root-endophytic fungi, have biodiversity hotspots in the tropics, whereas biodiversity of ectomycorrhizal Basidiomycota increases with host genetic diversity. PMID:25884708

  14. Vascular Epiphyte Diversity Differs with Host Crown Zone and Diameter, but Not Orientation in a Tropical Cloud Forest.

    PubMed

    Wang, Xixi; Long, Wenxing; Schamp, Brandon S; Yang, Xiaobo; Kang, Yong; Xie, Zhixu; Xiong, Menghui

    2016-01-01

    Vascular epiphytes are important components of biological diversity in tropical forests. We measured the species richness and abundance of vascular epiphytes along four vertical crown zones and five horizontal orientations on 376 trees, as well as the diameter at breast height (DBH) of host trees in tropical cloud forests in Bawangling, Hainan, China. The relationship between vascular epiphyte species richness and host tree DBH was assessed using a generalized linear model. There were 1,453 vascular individual epiphytes attributed to 9 families, 24 genera and 35 species, with orchids and pteridophytes dominating. Both the species richness and abundance of epiphytes significantly differed among the four crown zones for all collections and each host tree, suggesting that vertical microhabitats contribute to the distribution of epiphytes on host trees. Neither epiphyte abundance nor species richness differed among the eastern, southern, western, and northern orientations for all host trees; however, both richness and abundance were significantly higher for epiphytes that encircled host tree trunks. This suggests that morphological and physiological characteristics of the tree, but not microclimates probably contribute to the distribution of epiphytes on host trees. Epiphyte species richness was positively correlated with tree DBH across the six host tree species studied, with increases in DBH among smaller trees resulting in larger increases in richness, while increases in DBH among larger host trees resulting in more modest increases in ephiphyte richness. Our findings contribute support for a positive relationship between epiphyte species richness and host tree DBH and provide important guidance for future surveys of epiphyte community development. PMID:27391217

  15. Vascular Epiphyte Diversity Differs with Host Crown Zone and Diameter, but Not Orientation in a Tropical Cloud Forest

    PubMed Central

    Wang, Xixi; Long, Wenxing; Schamp, Brandon S.; Yang, Xiaobo; Kang, Yong; Xie, Zhixu; Xiong, Menghui

    2016-01-01

    Vascular epiphytes are important components of biological diversity in tropical forests. We measured the species richness and abundance of vascular epiphytes along four vertical crown zones and five horizontal orientations on 376 trees, as well as the diameter at breast height (DBH) of host trees in tropical cloud forests in Bawangling, Hainan, China. The relationship between vascular epiphyte species richness and host tree DBH was assessed using a generalized linear model. There were 1,453 vascular individual epiphytes attributed to 9 families, 24 genera and 35 species, with orchids and pteridophytes dominating. Both the species richness and abundance of epiphytes significantly differed among the four crown zones for all collections and each host tree, suggesting that vertical microhabitats contribute to the distribution of epiphytes on host trees. Neither epiphyte abundance nor species richness differed among the eastern, southern, western, and northern orientations for all host trees; however, both richness and abundance were significantly higher for epiphytes that encircled host tree trunks. This suggests that morphological and physiological characteristics of the tree, but not microclimates probably contribute to the distribution of epiphytes on host trees. Epiphyte species richness was positively correlated with tree DBH across the six host tree species studied, with increases in DBH among smaller trees resulting in larger increases in richness, while increases in DBH among larger host trees resulting in more modest increases in ephiphyte richness. Our findings contribute support for a positive relationship between epiphyte species richness and host tree DBH and provide important guidance for future surveys of epiphyte community development. PMID:27391217

  16. Invasion of Ceratomyxa shasta (Myxozoa) and comparison of migration to the intestine between susceptible and resistant fish hosts.

    PubMed

    Bjork, Sarah J; Bartholomew, Jerri L

    2010-08-01

    The myxozoan parasite Ceratomyxa shasta infects salmonids causing ceratomyxosis, a disease elicited by proliferation of the parasite in the intestine. This parasite is endemic to the Pacific Northwest of North America and salmon and trout strains from endemic river basins show increased resistance to the parasite. It has been suggested that these resistant fish (i) exclude the parasite at the site of invasion and/or (ii) prevent establishment in the intestine. Using parasites pre-labeled with a fluorescent stain, carboxyfluorescein succinimidyl diacetate (CFSE), the gills were identified as the site of attachment of C. shasta in a susceptible fish strain. In situ hybridization (ISH) of histological sections was then used to describe the invasion of the parasites in the gill filaments. To investigate differences in the progress of infection between resistant and susceptible fish, a C. shasta-susceptible strain of rainbow trout (Oncorhynchus mykiss) and a C. shasta-resistant strain of Chinook salmon (Oncorhynchus tshawytscha) were sampled at consecutive time points following exposure at an endemic site. Using ISH in both species, the parasite was observed to migrate from the gill epithelium into the gill blood vessels where replication and release of parasite stages occurred. Quantitative PCR verified entry of the parasite into the blood. Parasite levels in blood increased 4days p.i. and remained at a consistent level until the second week when parasite abundance increased further and coincided with host mortality. The timing of parasite replication and migration to the intestine were similar for both fish species. The field exposure dose was unexpectedly high and apparently overwhelmed the Chinook salmon's defenses, as no evidence of resistance to parasite penetration into the gills or prevention of parasite establishment in the intestine was observed. PMID:20385137

  17. Host diversity affects the abundance of the extraradical arbuscular mycorrhizal network.

    PubMed

    Engelmoer, Daniel J P; Kiers, E Toby

    2015-03-01

    Arbuscular mycorrhizal fungi (AMF) can form complex networks in the soil that connect different host plants. Previous studies have focused on the effects of these networks on individual hosts and host communities. However, very little is known about how different host species affect the success of the fungal network itself. Given the potentially strong selection pressure against hosts that invest in a fungal network which benefits their competitors, we predict that the presence of multiple host species negatively affects the growth of the extraradical network. We designed an experiment using an in vitro culture approach to investigate the effect of different hosts (carrot, chichory and medicago) on the formation of a common mycelial network. In vitro root cultures, each inoculated with their own fungal network, were grown in a double split plate design with two host compartments and a common central compartment where fungal networks could form. We found that the size of fungal networks differs depending on the social environment of the host. When host species were propagated in a mixed species environment, the fungal abundance was significantly reduced compared to monoculture predictions. Our work demonstrates how host-to-host conflict can influence the abundance of the fungal partner. PMID:25297948

  18. Silage Collected from Dairy Farms Harbors an Abundance of Listeriaphages with Considerable Host Range and Genome Size Diversity

    PubMed Central

    Vongkamjan, Kitiya; Switt, Andrea Moreno; den Bakker, Henk C.; Fortes, Esther D.

    2012-01-01

    Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools. PMID:23042180

  19. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes

    PubMed Central

    Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle

    2016-01-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  20. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes.

    PubMed

    Lequime, Sebastian; Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle; Lambrechts, Louis

    2016-06-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  1. Phylogenetic Diversity, Distribution, and Cophylogeny of Giant Bacteria (Epulopiscium) with their Surgeonfish Hosts in the Red Sea

    PubMed Central

    Miyake, Sou; Ngugi, David K.; Stingl, Ulrich

    2016-01-01

    Epulopiscium is a group of giant bacteria found in high abundance in intestinal tracts of herbivorous surgeonfish. Despite their peculiarly large cell size (can be up to 600 μm), extreme polyploidy (some with over 100,000 genome copies per cell) and viviparity (whereby mother cells produce live offspring), details about their diversity, distribution or their role in the host gut are lacking. Previous studies have highlighted the existence of morphologically distinct Epulopiscium cell types (defined as morphotypes A to J) in some surgeonfish genera, but the corresponding genetic diversity and distribution among other surgeonfishes remain mostly unknown. Therefore, we investigated the phylogenetic diversity of Epulopiscium, distribution and co-occurrence in multiple hosts. Here, we identified eleven new phylogenetic clades, six of which were also morphologically characterized. Three of these novel clades were phylogenetically and morphologically similar to cigar-shaped type A1 cells, found in a wide range of surgeonfishes including Acanthurus nigrofuscus, while three were similar to smaller, rod-shaped type E that has not been phylogenetically classified thus far. Our results also confirmed that biogeography appears to have relatively little influence on Epulopiscium diversity, as clades found in the Great Barrier Reef and Hawaii were also recovered from the Red Sea. Although multiple symbiont clades inhabited a given species of host surgeonfish and multiple host species possessed a given symbiont clade, statistical analysis of host and symbiont phylogenies indicated significant cophylogeny, which in turn suggests co-evolutionary relationships. A cluster analysis of Epulopiscium sequences from previously published amplicon sequencing dataset revealed a similar pattern, where specific clades were consistently found in high abundance amongst closely related surgeonfishes. Differences in abundance may indicate specialization of clades to certain gut environments

  2. Phylogenetic Diversity, Distribution, and Cophylogeny of Giant Bacteria (Epulopiscium) with their Surgeonfish Hosts in the Red Sea.

    PubMed

    Miyake, Sou; Ngugi, David K; Stingl, Ulrich

    2016-01-01

    Epulopiscium is a group of giant bacteria found in high abundance in intestinal tracts of herbivorous surgeonfish. Despite their peculiarly large cell size (can be up to 600 μm), extreme polyploidy (some with over 100,000 genome copies per cell) and viviparity (whereby mother cells produce live offspring), details about their diversity, distribution or their role in the host gut are lacking. Previous studies have highlighted the existence of morphologically distinct Epulopiscium cell types (defined as morphotypes A to J) in some surgeonfish genera, but the corresponding genetic diversity and distribution among other surgeonfishes remain mostly unknown. Therefore, we investigated the phylogenetic diversity of Epulopiscium, distribution and co-occurrence in multiple hosts. Here, we identified eleven new phylogenetic clades, six of which were also morphologically characterized. Three of these novel clades were phylogenetically and morphologically similar to cigar-shaped type A1 cells, found in a wide range of surgeonfishes including Acanthurus nigrofuscus, while three were similar to smaller, rod-shaped type E that has not been phylogenetically classified thus far. Our results also confirmed that biogeography appears to have relatively little influence on Epulopiscium diversity, as clades found in the Great Barrier Reef and Hawaii were also recovered from the Red Sea. Although multiple symbiont clades inhabited a given species of host surgeonfish and multiple host species possessed a given symbiont clade, statistical analysis of host and symbiont phylogenies indicated significant cophylogeny, which in turn suggests co-evolutionary relationships. A cluster analysis of Epulopiscium sequences from previously published amplicon sequencing dataset revealed a similar pattern, where specific clades were consistently found in high abundance amongst closely related surgeonfishes. Differences in abundance may indicate specialization of clades to certain gut environments

  3. Mechanistic models of animal migration behaviour – their diversity, structure and use

    PubMed Central

    Bauer, Silke; Klaassen, Marcel

    2013-01-01

    Migration is a wide-spread phenomenon in the animal kingdom, including many taxonomic groups and modes of locomotion. Developing an understanding of the proximate and ultimate causes for this behaviour not only addresses fundamental ecological questions but has relevance to many other fields, e.g. in relation to the spread of emerging zoonotic diseases, the proliferation of invasive species, aeronautical safety as well as the conservation of migrants.Theoretical methods can make important contributions to our understanding of migration, by allowing us to integrate findings on this complex behaviour, identify caveats in our understanding and guide future empirical research efforts. Various mechanistic models exist to date but their applications seem to be scattered and far from evenly distributed across taxonomic units.Therefore, we provide an overview of the major mechanistic modelling approaches used in the study of migration behaviour and characterise their fundamental features, assumptions and limitations, and discuss their typical data requirements both for model parameterisation and for scrutinizing model predictions.Furthermore, we review 155 studies that have used mechanistic models to study animal migration and analyse them with regard to the approaches used, focal species and also explore their contribution of advancing current knowledge within six broad migration ecology research themes.This identifies important gaps in our present knowledge, which should be tackled in future research using existing and to-be developed theoretical approaches. PMID:23373515

  4. The Relationship between Ethnic Diversity and Classroom Disruption in the Context of Migration Policies

    ERIC Educational Resources Information Center

    Veerman, Gert-Jan M.

    2015-01-01

    This paper studies the relationship between ethnic school composition and classroom disruption in secondary education in the context of migration policies. We measured classroom disruption using students' reports from 3533 schools in 20 countries provided by cross-national PISA (Programme for International Student Assessment) 2009 data. We…

  5. Species Diversity, Abundance, and Host Preferences of Mosquitoes (Diptera: Culicidae) in Two Different Ecotypes of Madagascar With Recent RVFV Transmission.

    PubMed

    Jean Jose Nepomichene, Thiery Nirina; Elissa, Nohal; Cardinale, Eric; Boyer, Sebastien

    2015-09-01

    Mosquito diversity and abundance were examined in six Madagascan villages in either arid (Toliary II district) or humid (Mampikony district) ecotypes, each with a history of Rift Valley fever virus transmission. Centers for Disease Control and Prevention light traps without CO2 (LT) placed near ruminant parks and animal-baited net trap (NT) baited with either zebu or sheep/goat were used to sample mosquitoes, on two occasions between March 2011 and October 2011. Culex tritaeniorhynchus (Giles) was the most abundant species, followed by Culex antennatus (Becker) and Anopheles squamosus/cydippis (Theobald/de Meillon). These three species comprised more than half of all mosquitoes collected. The NT captured more mosquitoes in diversity and in abundance than the LT, and also caught more individuals of each species, except for An. squamosus/cydippis. Highest diversity and abundance were observed in the humid and warm district of Mampikony. No host preference was highlighted, except for Cx. tritaeniorhynchus presenting a blood preference for zebu baits. The description of species diversity, abundance, and host preference described herein can inform the development of control measures to reduce the risk of mosquito-borne diseases in Madagascar. PMID:26336259

  6. Perlecan Diversely Regulates the Migration and Proliferation of Distinct Cell Types in vitro.

    PubMed

    Nakamura, Ryosuke; Nakamura, Fumio; Fukunaga, Shigeharu

    2015-01-01

    Perlecan is a multifunctional component of the extracellular matrix. It shows different effects on distinct cell types, and therefore it is thought to show potential for therapies targeting multiple cell types. However, the full range of multifunctionality of perlecan remains to be elucidated. We cultured various cell types, which were derived from epithelial/endothelial, connective and muscle tissues, in the presence of either antiserum against perlecan or exogenous perlecan, and examined the effects of perlecan on cell migration and proliferation. Cell migration was determined using a scratch assay. Blocking of perlecan by anti-perlecan antiserum inhibited the migration of vascular endothelial cells (VECs) and bone marrow-derived mesenchymal stem cells, and exogenous perlecan added to the culture medium promoted the migration of these cell types. The migration of other cell types was inhibited or was not promoted by exogenous perlecan. Cell proliferation was measured using a water-soluble tetrazolium dye. When cells were cultured at low densities, perlecan blocking inhibited the proliferation of VECs, and exogenous perlecan promoted the proliferation of keratinocytes. In contrast, the proliferation of fibroblasts, pre-adipocytes and vascular smooth muscle cells cultured at low densities was inhibited by exogenous perlecan. When cells were cultured at high densities, perlecan blocking promoted the proliferation of most cell types, with the exception of skeletal system-derived cells (chondrocytes and osteoblasts), which were inhibited by exogenous perlecan. Our results provide an overview of the multiple functions of perlecan in various cell types, and implicate a potential role of perlecan to inhibit undesirable activities, such as fibrosis, obesity and intimal hyperplasia. PMID:26562025

  7. A critical role for the host mediator macrophage migration inhibitory factor in the pathogenesis of malarial anemia

    PubMed Central

    McDevitt, Michael A.; Xie, Jianlin; Shanmugasundaram, Ganapathy; Griffith, Jason; Liu, Aihua; McDonald, Courtney; Thuma, Philip; Gordeuk, Victor R.; Metz, Christine N.; Mitchell, Robert; Keefer, Jeffrey; David, John; Leng, Lin; Bucala, Richard

    2006-01-01

    The pathogenesis of malarial anemia is multifactorial, and the mechanisms responsible for its high mortality are poorly understood. Studies indicate that host mediators produced during malaria infection may suppress erythroid progenitor development (Miller, K.L., J.C. Schooley, K.L. Smith, B. Kullgren, L.J. Mahlmann, and P.H. Silverman. 1989. Exp. Hematol. 17:379–385; Yap, G.S., and M.M. Stevenson. 1991. Ann. NY Acad. Sci. 628:279–281). We describe an intrinsic role for macrophage migration inhibitory factor (MIF) in the development of the anemic complications and bone marrow suppression that are associated with malaria infection. At concentrations found in the circulation of malaria-infected patients, MIF suppressed erythropoietin-dependent erythroid colony formation. MIF synergized with tumor necrosis factor and γ interferon, which are known antagonists of hematopoiesis, even when these cytokines were present in subinhibitory concentrations. MIF inhibited erythroid differentiation and hemoglobin production, and it antagonized the pattern of mitogen-activated protein kinase phosphorylation that normally occurs during erythroid progenitor differentiation. Infection of MIF knockout mice with Plasmodium chabaudi resulted in less severe anemia, improved erythroid progenitor development, and increased survival compared with wild-type controls. We also found that human mononuclear cells carrying highly expressed MIF alleles produced more MIF when stimulated with the malarial product hemozoin compared with cells carrying low expression MIF alleles. These data suggest that polymorphisms at the MIF locus may influence the levels of MIF produced in the innate response to malaria infection and the likelihood of anemic complications. PMID:16636133

  8. Patterns of genetic diversity and migration in increasingly fragmented and declining orang-utan (Pongo pygmaeus) populations from Sabah, Malaysia.

    PubMed

    Goossens, B; Chikhi, L; Jalil, M F; Ancrenaz, M; Lackman-Ancrenaz, I; Mohamed, M; Andau, P; Bruford, M W

    2005-02-01

    We investigated the genetic structure within and among Bornean orang-utans (Pongo pygmaeus) in forest fragments of the Lower Kinabatangan flood plain in Sabah, Malaysia. DNA was extracted from hair and faecal samples for 200 wild individuals collected during boat surveys on the Kinabatangan River. Fourteen microsatellite loci were used to characterize patterns of genetic diversity. We found that genetic diversity was high in the set of samples (mean H(E) = 0.74) and that genetic differentiation was significant between the samples (average F(ST) = 0.04, P < 0.001) with F(ST) values ranging from low (0.01) to moderately large (0.12) values. Pairwise F(ST) values were significantly higher across the Kinabatangan River than between samples from the same river side, thereby confirming the role of the river as a natural barrier to gene flow. The correlation between genetic and geographical distance was tested by means of a series of Mantel tests based on different measures of geographical distance. We used a Bayesian method to estimate immigration rates. The results indicate that migration is unlikely across the river but cannot be completely ruled out because of the limited F(ST) values. Assignment tests confirm the overall picture that gene flow is limited across the river. We found that migration between samples from the same side of the river had a high probability indicating that orang-utans used to move relatively freely between neighbouring areas. This strongly suggests that there is a need to maintain migration between isolated forest fragments. This could be done by restoring forest corridors alongside the river banks and between patches. PMID:15660936

  9. Diverse Gastropod Hosts of Angiostrongylus cantonensis, the Rat Lungworm, Globally and with a Focus on the Hawaiian Islands

    PubMed Central

    Kim, Jaynee R.; Hayes, Kenneth A.; Yeung, Norine W.; Cowie, Robert H.

    2014-01-01

    Eosinophilic meningitis caused by the parasitic nematode Angiostrongylus cantonensis is an emerging infectious disease with recent outbreaks primarily in tropical and subtropical locations around the world, including Hawaii. Humans contract the disease primarily through ingestion of infected gastropods, the intermediate hosts of Angiostrongylus cantonensis. Effective prevention of the disease and control of the spread of the parasite require a thorough understanding of the parasite's hosts, including their distributions, as well as the human and environmental factors that contribute to transmission. The aim of this study was to screen a large cross section of gastropod species throughout the main Hawaiian Islands to determine which act as hosts of Angiostrongylus cantonensis and to assess the parasite loads in these species. Molecular screening of 7 native and 30 non-native gastropod species revealed the presence of the parasite in 16 species (2 native, 14 non-native). Four of the species tested are newly recorded hosts, two species introduced to Hawaii (Oxychilus alliarius, Cyclotropis sp.) and two native species (Philonesia sp., Tornatellides sp.). Those species testing positive were from a wide diversity of heterobranch taxa as well as two distantly related caenogastropod taxa. Review of the global literature showed that many gastropod species from 34 additional families can also act as hosts. There was a wide range of parasite loads among and within species, with an estimated maximum of 2.8 million larvae in one individual of Laevicaulis alte. This knowledge of the intermediate host range of Angiostrongylus cantonensis and the range of parasite loads will permit more focused efforts to detect, monitor and control the most important hosts, thereby improving disease prevention in Hawaii as well as globally. PMID:24788772

  10. Population diversity of Puccinia graminis is sustained through sexual cycle on alternate hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high degree of virulence diversity has been maintained in the population of Puccinia graminis f. sp. tritici (Pgt) in northwestern United States. Although Berberis vulgaris is present in the region and Pgt has been isolated from aecial infections on B. vulgaris, the population is too diverse to be...

  11. GENOMIC DIVERSITY OF STREPTOCOCCUS AGALACTIAE FROM FISH, BOVINE AND HUMAN HOSTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Group B Streptococcus agalactiae (GBS) is a cause of infectious disease in multiple poikilothermic and homothermic animal species. Epidemiological and zoonotic considerations necessitate an undertaking of a comparison of S. agalactiae isolates from different phylogenetic hosts and geographical regi...

  12. Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites.

    PubMed

    Lutz, Holly L; Hochachka, Wesley M; Engel, Joshua I; Bell, Jeffrey A; Tkach, Vasyl V; Bates, John M; Hackett, Shannon J; Weckstein, Jason D

    2015-01-01

    Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi. PMID:25853491

  13. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity

    PubMed Central

    Schwartz, Allison R.; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V.; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E.; Barak, Jeri D.; White, Frank F.; Miller, Sally A.; Ritchie, David; Goss, Erica; Bart, Rebecca S.; Setubal, João C.; Jones, Jeffrey B.; Staskawicz, Brian J.

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  14. Increased sampling reveals novel lineages of Entamoeba: consequences of genetic diversity and host specificity for taxonomy and molecular detection.

    PubMed

    Stensvold, C Rune; Lebbad, Marianne; Victory, Emma L; Verweij, Jaco J; Tannich, Egbert; Alfellani, Mohammed; Legarraga, Paulette; Clark, C Graham

    2011-07-01

    To expand the representation for phylogenetic analysis, ten additional complete Entamoeba small-subunit rRNA gene sequences were obtained from humans, non-human primates, cattle and a tortoise. For some novel sequences no corresponding morphological data were available, and we suggest that these organisms should be referred to as ribosomal lineages (RL) rather than being assigned species names at present. To investigate genetic diversity and host specificity of selected Entamoeba species, a total of 91 new partial small subunit rRNA gene sequences were obtained, including 49 from Entamoeba coli, 18 from Entamoeba polecki, and 17 from Entamoeba hartmanni. We propose a new nomenclature for significant variants within established Entamoeba species. Based on current data we propose that the uninucleated-cyst-producing Entamoeba infecting humans is called Entamoeba polecki and divided into four subtypes (ST1-ST4) and that Entamoeba coli is divided into two subtypes (ST1-ST2). New hosts for several species were detected and, while host specificity and genetic diversity of several species remain to be clarified, it is clear that previous reliance on cultivated material has given us a misleading and incomplete picture of variation within the genus Entamoeba. PMID:21295520

  15. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity.

    PubMed

    Schwartz, Allison R; Potnis, Neha; Timilsina, Sujan; Wilson, Mark; Patané, José; Martins, Joaquim; Minsavage, Gerald V; Dahlbeck, Douglas; Akhunova, Alina; Almeida, Nalvo; Vallad, Gary E; Barak, Jeri D; White, Frank F; Miller, Sally A; Ritchie, David; Goss, Erica; Bart, Rebecca S; Setubal, João C; Jones, Jeffrey B; Staskawicz, Brian J

    2015-01-01

    Bacterial spot disease of pepper and tomato is caused by four distinct Xanthomonas species and is a severely limiting factor on fruit yield in these crops. The genetic diversity and the type III effector repertoires of a large sampling of field strains for this disease have yet to be explored on a genomic scale, limiting our understanding of pathogen evolution in an agricultural setting. Genomes of 67 Xanthomonas euvesicatoria (Xe), Xanthomonas perforans (Xp), and Xanthomonas gardneri (Xg) strains isolated from diseased pepper and tomato fields in the southeastern and midwestern United States were sequenced in order to determine the genetic diversity in field strains. Type III effector repertoires were computationally predicted for each strain, and multiple methods of constructing phylogenies were employed to understand better the genetic relationship of strains in the collection. A division in the Xp population was detected based on core genome phylogeny, supporting a model whereby the host-range expansion of Xp field strains on pepper is due, in part, to a loss of the effector AvrBsT. Xp-host compatibility was further studied with the observation that a double deletion of AvrBsT and XopQ allows a host range expansion for Nicotiana benthamiana. Extensive sampling of field strains and an improved understanding of effector content will aid in efforts to design disease resistance strategies targeted against highly conserved core effectors. PMID:26089818

  16. Parasite Prevalence Corresponds to Host Life History in a Diverse Assemblage of Afrotropical Birds and Haemosporidian Parasites

    PubMed Central

    Lutz, Holly L.; Hochachka, Wesley M.; Engel, Joshua I.; Bell, Jeffrey A.; Tkach, Vasyl V.; Bates, John M.; Hackett, Shannon J.; Weckstein, Jason D.

    2015-01-01

    Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi. PMID:25853491

  17. Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain.

    PubMed

    Lima, L B; Bellay, S; Giacomini, H C; Isaac, A; Lima-Junior, D P

    2016-03-01

    The patterns of parasite sharing among hosts have important implications for ecosystem structure and functioning, and are influenced by several ecological and evolutionary factors associated with both hosts and parasites. Here we evaluated the influence of fish diet and phylogenetic relatedness on the pattern of infection by parasites with contrasting life history strategies in a freshwater ecosystem of key ecological importance in South America. The studied network of interactions included 52 fish species, which consumed 58 food types and were infected with 303 parasite taxa. Our results show that both diet and evolutionary history of hosts significantly explained parasite sharing; phylogenetically close fish species and/or species sharing food types tend to share more parasites. However, the effect of diet was observed only for endoparasites in contrast to ectoparasites. These results are consistent with the different life history strategies and selective pressures imposed on these groups: endoparasites are in general acquired via ingestion by their intermediate hosts, whereas ectoparasites actively seek and attach to the gills, body surface or nostrils of its sole host, thus not depending directly on its feeding habits. PMID:26647725

  18. Intestinal Microbiota and Species Diversity of Campylobacter and Helicobacter spp. in Migrating Shorebirds in Delaware Bay

    EPA Science Inventory

    Using rDNA sequencing analysis, we examined the bacterial diversity and the presence of opportunistic bacterial pathogens (i.e., Campylobacter and Helicobacter) in Red Knot (Calidris canutus, n=40), Ruddy Turnstone (Arenaria interpres, n=35), and Semipalmated Sandpiper (Calidris ...

  19. Divergence of Borrelia burgdorferi sensu lato spirochetes could be driven by the host: diversity of Borrelia strains isolated from ticks feeding on a single bird

    PubMed Central

    2014-01-01

    Background The controversy surrounding the potential impact of birds in spirochete transmission dynamics and their capacity to serve as a reservoir has existed for a long time. The majority of analyzed bird species are able to infect larval ticks with Borrelia. Dispersal of infected ticks due to bird migration is a key to the establishment of new foci of Lyme borreliosis. The dynamics of infection in birds supports the mixing of different species, the horizontal exchange of genetic information, and appearance of recombinant genotypes. Methods Four Borrelia burgdorferi sensu lato strains were cultured from Ixodes minor larvae and four strains were isolated from Ixodes minor nymphs collected from a single Carolina Wren (Thryothorus ludovicianus). A multilocus sequence analysis that included 16S rRNA, a 5S-23S intergenic spacer region, a 16S-23S internal transcribed spacer, flagellin, p66, and ospC separated 8 strains into 3 distinct groups. Additional multilocus sequence typing of 8 housekeeping genes, clpA, clpX, nifS, pepX, pyrG, recG, rplB, and uvrA was used to resolve the taxonomic status of bird-associated strains. Results Results of analysis of 14 genes confirmed that the level of divergence among strains is significantly higher than what would be expected for strains within a single species. The presence of cross-species recombination was revealed: Borrelia burgdorferi sensu stricto housekeeping gene nifS was incorporated into homologous locus of strain, previously assigned to B. americana. Conclusions Genetically diverse Borrelia strains are often found within the same tick or same vertebrate host, presenting a wide opportunity for genetic exchange. We report the cross-species recombination that led to incorporation of a housekeeping gene from the B. burgdorferi sensu stricto strain into a homologous locus of another bird-associated strain. Our results support the hypothesis that recombination maintains a majority of sequence polymorphism within Borrelia

  20. Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Bridge, T.; Scott, A.; Steinberg, D.

    2012-12-01

    Anemonefishes and their host sea anemones are iconic inhabitants of coral reef ecosystems. While studies have documented their abundance in shallow-water reef habitats in parts of the Indo-Pacific, none have examined these species on mesophotic reefs. In this study, we used autonomous underwater vehicle imagery to examine the abundance and diversity of anemones and anemonefishes at Viper Reef and Hydrographers Passage in the central Great Barrier Reef at depths between 50 and 65 m. A total of 37 host sea anemones (31 Entacmaea quadricolor and 6 Heteractis crispa) and 24 anemonefishes (23 Amphiprion akindynos and 1 A. perideraion) were observed. Densities were highest at Viper Reef, with 8.48 E. quadricolor and A. akindynos per 100 m2 of reef substratum. These results support the hypothesis that mesophotic reefs have many species common to shallow-water coral reefs and that many taxa may occur at depths greater than currently recognised.

  1. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments.

    PubMed

    Alteri, Christopher J; Mobley, Harry L T

    2012-02-01

    Bacterial growth in the host is required for pathogenesis. To successfully grow in vivo, pathogens have adapted their metabolism to replicate in specific host microenvironments. These adaptations reflect the nutritional composition of their host niches, inter-bacterial competition for carbon and energy sources, and survival in the face of bactericidal defense mechanisms. A subgroup of Escherichia coli, which cause urinary tract infection, bacteremia, sepsis, and meningitis, have adapted to grow as a harmless commensal in the nutrient-replete, carbon-rich human intestine but rapidly transition to pathogenic lifestyle in the nutritionally poorer, nitrogen-rich urinary tract. We discuss bacterial adaptations that allow extraintestinal pathogenic E. coli to establish both commensal associations and virulence as the bacterium transits between disparate microenvironments within the same individual. PMID:22204808

  2. Phylogenetic and chemotypic diversity of Periglandula species in eight new morning glory hosts (Convolvulaceae).

    PubMed

    Beaulieu, Wesley T; Panaccione, Daniel G; Ryan, Katy L; Kaonongbua, Wittaya; Clay, Keith

    2015-01-01

    Periglandula ipomoeae and P. turbinae (Ascomycota, Clavicipitaceae) are recently described fungi that form symbiotic associations with the morning glories (Convolvulaceae) Ipomoea asarifolia and Turbina corymbosa, respectively. These Periglandula species are vertically transmitted and produce bioactive ergot alkaloids in seeds of infected plants and ephemeral mycelia on the adaxial surface of young leaves. Whether other morning glories that contain ergot alkaloids also are infected by Periglandula fungi is a central question. Here we report on a survey of eight species of Convolvulaceae (Argyreia nervosa, I. amnicola, I. argillicola, I. gracilis, I. hildebrandtii, I. leptophylla, I. muelleri, I. pes-caprae) for ergot alkaloids in seeds and associated clavicipitaceous fungi potentially responsible for their production. All host species contained ergot alkaloids in four distinct chemotypes with concentrations of 15.8-3223.0 μg/g. Each chemotype was a combination of four or five ergot alkaloids out of seven alkaloids detected across all hosts. In addition, each host species exhibited characteristic epiphytic mycelia on adaxial surfaces of young leaves with considerable interspecific differences in mycelial density. We sequenced three loci from fungi infecting each host: the nuclear rDNA internal transcribed spacer region (ITS), introns of the translation factor 1-α gene (tefA) and the dimethylallyl-tryptophan synthase gene (dmaW), which codes for the enzyme that catalyzes the first step in ergot alkaloid biosynthesis. Phylogenetic analyses confirmed that these fungi are in the family Clavicipitaceae and form a monophyletic group with the two described Periglandula species. This study is the first to report Periglandula spp. from Asian, Australian, African and North American species of Convolvulaceae, including host species with a shrub growth form and host species occurring outside of the tropics. This study demonstrates that ergot alkaloids in morning glories

  3. Genetic Diversity and Host Alternation of the Egg Parasitoid Ooencyrtus pityocampae between the Pine Processionary Moth and the Caper Bug

    PubMed Central

    Samra, Shahar; Ghanim, Murad; Protasov, Alex; Branco, Manuela; Mendel, Zvi

    2015-01-01

    The increased use of molecular tools for species identification in recent decades revealed that each of many apparently generalist parasitoids are actually a complex of morphologically similar congeners, most of which have a rather narrow host range. Ooencyrtus pityocampae (OP), an important egg parasitoid of the pine processionary moth (PPM), is considered a generalist parasitoid. OP emerges from PPM eggs after winter hibernation, mainly in spring and early summer, long before the eggs of the next PPM generation occurs. The occurrence of OP in eggs of the variegated caper bug (CB) Stenozygum coloratum in spring and summer suggests that OP populations alternate seasonally between PPM and CB. However, the identity of OP population on CB eggs seemed uncertain; unlike OP-PPM populations, the former displayed apparently high male/female ratios and lack of attraction to the PPM sex pheromone. We studied the molecular identities of the two populations since the morphological identification of the genus Ooencyrtus, and OP in particular, is difficult. Sequencing of COI and ITS2 DNA fragments and AFLP analysis of individuals from both hosts revealed no apparent differences between the OP-PPM and the OP-CB populations for both the Israeli and the Turkish OPs, which therefore supported the possibility of host alternation. Sequencing data extended our knowledge of the genetic structure of OP populations in the Mediterranean area, and revealed clear separation between East and West Mediterranean populations. The overall level of genetic diversity was rather small, with the Israeli population much less diverse than all others; possible explanations for this finding are discussed. The findings support the possibility of utilizing the CB and other hosts for enhancing biological control of the PPM. PMID:25856082

  4. Ostertagia ostertagi macrophage migration inhibition factor is present at all developmental stages and may cross-regulate host functions through host receptor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibition factor (MIF) of Ostertagia ostertagi, a parasitic nematode infecting the bovine abomasum, is characterized in the present study. Phylogenetic analysis indicates that there appears to be at least 3 OoMIFs encoded by distinct transcripts, including OoMIF1a, OoMIF1b, and...

  5. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific.

    PubMed

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems. PMID:26067836

  6. Endophytic Fungal Communities Associated with Vascular Plants in the High Arctic Zone Are Highly Diverse and Host-Plant Specific

    PubMed Central

    Zhang, Tao; Yao, Yi-Feng

    2015-01-01

    This study assessed the diversity and distribution of endophytic fungal communities associated with the leaves and stems of four vascular plant species in the High Arctic using 454 pyrosequencing with fungal-specific primers targeting the ITS region. Endophytic fungal communities showed high diversity. The 76,691 sequences obtained belonged to 250 operational taxonomic units (OTUs). Of these OTUs, 190 belonged to Ascomycota, 50 to Basidiomycota, 1 to Chytridiomycota, and 9 to unknown fungi. The dominant orders were Helotiales, Pleosporales, Capnodiales, and Tremellales, whereas the common known fungal genera were Cryptococcus, Rhizosphaera, Mycopappus, Melampsora, Tetracladium, Phaeosphaeria, Mrakia, Venturia, and Leptosphaeria. Both the climate and host-related factors might shape the fungal communities associated with the four Arctic plant species in this region. These results suggested the presence of an interesting endophytic fungal community and could improve our understanding of fungal evolution and ecology in the Arctic terrestrial ecosystems. PMID:26067836

  7. Host and habitat filtering in seedling root-associated fungal communities: taxonomic and functional diversity are altered in 'novel' soils.

    PubMed

    Pickles, Brian J; Gorzelak, Monika A; Green, D Scott; Egger, Keith N; Massicotte, Hugues B

    2015-10-01

    Climatic and land use changes have significant consequences for the distribution of tree species, both through natural dispersal processes and following management prescriptions. Responses to these changes will be expressed most strongly in seedlings near current species range boundaries. In northern temperate forest ecosystems, where changes are already being observed, ectomycorrhizal fungi contribute significantly to successful tree establishment. We hypothesised that communities of fungal symbionts might therefore play a role in facilitating, or limiting, host seedling range expansion. To test this hypothesis, ectomycorrhizal communities of interior Douglas-fir and interior lodgepole pine seedlings were analysed in a common greenhouse environment following growth in five soils collected along an ecosystem gradient. Currently, Douglas-fir's natural distribution encompasses three of the five soils, whereas lodgepole pine's extends much further north. Host filtering was evident amongst the 29 fungal species encountered: 7 were shared, 9 exclusive to Douglas-fir and 13 exclusive to lodgepole pine. Seedlings of both host species formed symbioses with each soil fungal community, thus Douglas-fir did so even where those soils came from outside its current distribution. However, these latter communities displayed significant taxonomic and functional differences to those found within the host distribution, indicative of habitat filtering. In contrast, lodgepole pine fungal communities displayed high functional similarity across the soil gradient. Taxonomic and/or functional shifts in Douglas-fir fungal communities may prove ecologically significant during the predicted northward migration of this species; especially in combination with changes in climate and management operations, such as seed transfer across geographical regions for forestry purposes. PMID:25694036

  8. Biotypic diversity in greenbug (Hemiptera: Aphididae): Microsatellite-based regional divergence and host-adapted differentiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nineteen isolates of the cereal aphid pest greenbug were collected from wheat, barley or noncultivated grass hosts in five locations from the states of Colorado and Wyoming in the U.S., and parthenogenetic colonies were established. Biotypic profiles of the 19 isolates were determined based on their...

  9. Genomic Diversity of Streptoccocus agalactiae Isolates from Multiple Hosts and Their Infectivity in Nile Tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus agalactiae, the Lancefield group B Streptococcus (GBS), has a broad host range and can be pathogenic to numerous animals, including fish. GBS is most recognized for causing cattle mastitis and human neonatal meningitis, it also causes fatal meningo-encephalitis in fish. We investigat...

  10. Similarly Lethal Strains of Extraintestinal Pathogenic Escherichia coli Trigger Markedly Diverse Host Responses in a Zebrafish Model of Sepsis

    PubMed Central

    Barber, Amelia E.; Fleming, Brittany A.

    2016-01-01

    ABSTRACT In individuals with sepsis, the infecting microbes are commonly viewed as generic inducers of inflammation while the host background is considered the primary variable affecting disease progression and outcome. To study the effects of bacterial strain differences on the maladaptive immune responses that are induced during sepsis, we employed a novel zebrafish embryo infection model using extraintestinal pathogenic Escherichia coli (ExPEC) isolates. These genetically diverse pathogens are a leading cause of sepsis and are becoming increasingly dangerous because of the rise of multidrug-resistant strains. Zebrafish infected with ExPEC isolates exhibit many of the pathophysiological features seen in septic human patients, including dysregulated inflammatory responses (cytokine storms), tachycardia, endothelial leakage, and progressive edema. However, only a limited subset of ExPEC isolates can trigger a sepsis-like state and death of the host when introduced into the bloodstream. Mirroring the situation in human patients, antibiotic therapy reduced ExPEC titers and improved host survival rates but was only effective within limited time frames that varied, depending on the infecting pathogen. Intriguingly, we find that phylogenetically distant but similarly lethal ExPEC isolates can stimulate markedly different host transcriptional responses, including disparate levels of inflammatory mediators. These differences correlate with the amounts of bacterial flagellin expression during infection, as well as differential activation of Toll-like receptor 5 by discrete flagellar serotypes. Altogether, this work establishes zebrafish as a relevant model of key aspects of human sepsis and highlights the ability of genetically distinct ExPEC isolates to induce divergent host responses independently of baseline host attributes. IMPORTANCE Sepsis is a life-threatening systemic inflammatory condition that is initiated by the presence of microorganisms in the bloodstream. In

  11. Similarly Lethal Strains of Extraintestinal Pathogenic Escherichia coli Trigger Markedly Diverse Host Responses in a Zebrafish Model of Sepsis.

    PubMed

    Barber, Amelia E; Fleming, Brittany A; Mulvey, Matthew A

    2016-01-01

    In individuals with sepsis, the infecting microbes are commonly viewed as generic inducers of inflammation while the host background is considered the primary variable affecting disease progression and outcome. To study the effects of bacterial strain differences on the maladaptive immune responses that are induced during sepsis, we employed a novel zebrafish embryo infection model using extraintestinal pathogenic Escherichia coli (ExPEC) isolates. These genetically diverse pathogens are a leading cause of sepsis and are becoming increasingly dangerous because of the rise of multidrug-resistant strains. Zebrafish infected with ExPEC isolates exhibit many of the pathophysiological features seen in septic human patients, including dysregulated inflammatory responses (cytokine storms), tachycardia, endothelial leakage, and progressive edema. However, only a limited subset of ExPEC isolates can trigger a sepsis-like state and death of the host when introduced into the bloodstream. Mirroring the situation in human patients, antibiotic therapy reduced ExPEC titers and improved host survival rates but was only effective within limited time frames that varied, depending on the infecting pathogen. Intriguingly, we find that phylogenetically distant but similarly lethal ExPEC isolates can stimulate markedly different host transcriptional responses, including disparate levels of inflammatory mediators. These differences correlate with the amounts of bacterial flagellin expression during infection, as well as differential activation of Toll-like receptor 5 by discrete flagellar serotypes. Altogether, this work establishes zebrafish as a relevant model of key aspects of human sepsis and highlights the ability of genetically distinct ExPEC isolates to induce divergent host responses independently of baseline host attributes. IMPORTANCE Sepsis is a life-threatening systemic inflammatory condition that is initiated by the presence of microorganisms in the bloodstream. In the

  12. Do pathogens reduce genetic diversity of their hosts? Variable effects of sylvatic plague in black-tailed prairie dogs.

    PubMed

    Sackett, Loren C; Collinge, Sharon K; Martin, Andrew P

    2013-05-01

    Introduced diseases can cause dramatic declines in-and even the loss of-natural populations. Extirpations may be followed by low recolonization rates, leading to inbreeding and a loss of genetic variation, with consequences on population viability. Conversely, extirpations may create vacant habitat patches that individuals from multiple source populations can colonize, potentially leading to an influx of variation. We tested these alternative hypotheses by sampling 15 colonies in a prairie dog metapopulation during 7 years that encompassed an outbreak of sylvatic plague, providing the opportunity to monitor genetic diversity before, during and after the outbreak. Analysis of nine microsatellite loci revealed that within the metapopulation, there was no change in diversity. However, within extirpated colonies, patterns varied: In half of the colonies, allelic richness after recovery was less than the preplague conditions, and in the other half, richness was greater than the preplague conditions. Finally, analysis of variation within individuals revealed that prairie dogs present in recolonized colonies had higher heterozygosity than those present before plague. We confirmed plague survivorship in six founders; these individuals had significantly higher heterozygosity than expected by chance. Collectively, our results suggest that high immigration rates can maintain genetic variation at a regional scale despite simultaneous extirpations in spatially proximate populations. Thus, virulent diseases may increase genetic diversity of host populations by creating vacant habitats that allow an influx of genetic diversity. Furthermore, even highly virulent diseases may not eliminate individuals randomly; rather, they may selectively remove the most inbred individuals. PMID:23452304

  13. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus).

    PubMed

    Richardson, David E; Marancik, Katrin E; Guyon, Jeffrey R; Lutcavage, Molly E; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J; Wildes, Sharon; Yates, Douglas A; Hare, Jonathan A

    2016-03-22

    Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors. PMID:26951668

  14. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus)

    PubMed Central

    Richardson, David E.; Marancik, Katrin E.; Guyon, Jeffrey R.; Lutcavage, Molly E.; Galuardi, Benjamin; Lam, Chi Hin; Walsh, Harvey J.; Wildes, Sharon; Yates, Douglas A.; Hare, Jonathan A.

    2016-01-01

    Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors. PMID:26951668

  15. Genetic Diversity of Spiroplasma citri strains from Different Regions, Hosts, and Isolation Dates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spiroplasma citri, a phloem-limited, leafhopper-transmitted pathogen, causes citrus stubborn disease (CSD). Losses due to CSD in California orchards has grown over the past decade. To investigate the possibility of introduction or emergence of a new spiroplasma strain, a study of genetic diversity ...

  16. Genetic diversities of cytochrome B in Xinjiang Uyghur unveiled its origin and migration history

    PubMed Central

    2013-01-01

    Background Uyghurs are one of the many populations of Central Eurasia that is considered to be genetically related to Eastern and Western Eurasian populations. However, there are some different opinions on the relative importance of the degree of Eastern and Western Eurasian genetic influence. In addition, the genetic diversity of the Uyghur in different geographic locations has not been clearly studied. Results In this study, we are the first to report on the DNA polymorphism of cytochrome B in the Uyghur population located in Xinjiang in northwest China. We observed a total of 102 mutant sites in the 240 samples that were studied. The average number of mutated nucleotides in the samples was 5.126. A total of 93 different haplotypes were observed. The gene diversity and discrimination power were 0.9480 and 0.9440, respectively. There were founder and bottleneck haplotypes observed in Xinjiang Uyghurs. Xinjiang Uyghurs are more genetically related to Chinese population in genetics than to Caucasians. Moreover, there was genetic diversity between Uyghurs from the southern and northern regions. There was significance in genetic distance between the southern Xinjiang Uyghurs and Chinese population, but not between the northern Xinjiang Uyghurs and Chinese. The European vs. East Asian contribution to the ten regional Uyghur groups varies among the groups and the European contribution to the Uyghur increases from north to south geographically. Conclusion This study is the first report on DNA polymorphisms of cytochrome B in the Uyghur population. The study also further confirms that there are significant genetic differences among the Uyghurs in different geographical locations. PMID:24103151

  17. Microbial diversity and host-specific sequences of Canada goose feces.

    PubMed

    Lu, Jingrang; Santo Domingo, Jorge W; Hill, Stephen; Edge, Thomas A

    2009-09-01

    Methods to assess the impact of goose fecal contamination are needed as the result of the increasing number of Canada geese (Branta canadensis) near North American inland waters. However, there is little information on goose fecal microbial communities, and such data are important for the development of host-specific source-tracking methods. To address this issue, 16S rRNA gene clone libraries for Canada goose fecal samples from Ontario, Canada, and Ohio were analyzed. Analyses of fecal clones from Ontario (447) and Ohio (302) showed that goose fecal communities are dominated by the classes "Clostridia" (represented by 33.7% of clones) and "Bacilli" (38.1% of clones) and the phylum "Bacteroidetes" (10.1% of clones). Sequences not previously found in other avian fecal communities were used to develop host-specific assays. Fecal DNA extracts from sewage plants (10 samples) and different species of birds (11 samples) and mammals (18 samples) were used to test for host specificity. Of all the assays tested, one assay showed specificity for Canada goose fecal DNA. The PCR assay was positive for Canada goose fecal DNA extracts collected from three locations in North America (Ohio, Oregon, and Ontario, Canada). Additionally, of 48 DNA extracts from Lake Ontario waters presumed to be impacted by waterfowl feces, 19 tested positive by the assay, although 10 were positive only after a nested PCR approach was used. Due to the level of host specificity and the presence of signals in environmental waters, the assay is proposed as a part of the toolbox to detect Canada goose contamination in waterfowl-contaminated waters. PMID:19633110

  18. A Generalized Entropy Measure of Within-Host Viral Diversity for Identifying Recent HIV-1 Infections.

    PubMed

    Wu, Julia Wei; Patterson-Lomba, Oscar; Novitsky, Vladimir; Pagano, Marcello

    2015-10-01

    There is a need for incidence assays that accurately estimate HIV incidence based on cross-sectional specimens. Viral diversity-based assays have shown promises but are not particularly accurate. We hypothesize that certain viral genetic regions are more predictive of recent infection than others and aim to improve assay accuracy by using classification algorithms that focus on highly informative regions (HIRs).We analyzed HIV gag sequences from a cohort in Botswana. Forty-two subjects newly infected by HIV-1 Subtype C were followed through 500 days post-seroconversion. Using sliding window analysis, we screened for genetic regions within gag that best differentiate recent versus chronic infections. We used both nonparametric and parametric approaches to evaluate the discriminatory abilities of sequence regions. Segmented Shannon Entropy measures of HIRs were aggregated to develop generalized entropy measures to improve prediction of recency. Using logistic regression as the basis for our classification algorithm, we evaluated the predictive power of these novel biomarkers and compared them with recently reported viral diversity measures using area under the curve (AUC) analysis.Change of diversity over time varied across different sequence regions within gag. We identified the top 50% of the most informative regions by both nonparametric and parametric approaches. In both cases, HIRs were in more variable regions of gag and less likely in the p24 coding region. Entropy measures based on HIRs outperformed previously reported viral-diversity-based biomarkers. These methods are better suited for population-level estimation of HIV recency.The patterns of diversification of certain regions within the gag gene are more predictive of recency of infection than others. We expect this result to apply in other HIV genetic regions as well. Focusing on these informative regions, our generalized entropy measure of viral diversity demonstrates the potential for improving

  19. Comparison of Genotypes I and III in Japanese Encephalitis Virus Reveals Distinct Differences in Their Genetic and Host Diversity

    PubMed Central

    Han, Na; Adams, James; Chen, Ping; Guo, Zhen-yang; Zhong, Xiang-fu; Fang, Wei; Li, Na; Wen, Lei; Tao, Xiao-yan; Yuan, Zhi-ming

    2014-01-01

    ABSTRACT Japanese encephalitis (JE) is an arthropod-borne disease associated with the majority of viral encephalitis cases in the Asia-Pacific region. The causative agent, Japanese encephalitis virus (JEV), has been phylogenetically divided into five genotypes. Recent surveillance data indicate that genotype I (GI) is gradually replacing genotype III (GIII) as the dominant genotype. To investigate the mechanism behind the genotype shift and the potential consequences in terms of vaccine efficacy, human cases, and virus dissemination, we collected (i) all full-length and partial JEV molecular sequences and (ii) associated genotype and host information comprising a data set of 873 sequences. We then examined differences between the two genotypes at the genetic and epidemiological level by investigating amino acid mutations, positive selection, and host range. We found that although GI is dominant, it has fewer sites predicted to be under positive selection, a narrower host range, and significantly fewer human isolates. For the E protein, the sites under positive selection define a haplotype set for each genotype that shows striking differences in their composition and diversity, with GIII showing significantly more variety than GI. Our results suggest that GI has displaced GIII by achieving a replication cycle that is more efficient but is also more restricted in its host range. IMPORTANCE Japanese encephalitis is an arthropod-borne disease associated with the majority of viral encephalitis cases in the Asia-Pacific region. The causative agent, Japanese encephalitis virus (JEV), has been divided into five genotypes based on sequence similarity. Recent data indicate that genotype I (GI) is gradually replacing genotype III (GIII) as the dominant genotype. Understanding the reasons behind this shift and the potential consequences in terms of vaccine efficacy, human cases, and virus dissemination is important for controlling the spread of the virus and reducing human

  20. Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals

    PubMed Central

    Hu, Xiaozhen; Zhao, Jinlei; DeGrado, William F.; Binns, Andrew N.

    2013-01-01

    Agrobacterium tumefaciens is a broad host range plant pathogen that combinatorially recognizes diverse host molecules including phenolics, low pH, and aldose monosaccharides to activate its pathogenic pathways. Chromosomal virulence gene E (chvE) encodes a periplasmic-binding protein that binds several neutral sugars and sugar acids, and subsequently interacts with the VirA/VirG regulatory system to stimulate virulence (vir) gene expression. Here, a combination of genetics, X-ray crystallography, and isothermal calorimetry reveals how ChvE binds the different monosaccharides and also shows that binding of sugar acids is pH dependent. Moreover, the potency of a sugar for vir gene expression is modulated by a transport system that also relies on ChvE. These two circuits tune the overall system to respond to sugar concentrations encountered in vivo. Finally, using chvE mutants with restricted sugar specificities, we show that there is host variation in regard to the types of sugars that are limiting for vir induction. PMID:23267119

  1. Diversity of beet curly top Iran virus isolated from different hosts in Iran.

    PubMed

    Gharouni Kardani, Sara; Heydarnejad, Jahangir; Zakiaghl, Mohammad; Mehrvar, Mohsen; Kraberger, Simona; Varsani, Arvind

    2013-06-01

    Beet curly top Iran virus (BCTIV) is a major pathogen of sugar beet in Iran. In order to study diversity of BCTIV, we sampled 68 plants in Iran during the summer of 2010 with curly top disease symptoms on beans (Phaseolus vulgaris), cowpeas (Vigna unguiculata), tomatoes (Solanum lycopersicum L.), sea beets (Beta vulgaris subsp. maritima), and sugar beets (Beta vulgaris). Plant samples showing leaf curling, yellowing, and/or swelling of veins on the lower leaf surfaces were collected from various fields in Khorasan Razavi, Northern Khorasan (north-eastern Iran), East Azarbayejan, West Azarbayejan (north-western Iran), and Fars (southern Iran) provinces. Using rolling circle amplification coupled with restriction digests, cloning, and Sanger sequencing, we determined the genomes of nine new BCTIV isolates from bean, cowpea, tomato, sea beet, and sugar beet in Iran. Our analysis reveals ~11 % diversity amongst BCTIV isolates and we detect evidence of recombination within these genomes. PMID:23329008

  2. Genetic diversity of avian and mammalian Chlamydia psittaci strains and relation to host origin.

    PubMed Central

    Fukushi, H; Hirai, K

    1989-01-01

    Genetic relationships were reported for Chlamydia psittaci derived from psittacine birds, pigeons, turkeys, humans, cats, muskrats, cattle, and sheep and for C. trachomatis, including representative strains of the three biovars, through physical analysis of genomic DNA including DNA fingerprinting with restriction endonuclease SalI, DNA-DNA hybridization in solution with S1 nuclease, and Southern analysis with genomic DNA probes. A total of 26 strains were divided into four groups of C. psittaci and two groups of C. trachomatis, on the basis of DNA fingerprints. The six groups of Chlamydia spp. were related to host origin: two avian groups (Av1 and Av2), one feline and muskrat group (Fe1), one ruminant group (Ru1), one C. trachomatis biovars trachoma and lymphogranuloma group (CtHu), and one C. trachomatis mouse biovar group (CtMo), although an ovine abortion strain belonged to the avian group Av2. DNA-DNA hybridization assay and Southern analysis with genomic DNA probes indicated three DNA homology groups in the genus Chlamydia: an avian-feline group (groups Av1, Av2, and Fe1), a ruminant group (group Ru1), and a C. trachomatis group (groups CtHu and CtMo). Furthermore, the Southern analysis indicated that the homologous sequences (DNA homology of at least 14%) within the avian-feline group were distributed along the whole genome, whereas the homologous sequences (DNA homology of less than 24%) among the three DNA homology groups were localized in distinct regions of the genome DNA. These results suggest that Chlamydia spp. are derived from a common ancestor and have diverged into various groups showing restricted host ranges as a natural characteristic and that the species C. psittaci should be differentiated into groups related to host origin and DNA homology. Images PMID:2565333

  3. Genetic Diversity and Host Specificity Varies across Three Genera of Blood Parasites in Ducks of the Pacific Americas Flyway

    PubMed Central

    Reeves, Andrew B.; Smith, Mathew M.; Meixell, Brandt W.; Fleskes, Joseph P; Ramey, Andrew M.

    2015-01-01

    Birds of the order Anseriformes, commonly referred to as waterfowl, are frequently infected by Haemosporidia of the genera Haemoproteus, Plasmodium, and Leucocytozoon via dipteran vectors. We analyzed nucleotide sequences of the Cytochrome b (Cytb) gene from parasites of these genera detected in six species of ducks from Alaska and California, USA to characterize the genetic diversity of Haemosporidia infecting waterfowl at two ends of the Pacific Americas Flyway. In addition, parasite Cytb sequences were compared to those available on a public database to investigate specificity of genetic lineages to hosts of the order Anseriformes. Haplotype and nucleotide diversity of Haemoproteus Cytb sequences was lower than was detected for Plasmodium and Leucocytozoon parasites. Although waterfowl are presumed to be infected by only a single species of Leucocytozoon, L. simondi, diversity indices were highest for haplotypes from this genus and sequences formed five distinct clades separated by genetic distances of 4.9%–7.6%, suggesting potential cryptic speciation. All Haemoproteus and Leucocytozoon haplotypes derived from waterfowl samples formed monophyletic clades in phylogenetic analyses and were unique to the order Anseriformes with few exceptions. In contrast, waterfowl-origin Plasmodium haplotypes were identical or closely related to lineages found in other avian orders. Our results suggest a more generalist strategy for Plasmodium parasites infecting North American waterfowl as compared to those of the genera Haemoproteus and Leucocytozoon. PMID:25710468

  4. The genetic diversity of Citrus dwarfing viroid populations is mainly dependent on the infected host species.

    PubMed

    Tessitori, Matilde; Rizza, Serena; Reina, Antonella; Causarano, Giovanni; Di Serio, Francesco

    2013-03-01

    As with viruses, viroids infect their hosts as polymorphic populations of variants. Identifying possible sources of genetic variability is significant in the case of the species Citrus dwarfing viroid (CDVd) which has been proposed as a dwarfing agent for high-density citrus plantings. Here, a natural CDVd isolate (CMC) was used as an inoculum source for long-term (25 years) and short-term (1 year) bioassays in different citrus host species. Characterization of progenies indicated that the genetic stability of CDVd populations was high in certain hosts (trifoliate orange, Troyer citrange, Etrog citron, Navelina sweet orange), which preserve viroid populations similar to the original CMC isolate even after 25 years. By contrast, CDVd variant populations in Interdonato lemon and Volkamer lemon were completely different to those in the inoculated sources, highlighting how influential the host is on the genetic variability of CDVd populations. Implications for risk assessment of CDVd as a dwarfing agent are discussed. The GenBank/EMBL/DDBJ accession numbers for the complete sequences of the Citrus dwarfing viroid variants are JF970266.1 forH2-2, JF970267.1 for H2-7, EU938647.1 for H6-2, EU938651.1 forH6-10, JF970268.1 for H10-7, EU938652.1 for H14-13, EU938653.1for H14-14, JF970269.1 for H14-16, EU938648.1 for H15-9,EU938649.1 for H16-2, JF970265.1 for H16-9, EU938654.1 forH16-13, EU938650.1 for H20-3, JF970270.1 for H20-7, EU938641.1for PR-1, EU938642.1 for PR-3, EU938643.1 for PR-7, EU938644.1for CR-1, EU938639.1 for VR-4, JF12070.1 for VR-15, JF812069.1LS-4, EU938640.1 for LS-10 and JF970264.1 for LS-11. PMID:23152366

  5. Frequent cross-species transmission of parvoviruses among diverse carnivore hosts

    USGS Publications Warehouse

    Allison, Andrew B.; Kohler, Dennis J.; Fox, Karen A.; Brown, Justin D.; Gerhold, Richard W.; Shearn-Bochsler, Valerie I.; Dubovi, Edward J.; Parrish, Colin R.; Holmes, Edward C.

    2013-01-01

    Although parvoviruses are commonly described in domestic carnivores, little is known about their biodiversity in nondomestic species. A phylogenetic analysis of VP2 gene sequences from puma, coyote, gray wolf, bobcat, raccoon, and striped skunk revealed two major groups related to either feline panleukopenia virus (“FPV-like”) or canine parvovirus (“CPV-like”). Cross-species transmission was commonplace, with multiple introductions into each host species but, with the exception of raccoons, relatively little evidence for onward transmission in nondomestic species.

  6. Frequent Cross-Species Transmission of Parvoviruses among Diverse Carnivore Hosts

    PubMed Central

    Allison, Andrew B.; Kohler, Dennis J.; Fox, Karen A.; Brown, Justin D.; Gerhold, Richard W.; Shearn-Bochsler, Valerie I.; Dubovi, Edward J.; Parrish, Colin R.

    2013-01-01

    Although parvoviruses are commonly described in domestic carnivores, little is known about their biodiversity in nondomestic species. A phylogenetic analysis of VP2 gene sequences from puma, coyote, gray wolf, bobcat, raccoon, and striped skunk revealed two major groups related to either feline panleukopenia virus (“FPV-like”) or canine parvovirus (“CPV-like”). Cross-species transmission was commonplace, with multiple introductions into each host species but, with the exception of raccoons, relatively little evidence for onward transmission in nondomestic species. PMID:23221559

  7. Frequent cross-species transmission of parvoviruses among diverse carnivore hosts.

    PubMed

    Allison, Andrew B; Kohler, Dennis J; Fox, Karen A; Brown, Justin D; Gerhold, Richard W; Shearn-Bochsler, Valerie I; Dubovi, Edward J; Parrish, Colin R; Holmes, Edward C

    2013-02-01

    Although parvoviruses are commonly described in domestic carnivores, little is known about their biodiversity in nondomestic species. A phylogenetic analysis of VP2 gene sequences from puma, coyote, gray wolf, bobcat, raccoon, and striped skunk revealed two major groups related to either feline panleukopenia virus ("FPV-like") or canine parvovirus ("CPV-like"). Cross-species transmission was commonplace, with multiple introductions into each host species but, with the exception of raccoons, relatively little evidence for onward transmission in nondomestic species. PMID:23221559

  8. Common Origins and Host-Dependent Diversity of Plant and Animal Viromes

    PubMed Central

    Dolja, Valerian V.; Koonin, Eugene V.

    2012-01-01

    Many viruses infecting animals and plants share common cores of homologous genes involved in the key processes of viral replication. In contrast, genes that mediate virus – host interactions including in many cases capsid protein genes are markedly different. There are three distinct scenarios for the origin of related viruses of plants and animals: i) evolution from a common ancestral virus predating the divergence of plants and animals; ii) horizontal transfer of viruses, for example, through insect vectors; iii) parallel origin from related genetic elements. We present evidence that each of these scenarios contributed, to a varying extent, to the evolution of different groups of viruses. PMID:22408703

  9. Molecular characterization reveals distinct genospecies of Anaplasma phagocytophilum from diverse North American hosts

    PubMed Central

    Bradburd, Gideon; Foley, Janet

    2012-01-01

    Anaplasma phagocytophilum is an emerging tick-borne pathogen that infects humans, domestic animals and wildlife throughout the Holarctic. In the far-western United States, multiple rodent species have been implicated as natural reservoirs for A. phagocytophilum. However, the presence of multiple A. phagocytophilum strains has made it difficult to determine which reservoir hosts pose the greatest risk to humans and domestic animals. Here we characterized three genetic markers (23S–5S rRNA intergenic spacer, ank and groESL) from 73 real-time TaqMan PCR-positive A. phagocytophilum strains infecting multiple rodent and reptile species, as well as a dog and a horse, from California. Bayesian and maximum-likelihood phylogenetic analyses of all three genetic markers consistently identified two major clades, one of which consisted of A. phagocytophilum strains infecting woodrats and the other consisting of strains infecting sciurids (chipmunks and squirrels) as well as the dog and horse strains. In addition, analysis of the 23S–5S rRNA spacer region identified two unique and highly dissimilar clades of A. phagocytophilum strains infecting several lizard species. Our findings indicate that multiple unique strains of A. phagocytophilum with distinct host tropisms exist in California. Future epidemiological studies evaluating human and domestic animal risk should incorporate these distinctions. PMID:21921109

  10. Conventional and PCR Detection of Aphelenchoides fragariae in Diverse Ornamental Host Plant Species

    PubMed Central

    McCuiston, Jamie L.; Hudson, Laura C.; Subbotin, Sergei A.; Davis, Eric L.; Warfield, Colleen Y.

    2007-01-01

    A PCR-based diagnostic assay was developed for early detection and identification of Aphelenchoides fragariae directly in host plant tissues using the species-specific primers AFragFl and AFragRl that amplify a 169-bp fragment in the internal transcribed spacer (ITS1) region of ribosomal DNA. These species-specific primers did not amplify DNA from Aphelenchoides besseyi or Aphelenchoides ritzemabosi. The PCR assay was sensitive, detecting a single nematode in a background of plant tissue extract. The assay accurately detected A. fragariae in more than 100 naturally infected, ornamental plant samples collected in North Carolina nurseries, garden centers and landscapes, including 50 plant species not previously reported as hosts of Aphelenchoides spp. The detection sensitivity of the PCR-based assay was higher for infected yet asymptomatic plants when compared to the traditional, water extraction method for Aphelenchoides spp. detection. The utility of using NaOH extraction for rapid preparation of total DNA from plant samples infected with A. fragariae was demonstrated. PMID:19259510

  11. Phylogeny, Diversity, Distribution, and Host Specificity of Haemoproteus spp. (Apicomplexa: Haemosporida: Haemoproteidae) of Palaearctic Tortoises.

    PubMed

    Javanbakht, Hossein; Kvičerová, Jana; Dvořáková, Nela; Mikulíček, Peter; Sharifi, Mozafar; Kautman, Matej; Maršíková, Aneta; Široký, Pavel

    2015-01-01

    A complex wide-range study on the haemoproteid parasites of chelonians was carried out for the first time. Altogether, 811 samples from four tortoise species from an extensive area between western Morocco and eastern Afghanistan and between Romania and southern Syria were studied by a combination of microscopic and molecular-genetic methods. Altogether 160 Haemoproteus-positive samples were gathered in the area between central Anatolia and eastern Afghanistan. According to variability in the cytochrome b gene, two monophyletic evolutionary lineages were distinguished; by means of microscopic analysis it was revealed that they corresponded to two previously described species-Haemoproteus anatolicum and Haemoproteus caucasica. Their distribution areas overlap only in a narrow strip along the Zagros Mts. range in Iran. This fact suggests the involvement of two different vector species with separated distribution. Nevertheless, no vectors were confirmed. According to phylogenetic analyses, H. caucasica represented a sister group to H. anatolicum, and both of them were most closely related to H. pacayae and H. peltocephali, described from South American river turtles. Four unique haplotypes were revealed in the population of H. caucasica, compared with seven haplotypes in H. anatolicum. Furthermore, H. caucasica was detected in two tortoise species, Testudo graeca and Testudo horsfieldii, providing evidence that Haemoproteus is not strictly host-specific to the tortoise host species. PMID:25939459

  12. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens

    PubMed Central

    Miao, Cui-Ping; Mi, Qi-Li; Qiao, Xin-Guo; Zheng, You-Kun; Chen, You-Wei; Xu, Li-Hua; Guan, Hui-Lin; Zhao, Li-Xing

    2015-01-01

    Background Rhizospheric fungi play an essential role in the plant–soil ecosystem, affecting plant growth and health. In this study, we evaluated the fungal diversity in the rhizosphere soil of 2-yr-old healthy Panax notoginseng cultivated in Wenshan, China. Methods Culture-independent Illumina MiSeq and culture-dependent techniques, combining molecular and morphological characteristics, were used to analyze the rhizospheric fungal diversity. A diffusion test was used to challenge the phytopathogens of P. notoginseng. Results A total of 16,130 paired-end reads of the nuclear ribosomal internal transcribed spacer 2 were generated and clustered into 860 operational taxonomic units at 97% sequence similarity. All the operational taxonomic units were assigned to five phyla and 79 genera. Zygomycota (46.2%) and Ascomycota (37.8%) were the dominant taxa; Mortierella and unclassified Mortierellales accounted for a large proportion (44.9%) at genus level. The relative abundance of Fusarium and Phoma sequences was high, accounting for 12.9% and 5.5%, respectively. In total, 113 fungal isolates were isolated from rhizosphere soil. They were assigned to five classes, eight orders (except for an Incertae sedis), 26 genera, and 43 species based on morphological characteristics and phylogenetic analysis of the internal transcribed spacer. Fusarium was the most isolated genus with six species (24 isolates, 21.2%). The abundance of Phoma was also relatively high (8.0%). Thirteen isolates displayed antimicrobial activity against at least one test fungus. Conclusion Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens. PMID:27158233

  13. Plant-Dependent Genotypic and Phenotypic Diversity of Antagonistic Rhizobacteria Isolated from Different Verticillium Host Plants

    PubMed Central

    Berg, Gabriele; Roskot, Nicolle; Steidle, Anette; Eberl, Leo; Zock, Angela; Smalla, Kornelia

    2002-01-01

    To study the effect of plant species on the abundance and diversity of bacterial antagonists, the abundance, the phenotypic diversity, and the genotypic diversity of rhizobacteria isolated from potato, oilseed rape, and strawberry and from bulk soil which showed antagonistic activity towards the soilborne pathogen Verticillium dahliae Kleb. were analyzed. Rhizosphere and soil samples were taken five times over two growing seasons in 1998 and 1999 from a randomized field trial. Bacterial isolates were obtained after plating on R2A (Difco, Detroit, Mich.) or enrichment in microtiter plates containing high-molecular-weight substrates followed by plating on R2A. A total of 5,854 bacteria isolated from the rhizosphere of strawberry, potato, or oilseed rape or bulk soil from fallow were screened by dual testing for in vitro antagonism towards Verticillium. The proportion of isolates with antagonistic activity was highest for strawberry rhizosphere (9.5%), followed by oilseed rape (6.3%), potato (3.7%), and soil (3.3%). The 331 Verticillium antagonists were identified by their fatty acid methyl ester profiles. They were characterized by testing their in vitro antagonism against other pathogenic fungi; their glucanolytic, chitinolytic, and proteolytic activities; and their BOX-PCR fingerprints. The abundance and composition of Verticillium antagonists was plant species dependent. A rather high proportion of antagonists from the strawberry rhizosphere was identified as Pseudomonas putida B (69%), while antagonists belonging to the Enterobacteriaceae (Serratia spp., Pantoea agglomerans) were mainly isolated from the rhizosphere of oilseed rape. For P. putida A and B plant-specific genotypes were observed, suggesting that these bacteria were specifically enriched in each rhizosphere. PMID:12089011

  14. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants.

    PubMed

    Berg, Gabriele; Roskot, Nicolle; Steidle, Anette; Eberl, Leo; Zock, Angela; Smalla, Kornelia

    2002-07-01

    To study the effect of plant species on the abundance and diversity of bacterial antagonists, the abundance, the phenotypic diversity, and the genotypic diversity of rhizobacteria isolated from potato, oilseed rape, and strawberry and from bulk soil which showed antagonistic activity towards the soilborne pathogen Verticillium dahliae Kleb. were analyzed. Rhizosphere and soil samples were taken five times over two growing seasons in 1998 and 1999 from a randomized field trial. Bacterial isolates were obtained after plating on R2A (Difco, Detroit, Mich.) or enrichment in microtiter plates containing high-molecular-weight substrates followed by plating on R2A. A total of 5,854 bacteria isolated from the rhizosphere of strawberry, potato, or oilseed rape or bulk soil from fallow were screened by dual testing for in vitro antagonism towards VERTICILLIUM: The proportion of isolates with antagonistic activity was highest for strawberry rhizosphere (9.5%), followed by oilseed rape (6.3%), potato (3.7%), and soil (3.3%). The 331 Verticillium antagonists were identified by their fatty acid methyl ester profiles. They were characterized by testing their in vitro antagonism against other pathogenic fungi; their glucanolytic, chitinolytic, and proteolytic activities; and their BOX-PCR fingerprints. The abundance and composition of Verticillium antagonists was plant species dependent. A rather high proportion of antagonists from the strawberry rhizosphere was identified as Pseudomonas putida B (69%), while antagonists belonging to the Enterobacteriaceae (Serratia spp., Pantoea agglomerans) were mainly isolated from the rhizosphere of oilseed rape. For P. putida A and B plant-specific genotypes were observed, suggesting that these bacteria were specifically enriched in each rhizosphere. PMID:12089011

  15. Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland

    PubMed Central

    Hanke, Dennis; Freuling, Conrad M.; Fischer, Susanne; Hueffer, Karsten; Hundertmark, Kris; Nadin-Davis, Susan; Marston, Denise; Fooks, Anthony R.; Bøtner, Anette; Mettenleiter, Thomas C.; Beer, Martin; Rasmussen, Thomas B.; Müller, Thomas F.; Höper, Dirk

    2016-01-01

    There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV) lineage (arctic-3), but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska) and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1–4) with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I – 3.VII) with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population structure

  16. Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland.

    PubMed

    Hanke, Dennis; Freuling, Conrad M; Fischer, Susanne; Hueffer, Karsten; Hundertmark, Kris; Nadin-Davis, Susan; Marston, Denise; Fooks, Anthony R; Bøtner, Anette; Mettenleiter, Thomas C; Beer, Martin; Rasmussen, Thomas B; Müller, Thomas F; Höper, Dirk

    2016-07-01

    There has been limited knowledge on spatio-temporal epidemiology of zoonotic arctic fox rabies among countries bordering the Arctic, in particular Greenland. Previous molecular epidemiological studies have suggested the occurrence of one particular arctic rabies virus (RABV) lineage (arctic-3), but have been limited by a low number of available samples preventing in-depth high resolution phylogenetic analysis of RABVs at that time. However, an improved knowledge of the evolution, at a molecular level, of the circulating RABVs and a better understanding of the historical perspective of the disease in Greenland is necessary for better direct control measures on the island. These issues have been addressed by investigating the spatio-temporal genetic diversity of arctic RABVs and their reservoir host, the arctic fox, in Greenland using both full and partial genome sequences. Using a unique set of 79 arctic RABV full genome sequences from Greenland, Canada, USA (Alaska) and Russia obtained between 1977 and 2014, a description of the historic context in relation to the genetic diversity of currently circulating RABV in Greenland and neighboring Canadian Northern territories has been provided. The phylogenetic analysis confirmed delineation into four major arctic RABV lineages (arctic 1-4) with viruses from Greenland exclusively grouping into the circumpolar arctic-3 lineage. High resolution analysis enabled distinction of seven geographically distinct subclades (3.I - 3.VII) with two subclades containing viruses from both Greenland and Canada. By combining analysis of full length RABV genome sequences and host derived sequences encoding mitochondrial proteins obtained simultaneously from brain tissues of 49 arctic foxes, the interaction of viruses and their hosts was explored in detail. Such an approach can serve as a blueprint for analysis of infectious disease dynamics and virus-host interdependencies. The results showed a fine-scale spatial population structure in

  17. Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome.

    PubMed

    Quinn, Robert A; Phelan, Vanessa V; Whiteson, Katrine L; Garg, Neha; Bailey, Barbara A; Lim, Yan Wei; Conrad, Douglas J; Dorrestein, Pieter C; Rohwer, Forest L

    2016-06-01

    Cystic fibrosis (CF) lungs are filled with thick mucus that obstructs airways and facilitates chronic infections. Pseudomonas aeruginosa is a significant pathogen of this disease that produces a variety of toxic small molecules. We used molecular networking-based metabolomics to investigate the chemistry of CF sputa and assess how the microbial molecules detected reflect the microbiome and clinical culture history of the patients. Metabolites detected included xenobiotics, P. aeruginosa specialized metabolites and host sphingolipids. The clinical culture and microbiome profiles did not correspond to the detection of P. aeruginosa metabolites in the same samples. The P. aeruginosa molecules that were detected in sputum did not match those from laboratory cultures. The pseudomonas quinolone signal (PQS) was readily detectable from cultured strains, but absent from sputum, even when its precursor molecules were present. The lack of PQS production in vivo is potentially due to the chemical nature of the CF lung environment, indicating that culture-based studies of this pathogen may not explain its behavior in the lung. The most differentially abundant molecules between CF and non-CF sputum were sphingolipids, including sphingomyelins, ceramides and lactosylceramide. As these highly abundant molecules contain the inflammatory mediator ceramide, they may have a significant role in CF hyperinflammation. This study demonstrates that the chemical makeup of CF sputum is a complex milieu of microbial, host and xenobiotic molecules. Detection of a bacterium by clinical culturing and 16S rRNA gene profiling do not necessarily reflect the active production of metabolites from that bacterium in a sputum sample. PMID:26623545

  18. Intestinal microbiota and species diversity of Campylobacter and Helicobacter spp. in migrating shorebirds in Delaware Bay.

    PubMed

    Ryu, Hodon; Grond, Kirsten; Verheijen, Bram; Elk, Michael; Buehler, Deborah M; Santo Domingo, Jorge W

    2014-03-01

    Using 16S rRNA gene sequencing analysis, we examined the bacterial diversity and the presence of opportunistic bacterial pathogens (i.e., Campylobacter and Helicobacter) in red knot (Calidris canutus; n = 40), ruddy turnstone (Arenaria interpres; n = 35), and semipalmated sandpiper (Calidris pusilla; n = 22) fecal samples collected during a migratory stopover in Delaware Bay. Additionally, we studied the occurrence of Campylobacter spp., enterococci, and waterfowl fecal source markers using quantitative PCR (qPCR) assays. Of 3,889 16S rRNA clone sequences analyzed, the bacterial community was mostly composed of Bacilli (63.5%), Fusobacteria (12.7%), Epsilonproteobacteria (6.5%), and Clostridia (5.8%). When epsilonproteobacterium-specific 23S rRNA gene clone libraries (i.e., 1,414 sequences) were analyzed, the sequences were identified as Campylobacter (82.3%) or Helicobacter (17.7%) spp. Specifically, 38.4%, 10.1%, and 26.0% of clone sequences were identified as C. lari (>99% sequence identity) in ruddy turnstone, red knot, and semipalmated sandpiper clone libraries, respectively. Other pathogenic species of Campylobacter, such as C. jejuni and C. coli, were not detected in excreta of any of the three bird species. Most Helicobacter-like sequences identified were closely related to H. pametensis (>99% sequence identity) and H. anseris (92% sequence identity). qPCR results showed that the occurrence and abundance of Campylobacter spp. was relatively high compared to those of fecal indicator bacteria, such as Enterococcus spp., E. faecalis, and Catellicoccus marimammalium. Overall, the results provide insights into the complexity of the shorebird gut microbial community and suggest that these migratory birds are important reservoirs of pathogenic Campylobacter species. PMID:24413599

  19. Intestinal Microbiota and Species Diversity of Campylobacter and Helicobacter spp. in Migrating Shorebirds in Delaware Bay

    PubMed Central

    Ryu, Hodon; Grond, Kirsten; Verheijen, Bram; Elk, Michael; Buehler, Deborah M.

    2014-01-01

    Using 16S rRNA gene sequencing analysis, we examined the bacterial diversity and the presence of opportunistic bacterial pathogens (i.e., Campylobacter and Helicobacter) in red knot (Calidris canutus; n = 40), ruddy turnstone (Arenaria interpres; n = 35), and semipalmated sandpiper (Calidris pusilla; n = 22) fecal samples collected during a migratory stopover in Delaware Bay. Additionally, we studied the occurrence of Campylobacter spp., enterococci, and waterfowl fecal source markers using quantitative PCR (qPCR) assays. Of 3,889 16S rRNA clone sequences analyzed, the bacterial community was mostly composed of Bacilli (63.5%), Fusobacteria (12.7%), Epsilonproteobacteria (6.5%), and Clostridia (5.8%). When epsilonproteobacterium-specific 23S rRNA gene clone libraries (i.e., 1,414 sequences) were analyzed, the sequences were identified as Campylobacter (82.3%) or Helicobacter (17.7%) spp. Specifically, 38.4%, 10.1%, and 26.0% of clone sequences were identified as C. lari (>99% sequence identity) in ruddy turnstone, red knot, and semipalmated sandpiper clone libraries, respectively. Other pathogenic species of Campylobacter, such as C. jejuni and C. coli, were not detected in excreta of any of the three bird species. Most Helicobacter-like sequences identified were closely related to H. pametensis (>99% sequence identity) and H. anseris (92% sequence identity). qPCR results showed that the occurrence and abundance of Campylobacter spp. was relatively high compared to those of fecal indicator bacteria, such as Enterococcus spp., E. faecalis, and Catellicoccus marimammalium. Overall, the results provide insights into the complexity of the shorebird gut microbial community and suggest that these migratory birds are important reservoirs of pathogenic Campylobacter species. PMID:24413599

  20. A Family of Diverse Kunitz Inhibitors from Echinococcus granulosus Potentially Involved in Host-Parasite Cross-Talk

    PubMed Central

    Margenat, Mariana; Durán, Rosario; González-Sapienza, Gualberto; Graña, Martín; Parkinson, John; Maizels, Rick M.; Salinas, Gustavo; Alvarez, Beatriz; Fernández, Cecilia

    2009-01-01

    The cestode Echinococcus granulosus, the agent of hydatidosis/echinococcosis, is remarkably well adapted to its definitive host. However, the molecular mechanisms underlying the successful establishment of larval worms (protoscoleces) in the dog duodenum are unknown. With the aim of identifying molecules participating in the E. granulosus-dog cross-talk, we surveyed the transcriptomes of protoscoleces and protoscoleces treated with pepsin at pH 2. This analysis identified a multigene family of secreted monodomain Kunitz proteins associated mostly with pepsin/H+-treated worms, suggesting that they play a role at the onset of infection. We present the relevant molecular features of eight members of the E. granulosus Kunitz family (EgKU-1 – EgKU-8). Although diverse, the family includes three pairs of close paralogs (EgKU-1/EgKU-4; EgKU-3/EgKU-8; EgKU-6/EgKU-7), which would be the products of recent gene duplications. In addition, we describe the purification of EgKU-1 and EgKU-8 from larval worms, and provide data indicating that some members of the family (notably, EgKU-3 and EgKU-8) are secreted by protoscoleces. Detailed kinetic studies with native EgKU-1 and EgKU-8 highlighted their functional diversity. Like most monodomain Kunitz proteins, EgKU-8 behaved as a slow, tight-binding inhibitor of serine proteases, with global inhibition constants (KI*) versus trypsins in the picomolar range. In sharp contrast, EgKU-1 did not inhibit any of the assayed peptidases. Interestingly, molecular modeling revealed structural elements associated with activity in Kunitz cation-channel blockers. We propose that this family of inhibitors has the potential to act at the E. granulosus-dog interface and interfere with host physiological processes at the initial stages of infection. PMID:19759914

  1. Ectomycorrhizal fungus diversity and community structure with natural and cultivated truffle hosts: applying lessons learned to future truffle culture.

    PubMed

    De Miguel, Ana María; Águeda, Beatriz; Sánchez, Sergio; Parladé, Javier

    2014-04-01

    Since the first truffle plantations were established in France, Italy and other parts in the world, many studies have been carried out to improve their productivity and sustainability. Success of plantations is clearly related to the mycorrhizal status of the host trees over the years, from inoculated seedlings to truffle-producing trees. The experience gained in monitoring the ectomycorrhizal fungus status in cultivated truffle grounds has allowed us to develop an extensive catalogue of the ectomycorrhizal fungi present in truffle plantations. Herein, we summarize fungal community data from 85 references that represent different truffle studies in natural habitats and plantations. Approximately 25% of the ectomycorrhizae reported in the 85 references are common to most of the studies. In general, more fungal species are detected in productive plantations than in the non-productive ones. Truffle plantations display a diverse ectomycorrhizal fungal community, in which species of the genus Tuber are well represented. Tuber rufum and some members of Boletales are typically restricted to productive truffle plots. On the other hand, Hebeloma, Laccaria and Russula species are mostly associated with unproductive plots. Ectomycorrhizae belonging to Thelephoraceae are frequently found in mature truffle orchards but do not seem to affect sporocarp production. Several biotic and abiotic factors affect the ectomycorrhizal fungus communities associated with truffle orchards. Among them are plantation age, host species and its growth, the surrounding environment (particularly the presence of other ectomycorrhizal hosts), and plantation management. Understanding the ectomycorrhizal fungal communities inhabiting different plantations may give us clues about the dynamics of the targeted truffles and the possibility of identifying mycorrhizal fungal species that are good indicators of successful truffle plantations. PMID:24424507

  2. Host plant richness explains diversity of ectomycorrhizal fungi: Response to the comment of Tedersoo et al. (2014).

    PubMed

    Gao, Cheng; Shi, Nan-Nan; Liu, Yue-Xing; Zheng, Yong; Ding, Qiong; Mi, Xiang-Cheng; Ma, Ke-Ping; Wubet, Tesfaye; Buscot, François; Guo, Liang-Dong

    2014-03-01

    Exploring the relationships between the biodiversity of groups of interacting organisms yields insight into ecosystem stability and function (Hooper et al. ; Wardle ). We demonstrated positive relationships between host plant richness and ectomycorrhizal (EM) fungal diversity both in a field study in subtropical China (Gutianshan) and in a meta-analysis of temperate and tropical studies (Gao et al. ). However, based on re-evaluation of our data sets, Tedersoo et al. () argue that the observed positive correlation between EM fungal richness and EM plant richness at Gutianshan and also in our metastudies was based mainly from (i) a sampling design with inconsistent species pool and (ii) poor data compilation for the meta-analysis. Accordingly, we checked our data sets and repeated the analysis performed by Tedersoo et al. (). In contrast to Tedersoo et al. (), our re-analysis still confirms a positive effect of plant richness on EM fungal diversity in Gutianshan, temperate and tropical ecosystems, respectively. PMID:24428237

  3. Grass Hosts Harbor More Diverse Isolates of Puccinia striiformis Than Cereal Crops.

    PubMed

    Cheng, P; Chen, X M; See, D R

    2016-04-01

    Puccinia striiformis causes stripe rust on cereal crops and many grass species. However, it is not clear whether the stripe rust populations on grasses are able to infect cereal crops and how closely they are related to each other. In this study, 103 isolates collected from wheat, barley, triticale, rye, and grasses in the United States were characterized by virulence tests and simple sequence repeat (SSR) markers. Of 69 pathotypes identified, 41 were virulent on some differentials of wheat only, 10 were virulent on some differentials of barley only, and 18 were virulent on some differentials of both wheat and barley. These pathotypes were clustered into three groups: group one containing isolates from wheat, triticale, rye, and grasses; group two isolates were from barley and grasses; and group three isolates were from grasses and wheat. SSR markers identified 44 multilocus genotypes (MLGs) and clustered them into three major molecular groups (MG) with MLGs in MG3 further classified into three subgroups. Isolates from cereal crops were present in one or more of the major or subgroups, but not all, whereas grass isolates were present in all of the major and subgroups. The results indicate that grasses harbor more diverse isolates of P. striiformis than the cereals. PMID:26667189

  4. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs.

    PubMed

    Wang, Weimin; Li, Chong; Li, Fadi; Wang, Xiaojuan; Zhang, Xiaoxue; Liu, Ting; Nian, Fang; Yue, Xiangpeng; Li, Fei; Pan, Xiangyu; La, Yongfu; Mo, Futao; Wang, Fangbin; Li, Baosheng

    2016-01-01

    Early consumption of starter feed promotes rumen development in lambs. We examined rumen development in lambs fed starter feed for 5 weeks using histological and biochemical analyses and by performing high-throughput sequencing in rumen tissues. Additionally, rumen contents of starter feed-fed lambs were compared to those of breast milk-fed controls. Our physiological and biochemical findings revealed that early starter consumption facilitated rumen development, changed the pattern of ruminal fermentation, and increased the amylase and carboxymethylcellulase activities of rumen micro-organisms. RNA-seq analysis revealed 225 differentially expressed genes between the rumens of breast milk- and starter feed-fed lambs. These DEGs were involved in many metabolic pathways, particularly lipid and carbohydrate metabolism, and included HMGCL and HMGCS2. Sequencing analysis of 16S rRNA genes revealed that ruminal bacterial communities were more diverse in breast milk-than in starter feed-fed lambs, and each group had a distinct microbiota. We conclude that early starter feeding is beneficial to rumen development and physiological function in lambs. The underlying mechanism may involve the stimulation of ruminal ketogenesis and butanoate metabolism via HMGCL and HMGCS2 combined with changes in the fermentation type induced by ruminal microbiota. Overall, this study provides insights into the molecular mechanisms of rumen development in sheep. PMID:27576848

  5. Diversity, host switching and evolution of Plasmodium vivax infecting African great apes

    PubMed Central

    Prugnolle, Franck; Rougeron, Virginie; Becquart, Pierre; Berry, Antoine; Makanga, Boris; Rahola, Nil; Arnathau, Céline; Ngoubangoye, Barthélémy; Menard, Sandie; Willaume, Eric; Ayala, Francisco J.; Fontenille, Didier; Ollomo, Benjamin; Durand, Patrick; Paupy, Christophe; Renaud, François

    2013-01-01

    Plasmodium vivax is considered to be absent from Central and West Africa because of the protective effect of Duffy negativity. However, there are reports of persons returning from these areas infected with this parasite and observations suggesting the existence of transmission. Among the possible explanations for this apparent paradox, the existence of a zoonotic reservoir has been proposed. May great apes be this reservoir? We analyze the mitochondrial and nuclear genetic diversity of P. vivax parasites isolated from great apes in Africa and compare it to parasites isolated from travelers returning from these regions of Africa, as well as to human isolates distributed all over the world. We show that the P. vivax sequences from parasites of great apes form a clade genetically distinct from the parasites circulating in humans. We show that this clade’s parasites can be infectious to humans by describing the case of a traveler returning from the Central African Republic infected with one of them. The relationship between this P. vivax clade in great apes and the human isolates is discussed. PMID:23637341

  6. Differential host susceptibility and bacterial virulence factors driving Klebsiella liver abscess in an ethnically diverse population

    PubMed Central

    Lee, I. Russel; Molton, James S.; Wyres, Kelly L.; Gorrie, Claire; Wong, Jocelyn; Hoh, Chu Han; Teo, Jeanette; Kalimuddin, Shirin; Lye, David C.; Archuleta, Sophia; Holt, Kathryn E.; Gan, Yunn-Hwen

    2016-01-01

    Hypervirulent Klebsiella pneumoniae is an emerging cause of community-acquired pyogenic liver abscess. First described in Asia, it is now increasingly recognized in Western countries, commonly afflicting those with Asian descent. This raises the question of genetic predisposition versus geospecific strain acquisition. We leveraged on the Antibiotics for Klebsiella Liver Abscess Syndrome Study (A-KLASS) clinical trial ongoing in ethnically diverse Singapore, to prospectively examine the profiles of 70 patients together with their isolates’ genotypic and phenotypic characteristics. The majority of isolates belonged to capsule type K1, a genetically homogenous group corresponding to sequence-type 23. The remaining K2, K5, K16, K28, K57 and K63 isolates as well as two novel cps isolates were genetically heterogeneous. K1 isolates carried higher frequencies of virulence-associated genes including rmpA (regulator of mucoid phenotype A), kfu (Klebsiella ferric uptake transporter), iuc (aerobactin), iro (salmochelin) and irp (yersiniabactin) than non-K1 isolates. The Chinese in our patient cohort, mostly non-diabetic, had higher prevalence of K1 infection than the predominantly diabetic non-Chinese (Malays, Indian and Caucasian). This differential susceptibility to different capsule types among the various ethnic groups suggests patterns of transmission (e.g. environmental source, familial transmission) and/or genetic predisposition unique to each race despite being in the same geographical location. PMID:27406977

  7. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs

    PubMed Central

    Wang, Weimin; Li, Chong; Li, Fadi; Wang, Xiaojuan; Zhang, Xiaoxue; Liu, Ting; Nian, Fang; Yue, Xiangpeng; Li, Fei; Pan, Xiangyu; La, Yongfu; Mo, Futao; Wang, Fangbin; Li, Baosheng

    2016-01-01

    Early consumption of starter feed promotes rumen development in lambs. We examined rumen development in lambs fed starter feed for 5 weeks using histological and biochemical analyses and by performing high-throughput sequencing in rumen tissues. Additionally, rumen contents of starter feed-fed lambs were compared to those of breast milk-fed controls. Our physiological and biochemical findings revealed that early starter consumption facilitated rumen development, changed the pattern of ruminal fermentation, and increased the amylase and carboxymethylcellulase activities of rumen micro-organisms. RNA-seq analysis revealed 225 differentially expressed genes between the rumens of breast milk- and starter feed-fed lambs. These DEGs were involved in many metabolic pathways, particularly lipid and carbohydrate metabolism, and included HMGCL and HMGCS2. Sequencing analysis of 16S rRNA genes revealed that ruminal bacterial communities were more diverse in breast milk-than in starter feed-fed lambs, and each group had a distinct microbiota. We conclude that early starter feeding is beneficial to rumen development and physiological function in lambs. The underlying mechanism may involve the stimulation of ruminal ketogenesis and butanoate metabolism via HMGCL and HMGCS2 combined with changes in the fermentation type induced by ruminal microbiota. Overall, this study provides insights into the molecular mechanisms of rumen development in sheep. PMID:27576848

  8. Differential host susceptibility and bacterial virulence factors driving Klebsiella liver abscess in an ethnically diverse population.

    PubMed

    Lee, I Russel; Molton, James S; Wyres, Kelly L; Gorrie, Claire; Wong, Jocelyn; Hoh, Chu Han; Teo, Jeanette; Kalimuddin, Shirin; Lye, David C; Archuleta, Sophia; Holt, Kathryn E; Gan, Yunn-Hwen

    2016-01-01

    Hypervirulent Klebsiella pneumoniae is an emerging cause of community-acquired pyogenic liver abscess. First described in Asia, it is now increasingly recognized in Western countries, commonly afflicting those with Asian descent. This raises the question of genetic predisposition versus geospecific strain acquisition. We leveraged on the Antibiotics for Klebsiella Liver Abscess Syndrome Study (A-KLASS) clinical trial ongoing in ethnically diverse Singapore, to prospectively examine the profiles of 70 patients together with their isolates' genotypic and phenotypic characteristics. The majority of isolates belonged to capsule type K1, a genetically homogenous group corresponding to sequence-type 23. The remaining K2, K5, K16, K28, K57 and K63 isolates as well as two novel cps isolates were genetically heterogeneous. K1 isolates carried higher frequencies of virulence-associated genes including rmpA (regulator of mucoid phenotype A), kfu (Klebsiella ferric uptake transporter), iuc (aerobactin), iro (salmochelin) and irp (yersiniabactin) than non-K1 isolates. The Chinese in our patient cohort, mostly non-diabetic, had higher prevalence of K1 infection than the predominantly diabetic non-Chinese (Malays, Indian and Caucasian). This differential susceptibility to different capsule types among the various ethnic groups suggests patterns of transmission (e.g. environmental source, familial transmission) and/or genetic predisposition unique to each race despite being in the same geographical location. PMID:27406977

  9. Uranium-series disequilibria as a means to study recent migration of uranium in a sandstone-hosted uranium deposit, NW China.

    PubMed

    Min, Maozhong; Peng, Xinjian; Wang, Jinping; Osmond, J K

    2005-07-01

    Uranium concentration and alpha specific activities of uranium decay series nuclides (234)U, (238)U, (230)Th, (232)Th and (226)Ra were measured for 16 oxidized host sandstone samples, 36 oxic-anoxic (mineralized) sandstone samples and three unaltered primary sandstone samples collected from the Shihongtan deposit. The results show that most of the ores and host sandstones have close to secular equilibrium alpha activity ratios for (234)U/(238)U, (230)Th/(238)U, (230)Th/(234)U and (226)Ra/(230)Th, indicating that intensive groundwater-rock/ore interaction and uranium migration have not taken place in the deposit during the last 1.0 Ma. However, some of the old uranium ore bodies have locally undergone leaching in the oxidizing environment during the past 300 ka to 1.0 Ma or to the present, and a number of new U ore bodies have grown in the oxic-anoxic transition (mineralized) subzone during the past 1.0 Ma. Locally, uranium leaching has taken place during the past 300 ka to 1.0 Ma, and perhaps is still going on now in some sandstones of the oxidizing subzone. However, uranium accumulation has locally occurred in some sandstones of the oxidizing environment during the past 1 ka to 1.0 Ma, which may be attributed to adsorption of U(VI) by clays contained in oxidized sandstones. A recent accumulation of uranium has locally taken place within the unaltered sandstones of the primary subzone close to the oxic-anoxic transition environment during the past 300 ka to 1.0 Ma. Results from the present study also indicate that uranium-series disequilibrium is an important tool to trace recent migration of uranium occurring in sandstone-hosted U deposits during the past 1.0 Ma and to distinguish the oxidation-reduction boundary. PMID:15866456

  10. Diversity of host species and strains of Pneumocystis carinii is based on rRNA sequences.

    PubMed Central

    Shah, J S; Pieciak, W; Liu, J; Buharin, A; Lane, D J

    1996-01-01

    We have amplified by PCR Pneumocystis carinii cytoplasmic small-subunit rRNA (variously referred to as 16S-like or 18S-like rRNA) genes from DNA extracted from bronchoalveolar lavage and induced sputum specimens from patients positive for P. carinii and from infected ferret lung tissue. The amplification products were cloned into pUC18, and individual clones were sequenced. Comparison of the determined sequences with each other and with published rat and partial human P.carinii small-subunit rRNA gene sequences reveals that, although all P. carinii small-subunit rRNAs are closely related (approximately 96% identity), small-subunit rRNA genes isolated from different host species (human, rat, and ferret) exhibit distinctive patterns of sequence variation. Two types of sequences were isolated from the infected ferret lung tissue, one as a predominant species and the other as a minor species. There was 96% identity between the two types. In situ hybridization of the infected ferret lung tissue with oligonucleotide probes specific for each type revealed that there were two distinct strains of P. carinii present in the ferret lung tissue. Unlike the ferret P. carinii isolates, the small-subunit rRNA gene sequences from different human P. carinii isolates have greater than 99% identity and are distinct from all rat and ferret sequences so far inspected or reported in the literature. Southern blot hybridization analysis of PCR amplification products from several additional bronchoalveolar lavage or induced sputum specimens from P. carinii-infected patients, using a 32P-labeled oligonucleotide probe specific for human P. carinii, also suggests that all of the human P. carinii isolates are identical. These findings indicate that human P. carinii isolates may represent a distinct species of P. carinii distinguishable from rat and ferret P. carinii on the basis of characterization of small-subunit rRNA gene sequences. PMID:8770515

  11. Correlative Association between Resident Plasmids and the Host Chromosome in a Diverse Agrobacterium Soil Population

    PubMed Central

    Bouzar, Hacène; Ouadah, Djaouida; Krimi, Zoulikha; Jones, Jeffrey B.; Trovato, Maurizio; Petit, Annik; Dessaux, Yves

    1993-01-01

    Soil samples collected from a fallow field which had not been cultivated for 5 years harbored a population of Agrobacterium spp. estimated at 3 × 107 CFU/g. Characterization of 72 strains selected from four different isolation media showed the presence of biovar 1 (56%) and bv. 2 (44%) strains. Pathogenicity assays on five different test plants revealed a high proportion (33%) of tumorigenic strains in the resident population. All tumorigenic strains belonged to bv. 1. Differentiation of the strains by restriction fragment length polymorphism analysis, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of cellular proteins, and utilization patterns of 95 carbon substrates (Biolog GN microplate) revealed a diversified bv. 1 population, composed of five distinct chromosomal backgrounds (chr A, C, D, E, and F), and a homogeneous bv. 2 population (chr B). chr A, B, C, and D were detected at similar levels throughout the study site. According to opine metabolism, pathogenicity, and agrocin sensitivity, chr A strains carried a nopaline Ti plasmid (pTi), whereas chr C strains had an octopine pTi. In addition, four of six nontumorigenic bv. 1 strains (two chr D, one chr E, and one chr F) had distinct and unusual opine catabolism patterns. chr B (bv. 2) strains were nonpathogenic and catabolized nopaline. Although agrocin sensitivity is a pTi-borne trait, 14 chr B strains were sensitive to agrocin 84, apparently harboring a defective nopaline pTi similar to pAtK84b. The other two chr B strains were agrocin resistant. The present analysis of chromosomal and plasmid phenotypes suggests that in this Agrobacterium soil population, there is a preferential association between the resident plasmids and their bacterial host. Images PMID:16348927

  12. DIVERSITY OF SHORT GAMMA-RAY BURST AFTERGLOWS FROM COMPACT BINARY MERGERS HOSTING PULSARS

    SciTech Connect

    Holcomb, Cole; Ramirez-Ruiz, Enrico; De Colle, Fabio; Montes, Gabriela

    2014-07-20

    Short-duration gamma-ray bursts (sGRBs) are widely believed to result from the mergers of compact binaries. This model predicts an afterglow that bears the characteristic signatures of a constant, low-density medium, including a smooth prompt-afterglow transition, and a simple temporal evolution. However, these expectations are in conflict with observations for a non-negligible fraction of sGRB afterglows. In particular, the onset of the afterglow phase for some of these events appears to be delayed and, in addition, a few of them exhibit late-time rapid fading in their light curves. We show that these peculiar observations can be explained independently of ongoing central engine activity if some sGRB progenitors are compact binaries hosting at least one pulsar. The Poynting flux emanating from the pulsar companion can excavate a bow-shock cavity surrounding the binary. If this cavity is larger than the shock deceleration length scale in the undisturbed interstellar medium, then the onset of the afterglow will be delayed. Should the deceleration occur entirely within the swept-up thin shell, a rapid fade in the light curve will ensue. We identify two types of pulsar that can achieve the conditions necessary for altering the afterglow: low-field, long-lived pulsars, and high-field pulsars. We find that a sizable fraction (≈20%-50%) of low-field pulsars are likely to reside in neutron star binaries based on observations, while their high-field counterparts are not. Hydrodynamical calculations motivated by this model are shown to be in good agreement with observations of sGRB afterglow light curves.

  13. Identifying Host Sources of Fecal Pollution: Diversity of Escherichia coli in Confined Dairy and Swine Production Systems

    PubMed Central

    Lu, Zexun; Lapen, David; Scott, Andrew; Dang, Angela; Topp, Edward

    2005-01-01

    Repetitive extragenic palindromic PCR fingerprinting of Escherichia coli is one microbial source tracking approach for identifying the host source origin of fecal pollution in aquatic systems. The construction of robust known-source libraries is expensive and requires an informed sampling strategy. In many types of farming systems, waste is stored for several months before being released into the environment. In this study we analyzed, by means of repetitive extragenic palindromic PCR using the enterobacterial repetitive intergenic consensus primers and comparative analysis using the Bionumerics software, collections of E. coli obtained from a dairy farm and from a swine farm, both of which stored their waste as a slurry in holding tanks. In all fecal samples, obtained from either barns or holding tanks, the diversity of the E. coli populations was underrepresented by collections of 500 isolates. In both the dairy and the swine farms, the diversity of the E. coli community was greater in the manure holding tank than in the barn, when they were sampled on the same date. In both farms, a comparison of stored manure samples collected several months apart suggested that the community composition changed substantially in terms of the detected number, absolute identity, and relative abundance of genotypes. Comparison of E. coli populations obtained from 10 different locations in either holding tank suggested that spatial variability in the E. coli community should be accounted for when sampling. Overall, the diversity in E. coli populations in manure slurry storage facilities is significant and likely is problematic with respect to library construction for microbial source tracking applications. PMID:16204513

  14. Genetic diversity and tissue and host specificity of Grapevine vein clearing virus.

    PubMed

    Guo, Qiang; Honesty, Shae; Xu, Mei Long; Zhang, Yu; Schoelz, James; Qiu, Wenping

    2014-05-01

    Grapevine vein clearing virus (GVCV) is a new badnavirus in the family Caulimoviridae that is closely associated with an emerging vein-clearing and vine decline disease in the Midwest region of the United States. It has a circular, double-stranded DNA genome of 7,753 bp that is predicted to encode three open reading frames (ORFs) on the plus-strand DNA. The largest ORF encodes a polyprotein that contains domains for a reverse transcriptase (RT), an RNase H, and a DNA-binding zinc-finger protein (ZF). In this study, two genomic regions, a 570-bp region of the RT domain and a 540-bp region of the ZF domain were used for an analysis of the genetic diversity of GVCV populations. In total, 39 recombinant plasmids were sequenced. These plasmids consisted of three individual clones from each of 13 isolates sampled from five grape varieties in three states. The sequence variants of GVCV could not be phylogenetically grouped into clades according to geographical location and grape variety. Codons of RT or ZF regions are subject to purifying selection pressure. Quantitative polymerase chain reaction assays indicated that GVCV accumulates abundantly in the petioles and least in the root tip tissue. Upon grafting of GVCV-infected buds onto four major grape cultivars, GVCV was not detected in the grafted 'Chambourcin' vine but was present in the grafted 'Vidal Blanc', 'Cayuga White', and 'Traminette' vines, suggesting that Chambourcin is resistant to GVCV. Furthermore, seven nucleotides were changed in the sequenced RT and ZF regions of GVCV from a grafted Traminette vine and one in the sequenced regions of GVCV from grafted Cayuga White but no changes were found in the sequenced regions of GVCV in the grafted Vidal Blanc. The results provide a genetic snapshot of GVCV populations, which will yield knowledge important for monitoring GVCV epidemics and for preventing the loss of grape production that is associated with GVCV. PMID:24502205

  15. Mitochondrial genome diversity at the Bering Strait area highlights prehistoric human migrations from Siberia to northern North America.

    PubMed

    Dryomov, Stanislav V; Nazhmidenova, Azhar M; Shalaurova, Sophia A; Morozov, Igor V; Tabarev, Andrei V; Starikovskaya, Elena B; Sukernik, Rem I

    2015-10-01

    The patterns of prehistoric migrations across the Bering Land Bridge are far from being completely understood: there still exists a significant gap in our knowledge of the population history of former Beringia. Here, through comprehensive survey of mitochondrial DNA genomes retained in 'relic' populations, the Maritime Chukchi, Siberian Eskimos, and Commander Aleuts, we explore genetic contribution of prehistoric Siberians/Asians to northwestern Native Americans. Overall, 201 complete mitochondrial sequences (52 new and 149 published) were selected in the reconstruction of trees encompassing mtDNA lineages that are restricted to Coastal Chukotka and Alaska, the Canadian Arctic, Greenland, and the Aleutian chain. Phylogeography of the resulting mtDNA genomes (mitogenomes) considerably extends the range and intrinsic diversity of haplogroups (eg, A2a, A2b, D2a, and D4b1a2a1) that emerged and diversified in postglacial central Beringia, defining independent origins of Neo-Eskimos versus Paleo-Eskimos, Aleuts, and Tlingit (Na-Dene). Specifically, Neo-Eskimos, ancestral to modern Inuit, not only appear to be of the High Arctic origin but also to harbor Altai/Sayan-related ancestry. The occurrence of the haplogroup D2a1b haplotypes in Chukotka (Sireniki) introduces the possibility that the traces of Paleo-Eskimos have not been fully erased by spread of the Neo-Eskimos or their descendants. Our findings are consistent with the recurrent gene flow model of multiple streams of expansions to northern North America from northeastern Eurasia in late Pleistocene-early Holocene. PMID:25564040

  16. Genetic Diversity in Enterocytozoon bieneusi Isolates from Dogs and Cats in China: Host Specificity and Public Health Implications

    PubMed Central

    Karim, Md Robiul; Dong, Haiju; Yu, Fuchang; Jian, Fuchun; Wang, Rongjun; Zhang, Sumei; Rume, Farzana Islam; Ning, Changshen

    2014-01-01

    To explore the genetic diversity, host specificity, and zoonotic potential of Enterocytozoon bieneusi, feces from 348 stray and pet dogs and 96 pet cats from different locations in China were examined by internal transcribed spacer (ITS)-based PCR. E. bieneusi was detected in 15.5% of the dogs, including 20.5% of stray dogs and 11.7% of pet dogs, and in 11.5% of the pet cats. Higher infection rates were recorded in the >2-year and the 1- to 2-year age groups in dogs and cats, respectively. Altogether, 24 genotypes, including 11 known and 13 new, were detected in 65 infected animals. In 54 positive dogs, 18 genotypes, 9 known (PtEbIX, O, D, CM1, EbpA, Peru8, type IV, EbpC, and PigEBITS5) and 9 new (CD1 to CD9), were found. In contrast, 8 genotypes, 4 known (D, BEB6, I, and PtEbIX) and 4 new (CC1 to CC4), were identified in 11 infected cats. The dominant genotype in dogs was PtEbIX (26/54). Phylogenetic analysis revealed that 8 known genotypes (D, Peru8, type IV, CM1, EbpC, PigEBITS5, O, and EbpA) and 7 new genotypes (CD1 to CD4 and CC2 to CC4) were the members of zoonotic group 1, whereas genotypes CD7, CD8, and CD9 together with PtEbIX belonged to the dog-specific group, and genotypes CD6 and CC1 were placed in group 2 with BEB6 and I. Conversely, genotype CD5 clustered with CM4 without belonging to any previous groups. We conclude that zoonotic genotypes are common in dogs and cats, as are host-specific genotypes in dogs. PMID:24989604

  17. Clonal diversity of a lizard malaria parasite, Plasmodium mexicanum, in its vertebrate host, the western fence lizard: role of variation in transmission intensity over time and space.

    PubMed

    Vardo, A M; Schall, J J

    2007-07-01

    Within the vertebrate host, infections of a malaria parasite (Plasmodium) could include a single genotype of cells (single-clone infections) or two to several genotypes (multiclone infections). Clonal diversity of infection plays an important role in the biology of the parasite, including its life history, virulence, and transmission. We determined the clonal diversity of Plasmodium mexicanum, a lizard malaria parasite at a study region in northern California, using variable microsatellite markers, the first such study for any malaria parasite of lizards or birds (the most common hosts for Plasmodium species). Multiclonal infections are common (50-88% of infections among samples), and measures of genetic diversity for the metapopulation (expected heterozygosity, number of alleles per locus, allele length variation, and effective population size) all indicated a substantial overall genetic diversity. Comparing years with high prevalence (1996-1998 = 25-32% lizards infected), and years with low prevalence (2001-2005 = 6-12%) found fewer alleles in samples taken from the low-prevalence years, but no reduction in overall diversity (H = 0.64-0.90 among loci). In most cases, rare alleles appeared to be lost as prevalence declined. For sites chronically experiencing low transmission intensity (prevalence approximately 1%), overall diversity was also high (H = 0.79-0.91), but there were fewer multiclonal infections. Theory predicts an apparent excess in expected heterozygosity follows a genetic bottleneck. Evidence for such a distortion in genetic diversity was observed after the drop in parasite prevalence under the infinite alleles mutation model but not for the stepwise mutation model. The results are similar to those reported for the human malaria parasite, Plasmodium falciparum, worldwide, and support the conclusion that malaria parasites maintain high genetic diversity in host populations despite the potential for loss in alleles during the transmission cycle or

  18. Molecular expression and characterization of a homologue of host cytokine macrophage migration inhibitory factor from Trichinella spp.

    PubMed

    Wu, Z; Boonmars, T; Nagano, I; Nakada, T; Takahashi, Y

    2003-06-01

    A homologue of cytokine macrophage migration inhibitory factor (MIF) from complementary DNA (cDNA) of Trichinella spiralis and Trichinella pseudospiralis was expressed in Escherichia coli and characterized. The sequence analysis indicated that the predicted amino acid sequence has an identity of 57 and 44% with the MIF of nematodes Trichuris trichiura and Brugia malayi respectively, and 41 and 40% with that of a human and a mouse, respectively. The identity in sequences of cDNA and amino acids between T. spiralis and T. pseudospiralis was 91 and 86%, respectively. Western blot analysis showed that anti-MIF antibodies positively stained proteins from the extracts of adult worms or muscle larvae migrating at about 12.5 kDa (3 isoforms with isoelectric point 5.23, 5.72, and 6.29). Semiquantitative reverse transcriptase-polymerase chain reaction revealed that the gene was expressed in various developmental stages, including in adult worms, newborn larvae, precyst muscle larvae, and postcyst muscle larvae, although there was difference in the expression level among these stages. The immunohistochemical analysis showed the MIF exists in the muscle cells of the body wall and some stichocytes of larvae. Histopathology of T. spiralis-infected muscles revealed an accumulation of mononuclear cells around the worms, and immunocytochemical staining showed these cells were not macrophages. Mononuclear cells, including macrophages, were, however, observed in cardiac muscles where the parasite did not encyst. Macrophages accumulated around the Sephadex beads transplanted in mice subcutaneously, but this accumulation was profoundly inhibited when the beads were pretreated with MIF recombinant protein. PMID:12880250

  19. Correlations between the ages of Alnus host species and the genetic diversity of associated endosymbiotic Frankia strains from nodules.

    PubMed

    Dai, Yumei; Zhang, Chenggang; Xiong, Zhi; Zhang, Zhongze

    2005-05-01

    Nodule samples were collected from four alder species: Alnus nepalensis, A. sibirica, A. tinctoria and A. mandshurica growing in different environments on Gaoligong Mountains, Yunnan Province of Southwest China and on Changbai Mountains, Jilin Province of Northeast China. PCR-RFLP analysis of the IGS between nifD and nifK genes was directly applied to uncultured Frankia strains in the nodules. A total of 21 restriction patterns were obtained. The Frankia population in the nodules of A. nepalensis had the highest genetic diversity among all four Frankia populations; by contrast, the population in the nodules of A. mandshurica had the lowest degree of divergence; the ones in the nodules of A. sibirica and A. tinctoria were intermediate. A dendrogram, which was constructed based on the genetic distance between the restriction patterns, indicated that Frankia strains from A. sibirica and A. tinctoria had a close genetic relationship. Frankia strains from A. nepalensis might be the ancestor of Frankia strains infecting other Alnus species. From these results and the inference of the ages of Alnus host species, it is deduced that there was a co-evolution between Alnus and its microsymbiont Frankia in China. PMID:16089332

  20. Disease ecology in the Galápagos Hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies

    PubMed Central

    Whiteman, Noah Kerness; Matson, Kevin D; Bollmer, Jennifer L; Parker, Patricia G

    2005-01-01

    An increased susceptibility to disease is one hypothesis explaining how inbreeding hastens extinction in island endemics and threatened species. Experimental studies show that disease resistance declines as inbreeding increases, but data from in situ wildlife systems are scarce. Genetic diversity increases with island size across the entire range of an extremely inbred Galápagos endemic bird, providing the context for a natural experiment examining the effects of inbreeding on disease susceptibility. Extremely inbred populations of Galápagos hawks had higher parasite abundances than relatively outbred populations. We found a significant island effect on constitutively produced natural antibody (NAb) levels and inbred populations generally harboured lower average and less variable NAb levels than relatively outbred populations. Furthermore, NAb levels explained abundance of amblyceran lice, which encounter the host immune system. This is the first study linking inbreeding, innate immunity and parasite load in an endemic, in situ wildlife population and provides a clear framework for assessment of disease risk in a Galápagos endemic. PMID:16618672

  1. Disease ecology in the Galápagos Hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies.

    PubMed

    Whiteman, Noah Kerness; Matson, Kevin D; Bollmer, Jennifer L; Parker, Patricia G

    2006-04-01

    An increased susceptibility to disease is one hypothesis explaining how inbreeding hastens extinction in island endemics and threatened species. Experimental studies show that disease resistance declines as inbreeding increases, but data from in situ wildlife systems are scarce. Genetic diversity increases with island size across the entire range of an extremely inbred Galápagos endemic bird, providing the context for a natural experiment examining the effects of inbreeding on disease susceptibility. Extremely inbred populations of Galápagos hawks had higher parasite abundances than relatively outbred populations. We found a significant island effect on constitutively produced natural antibody (NAb) levels and inbred populations generally harboured lower average and less variable NAb levels than relatively outbred populations. Furthermore, NAb levels explained abundance of amblyceran lice, which encounter the host immune system. This is the first study linking inbreeding, innate immunity and parasite load in an endemic, in situ wildlife population and provides a clear framework for assessment of disease risk in a Galápagos endemic. PMID:16618672

  2. Pseudomonas aeruginosa Cell Membrane Protein Expression from Phenotypically Diverse Cystic Fibrosis Isolates Demonstrates Host-Specific Adaptations.

    PubMed

    Kamath, Karthik Shantharam; Pascovici, Dana; Penesyan, Anahit; Goel, Apurv; Venkatakrishnan, Vignesh; Paulsen, Ian T; Packer, Nicolle H; Molloy, Mark P

    2016-07-01

    Pseudomonas aeruginosa is a Gram-negative, nosocomial, highly adaptable opportunistic pathogen especially prevalent in immuno-compromised cystic fibrosis (CF) patients. The bacterial cell surface proteins are important contributors to virulence, yet the membrane subproteomes of phenotypically diverse P. aeruginosa strains are poorly characterized. We carried out mass spectrometry (MS)-based proteome analysis of the membrane proteins of three novel P. aeruginosa strains isolated from the sputum of CF patients and compared protein expression to the widely used laboratory strain, PAO1. Microbes were grown in planktonic growth condition using minimal M9 media, and a defined synthetic lung nutrient mimicking medium (SCFM) limited passaging. Two-dimensional LC-MS/MS using iTRAQ labeling enabled quantitative comparisons among 3171 and 2442 proteins from the minimal M9 medium and in the SCFM, respectively. The CF isolates showed marked differences in membrane protein expression in comparison with PAO1 including up-regulation of drug resistance proteins (MexY, MexB, MexC) and down-regulation of chemotaxis and aerotaxis proteins (PA1561, PctA, PctB) and motility and adhesion proteins (FliK, FlgE, FliD, PilJ). Phenotypic analysis using adhesion, motility, and drug susceptibility assays confirmed the proteomics findings. These results provide evidence of host-specific microevolution of P. aeruginosa in the CF lung and shed light on the adaptation strategies used by CF pathogens. PMID:27246823

  3. Do-or-die life cycles and diverse post-infection resistance mechanisms limit the evolution of parasite host ranges.

    PubMed

    Sieber, Michael; Gudelj, Ivana

    2014-04-01

    In light of the dynamic nature of parasite host ranges and documented potential for rapid host shifts, the observed high host specificity of most parasites remains an ecological paradox. Different variants of host-use trade-offs have become a mainstay of theoretical explanations of the prevalence of host specialism, but empirical evidence for such trade-offs is rare. We propose an alternative theory based on basic features of the parasite life cycle: host selection and subsequent intrahost replication. We introduce a new concept of effective burst size that accounts for the fact that successful host selection does not guarantee intrahost replication. Our theory makes a general prediction that a parasite will expand its host range if its effective burst size is positive. An in silico model of bacteria-phage coevolution verifies our predictions and demonstrates that the tendency for relatively narrow host ranges in parasites can be explained even in the absence of trade-offs. PMID:24495077

  4. Low haemosporidian diversity and one key-host species in a bird malaria community on a mid-Atlantic island (São Miguel, Azores).

    PubMed

    Hellgren, Olof; Križanauskienė, Asta; Hasselquist, Dennis; Bensch, Staffan

    2011-10-01

    When host species colonize new areas, the parasite assemblage infecting the hosts might change, with some parasite species being lost and others newly acquired. These changes would likely lead to novel selective forces on both host and its parasites. We investigated the avian blood parasites in the passerine bird community on the mid-Atlantic island of São Miguel, Azores, a bird community originating from continental Europe. The presence of haemosporidian blood parasites belonging to the genera Haemoproteus, Plasmodium, and Leucocytozoon was assessed using polymerase chain reaction. We found two Plasmodium lineages and two Leucocytozoon lineages in 11 bird species (84% of all breeding passerine species) on the island. These lineages were unevenly distributed across bird species. The Eurasian Blackbird (Turdus merula) was the key-host species (total parasite prevalence of 57%), harboring the main proportion of parasite infections. Except for Eurasian Blackbirds, all bird species had significantly lower prevalence and parasite diversity compared to their continental populations. We propose that in evolutionary novel bird communities, single species may act as key hosts by harboring the main part of the parasite fauna from which parasites "leak" into the other species. This would create very different host-parasite associations in areas recently colonized by hosts as compared to in their source populations. PMID:22102655

  5. Stable symbionts across the HMA-LMA dichotomy: low seasonal and interannual variation in sponge-associated bacteria from taxonomically diverse hosts.

    PubMed

    Erwin, Patrick M; Coma, Rafel; López-Sendino, Paula; Serrano, Eduard; Ribes, Marta

    2015-10-01

    Marine sponges host bacterial communities with important ecological and economic roles in nature and society, yet these benefits depend largely on the stability of host-symbiont interactions and their susceptibility to changing environmental conditions. Here, we investigated the temporal stability of complex host-microbe symbioses in a temperate, seasonal environment over three years, targeting sponges across a range of symbiont density (high and low microbial abundance, HMA and LMA) and host taxonomy (six orders). Symbiont profiling by terminal restriction fragment length polymorphism analysis of 16S rRNA gene sequences revealed that bacterial communities in all sponges exhibited a high degree of host specificity, low seasonal dynamics and low interannual variability: results that represent an emerging trend in the field of sponge microbiology and contrast sharply with the seasonal dynamics of free-living bacterioplankton. Further, HMA sponges hosted more diverse, even and similar symbiont communities than LMA sponges and these differences in community structure extended to core members of the microbiome. Together, these findings show clear distinctions in symbiont structure between HMA and LMA sponges while resolving notable similarities in their stability over seasonal and inter-annual scales, thus providing insight into the ecological consequences of the HMA-LMA dichotomy and the temporal stability of complex host-microbe symbioses. PMID:26405300

  6. Phylogenetic analysis reveals positive correlations between adaptations to diverse hosts in a group of pathogen-like herbivores.

    PubMed

    Peterson, Daniel A; Hardy, Nate B; Morse, Geoffrey E; Stocks, Ian C; Okusu, Akiko; Normark, Benjamin B

    2015-10-01

    A jack of all trades can be master of none-this intuitive idea underlies most theoretical models of host-use evolution in plant-feeding insects, yet empirical support for trade-offs in performance on distinct host plants is weak. Trade-offs may influence the long-term evolution of host use while being difficult to detect in extant populations, but host-use evolution may also be driven by adaptations for generalism. Here we used host-use data from insect collection records to parameterize a phylogenetic model of host-use evolution in armored scale insects, a large family of plant-feeding insects with a simple, pathogen-like life history. We found that a model incorporating positive correlations between evolutionary changes in host performance best fit the observed patterns of diaspidid presence and absence on nearly all focal host taxa, suggesting that adaptations to particular hosts also enhance performance on other hosts. In contrast to the widely invoked trade-off model, we advocate a "toolbox" model of host-use evolution in which armored scale insects accumulate a set of independent genetic tools, each of which is under selection for a single function but may be useful on multiple hosts. PMID:26374400

  7. Host population genetic structure and zooxanthellae diversity of two reef-building coral species along the Florida Reef Tract and wider Caribbean

    NASA Astrophysics Data System (ADS)

    Baums, I. B.; Johnson, M. E.; Devlin-Durante, M. K.; Miller, M. W.

    2010-12-01

    In preparation for a large-scale coral restoration project, we surveyed host population genetic structure and symbiont diversity of two reef-building corals in four reef zones along the Florida reef tract (FRT). There was no evidence for coral population subdivision along the FRT in Acropora cervicornis or Montastraea faveolata based on microsatellite markers. However, in A. cervicornis, significant genetic differentiation was apparent when extending the analysis to broader scales (Caribbean). Clade diversity of the zooxanthellae differed along the FRT. A. cervicornis harbored mostly clade A with clade D zooxanthellae being prominent in colonies growing inshore and in the mid-channel zones that experience greater temperature fluctuations and receive significant nutrient and sediment input. M. faveolata harbored a more diverse array of symbionts, and variation in symbiont diversity among four habitat zones was more subtle but still significant. Implications of these results are discussed for ongoing restoration and conservation work.

  8. Richness and diversity of helminth communities in the Japanese grenadier anchovy, Coilia nasus, during its anadromous migration in the Yangtze River, China.

    PubMed

    Li, Wen X; Zou, Hong; Wu, Shan G; Song, Rui; Wang, Gui T

    2012-06-01

    To determine the relationship between the species richness, diversity of helminth communities, and migration distance during upward migration from coast to freshwater, helminth communities in the anadromous fish Coilia nasus were investigated along the coast of the East China Sea, the Yangtze Estuary, and 3 localities on the Yangtze River. Six helminth species were found in 224 C. nasus . Changes in salinity usually reduced the survival time of parasites, and thus the number of helminth species and their abundance. Except for the 2 dominant helminths, the acanthocephalan Acanthosentis cheni and the nematode Contracaecum sp., mean abundance of other 4 species of helminths was rather low (<1.0) during the upward migration in the Yangtze River. Mean abundance of the 2 dominant helminths peaked in the Yangtze Estuary and showed no obvious decrease among the 3 localities on the Yangtze River. Mean species richness, Brillouin's index, and Shannon index were also highest in the estuary (1.93 ± 0.88, 0.28 ± 0.25, and 0.37 ± 0.34, respectively) and did not exhibit marked decline at the 3 localities on the Yangtze River. A significant negative correlation was not seen between the similarity and the geographical distance (R  =  -0.5104, P  =  0.1317). The strong salinity tolerance of intestinal helminths, relatively brief stay in the Yangtze River, and large amount of feeding on small fish and shrimp when commencing spawning migration perhaps were responsible for the results. PMID:22257179

  9. Discovery of Novel dsRNA Viral Sequences by In Silico Cloning and Implications for Viral Diversity, Host Range and Evolution

    PubMed Central

    Liu, Huiquan; Fu, Yanping; Xie, Jiatao; Cheng, Jiasen; Ghabrial, Said A.; Li, Guoqing; Yi, Xianhong; Jiang, Daohong

    2012-01-01

    Genome sequence of viruses can contribute greatly to the study of viral evolution, diversity and the interaction between viruses and hosts. Traditional molecular cloning methods for obtaining RNA viral genomes are time-consuming and often difficult because many viruses occur in extremely low titers. DsRNA viruses in the families, Partitiviridae, Totiviridae, Endornaviridae, Chrysoviridae, and other related unclassified dsRNA viruses are generally associated with symptomless or persistent infections of their hosts. These characteristics indicate that samples or materials derived from eukaryotic organisms used to construct cDNA libraries and EST sequencing might carry these viruses, which were not easily detected by the researchers. Therefore, the EST databases may include numerous unknown viral sequences. In this study, we performed in silico cloning, a procedure for obtaining full or partial cDNA sequence of a gene by bioinformatics analysis, using known dsRNA viral sequences as queries to search against NCBI Expressed Sequence Tag (EST) database. From this analysis, we obtained 119 novel virus-like sequences related to members of the families, Endornaviridae, Chrysoviridae, Partitiviridae, and Totiviridae. Many of them were identified in cDNA libraries of eukaryotic lineages, which were not known to be hosts for these viruses. Furthermore, comprehensive phylogenetic analysis of these newly discovered virus-like sequences with known dsRNA viruses revealed that these dsRNA viruses may have co-evolved with respective host supergroups over a long evolutionary time while potential horizontal transmissions of viruses between different host supergroups also is possible. We also found that some of the plant partitiviruses may have originated from fungal viruses by horizontal transmissions. These findings extend our knowledge of the diversity and possible host range of dsRNA viruses and offer insight into the origin and evolution of relevant viruses with their hosts. PMID

  10. Molecular Epidemiology of Novel Pathogen “Brachyspira hampsonii” Reveals Relationships between Diverse Genetic Groups, Regions, Host Species, and Other Pathogenic and Commensal Brachyspira Species

    PubMed Central

    Mirajkar, Nandita S.; Bekele, Aschalew Z.; Chander, Yogesh Y.

    2015-01-01

    Outbreaks of bloody diarrhea in swine herds in the late 2000s signaled the reemergence of an economically significant disease, swine dysentery, in the United States. Investigations confirmed the emergence of a novel spirochete in swine, provisionally designated “Brachyspira hampsonii,” with two genetically distinct clades. Although it has since been detected in swine and migratory birds in Europe and North America, little is known about its genetic diversity or its relationships with other Brachyspira species. This study characterizes B. hampsonii using a newly developed multilocus sequence typing (MLST) approach and elucidates the diversity, distribution, population structure, and genetic relationships of this pathogen from diverse epidemiological sources globally. Genetic characterization of 81 B. hampsonii isolates, originating from six countries, with our newly established MLST scheme identified a total of 20 sequence types (STs) belonging to three clonal complexes (CCs). B. hampsonii showed a heterogeneous population structure with evidence of microevolution locally in swine production systems, while its clustering patterns showed associations with its epidemiological origins (country, swine production system, and host species). The close genetic relatedness of B. hampsonii isolates from different countries and host species highlights the importance of strict biosecurity control measures. A comparative analysis of 430 isolates representing seven Brachyspira species (pathogens and commensals) from 19 countries and 10 host species depicted clustering by microbial species. It revealed the close genetic relatedness of B. hampsonii with commensal Brachyspira species and also provided support for the two clades of B. hampsonii to be considered a single species. PMID:26135863

  11. Molecular Epidemiology of Novel Pathogen "Brachyspira hampsonii" Reveals Relationships between Diverse Genetic Groups, Regions, Host Species, and Other Pathogenic and Commensal Brachyspira Species.

    PubMed

    Mirajkar, Nandita S; Bekele, Aschalew Z; Chander, Yogesh Y; Gebhart, Connie J

    2015-09-01

    Outbreaks of bloody diarrhea in swine herds in the late 2000s signaled the reemergence of an economically significant disease, swine dysentery, in the United States. Investigations confirmed the emergence of a novel spirochete in swine, provisionally designated "Brachyspira hampsonii," with two genetically distinct clades. Although it has since been detected in swine and migratory birds in Europe and North America, little is known about its genetic diversity or its relationships with other Brachyspira species. This study characterizes B. hampsonii using a newly developed multilocus sequence typing (MLST) approach and elucidates the diversity, distribution, population structure, and genetic relationships of this pathogen from diverse epidemiological sources globally. Genetic characterization of 81 B. hampsonii isolates, originating from six countries, with our newly established MLST scheme identified a total of 20 sequence types (STs) belonging to three clonal complexes (CCs). B. hampsonii showed a heterogeneous population structure with evidence of microevolution locally in swine production systems, while its clustering patterns showed associations with its epidemiological origins (country, swine production system, and host species). The close genetic relatedness of B. hampsonii isolates from different countries and host species highlights the importance of strict biosecurity control measures. A comparative analysis of 430 isolates representing seven Brachyspira species (pathogens and commensals) from 19 countries and 10 host species depicted clustering by microbial species. It revealed the close genetic relatedness of B. hampsonii with commensal Brachyspira species and also provided support for the two clades of B. hampsonii to be considered a single species. PMID:26135863

  12. Gastric nematode diversity between estuarine and inland freshwater populations of the American alligator (Alligator mississippiensis, daudin 1802), and the prediction of intermediate hosts

    PubMed Central

    Tellez, Marisa; Nifong, James

    2014-01-01

    We examined the variation of stomach nematode intensity and species richness of Alligator mississippiensis from coastal estuarine and inland freshwater habitats in Florida and Georgia, and integrated prey content data to predict possible intermediate hosts. Nematode parasitism within inland freshwater inhabiting populations was found to have a higher intensity and species richness than those inhabiting coastal estuarine systems. This pattern potentially correlates with the difference and diversity of prey available between inland freshwater and coastal estuarine habitats. Increased consumption of a diverse array of prey was also correlated with increased nematode intensity in larger alligators. Parasitic nematodes Dujardinascaris waltoni, Brevimulticaecum tenuicolle, Ortleppascaris antipini, Goezia sp., and Contracaecum sp. were present in alligators from both habitat types. Dujardinascaris waltoni, B. tenuicolle, and O. antipini had a significantly higher abundance among inland inhabiting alligators than hosts from estuarine populations. Our findings also suggest that host specific nematode parasites of alligators may have evolved to infect multiple intermediate hosts, particularly fishes, crabs, and turtles, perhaps in response to the opportunistic predatory behaviors of alligators. PMID:25426417

  13. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador.

    PubMed

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J

    2015-12-01

    Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579

  14. Anthracycline inhibits recruitment of hypoxia-inducible transcription factors and suppresses tumor cell migration and cardiac angiogenic response in the host.

    PubMed

    Tanaka, Tetsuhiro; Yamaguchi, Junna; Shoji, Kumi; Nangaku, Masaomi

    2012-10-12

    Anthracycline chemotherapeutic agents of the topoisomerase inhibitor family are widely used for the treatment of various tumors. Although targeted tumor tissues are generally situated in a hypoxic environment, the connection between efficacy of anthracycline agents and cellular hypoxia response has not been investigated in depth. Here, we report that doxorubicin (DXR) impairs the transcriptional response of the hypoxia-inducible factor (HIF) by inhibiting the binding of the HIF heterodimer to the consensus -RCGTG- enhancer element. This pleiotropic effect retarded migration of von Hippel-Lindau (VHL)-defective renal cell carcinoma and that of VHL-competent renal cell carcinoma in hypoxia. This effect was accompanied by a coordinated down-regulation of HIF target lysyl oxidase (LOX) family members LOX, LOX-like2 (LOXL2), and LOXL4. Furthermore, DXR suppressed HIF target genes in tumor xenografts, inhibited cardiac induction of HIF targets in rats with acute anemia, and impaired the angiogenic response in the isoproterenol-induced heart failure model, which may account for the clinical fragility of doxorubicin cardiomyopathy. Collectively, these findings highlight the impaired hypoxia response by anthracycline agents affecting both tumors and organs of the cancer host and offer a promising opportunity to develop HIF inhibitors using DXR as a chemical template. PMID:22908232

  15. Whose truffle is this? Distribution patterns of ectomycorrhizal fungal diversity in Tuber melanosporum brûlés developed in multi-host Mediterranean plant communities.

    PubMed

    Taschen, Elisa; Sauve, Mathieu; Taudiere, Adrien; Parlade, Javier; Selosse, Marc-André; Richard, Franck

    2015-08-01

    In the Mediterranean region, patches of vegetation recovering from disturbance and transiently dominated by shrubs produce one of the world's most prized fungi, the black truffle (Tuber melanosporum). In these successional plant communities, we have fragmentary knowledge of the distribution of T. melanosporum in space among ectomycorrhizal (ECM) host species and in time. Molecular identification of hosts (Restriction Fragment Length Polymorphism) and fungi (Internal Transcribed Spacer sequencing) and quantification of T. melanosporum mycelium (quantitative Polymerase Chain Reaction) were employed to evaluate the presence of T. melanosporum on four dominant ECM host species (Quercus ilex, Quercus  coccifera, Arbutus unedo, Cistus albidus) and the extent to which their respective ECM communities shared fungal diversity, over the course of development of truffle grounds, from recent unproductive brûlés to senescent ones where production has stopped. We found that truffle grounds host rich communities in which multi-host fungal species dominate in frequency. When considering both ECM tips and soil mycelia, we documented a dynamic and spatially heterogeneous pattern of T. melanosporum distribution in soils and a presence of ECM tips restricted to Q. ilex roots. This study advances our knowledge of the ecology of T. melanosporum, and provides insight into the extent of ECM fungal sharing among plant species that dominate Mediterranean landscapes. PMID:25522815

  16. Evolution of foot-and-mouth disease virus intra-sample sequence diversity during serial transmission in bovine hosts.

    PubMed

    Morelli, Marco J; Wright, Caroline F; Knowles, Nick J; Juleff, Nicholas; Paton, David J; King, Donald P; Haydon, Daniel T

    2013-01-01

    RNA virus populations within samples are highly heterogeneous, containing a large number of minority sequence variants which can potentially be transmitted to other susceptible hosts. Consequently, consensus genome sequences provide an incomplete picture of the within- and between-host viral evolutionary dynamics during transmission. Foot-and-mouth disease virus (FMDV) is an RNA virus that can spread from primary sites of replication, via the systemic circulation, to found distinct sites of local infection at epithelial surfaces. Viral evolution in these different tissues occurs independently, each of them potentially providing a source of virus to seed subsequent transmission events. This study employed the Illumina Genome Analyzer platform to sequence 18 FMDV samples collected from a chain of sequentially infected cattle. These data generated snap-shots of the evolving viral population structures within different animals and tissues. Analyses of the mutation spectra revealed polymorphisms at frequencies >0.5% at between 21 and 146 sites across the genome for these samples, while 13 sites acquired mutations in excess of consensus frequency (50%). Analysis of polymorphism frequency revealed that a number of minority variants were transmitted during host-to-host infection events, while the size of the intra-host founder populations appeared to be smaller. These data indicate that viral population complexity is influenced by small intra-host bottlenecks and relatively large inter-host bottlenecks. The dynamics of minority variants are consistent with the actions of genetic drift rather than strong selection. These results provide novel insights into the evolution of FMDV that can be applied to reconstruct both intra- and inter-host transmission routes. PMID:23452550

  17. Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes.

    PubMed

    Delwart, Eric; Li, Linlin

    2012-03-01

    The genomes of numerous circoviruses and distantly related circular ssDNA viruses encoding a rolling circle replication initiator protein (Rep) have been characterized from the tissues of mammals, fish, insects, plants (geminivirus and nanovirus), in human and animal feces, in an algae cell, and in diverse environmental samples. We review the genome organization, phylogenetic relationships and initial prevalence studies of cycloviruses, a proposed new genus in the Circoviridae family. Viral fossil rep sequences were also recently identified integrated on the chromosomes of mammals, frogs, lancelets, crustaceans, mites, gastropods, roundworms, placozoans, hydrozoans, protozoans, land plants, fungi, algae, and phytoplasma bacterias and their plasmids, reflecting the very wide past host range of rep bearing viruses. An ancient origin for viruses with Rep-encoding small circular ssDNA genomes, predating the diversification of eukaryotes, is discussed. The cellular hosts and pathogenicity of many recently described rep-containing circular ssDNA genomes remain to be determined. Future studies of the virome of single cell and multi-cellular eukaryotes are likely to further extend the known diversity and host-range of small rep-containing circular ssDNA viral genomes. PMID:22155583

  18. Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes

    PubMed Central

    Delwart, Eric; Li, Linlin

    2011-01-01

    The genomes of numerous circoviruses and distantly related circular DNA viruses encoding a rolling circle replication initiator protein (Rep) have been characterized from the tissues of mammals, fish, insects, and plants (geminivirus and nanovirus), human and animal feces, in an algae cell, and in diverse environmental samples. We review the genome organization, phylogenetic relationships and initial prevalence studies of cycloviruses, a proposed new genus in the Circoviridae family. Viral fossil rep sequences were also identified integrated on the chromosomes of mammals, frogs, lancelets, crustaceans, mites, gastropods, roundworms, placozoans, hydrozoans, protozoans, land plants, fungi, algae, and phytoplasma bacterias and their plasmids, reflecting their past host range. An ancient origin for viruses with rep-encoding single stranded small circular genomes, predating the diversification of eukaryotes, is discussed. The cellular hosts and pathogenicity of many recently described rep-containing circular genomes remain to be determined. Future studies of the virome of single cell and multi-cellular eukaryotes are likely to further extend the known diversity and host-range of small rep-containing circular viral genomes. PMID:22155583

  19. Cold-active bacteriophages from the Baltic Sea ice have diverse genomes and virus-host interactions.

    PubMed

    Senčilo, Ana; Luhtanen, Anne-Mari; Saarijärvi, Mikko; Bamford, Dennis H; Roine, Elina

    2015-10-01

    Heterotrophic bacteria are the major prokaryotic component of the Baltic Sea ice microbiome, and it is postulated that phages are among their major parasites. In this study, we sequenced the complete genomes of six earlier reported phage isolates from the Baltic Sea ice infecting Shewanella sp. and Flavobacterium sp. hosts as well as characterized the phage-host interactions. Based on the genome sequences, the six phages were classified into five new genera. Only two phages, 1/4 and 1/40, both infecting Shewanella sp. strains, showed significant nucleotide sequence similarity to each other and could be grouped into the same genus. These two phages are also related to Vibrio-specific phages sharing approximately 25% of the predicted gene products. Nevertheless, cross-titrations showed that the cold-active phages studied are host specific: none of the seven additionally tested, closely related Shewanella strains served as hosts for the phages. Adsorption experiments of two Shewanella phages, 1/4 and 3/49, conducted at 4 °C and at 15 °C revealed relatively fast adsorption rates that are, for example, comparable with those of phages infective in mesophilic conditions. Despite the small number of Shewanella phages characterized here, we could already find different types of phage-host interactions including a putative abortive infection. PMID:25156651

  20. Host-plant diversity of the European corn borer Ostrinia nubilalis: what value for sustainable transgenic insecticidal Bt maize?

    PubMed

    Bourguet, D; Bethenod, M T; Trouvé, C; Viard, F

    2000-06-22

    The strategies proposed for delaying the development of resistance to the Bacillus thuringiensis toxins produced by transgenic maize require high levels of gene flow between individuals feeding on transgenic and refuge plants. The European corn borer Ostrinia nubilalis (Hübner) may be found on several host plants, which may act as natural refuges. The genetic variability of samples collected on sagebrush (Artemisia sp.), hop (Humulus lupulus L.) and maize (Zea mays L.) was studied by comparing the allozyme frequencies for six polymorphic loci. We found a high level of gene flow within and between samples collected on the same host plant. The level of gene flow between the sagebrush and hop insect samples appeared to be sufficiently high for these populations to be considered a single genetic panmictic unit. Conversely, the samples collected on maize were genetically different from those collected on sagebrush and hop. Three of the six loci considered displayed greater between-host-plant than within-host-plant differentiation in comparisons of the group of samples collected on sagebrush or hop with the group of samples collected on maize. This indicates that either there is genetic isolation of the insects feeding on maize or that there is host-plant divergent selection at these three loci or at linked loci. These results have important implications for the potential sustainability of transgenic insecticidal maize. PMID:10902683

  1. Evolutionary co-variation of host and parasite diversity-the first test of Eichler's rule using parasitic lice (Insecta: Phthiraptera).

    PubMed

    Vas, Zoltán; Csorba, Gábor; Rózsa, Lajos

    2012-07-01

    The taxonomic richness of lice (Phthiraptera) varies considerably among their avian and mammalian hosts. Previous studies explored some factors shaping louse diversity; however, the so-called Eichler's rule-according to which taxonomic richness of parasites co-varies with that of their hosts-has never been tested. Our study incorporates all families of birds and mammals and the whole order of lice to test this co-variation, thus we present the widest taxonomic range to test any correlates of louse richness. Louse richness data were controlled for uneven sampling effort. We used the method of independent contrasts to control for phylogenetic effects. We found a strong correlation between the species richness of avian and mammalian families and generic richness of their lice. We discuss some alternative macroevolutionary and macroecological hypotheses that may explain this phenomenon that may well be a general feature of parasitism and it seems possible that this effect contribute considerably to global biodiversity. PMID:22350674

  2. Visualizing Intercultural Literacy: Engaging Critically with Diversity and Migration in the Classroom through an Image-Based Approach

    ERIC Educational Resources Information Center

    Arizpe, Evelyn; Bagelman, Caroline; Devlin, Alison M.; Farrell, Maureen; McAdam, Julie E.

    2014-01-01

    Accessible forms of language, learning and literacy, as well as strategies that support intercultural communication are needed for the diverse population of refugee, asylum seeker and migrant children within schools. The research project "Journeys from Images to Words" explored the potential of visual texts to address these issues.…

  3. Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes.

    PubMed Central

    Krueger, D M; Cavanaugh, C M

    1997-01-01

    The bacterial endosymbionts of two species of the bivalve genus Solemya from the Pacific Ocean, Solemya terraeregina and Solemya pusilla, were characterized. Prokaryotic cells resembling gram-negative bacteria were observed in the gills of both host species by transmission electron microscopy. The ultrastructure of the symbiosis in both host species is remarkably similar to that of all previously described Solemya spp. By using sequence data from 16S rRNA, the identity and evolutionary origins of the S. terraeregina and S. pusilla symbionts were also determined. Direct sequencing of PCR-amplified products from host gill DNA with primers specific for Bacteria 16S rRNA genes gave a single, unambiguous sequence for each of the two symbiont species. In situ hybridization with symbiont-specific oligonucleotide probes confirmed that these gene sequences belong to the bacteria residing in the hosts gills. Phylogenetic analyses of the 16S rRNA gene sequences by both distance and parsimony methods identify the S. terraeregina and S. pusilla symbionts as members of the gamma subdivision of the Proteobacteria. In contrast to symbionts of other bivalve families, which appear to be monophyletic, the S. terraeregina and S. pusilla symbionts share a more recent common ancestry with bacteria associating endosymbiotically with bivalves of the superfamily Lucinacea than with other Solemya symbionts (host species S. velum, S. occidentalis, and S. reidi). Overall, the 16S rRNA gene sequence data suggest that the symbionts of Solemya hosts represent at least two distinct bacterial lineages within the gamma-Proteobacteria. While it is increasingly clear that all extant species of Solemya live in symbiosis with specific bacteria, the associations appear to have multiple evolutionary origins. PMID:8979342

  4. Diversity and geographical distribution of Flavobacterium psychrophilum isolates and their phages: patterns of susceptibility to phage infection and phage host range.

    PubMed

    Castillo, Daniel; Christiansen, Rói Hammershaimb; Espejo, Romilio; Middelboe, Mathias

    2014-05-01

    Flavobacterium psychrophilum is an important fish pathogen worldwide that causes cold water disease (CWD) or rainbow trout fry syndrome (RTFS). Phage therapy has been suggested as an alternative method for the control of this pathogen in aquaculture. However, effective use of bacteriophages in disease control requires detailed knowledge about the diversity and dynamics of host susceptibility to phage infection. For this reason, we examined the genetic diversity of 49 F. psychrophilum strains isolated in three different areas (Chile, Denmark, and USA) through direct genome restriction enzyme analysis (DGREA) and their susceptibility to 33 bacteriophages isolated in Chile and Denmark, thus covering large geographical (>12,000 km) and temporal (>60 years) scales of isolation. An additional 40 phage-resistant isolates obtained from culture experiments after exposure to specific phages were examined for changes in phage susceptibility against the 33 phages. The F. psychrophilum and phage populations isolated from Chile and Denmark clustered into geographically distinct groups with respect to DGREA profile and host range, respectively. However, cross infection between Chilean phage isolates and Danish host isolates and vice versa was observed. Development of resistance to certain bacteriophages led to susceptibility to other phages suggesting that "enhanced infection" is potentially an important cost of resistance in F. psychrophilum, possibly contributing to the observed co-existence of phage-sensitive F. psychrophilum strains and lytic phages across local and global scales. Overall, our results showed that despite the identification of local communities of phages and hosts, some key properties determining phage infection patterns seem to be globally distributed. PMID:24557506

  5. Genetic Diversity and Host Range of Rhizobia Nodulating Lotus tenuis in Typical Soils of the Salado River Basin (Argentina)▿ †

    PubMed Central

    Estrella, María Julia; Muñoz, Socorro; Soto, María José; Ruiz, Oscar; Sanjuán, Juan

    2009-01-01

    A total of 103 root nodule isolates were used to estimate the diversity of bacteria nodulating Lotus tenuis in typical soils of the Salado River Basin. A high level of genetic diversity was revealed by repetitive extragenic palindromic PCR, and 77 isolates with unique genomic fingerprints were further differentiated into two clusters, clusters A and B, after 16S rRNA restriction fragment length polymorphism analysis. Cluster A strains appeared to be related to the genus Mesorhizobium, whereas cluster B was related to the genus Rhizobium. 16S rRNA sequence and phylogenetic analysis further supported the distribution of most of the symbiotic isolates in either Rhizobium or Mesorhizobium: the only exception was isolate BA135, whose 16S rRNA gene was closely related to the 16S rRNA gene of the genus Aminobacter. Most Mesorhizobium-like isolates were closely related to Mesorhizobium amorphae, Mesorhizobium mediterraneum, Mesorhizobium tianshanense, or the broad-host-range strain NZP2037, but surprisingly few isolates grouped with Mesorhizobium loti type strain NZP2213. Rhizobium-like strains were related to Rhizobium gallicum, Rhizobium etli, or Rhizobium tropici, for which Phaseolus vulgaris is a common host. However, no nodC or nifH genes could be amplified from the L. tenuis isolates, suggesting that they have rather divergent symbiosis genes. In contrast, nodC genes from the Mesorhizobium and Aminobacter strains were closely related to nodC genes from narrow-host-range M. loti strains. Likewise, nifH gene sequences were very highly conserved among the Argentinian isolates and reference Lotus rhizobia. The high levels of conservation of the nodC and nifH genes suggest that there was a common origin of the symbiosis genes in narrow-host-range Lotus symbionts, supporting the hypothesis that both intrageneric horizontal gene transfer and intergeneric horizontal gene transfer are important mechanisms for the spread of symbiotic capacity in the Salado River Basin. PMID

  6. Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombination and reassortment of viral genomes are major processes contributing to emerging viruses. These processes are especially significant in long-term persistent infections where multiple viral genotypes co-replicate in a single host, generating abundant genotypic variants, some of which may ...

  7. Untangling the Diverse Interior and Multiple Exterior Guest Interactions of a Supramolecular Host by the Simultaneous Analysis of Complementary Observables.

    PubMed

    Sgarlata, Carmelo; Raymond, Kenneth N

    2016-07-01

    The entropic and enthalpic driving forces for encapsulation versus sequential exterior guest binding to the [Ga4L6](12-) supramolecular host in solution are very different, which significantly complicates the determination of these thermodynamic parameters. The simultaneous use of complementary techniques, such as NMR, UV-vis, and isothermal titration calorimetry, enables the disentanglement of such multiple host-guest interactions. Indeed, data collected by each technique measure different components of the host-guest equilibria and together provide a complete picture of the solution thermodynamics. Unfortunately, commercially available programs do not allow for global analysis of different physical observables. We thus resorted to a novel procedure for the simultaneous refinement of multiple parameters (ΔG°, ΔH°, and ΔS°) by treating different observables through a weighted nonlinear least-squares analysis of a constrained model. The refinement procedure is discussed for the multiple binding of the Et4N(+) guest, but it is broadly applicable to the deconvolution of other intricate host-guest equilibria. PMID:27244346

  8. Host plant resistance to megacopta cribraria (Hemiptera: Plataspidae) in diverse soybean germplasm maturity groups V through VIII

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initially discovered in Georgia in 2009, the exotic invasive plataspid, Megacopta cribraria Fabricius has become a serious pest of soybean. Managing M. cribraria in soybean typically involves the application of broad-spectrum insecticides. Soybean host plant resistance is an attractive alternative...

  9. Diversity in destinations, routes and timing of small adult and sub-adult striped bass Morone saxatilis on their southward autumn migration

    USGS Publications Warehouse

    Mather, Martha E.; Finn, John T.; Pautzke, Sarah M.; Fox, Dewayne A.; Savoy, Tom; Brundage, Harold M., III; Deegan, Linda A.; Muth, Robert M.

    2010-01-01

    Almost three-quarters of the 46 young adult and sub-adult striped bass Morone saxatilis that were acoustically tagged in Plum Island Estuary, Massachusetts, U.S.A., in the summer of 2006 were detected in one or more southern coastal arrays during their autumn migration. On the basis of the trajectories along which these M. saxatilis moved from feeding to overwintering areas, three migratory groups emerged. After leaving Plum Island Estuary, about half of the fish were detected only in a mid-latitude array, Long Island Sound. The other half of the tagged fish were detected during autumn and winter in a more southern array, the Delaware Estuary. This latter group of fish may have used two routes. Some travelled to the Delaware Estuary through Long Island Sound while other fish may have taken a second, more direct, coastal route that did not include Long Island Sound. Consequently, a seemingly homogeneous group of fish tagged at the same time in the same non-natal feeding location exhibited a diversity of southward movement patterns that could affect population-level processes. These three groups that differed in overwintering location and migration route could be movement contingents with migratory connectivity.

  10. Macrophage Migration Inhibitory Factor (MIF) of the protozoan parasite Eimeria influences the components of the immune system of its host, the chicken

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is a soluble factor produced by sensitized T lymphocytes that inhibits the random migration of macrophages. Homologues of MIF from invertebrates have been identified making it an interesting molecule from a functional perspective. In the present study, ...

  11. Molecular diversity of the microsporidium Kneallhazzia solenopsae reveals an expanded host range among fire ants in North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kneallhazia solenopsae is a pathogenic microsporidium of the fire ants Solenopsis invicta and Solenopis richteri in South America and the USA. In this study we analyzed the presence and molecular diversity of K. solenopsae in fire ants from North and South America. We reported the first empirical ev...

  12. Host Resistance to Mirafiori Lettuce Big-vein Virus and Virus Sequence Diversity in the Western United States.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Big vein is an economically damaging disease of lettuce (Lactuca sativa) caused by the Olpidium brassicae vectored Mirafiori lettuce big-vein virus (MLBVV). Although big vein is a perennial problem in the US, the extent of MLBVV infection and diversity was unknown. Lettuce cultivars partially resist...

  13. Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity.

    PubMed

    Weng, Ziming; Barthelson, Roger; Gowda, Siddarame; Hilf, Mark E; Dawson, William O; Galbraith, David W; Xiong, Zhongguo

    2007-01-01

    Recombination and reassortment of viral genomes are major processes contributing to the creation of new, emerging viruses. These processes are especially significant in long-term persistent infections where multiple viral genotypes co-replicate in a single host, generating abundant genotypic variants, some of which may possess novel host-colonizing and pathogenicity traits. In some plants, successive vegetative propagation of infected tissues and introduction of new genotypes of a virus by vector transmission allows for viral populations to increase in complexity for hundreds of years allowing co-replication and subsequent recombination of the multiple viral genotypes. Using a resequencing microarray, we examined a persistent infection by a Citrus tristeza virus (CTV) complex in citrus, a vegetatively propagated, globally important fruit crop, and found that the complex comprised three major and a number of minor genotypes. Subsequent deep sequencing analysis of the viral population confirmed the presence of the three major CTV genotypes and, in addition, revealed that the minor genotypes consisted of an extraordinarily large number of genetic variants generated by promiscuous recombination between the major genotypes. Further analysis provided evidence that some of the recombinants underwent subsequent divergence, further increasing the genotypic complexity. These data demonstrate that persistent infection of multiple viral genotypes within a host organism is sufficient to drive the large-scale production of viral genetic variants that may evolve into new and emerging viruses. PMID:17878952

  14. Changing of the Guard: Migrating 16S and ITS Diversity Profiling from 454 Onto Alternate NGS Platforms

    PubMed Central

    McNally, R.; Johnson, M.; Kasinadhuni, N.; Tinning, M.; McGrath, K.

    2014-01-01

    The Australian Genome Research Facility (AGRF) currently operates a microbial diversity profiling service on the 454 GS-FLX platform, targeting various regions of 16S and ITS microbial genes. The recent announcement by Roche to discontinue support prompted us to investigate how this service can be transitioned to alternate NGS platforms. The objective of this study was to evaluate the accuracy and reproducibility of each platform/target combination for both artificial control samples (known gDNA pools) and natural microbial community samples (soils). Replicate PCR amplicons were generated for several microbial and fungal regions (16S and ITS), and sequenced on the GS-FLX, MiSeq and Ion Torrent PGM platforms. The resulting sequences were identified at different taxonomic levels (phylum to species) and the results for each sample, platform and target compiled. This comparison revealed distinct and reproducible differences between the same samples run on different platforms. While no platform was able to perfectly describe the proportions of the artificial pooled sample, each one showed a high level of reproducibility (< 1% variance). This suggests that PCR bias during amplification gives rise to consistent biases in resulting microbial distributions and confirms this method as a useful tool for comparing samples and monitoring changes, but demonstrate its weakness for absolute quantitation. Between platforms, the long reads of the GS-FLX gave the greatest resolution for microbial identification, followed by the MiSeq. Despite the shorter amplicon size, the ion torrent was still able to provide high resolution profiles of the microbial samples. These results show that currently, the 454 still provides higher resolution data sets for microbial diversity than other available platforms. However, as read lengths improve and error rates decrease, these alternate platforms should provide a suitable transition pathway for researchers interested in profiling microbial

  15. Y-chromosome diversity suggests southern origin and Paleolithic backwave migration of Austro-Asiatic speakers from eastern Asia to the Indian subcontinent

    PubMed Central

    Zhang, Xiaoming; Liao, Shiyu; Qi, Xuebin; Liu, Jiewei; Kampuansai, Jatupol; Zhang, Hui; Yang, Zhaohui; Serey, Bun; Sovannary, Tuot; Bunnath, Long; Seang Aun, Hong; Samnom, Ham; Kangwanpong, Daoroong; Shi, Hong; Su, Bing

    2015-01-01

    Analyses of an Asian-specific Y-chromosome lineage (O2a1-M95)—the dominant paternal lineage in Austro-Asiatic (AA) speaking populations, who are found on both sides of the Bay of Bengal—led to two competing hypothesis of this group’s geographic origin and migratory routes. One hypothesis posits the origin of the AA speakers in India and an eastward dispersal to Southeast Asia, while the other places an origin in Southeast Asia with westward dispersal to India. Here, we collected samples of AA-speaking populations from mainland Southeast Asia (MSEA) and southern China, and genotyped 16 Y-STRs of 343 males who belong to the O2a1-M95 lineage. Combining our samples with previous data, we analyzed both the Y-chromosome and mtDNA diversities. We generated a comprehensive picture of the O2a1-M95 lineage in Asia. We demonstrated that the O2a1-M95 lineage originated in the southern East Asia among the Daic-speaking populations ~20–40 thousand years ago and then dispersed southward to Southeast Asia after the Last Glacial Maximum before moving westward to the Indian subcontinent. This migration resulted in the current distribution of this Y-chromosome lineage in the AA-speaking populations. Further analysis of mtDNA diversity showed a different pattern, supporting a previously proposed sex-biased admixture of the AA-speaking populations in India. PMID:26482917

  16. Y-chromosome diversity suggests southern origin and Paleolithic backwave migration of Austro-Asiatic speakers from eastern Asia to the Indian subcontinent.

    PubMed

    Zhang, Xiaoming; Liao, Shiyu; Qi, Xuebin; Liu, Jiewei; Kampuansai, Jatupol; Zhang, Hui; Yang, Zhaohui; Serey, Bun; Sovannary, Tuot; Bunnath, Long; Seang Aun, Hong; Samnom, Ham; Kangwanpong, Daoroong; Shi, Hong; Su, Bing

    2015-01-01

    Analyses of an Asian-specific Y-chromosome lineage (O2a1-M95)--the dominant paternal lineage in Austro-Asiatic (AA) speaking populations, who are found on both sides of the Bay of Bengal--led to two competing hypothesis of this group's geographic origin and migratory routes. One hypothesis posits the origin of the AA speakers in India and an eastward dispersal to Southeast Asia, while the other places an origin in Southeast Asia with westward dispersal to India. Here, we collected samples of AA-speaking populations from mainland Southeast Asia (MSEA) and southern China, and genotyped 16 Y-STRs of 343 males who belong to the O2a1-M95 lineage. Combining our samples with previous data, we analyzed both the Y-chromosome and mtDNA diversities. We generated a comprehensive picture of the O2a1-M95 lineage in Asia. We demonstrated that the O2a1-M95 lineage originated in the southern East Asia among the Daic-speaking populations ~20-40 thousand years ago and then dispersed southward to Southeast Asia after the Last Glacial Maximum before moving westward to the Indian subcontinent. This migration resulted in the current distribution of this Y-chromosome lineage in the AA-speaking populations. Further analysis of mtDNA diversity showed a different pattern, supporting a previously proposed sex-biased admixture of the AA-speaking populations in India. PMID:26482917

  17. Clan, language, and migration history has shaped genetic diversity in Haida and Tlingit populations from Southeast Alaska.

    PubMed

    Schurr, Theodore G; Dulik, Matthew C; Owings, Amanda C; Zhadanov, Sergey I; Gaieski, Jill B; Vilar, Miguel G; Ramos, Judy; Moss, Mary Beth; Natkong, Francis

    2012-07-01

    The linguistically distinctive Haida and Tlingit tribes of Southeast Alaska are known for their rich material culture, complex social organization, and elaborate ritual practices. However, much less is known about these tribes from a population genetic perspective. For this reason, we analyzed mtDNA and Y-chromosome variation in Haida and Tlingit populations to elucidate several key issues pertaining to the history of this region. These included the genetic relationships of Haida and Tlingit to other indigenous groups in Alaska and Canada; the relationship between linguistic and genetic data for populations assigned to the Na-Dene linguistic family, specifically, the inclusion of Haida with Athapaskan, Eyak, and Tlingit in the language family; the possible influence of matrilineal clan structure on patterns of genetic variation in Haida and Tlingit populations; and the impact of European entry into the region on the genetic diversity of these indigenous communities. Our analysis indicates that, while sharing a "northern" genetic profile, the Haida and the Tlingit are genetically distinctive from each other. In addition, Tlingit groups themselves differ across their geographic range, in part due to interactions of Tlingit tribes with Athapaskan and Eyak groups to the north. The data also reveal a strong influence of maternal clan identity on mtDNA variation in these groups, as well as the significant influence of non-native males on Y-chromosome diversity. These results yield new details about the histories of the Haida and Tlingit tribes in this region. PMID:22549307

  18. Clan, Language, and Migration History Has Shaped Genetic Diversity in Haida and Tlingit Populations From Southeast Alaska

    PubMed Central

    Schurr, Theodore G.; Dulik, Matthew C.; Owings, Amanda C.; Zhadanov, Sergey I.; Gaieski, Jill B.; Vilar, Miguel G.; Ramos, Judy; Moss, Mary Beth; Natkong, Francis

    2013-01-01

    The linguistically distinctive Haida and Tlingit tribes of Southeast Alaska are known for their rich material culture, complex social organization, and elaborate ritual practices. However, much less is known about these tribes from a population genetic perspective. For this reason, we analyzed mtDNA and Y-chromosome variation in Haida and Tlingit populations to elucidate several key issues pertaining to the history of this region. These included the genetic relationships of Haida and Tlingit to other indigenous groups in Alaska and Canada; the relationship between linguistic and genetic data for populations assigned to the Na-Dene linguistic family, specifically, the inclusion of Haida with Athapaskan, Eyak, and Tlingit in the language family; the possible influence of matrilineal clan structure on patterns of genetic variation in Haida and Tlingit populations; and the impact of European entry into the region on the genetic diversity of these indigenous communities. Our analysis indicates that, while sharing a “northern” genetic profile, the Haida and the Tlingit are genetically distinctive from each other. In addition, Tlingit groups themselves differ across their geographic range, in part due to interactions of Tlingit tribes with Athapaskan and Eyak groups to the north. The data also reveal a strong influence of maternal clan identity on mtDNA variation in these groups, as well as the significant influence of non-native males on Y-chromosome diversity. These results yield new details about the histories of the Haida and Tlingit tribes in this region. PMID:22549307

  19. High regional genetic diversity and lack of host-specificity in Ostrinia nubilalis (Lepidoptera: Crambidae) as revealed by mtDNA variation.

    PubMed

    Piwczyński, M; Pabijan, M; Grzywacz, A; Glinkowski, W; Bereś, P K; Buszko, J

    2016-08-01

    The European corn borer (Ostrinia nubilalis) infests a wide array of host plants and is considered one of the most serious pests of maize in Europe. Recent studies suggest that individuals feeding on maize in Europe should be referred to O. nubilalis (sensu nov.), while those infesting dicots as Ostrinia scapulalis (sensu nov.). We test if the clear genetic distinctiveness among individuals of O. nubilalis living on maize vs. dicots is tracked by mitochondrial DNA (mtDNA). We used fragments of COI and COII genes of 32 individuals traditionally recognized as O. nubilalis collected on three host plants, maize, mugwort and hop, growing in different parts of Poland. In addition, we reconstructed the mtDNA phylogeny of Ostrinia species based on our data and sequences retrieved from GenBank to assess host and/or biogeographic patterns. We also compared haplotype variation found in Poland (east-central Europe) with other regions (Anatolia, Eastern Europe, Balkans, Far East, North America). Our study showed high mtDNA diversity of O. nubilalis in Poland in comparison with other regions and revealed rare haplotypes likely of Asian origin. We did not find distinct mtDNA haplotypes in larvae feeding on maize vs. dicotyledonous plants. Phylogenetic analyses showed an apparent lack of mtDNA divergence among putatively distinct lineages belonging to the O. nubilalis group as identical haplotypes are shared by Asian and European individuals. We argue that human-mediated dispersal, hybridization and sporadic host jumps are likely responsible for the lack of a geographic pattern in mtDNA variation. PMID:27019346

  20. The review of "The Oestrid Flies: Biology, host-parasite relationships, impact and management"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Oestrid flies are a diverse group of parasitic insects whose larval forms are adapted for a parasitic life-style. Their armament of spines and mouth hooks, enables their migration within host tissues and provides for beastly images as depicted on the front cover of the book and within the text....

  1. Genetic diversity and signatures of selection of drug resistance in Plasmodium populations from both human and mosquito hosts in continental Equatorial Guinea

    PubMed Central

    2013-01-01

    Background In Plasmodium, the high level of genetic diversity and the interactions established by co-infecting parasite populations within the same host may be a source of selection on pathogen virulence and drug resistance. As different patterns have already been described in humans and mosquitoes, parasite diversity and population structure should be studied in both hosts to properly assess their effects on infection and transmission dynamics. This study aimed to characterize the circulating populations of Plasmodium spp and Plasmodium falciparum from a combined set of human blood and mosquito samples gathered in mainland Equatorial Guinea. Further, the origin and evolution of anti-malarial resistance in this area, where malaria remains a major public health problem were traced. Methods Plasmodium species infecting humans and mosquitoes were identified by nested-PCR of chelex-extracted DNA from dried blood spot samples and mosquitoes. Analysis of Pfmsp2 gene, anti-malarial-resistance associated genes, Pfdhps, Pfdhfr, Pfcrt and Pfmdr1, neutral microsatellites (STR) loci and Pfdhfr and Pfdhps flanking STR was undertaken to evaluate P. falciparum diversity. Results Prevalence of infection remains high in mainland Equatorial Guinea. No differences in parasite formula or significant genetic differentiation were seen in the parasite populations in both human and mosquito samples. Point mutations in all genes associated with anti-malarial resistance were highly prevalent. A high prevalence was observed for the Pfdhfr triple mutant in particular, associated with pyrimethamine resistance. Analysis of Pfdhps and Pfdhfr flanking STR revealed a decrease in the genetic diversity. This finding along with multiple independent introductions of Pfdhps mutant haplotypes suggest a soft selective sweep and an increased differentiation at Pfdhfr flanking microsatellites hints a model of positive directional selection for this gene. Conclusions Chloroquine is no longer recommended for

  2. Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China.

    PubMed

    Li, Ling-Fei; Li, Tao; Zhang, Yan; Zhao, Zhi-Wei

    2010-03-01

    The communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of Bothriochloa pertusa, Cajanus cajan and Heteropogon contortus in a fallow land (FL) and an undisturbed land (UL) were characterized. The large subunit rDNA genes of AMF from roots were amplified and cloned. A total of 2353 clones were screened by restriction fragment length polymorphism, and 428 clones were subsequently sequenced. A total of 393 AMF sequences, which were grouped into 100 operational taxonomic units, were obtained. Phylogenetic analysis revealed that the AMF sequences belonged to Glomus, Acaulospora and Scutellospora, and that Glomus was the dominant genus. Of the 393 AMF sequences, 81% were novel. The diversity of AMF colonizing the same plant species was higher in the UL than in the FL, which confirmed strongly from the molecular evidence that soil disturbance reduced AMF population and species richness. The results revealed that AMF communities were significantly different among host-plant species and between the two habitats. The similarity of AMF communities colonizing different plant species within a habitat was higher than that of the same plant species from different habitats. The molecular evidence supported our previous hypothesis based on morphological analyses that AMF communities were more influenced by habitats compared with host preference. PMID:20015335

  3. Migration and survival of gamma-irradiated Schistosoma mansoni larvae and the duration of host-parasite contact in relation to the induction of resistance in mice

    SciTech Connect

    Mangold, B.L.; Dean, D.A.

    1984-01-01

    The migration in mice of 20-, 50-, and 90-krad /sup 60/Co-irradiated Schistosoma mansoni larvae, biosynthetically radioisotope labeled with /sup 75/Se-selenomethionine, was evaluated by autoradiography of compressed tissues and compared to the migration of non-irradiated 75 Se-labeled larvae. By day 8 over 90% of both non-irradiated and 20 krad-irradiated organisms were located in the lungs. In contrast to non-irradiated organisms, however, only a small proportion of 20-krad organisms migrated to the liver. The delay in migration between skin and lungs was more pronounced with 50-krad-irradiated schistosomula. No more than an occasional 50-krad-irradiated organism was ever detected in the liver. In three experiments, over 85% of the 90-krad-irradiated organisms were retained in the skin; in a fourth experiment about half of the 90-krad-irradiated organisms migrated as far as the lungs. Only an occasional 90-krad organism was ever detected in the liver. In three experiments, over 85% of the 90 Krad.-irradiated organisms were retained in the skin, in a fourth experiment about half of the 90 Krad.-irradiated organisms migrated as far as the lungs. Only an occasional 90 Krad. organism was ever detected in the liver. Removal of the skin exposure site within the first 4 days of immunization with either 50- or 90-krad-irradiated cercariae completely blocked the induction of resistance. Removal between the 4th and the 6th days gave variable results.

  4. Occurrence of diarrheagenic virulence genes and genetic diversity in Escherichia coli isolates from fecal material of various avian hosts in British Columbia, Canada.

    PubMed

    Chandran, Abhirosh; Mazumder, Asit

    2014-03-01

    Contamination of surface water by fecal microorganisms originating from human and nonhuman sources is a public health concern. In the present study, Escherichia coli isolates (n = 412) from the feces of various avian host sources were screened for various virulence genes: stx1 and stx2 (Shiga toxin-producing E. coli [STEC]), eae (enteropathogenic E. coli [EPEC]), est-h, est-p, and elt (encoding heat-stable toxin [ST] variants STh and STp and heat-labile toxin [LT], respectively) (enterotoxigenic E. coli [ETEC]), and ipaH (enteroinvasive E. coli [EIEC]). None of the isolates were found to be positive for stx1, while 23% (n = 93) were positive for only stx2, representing STEC, and 15% (n = 63) were positive for only eae, representing EPEC. In addition, five strains obtained from pheasant were positive for both stx2 and eae and were confirmed as non-O157 by using an E. coli O157 rfb (rfbO157) TaqMan assay. Isolates positive for the virulence genes associated with ETEC and EIEC were not detected in any of the hosts. The repetitive element palindromic PCR (rep-PCR) fingerprint analysis identified 143 unique fingerprints, with an overall Shannon diversity index of 2.36. Multivariate analysis of variance (MANOVA) showed that the majority of the STEC and EPEC isolates were genotypically distinct from nonpathogenic E. coli and clustered independently. MANOVA analysis also revealed spatial variation among the E. coli isolates, since the majority of the isolates clustered according to the sampling locations. Although the presence of virulence genes alone cannot be used to determine the pathogenicity of strains, results from this study show that potentially pathogenic STEC and EPEC strains can be found in some of the avian hosts studied and may contaminate surface water and potentially impact human health. PMID:24441159

  5. Genetic Diversity of Toxoplasma gondii Strains from Different Hosts and Geographical Regions by Sequence Analysis of GRA20 Gene.

    PubMed

    Ning, Hong-Rui; Huang, Si-Yang; Wang, Jin-Lei; Xu, Qian-Ming; Zhu, Xing-Quan

    2015-06-01

    Toxoplasma gondii is a eukaryotic parasite of the phylum Apicomplexa, which infects all warm-blood animals, including humans. In the present study, we examined sequence variation in dense granule 20 (GRA20) genes among T. gondii isolates collected from different hosts and geographical regions worldwide. The complete GRA20 genes were amplified from 16 T. gondii isolates using PCR, sequence were analyzed, and phylogenetic reconstruction was analyzed by maximum parsimony (MP) and maximum likelihood (ML) methods. The results showed that the complete GRA20 gene sequence was 1,586 bp in length among all the isolates used in this study, and the sequence variations in nucleotides were 0-7.9% among all strains. However, removing the type III strains (CTG, VEG), the sequence variations became very low, only 0-0.7%. These results indicated that the GRA20 sequence in type III was more divergence. Phylogenetic analysis of GRA20 sequences using MP and ML methods can differentiate 2 major clonal lineage types (type I and type III) into their respective clusters, indicating the GRA20 gene may represent a novel genetic marker for intraspecific phylogenetic analyses of T. gondii. PMID:26174830

  6. Genetic Diversity of Toxoplasma gondii Strains from Different Hosts and Geographical Regions by Sequence Analysis of GRA20 Gene

    PubMed Central

    Ning, Hong-Rui; Huang, Si-Yang; Wang, Jin-Lei; Xu, Qian-Ming; Zhu, Xing-Quan

    2015-01-01

    Toxoplasma gondii is a eukaryotic parasite of the phylum Apicomplexa, which infects all warm-blood animals, including humans. In the present study, we examined sequence variation in dense granule 20 (GRA20) genes among T. gondii isolates collected from different hosts and geographical regions worldwide. The complete GRA20 genes were amplified from 16 T. gondii isolates using PCR, sequence were analyzed, and phylogenetic reconstruction was analyzed by maximum parsimony (MP) and maximum likelihood (ML) methods. The results showed that the complete GRA20 gene sequence was 1,586 bp in length among all the isolates used in this study, and the sequence variations in nucleotides were 0-7.9% among all strains. However, removing the type III strains (CTG, VEG), the sequence variations became very low, only 0-0.7%. These results indicated that the GRA20 sequence in type III was more divergence. Phylogenetic analysis of GRA20 sequences using MP and ML methods can differentiate 2 major clonal lineage types (type I and type III) into their respective clusters, indicating the GRA20 gene may represent a novel genetic marker for intraspecific phylogenetic analyses of T. gondii. PMID:26174830

  7. The application of single strand conformation polymorphism (SSCP) analysis in determining Hepatitis E virus intra-host diversity.

    PubMed

    Černi, S; Prpić, J; Jemeršić, L; Škorić, D

    2015-09-01

    Genetic heterogeneity of RNA populations influences virus pathogenesis, epidemiology and evolution. Therefore, accurate information regarding virus genetic structure is highly important for both diagnostic and scientific purposes. For the Hepatitis E virus (HEV), the causal agent of hepatitis in humans, the intra-host population structure has been poorly investigated, mainly using the less sensitive RFLP-based approach. The objective of this study was to assess the suitability and the accuracy of single strand conformation polymorphism (SSCP) analysis, a well-established tool in genetic variation research, for the characterization of HEV quasispecies. The analysis was conducted on 50 clones of five swine isolates and 30 clones of three human HEV isolates. To identify and quantify the sequence variants present in each HEV isolate, 348bp long fragments of the amplified conserved ORF2 region were separated by cloning. Ten clones per isolate were subjected to SSCP and sequenced in a parallel experiment. The results show a high correlation of SSCP haplotype profiling with the sequencing results, confirming the sensitivity and reliability of this simple, rapid and low cost approach in the characterization of HEV quasispecies. PMID:25920567

  8. Endosymbiotic and Host Proteases in the Digestive Tract of the Invasive Snail Pomacea canaliculata: Diversity, Origin and Characterization

    PubMed Central

    Godoy, Martín S.; Castro-Vasquez, Alfredo; Vega, Israel A.

    2013-01-01

    Digestive proteases of the digestive tract of the apple snail Pomacea canaliculata were studied. Luminal protease activity was found in the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Several protease bands and their apparent molecular weights were identified in both tissue extracts and luminal contents by gel zymography: (1) a 125 kDa protease in salivary gland extracts and in the crop content; (2) a 30 kDa protease throughout all studied luminal contents and in extracts of the midgut gland and of the endosymbionts isolated from this gland; (3) two proteases of 145 and 198 kDa in the coiled gut content. All these proteases were inhibited by aprotinin, a serine-protease inhibitor, and showed maximum activity between 30°C and 35°C and pH between 8.5 and 9.5. Tissue L-alanine-N-aminopeptidase activity was determined in the wall of the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Our findings show that protein digestion in P. canaliculata is carried out through a battery of diverse proteases originated from the salivary glands and the endosymbionts lodged in the midgut gland and by proteases of uncertain origin that occur in the coiled gut lumen. PMID:23818959

  9. Effects of season and host physiological state on the diversity, density, and activity of the arctic ground squirrel cecal microbiota.

    PubMed

    Stevenson, Timothy J; Duddleston, Khrystyne N; Buck, C Loren

    2014-09-01

    We examined the seasonal changes of the cecal microbiota of captive arctic ground squirrels (Urocitellus parryii) by measuring microbial diversity and composition, total bacterial density and viability, and short-chain fatty acid concentrations at four sample periods (summer, torpor, interbout arousal, and posthibernation). Abundance of Firmicutes was lower, whereas abundances of Bacteroidetes, Verrucomicrobia, and Proteobacteria were higher during torpor and interbout arousal than in summer. Bacterial densities and percentages of live bacteria were significantly higher in summer than during torpor and interbout arousal. Likewise, total short-chain fatty acid concentrations were significantly greater during summer than during torpor and interbout arousal. Concentrations of individual short-chain fatty acids varied across sample periods, with butyrate concentrations higher and acetate concentrations lower during summer than at all other sample periods. Characteristics of the gut community posthibernation were more similar to those during torpor and interbout arousal than to those during summer. However, higher abundances of the genera Bacteroides and Akkermansia occurred during posthibernation than during interbout arousal and torpor. Collectively, our results clearly demonstrate that seasonal changes in physiology associated with hibernation and activity affect the gut microbial community in the arctic ground squirrel. Importantly, similarities between the gut microbiota of arctic ground squirrels and thirteen-lined ground squirrels suggest the potential for a core microbiota during hibernation. PMID:25002417

  10. Diversity in Betasatellites Associated with Cotton Leaf Curl Disease During Source-To-Sink Movement Through a Resistant Host.

    PubMed

    Khan, Iftikhar Ali; Akhtar, Khalid Pervaiz; Akbar, Fazal; Hassan, Ishtiaq; Amin, Imran; Saeed, Muhammad; Mansoor, Shahid

    2016-02-01

    Cotton leaf curl is devastating disease of cotton characterized by leaf curling, vein darkening and enations. The disease symptoms are induced by DNA satellite known as Cotton leaf curl Multan betasatellite (CLCuMuB), dominant betasatellite in cotton but another betasatellite known as Chili leaf curl betasatellite (ChLCB) is also found associated with the disease. Grafting experiment was performed to determine if host plant resistance is determinant of dominant population of betasatellite in cotton (several distinct strains of CLCuMuB are associated with the disease). Infected scion of Gossypium hirsutum collected from field (the source) was grafted on G. arboreum, a diploid cotton species, resistant to the disease. A healthy scion of G. hirsutum (sink) was grafted at the top of G. arboreum to determine the movement of virus/betasatellite to upper susceptible scion of G. hirsutum. Symptoms of disease appeared in the upper scion and presence of virus/betasatellite in the upper scion was confirmed via molecular techniques, showing that virus/betasatellite was able to move to upper scion through resistant G. arboreum. However, no symptoms appeared on G. arboreum. Betasatelites were cloned and sequenced from lower scion, upper scion and G. arboreum which show that the lower scion contained both CLCuMuB and ChLCB, however only ChLCB was found in G. arboreum. The upper scion contained CLCuMuB with a deletion of 78 nucleotides (nt) in the non-coding region between A-rich sequence and βC1 gene and insertion of 27 nt in the middle of βC1 ORF. This study may help in investigating molecular basis of resistance in G. arboreum. PMID:26889114

  11. Diversity in Betasatellites Associated with Cotton Leaf Curl Disease During Source-To-Sink Movement Through a Resistant Host

    PubMed Central

    Khan, Iftikhar Ali; Akhtar, Khalid Pervaiz; Akbar, Fazal; Hassan, Ishtiaq; Amin, Imran; Saeed, Muhammad; Mansoor, Shahid

    2016-01-01

    Cotton leaf curl is devastating disease of cotton characterized by leaf curling, vein darkening and enations. The disease symptoms are induced by DNA satellite known as Cotton leaf curl Multan betasatellite (CLCuMuB), dominant betasatellite in cotton but another betasatellite known as Chili leaf curl betasatellite (ChLCB) is also found associated with the disease. Grafting experiment was performed to determine if host plant resistance is determinant of dominant population of betasatellite in cotton (several distinct strains of CLCuMuB are associated with the disease). Infected scion of Gossypium hirsutum collected from field (the source) was grafted on G. arboreum, a diploid cotton species, resistant to the disease. A healthy scion of G. hirsutum (sink) was grafted at the top of G. arboreum to determine the movement of virus/betasatellite to upper susceptible scion of G. hirsutum. Symptoms of disease appeared in the upper scion and presence of virus/betasatellite in the upper scion was confirmed via molecular techniques, showing that virus/betasatellite was able to move to upper scion through resistant G. arboreum. However, no symptoms appeared on G. arboreum. Betasatelites were cloned and sequenced from lower scion, upper scion and G. arboreum which show that the lower scion contained both CLCuMuB and ChLCB, however only ChLCB was found in G. arboreum. The upper scion contained CLCuMuB with a deletion of 78 nucleotides (nt) in the non-coding region between A-rich sequence and βC1 gene and insertion of 27 nt in the middle of βC1 ORF. This study may help in investigating molecular basis of resistance in G. arboreum. PMID:26889114

  12. Molecular identification of the causative agent of human strongyloidiasis acquired in Tanzania: dispersal and diversity of Strongyloides spp. and their hosts.

    PubMed

    Hasegawa, Hideo; Sato, Hiroshi; Fujita, Shiho; Nguema, Pierre Philippe Mbehang; Nobusue, Kenichi; Miyagi, Kei; Kooriyama, Takanori; Takenoshita, Yuji; Noda, Shohei; Sato, Akiko; Morimoto, Azusa; Ikeda, Yatsukaho; Nishida, Toshisada

    2010-09-01

    In order to identify the causative agent of imported strongyloidiasis found in a Japanese mammalogist, who participated in a field survey in Tanzania, the hyper-variable region IV (HVR-IV) of 18S ribosomal DNA and partial mitochondrial cytochrome c-oxidase subunit 1 gene (cox1) were analyzed and compared with Strongyloides fuelleborni collected from apes and monkeys of Africa and Japan, and S. stercoralis from humans, apes and dogs. The HVR-IV and cox1 of the patient's worms were identical to or only slightly differed from those of worms parasitic in Tanzanian chimpanzees and yellow baboons, demonstrating that the patient acquired the infection during her field survey in Tanzania. Phylogenetic analysis with the maximum-likelihood method largely divided isolates of S. fuelleborni into three groups, which corresponded to geographical localities but not to host species. Meanwhile, isolates of S. stercoralis were grouped by the phylogenetic analysis into dog-parasitic and primate-parasitic clades, and not to geographical regions. It is surmised that subspeciation has occurred in S. fuelleborni during the dispersal of primates in Africa and Asia, while worldwide dispersal of S. stercoralis seems to have occurred more recently by migration and the activities of modern humans. PMID:20621633

  13. Avioserpens in the Western Grebe (Aechmophorus occidentalis): A new Host and Geographic Record for a Dracunculoid Nematode and Implications of Migration and Climate Change.

    PubMed

    Latas, Patricia J; Stockdale Walden, Heather D; Bates, Lisa; Marshall, Summer; Rohr, Tammy; Whitehead, Lou Rae

    2016-01-01

    We report a new host and geographic range for the dracunculoid nematode (Avioserpens sp.) in a Western Grebe (Aechmophorus occidentalis) from southern Arizona, US. This discovery underscores the importance of parasite discovery and identification in the wildlife rehabilitation setting. Climate change and weather events affect the migratory spread of unusual parasites. PMID:26555111

  14. Everyday Experiences of 18- to 36-Month-Old Children from Migrant Families: The Influence of Host Culture and Migration Experience

    ERIC Educational Resources Information Center

    Driessen, Ricarda; Leyendecker, Birgit; Scholmerich, Axel; Harwood, Robin

    2010-01-01

    We explored the everyday experiences of 18- to 36-month-old toddlers at two study sites and the influence of adaptation to the host culture on the everyday experiences of children from migrant families. First- and second-generation Puerto Rican families in Connecticut, USA, first- and second-generation Turkish families in Bochum, Germany, as well…

  15. Is forced migration a barrier to treatment success? Similar HIV treatment outcomes among refugees and a surrounding host community in Kuala Lumpur, Malaysia.

    PubMed

    Mendelsohn, Joshua B; Schilperoord, Marian; Spiegel, Paul; Balasundaram, Susheela; Radhakrishnan, Anuradha; Lee, Christopher K C; Larke, Natasha; Grant, Alison D; Sondorp, Egbert; Ross, David A

    2014-02-01

    In response to an absence of studies among refugees and host communities accessing highly active antiretroviral therapy (HAART) in urban settings, our objective was to compare adherence and virological outcomes among clients attending a public clinic in Kuala Lumpur, Malaysia. A cross-sectional survey was conducted among adult clients (≥18 years). Data sources included a structured questionnaire that measured self-reported adherence, a pharmacy-based measure of HAART prescription refills over the previous 24 months, and HIV viral loads. The primary outcome was unsuppressed viral load (≥40 copies/mL). Among a sample of 153 refugees and 148 host community clients, refugees were younger (median age 35 [interquartile range, IQR 31, 39] vs 40 years [IQR 35, 48], p < 0.001), more likely to be female (36 vs 21 %, p = 0.004), and to have been on HAART for less time (61 [IQR 35, 108] vs 153 weeks [IQR 63, 298]; p < 0.001). Among all clients, similar proportions of refugee and host clients were <95 % adherent to pharmacy refills (26 vs 34 %, p = 0.15). When restricting to clients on treatment for ≥25 weeks, similar proportions from each group were not virologically suppressed (19 % of refugees vs 16 % of host clients, p = 0.54). Refugee status was not independently associated with the outcome (adjusted odds ratio, aOR = 1.28, 95 % CI 0.52, 3.14). Overall, the proportions of refugee and host community clients with unsuppressed viral loads and sub-optimal adherence were similar, supporting the idea that refugees in protracted asylum situations are able to sustain good treatment outcomes and should explicitly be included in the HIV strategic plans of host countries with a view to expanding access in accordance with national guidelines for HAART. PMID:23748862

  16. Contrasted Genetic Diversity, Relevance of Climate and Host Plants, and Comments on the Taxonomic Problems of the Genus Picoa (Pyronemataceae, Pezizales)

    PubMed Central

    Sbissi, Imed; Boudabous, Abdellatif; Fortas, Zohra; Moreno, Gabriel; Manjón, José Luis; Gtari, Maher

    2015-01-01

    The species concept within the genus Picoa Vittad. is here revisited in light of new molecular and ecological data obtained from samples collected throughout the Mediterranean basin. Two highly diverse widespread clades and four additional minor lineages were significantly supported by three genes dataset (ITS, 28s LSU and RPB2) inferences for 70 specimens. The two widespread clades occur in very different geographical and ecological areas associated with exclusive host plants in the genus Helianthemum. SEM study of spore surface morphology in these lineages revealed the existence of smooth ascospores in the majority of these clades. However the most frequent lineage in Europe and coastal North Africa displayed either smooth or verrucose spores. Hence this morphological criterion cannot be reliably used to discriminate between the different clades. In addition, SEM observations made on ascospores from several original collections of P. juniperi and P. lefebvrei supported the hypothesis that ornamentation depends on the degree of maturity in some of these lineages. Geographical and ecological, rather than morphological data are here suggested as the most useful characters to separate the different lineages in Picoa. Further studies focusing on these features are needed before the names P. juniperi and P. lefebvrei can be unambiguously linked with the genetic lineages observed. PMID:26390223

  17. The diversity and prevalence of hard ticks attacking human hosts in Eastern Siberia (Russian Federation) with first description of invasion of non-endemic tick species.

    PubMed

    Khasnatinov, Maxim Anatolyevich; Liapunov, Alexander Valeryevich; Manzarova, Ellina Lopsonovna; Kulakova, Nina Viktorovna; Petrova, Irina Viktorovna; Danchinova, Galina Anatolyevna

    2016-02-01

    Hard ticks are the vectors of many pathogens including tick-borne encephalitis virus and the Lyme disease agent Borrelia burgdorferi sensu lato. In Eastern Siberia, Ixodes persulcatus, Dermacentor nuttalli, Dermacentor silvarum and Haemaphysalis concinna are regarded as aggressive to humans. Recently, significant changes in world tick fauna have been reported and this affects the spread of tick-borne pathogens. We studied the current species diversity, population structure and prevalence of tick-borne pathogens of hard ticks (Acari: Ixodidae) that attacked humans in Eastern Siberia (Irkutsk region, Russia). In total, 31,892 individual ticks were identified and analysed during the years 2007-2014. The majority (85.4%) of victims was bitten by I. persulcatus, 14.55% of attacks on humans were caused by D. nuttalli and D. silvarum, whereas H. concinna was documented only in 15 cases (0.05%). The seasonal activity and the age/gender structure of the tick population were studied as well. Among all the studied ticks, three unconventional species, i.e. Rhipicephalus sanguineus, Dermacentor reticulatus and Amblyomma americanum, were identified. Analysis of tick bite histories indicates at least three events of invasion of non-endemic ticks into the ecosystems of northern Eurasia with harsh continental climates. Invading ticks are able to reach the adult life stage and are aggressive to the local human population. Phylogenetic analysis of mt 16S rRNA gene fragments suggests multiple independent routes of tick migration to Eastern Siberia. Possible implications to human health and epidemiology of tick-borne infections are discussed. PMID:26443685

  18. Helicobacter pylori Sequences Reflect Past Human Migrations.

    PubMed

    Moodley, Y; Linz, B

    2009-01-01

    The long association between the stomach bacterium Helicobacter pylori and humans, in combination with its predominantly within-family transmission route and its exceptionally high DNA sequence diversity, make this bacterium a reliable marker for discerning both recent and ancient human population movements. As much of the diversity in H. pylori sequences is generated by recombination and mutation on a local scale, the partitioning of H. pylori sequences from a large globally distributed data set into six geographic populations enabled the detection of recent ( < 500 years) human population movements including the European colonial expansion and the slave trade. The further separation of bacterial populations into distinct sub-populations traced prehistoric population movements like the settlement of the Americas by Asians across the Bering Strait and the Bantu migrations in Africa. The ability to deduce ancestral population structure from modern sequences was a key development that allowed the detection of zones of admixture, such as Europe, and the inference of multiple migration waves into these zones. The significantly similar global population structure of both H. pylori and humans confirmed not only an evolutionary time-scale association between host and parasite, but also that humans had carried H. pylori in their stomachs on their migrations out of Africa. PMID:19696494

  19. Diversity of Cultivated Fungi Associated with Conventional and Transgenic Sugarcane and the Interaction between Endophytic Trichoderma virens and the Host Plant.

    PubMed

    Romão-Dumaresq, Aline Silva; Dourado, Manuella Nóbrega; Fávaro, Léia Cecilia de Lima; Mendes, Rodrigo; Ferreira, Anderson; Araújo, Welington Luiz

    2016-01-01

    Plant-associated fungi are considered a vast source for biotechnological processes whose potential has been poorly explored. The interactions and diversity of sugarcane, one of the most important crops in Brazil, have been rarely studied, mainly concerning fungal communities and their interactions with transgenic plants. Taking this into consideration, the purpose of this study was, based on culture dependent strategy, to determine the structure and diversity of the fungal community (root endophytes and rhizosphere) associated with two varieties of sugarcane, a non-genetically modified (SP80-1842) variety and its genetically modified counterpart (IMI-1, expressing imazapyr herbicide resistance). For this, the sugarcane varieties were evaluated in three sampling times (3, 10 and 17 months after planting) under two crop management (weeding and herbicide treatments). In addition, a strain of Trichoderma virens, an endophyte isolated from sugarcane with great potential as a biological control, growth promotion and enzyme production agent, was selected for the fungal-plant interaction assays. The results of the isolation, characterization and evaluation of fungal community changes showed that the sugarcane fungal community is composed of at least 35 different genera, mostly in the phylum Ascomycota. Many genera are observed at very low frequencies among a few most abundant genera, some of which were isolated from specific plant sites (e.g., the roots or the rhizosphere). An assessment of the possible effects upon the fungal community showed that the plant growth stage was the only factor that significantly affected the community's structure. Moreover, if transgenic effects are present, they may be minor compared to other natural sources of variation. The results of interaction studies using the Green fluorescent protein (GFP)-expressing T. virens strain T.v.223 revealed that this fungus did not promote any phenotypic changes in the host plant and was found mostly in the

  20. Diversity of Cultivated Fungi Associated with Conventional and Transgenic Sugarcane and the Interaction between Endophytic Trichoderma virens and the Host Plant

    PubMed Central

    Romão-Dumaresq, Aline Silva; Dourado, Manuella Nóbrega; Fávaro, Léia Cecilia de Lima; Mendes, Rodrigo; Ferreira, Anderson; Araújo, Welington Luiz

    2016-01-01

    Plant-associated fungi are considered a vast source for biotechnological processes whose potential has been poorly explored. The interactions and diversity of sugarcane, one of the most important crops in Brazil, have been rarely studied, mainly concerning fungal communities and their interactions with transgenic plants. Taking this into consideration, the purpose of this study was, based on culture dependent strategy, to determine the structure and diversity of the fungal community (root endophytes and rhizosphere) associated with two varieties of sugarcane, a non-genetically modified (SP80-1842) variety and its genetically modified counterpart (IMI-1, expressing imazapyr herbicide resistance). For this, the sugarcane varieties were evaluated in three sampling times (3, 10 and 17 months after planting) under two crop management (weeding and herbicide treatments). In addition, a strain of Trichoderma virens, an endophyte isolated from sugarcane with great potential as a biological control, growth promotion and enzyme production agent, was selected for the fungal-plant interaction assays. The results of the isolation, characterization and evaluation of fungal community changes showed that the sugarcane fungal community is composed of at least 35 different genera, mostly in the phylum Ascomycota. Many genera are observed at very low frequencies among a few most abundant genera, some of which were isolated from specific plant sites (e.g., the roots or the rhizosphere). An assessment of the possible effects upon the fungal community showed that the plant growth stage was the only factor that significantly affected the community’s structure. Moreover, if transgenic effects are present, they may be minor compared to other natural sources of variation. The results of interaction studies using the Green fluorescent protein (GFP)-expressing T. virens strain T.v.223 revealed that this fungus did not promote any phenotypic changes in the host plant and was found mostly in

  1. Companions to APOGEE Stars. I. A Milky Way-spanning Catalog of Stellar and Substellar Companion Candidates and Their Diverse Hosts

    NASA Astrophysics Data System (ADS)

    Troup, Nicholas W.; Nidever, David L.; De Lee, Nathan; Carlberg, Joleen; Majewski, Steven R.; Fernandez, Martin; Covey, Kevin; Chojnowski, S. Drew; Pepper, Joshua; Nguyen, Duy T.; Stassun, Keivan; Nguyen, Duy Cuong; Wisniewski, John P.; Fleming, Scott W.; Bizyaev, Dmitry; Frinchaboy, Peter M.; García-Hernández, D. A.; Ge, Jian; Hearty, Fred; Meszaros, Szabolcs; Pan, Kaike; Allende Prieto, Carlos; Schneider, Donald P.; Shetrone, Matthew D.; Skrutskie, Michael F.; Wilson, John; Zamora, Olga

    2016-03-01

    In its three years of operation, the Sloan Digital Sky Survey Apache Point Observatory Galactic Evolution Experiment (APOGEE-1) observed >14,000 stars with enough epochs over a sufficient temporal baseline for the fitting of Keplerian orbits. We present the custom orbit-fitting pipeline used to create this catalog, which includes novel quality metrics that account for the phase and velocity coverage of a fitted Keplerian orbit. With a typical radial velocity precision of ˜100-200 m s-1, APOGEE can probe systems with small separation companions down to a few Jupiter masses. Here we present initial results from a catalog of 382 of the most compelling stellar and substellar companion candidates detected by APOGEE, which orbit a variety of host stars in diverse Galactic environments. Of these, 376 have no previously known small separation companion. The distribution of companion candidates in this catalog shows evidence for an extremely truncated brown dwarf (BD) desert with a paucity of BD companions only for systems with a\\quad \\lt 0.1-0.2 AU, with no indication of a desert at larger orbital separation. We propose a few potential explanations of this result, some which invoke this catalog’s many small separation companion candidates found orbiting evolved stars. Furthermore, 16 BD and planet candidates have been identified around metal-poor ([Fe/H] < -0.5) stars in this catalog, which may challenge the core accretion model for companions \\gt 10{M}{Jup}. Finally, we find all types of companions are ubiquitous throughout the Galactic disk with candidate planetary-mass and BD companions to distances of ˜6 and ˜16 kpc, respectively.

  2. The Human Skin Double-Stranded DNA Virome: Topographical and Temporal Diversity, Genetic Enrichment, and Dynamic Associations with the Host Microbiome

    PubMed Central

    Hannigan, Geoffrey D.; Meisel, Jacquelyn S.; Tyldsley, Amanda S.; Zheng, Qi; Hodkinson, Brendan P.; SanMiguel, Adam J.; Minot, Samuel; Bushman, Frederic D.

    2015-01-01

    ABSTRACT Viruses make up a major component of the human microbiota but are poorly understood in the skin, our primary barrier to the external environment. Viral communities have the potential to modulate states of cutaneous health and disease. Bacteriophages are known to influence the structure and function of microbial communities through predation and genetic exchange. Human viruses are associated with skin cancers and a multitude of cutaneous manifestations. Despite these important roles, little is known regarding the human skin virome and its interactions with the host microbiome. Here we evaluated the human cutaneous double-stranded DNA virome by metagenomic sequencing of DNA from purified virus-like particles (VLPs). In parallel, we employed metagenomic sequencing of the total skin microbiome to assess covariation and infer interactions with the virome. Samples were collected from 16 subjects at eight body sites over 1 month. In addition to the microenviroment, which is known to partition the bacterial and fungal microbiota, natural skin occlusion was strongly associated with skin virome community composition. Viral contigs were enriched for genes indicative of a temperate phage replication style and also maintained genes encoding potential antibiotic resistance and virulence factors. CRISPR spacers identified in the bacterial DNA sequences provided a record of phage predation and suggest a mechanism to explain spatial partitioning of skin phage communities. Finally, we modeled the structure of bacterial and phage communities together to reveal a complex microbial environment with a Corynebacterium hub. These results reveal the previously underappreciated diversity, encoded functions, and viral-microbial dynamic unique to the human skin virome. PMID:26489866

  3. Genetic diversity and insecticide resistance during the growing season in the green peach aphid (Hemiptera: Aphididae) on primary and secondary hosts: a farm-scale study in Central Chile.

    PubMed

    Rubiano-Rodríguez, J A; Fuentes-Contreras, E; Figueroa, C C; Margaritopoulos, J T; Briones, L M; Ramírez, C C

    2014-04-01

    The seasonal dynamics of neutral genetic diversity and the insecticide resistance mechanisms of insect pests at the farm scale are still poorly documented. Here this was addressed in the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) in Central Chile. Samples were collected from an insecticide sprayed peach (Prunus persica L.) orchard (primary host), and a sweet-pepper (Capsicum annum var. grossum L.) field (secondary host). In addition, aphids from weeds (secondary hosts) growing among these crops were also sampled. Many unique multilocus genotypes were found on peach trees, while secondary hosts were colonized mostly by the six most common genotypes, which were predominantly sensitive to insecticides. In both fields, a small but significant genetic differentiation was found between aphids on the crops vs. their weeds. Within-season comparisons showed genetic differentiation between early and late season samples from peach, as well as for weeds in the peach orchard. The knock-down resistance (kdr) mutation was detected mostly in the heterozygote state, often associated with modified acetylcholinesterase throughout the season for both crops. This mutation was found in high frequency, mainly in the peach orchard. The super-kdr mutation was found in very low frequencies in both crops. This study provides farm-scale evidence that the aphid M. persicae can be composed of slightly different genetic groups between contiguous populations of primary and secondary hosts exhibiting different dynamics of insecticide resistance through the growing season. PMID:24484894

  4. Tetraspanins in Cell Migration

    PubMed Central

    Jiang, Xupin; Zhang, Jiaping; Huang, Yuesheng

    2015-01-01

    Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell–cell adhesion, cell–ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention. PMID:26091149

  5. Utility of internally transcribed spacer region of rDNA (ITS) and β-tubulin gene sequences to infer genetic diversity and migration patterns of Colletotrichum truncatum infecting Capsicum spp.

    PubMed

    Rampersad, Kandyce; Ramdial, Hema; Rampersad, Sephra N

    2016-01-01

    Anthracnose is among the most economically important diseases affecting pepper (Capsicum spp.) production in the tropics and subtropics. Of the three species of Colletotrichum implicated as causal agents of pepper anthracnose, C. truncatum is considered to be the most destructive in agro-ecosystems worldwide. However, the genetic variation and the migration potential of C. truncatum infecting pepper are not known. Five populations were selected for study and a two-locus (internally transcribed spacer region, ITS1-5.8S-ITS2, and β-tubulin, β-TUB) sequence data set was generated and used in the analyses. Sequences of the ITS region were less informative than β -tubulin gene sequences based on comparisons of DNA polymorphism indices. Trinidad had the highest genetic diversity and also had the largest effective population size in pairwise comparisons with the other populations. The Trinidad population also demonstrated significant genetic differentiation from the other populations. AMOVA and STRUCTURE analyses both suggested significant genetic variation within populations more so than among populations. A consensus Maximum Likelihood tree based on β-TUB gene sequences revealed very little intraspecific diversity for all isolates except for Trinidad. Two clades consisting solely of Trinidad isolates may have diverged earlier than the other isolates. There was also evidence of directional migration among the five populations. These findings may have a direct impact on the development of integrated disease management strategies to control C. truncatum infection in pepper. PMID:26843942

  6. Genetic Diversity and Population Structure of Busseola segeta Bowden (Lepidoptera; Noctuidae): A Case Study of Host Use Diversification in Guineo-Congolian Rainforest Relic Area, Kenya.

    PubMed

    Ong'amo, George O; Ru, Bruno P Le; Campagne, Pascal; Branca, Antoine; Calatayud, Paul-Andre; Capdevielle-Dulac, Claire; Silvain, Jean-Francois

    2012-01-01

    Habitat modification and fragmentation are considered as some of the factors that drive organism distribution and host use diversification. Indigenous African stem borer pests are thought to have diversified their host ranges to include maize [Zea mays L.] and sorghum [Sorghum bicolor (L.) Moench] in response to their increased availability through extensive cultivation. However, management efforts have been geared towards reducing pest populations in the cultivated fields with few attempts to understand possible evolution of "new" pest species. Recovery and growing persistence of Busseola segeta Bowden on maize (Zea mays L.) in Kakamega called for studies on the role of wild host plants on the invasion of crops by wild borer species. A two-year survey was carried out in a small agricultural landscape along the edge of Kakamega forest (Kenya) to assess host range and population genetic structure of B. segeta. The larvae of B. segeta were found on nine different plant species with the majority occurring on maize and sorghum. Of forty cytochrome b haplotypes identified, twenty-three occurred in both wild and cultivated habitats. The moths appear to fly long distances across the habitats with genetic analyses revealing weak differentiation between hosts in different habitats (FST = 0.016; p = 0.015). However, there was strong evidence of variation in genetic composition between growing seasons in the wild habitat (FST = 0.060; p < 0.001) with emergence or disappearance of haplotypes between habitats. Busseola segeta is an example of a phytophagous insect that utilizes plants with a human induced distribution range, maize, but does not show evidence of host race formation or reduction of gene flow among populations using different hosts. However, B. segeta is capable of becoming an important pest in the area and the current low densities may be attributed to the general low infestation levels and presence of a wide range of alternative hosts in the area. PMID:26466732

  7. Genetic Diversity and Population Structure of Busseola segeta Bowden (Lepidoptera; Noctuidae): A Case Study of Host Use Diversification in Guineo-Congolian Rainforest Relic Area, Kenya

    PubMed Central

    Ong’amo, George O.; Le Ru, Bruno P.; Campagne, Pascal; Branca, Antoine; Calatayud, Paul-Andre; Capdevielle-Dulac, Claire;  Silvain, Jean-Francois

    2012-01-01

    Habitat modification and fragmentation are considered as some of the factors that drive organism distribution and host use diversification. Indigenous African stem borer pests are thought to have diversified their host ranges to include maize [Zea mays L.] and sorghum [Sorghum bicolor (L.) Moench] in response to their increased availability through extensive cultivation. However, management efforts have been geared towards reducing pest populations in the cultivated fields with few attempts to understand possible evolution of "new" pest species. Recovery and growing persistence of Busseola segeta Bowden on maize (Zea mays L.) in Kakamega called for studies on the role of wild host plants on the invasion of crops by wild borer species. A two-year survey was carried out in a small agricultural landscape along the edge of Kakamega forest (Kenya) to assess host range and population genetic structure of B. segeta. The larvae of B. segeta were found on nine different plant species with the majority occurring on maize and sorghum. Of forty cytochrome b haplotypes identified, twenty-three occurred in both wild and cultivated habitats. The moths appear to fly long distances across the habitats with genetic analyses revealing weak differentiation between hosts in different habitats (FST = 0.016; p = 0.015). However, there was strong evidence of variation in genetic composition between growing seasons in the wild habitat (FST = 0.060; p < 0.001) with emergence or disappearance of haplotypes between habitats. Busseola segeta is an example of a phytophagous insect that utilizes plants with a human induced distribution range, maize, but does not show evidence of host race formation or reduction of gene flow among populations using different hosts. However, B. segeta is capable of becoming an important pest in the area and the current low densities may be attributed to the general low infestation levels and presence of a wide range of alternative hosts in the area. PMID:26466732

  8. Teaching Linguistically and Culturally Diverse Learners: Effective Programs and Practices. Proceedings of an Institute Hosted by the National Center for Research on Cultural Diversity and Second Language Learning (Santa Cruz, California, June 28-30, 1994).

    ERIC Educational Resources Information Center

    Montone, Christopher L., Ed.

    The proceedings presented consist of summaries and reports of the presentations given during a summer institute on teaching linguistically and culturally diverse learners. Summaries of the following papers are provided: "Education 2000 and Beyond: The Challenge of Our Culturally Diverse Students" (Eugene Garcia); "Second Language Learning in…

  9. Metagenomic and PCR-Based Diversity Surveys of [FeFe]-Hydrogenases Combined with Isolation of Alkaliphilic Hydrogen-Producing Bacteria from the Serpentinite-Hosted Prony Hydrothermal Field, New Caledonia

    PubMed Central

    Mei, Nan; Postec, Anne; Monnin, Christophe; Pelletier, Bernard; Payri, Claude E.; Ménez, Bénédicte; Frouin, Eléonore; Ollivier, Bernard; Erauso, Gaël; Quéméneur, Marianne

    2016-01-01

    High amounts of hydrogen are emitted in the serpentinite-hosted hydrothermal field of the Prony Bay (PHF, New Caledonia), where high-pH (~11), low-temperature (< 40°C), and low-salinity fluids are discharged in both intertidal and shallow submarine environments. In this study, we investigated the diversity and distribution of potentially hydrogen-producing bacteria in Prony hyperalkaline springs by using metagenomic analyses and different PCR-amplified DNA sequencing methods. The retrieved sequences of hydA genes, encoding the catalytic subunit of [FeFe]-hydrogenases and, used as a molecular marker of hydrogen-producing bacteria, were mainly related to those of Firmicutes and clustered into two distinct groups depending on sampling locations. Intertidal samples were dominated by new hydA sequences related to uncultured Firmicutes retrieved from paddy soils, while submarine samples were dominated by diverse hydA sequences affiliated with anaerobic and/or thermophilic submarine Firmicutes pertaining to the orders Thermoanaerobacterales or Clostridiales. The novelty and diversity of these [FeFe]-hydrogenases may reflect the unique environmental conditions prevailing in the PHF (i.e., high-pH, low-salt, mesothermic fluids). In addition, novel alkaliphilic hydrogen-producing Firmicutes (Clostridiales and Bacillales) were successfully isolated from both intertidal and submarine PHF chimney samples. Both molecular and cultivation-based data demonstrated the ability of Firmicutes originating from serpentinite-hosted environments to produce hydrogen by fermentation, potentially contributing to the molecular hydrogen balance in situ. PMID:27625634

  10. Metagenomic and PCR-Based Diversity Surveys of [FeFe]-Hydrogenases Combined with Isolation of Alkaliphilic Hydrogen-Producing Bacteria from the Serpentinite-Hosted Prony Hydrothermal Field, New Caledonia.

    PubMed

    Mei, Nan; Postec, Anne; Monnin, Christophe; Pelletier, Bernard; Payri, Claude E; Ménez, Bénédicte; Frouin, Eléonore; Ollivier, Bernard; Erauso, Gaël; Quéméneur, Marianne

    2016-01-01

    High amounts of hydrogen are emitted in the serpentinite-hosted hydrothermal field of the Prony Bay (PHF, New Caledonia), where high-pH (~11), low-temperature (< 40°C), and low-salinity fluids are discharged in both intertidal and shallow submarine environments. In this study, we investigated the diversity and distribution of potentially hydrogen-producing bacteria in Prony hyperalkaline springs by using metagenomic analyses and different PCR-amplified DNA sequencing methods. The retrieved sequences of hydA genes, encoding the catalytic subunit of [FeFe]-hydrogenases and, used as a molecular marker of hydrogen-producing bacteria, were mainly related to those of Firmicutes and clustered into two distinct groups depending on sampling locations. Intertidal samples were dominated by new hydA sequences related to uncultured Firmicutes retrieved from paddy soils, while submarine samples were dominated by diverse hydA sequences affiliated with anaerobic and/or thermophilic submarine Firmicutes pertaining to the orders Thermoanaerobacterales or Clostridiales. The novelty and diversity of these [FeFe]-hydrogenases may reflect the unique environmental conditions prevailing in the PHF (i.e., high-pH, low-salt, mesothermic fluids). In addition, novel alkaliphilic hydrogen-producing Firmicutes (Clostridiales and Bacillales) were successfully isolated from both intertidal and submarine PHF chimney samples. Both molecular and cultivation-based data demonstrated the ability of Firmicutes originating from serpentinite-hosted environments to produce hydrogen by fermentation, potentially contributing to the molecular hydrogen balance in situ. PMID:27625634

  11. Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris

    PubMed Central

    He, Yong-Qiang; Zhang, Liang; Jiang, Bo-Le; Zhang, Zheng-Chun; Xu, Rong-Qi; Tang, Dong-Jie; Qin, Jing; Jiang, Wei; Zhang, Xia; Liao, Jie; Cao, Jin-Ru; Zhang, Sui-Sheng; Wei, Mei-Liang; Liang, Xiao-Xia; Lu, Guang-Tao; Feng, Jia-Xun; Chen, Baoshan; Cheng, Jing; Tang, Ji-Liang

    2007-01-01

    Background Xanthomonas campestris pathovar campestris (Xcc) is the causal agent of black rot disease of crucifers worldwide. The molecular genetic diversity and host specificity of Xcc are poorly understood. Results We constructed a microarray based on the complete genome sequence of Xcc strain 8004 and investigated the genetic diversity and host specificity of Xcc by array-based comparative genome hybridization analyses of 18 virulent strains. The results demonstrate that a genetic core comprising 3,405 of the 4,186 coding sequences (CDSs) spotted on the array are conserved and a flexible gene pool with 730 CDSs is absent/highly divergent (AHD). The results also revealed that 258 of the 304 proved/presumed pathogenicity genes are conserved and 46 are AHD. The conserved pathogenicity genes include mainly the genes involved in type I, II and III secretion systems, the quorum sensing system, extracellular enzymes and polysaccharide production, as well as many other proved pathogenicity genes, while the AHD CDSs contain the genes encoding type IV secretion system (T4SS) and type III-effectors. A Xcc T4SS-deletion mutant displayed the same virulence as wild type. Furthermore, three avirulence genes (avrXccC, avrXccE1 and avrBs1) were identified. avrXccC and avrXccE1 conferred avirulence on the hosts mustard cultivar Guangtou and Chinese cabbage cultivar Zhongbai-83, respectively, and avrBs1 conferred hypersensitive response on the nonhost pepper ECW10R. Conclusion About 80% of the Xcc CDSs, including 258 proved/presumed pathogenicity genes, is conserved in different strains. Xcc T4SS is not involved in pathogenicity. An efficient strategy to identify avr genes determining host specificity from the AHD genes was developed. PMID:17927820

  12. Mediterranean Founder Mutation Database (MFMD): Taking Advantage from Founder Mutations in Genetics Diagnosis, Genetic Diversity and Migration History of the Mediterranean Population.

    PubMed

    Charoute, Hicham; Bakhchane, Amina; Benrahma, Houda; Romdhane, Lilia; Gabi, Khalid; Rouba, Hassan; Fakiri, Malika; Abdelhak, Sonia; Lenaers, Guy; Barakat, Abdelhamid

    2015-11-01

    The Mediterranean basin has been the theater of migration crossroads followed by settlement of several societies and cultures in prehistoric and historical times, with important consequences on genetic and genomic determinisms. Here, we present the Mediterranean Founder Mutation Database (MFMD), established to offer web-based access to founder mutation information in the Mediterranean population. Mutation data were collected from the literature and other online resources and systematically reviewed and assembled into this database. The information provided for each founder mutation includes DNA change, amino-acid change, mutation type and mutation effect, as well as mutation frequency and coalescence time when available. Currently, the database contains 383 founder mutations found in 210 genes related to 219 diseases. We believe that MFMD will help scientists and physicians to design more rapid and less expensive genetic diagnostic tests. Moreover, the coalescence time of founder mutations gives an overview about the migration history of the Mediterranean population. MFMD can be publicly accessed from http://mfmd.pasteur.ma. PMID:26173767

  13. Intracellular expression of a host-selective toxin, ToxA, in diverse plants phenocopies silencing of a ToxA-interacting protein, ToxABP1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrenophora tritici-repentis is a necrotophic, fungal pathogen whose ability to cause tan spot of wheat (Triticum aestivum) is dependent on the production of host-selective toxins. One of these toxins, Ptr ToxA, is a protein that is only toxic to genotypes of wheat carrying the Tsn1 locus. The prot...

  14. Parasites of QX-resistant and wild-type Sydney rock oysters (Saccostrea glomerata) in Moreton Bay, SE Queensland, Australia: diversity and host response.

    PubMed

    Dang, Cécile; Cribb, Thomas H; Cutmore, Scott C; Chan, Janlin; Hénault, Olivier; Barnes, Andrew C

    2013-03-01

    Wild caught (WC) and QX resistant (QXR) Sydney rock oysters were introduced at North Stradbroke Island and Pimpama River, SE Queensland, Australia, and sampled monthly during 1 year. Three groups of parasites/diseases were identified by observation of histological sections: (1) Marteilia sydneyi (Queensland unknown (QX) disease) and Steinhausia sp. (Microsporidia) characterized by a high prevalence and deleterious impact on the host; (2) disseminated neoplasia and the trematode Proctoeces sp. characterized by low prevalence but deleterious effects on the host; (3) parasites or symbionts with no detectable effect on the host: trematodes, ciliates, turbellarians and metacestodes. Mortality rates were similar between both oyster lines but higher at Pimpama River (reaching around 90%) than Stradbroke Island, mostly because of QX disease and, to a lesser extent, to the unfavourable environmental conditions of the summer 2010-2011. Lower prevalences of QX disease at Stradbroke Island probably related to the relative lack of intermediate hosts of the parasite and to lower freshwater input. Surprisingly, no difference in prevalence of QX disease was observed between the two oyster lines. PMID:23274078

  15. An Invasive Mammal (the Gray Squirrel, Sciurus carolinensis) Commonly Hosts Diverse and Atypical Genotypes of the Zoonotic Pathogen Borrelia burgdorferi Sensu Lato

    PubMed Central

    Magierecka, Agnieszka; Gilbert, Lucy; Edoff, Alissa; Brereton, Amelia; Kilbride, Elizabeth; Denwood, Matt; Birtles, Richard; Biek, Roman

    2015-01-01

    Invasive vertebrate species can act as hosts for endemic pathogens and may alter pathogen community composition and dynamics. For the zoonotic pathogen Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, recent work shows invasive rodent species can be of high epidemiological importance and may support host-specific strains. This study examined the role of gray squirrels (Sciurus carolinensis) (n = 679), an invasive species in the United Kingdom, as B. burgdorferi sensu lato hosts. We found that gray squirrels were frequently infested with Ixodes ricinus, the main vector of B. burgdorferi sensu lato in the United Kingdom, and 11.9% were infected with B. burgdorferi sensu lato. All four genospecies that occur in the United Kingdom were detected in gray squirrels, and unexpectedly, the bird-associated genospecies Borrelia garinii was most common. The second most frequent infection was with Borrelia afzelii. Genotyping of B. garinii and B. afzelii produced no evidence for strains associated with gray squirrels. Generalized linear mixed models (GLMM) identified tick infestation and date of capture as significant factors associated with B. burgdorferi sensu lato infection in gray squirrels, with infection elevated in early summer in squirrels infested with ticks. Invasive gray squirrels appear to become infected with locally circulating strains of B. burgdorferi sensu lato, and further studies are required to determine their role in community disease dynamics. Our findings highlight the fact that the role of introduced host species in B. burgdorferi sensu lato epidemiology can be highly variable and thus difficult to predict. PMID:25888168

  16. Population Diversity of Rice Stripe Virus-Derived siRNAs in Three Different Hosts and RNAi-Based Antiviral Immunity in Laodelphgax striatellus

    PubMed Central

    Xu, Yi; Huang, Lingzhe; Fu, Shuai; Wu, Jianxiang; Zhou, Xueping

    2012-01-01

    Background Small RNA-mediated gene silencing plays evolutionarily conserved roles in gene regulation and defense against invasive nucleic acids. Virus-derived small interfering RNAs (vsiRNAs) are one of the key elements involved in RNA silencing-based antiviral activities in plant and insect. vsiRNAs produced after viruses infecting hosts from a single kingdom (i.e., plant or animal) are well described. In contrast, vsiRNAs derived from viruses capable of infecting both plants and their insect vectors have not been characterized. Methodology/Principal Findings We examined Rice stripe virus (RSV)-derived small interfering RNAs in three different hosts, Oryza sativa, Nicotiana benthamiana and a natural RSV transmitting vector Laodelphgax striatellus, through deep sequencing. Our results show that large amounts of vsiRNAs generated in these hosts after RSV infection. The vsiRNAs from N. benthamiana and L. striatellus mapped equally to the genomic- and antigenomic-strand of RSV RNAs. They showed, however, a significant bias in those from O. sativa. Furthermore, our results demonstrate that the number and size distributions of vsiRNAs in the three hosts were very different. In O. sativa and N. benthamiana, most vsiRNAs were mapped to the discrete regions in the RSV genome sequence, and most of the vsiRNAs from these two hosts were generated from RSV genomic RNAs 3 and 4. In contrast, the vsiRNAs identified in L. striatellus distributed uniformly along the whole genome of RSV. We have also shown that silencing Agronaute 2 in L. striatellus enhanced RSV accumulation in this host. Conclusions/Significance Our study demonstrates that the core RNA-induced gene silencing (RNAi) machinery is present in L. striatellus. We also provide evidence that the RNAi-mediated immunity against RSV is present in L. striatellus. We propose that a common small RNA-mediated virus defense mechanism exists in both helipterum insects and plants, but the vsiRNAs are generated differentially in

  17. Cell migration.

    PubMed

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2012-10-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  18. Cell Migration

    PubMed Central

    Trepat, Xavier; Chen, Zaozao; Jacobson, Ken

    2015-01-01

    Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis. PMID:23720251

  19. Parasite host range and the evolution of host resistance.

    PubMed

    Gorter, F A; Hall, A R; Buckling, A; Scanlan, P D

    2015-05-01

    Parasite host range plays a pivotal role in the evolution and ecology of hosts and the emergence of infectious disease. Although the factors that promote host range and the epidemiological consequences of variation in host range are relatively well characterized, the effect of parasite host range on host resistance evolution is less well understood. In this study, we tested the impact of parasite host range on host resistance evolution. To do so, we used the host bacterium Pseudomonas fluorescens SBW25 and a diverse suite of coevolved viral parasites (lytic bacteriophage Φ2) with variable host ranges (defined here as the number of host genotypes that can be infected) as our experimental model organisms. Our results show that resistance evolution to coevolved phages occurred at a much lower rate than to ancestral phage (approximately 50% vs. 100%), but the host range of coevolved phages did not influence the likelihood of resistance evolution. We also show that the host range of both single parasites and populations of parasites does not affect the breadth of the resulting resistance range in a naïve host but that hosts that evolve resistance to single parasites are more likely to resist other (genetically) more closely related parasites as a correlated response. These findings have important implications for our understanding of resistance evolution in natural populations of bacteria and viruses and other host-parasite combinations with similar underlying infection genetics, as well as the development of phage therapy. PMID:25851735

  20. Extensive Within-Host Diversity in Fecally Carried Extended-Spectrum-Beta-Lactamase-Producing Escherichia coli Isolates: Implications for Transmission Analyses.

    PubMed

    Stoesser, N; Sheppard, A E; Moore, C E; Golubchik, T; Parry, C M; Nget, P; Saroeun, M; Day, N P J; Giess, A; Johnson, J R; Peto, T E A; Crook, D W; Walker, A S

    2015-07-01

    Studies of the transmission epidemiology of antimicrobial-resistant Escherichia coli, such as strains harboring extended-spectrum beta-lactamase (ESBL) genes, frequently use selective culture of rectal surveillance swabs to identify isolates for molecular epidemiological investigation. Typically, only single colonies are evaluated, which risks underestimating species diversity and transmission events. We sequenced the genomes of 16 E. coli colonies from each of eight fecal samples (n = 127 genomes; one failure), taken from different individuals in Cambodia, a region of high ESBL-producing E. coli prevalence. Sequence data were used to characterize both the core chromosomal diversity of E. coli isolates and their resistance/virulence gene content as a proxy measure of accessory genome diversity. The 127 E. coli genomes represented 31 distinct sequence types (STs). Seven (88%) of eight subjects carried ESBL-positive isolates, all containing blaCTX-M variants. Diversity was substantial, with a median of four STs/individual (range, 1 to 10) and wide genetic divergence at the nucleotide level within some STs. In 2/8 (25%) individuals, the same blaCTX-M variant occurred in different clones, and/or different blaCTX-M variants occurred in the same clone. Patterns of other resistance genes and common virulence factors, representing differences in the accessory genome, were also diverse within and between clones. The substantial diversity among intestinally carried ESBL-positive E. coli bacteria suggests that fecal surveillance, particularly if based on single-colony subcultures, will likely underestimate transmission events, especially in high-prevalence settings. PMID:25903575

  1. Migration from Packaging Materials

    NASA Astrophysics Data System (ADS)

    Meulenaer, B. De

    Various chemical compounds can be present in foodstuffs which may induce health problems in humans. The origin of these compounds can be very diverse. Mathematical modeling can sometimes be used to predict the concentration of these chemicals in the food. Particularly for compounds which are produced in the food during, e.g., processing and for compounds which migrate from a food contact material this technique can be very fruitful. For the former type of compounds, classical chemical kinetics can be applied. In this contribution, the modeling of the migration from polymeric food contact materials is considered. This migration phenomenon can be modeled mathematically since the physical processes which govern this process are very well studied and understood. Therefore, initially some of these fundamentals will be discussed in more detail.

  2. Diversity of Wolbachia pipientis Strain wPip in a Genetically Admixtured, Above-Ground Culex pipiens (Diptera: Culicidae) Population: Association With Form Molestus Ancestry and Host Selection Patterns

    PubMed Central

    MORNINGSTAR, REBECCA J.; HAMER, GABRIEL L.; GOLDBERG, TONY L.; HUANG, SHAOMING; ANDREADIS, THEODORE G.; WALKER, EDWARD D.

    2014-01-01

    Analysis of molecular genetic diversity in nine marker regions of five genes within the bacteriophage WO genomic region revealed high diversity of the Wolbachia pipentis strain wPip in a population of Culex pipiens L. sampled in metropolitan Chicago, IL. From 166 blood fed females, 50 distinct genetic profiles of wPip were identified. Rarefaction analysis suggested a maximum of 110 profiles out of a possible 512 predicted by combinations of the nine markers. A rank-abundance curve showed that few strains were common and most were rare. Multiple regression showed that markers associated with gene Gp2d, encoding a partial putative capsid protein, were significantly associated with ancestry of individuals either to form molestus or form pipiens, as determined by prior microsatellite allele frequency analysis. None of the other eight markers was associated with ancestry to either form, nor to ancestry to Cx. quinquefasciatus Say. Logistic regression of host choice (mammal vs. avian) as determined by bloodmeal analysis revealed that significantly fewer individuals that had fed on mammals had the Gp9a genetic marker (58.5%) compared with avian-fed individuals (88.1%). These data suggest that certain wPip molecular genetic types are associated with genetic admixturing in the Cx. pipiens complex of metropolitan Chicago, IL, and that the association extends to phenotypic variation related to host preference. PMID:22679853

  3. Predicting fecal sources in waters with diverse pollution loads using general and molecular host-specific indicators and applying machine learning methods.

    PubMed

    Casanovas-Massana, Arnau; Gómez-Doñate, Marta; Sánchez, David; Belanche-Muñoz, Lluís A; Muniesa, Maite; Blanch, Anicet R

    2015-03-15

    In this study we use a machine learning software (Ichnaea) to generate predictive models for water samples with different concentrations of fecal contamination (point source, moderate and low). We applied several MST methods (host-specific Bacteroides phages, mitochondrial DNA genetic markers, Bifidobacterium adolescentis and Bifidobacterium dentium markers, and bifidobacterial host-specific qPCR), and general indicators (Escherichia coli, enterococci and somatic coliphages) to evaluate the source of contamination in the samples. The results provided data to the Ichnaea software, that evaluated the performance of each method in the different scenarios and determined the source of the contamination. Almost all MST methods in this study determined correctly the origin of fecal contamination at point source and in moderate concentration samples. When the dilution of the fecal pollution increased (below 3 log10 CFU E. coli/100 ml) some of these indicators (bifidobacterial host-specific qPCR, some mitochondrial markers or B. dentium marker) were not suitable because their concentrations decreased below the detection limit. Using the data from source point samples, the software Ichnaea produced models for waters with low levels of fecal pollution. These models included some MST methods, on the basis of their best performance, that were used to determine the source of pollution in this area. Regardless the methods selected, that could vary depending on the scenario, inductive machine learning methods are a promising tool in MST studies and may represent a leap forward in solving MST cases. PMID:25585145

  4. Rickettsia parkeri invasion of diverse host cells involves an Arp2/3 complex, WAVE complex and Rho-family GTPase-dependent pathway.

    PubMed

    Reed, Shawna C O; Serio, Alisa W; Welch, Matthew D

    2012-04-01

    Rickettsiae are obligate intracellular pathogens that are transmitted to humans by arthropod vectors and cause diseases such as spotted fever and typhus. Although rickettsiae require the host cell actin cytoskeleton for invasion, the cytoskeletal proteins that mediate this process have not been completely described. To identify the host factors important during cell invasion by Rickettsia parkeri, a member of the spotted fever group (SFG), we performed an RNAi screen targeting 105 proteins in Drosophila melanogaster S2R+ cells. The screen identified 21 core proteins important for invasion, including the GTPases Rac1 and Rac2, the WAVE nucleation-promoting factor complex and the Arp2/3 complex. In mammalian cells, including endothelial cells, the natural targets of R. parkeri, the Arp2/3 complex was also crucial for invasion, while requirements for WAVE2 as well as Rho GTPases depended on the particular cell type. We propose that R. parkeri invades S2R+ arthropod cells through a primary pathway leading to actin nucleation, whereas invasion of mammalian endothelial cells occurs via redundant pathways that converge on the host Arp2/3 complex. Our results reveal a key role for the WAVE and Arp2/3 complexes, as well as a higher degree of variation than previously appreciated in actin nucleation pathways activated during Rickettsia invasion. PMID:22188208

  5. First insights into the diversity of gill monogeneans of ‘Gnathochromis’ and Limnochromis (Teleostei, Cichlidae) in Burundi: do the parasites mirror host ecology and phylogenetic history?

    PubMed Central

    Gelnar, Milan; Koblmüller, Stephan; Vanhove, Maarten P.M.

    2016-01-01

    Monogenea is one of the most species-rich groups of parasitic flatworms worldwide, with many species described only recently, which is particularly true for African monogeneans. For example, Cichlidogyrus, a genus mostly occurring on African cichlids, comprises more than 100 nominal species. Twenty-two of these have been described from Lake Tanganyika, a famous biodiversity hotspot in which many vertebrate and invertebrate taxa, including monogeneans, underwent unique and spectacular radiations. Given their often high degrees of host specificity, parasitic monogeneans were also used as a potential tool to uncover host species relationships. This study presents the first investigation of the monogenean fauna occurring on the gills of endemic ‘Gnathochromis’ species along the Burundese coastline of Lake Tanganyika. We test whether their monogenean fauna reflects the different phylogenetic position and ecological niche of ‘Gnathochromis’ pfefferi and Gnathochromis permaxillaris. Worms collected from specimens of Limnochromis auritus, a cichlid belonging to the same cichlid tribe as G. permaxillaris, were used for comparison. Morphological as well as genetic characterisation was used for parasite identification. In total, all 73 Cichlidogyrus individuals collected from ‘G.’ pfefferi were identified as C. irenae. This is the only representative of Cichlidogyrus previously described from ‘G.’ pfefferi, its type host. Gnathochromis permaxillaris is infected by a species of Cichlidogyrus morphologically very similar to C. gillardinae. The monogenean species collected from L. auritus is considered as new for science, but sample size was insufficient for a formal description. Our results confirm previous suggestions that ‘G.’ pfefferi as a good disperser is infected by a single monogenean species across the entire Lake Tanganyika. Although G. permaxillaris and L. auritus are placed in the same tribe, Cichlidogyrus sp. occurring on G. permaxillaris is

  6. First insights into the diversity of gill monogeneans of 'Gnathochromis' and Limnochromis (Teleostei, Cichlidae) in Burundi: do the parasites mirror host ecology and phylogenetic history?

    PubMed

    Kmentová, Nikol; Gelnar, Milan; Koblmüller, Stephan; Vanhove, Maarten P M

    2016-01-01

    Monogenea is one of the most species-rich groups of parasitic flatworms worldwide, with many species described only recently, which is particularly true for African monogeneans. For example, Cichlidogyrus, a genus mostly occurring on African cichlids, comprises more than 100 nominal species. Twenty-two of these have been described from Lake Tanganyika, a famous biodiversity hotspot in which many vertebrate and invertebrate taxa, including monogeneans, underwent unique and spectacular radiations. Given their often high degrees of host specificity, parasitic monogeneans were also used as a potential tool to uncover host species relationships. This study presents the first investigation of the monogenean fauna occurring on the gills of endemic 'Gnathochromis' species along the Burundese coastline of Lake Tanganyika. We test whether their monogenean fauna reflects the different phylogenetic position and ecological niche of 'Gnathochromis' pfefferi and Gnathochromis permaxillaris. Worms collected from specimens of Limnochromis auritus, a cichlid belonging to the same cichlid tribe as G. permaxillaris, were used for comparison. Morphological as well as genetic characterisation was used for parasite identification. In total, all 73 Cichlidogyrus individuals collected from 'G.' pfefferi were identified as C. irenae. This is the only representative of Cichlidogyrus previously described from 'G.' pfefferi, its type host. Gnathochromis permaxillaris is infected by a species of Cichlidogyrus morphologically very similar to C. gillardinae. The monogenean species collected from L. auritus is considered as new for science, but sample size was insufficient for a formal description. Our results confirm previous suggestions that 'G.' pfefferi as a good disperser is infected by a single monogenean species across the entire Lake Tanganyika. Although G. permaxillaris and L. auritus are placed in the same tribe, Cichlidogyrus sp. occurring on G. permaxillaris is morphologically more

  7. Neutrophils, lymphocytes, and monocytes exhibit diverse behaviors in transendothelial and subendothelial migrations under coculture with smooth muscle cells in disturbed flow

    PubMed Central

    Chen, Cheng-Nan; Chang, Shun-Fu; Lee, Pei-Ling; Chang, Kyle; Chen, Li-Jing; Usami, Shunichi; Chien, Shu; Chiu, Jeng-Jiann

    2006-01-01

    Atherosclerosis develops at regions of the arterial tree exposed to disturbed flow. The early stage of atherogenesis involves the adhesion of leukocytes (white blood cells [WBCs]) to and their transmigration across endothelial cells (ECs), which are located in close proximity to smooth muscle cells (SMCs). We investigated the effects of EC/SMC coculture and disturbed flow on the adhesion and transmigration of 3 types of WBCs (neutrophils, peripheral blood lymphocytes [PBLs], and monocytes) using our vertical-step flow (VSF) chamber, in which ECs were cocultured with SMCs in collagen gels. Such coculture significantly increased the adhesion and transmigration of neutrophils, PBLs, and monocytes under VSF, particularly in the reattachment area, where the rolling velocity of WBCs and their transmigration time were decreased, as compared with the other areas. Neutrophils, PBLs, and monocytes showed different subendothelial migration patterns under VSF. Their movements were more random and shorter in distance in the reattachment area. Coculture of ECs and SMCs induced their expressions of adhesion molecules and chemokines, which contributed to the increased WBC adhesion and transmigration. Our findings provide insights into the mechanisms of WBC interaction with the vessel wall (composed of ECs and SMCs) under the complex flow environments found in regions of prevalence for atherogenesis. PMID:16293605

  8. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes.

    PubMed

    Salger, Scott A; Cassady, Katherine R; Reading, Benjamin J; Noga, Edward J

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44-46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture. PMID:27552222

  9. A Diverse Family of Host-Defense Peptides (Piscidins) Exhibit Specialized Anti-Bacterial and Anti-Protozoal Activities in Fishes

    PubMed Central

    Cassady, Katherine R.; Noga, Edward J.

    2016-01-01

    Conventional antibiotics and other chemical-based drugs are currently one of the most common methods used to control disease-related mortality in animal agriculture. Use of the innate immune system to decrease disease related mortalities is a novel alternative to conventional drugs. One component of the innate immune system is the host-defense peptides, also known as antimicrobial peptides. Host-defense peptides are typically small, amphipathic, α-helical peptides with a broad-spectrum of action against viral, bacterial, fungal, and/or protozoal pathogens. Piscidins are host-defense peptides first discovered in the hybrid striped bass (white bass, Morone chrysops, x striped bass, M. saxatilis). In this paper we identify four new piscidin isoforms in the hybrid striped bass and describe their tissue distributions. We also determine the progenitor species of origin of each piscidin (orthology) and propose a revised nomenclature for this newly described piscidin family based on a three class system. The Class I piscidins (22 amino acids in length; striped bass and white bass piscidin 1 and piscidin 3) show broad-spectrum activity against bacteria and ciliated protozoans, while the Class III piscidins (55 amino acids in length; striped bass and white bass piscidin 6 and striped bass piscidin 7) primarily show anti-protozoal activity. The Class II piscidins (44–46 amino acids in length; striped bass and white bass piscidin 4 and white bass piscidin 5) have a level of activity against bacteria and protozoans intermediate to Classes I and III. Knowledge of piscidin function and activity may help in the future development of disease-resistant lines of striped bass and white bass that could be used to produce superior hybrids for aquaculture. PMID:27552222

  10. Transplantation stimulates interstitial cell migration in hydra

    SciTech Connect

    Fujisawa, T.; David, C.N.; Bosch, T.C. )

    1990-04-01

    Migration of interstitial cells and nerve cell precursors was analyzed in Hydra magnipapillata and Hydra vulgaris (formerly Hydra attenuata). Axial grafts were made between ({sup 3}H)thymidine-labeled donor and unlabeled host tissue. Migration of labeled cells into the unlabeled half was followed for 4 days. The results indicate that the rate of migration was initially high and then slowed on Days 2-4. Regrafting fresh donor tissue on Days 2-4 maintained high levels of migration. Thus, migration appears to be stimulated by the grafting procedure itself.

  11. Sequence determination of a new parrot bornavirus-5 strain in Japan: implications of clade-specific sequence diversity in the regions interacting with host factors.

    PubMed

    Komorizono, Ryo; Makino, Akiko; Horie, Masayuki; Honda, Tomoyuki; Tomonaga, Keizo

    2016-06-01

    In this study, the genome sequence of a new parrot bornavirus-5 (PaBV-5) detected in Eclectus roratus was determined. Phylogenetic analysis showed that the genus Bornavirus is divided into three major clades and that PaBV-5 belongs to clade 2, which contains avian viruses that exhibit infectivity to mammalian cells. Sequence comparisons of the regions known to interact with host factors indicated that the clade 2 avian viruses possess sequences intermediate between the clade 1 mammalian viruses and the clade 3 avian viruses, suggesting that the identified regions might contribute to the differences in virological properties between the three clades. PMID:27166599

  12. Proteolytic processing of the cilium adhesin MHJ_0194 (P123J ) in Mycoplasma hyopneumoniae generates a functionally diverse array of cleavage fragments that bind multiple host molecules.

    PubMed

    Raymond, Benjamin B A; Jenkins, Cheryl; Seymour, Lisa M; Tacchi, Jessica L; Widjaja, Michael; Jarocki, Veronica M; Deutscher, Ania T; Turnbull, Lynne; Whitchurch, Cynthia B; Padula, Matthew P; Djordjevic, Steven P

    2015-03-01

    Mycoplasma hyopneumoniae, the aetiological agent of porcine enzootic pneumonia, regulates the presentation of proteins on its cell surface via endoproteolysis, including those of the cilial adhesin P123 (MHJ_0194). These proteolytic cleavage events create functional adhesins that bind to proteoglycans and glycoproteins on the surface of ciliated and non-ciliated epithelial cells and to the circulatory host molecule plasminogen. Two dominant cleavage events of the P123 preprotein have been previously characterized; however, immunoblotting studies suggest that more complex processing events occur. These extensive processing events are characterized here. The functional significance of the P97 cleavage fragments is also poorly understood. Affinity chromatography using heparin, fibronectin and plasminogen as bait and peptide arrays were used to expand our knowledge of the adhesive capabilities of P123 cleavage fragments and characterize a novel binding motif in the C-terminus of P123. Further, we use immunohistochemistry to examine in vivo, the biological significance of interactions between M. hyopneumoniae and fibronectin and show that M. hyopneumoniae induces fibronectin deposition at the site of infection on the ciliated epithelium. Our data supports the hypothesis that M. hyopneumoniae possesses the molecular machinery to influence key molecular communication pathways in host cells. PMID:25293691

  13. The impact of host metapopulation structure on the population genetics of colonizing bacteria.

    PubMed

    Numminen, Elina; Gutmann, Michael; Shubin, Mikhail; Marttinen, Pekka; Méric, Guillaume; van Schaik, Willem; Coque, Teresa M; Baquero, Fernando; Willems, Rob J L; Sheppard, Samuel K; Feil, Edward J; Hanage, William P; Corander, Jukka

    2016-05-01

    Many key bacterial pathogens are frequently carried asymptomatically, and the emergence and spread of these opportunistic pathogens can be driven, or mitigated, via demographic changes within the host population. These inter-host transmission dynamics combine with basic evolutionary parameters such as rates of mutation and recombination, population size and selection, to shape the genetic diversity within bacterial populations. Whilst many studies have focused on how molecular processes underpin bacterial population structure, the impact of host migration and the connectivity of the local populations has received far less attention. A stochastic neutral model incorporating heightened local transmission has been previously shown to fit closely with genetic data for several bacterial species. However, this model did not incorporate transmission limiting population stratification, nor the possibility of migration of strains between subpopulations, which we address here by presenting an extended model. We study the consequences of migration in terms of shared genetic variation and show by simulation that the previously used summary statistic, the allelic mismatch distribution, can be insensitive to even large changes in microepidemic and migration rates. Using likelihood-free inference with genotype network topological summaries we fit a simpler model to commensal and hospital samples from the common nosocomial pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Enterococcus faecium. Only the hospital data for E. faecium display clearly marked deviations from the model predictions which may be attributable to its adaptation to the hospital environment. PMID:26916623

  14. Medical migration.

    PubMed

    Loefler, I J

    2001-10-01

    The issue of professional migration, however emotional it may have become, ought not to be regarded in moralizing terms. The history of western medicine is the history of migrating physicians. A doctor who moves from a locality to another to take up a new assignment there cannot be said to have "abandoned his patients". This emotional bond has become the victim of specialization and of depersonalization of medical services and not of medical migration, brain drain or otherwise. The primary reason for medical migration is not financial; the desire to migrate usually begins with the desire to learn. Professionals crave in the first line for professional satisfaction. The migration of medical manpower cannot be stopped with administrative measures and will not be stopped by exhortations and appeals, moralization and condemnations. Brain drain is a global phenomenon and has always been so. A country which loses its professionals, its doctors, should examine the social relationships within the profession and should investigate whether the opportunities for deriving professional satisfaction from everyday work exist or whether these have been thwarted by the hierarchy, conservatism, cronyism and the general lack of comprehension of what good medical care is about. PMID:11593497

  15. Genomic heterogeneity in Pea seed-borne mosaic virus isolates from Pakistan, the centre of diversity of the host species, Pisum sativum.

    PubMed

    Ali, A; Randles, J W

    2001-10-01

    A range of isolates of Pea seed-borne mosaic virus (PSbMV) was compared in the segments of the genome representing the partial NIb/CP/UTR and the partial P1-Pro/HC-Pro coding regions. Nucleotide and amino acid sequences, and a phylogenetic analysis of the CP region, divided isolates with available sequence information into two groups, one representing pathotype 4, the other pathotype 1. The pathotype 1 group showed greater diversity than the pathotype 4 group. A comparison of 14 isolates, S6 (a pathotype 4 isolate), US (a pathotype 1 isolate) and 12 isolates from Pakistan, by ribonuclease protection assay (RPA) using cRNA transcripts of the cloned partial NIb/CP/UTR regions of the S6, US and Pakistani isolate PK9 placed them into three distinct phylogenetic groups. RPA with a partial P1-Pro/HC-Pro cRNA probe identified a greater level of variation which was too high to be used for generating an overall phylogeny. Thus, RPA identified greater molecular diversity in PSbMV than described hitherto. We conclude that, in addition to the pathotypes 1 and 4 typified by US and S6 respectively, isolates of PSbMV from Pakistan include previously unrecognised molecular variants, and this accords with our previous recognition of new pathotypes from Pakistan. PMID:11722010

  16. Evolutionary genetics and vector adaptation of recombinant viruses of the western equine encephalitis antigenic complex provides new insights into alphavirus diversity and host switching

    PubMed Central

    Allison, Andrew B.; Stallknecht, David E.; Holmes, Edward C.

    2014-01-01

    Western equine encephalitis virus (WEEV), Highlands J virus (HJV), and Fort Morgan virus (FMV) are the sole representatives of the WEE antigenic complex of the genus Alphavirus, family Togaviridae, that are endemic to North America. All three viruses have their ancestry in a recombination event involving eastern equine encephalitis virus (EEEV) and a Sindbis (SIN)-like virus that gave rise to a chimeric alphavirus that subsequently diversified into the present-day WEEV, HJV, and FMV. Here, we present a comparative analysis of the genetic, ecological, and evolutionary relationships among these recombinant-origin viruses, including the description of a nsP4 polymerase mutation in FMV that allows it to circumvent the host range barrier to Asian tiger mosquito cells, a vector species that is normally refractory to infection. Notably, we also provide evidence that the recombination event that gave rise to these three WEEV antigenic complex viruses may have occurred in North America. PMID:25463613

  17. [Internal migration].

    PubMed

    Borisovna, L

    1991-06-01

    Very few studies have been conducted that truly permit explanation of internal migration and it repercussions on social and economic structure. It is clear however that a profound knowledge of the determinants and consequences of internal migration will be required as a basis for economic policy decisions that advance the goal of improving the level of living of the population. the basic supposition of most studies of the relationship of population and development is that socioeconomic development conditions demographic dynamics. The process of development in Mexico, which can be characterized by great heterogeneity, consequently produces great regional disparities. At the national level various studies have estimated the volume of internal migration in Mexico, but they have usually been limited to interstate migration because the main source of data, the census, is classified by states. But given the great heterogeneity within states in all the elements related to internal migration, it is clear that studies of internal migration within states are also needed. Such studies are almost nonexistent because of their technical difficulty. National level studies show that interstate migration increased significantly between 1940-80. The proportion of Mexicans living outside their states of birth increased by 558% in those years, compared to the 342% increase in the total Mexican population. Although Puebla has a high rate of increase, migration has kept it below Mexico's national growth rate. Migration between Puebla and other states and within Puebla has led to an increasing unevenness of spatial distribution. Between 1970-80, 57 of Puebla's municipios had growth rates above the state average of 2.8%/year, 6 had growth rates equal to the average, and 129 had growth rates that were below the average but not negative. 25 states with negative growth rates that were considered strongly expulsive. In 1980, 51.7% of the population was concentrated in the 57 municipios

  18. Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts

    USGS Publications Warehouse

    Hechinger, R.F.; Lafferty, K.D.

    2005-01-01

    It is postulated that disease is a product of adverse habitats. Overpopulation causes overutilization of food supplies, which results in malnutrition and a decrease in resistance to diseases. Examples of such ecological relationships in populations of Canada geese, California quail, red grouse, deer, rabbits, voles, mice and lemmings are presented.

  19. Visual mimicry of host nestlings by cuckoos

    PubMed Central

    Langmore, Naomi E.; Stevens, Martin; Maurer, Golo; Heinsohn, Robert; Hall, Michelle L.; Peters, Anne; Kilner, Rebecca M.

    2011-01-01

    Coevolution between antagonistic species has produced instances of exquisite mimicry. Among brood-parasitic cuckoos, host defences have driven the evolution of mimetic eggs, but the evolutionary arms race was believed to be constrained from progressing to the chick stage, with cuckoo nestlings generally looking unlike host young. However, recent studies on bronze-cuckoos have confounded theoretical expectations by demonstrating cuckoo nestling rejection by hosts. Coevolutionary theory predicts reciprocal selection for visual mimicry of host young by cuckoos, although this has not been demonstrated previously. Here we show that, in the eyes of hosts, nestlings of three bronze-cuckoo species are striking visual mimics of the young of their morphologically diverse hosts, providing the first evidence that coevolution can select for visual mimicry of hosts in cuckoo chicks. Bronze-cuckoos resemble their own hosts more closely than other host species, but the accuracy of mimicry varies according to the diversity of hosts they exploit. PMID:21227972

  20. [Obesity, migration and adolescence].

    PubMed

    Chamay-Weber, Catherine; Shehu-Brovina, Shqipe; Narring, Françoise

    2012-06-13

    Weight management interventions during adolescence are challenging. Migration adds complexity to this problem, making migrant families more vulnerable. Teenagers confront families to new values transmitted by the host society: opulence, junk food, video games. Obesity should not be seen as a single issue of calories-excess, but must be considered as being part of a larger problem, which takes into account the context of the familial and societal life of the migrants. The caregivers must have an overall view of the situation to provide appropriate approaches to weight management. PMID:22787729

  1. The Fleas of Endemic and Introduced Small Mammals in Central Highland Forests of Madagascar: Faunistics, Species Diversity, and Absence of Host Specificity.

    PubMed

    Goodman, Steven M; Randrenjarison Andriniaina, H Rico; Soarimalala, Voahangy; Beaucournu, Jean-Claude

    2015-09-01

    Data are presented on the flea species of the genera Paractenopsyllus (Ceratophyllidae, Leptopsyllinae) and Synopsyllus (Pulicidae, Xenopsyllinae) obtained from small mammals during two 2014 seasonal surveys at a montane humid forest site (Ambohitantely) in the Central Highlands of Madagascar. The mammal groups included the endemic family Tenrecidae (tenrecs) and subfamily Nesomyinae (rodents) and two introduced families Muridae (rodents) and Soricidae (shrews); no fleas were recovered from the latter family. The surveys were conducted at the end of the wet and dry seasons with 288 individual small mammals captured, including 12 endemic and four introduced species. These animals yielded 344 fleas, representing nine species endemic to Madagascar; no introduced species was collected. Some seasonal variation was found in the number of trapped small mammals, but no marked difference was found in species richness. For flea species represented by sufficient samples, no parasite-host specificity was found, and there is evidence for considerable lateral exchange in the local flea fauna between species of tenrecs and the two rodent families (endemic and introduced). The implications of these results are discussed with regards to small mammal species richness and community structure, as well as a possible mechanism for the maintenance of sylvatic cycles of bubonic plague in the montane forests of Madagascar. PMID:26336252

  2. Recognizing diversity in coral symbiotic dinoflagellate communities.

    PubMed

    Apprill, Amy M; Gates, Ruth D

    2007-03-01

    A detailed understanding of how diversity in endosymbiotic dinoflagellate communities maps onto the physiological range of coral hosts is critical to predicting how coral reef ecosystems will respond to climate change. Species-level taxonomy of the dinoflagellate genus Symbiodinium has been predominantly examined using the internal transcribed spacer (ITS) region of the nuclear ribosomal array (rDNA ITS2) and downstream screening for dominant types using denaturing gradient gel electrophoresis (DGGE). Here, ITS2 diversity in the communities of Symbiodinium harboured by two Hawaiian coral species was explored using direct sequencing of clone libraries. We resolved sixfold to eightfold greater diversity per coral species than previously reported, the majority of which corresponds to a novel and distinct phylogenetic lineage. We evaluated how these sequences migrate in DGGE and demonstrate that this method does not effectively resolve this diversity. We conclude that the Porites spp. examined here harbour diverse assemblages of novel Symbiodinium types and that cloning and sequencing is an effective methodological approach for resolving the complexity of endosymbiotic dinoflagellate communities harboured by reef corals. PMID:17391401

  3. Migration Theories

    NASA Astrophysics Data System (ADS)

    Crida, Aurélien

    2015-08-01

    The great variety of the architectures of the extra-solar planetary systems has revealed the fundamental role played by planetary migration: the interactions between the planets and the gaseous disk in which they form leads to a modification of their orbits. Here, I will review the basic processes and the most recent results in this area.Planets up to ~50 Earth masses are prone to so-called type I migration.I will describe the processes at play, namely the Lindblad and corotation torques, and explain how the total torque depends on the planet mass and the local disk structure. Application to realistic disks shows one or two sweet spot(s) for outward migration of planets roughly between 5 and 30 Earth masses around the snowline ; this is confirmed by dedicated 3D numerical simulations. This has strong consequences on the formation of hot Super-Earths or mini-Neptunes.For smaller mass planets, it has been recently proposed that the heating of the neighboring gas by the luminous planet can lead to a positive torque, hence promoting outward migration. On the other hand, if the planet is not a heat source, a cold finger appears, whose resulting torque is negative. Applications of these two recent results should be discussed.Giant planets open gaps in the proto-planetary disk, and then are supposedly subject to type II migration, following the viscous accretion of the disk. This standard picture has been questioned recently, as gas appears to drift through the gap. Although the gap opening process is well understood in 2D for a planet on a fixed orbit, recent results on 3D simulations or migrating planets make the picture more accurate.Our ever better understanding of planet-disk interactions is of crucial importance as the statistics on extra solar systems keep growing and the results of these interactions are now imaged.

  4. Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae).

    PubMed

    Tedersoo, Leho; Suvi, Triin; Beaver, Katy; Kõljalg, Urmas

    2007-01-01

    Ectomycorrhizal (ECM) fungi form highly diverse communities in temperate forests, but little is known about their community ecology in tropical ecosystems. Using anatomotyping and rDNA sequencing, ECM fungi were identified on root tips of the introduced Eucalyptus robusta and Pinus caribea as well as the endemic Vateriopsis seychellarum and indigenous Intsia bijuga in the Seychelles. Sequencing revealed 30 species of ECM fungi on root tips of V. seychellarum and I. bijuga, with three species overlapping. Eucalyptus robusta shared five of these taxa, whereas P. caribea hosted three unique species of ECM fungi that were likely cointroduced with containerized seedlings. The thelephoroid (including the anamorphic genus Riessiella), euagaric, boletoid and hymenochaetoid clades of basidiomycetes dominated the ECM fungal community of native trees. Two species of Annulatascaceae (Sordariales, Ascomycota) were identified and described as ECM symbionts of V. seychellarum. The low diversity of native ECM fungi is attributed to deforestation and long-term isolation of the Seychelles. Native ECM fungi associate with exotic eucalypts, whereas cointroduced ECM fungi persist in pine plantations for decades. PMID:17587380

  5. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction

    PubMed Central

    2013-01-01

    Background Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar-beet rhizosphere. This bacterium has been extensively studied as a model strain for genetic regulation of secondary metabolite production in P. fluorescens, as a candidate biocontrol agent against phytopathogens, and as a heterologous host for expression of genes with biotechnological application. The F113 genome sequence and annotation has been recently reported. Results Comparative analysis of 50 genome sequences of strains belonging to the P. fluorescens group has revealed the existence of five distinct subgroups. F113 belongs to subgroup I, which is mostly composed of strains classified as P. brassicacearum. The core genome of these five strains is highly conserved and represents approximately 76% of the protein-coding genes in any given genome. Despite this strong conservation, F113 also contains a large number of unique protein-coding genes that encode traits potentially involved in the rhizocompetence of this strain. These features include protein coding genes required for denitrification, diterpenoids catabolism, motility and chemotaxis, protein secretion and production of antimicrobial compounds and insect toxins. Conclusions The genome of P. fluorescens F113 is composed of numerous protein-coding genes, not usually found together in previously sequenced genomes, which are potentially decisive during the colonisation of the rhizosphere and/or interaction with other soil organisms. This includes genes encoding proteins involved in the production of a second flagellar apparatus, the use of abietic acid as a growth substrate, the complete denitrification pathway, the possible production of a macrolide antibiotic and the assembly of multiple protein secretion systems. PMID:23350846

  6. Comparison of the early host immune response to two widely diverse virulent strains of Burkholderia pseudomallei that cause acute or chronic infections in BALB/c mice.

    PubMed

    Amemiya, Kei; Dankmeyer, Jennifer L; Fetterer, David P; Worsham, Patricia L; Welkos, Susan L; Cote, Christopher K

    2015-09-01

    Burkholderia pseudomallei is the etiologic agent of melioidosis, which is endemic in Southeast Asia and Northern Australia. We previously found by the intraperitoneal (IP) route that we could discern differences in virulence in mice amongst different strains of B. pseudomallei. We report an early immune response study comparing two strains in our collection which represent the least, B. pseudomallei 1106a, and one of the most, HBPUB10134a, virulent strains in BALB/c mice. B. pseudomallei HBPUB10134a infected mouse spleens contained a 2-3 log higher bacterial burden than mice infected with B. pseudomallei 1106a 3 days post-infection (PI). More and higher amounts of inflammatory cytokines/chemokines were detected in sera and spleen extracts from B. pseudomallei HBPUB10134a than B. pseudomallei 1106a infected mice. The most prominent were IFNγ, IL-1α, IL-1β, IL-6, IL-10, IP-10, and MIG. After 7 days PI, there was a decrease in bacterial burden in spleens from 1106a infected mice and a decrease in cytokines/chemokines in sera and spleen extracts from both sets of mice. By day 14 PI we saw an increase in monocytes/macrophages, NK cells, and granulocytes in spleens from both sets of mice. No B. pseudomallei HBPUB10134a infected mice survived after this time. In summary, B. pseudomallei HBPUB10134a was more virulent and induced host innate immune responses typical of a more acute-type infection than did B. pseudomallei 1106a which produced a more chronic infection in mice. PMID:26162294

  7. Monarch Migration.

    ERIC Educational Resources Information Center

    Williamson, Brad; Taylor, Orley

    1996-01-01

    Describes the Monarch Watch program that tracks the migration of the monarch butterfly. Presents activities that introduce students to research and international collaboration between students and researchers. Familiarizes students with monarchs, stimulates their interest, and helps them generate questions that can lead to good research projects.…

  8. Extremophile culture collection from Andean lakes: extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation.

    PubMed

    Ordoñez, Omar F; Flores, María R; Dib, Julian R; Paz, Agustin; Farías, María E

    2009-10-01

    A total of 88 bacterial strains were isolated from six Andean lakes situated at altitudes ranging from 3,400 to 4,600 m above sea level: L. Aparejos (4,200 m), L. Negra (4,400 m), L. Verde (4,460 m), L. Azul (4,400 m), L. Vilama (4,600 m), and Salina Grande (3,400 m). Salinity ranged from 0.4 to 117 ppm. General diversity was determined by denaturing gradient gel electrophoresis (DGGE) analysis. From the excised DGGE bands, 182 bacterial sequences of good quality were obtained. Gammaproteobacteria and Cytophaga/Flavobacterium/Bacteroides (CFB) were the most abundant phylogenetic groups with 42% and 18% of identified bands, respectively. The isolated strains were identified by sequence analysis. Isolated bacteria were subjected to five different UV-B exposure times: 0.5, 3, 6, 12, and 24 h. Afterwards, growth of each isolate was monitored and resistance was classified according to the growth pattern. A wide interspecific variation among the 88 isolates was observed. Medium and highly resistant strains accounted for 43.2% and 28.4% of the isolates, respectively, and only 28.4% was sensitive. Resistance to solar radiation was equally distributed among the isolates from the different lakes regardless of the salinity of the lakes and pigmentation of isolates. Of the highly resistant isolates, 44.5% belonged to gammaproteobacteria, 33.3% to betaproteobacteria, 40% to alphaproteobacteria, 50% to CFB, and among gram-positive organisms, 33.3% were HGC and 44.5% were Firmicutes. Most resistant strains belonged to genera like Exiguobaceterium sp., Acinetobacter sp., Bacillus sp., Micrococcus sp., Pseudomonas sp., Sphyngomonas sp., Staphylococcus sp., and Stenotrophomonas sp. The current study provides further evidence that gammaproteobacteria are the most abundant and the most UV-B-resistant phylogenetic group in Andean lakes and that UV resistance in bacteria isolated from these environments do not depend on pigmentation and tolerance to salinity. PMID:19495855

  9. Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain diversity, host range, and recombination.

    PubMed

    Schouls, Leo M; Reulen, Sanne; Duim, Birgitta; Wagenaar, Jaap A; Willems, Rob J L; Dingle, Kate E; Colles, Frances M; Van Embden, Jan D A

    2003-01-01

    Three molecular typing methods were used to study the relationships among 184 Campylobacter strains isolated from humans, cattle, and chickens. All strains were genotyped by amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), and sequence analysis of a genomic region with short tandem repeats designated clustered regularly interspaced short palindromic repeats (CRISPRs). MLST and AFLP analysis yielded more than 100 different profiles and patterns, respectively. These multiple-locus typing methods resulted in similar genetic clustering, indicating that both are useful in disclosing genetic relationships between Campylobacter jejuni isolates. Group separation analysis of the AFLP analysis and MLST data revealed an unexpected association between cattle and human strains, suggesting a common source of infection. Analysis of the polymorphic CRISPR region carrying short repeats allowed about two-thirds of the typeable strains to be distinguished, similar to AFLP analysis and MLST. The three methods proved to be equally powerful in identifying strains from outbreaks of human campylobacteriosis. Analysis of the MLST data showed that intra- and interspecies recombination occurs frequently and that the role of recombination in sequence variation is 50 times greater than that of mutation. Examination of strains cultured from cecum swabs revealed that individual chickens harbored multiple Campylobacter strain types and that some genotypes were found in more than one chicken. We conclude that typing of Campylobacter strains is useful for identification of outbreaks but is probably not useful for source tracing and global epidemiology because of carriage of strains of multiple types and an extremely high diversity of strains in animals. PMID:12517820

  10. Sphaeromyxids form part of a diverse group of myxosporeans infecting the hepatic biliary systems of a wide range of host organisms

    PubMed Central

    2013-01-01

    Background Approximately 40 species of Sphaeromyxa have been described, all of which are coelozoic parasites from gall bladders of marine fish. They are unique amongst the myxosporeans as they have polar filaments that are flat and folded instead of being tubular and spirally wound. This unusual feature was used as a subordinal character to erect the suborder Sphaeromyxina, which contains one family, the Sphaeromyxidae, and a single genus Sphaeromyxa. Methods In the present study, we examine eelpout from the genus Lycodes from Iceland for the presence of myxosporean parasites in the gall bladder and perform morphological and DNA studies. Results A novel myxosporean, Sphaeromyxa lycodi n. sp., was identified in the gall bladders of five of the six species of Lycodes examined, with a prevalence ranging from 29 - 100%. The coelozoic plasmodia are large, polysporous and contain disporic pansporoblasts and mature spores which are arcuate. The pyriform polar capsules encase long and irregularly folded ribbon-like polar filaments. Each spore valve has two distinct ends and an almost 180° twist along the relatively indistinct suture line. The single sporoplasm is granular with two nuclei. Sphaeromyxa lycodi is phylogenetically related to other arcuate sphaeromyxids and is reproducibly placed with all known sphaeromyxids and forms part of a robustly supported clade of numerous myxosporean genera which infect the hepatic biliary systems of a wide range of hosts. Conclusions Sphaeromyxa lycodi is a common gall bladder myxosporean in eelpout of the genus Lycodes from Northern Iceland. It has characteristics typical of the genus and develops arcuate spores. Molecular phylogenetic analyses confirm that sphaeromyxids form a monophyletic group, subdivided into straight and arcuate spore forms, within the hepatic biliary clade that infect a wide range of freshwater associated animals. The ancestral spore form for the hepatic biliary clade was probably a Chloromyxum morphotype

  11. [Cultural diversity reflexive learning].

    PubMed

    Pomarede, Ma José Morera; Caparà, Núria Roca

    2007-10-01

    Recent international migration trends contribute to set up new social scenarios where an increasing cultural diversity becomes self-evident. From a global diversity on a planetary scale, we enter into a local diversity comprised by persons, groups and emerging cultures with whom we share our daily life experiences. In this context, social relationships are not always easy and we may note difficulties due to the ethnocentrism each group has and due to a lack of knowledge, or distrust or prejudices among persons or groups having diverse cultural origins. PMID:18274398

  12. Population commission discusses international migration.

    PubMed

    1997-01-01

    At the 30th session of the Commission on Population and Development during February 24-28, 1997, international migration was the main topic, with special linkages between migration and development and on gender issues and the family. New and emerging issues were also considered. Members stressed the need for more reliable data on migration, the direction of migrants flows, and the characteristics of migrants. The Commission requested a task force on basic social services to hold a technical symposium of experts on international migration in 1998. Its chair, Dr. Nafis Sadik, said that migration issues should based on the reality of choice not on coercive measures or quotas. Almost half of the migrants globally are women. The Commission was given a new impetus by the International Conference on Population and Development held at Cairo in 1994. Migration pressures intensified in the second half of the 1980s and in the early 1990s, creating areas of concern: the negative impact of short-term migration on working conditions in host countries; migration pressures emanating from climatic change; the protection of migrant women and their children; the right of receiving countries to regulate access to their territory; the adverse consequences of forced migration; the situation of persons whose asylum claims have been rejected; the trafficking in women and children, prostitution and coercive adoption; and the sudden and massive arrival of refugees in need of international protection. The 1998 session of the Commission will feature the theme of health and mortality, with special emphasis on the linkages between health and development and on gender and age. PMID:12292475

  13. Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos).

    PubMed

    Hill, Nichola J; Takekawa, John Y; Ackerman, Joshua T; Hobson, Keith A; Herring, Garth; Cardona, Carol J; Runstadler, Jonathan A; Boyce, Walter M

    2012-12-01

    Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories. PMID:22971007

  14. Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos).

    USGS Publications Warehouse

    Takekawa, John Y.; Hill, Nichola J.; Ackerman, Joshua T.; Herring, Garth; Hobson, Keith; Cardona, Carol J.; Runstadler, Jonathan; Boyce, Walter M.

    2012-01-01

    Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.

  15. Bacterial Strain Diversity Within Wounds

    PubMed Central

    Kirkup, Benjamin C.

    2015-01-01

    Significance: Rare bacterial taxa (taxa of low relative frequency) are numerous and ubiquitous in virtually any sample—including wound samples. In addition, even the high-frequency genera and species contain multiple strains. These strains, individually, are each only a small fraction of the total bacterial population. Against the view that wounds contain relatively few kinds of bacteria, this newly recognized diversity implies a relatively high rate of migration into the wound and the potential for diversification during infection. Understanding the biological and medical importance of these numerous taxa is an important new element of wound microbiology. Recent Advances: Only recently have these numerous strains been discovered; the technology to detect, identify, and characterize them is still in its infancy. Multiple strains of both gram-negative and gram-positive bacteria have been found in a single wound. In the few cases studied, the distribution of the bacteria suggests microhabitats and biological interactions. Critical Issues: The distribution of the strains, their phenotypic diversity, and their interactions are still largely uncharacterized. The technologies to investigate this level of genomic detail are still developing and have not been largely deployed to investigate wounds. Future Directions: As advanced metagenomics, single-cell genomics, and advanced microscopy develop, the study of wound microbiology will better address the complex interplay of numerous individually rare strains with both the host and each other. PMID:25566411

  16. Metagenomic Analysis of the Stool Microbiome in Patients Receiving Allogeneic Stem Cell Transplantation: Loss of Diversity Is Associated with Use of Systemic Antibiotics and More Pronounced in Gastrointestinal Graft-versus-Host Disease

    PubMed Central

    Holler, Ernst; Butzhammer, Peter; Schmid, Karin; Hundsrucker, Christian; Koestler, Josef; Peter, Katrin; Zhu, Wentao; Sporrer, Daniela; Hehlgans, Thomas; Kreutz, Marina; Holler, Barbara; Wolff, Daniel; Edinger, Matthias; Andreesen, Reinhard; Levine, John E.; Ferrara, James L.; Gessner, Andre; Spang, Rainer; Oefner, Peter J.

    2016-01-01

    Next-generation sequencing of the hypervariable V3 region of the 16s rRNA gene isolated from serial stool specimens collected from 31 patients receiving allogeneic stem cell transplantation (SCT) was performed to elucidate variations in the composition of the intestinal microbiome in the course of allogeneic SCT. Metagenomic analysis was complemented by strain-specific enterococcal PCR and indirect assessment of bacterial load by liquid chromatography-tandem mass spectrometry of urinary indoxyl sulfate. At the time of admission, patients showed a predominance of commensal bacteria. After transplantation, a relative shift toward enterococci was observed, which was more pronounced under antibiotic prophylaxis and treatment of neutropenic infections. The shift was particularly prominent in patients that developed subsequently or suffered from active gastrointestinal (GI) graft-versus-host disease (GVHD). The mean proportion of enterococci in post-transplant stool specimens was 21% in patients who did not develop GI GVHD as compared with 46% in those that subsequently developed GI GVHD and 74% at the time of active GVHD. Enterococcal PCR confirmed predominance of Enterococcus faecium or both E. faecium and Enterococcus faecalis in these specimens. As a consequence of the loss of bacterial diversity, mean urinary indoxyl sulfate levels dropped from 42.5 ± 11 µmol/L to 11.8 ± 2.8 µmol/L in all post-transplant samples and to 3.5 ± 3 µmol/L in samples from patients with active GVHD. Our study reveals major microbiome shifts in the course of allogeneic SCT that occur in the period of antibiotic treatment but are more prominent in association with GI GVHD. Our data indicate early microbiome shifts and a loss of diversity of the intestinal microbiome that may affect intestinal inflammation in the setting of allogeneic SCT. PMID:24492144

  17. Final Report: Migration Mechanisms for Large-scale Parallel Applications

    SciTech Connect

    Jason Nieh

    2009-10-30

    Process migration is the ability to transfer a process from one machine to another. It is a useful facility in distributed computing environments, especially as computing devices become more pervasive and Internet access becomes more ubiquitous. The potential benefits of process migration, among others, are fault resilience by migrating processes off of faulty hosts, data access locality by migrating processes closer to the data, better system response time by migrating processes closer to users, dynamic load balancing by migrating processes to less loaded hosts, and improved service availability and administration by migrating processes before host maintenance so that applications can continue to run with minimal downtime. Although process migration provides substantial potential benefits and many approaches have been considered, achieving transparent process migration functionality has been difficult in practice. To address this problem, our work has designed, implemented, and evaluated new and powerful transparent process checkpoint-restart and migration mechanisms for desktop, server, and parallel applications that operate across heterogeneous cluster and mobile computing environments. A key aspect of this work has been to introduce lightweight operating system virtualization to provide processes with private, virtual namespaces that decouple and isolate processes from dependencies on the host operating system instance. This decoupling enables processes to be transparently checkpointed and migrated without modifying, recompiling, or relinking applications or the operating system. Building on this lightweight operating system virtualization approach, we have developed novel technologies that enable (1) coordinated, consistent checkpoint-restart and migration of multiple processes, (2) fast checkpointing of process and file system state to enable restart of multiple parallel execution environments and time travel, (3) process migration across heterogeneous

  18. The sociology of migration from the former Yugoslavia.

    PubMed

    Molnar, I G

    1997-01-01

    This is a general review of migration, including both international and internal migration, in the former Yugoslavia before its breakdown into constituent countries in the early 1990s. The author examines such topics as labor migration, the distribution of migrants from Yugoslavia in host countries, the characteristics of migrants from Serbia, the assimilation of immigrants, the economic effects of emigration on places of origin, and return migration. PMID:12179818

  19. Migration & Extra-solar Terrestrial Planets: Watering the Planets

    NASA Astrophysics Data System (ADS)

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2014-04-01

    A diverse range of terrestrial planet compositions is believed to exist within known extrasolar planetary systems, ranging from those that are relatively Earth-like to those that are highly unusual, dominated by species such as refractory elements (Al and Ca) or C (as pure C, TiC and SiC)(Bond et al. 2010b). However, all prior simulations have ignored the impact that giant planet migration during planetary accretion may have on the final terrestrial planetary composition. Here, we combined chemical equilibrium models of the disk around five known planetary host stars (Solar, HD4203, HD19994, HD213240 and Gl777) with dynamical models of terrestrial planet formation incorporating various degrees of giant planet migration. Giant planet migration is found to drastically impact terrestrial planet composition by 1) increasing the amount of Mg-silicate species present in the final body; and 2) dramatically increasing the efficiency and amount of water delivered to the terrestrial bodies during their formation process.

  20. Neighborhood Diversity, Metropolitan Constraints, and Household Migration

    PubMed Central

    Crowder, Kyle; Pais, Jeremy; South, Scott J.

    2012-01-01

    Focusing on micro-level processes of residential segregation, this analysis combines data from the Panel Study of Income Dynamics with contextual information from three censuses and several other sources to examine patterns of residential mobility between neighborhoods populated by different combinations of racial and ethnic groups. We find that despite the emergence of multiethnic neighborhoods, stratified mobility dynamics continue to dominate, with relatively few black or white households moving into neighborhoods that could be considered multiethnic. However, we also find that the tendency for white and black households to move between neighborhoods dominated by their own group varies significantly across metropolitan areas. Black and white households’ mobility into more integrated neighborhoods is shaped substantially by demographic, economic, political, and spatial features of the broader metropolitan area. Metropolitan-area racial composition, the stock of new housing, residential separation of black and white households, poverty rates, and functional specialization emerge as particularly important predictors. These macro-level effects reflect opportunities for intergroup residential contact as well as structural forces that maintain residential segregation. PMID:22753955

  1. Quantifying Modes of 3D Cell Migration.

    PubMed

    Driscoll, Meghan K; Danuser, Gaudenz

    2015-12-01

    Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates. PMID:26603943

  2. Host Responses to Biofilm.

    PubMed

    Watters, C; Fleming, D; Bishop, D; Rumbaugh, K P

    2016-01-01

    From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand. PMID:27571696

  3. Migration and stratification

    PubMed Central

    Jasso, Guillermina

    2011-01-01

    Migration and stratification are increasingly intertwined. One day soon it will be impossible to understand one without the other. Both focus on life chances. Stratification is about differential life chances - who gets what and why - and migration is about improving life chances - getting more of the good things of life. To examine the interconnections of migration and stratification, we address a mix of old and new questions, carrying out analyses newly enabled by a unique new data set on recent legal immigrants to the United States (the New Immigrant Survey). We look at immigrant processing and lost documents, depression due to the visa process, presentation of self, the race-ethnic composition of an immigrant cohort (made possible by the data for the first time since 1961), black immigration from Africa and the Americas, skin-color diversity among couples formed by U.S. citizen sponsors and immigrant spouses, and English fluency among children age 8–12 and their immigrant parents. We find, inter alia, that children of previously illegal parents are especially more likely to be fluent in English, that native-born U.S. citizen women tend to marry darker, that immigrant applicants who go through the visa process while already in the United States are more likely to have their documents lost and to suffer visa depression, and that immigration, by introducing accomplished black immigrants from Africa (notably via the visa lottery), threatens to overturn racial and skin color associations with skill. Our analyses show the mutual embeddedness of migration and stratification in the unfolding of the immigrants' and their children's life chances and the impacts on the stratification structure of the United States. PMID:26321771

  4. Migration, refugees, and health risks.

    PubMed

    Carballo, M; Nerukar, A

    2001-01-01

    Migration both voluntary and forced is increasing all over the world. People are moving in larger numbers faster and further than at any other time in history. This is happening at a time when many countries are ill-prepared to deal with a changing demography and when policies and attitudes to population movement and immigration are hardening. The health implications of this are many, and, in some cases, illness and death rates associated with migration are exacerbated by a lack of policies needed to make migration a healthy and socially productive process. From a public health point of view, this is having and will continue to have serious ramifications for the people that move, the family they leave behind, and the communities that host the newcomers. PMID:11485671

  5. Climate change-related migration and infectious disease

    PubMed Central

    McMichael, Celia

    2015-01-01

    Anthropogenic climate change will have significant impacts on both human migration and population health, including infectious disease. It will amplify and alter migration pathways, and will contribute to the changing ecology and transmission dynamics of infectious disease. However there has been limited consideration of the intersections between migration and health in the context of a changing climate. This article argues that climate-change related migration - in conjunction with other drivers of migration – will contribute to changing profiles of infectious disease. It considers infectious disease risks for different climate-related migration pathways, including: forced displacement, slow-onset migration particularly to urban-poor areas, planned resettlement, and labor migration associated with climate change adaptation initiatives. Migration can reduce vulnerability to climate change, but it is critical to better understand and respond to health impacts – including infectious diseases - for migrant populations and host communities. PMID:26151221

  6. Migration and women's health.

    PubMed

    Adanu, Richard M K; Johnson, Timothy R B

    2009-08-01

    Women have been migrating at similar rates to men for the past 40 years, and comprised about half of all migrants in 2005. Women and children are most affected by displacement as a result of wars and human trafficking. In some cases, the health of female migrants is improved via integration into better health systems in the host country. More often, however, the health of female migrants is affected negatively. Women are doubly disadvantaged because they are discriminated against as women and as migrants. Female migrants are also highly vulnerable to acts of sexual abuse, rape, and violence. This is especially true for women in refugee camps, whose reproductive health needs are often overlooked. To improve the health of female migrants it is important to develop and implement policies that recognize and insist on the respect of the rights of migrants. PMID:19539929

  7. Close-in planet migration due to magnetic torques

    NASA Astrophysics Data System (ADS)

    Strugarek, Antoine; Brun, Allan Sacha; Matt, Sean; Réville, Victor

    2015-08-01

    The diversity of masses, sizes and orbits of known exoplanets has prompted recent efforts in the scientific community to explore the broad range of interactions that can exist between planets and their host stars. In addition to tidal interactions, planets orbiting inside the stellar wind Alfv ´en radius can magnetically interact with their host. These interactions could lead to an angular momentum transfer between the planet and its host, resulting in a substantial planetary migration and participating in the dynamical (in)stability of the system. Among the star-planet interaction (SPI) models that have been developed, magnetohydrodynamic (MHD) simulations combine state of the art numerical models of cool star magnetospheres with simplified models of planets. The advantage of these global, dynamical models is the ability to assess the effects of SPI in a self-consistent way, by modelling the full interaction channel from the planetary magnetosphere down to the lower stellar corona.We will present our study of global magnetic SPI using the PLUTO code. We first give an overview of different types of interactions, depending on the stellar wind and orbital properties. Based on our previous exploratory 2D axisymmetric study, we develop our magnetic interaction model in 3D to tackle the full geometry of the star-wind- planet connection. We study the formation of Aflv ´en wings and parametrize the key physical ingredients (magnetic field strength and topology, orbital distance, stellar wind mass and angular momentum loss rates) controlling the magnetic torques which lead to planet migration. These torques are shown to operate on time-scales comparable to tidal torques for sufficiently compact systems and favorable magnetic topologies.

  8. Probiotics-host communication

    PubMed Central

    Thomas, Carissa M

    2010-01-01

    The intestinal microbiota includes a diverse group of functional microorganisms, including candidate probiotics or viable microorganisms that benefit the host. Beneficial effects of probiotics include enhancing intestinal epithelial cell function, protecting against physiologic stress, modulating cytokine secretion profiles, influencing T-lymphocyte populations, and enhancing antibody secretion. Probiotics have demonstrated significant potential as therapeutic options for a variety of diseases, but the mechanisms responsible for these effects remain to be fully elucidated. Accumulating evidence demonstrates that probiotics communicate with the host by modulating key signaling pathways, such as NFκB and MAPK, to either enhance or suppress activation and influence downstream pathways. Beneficial microbes can profoundly alter the physiology of the gastrointestinal tract, and understanding these mechanisms may result in new diagnostic and therapeutic strategies. PMID:20672012

  9. Diverse Thinking about Diversity

    ERIC Educational Resources Information Center

    Kaplan, Sandra N.

    2013-01-01

    This article focuses on the concept of diversity in educational decision making. It is noted that the differences that distinguish the needs, interests and abilities are identified by educators. It lists misconceptions resulting from not attending to within-group diversity, and states that a "loss of self" for individual members of…

  10. Influenza A Virus Migration and Persistence in North American Wild Birds

    PubMed Central

    Kühnert, Denise; Fourment, Mathieu; Raven, Garnet; Pryor, S. Paul; Niles, Lawrence J.; Danner, Angela; Walker, David; Mendenhall, Ian H.; Su, Yvonne C. F.; Dugan, Vivien G.; Halpin, Rebecca A.; Stockwell, Timothy B.; Webby, Richard J.; Wentworth, David E.; Drummond, Alexei J.; Smith, Gavin J. D.; Webster, Robert G.

    2013-01-01

    Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV) samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection. PMID:24009503

  11. Host-pathogen coevolution in human tuberculosis.

    PubMed

    Gagneux, Sebastien

    2012-03-19

    Tuberculosis (TB) is a disease of antiquity. Yet TB today still causes more adult deaths than any other single infectious disease. Recent studies show that contrary to the common view postulating an animal origin for TB, Mycobacterium tuberculosis complex (MTBC), the causative agent of TB, emerged as a human pathogen in Africa and colonized the world accompanying the Out-of-Africa migrations of modern humans. More recently, evolutionarily 'modern' lineages of MTBC expanded as a consequence of the global human population increase, and spread throughout the world following waves of exploration, trade and conquest. While epidemiological data suggest that the different phylogenetic lineages of MTBC might have adapted to different human populations, overall, the phylogenetically 'modern' MTBC lineages are more successful in terms of their geographical spread compared with the 'ancient' lineages. Interestingly, the global success of 'modern' MTBC correlates with a hypo-inflammatory phenotype in macrophages, possibly reflecting higher virulence, and a shorter latency in humans. Finally, various human genetic variants have been associated with different MTBC lineages, suggesting an interaction between human genetic diversity and MTBC variation. In summary, the biology and the epidemiology of human TB have been shaped by the long-standing association between MTBC and its human host. PMID:22312052

  12. Bats: Important Reservoir Hosts of Emerging Viruses

    PubMed Central

    Calisher, Charles H.; Childs, James E.; Field, Hume E.; Holmes, Kathryn V.; Schountz, Tony

    2006-01-01

    Bats (order Chiroptera, suborders Megachiroptera [“flying foxes”] and Microchiroptera) are abundant, diverse, and geographically widespread. These mammals provide us with resources, but their importance is minimized and many of their populations and species are at risk, even threatened or endangered. Some of their characteristics (food choices, colonial or solitary nature, population structure, ability to fly, seasonal migration and daily movement patterns, torpor and hibernation, life span, roosting behaviors, ability to echolocate, virus susceptibility) make them exquisitely suitable hosts of viruses and other disease agents. Bats of certain species are well recognized as being capable of transmitting rabies virus, but recent observations of outbreaks and epidemics of newly recognized human and livestock diseases caused by viruses transmitted by various megachiropteran and microchiropteran bats have drawn attention anew to these remarkable mammals. This paper summarizes information regarding chiropteran characteristics and information regarding 66 viruses that have been isolated from bats. From these summaries, it is clear that we do not know enough about bat biology; we are doing too little in terms of bat conservation; and there remain a multitude of questions regarding the role of bats in disease emergence. PMID:16847084

  13. How Symbiosis Creates Diversity

    ERIC Educational Resources Information Center

    Lord, Joshua

    2010-01-01

    Diversity in habitats on Earth is astounding--whether on land or in the sea--and this is in part due to symbiosis. The lesson described in this article helps students understand how symbiosis affects different organisms through a fun and engaging game where they match hosts and symbionts based on their respective needs. This 45-minute lesson is…

  14. Spatiotemporal distributions of intestinal helminths in female lesser scaup Aythya affinis during spring migration from the upper Midwest, USA

    USGS Publications Warehouse

    England, J. C.; Levengood, J.M.; Osborn, J. M.; Yetter, A. P.; Kinsella, J.M.; Cole, Rebecca A.; Cory D. Suski; Hagy, Heath M.

    2016-01-01

    We examined the associations between intestinal helminth infracommunity structure and infection parameters and the age, size, and year and region of collection of 130 female lesser scaup (Aythya affinis) during their 2014–2015 spring migrations through the upper Midwest, USA. We identified a total of 647,174 individual helminths from 40 taxa, including 20 trematodes, 14 cestodes, 4 nematodes and 2 acanthocephalans parasitizing lesser scaup within the study area. Lesser scaup were each infected with 2–23 helminth taxa. One digenean, Plenosoma minimum, is reported for the first time in lesser scaup and in the Midwest. Mean trematode abundance and total helminth abundance was significantly less in 2015 than 2014, and we suspect that colder weather late in 2015 impacted the intermediate host fauna and caused the observed differences. Brillouin's species diversity of helminths was greatest in the northernmost region of the study area, which coincides with the range of a non-indigenous snail that indirectly causes annual mortality events of lesser scaup. While host age and size were not determined to be influential factors of helminth infracommunity structure, non-parametric ordination and permutational analysis of co-variance revealed that year and region of collection explained differences in helminth infracommunities. Our results suggest that spatiotemporal variations play an important role in the structure of intestinal helminth infracommunities found in migrating lesser scaup hosts, and may therefore impact host ability to build endogenous reserves at certain stopover locations in the Midwest.

  15. Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics.

    PubMed

    Cardoso, Rita; Soares, Helena; Hemphill, Andrew; Leitão, Alexandre

    2016-07-01

    Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies. PMID:27041483

  16. [[Evolution of Egyptian migration

    PubMed

    Saleh, S A

    1985-01-01

    Changing patterns of Egyptian emigration over the past 30 years are reviewed. Four phases are identified: migration among Arab countries up to 1961, migration to the West for professional advancement, migration for political freedom, and migration to oil-producing countries since 1973 for economic reasons. (SUMMARY IN ENG) PMID:12268794

  17. International retirement migration in Europe.

    PubMed

    King, R; Warnes, A M; Williams, A M

    1998-06-01

    "This paper presents a review and prospectus of international retirement migration (IRM), dealing mainly with European evidence but also referring to some analogous trends in North America. The paper is in three main parts. It first makes the case for regarding IRM as a significant aspect of population geography and of migration studies; in certain areas of Mediterranean Europe, IRM also has effects on regional economic geography. The second section of the paper discusses some of the early findings from a comparative study of British elderly residents in Tuscany, Malta, the Costa del Sol and the Algarve.... The final part of the article offers further reflections on why IRM is important--for the individual migrants themselves, for the host communities, and for public policy." PMID:12348629

  18. Migration: the trends converge.

    PubMed

    1985-09-01

    Formerly, Australia, New Zealand, Canada, and the US have served as permanent destinations for immigrants, while Europe's migrants have moved to more northerly countries to work for a time and then returned home. From 1973-1975 Europe's recruitment of foreign workers virtually ended, although family reunion for those immigrants allowed in was encouraged. Problems resulting from this new settlement migration include low paying jobs for immigrant women, high unemployment, and inadequate education for immigrant children. Illegal migrants from Latin America and the Caribbean enter the US and Canada each year while illegal North African immigrants enter Italy, Spain, and Greece. North America, Australia, and Europe have all received political refugees from Asia and Latin America. Increasingly, these foreigners compete in the labor market rather than simply fill jobs the native workers do not want. All the receiving countries have similar policy priorities: 1) more effective ways for controlling and monitoring inflows and checking illegal immigration; 2) encouraging normal living patterns and accepting refugees; and 3) integrating permanent migrants into the host country. Europe's public immigration encouragement prior to the first oil shock, has left some countries with a labor force that is reluctant to return home. It is unlikely that Europe will welcome foreign labor again in this decade, since unemployment among young people and women is high and family reunion programs may still bring in many immigrants. Less immigration pattern change will probably occur in North America, Australia, and New Zealand since these countries' populations are still growing and wages are more flexible. Immigration, regulated by policy, and emigration, determined by market forces, now are working in the same direction and will likely reduce future migration flows. PMID:12267642

  19. Spread and Persistence of Influenza A Viruses in Waterfowl Hosts in the North American Mississippi Migratory Flyway

    PubMed Central

    Nolting, Jacqueline M.; Bowman, Andrew S.; Lin, Xudong; Halpin, Rebecca A.; Wester, Eric; Fedorova, Nadia; Stockwell, Timothy B.; Das, Suman R.; Dugan, Vivien G.; Wentworth, David E.; Gibbs, H. Lisle; Slemons, Richard D.

    2015-01-01

    ABSTRACT While geographic distance often restricts the spread of pathogens via hosts, this barrier may be compromised when host species are mobile. Migratory waterfowl in the order Anseriformes are important reservoir hosts for diverse populations of avian-origin influenza A viruses (AIVs) and are assumed to spread AIVs during their annual continental-scale migrations. However, support for this hypothesis is limited, and it is rarely tested using data from comprehensive surveillance efforts incorporating both the temporal and spatial aspects of host migratory patterns. We conducted intensive AIV surveillance of waterfowl using the North American Mississippi Migratory Flyway (MMF) over three autumn migratory seasons. Viral isolates (n = 297) from multiple host species were sequenced and analyzed for patterns of gene dispersal between northern staging and southern wintering locations. Using a phylogenetic and nucleotide identity framework, we observed a larger amount of gene dispersal within this flyway rather than between the other three longitudinally identified North American flyways. Across seasons, we observed patterns of regional persistence of diversity for each genomic segment, along with limited survival of dispersed AIV gene lineages. Reassortment increased with both time and distance, resulting in transient AIV constellations. This study shows that within the MMF, AIV gene flow favors spread along the migratory corridor within a season, and also that intensive surveillance during bird migration is important for identifying virus dispersal on time scales relevant to pandemic responsiveness. In addition, this study indicates that comprehensive monitoring programs to capture AIV diversity are critical for providing insight into AIV evolution and ecology in a major natural reservoir. IMPORTANCE Migratory birds are a reservoir for antigenic and genetic diversity of influenza A viruses (AIVs) and are implicated in the spread of virus diversity that has

  20. Host-parasite relationships in flatfish (Pleuronectiformes)--the relative importance of host biology, ecology and phylogeny.

    PubMed

    Marques, J F; Santos, M J; Teixeira, C M; Batista, M I; Cabral, H N

    2011-01-01

    The extent to which host biology, ecology and phylogeny determine the diversity of macroparasite assemblages has been investigated in recent years in several taxa, including fish. However, consensus has not been reached probably as a result of data being collected from different sources, different temporal scales or host and parasite biogeography and phylogeny having greater influence than expected. The present study evaluates the relative importance of 27 biological, ecological and phylogenetic characteristics of 14 flatfish species on the diversity of their ecto- and endoparasite assemblages, comprising a total of 53 taxa. Redundancy analyses were applied to the mean abundance of each parasite taxa infecting each host and to the richness, taxonomic distinctness and variance in taxonomic distinctness calculated for each assemblage within each host. Only a few host characteristics contributed significantly to the observed patterns: host distribution was more important in determining the type and mean abundance of ectoparasites present in an assemblage, whereas diversity of these assemblages were mainly related to the host's maximum size. Endoparasite mean abundance and diversity were mostly influenced by the number of food items ingested and by the presence of Crustacea and Polychaeta in the diet. However, the sympatric occurrence of related hosts also played an important role in the diversity values found in macroparasite assemblages. Results showed that a host characteristic has different importance according to the host-parasite relationship being examined, suggesting an important role for host-parasite co-evolution on the diversity of extant macroparasite assemblages. PMID:20819241

  1. Migration history, migration behavior and selectivity.

    PubMed

    Bailey, A J

    1993-01-01

    "A series of proportional hazards models are used to study the relationship between migration history and migration behavior for a sample of young adults from the [U.S.] National Longitudinal Survey of Youth. The results support the argument that migration is a selective process. College educated young adults have a greater hazard rate of making an initial migration but a lower hazard rate of re-migration, suggesting they have less need of corrective geographic behavior. Individuals who have moved two or more times are less responsive to national unemployment conditions than first time migrants. Migration is related to the timing of unemployment within a sojourn. The findings suggest that migrant stock is an important determinant of how labor markets function." PMID:12318324

  2. [Oxyuriasis and prehistoric migrations].

    PubMed

    Araújo, A; Ferreira, L F

    1995-01-01

    Parasite findings in archeological material have made it possible to trace the dispersion of infectious agents and their human hosts in ancient times. These findings allow us to re-examine theories proposed at the beginning of the century concerning transpacific contacts that Asian populations may have had with South America. This has been the case, for example, with hookworm eggs found in archeological material dating up to 7,000 years before present. Because of the increase in scientific production in this area, it has now become necessary to undertake syntheses that assess the state of the art and propose workable paleoepidemological models of the prehistoric dispersion of human parasitoses. Based on findings of Enterobius vermicularis eggs in archeological material in the Americas, the present study is an effort in this direction. Unlike the hookworm, the pinworm does not require a soil cycle in order to be transmitted from one host to another, thereby meaning that its persistence in a given human population does not depend on climatic conditions. Thus, it could have been brought from the old to the new continent, possibly by human migrations across the Bering Strait. This may explain the greater geographical dispersion and dissemination of these findings in North America from 10,000 yrs B.P. till today. In South America, on the other hand, archeological findings have only confirmed existence of Enterobius vermicularis eggs within the Andean region, with findings located specifically in Chile and northern Argentina. Although a large number of samples have been examined, no such eggs have been found in coprolites in Brazil. The paper discusses models that account for the known distribution of this parasitosis in prehistoric populations. PMID:11625244

  3. Greater migratory propensity in hosts lowers pathogen transmission and impacts.

    PubMed

    Hall, Richard J; Altizer, Sonia; Bartel, Rebecca A

    2014-09-01

    Animal migrations are spectacular and migratory species have been shown to transmit pathogens that pose risks to human health. Although migration is commonly assumed to enhance pathogen dispersal, empirical work indicates that migration can often have the opposite effect of lowering disease risk. Key to assessing disease threats to migratory species is the ability to predict how migratory behaviour influences pathogen invasion success and impacts on migratory hosts, thus motivating a mechanistic understanding of migratory host-pathogen interactions. Here, we develop a quantitative framework to examine pathogen transmission in animals that undergo two-way directed migrations between wintering and breeding grounds annually. Using the case of a pathogen transmitted during the host's breeding season, we show that a more extreme migratory strategy (defined by the time spent away from the breeding site and the total distance migrated) lowers the probability of pathogen invasion. Moreover, if migration substantially lowers the survival probability of infected animals, then populations that spend comparatively less time at the breeding site or that migrate longer distances are less vulnerable to pathogen-induced population declines. These findings provide theoretical support for two non-exclusive mechanisms proposed to explain how seasonal migration can lower infection risk: (i) escape from habitats where parasite transmission stages have accumulated and (ii) selective removal of infected hosts during strenuous journeys. Our work further suggests that barriers to long-distance movement could increase pathogen prevalence for vulnerable species, an effect already seen in some animal species undergoing anthropogenically induced migratory shifts. PMID:24460702

  4. Radionuclide migration in clayrock host formations for deep geological disposal of radioactive waste: advances in process understanding and up-scaling methods resulting from the EC integrated project `Funmig

    NASA Astrophysics Data System (ADS)

    Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N.

    2009-04-01

    migration of most radionuclides in clayrocks, in particular the actinides, is limited by their strong sorption on rock mineral surfaces. Much effort was devoted in Funmig to improving understanding of this process on the clayrocks being studied in the Swiss, Belgian and French radwaste management programs. Specific attention was focused on (i) elucidating the effect of dissolved organic matter on Am(III), Th(IV), Eu(III) sorption on clayrock surfaces and (ii) determining the link between Kd measured on dispersed rock systems and the Kd operant in intact rock volumes, i.e. during diffusion. Regarding the latter question, results indicate that Kd values for ‘dispersed' and ‘intact' materials are quite similar for certain elements (Na, Sr, Cs, Co). On the other hand, Kd values obtained by modeling results of diffusion experiments involving strongly sorbing elements as Cs, Co and Eu were always significantly smaller than those predicted based on sorption data measured in corresponding batch systems. This is an area where additional research is being planned. A major effort was devoted to improving understanding of the effects of small-scale (m to cm) clayrock structure and large-scale (dm to hm) mineralogical composition on radionuclide diffusion-retention. The program focusing on the small-scale produced a method for simulating the results of tracer diffusion in an intact rock based on the actual rock microstructure of the rock sample to be used in the diffusion experiment. This model was used to predict / inverse model the spatial distribution of highly sorbing tracers (Eu, Cu). This overall approach is also being used to understand how changes in mineralogical composition can affect the values of macroscopic diffusion parameters (De, tortuosity, anisiotropy). At a much larger scale, the results of (i) a geostatistical analysis of clayrock mineralogical variability and (ii) measurements of De and Kd dependence on mineralogy for Cs and Cl, were combined to create models

  5. Molecular detection of hematozoa infections in tundra swans relative to migration patterns and ecological conditions at breeding grounds

    USGS Publications Warehouse

    Ramey, Andrew M.; Ely, Craig R.; Schmutz, Joel A.; Pearce, John M.; Heard, Darryl J.

    2012-01-01

    Tundra swans (Cygnus columbianus) are broadly distributed in North America, use a wide variety of habitats, and exhibit diverse migration strategies. We investigated patterns of hematozoa infection in three populations of tundra swans that breed in Alaska using satellite tracking to infer host movement and molecular techniques to assess the prevalence and genetic diversity of parasites. We evaluated whether migratory patterns and environmental conditions at breeding areas explain the prevalence of blood parasites in migratory birds by contrasting the fit of competing models formulated in an occupancy modeling framework and calculating the detection probability of the top model using Akaike Information Criterion (AIC). We described genetic diversity of blood parasites in each population of swans by calculating the number of unique parasite haplotypes observed. Blood parasite infection was significantly different between populations of Alaska tundra swans, with the highest estimated prevalence occurring among birds occupying breeding areas with lower mean daily wind speeds and higher daily summer temperatures. Models including covariates of wind speed and temperature during summer months at breeding grounds better predicted hematozoa prevalence than those that included annual migration distance or duration. Genetic diversity of blood parasites in populations of tundra swans appeared to be relative to hematozoa prevalence. Our results suggest ecological conditions at breeding grounds may explain differences of hematozoa infection among populations of tundra swans that breed in Alaska.

  6. Geographic host use variabiliy and host range evolutionary dynamics in the phytophagous insect Apagomerella versicolor (Cerambycidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The high diversity of phytophagous insects has been explained by the tendency of the group towards specialization; however, generalism may be advantageous in some environments. The cerambycid Apagomerella versicolor exhibits intraspecific geographical variation in host use. In northern Argentina it ...

  7. Identifying Francisella tularensis genes required for growth in host cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical Abstract: Francisella tularensis is a highly virulent Gram negative intracellular pathogen capable of infecting a vast diversity of hosts, ranging from amoebae to humans. A hallmark of F. tularensis virulence is its ability to quickly grow to high densities within a diverse set of host cel...

  8. Migration and Communities: Challenges and Opportunities for Lifelong Learning

    ERIC Educational Resources Information Center

    Guo, Shibao

    2010-01-01

    This commentary article focuses on the theme of "migration and communities." It raises a number of important concerns inherent in the report. The report mistakenly adopts the "sameness" approach, thus negating Britain's unprecedented super-diversity that is the result of increasing migration. It wrongly assumes that all migrants are the same and…

  9. African refugee migration: a model and research agenda.

    PubMed

    Kayongo-male, D

    1989-01-01

    "This article elaborates upon the problems of the refugee crisis in Africa. With around 4 million refugees, heavily concentrated in particular African nations like Sudan and Somalia, the impacts on the host country can be severe. A model, dealing with the process of refugee migration, with particular reference to impacts on host countries, is developed. Negative impacts include military attacks on communities in the host country. One positive impact is the increase in the number of development-type projects which go beyond the mandate of the U.N. High Commissioner for Refugees. A tentative research agenda on African refugee migration is put forward." PMID:12316228

  10. Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites

    PubMed Central

    Ellis, Vincenzo A.; Collins, Michael D.; Medeiros, Matthew C. I.; Sari, Eloisa H. R.; Coffey, Elyse D.; Dickerson, Rebecca C.; Lugarini, Camile; Stratford, Jeffrey A.; Henry, Donata R.; Merrill, Loren; Matthews, Alix E.; Hanson, Alison A.; Roberts, Jackson R.; Joyce, Michael; Kunkel, Melanie R.; Ricklefs, Robert E.

    2015-01-01

    The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily. PMID:26305975

  11. Resonant Removal of Exomoons during Planetary Migration

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C.

    2016-01-01

    Jupiter and Saturn play host to an impressive array of satellites, making it reasonable to suspect that similar systems of moons might exist around giant extrasolar planets. Furthermore, a significant population of such planets is known to reside at distances of several Astronomical Units (AU), leading to speculation that some moons thereof might support liquid water on their surfaces. However, giant planets are thought to undergo inward migration within their natal protoplanetary disks, suggesting that gas giants currently occupying their host star’s habitable zone formed farther out. Here we show that when a moon-hosting planet undergoes inward migration, dynamical interactions may naturally destroy the moon through capture into a so-called evection resonance. Within this resonance, the lunar orbit’s eccentricity grows until the moon eventually collides with the planet. Our work suggests that moons orbiting within about ∼10 planetary radii are susceptible to this mechanism, with the exact number dependent on the planetary mass, oblateness, and physical size. Whether moons survive or not is critically related to where the planet began its inward migration, as well as the character of interlunar perturbations. For example, a Jupiter-like planet currently residing at 1 AU could lose moons if it formed beyond ∼5 AU. Cumulatively, we suggest that an observational census of exomoons could potentially inform us on the extent of inward planetary migration, for which no reliable observational proxy currently exists.

  12. Asian student migration to Australia.

    PubMed

    Shu, J; Hawthorne, L

    1996-01-01

    "This paper presents an overview of Asian student migration to Australia, together with an analysis of political and educational aspects of the overseas student programme. It focuses on some significant consequences of this flow for Australia. The characteristics of key student groups are contrasted to provide some perspective of the diversity of historical and cultural backgrounds, with the source countries of Malaysia, Indonesia and PRC [China] selected as case studies. Since the issue of PRC students in Australia has attracted considerable public attention and policy consideration, particular focus is placed on their experience." (SUMMARY IN FRE AND SPA) PMID:12291796

  13. Migration and relationship power among Mexican women.

    PubMed

    Parrado, Emilio A; Flippen, Chenoa A; McQuiston, Chris

    2005-05-01

    Our study drew on original data collected in Durham, NC, and four sending communities in Mexico to examine differences in women's relationship power that are associated with migration and residence in the United States. We analyzed the personal, relationship, and social resources that condition the association between migration and women's power and the usefulness of the Relationship Control Scale (RCS) for capturing these effects. We found support for perspectives that emphasize that migration may simultaneously mitigate and reinforce gender inequities. Relative to their nonmigrant peers, Mexican women in the United States average higher emotional consonance with their partners, but lower relationship control and sexual negotiation power. Methodologically, we found that the RCS is internally valid and useful for measuring the impact of resources on women's power. However, the scale appears to combine diverse dimensions of relationship power that were differentially related to migration in our study. PMID:15986990

  14. Host Plant Adaptation in Drosophila mettleri Populations

    PubMed Central

    Castrezana, Sergio; Bono, Jeremy M.

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  15. Host plant adaptation in Drosophila mettleri populations.

    PubMed

    Castrezana, Sergio; Bono, Jeremy M

    2012-01-01

    The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total). We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea) for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp.) in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts. PMID:22493678

  16. Migration and Socioeconomic Attainment.

    ERIC Educational Resources Information Center

    Wilson, Franklin D.

    Research among black and white males aged 18 to 54 investigated correlations between migration patterns and occupational attainment and earnings. Results indicated that: (1) the propensity to migrate is related to entrance into, exit from, and laterations in occupational careers; (2) there is a positive association between migration and…

  17. Migration and Adult Education

    ERIC Educational Resources Information Center

    Gois, William

    2007-01-01

    The objective of this paper is to highlight the role of adult education as a tool in addressing labour migration issues, specifically those concerning the protection of migrant workers' rights and the transformation of the impact of migration into positive holistic developmental gains. The view of labour migration as a means to forge the economic…

  18. Cellular Host Responses to Gliomas

    PubMed Central

    Barish, Michael E.; Garcia, Elizabeth; Metz, Marianne Z.; Myers, Sarah M.; Gutova, Margarita; Frank, Richard T.; Miletic, Hrvoje; Kendall, Stephen E.; Glackin, Carlotta A.; Bjerkvig, Rolf; Aboody, Karen S.

    2012-01-01

    Background Glioblastoma multiforme (GBM) is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites. Methodology/Principal Findings Human glioma cell lines and glioma spheroid orthotopic implants were used in rodents. In both models, the xenografts recruited large numbers of host nestin-expressing cells, which formed a ‘network’ with glioma. The host nestin-expressing cells appeared to originate in the subventricular zone ipsilateral to the tumor, and were clearly distinguishable from pericytes that expressed smooth muscle actin. These distinct cell populations established close physical contact in a ‘pair-wise’ manner and migrated together to the deeper layers of tumor satellites and gave rise to tumor vasculature. The GBM biopsy xenografts displayed two different phenotypes: (a) low-generation tumors (first in vivo passage in rats) were highly invasive and non-angiogenic, and host nestin-positive cells that infiltrated into these tumors displayed astrocytic or elongated bipolar morphology; (b) high-generation xenografts (fifth passage) had pronounced cellularity, were angiogenic with ‘glomerulus-like’ microvascular proliferations that contained host nestin-positive cells. Stromal cell-derived factor-1 and its receptor CXCR4 were highly expressed in and around glioma xenografts, suggesting their role in glioma progression and invasion. Conclusions/Significance Our data demonstrate a robust migration of nestin-expressing host cells to glioma, which

  19. Managing diversity.

    PubMed

    Epting, L A; Glover, S H; Boyd, S D

    1994-06-01

    The U.S. work force is becoming increasingly diverse as the 20th century approaches. Statistics prove that most organizations are experiencing gender, culture, and age diversity within their labor forces. All managers and leaders must accept this diversity and work to handle it effectively. This article examines the current literature concerning management of diversity and its implications for the health care profession. Gender, culture, and age diversity and the potential problems that may arise with each are also addressed. Reasons to manage diversity are offered, as well as methods of managing diversity for both the manager and the chief executive officer. PMID:10134144

  20. Internal migration, international migration, and physical growth of left-behind children: A study of two settings.

    PubMed

    Lu, Yao

    2015-11-01

    Parental out-migration has become a common experience of childhood worldwide and tends to have important ramifications for child development. There has been much debate on whether overall children benefit or suffer from parental out-migration. The present study examines how the relationship between parental out-migration and children's growth differs by the type of migration (internal vs. international). This comparison is conducted in two diverse settings, Mexico and Indonesia. Data are from two national longitudinal surveys: the Mexican Family Life Survey and the Indonesian Family Life Survey. Results from fixed-effect regressions show that international migration tends to have a less beneficial, sometimes even more detrimental, impact on the growth of children left behind than internal migration. Results also reveal contextual differences in the role of parental out-migration. Possible explanations are discussed. PMID:26495753

  1. Population genetic structure of the acanthocephalan Acanthosentis cheni in anadromous, freshwater, and landlocked stocks of its fish host, Coilia nasus.

    PubMed

    Song, Rui; Li, Wen X; Wu, Shan G; Zou, Hong; Wang, Gui T

    2014-04-01

    The acanthocephalan Acanthosentis cheni was found in anadromous, freshwater, and landlocked stocks of its fish host, Coilia nasus. To examine the genetic variations of the acanthocephalan among the 3 populations with the adaptation of the host to the freshwater, the genetic structure of the helminth was investigated in anadromous (Zhoushan and Chongming islands, and Anqing), freshwater (Anqing, Ezhou, and Poyang Lake), and landlocked (Tian'ezhou Reserve) populations by sequencing intergenic transcribed spacers (ITS) of the ribosomal RNA coding genes. Low Fst values and high gene flow were found among the 7 populations (Fst = 0.0135, P = 0.2723; Nm = 36.48) and the 3 ecotypes of Acanthosentis cheni (Fst = 0.0178, P = 0.1044; Nm = 27.67). On the other hand, significant genetic differentiation of the C. nasus host populations was detected between the upstream and downstream areas of Xiaogu Mountain (Fst = 0.1961, P = 0.0030; Nm = 2.05), which is the farthest location of spawning migration for C. nasus . However, the migration break of the fish host appeared not to cause significant genetic differentiation of A. cheni populations between the upper and lower reaches of Xiaogu Mountain. Other factors might promote genetic exchange of A. cheni populations such as dispersal of the intermediate host by flooding or other fish species serving as the definitive or paratenic hosts. In Anqing, nucleotide diversity of the acanthocephalan was highest in the freshwater population (0.0038) and lower in the anadromous population (0.0026). This suggested that new mutations may have occurred in the freshwater A. cheni population in Anqing when adapting to a freshwater environment. PMID:24224788

  2. [The theory of migration].

    PubMed

    Delbruck, C; Raffelhuschen, B

    1993-09-01

    "The present and expected migration flows in Europe require a detailed analysis of determinants and elements of migration decisions. This survey encompasses a view on classical--labor market and demand side oriented--theories, the more recent human capital approach as well as on migration under asymmetric information. Since these theories so far yield an unsatisfactory basis for description and forecasting of multilateral migration flows, a closer look at empirical methods of migration research is taken. Consequently, a description of possible policy oriented applications of the gravity model and the random utility approach, with their descriptive and normative characteristics, is given." (SUMMARY IN ENG) PMID:12319309

  3. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species.

    PubMed

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua

    2016-01-01

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants. PMID:27151494

  4. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species

    PubMed Central

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J.; Wang, Baohua; Wang, Zonghua

    2016-01-01

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants. PMID:27151494

  5. NASTRAN migration to UNIX

    NASA Technical Reports Server (NTRS)

    Chan, Gordon C.; Turner, Horace Q.

    1990-01-01

    COSMIC/NASTRAN, as it is supported and maintained by COSMIC, runs on four main-frame computers - CDC, VAX, IBM and UNIVAC. COSMIC/NASTRAN on other computers, such as CRAY, AMDAHL, PRIME, CONVEX, etc., is available commercially from a number of third party organizations. All these computers, with their own one-of-a-kind operating systems, make NASTRAN machine dependent. The job control language (JCL), the file management, and the program execution procedure of these computers are vastly different, although 95 percent of NASTRAN source code was written in standard ANSI FORTRAN 77. The advantage of the UNIX operating system is that it has no machine boundary. UNIX is becoming widely used in many workstations, mini's, super-PC's, and even some main-frame computers. NASTRAN for the UNIX operating system is definitely the way to go in the future, and makes NASTRAN available to a host of computers, big and small. Since 1985, many NASTRAN improvements and enhancements were made to conform to the ANSI FORTRAN 77 standards. A major UNIX migration effort was incorporated into COSMIC NASTRAN 1990 release. As a pioneer work for the UNIX environment, a version of COSMIC 89 NASTRAN was officially released in October 1989 for DEC ULTRIX VAXstation 3100 (with VMS extensions). A COSMIC 90 NASTRAN version for DEC ULTRIX DECstation 3100 (with RISC) is planned for April 1990 release. Both workstations are UNIX based computers. The COSMIC 90 NASTRAN will be made available on a TK50 tape for the DEC ULTRIX workstations. Previously in 1988, an 88 NASTRAN version was tested successfully on a SiliconGraphics workstation.

  6. Does M. tuberculosis genomic diversity explain disease diversity?

    PubMed Central

    Coscolla, Mireilla; Gagneux, Sebastien

    2010-01-01

    The outcome of tuberculosis infection and disease is highly variable. This variation has been attributed primarily to host and environmental factors, but better understanding of the global genomic diversity in the M. tuberculosis complex (MTBC) suggests that bacterial factors could also be involved. Review of nearly 100 published reports shows that MTBC strains differ in their virulence and immunogenicity in experimental models, but whether this phenotypic variation plays a role in human disease remains unclear. Given the complex interactions between the host, the pathogen and the environment, linking MTBC genotypic diversity to experimental and clinical phenotypes requires an integrated systems epidemiology approach embedded in a robust evolutionary framework. PMID:21076640

  7. Temporal patterns in adult salmon migration timing across southeast Alaska

    USGS Publications Warehouse

    Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David

    2015-01-01

    migration timing. Although salmon phenological diversity will complicate future predictions of migration timing, this variation likely acts as a major contributor to population and ecosystem resiliency in southeast Alaska.

  8. Temporal patterns in adult salmon migration timing across southeast Alaska.

    PubMed

    Kovach, Ryan P; Ellison, Stephen C; Pyare, Sanjay; Tallmon, David A

    2015-05-01

    migration timing. Although salmon phenological diversity will complicate future predictions of migration timing, this variation likely acts as a major contributor to population and ecosystem resiliency in southeast Alaska. PMID:25482609

  9. Parasites as probes for prehistoric human migrations?

    PubMed

    Araujo, Adauto; Reinhard, Karl J; Ferreira, Luiz Fernando; Gardner, Scott L

    2008-03-01

    Host-specific parasites of humans are used to track ancient migrations. Based on archaeoparasitology, it is clear that humans entered the New World at least twice in ancient times. The archaeoparasitology of some intestinal parasites in the New World points to migration routes other than the Bering Land Bridge. Helminths have been found in mummies and coprolites in North and South America. Hookworms (Necator and Ancylostoma), whipworms (Trichuris trichiura) and other helminths require specific conditions for life-cycle completion. They could not survive in the cold climate of the northern region of the Americas. Therefore, humans would have lost some intestinal parasites while crossing Beringia. Evidence is provided here from published data of pre-Columbian sites for the peopling of the Americas through trans-oceanic or costal migrations. PMID:18262843

  10. Instructional Diversity.

    ERIC Educational Resources Information Center

    Samples, Bob

    2000-01-01

    Explains how learning occurs in the brain, specifically in the limbic system. Compares traditional teaching methods and diverse learning modes. Describes the characteristics of diverse instructional approaches. First published in 1994. (YDS)

  11. Reinventing US Internal Migration Studies in the Age of International Migration

    PubMed Central

    Ellis, Mark

    2014-01-01

    I argue that researchers have sidelined attention to issues raised by US internal migration as they shifted focus to the questions posed by the post-1960s rise in US immigration. In this paper, I offer some reasons about why immigration has garnered more attention and why there needs to be greater consideration of US internal migration and its significant and myriad social, economic, political, and cultural impacts. I offer three ideas for motivating more research into US internal geographic mobility that would foreground its empirical and conceptual connections to international migration. First, there should be more work on linked migration systems investigating the connections between internal and international flows. Second, the questions asked about immigrant social, cultural, and economic impacts and adaptations in host societies should also be asked about internal migrants. Third, and more generally, migration researchers should jettison the assumption that the national scale is the pre-eminent delimiter of migration types and processes. Some groups can move easily across borders; others are constrained in their moves within countries. These subnational scales and constraints will become more visible if migration research decentres the national from its theory and empirics. PMID:24839406

  12. Reinventing US Internal Migration Studies in the Age of International Migration.

    PubMed

    Ellis, Mark

    2012-03-01

    I argue that researchers have sidelined attention to issues raised by US internal migration as they shifted focus to the questions posed by the post-1960s rise in US immigration. In this paper, I offer some reasons about why immigration has garnered more attention and why there needs to be greater consideration of US internal migration and its significant and myriad social, economic, political, and cultural impacts. I offer three ideas for motivating more research into US internal geographic mobility that would foreground its empirical and conceptual connections to international migration. First, there should be more work on linked migration systems investigating the connections between internal and international flows. Second, the questions asked about immigrant social, cultural, and economic impacts and adaptations in host societies should also be asked about internal migrants. Third, and more generally, migration researchers should jettison the assumption that the national scale is the pre-eminent delimiter of migration types and processes. Some groups can move easily across borders; others are constrained in their moves within countries. These subnational scales and constraints will become more visible if migration research decentres the national from its theory and empirics. PMID:24839406

  13. Labor migration and child mortality in Mozambique

    PubMed Central

    Yabiku, Scott T.; Agadjanian, Victor; Cau, Boaventura

    2013-01-01

    Male labor migration is widespread in many parts of the world, yet its consequences for child outcomes and especially childhood mortality remain unclear. Male labor migration could bring benefits, in the form of remittances, to the families that remain behind and thus help child survival. Alternatively, the absence of a male adult could imperil the household's well-being and its ability to care for its members, increasing child mortality risks. In this analysis, we use longitudinal survey data from Mozambique collected in 2006 and 2009 to examine the association between male labor migration and under-five mortality in families that remain behind. Using a simple migrant/non-migrant dichotomy, we find no difference in mortality rates across migrant and non-migrant men's children. When we separated successful from unsuccessful migration based on the wife's perception, however, stark contrasts emerge: children of successful migrants have the lowest mortality, followed by children of non-migrant men, followed by the children of unsuccessful migrants. Our results illustrate the need to account for the diversity of men's labor migration experience in examining the effects of migration on left-behind households. PMID:23121856

  14. Radon depth migration

    SciTech Connect

    Hildebrand, S.T. ); Carroll, R.J. )

    1993-02-01

    A depth migration method is presented that used Radon-transformed common-source seismograms as input. It is shown that the Radon depth migration method can be extended to spatially varying velocity depth models by using asymptotic ray theory (ART) to construct wavefield continuation operators. These operators downward continue an incident receiver-array plane wave and an assumed point-source wavefield into the subsurface. The migration velocity model is constrain to have longer characteristic wavelengths than the dominant source wavelength such that the ART approximations for the continuation operators are valid. This method is used successfully to migrate two synthetic data examples: (1) a point diffractor, and (2) a dipping layer and syncline interface model. It is shown that the Radon migration method has a computational advantage over the standard Kirchhoff migration method in that fewer rays are computed in a main memory implementation.

  15. Rethinking Diversity.

    ERIC Educational Resources Information Center

    Gordon, Jack

    1992-01-01

    Managing diversity is about coping with unassimilated differences, about building systems and a culture that unite different people in a common pursuit without undermining their diversity. The goal of diversity training is a high performance organization rather than a climate in which no one's feathers are ruffled. (SK)

  16. Role of macrophage migration inhibitory factor in age-related lung disease.

    PubMed

    Sauler, Maor; Bucala, Richard; Lee, Patty J

    2015-07-01

    The prevalence of many common respiratory disorders, including pneumonia, chronic obstructive lung disease, pulmonary fibrosis, and lung cancer, increases with age. Little is known of the host factors that may predispose individuals to such diseases. Macrophage migration inhibitory factor (MIF) is a potent upstream regulator of the immune system. MIF is encoded by variant alleles that occur commonly in the population. In addition to its role as a proinflammatory cytokine, a growing body of literature demonstrates that MIF influences diverse molecular processes important for the maintenance of cellular homeostasis and may influence the incidence or clinical manifestations of a variety of chronic lung diseases. This review highlights the biological properties of MIF and its implication in age-related lung disease. PMID:25957294

  17. Aquaporins and cell migration.

    PubMed

    Papadopoulos, M C; Saadoun, S; Verkman, A S

    2008-07-01

    Aquaporin (AQP) water channels are expressed primarily in cell plasma membranes. In this paper, we review recent evidence that AQPs facilitate cell migration. AQP-dependent cell migration has been found in a variety of cell types in vitro and in mice in vivo. AQP1 deletion reduces endothelial cell migration, limiting tumor angiogenesis and growth. AQP4 deletion slows the migration of reactive astrocytes, impairing glial scarring after brain stab injury. AQP1-expressing tumor cells have enhanced metastatic potential and local infiltration. Impaired cell migration has also been seen in AQP1-deficient proximal tubule epithelial cells, and AQP3-deficient corneal epithelial cells, enterocytes, and skin keratinocytes. The mechanisms by which AQPs enhance cell migration are under investigation. We propose that, as a consequence of actin polymerization/depolymerization and transmembrane ionic fluxes, the cytoplasm adjacent to the leading edge of migrating cells undergoes rapid changes in osmolality. AQPs could thus facilitate osmotic water flow across the plasma membrane in cell protrusions that form during migration. AQP-dependent cell migration has potentially broad implications in angiogenesis, tumor metastasis, wound healing, glial scarring, and other events requiring rapid, directed cell movement. AQP inhibitors may thus have therapeutic potential in modulating these events, such as slowing tumor growth and spread, and reducing glial scarring after injury to allow neuronal regeneration. PMID:17968585

  18. Active migration and passive transport of malaria parasites.

    PubMed

    Douglas, Ross G; Amino, Rogerio; Sinnis, Photini; Frischknecht, Freddy

    2015-08-01

    Malaria parasites undergo a complex life cycle between their hosts and vectors. During this cycle the parasites invade different types of cells, migrate across barriers, and transfer from one host to another. Recent literature hints at a misunderstanding of the difference between active, parasite-driven migration and passive, circulation-driven movement of the parasite or parasite-infected cells in the various bodily fluids of mosquito and mammalian hosts. Because both active migration and passive transport could be targeted in different ways to interfere with the parasite, a distinction between the two ways the parasite uses to get from one location to another is essential. We discuss the two types of motion needed for parasite dissemination and elaborate on how they could be targeted by future vaccines or drugs. PMID:26001482

  19. Next generation sequencing technologies: tool to study avian virus diversity.

    PubMed

    Kapgate, S S; Barbuddhe, S B; Kumanan, K

    2015-03-01

    Increased globalisation, climatic changes and wildlife-livestock interface led to emergence of novel viral pathogens or zoonoses that have become serious concern to avian, animal and human health. High biodiversity and bird migration facilitate spread of the pathogen and provide reservoirs for emerging infectious diseases. Current classical diagnostic methods designed to be virus-specific or aim to be limited to group of viral agents, hinder identifying of novel viruses or viral variants. Recently developed approaches of next-generation sequencing (NGS) provide culture-independent methods that are useful for understanding viral diversity and discovery of novel virus, thereby enabling a better diagnosis and disease control. This review discusses the different possible steps of a NGS study utilizing sequence-independent amplification, high-throughput sequencing and bioinformatics approaches to identify novel avian viruses and their diversity. NGS lead to the identification of a wide range of new viruses such as picobirnavirus, picornavirus, orthoreovirus and avian gamma coronavirus associated with fulminating disease in guinea fowl and is also used in describing viral diversity among avian species. The review also briefly discusses areas of viral-host interaction and disease associated causalities with newly identified avian viruses. PMID:25790045

  20. From Immigration to Migration Systems: New Concepts in Migration History.

    ERIC Educational Resources Information Center

    Hoerder, Dirk

    1999-01-01

    Describes the characteristics of migration systems where two or more societies are connected through migration patterns. Identifies the four major migration systems that populated North America. Reviews the literature in relation to migration systems and discusses autobiographical accounts of migration. Provides an extensive bibliography. (CMK)

  1. Nucleotide diversity in gorillas.

    PubMed Central

    Yu, Ning; Jensen-Seaman, Michael I; Chemnick, Leona; Ryder, Oliver; Li, Wen-Hsiung

    2004-01-01

    Comparison of the levels of nucleotide diversity in humans and apes may provide valuable information for inferring the demographic history of these species, the effect of social structure on genetic diversity, patterns of past migration, and signatures of past selection events. Previous DNA sequence data from both the mitochondrial and the nuclear genomes suggested a much higher level of nucleotide diversity in the African apes than in humans. Noting that the nuclear DNA data from the apes were very limited, we previously conducted a DNA polymorphism study in humans and another in chimpanzees and bonobos, using 50 DNA segments randomly chosen from the noncoding, nonrepetitive parts of the human genome. The data revealed that the nucleotide diversity (pi) in bonobos (0.077%) is actually lower than that in humans (0.087%) and that pi in chimpanzees (0.134%) is only 50% higher than that in humans. In the present study we sequenced the same 50 segments in 15 western lowland gorillas and estimated pi to be 0.158%. This is the highest value among the African apes but is only about two times higher than that in humans. Interestingly, available mtDNA sequence data also suggest a twofold higher nucleotide diversity in gorillas than in humans, but suggest a threefold higher nucleotide diversity in chimpanzees than in humans. The higher mtDNA diversity in chimpanzees might be due to the unique pattern in the evolution of chimpanzee mtDNA. From the nuclear DNA pi values, we estimated that the long-term effective population sizes of humans, bonobos, chimpanzees, and gorillas are, respectively, 10,400, 12,300, 21,300, and 25,200. PMID:15082556

  2. Analyses of the radiation of birnaviruses from diverse host phyla and of their evolutionary affinities with other double-stranded RNA and positive strand RNA viruses using robust structure-based multiple sequence alignments and advanced phylogenetic methods

    PubMed Central

    2013-01-01

    Background Birnaviruses form a distinct family of double-stranded RNA viruses infecting animals as different as vertebrates, mollusks, insects and rotifers. With such a wide host range, they constitute a good model for studying the adaptation to the host. Additionally, several lines of evidence link birnaviruses to positive strand RNA viruses and suggest that phylogenetic analyses may provide clues about transition. Results We characterized the genome of a birnavirus from the rotifer Branchionus plicalitis. We used X-ray structures of RNA-dependent RNA polymerases and capsid proteins to obtain multiple structure alignments that allowed us to obtain reliable multiple sequence alignments and we employed “advanced” phylogenetic methods to study the evolutionary relationships between some positive strand and double-stranded RNA viruses. We showed that the rotifer birnavirus genome exhibited an organization remarkably similar to other birnaviruses. As this host was phylogenetically very distant from the other known species targeted by birnaviruses, we revisited the evolutionary pathways within the Birnaviridae family using phylogenetic reconstruction methods. We also applied a number of phylogenetic approaches based on structurally conserved domains/regions of the capsid and RNA-dependent RNA polymerase proteins to study the evolutionary relationships between birnaviruses, other double-stranded RNA viruses and positive strand RNA viruses. Conclusions We show that there is a good correlation between the phylogeny of the birnaviruses and that of their hosts at the phylum level using the RNA-dependent RNA polymerase (genomic segment B) on the one hand and a concatenation of the capsid protein, protease and ribonucleoprotein (genomic segment A) on the other hand. This correlation tends to vanish within phyla. The use of advanced phylogenetic methods and robust structure-based multiple sequence alignments allowed us to obtain a more accurate picture (in terms of

  3. Testing Two Methods that Relate Herbivorous Insects to Host Plants

    PubMed Central

    White, Peter J. T.

    2013-01-01

    Insect herbivores are integral to terrestrial ecosystems. They provide essential food for higher trophic levels and aid in nutrient cycling. In general, research tends to relate individual insect herbivore species to host plant identity, where a species will show preference for one host over another. In contrast, insect herbivore assemblages are often related to host plant richness where an area with a higher richness of hosts will also have a higher richness of herbivores. In this study, the ability of these two approaches (host plant identity/abundance vs. host plant richness) to describe the diversity, richness, and abundance of an herbivorous Lepidoptera assemblage in temperate forest fragments in southern Canada is tested. Analyses indicated that caterpillar diversity, richness, and abundance were better described by quadrat-scale host plant identity and abundance than by host plant richness. Most host plant-herbivore studies to date have only considered investigating host plant preferences at a species level; the type of assemblage level preference shown in this study has been rarely considered. In addition, host plant replacement simulations indicate that increasing the abundance of preferred host plants could increase Lepidoptera richness and abundance by as much as 30% and 40% respectively in disturbed remnant forest fragments. This differs from traditional thinking that suggests higher levels of insect richness can be best obtained by maximizing plant richness. Host plant species that are highly preferred by the forest-dwelling caterpillar assemblage should be given special management and conservation considerations to maximize biodiversity in forest communities. PMID:24205830

  4. Parasite infracommunity diversity in eels: a reflection of local component community diversity.

    PubMed

    Norton, J; Lewis, J W; Rollinson, D

    2003-11-01

    The intestinal macroparasite communities of freshwater eels (Anguilla anguilla) captured in the south of England from Windsor (River Thames) during August 2001, and Leckford (River Test) during late June/July 2000, are reported for the first time. Parasite component communities were among the most species rich and diverse recorded from European eels. A total of 13 intestinal macroparasite species were encountered during the study, 8 from each eel host population with 3 being common to both. Acanthocephalans, nematodes and cestodes were recovered from each host population. Eels from Windsor additionally harboured Nicolla gallica (Digenea), which was also the most prevalent and abundant macroparasite species in these hosts. Each component community followed a log normal rank abundance distribution and demonstrated reduced species dominance and increased species equitability compared with previous studies. As such, the study component communities were suitable for testing the hypothesis of low infracommunity diversity in European eel hosts. Specifically, this hypothesis predicts that the intestinal macroparasite infracommunities of European eels are species-poor, displaying low density and diversity with high dominance, irrespective of component community diversity, and that this may be more pronounced in UK host populations. This hypothesis was not upheld; study findings demonstrate that higher infracommunity diversity in eel hosts is possible, and suggest that infracommunity diversity in individual eel hosts may be a simple, stochastic reflection of component community diversity. PMID:14653536

  5. Undiscovered Bat Hosts of Filoviruses.

    PubMed

    Han, Barbara A; Schmidt, John Paul; Alexander, Laura W; Bowden, Sarah E; Hayman, David T S; Drake, John M

    2016-07-01

    Ebola and other filoviruses pose significant public health and conservation threats by causing high mortality in primates, including humans. Preventing future outbreaks of ebolavirus depends on identifying wildlife reservoirs, but extraordinarily high biodiversity of potential hosts in temporally dynamic environments of equatorial Africa contributes to sporadic, unpredictable outbreaks that have hampered efforts to identify wild reservoirs for nearly 40 years. Using a machine learning algorithm, generalized boosted regression, we characterize potential filovirus-positive bat species with estimated 87% accuracy. Our model produces two specific outputs with immediate utility for guiding filovirus surveillance in the wild. First, we report a profile of intrinsic traits that discriminates hosts from non-hosts, providing a biological caricature of a filovirus-positive bat species. This profile emphasizes traits describing adult and neonate body sizes and rates of reproductive fitness, as well as species' geographic range overlap with regions of high mammalian diversity. Second, we identify several bat species ranked most likely to be filovirus-positive on the basis of intrinsic trait similarity with known filovirus-positive bats. New bat species predicted to be positive for filoviruses are widely distributed outside of equatorial Africa, with a majority of species overlapping in Southeast Asia. Taken together, these results spotlight several potential host species and geographical regions as high-probability targets for future filovirus surveillance. PMID:27414412

  6. Undiscovered Bat Hosts of Filoviruses

    PubMed Central

    Schmidt, John Paul; Alexander, Laura W.; Bowden, Sarah E.; Hayman, David T. S.; Drake, John M.

    2016-01-01

    Ebola and other filoviruses pose significant public health and conservation threats by causing high mortality in primates, including humans. Preventing future outbreaks of ebolavirus depends on identifying wildlife reservoirs, but extraordinarily high biodiversity of potential hosts in temporally dynamic environments of equatorial Africa contributes to sporadic, unpredictable outbreaks that have hampered efforts to identify wild reservoirs for nearly 40 years. Using a machine learning algorithm, generalized boosted regression, we characterize potential filovirus-positive bat species with estimated 87% accuracy. Our model produces two specific outputs with immediate utility for guiding filovirus surveillance in the wild. First, we report a profile of intrinsic traits that discriminates hosts from non-hosts, providing a biological caricature of a filovirus-positive bat species. This profile emphasizes traits describing adult and neonate body sizes and rates of reproductive fitness, as well as species’ geographic range overlap with regions of high mammalian diversity. Second, we identify several bat species ranked most likely to be filovirus-positive on the basis of intrinsic trait similarity with known filovirus-positive bats. New bat species predicted to be positive for filoviruses are widely distributed outside of equatorial Africa, with a majority of species overlapping in Southeast Asia. Taken together, these results spotlight several potential host species and geographical regions as high-probability targets for future filovirus surveillance. PMID:27414412

  7. The Future of Migration.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    This book comprises papers delivered at a conference of National Experts on Migration. The principle objective of the conference was twofold: to examine significant trends that will affect the future of migration in countries in the Organization for Economic Co-operation and Development (OCED), and to identify the relevant issues that will have to…

  8. Migration to Windows NT.

    ERIC Educational Resources Information Center

    Doles, Daniel T.

    In the constantly changing world of technology, migration is not only inevitable but many times necessary for survival, especially when the end result is simplicity for both users and IT support staff. This paper describes the migration at Franklin College (Indiana). It discusses the reasons for selecting Windows NT, the steps taken to complete…

  9. Expanding the antimalarial toolkit: Targeting host-parasite interactions.

    PubMed

    Langhorne, Jean; Duffy, Patrick E

    2016-02-01

    Recent successes in malaria control are threatened by drug-resistant Plasmodium parasites and insecticide-resistant Anopheles mosquitoes, and first generation vaccines offer only partial protection. New research approaches have highlighted host as well as parasite molecules or pathways that could be targeted for interventions. In this study, we discuss host-parasite interactions at the different stages of the Plasmodium life cycle within the mammalian host and the potential for therapeutics that prevent parasite migration, invasion, intracellular growth, or egress from host cells, as well as parasite-induced pathology. PMID:26834158

  10. Mosquito Host Selection Varies Seasonally with Host Availability and Mosquito Density

    PubMed Central

    Thiemann, Tara C.; Wheeler, Sarah S.; Barker, Christopher M.; Reisen, William K.

    2011-01-01

    Host selection by vector mosquitoes is a critical component of virus proliferation, particularly for viruses such as West Nile (WNV) that are transmitted enzootically to a variety of avian hosts, and tangentially to dead-end hosts such as humans. Culex tarsalis is a principal vector of WNV in rural areas of western North America. Based on previous work, Cx. tarsalis utilizes a variety of avian and mammalian hosts and tends to feed more frequently on mammals in the late summer than during the rest of the year. To further explore this and other temporal changes in host selection, bloodfed females were collected at a rural farmstead and heron nesting site in Northern California from May 2008 through May 2009, and bloodmeal hosts identified using either a microsphere-based array or by sequencing of the mitochondrial cytochrome c oxidase I (COI) gene. Host composition during summer was dominated by four species of nesting Ardeidae. In addition, the site was populated with various passerine species as well as domestic farm animals and humans. When present, Cx. tarsalis fed predominantly (>80%) upon the ardeids, with Black-crowned Night-Herons, a highly competent WNV host, the most prevalent summer host. As the ardeids fledged and left the area and mosquito abundance increased in late summer, Cx. tarsalis feeding shifted to include more mammals, primarily cattle, and a high diversity of avian species. In the winter, Yellow-billed Magpies and House Sparrows were the predominant hosts, and Yellow-billed Magpies and American Robins were fed upon more frequently than expected given their relative abundance. These data demonstrated that host selection was likely based both on host availability and differences in utilization, that the shift of bloodfeeding to include more mammalian hosts was likely the result of both host availability and increased mosquito abundance, and that WNV-competent hosts were fed upon by Cx. tarsalis throughout the year. PMID:22206038

  11. Mosquito host selection varies seasonally with host availability and mosquito density.

    PubMed

    Thiemann, Tara C; Wheeler, Sarah S; Barker, Christopher M; Reisen, William K

    2011-12-01

    Host selection by vector mosquitoes is a critical component of virus proliferation, particularly for viruses such as West Nile (WNV) that are transmitted enzootically to a variety of avian hosts, and tangentially to dead-end hosts such as humans. Culex tarsalis is a principal vector of WNV in rural areas of western North America. Based on previous work, Cx. tarsalis utilizes a variety of avian and mammalian hosts and tends to feed more frequently on mammals in the late summer than during the rest of the year. To further explore this and other temporal changes in host selection, bloodfed females were collected at a rural farmstead and heron nesting site in Northern California from May 2008 through May 2009, and bloodmeal hosts identified using either a microsphere-based array or by sequencing of the mitochondrial cytochrome c oxidase I (COI) gene. Host composition during summer was dominated by four species of nesting Ardeidae. In addition, the site was populated with various passerine species as well as domestic farm animals and humans. When present, Cx. tarsalis fed predominantly (>80%) upon the ardeids, with Black-crowned Night-Herons, a highly competent WNV host, the most prevalent summer host. As the ardeids fledged and left the area and mosquito abundance increased in late summer, Cx. tarsalis feeding shifted to include more mammals, primarily cattle, and a high diversity of avian species. In the winter, Yellow-billed Magpies and House Sparrows were the predominant hosts, and Yellow-billed Magpies and American Robins were fed upon more frequently than expected given their relative abundance. These data demonstrated that host selection was likely based both on host availability and differences in utilization, that the shift of bloodfeeding to include more mammalian hosts was likely the result of both host availability and increased mosquito abundance, and that WNV-competent hosts were fed upon by Cx. tarsalis throughout the year. PMID:22206038

  12. Migration and Environmental Hazards

    PubMed Central

    Hunter, Lori M.

    2011-01-01

    Losses due to natural hazards (e.g., earthquakes, hurricanes) and technological hazards (e.g., nuclear waste facilities, chemical spills) are both on the rise. One response to hazard-related losses is migration, with this paper offering a review of research examining the association between migration and environmental hazards. Using examples from both developed and developing regional contexts, the overview demonstrates that the association between migration and environmental hazards varies by setting, hazard types, and household characteristics. In many cases, however, results demonstrate that environmental factors play a role in shaping migration decisions, particularly among those most vulnerable. Research also suggests that risk perception acts as a mediating factor. Classic migration theory is reviewed to offer a foundation for examination of these associations. PMID:21886366

  13. Migration of health workers.

    PubMed

    Buchan, James

    2008-01-01

    The discussion and debate stimulated by these papers focused across a range of issues but there were four main areas of questioning: "measuring" and monitoring migration (issues related to comparability, completeness and accuracy of data sets on human resources); the impact of migration of health workers on health systems; the motivations of individual health workers to migrate (the "push" and "pull" factors) and the effect of policies designed either to reduce migration (e.g "self ufficiency") or to stimulate it (e.g active international recruitment). It was recognised that there was a critical need to examine migratory flows within the broader context of all health care labour market dynamics within a country, that increasing migration of health workers was an inevitable consequence of globalisation, and that there was a critical need to improve monitoring so as to better inform policy formulation and policy testing in this area. PMID:18561695

  14. TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION

    SciTech Connect

    Madhusudhan, Nikku; Amin, Mustafa A.; Kennedy, Grant M.

    2014-10-10

    The origin of hot Jupiters—gas giant exoplanets orbiting very close to their host stars—is a long-standing puzzle. Planet formation theories suggest that such planets are unlikely to have formed in situ but instead may have formed at large orbital separations beyond the snow line and migrated inward to their present orbits. Two competing hypotheses suggest that the planets migrated either through interaction with the protoplanetary disk during their formation, or by disk-free mechanisms such as gravitational interactions with a third body. Observations of eccentricities and spin-orbit misalignments of hot Jupiter systems have been unable to differentiate between the two hypotheses. In the present work, we suggest that chemical depletions in hot Jupiter atmospheres might be able to constrain their migration mechanisms. We find that sub-solar carbon and oxygen abundances in Jovian-mass hot Jupiters around Sun-like stars are hard to explain by disk migration. Instead, such abundances are more readily explained by giant planets forming at large orbital separations, either by core accretion or gravitational instability, and migrating to close-in orbits via disk-free mechanisms involving dynamical encounters. Such planets also contain solar or super-solar C/O ratios. On the contrary, hot Jupiters with super-solar O and C abundances can be explained by a variety of formation-migration pathways which, however, lead to solar or sub-solar C/O ratios. Current estimates of low oxygen abundances in hot Jupiter atmospheres may be indicative of disk-free migration mechanisms. We discuss open questions in this area which future studies will need to investigate.

  15. Cross-kingdom host shifts of phytomyxid parasites

    PubMed Central

    2014-01-01

    Background Phytomyxids (plasmodiophorids and phagomyxids) are cosmopolitan, obligate biotrophic protist parasites of plants, diatoms, oomycetes and brown algae. Plasmodiophorids are best known as pathogens or vectors for viruses of arable crops (e.g. clubroot in brassicas, powdery potato scab, and rhizomania in sugar beet). Some phytomyxid parasites are of considerable economic and ecologic importance globally, and their hosts include important species in marine and terrestrial environments. However most phytomyxid diversity remains uncharacterised and knowledge of their relationships with host taxa is very fragmentary. Results Our molecular and morphological analyses of phytomyxid isolates–including for the first time oomycete and sea-grass parasites–demonstrate two cross-kingdom host shifts between closely related parasite species: between angiosperms and oomycetes, and from diatoms/brown algae to angiosperms. Switching between such phylogenetically distant hosts is generally unknown in host-dependent eukaryote parasites. We reveal novel plasmodiophorid lineages in soils, suggesting a much higher diversity than previously known, and also present the most comprehensive phytomyxid phylogeny to date. Conclusion Such large-scale host shifts between closely related obligate biotrophic eukaryote parasites is to our knowledge unique to phytomyxids. Phytomyxids may readily adapt to a wide diversity of new hosts because they have retained the ability to covertly infect alternative hosts. A high cryptic diversity and ubiquitous distribution in agricultural and natural habitats implies that in a changing environment phytomyxids could threaten the productivity of key species in marine and terrestrial environments alike via host shift speciation. PMID:24559266

  16. High genetic differentiation and cross-shelf patterns of genetic diversity among Great Barrier Reef populations of Symbiodinium

    NASA Astrophysics Data System (ADS)

    Howells, E. J.; van Oppen, M. J. H.; Willis, B. L.

    2009-03-01

    The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01-0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns.

  17. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-01

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets. PMID:16960000

  18. Application of Diversity Indices to Quantify Early Life-History Diversity for Chinook Salmon

    SciTech Connect

    Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Teel, David

    2014-03-01

    We developed an index of early life history diversity (ELHD) for Pacific salmon (Oncorhynchus spp.) Early life history diversity is the variation in morphological and behavioral traits expressed within and among populations by individual juvenile salmon during their downstream migration. A standard quantitative method does not exist for this prominent concept in salmon biology.

  19. Genetic diversity and population structure of Synthesium pontoporiae (Digenea, Brachycladiidae) linked to its definitive host stocks, the endangered Franciscana dolphin, Pontoporia blainvillei (Pontoporiidae) off the coast of Brazil and Argentina.

    PubMed

    Marigo, J; Cunha, H A; Bertozzi, C P; Souza, S P; Rosas, F C W; Cremer, M J; Barreto, A S; de Oliveira, L R; Cappozzo, H L; Valente, A L S; Santos, C P; Vicente, A C P

    2015-01-01

    Pontoporia blainvillei (Gervais and d'Orbigny, 1844) is an endangered small cetacean endemic to South America with four Franciscana Management Areas (FMA) recognized as different population stocks. The role of the intestinal parasite Synthesium pontoporiae (Digenea: Brachycladiidae) as a possible biological marker to differentiate P. blainvillei stocks was evaluated using nuclear and mitochondrial DNA markers. Internal transcribed sequence 1 and 2 (ITS1 and ITS2) regions of S. pontoporiae did not show intraspecific variability. The mitochondrial NADH dehydrogenase subunit 3 (ND3) and cytochrome oxidase subunit I (COI) gene sequences suggested lack of population structure in S. pontoporiae and population expansion. The apparent panmixia of S. pontoporiae may be due to the high mobility of one or more of its intermediary hosts. Alternatively, it may be due to the small sample size. This result is incongruent with the previously proposed FMA. PMID:26262593

  20. Invasion and Persistence of Infectious Agents in Fragmented Host Populations

    PubMed Central

    Jesse, Marieke; Mazzucco, Rupert; Dieckmann, Ulf; Heesterbeek, Hans; Metz, Johan A. J.

    2011-01-01

    One of the important questions in understanding infectious diseases and their prevention and control is how infectious agents can invade and become endemic in a host population. A ubiquitous feature of natural populations is that they are spatially fragmented, resulting in relatively homogeneous local populations inhabiting patches connected by the migration of hosts. Such fragmented population structures are studied extensively with metapopulation models. Being able to define and calculate an indicator for the success of invasion and persistence of an infectious agent is essential for obtaining general qualitative insights into infection dynamics, for the comparison of prevention and control scenarios, and for quantitative insights into specific systems. For homogeneous populations, the basic reproduction ratio plays this role. For metapopulations, defining such an ‘invasion indicator’ is not straightforward. Some indicators have been defined for specific situations, e.g., the household reproduction number . However, these existing indicators often fail to account for host demography and especially host migration. Here we show how to calculate a more broadly applicable indicator for the invasion and persistence of infectious agents in a host metapopulation of equally connected patches, for a wide range of possible epidemiological models. A strong feature of our method is that it explicitly accounts for host demography and host migration. Using a simple compartmental system as an example, we illustrate how can be calculated and expressed in terms of the key determinants of epidemiological dynamics. PMID:21980339

  1. Migration of the population.

    PubMed

    Krasinets, E

    1998-03-01

    Two factors influence foreign migration balance of the Russian Federation. The first factor involves the migration process between Russia and former union republics. The influx of population to the Russian Federation from other republics of the former Soviet Union is considered as one of the largest in the world. The average annual migratory growth of Russia during the years 1991-94 as a result of this migration exchange has tripled as compared with 1986-90, with a total of 2.7 million Russians who migrated into Russia. However, from 1996 up to the present time, the number of persons arriving in Russia declined dramatically. Meanwhile, the second factor that determines the country's migration balance is emigration to the far abroad. The most significant trend in determining the development of internal migration in Russia is the outflow of population from northern and eastern regions. The directions of internal and external migratory flows have a large influence on the migration balance in Russia's rural areas. The reduction of migratory flows in rural areas is the direct result of processes in the economic sphere. It confirms the reconstruction of rural-urban migratory exchange. PMID:12294009

  2. Mapping Global Diversity Patterns for Migratory Birds

    PubMed Central

    Somveille, Marius; Manica, Andrea; Butchart, Stuart H. M.; Rodrigues, Ana S. L.

    2013-01-01

    Nearly one in five bird species has separate breeding and overwintering distributions, and the regular migrations of these species cause a substantial seasonal redistribution of avian diversity across the world. However, despite its ecological importance, bird migration has been largely ignored in studies of global avian biodiversity, with few studies having addressed it from a macroecological perspective. Here, we analyse a dataset on the global distribution of the world’s birds in order to examine global spatial patterns in the diversity of migratory species, including: the seasonal variation in overall species diversity due to migration; the contribution of migratory birds to local bird diversity; and the distribution of narrow-range and threatened migratory birds. Our analyses reveal a striking asymmetry between the Northern and Southern hemispheres, evident in all of the patterns investigated. The highest migratory bird diversity was found in the Northern Hemisphere, with high inter-continental turnover in species composition between breeding and non-breeding seasons, and extensive regions (at high latitudes) where migratory birds constitute the majority of the local avifauna. Threatened migratory birds are concentrated mainly in Central and Southern Asia, whereas narrow-range migratory species are mainly found in Central America, the Himalayas and Patagonia. Overall, global patterns in the diversity of migratory birds indicate that bird migration is mainly a Northern Hemisphere phenomenon. The asymmetry between the Northern and Southern hemispheres could not have easily been predicted from the combined results of regional scale studies, highlighting the importance of a global perspective. PMID:23951037

  3. Mapping global diversity patterns for migratory birds.

    PubMed

    Somveille, Marius; Manica, Andrea; Butchart, Stuart H M; Rodrigues, Ana S L

    2013-01-01

    Nearly one in five bird species has separate breeding and overwintering distributions, and the regular migrations of these species cause a substantial seasonal redistribution of avian diversity across the world. However, despite its ecological importance, bird migration has been largely ignored in studies of global avian biodiversity, with few studies having addressed it from a macroecological perspective. Here, we analyse a dataset on the global distribution of the world's birds in order to examine global spatial patterns in the diversity of migratory species, including: the seasonal variation in overall species diversity due to migration; the contribution of migratory birds to local bird diversity; and the distribution of narrow-range and threatened migratory birds. Our analyses reveal a striking asymmetry between the Northern and Southern hemispheres, evident in all of the patterns investigated. The highest migratory bird diversity was found in the Northern Hemisphere, with high inter-continental turnover in species composition between breeding and non-breeding seasons, and extensive regions (at high latitudes) where migratory birds constitute the majority of the local avifauna. Threatened migratory birds are concentrated mainly in Central and Southern Asia, whereas narrow-range migratory species are mainly found in Central America, the Himalayas and Patagonia. Overall, global patterns in the diversity of migratory birds indicate that bird migration is mainly a Northern Hemisphere phenomenon. The asymmetry between the Northern and Southern hemispheres could not have easily been predicted from the combined results of regional scale studies, highlighting the importance of a global perspective. PMID:23951037

  4. Allelic variation contributes to bacterial host specificity

    SciTech Connect

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; Zhao, Shaohua; McDermott, Patrick F.; Weill, François-Xavier; Mainil, Jacques G.; Arze, Cesar; Fricke, W. Florian; Edwards, Robert A.; Brisson, Dustin; Zhang, Nancy R.; Rankin, Shelley C.; Schifferli, Dieter M.

    2015-10-30

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.

  5. Allelic variation contributes to bacterial host specificity

    DOE PAGESBeta

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; et al

    2015-10-30

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population andmore » functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. In conclusion, together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts.« less

  6. Allelic variation contributes to bacterial host specificity

    PubMed Central

    Yue, Min; Han, Xiangan; Masi, Leon De; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S.; Fraser, George P.; Zhao, Shaohua; McDermott, Patrick F.; Weill, François-Xavier; Mainil, Jacques G.; Arze, Cesar; Fricke, W. Florian; Edwards, Robert A.; Brisson, Dustin; Zhang, Nancy R.; Rankin, Shelley C.; Schifferli, Dieter M.

    2015-01-01

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts. PMID:26515720

  7. Allelic variation contributes to bacterial host specificity.

    PubMed

    Yue, Min; Han, Xiangan; De Masi, Leon; Zhu, Chunhong; Ma, Xun; Zhang, Junjie; Wu, Renwei; Schmieder, Robert; Kaushik, Radhey S; Fraser, George P; Zhao, Shaohua; McDermott, Patrick F; Weill, François-Xavier; Mainil, Jacques G; Arze, Cesar; Fricke, W Florian; Edwards, Robert A; Brisson, Dustin; Zhang, Nancy R; Rankin, Shelley C; Schifferli, Dieter M

    2015-01-01

    Understanding the molecular parameters that regulate cross-species transmission and host adaptation of potential pathogens is crucial to control emerging infectious disease. Although microbial pathotype diversity is conventionally associated with gene gain or loss, the role of pathoadaptive nonsynonymous single-nucleotide polymorphisms (nsSNPs) has not been systematically evaluated. Here, our genome-wide analysis of core genes within Salmonella enterica serovar Typhimurium genomes reveals a high degree of allelic variation in surface-exposed molecules, including adhesins that promote host colonization. Subsequent multinomial logistic regression, MultiPhen and Random Forest analyses of known/suspected adhesins from 580 independent Typhimurium isolates identifies distinct host-specific nsSNP signatures. Moreover, population and functional analyses of host-associated nsSNPs for FimH, the type 1 fimbrial adhesin, highlights the role of key allelic residues in host-specific adherence in vitro. Together, our data provide the first concrete evidence that functional differences between allelic variants of bacterial proteins likely contribute to pathoadaption to diverse hosts. PMID:26515720

  8. Labor migration in Asia.

    PubMed

    Martin, P L

    1991-01-01

    "A recent conference sponsored by the United Nations Center for Regional Development (UNCRD) in Nagoya, Japan examined the growing importance of labor migration for four major Asian labor importers (Japan, Hong Kong, Malaysia, and Singapore) and five major labor exporters (Bangladesh, Korea, Pakistan, Philippines, and Thailand).... The conference concluded that international labor migration would increase within Asia because the tight labor markets and rising wages which have stimulated Japanese investment in other Asian nations, for example, have not been sufficient to eliminate migration push and pull forces...." PMID:12316776

  9. A concept for improving Atlantic salmon Salmo salar smolt migration past hydro power intakes.

    PubMed

    Fjeldstad, H P; Uglem, I; Diserud, O H; Fiske, P; Forseth, T; Kvingedal, E; Hvidsten, N A; Økland, F; Järnegren, J

    2012-07-01

    In this study, cost effective (in terms of reducing loss of power production) measures for increasing bypass migration of Atlantic salmon Salmo salar were developed and tested by establishing statistical models for timing of smolt migration and favourable diversion of water to the bypass. Initial tracking of radio-tagged smolts showed very low bypass migration under normal hydropower operations. Bypass migration increased when bypass discharge was experimentally increased and a model was developed that described relationships between total river discharge, bypass diversion and smolt migration route. Further improvements were obtained by installing two strobe lights at the power-production tunnel entrance that increased bypass migration during the night, but not during daytime. According to the behaviour of radio-tagged fish, the implemented measures contributed to increasing the annual percentage of bypass migration from 11 to 64%, and according to model predictions to 60-74% when the hydropower facilities were operated according to the developed models. To ensure correct timing of discharge diversion a smolt migration model was developed based on environmental variables that could successfully predict the general pattern of migration timing. The concept presented for improving smolt migration past hydropower intakes should be applicable in many systems where migration past hydropower installations cannot easily be solved by screening systems. PMID:22803728

  10. Embracing Diversity

    ERIC Educational Resources Information Center

    Roeck, Kathryn T.

    2009-01-01

    The high school art unit "Embracing Diversity" was the author's principal work towards the completion of a Masters thesis. The objective was to learn whether or not teaching an art unit that focused on sexual diversity could have a positive impact on the current culture one finds in high schools. The unit was found to have a positive impact on…

  11. Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts.

    PubMed

    Roy, H E; Steinkraus, D C; Eilenberg, J; Hajek, A E; Pell, J K

    2006-01-01

    Invertebrate pathogens and their hosts are taxonomically diverse. Despite this, there is one unifying concept relevant to all such parasitic associations: Both pathogen and host adapt to maximize their own reproductive output and ultimate fitness. The strategies adopted by pathogens and hosts to achieve this goal are almost as diverse as the organisms themselves, but studies examining such relationships have traditionally concentrated only on aspects of host physiology. Here we review examples of host-altered behavior and consider these within a broad ecological and evolutionary context. Research on pathogen-induced and host-mediated behavioral changes demonstrates the range of altered behaviors exhibited by invertebrates including behaviorally induced fever, elevation seeking, reduced or increased activity, reduced response to semiochemicals, and changes in reproductive behavior. These interactions are sometimes quite bizarre, intricate, and of great scientific interest. PMID:16332215

  12. Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity: the case of fig (Ficus carica L.) in Morocco

    PubMed Central

    2010-01-01

    Background Traditional agroecosystems are known to host both large crop species diversity and high within crop genetic diversity. In a context of global change, this diversity may be needed to feed the world. Are these agroecosystems museums (i.e. large core collections) or cradles of diversity? We investigated this question for a clonally propagated plant, fig (Ficus carica), within its native range, in Morocco, but as far away as possible from supposed centers of domestication. Results Fig varieties were locally numerous. They were found to be mainly highly local and corresponded to clones propagated vegetatively. Nevertheless these clones were often sufficiently old to have accumulated somatic mutations for selected traits (fig skin color) and at neutral loci (microsatellite markers). Further the pattern of spatial genetic structure was similar to the pattern expected in natural population for a mutation/drift/migration model at equilibrium, with homogeneous levels of local genetic diversity throughout Moroccan traditional agroecosystems. Conclusions We conclude that traditional agroecosystems constitue active incubators of varietal diversity even for clonally propagated crop species, and even when varieties correspond to clones that are often old. As only female fig is cultivated, wild fig and cultivated fig probably constitute a single evolutionary unit within these traditional agroecosystems. Core collections, however useful, are museums and hence cannot serve the same functions as traditional agroecosystems. PMID:20167055

  13. ASSOCIATIONS BETWEEN GENETIC DIVERSITY AND ANTHROPOGENIC DISTURBANCE IN MIDWESTERN STREAM-DWELLING MINNOWS

    EPA Science Inventory

    Anthropogenic disturbances may leave imprints on patterns of intraspecific genetic diversity through their effects on population size, adaptation, migration, and mutation. We examined patterns of genetic diversity for a stream-dwelling minnow (the central stoneroller, Campostoma...

  14. Occurrence of Phytophthora infestans on potato and tomato hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assessment of Phytophthora infestans on diverse hosts and its distribution in the potato agro-ecosystem is crucial for effective disease management. The occurrence of P. infestans on potato and tomato hosts was recorded in Maine potato fields from 2006-2009. Over 90% of disease occurrences were on p...

  15. Water permeation drives tumor cell migration in confined microenvironments.

    PubMed

    Stroka, Kimberly M; Jiang, Hongyuan; Chen, Shih-Hsun; Tong, Ziqiu; Wirtz, Denis; Sun, Sean X; Konstantopoulos, Konstantinos

    2014-04-24

    Cell migration is a critical process for diverse (patho)physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach ("Osmotic Engine Model") and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation. PMID:24726433

  16. Water Permeation Drives Tumor Cell Migration in Confined Microenvironments

    PubMed Central

    Stroka, Kimberly M.; Jiang, Hongyuan; Chen, Shih-Hsun; Tong, Ziqiu; Wirtz, Denis; Sun, Sean X.; Konstantopoulos, Konstantinos

    2014-01-01

    SUMMARY Cell migration is a critical process for diverse (patho) physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach (“Osmotic Engine Model”) and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation. PMID:24726433

  17. Assembly of trunk and limb blood vessels involves extensive migration and vasculogenesis of somite-derived angioblasts.

    PubMed

    Ambler, C A; Nowicki, J L; Burke, A C; Bautch, V L

    2001-06-15

    Vascular development requires the assembly of precursor cells into blood vessels, but how embryonic vessels are assembled is not well understood. To determine how vascular cells migrate and assemble into vessels of the trunk and limb, marked somite-derived angioblasts were followed in developing embryos. Injection of avian somites with the cell-tracker DiI showed that somite-derived angioblasts in unperturbed embryos migrated extensively and contributed to trunk and limb vessels. Mouse-avian chimeras with mouse presomitic mesoderm grafts had graft-derived endothelial cells in blood vessels at significant distances from the graft, indicating that mouse angioblasts migrated extensively in avian hosts. Mouse graft-derived endothelial cells were consistently found in trunk vessels, such as the perineural vascular plexus, the cardinal vein, and presumptive intersomitic vessels, as well as in vessels of the limb and kidney rudiment. This reproducible pattern of graft colonization suggests that avian vascular patterning cues for trunk and limb vessels are recognized by mammalian somitic angioblasts. Mouse-quail chimeras stained with both the quail vascular marker QH1 and the mouse vascular marker PECAM-1 had finely chimeric vessels, with graft-derived mouse cells interdigitated with quail vascular cells in most vascular beds colonized by graft cells. Thus, diverse trunk and limb blood vessels have endothelial cells that developed from migratory somitic angioblasts, and assembly of these vessels is likely to have a large vasculogenic component. PMID:11397005

  18. Indonesia's migration transition.

    PubMed

    Hugo, G

    1995-01-01

    This article describes population movements in Indonesia in the context of rapid and marked social and economic change. Foreign investment in Indonesia is increasing, and global mass media is available to many households. Agriculture is being commercialized, and structural shifts are occurring in the economy. Educational levels are increasing, and women's role and status are shifting. Population migration has increased over the decades, both short and long distance, permanent and temporary, legal and illegal, and migration to and between urban areas. This article focuses specifically on rural-to-urban migration and international migration. Population settlements are dense in the agriculturally rich inner areas of Java, Bali, and Madura. Although the rate of growth of the gross domestic product was 6.8% annually during 1969-94, the World Bank ranked Indonesia as a low-income economy in 1992 because of the large population size. Income per capita is US $670. Indonesia is becoming a large exporter of labor to the Middle East, particularly women. The predominance of women as overseas contract workers is changing women's role and status in the family and is controversial due to the cases of mistreatment. Malaysia's high economic growth rate of over 8% per year means an additional 1.3 million foreign workers and technicians are needed. During the 1980s urban growth increased at a very rapid rate. Urban growth tended to occur along corridors and major transportation routes around urban areas. It is posited that most of the urban growth is due to rural-to-urban migration. Data limitations prevent an exact determination of the extent of rural-to-urban migration. More women are estimated to be involved in movements to cities during the 1980s compared to the 1970s. Recruiters and middlemen have played an important role in rural-to-urban migration and international migration. PMID:12347370

  19. Migration Type III

    NASA Astrophysics Data System (ADS)

    Artymowicz, Pawel

    2004-03-01

    Migration type IIIMigration of objects embedded in disks (and the accompanying eccentricity evolution) is becoming a major theme in planetary system formation.The underlying physics can be distilled into the notion of disk-planet coupling via Lindblad resonances, which launch waves, sometimes spectacular spiral shock waves in gas disks. The wave pattern exchanges angular momentum with the planet. That causes (i) migration, (ii) eccentricity evolution, and (iii) gap opening by sufficiently massive planets.A competing source of disk-planet interaction, the corotationaltorques, are much less conspicuous (corotation does not produce easilydetectable waves, as galaxy observers can attest) and have often been missed in the analysis of planet migration. If spiral waves are like waves at Goleta beach, then the corotation acts more like a stealthy riptide. Corotationalflows lie at the basis of a new, surprisingly rapid, mode of migration (type III),superseding the standard type II migration (with a gap), and revising the speed of type I migration (without a gap). The talk will contain results obtained at KITP, e.g., an analytical derivation of da/dt in type III motion. It will be illustrated by videos of high-resolution numerical simulations obtained with different implementations of the Piecewise Parabolic Method hydrodynamics.

  20. Microbiome influences on insect host vector competence

    PubMed Central

    Weiss, Brian

    2011-01-01

    Insect symbioses lack the complexity and diversity of those associated with higher eukaryotic hosts. Symbiotic microbiomes are beneficial to their insect hosts in many ways, including dietary supplementation, tolerance to environmental perturbations and maintenance and/or enhancement of host immune system homeostasis. Recent studies have also highlighted the importance of the microbiome in the context of host pathogen transmission processes. Here we provide an overview of the relationship between insect disease vectors, such as tsetse flies and mosquitoes, and their associated microbiome. Several mechanisms are discussed through which symbiotic microbes may influence their host’s ability to transmit pathogens, as well as potential disease control strategies that harness symbiotic microbes to reduce pathogen transmission through an insect vector. PMID:21697014

  1. The virome in host health and disease

    PubMed Central

    Cadwell, Ken

    2015-01-01

    The mammalian virome includes diverse commensal and pathogenic viruses that evoke a broad range of immune responses from the host. Sustained viral immunomodulation is implicated in a variety of inflammatory diseases, but also confers unexpected benefits to the host. These outcomes of viral infections are often dependent on host genotype. Moreover, it is becoming clear that the virome is part of a dynamic network of microorganisms that inhabit the body. Therefore, viruses can be viewed as a component of the microbiome, and interactions with commensal bacteria and other microbial agents influence their behavior. In this article, our current understanding of how the virome, together with other components of the microbiome, affects the function of the host immune system to regulate health and disease is reviewed. PMID:25992857

  2. Stennis Space Center celebrates Diversity Day

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Kendall Mitchell of the Naval Oceanographic Office (right) learns about the culture of Bolivia from Narda Inchausty, president of the Foreign Born Wives Association in Slidell, La., during 2009 Diversity Day events at NASA's John Stennis Space Center. Stennis hosted Diversity Day activities for employees on Oct. 7. The day's events included cultural and agency exhibits, diversity-related performances, a trivia contest and a classic car and motorcycle show. It also featured the first-ever sitewide Stennis Employee Showcase.

  3. Ancient host shifts followed by host conservatism in a group of ant parasitoids

    PubMed Central

    Murray, Elizabeth A.; Carmichael, Andrew E.; Heraty, John M.

    2013-01-01

    While ant colonies serve as host to a diverse array of myrmecophiles, few parasitoids are able to exploit this vast resource. A notable exception is the wasp family Eucharitidae, which is the only family of insects known to exclusively parasitize ants. Worldwide, approximately 700 Eucharitidae species attack five subfamilies across the ant phylogeny. Our goal is to uncover the pattern of eucharitid diversification, including timing of key evolutionary events, biogeographic patterns and potential cophylogeny with ant hosts. We present the most comprehensive molecular phylogeny of Eucharitidae to date, including 44 of the 53 genera and fossil-calibrated estimates of divergence dates. Eucharitidae arose approximately 50 Ma after their hosts, during the time when the major ant lineages were already established and diversifying. We incorporate host association data to test for congruence between eucharitid and ant phylogenies and find that their evolutionary histories are more similar than expected at random. After a series of initial host shifts, clades within Eucharitidae maintained their host affinity. Even after multiple dispersal events to the New World and extensive speciation within biogeographic regions, eucharitids remain parasitic on the same ant subfamilies as their Old World relatives, suggesting host conservatism despite access to a diverse novel ant fauna. PMID:23554396

  4. Capillary migration of microdisks on curved interfaces.

    PubMed

    Yao, Lu; Sharifi-Mood, Nima; Liu, Iris B; Stebe, Kathleen J

    2015-07-01

    The capillary energy landscape for particles on curved fluid interfaces is strongly influenced by the particle wetting conditions. Contact line pinning has now been widely reported for colloidal particles, but its implications in capillary interactions have not been addressed. Here, we present experiment and analysis for disks with pinned contact lines on curved fluid interfaces. In experiment, we study microdisk migration on a host interface with zero mean curvature; the microdisks have contact lines pinned at their sharp edges and are sufficiently small that gravitational effects are negligible. The disks migrate away from planar regions toward regions of steep curvature with capillary energies inferred from the dissipation along particle trajectories which are linear in the deviatoric curvature. We derive the curvature capillary energy for an interface with arbitrary curvature, and discuss each contribution to the expression. By adsorbing to a curved interface, a particle eliminates a patch of fluid interface and perturbs the surrounding interface shape. Analysis predicts that perfectly smooth, circular disks do not migrate, and that nanometric deviations from a planar circular, contact line, like those around a weakly roughened planar disk, will drive migration with linear dependence on deviatoric curvature, in agreement with experiment. PMID:25618486

  5. Tropical forests are not flat: how mountains affect herbivore diversity.

    PubMed

    Rodríguez-Castañeda, Genoveva; Dyer, Lee A; Brehm, Gunnar; Connahs, Heidi; Forkner, Rebecca E; Walla, Thomas R

    2010-11-01

    Ecologists debate whether tropical insect diversity is better explained by higher plant diversity or by host plant species specialization. However, plant-herbivore studies are primarily based in lowland rainforests (RF) thus excluding topographical effects on biodiversity. We examined turnover in Eois (Geometridae) communities across elevation by studying elevational transects in Costa Rica and Ecuador. We found four distinct Eois communities existing across the elevational gradients. Herbivore diversity was highest in montane forests (MF), whereas host plant diversity was highest in lowland RF. This was correlated with higher specialization and species richness of Eois/host plant species we found in MF. Based on these relationships, Neotropical Eois richness was estimated to range from 313 (only lowland RF considered) to 2034 (considering variation with elevation). We conclude that tropical herbivore diversity and diet breadth covary significantly with elevation and urge the inclusion of montane ecosystems in host specialization and arthropod diversity estimates. PMID:20807233

  6. Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges

    PubMed Central

    Easson, Cole G.; Thacker, Robert W.

    2014-01-01

    Sponges (Porifera) can host diverse and abundant communities of microbial symbionts that make crucial contributions to host metabolism. Although these communities are often host-specific and hypothesized to co-evolve with their hosts, correlations between host phylogeny and microbiome community structure are rarely tested. As part of the Earth Microbiome Project (EMP), we surveyed the microbiomes associated with 20 species of tropical marine sponges collected over a narrow geographic range. We tested whether (1) univariate metrics of microbiome diversity displayed significant phylogenetic signal across the host phylogeny; (2) host identity and host phylogeny were significant factors in multivariate analyses of taxonomic and phylogenetic dissimilarity; and (3) different minimum read thresholds impacted these results. We observed significant differences in univariate metrics of diversity among host species for all read thresholds, with strong phylogenetic signal in the inverse Simpson's index of diversity (D). We observed a surprisingly wide range of variability in community dissimilarity within host species (4–73%); this variability was not related to microbial abundance within a host species. Taxonomic and phylogenetic dissimilarity were significantly impacted by host identity and host phylogeny when these factors were considered individually; when tested together, the effect of host phylogeny was reduced, but remained significant. In our dataset, this outcome is largely due to closely related host sponges harboring distinct microbial taxa. Host identity maintained a strong statistical signal at all minimum read thresholds. Although the identity of specific microbial taxa varied substantially among host sponges, closely related hosts tended to harbor microbial communities with similar patterns of relative abundance. We hypothesize that microbiomes with low D might be structured by regulation of the microbial community by the host or by the presence of

  7. Migration Effects of Parallel Genetic Algorithms on Line Topologies of Heterogeneous Computing Resources

    NASA Astrophysics Data System (ADS)

    Gong, Yiyuan; Guan, Senlin; Nakamura, Morikazu

    This paper investigates migration effects of parallel genetic algorithms (GAs) on the line topology of heterogeneous computing resources. Evolution process of parallel GAs is evaluated experimentally on two types of arrangements of heterogeneous computing resources: the ascending and descending order arrangements. Migration effects are evaluated from the viewpoints of scalability, chromosome diversity, migration frequency and solution quality. The results reveal that the performance of parallel GAs strongly depends on the design of the chromosome migration in which we need to consider the arrangement of heterogeneous computing resources, the migration frequency and so on. The results contribute to provide referential scheme of implementation of parallel GAs on heterogeneous computing resources.

  8. Host defence mediates interspecific competition in ectoparasites.

    PubMed

    Bush, Sarah E; Malenke, Jael R

    2008-05-01

    1. Interspecific competition influences which, how many and where species coexist in biological communities. Interactions between species in different trophic levels can mediate interspecific competition; e.g. predators are known to reduce competition between prey species by suppressing their population sizes. A parallel phenomenon may take place in host-parasite systems, with host defence mediating competition between parasite species. 2. We experimentally investigated the impact of host defence (preening) on competitive interactions between two species of feather-feeding lice: 'wing' lice Columbicola columbae and 'body' lice Campanulotes compar. Both species are host-specific parasites that co-occur on rock pigeons Columba livia. 3. We show that wing lice and body lice compete and that host defence mediates the magnitude of this competitive interaction. 4. Competition is asymmetrical; wing louse populations are negatively impacted by body lice, but not vice versa. This competitive asymmetry is consistent with the fact that body lice predominate in microhabitats on the host's body that offer the most food and the most space. 5. Our results indicate that host-defence-mediated competition can influence the structure of parasite communities and may play a part in the evolution of parasite diversity. PMID:18194262

  9. Mechanisms of host seeking by parasitic nematodes.

    PubMed

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. PMID:27211240

  10. Poxviruses and the Evolution of Host Range and Virulence

    PubMed Central

    Haller, Sherry L.; Peng, Chen; McFadden, Grant; Rothenburg, Stefan

    2013-01-01

    Poxviruses as a group can infect a large number of animals. However, at the level of individual viruses, even closely related poxviruses display highly diverse host ranges and virulence. For example, variola virus, the causative agent of smallpox, is human-specific and highly virulent only to humans, whereas related cowpox viruses naturally infect a broad spectrum of animals and only cause relatively mild disease in humans. The successful replication of poxviruses depends on their effective manipulation of the host antiviral responses, at the cellular-, tissue- and species-specific levels, which constitutes a molecular basis for differences in poxvirus host range and virulence. A number of poxvirus genes have been identified that possess host range function in experimental settings, and many of these host range genes target specific antiviral host pathways. Herein, we review the biology of poxviruses with a focus on host range, zoonotic infections, virulence, genomics and host range genes as well as the current knowledge about the function of poxvirus host range factors and how their interaction with the host innate immune system contributes to poxvirus host range and virulence. We further discuss the evolution of host range and virulence in poxviruses as well as host switches and potential poxvirus threats for human and animal health. PMID:24161410

  11. Greater migratory propensity in hosts lowers pathogen transmission and impacts

    PubMed Central

    Altizer, Sonia; Bartel, Rebecca A.

    2014-01-01

    Animal migrations are spectacular and migratory species have been shown to transmit pathogens that pose risks to human health. Although migration is commonly assumed to enhance pathogen dispersal, empirical work indicates that migration can often have the opposite effect of lowering disease risk.Key to assessing disease threats to migratory species is the ability to predict how migratory behaviour influences pathogen invasion success and impacts on migratory hosts, thus motivating a mechanistic understanding of migratory host-pathogen interactions.Here we develop a quantitative framework to examine pathogen transmission in animals that undergo two-way directed migrations between wintering and breeding grounds annually.Using the case of a pathogen transmitted during the hosts’ breeding season, we show that a more extreme migratory strategy (defined by the time spent away from the breeding site and the total distance migrated) lowers the probability of pathogen invasion. Moreover, if migration substantially lowers the survival probability of infected animals, then populations that spend comparatively less time at the breeding site or that migrate longer distances are less vulnerable to pathogen-induced population declines.These findings provide theoretical support for two non-exclusive mechanisms proposed to explain how seasonal migration can lower infection risk: (i) escape from habitats where parasite transmission stages have accumulated, and (ii) selective removal of infected hosts during strenuous journeys. Our work further suggests that barriers to long distance movement could increase pathogen prevalence for vulnerable species, an effect already seen in some animal species undergoing anthropogenically induced migratory shifts. PMID:24460702

  12. Host switching in cowbird brood parasites: how often does it occur?

    PubMed

    Domínguez, M; de la Colina, M A; Di Giacomo, A G; Reboreda, J C; Mahler, B

    2015-06-01

    Avian obligate brood parasites lay their eggs in nests of host species, which provide all parental care. Brood parasites may be host specialists, if they use one or a few host species, or host generalists, if they parasitize many hosts. Within the latter, strains of host-specific females might coexist. Although females preferentially parasitize one host, they may occasionally successfully parasitize the nest of another species. These host switching events allow the colonization of new hosts and the expansion of brood parasites into new areas. In this study, we analyse host switching in two parasitic cowbirds, the specialist screaming cowbird (Molothrus rufoaxillaris) and the generalist shiny cowbird (M. bonariensis), and compare the frequency of host switches between these species with different parasitism strategies. Contrary to expected, host switches did not occur more frequently in the generalist than in the specialist brood parasite. We also found that migration between hosts was asymmetrical in most cases and host switches towards one host were more recurrent than backwards, thus differing among hosts within the same species. This might depend on a combination of factors including the rate at which females lay eggs in nests of alternative hosts, fledging success of the chicks in this new host and their subsequent success in parasitizing it. PMID:25903962

  13. Environmental concerns and international migration.

    PubMed

    Hugo, G

    1996-01-01

    "This article focuses on international migration occurring as a result of environmental changes and processes. It briefly reviews attempts to conceptualize environment-related migration and then considers the extent to which environmental factors have been and may be significant in initiating migration. Following is an examination of migration as an independent variable in the migration-environment relationship. Finally, ethical and policy dimensions are addressed." PMID:12291410

  14. Biometrics and international migration.

    PubMed

    Redpath, Jillyanne

    2007-01-01

    This paper will focus on the impact of the rapid expansion in the use of biometric systems in migration management on the rights of individuals; it seeks to highlight legal issues for consideration in implementing such systems, taking as the starting point that the security interests of the state and the rights of the individual are not, and should not be, mutually exclusive. The first part of this paper briefly describes the type of biometric applications available, how biometric systems function, and those used in migration management. The second part examines the potential offered by biometrics for greater security in migration management, and focuses on developments in the use of biometrics as a result of September 11. The third part discusses the impact of the use of biometrics in the management of migration on the individual's right to privacy and ability to move freely and lawfully. The paper highlights the increasing need for domestic and international frameworks to govern the use of biometric applications in the migration/security context, and proposes a number of issues that such frameworks could address. PMID:17536151

  15. Microsporidia-Host Interactions

    PubMed Central

    Szumowski, Suzannah C.; Troemel, Emily R.

    2015-01-01

    Microsporidia comprise one of the largest groups of obligate intracellular pathogens and can infect virtually all animals, but host response to these fungal-related microbes has been poorly understood. Several new studies of the host transcriptional response to microsporidia infection have found infection-induced regulation of genes involved in innate immunity, ubiquitylation, metabolism, and hormonal signaling. In addition, microsporidia have recently been shown to exploit host recycling endocytosis for exit from intestinal cells, and to interact with host degradation pathways. Microsporidia infection has also been shown to profoundly affect behavior in insect hosts. Altogether, these and other recent findings are providing much-needed insight into the underlying mechanisms of microsporidia interaction with host animals. PMID:25847674

  16. Bacterial Stress Responses during Host Infection.

    PubMed

    Fang, Ferric C; Frawley, Elaine R; Tapscott, Timothy; Vázquez-Torres, Andrés

    2016-08-10

    Pathogenic bacteria must withstand diverse host environments during infection. Environmental signals, such as pH, temperature, nutrient limitation, etc., not only trigger adaptive responses within bacteria to these specific stress conditions but also direct the expression of virulence genes at an appropriate time and place. An appreciation of stress responses and their regulation is therefore essential for an understanding of bacterial pathogenesis. This review considers specific stresses in the host environment and their relevance to pathogenesis, with a particular focus on the enteric pathogen Salmonella. PMID:27512901

  17. Environmental influences on human migration in rural Ecuador.

    PubMed

    Gray, Clark; Bilsborrow, Richard

    2013-08-01

    The question of whether environmental conditions influence human migration has recently gained considerable attention, driven by claims that global environmental change will displace large populations. Despite this high level of interest, few quantitative studies have investigated the potential effects of environmental factors on migration, particularly in the developing world and for gradual but pervasive forms of environmental change. To address this, a retrospective migration survey was conducted in rural Ecuador and linked to data on topography, climate, and weather shocks. These data were used to estimate multivariate event history models of alternative forms of mobility (local mobility, internal migration, and international migration), controlling for a large number of covariates. This approach is generalizable to other study areas and responds to calls for the development of more rigorous methods in this field. The results indicate that adverse environmental conditions do not consistently increase rural out-migration and, in some cases, reduce migration. Instead, households respond to environmental factors in diverse ways, resulting in complex migratory responses. Overall, the results support an alternative narrative of environmentally induced migration that recognizes the adaptability of rural households in responding to environmental change. PMID:23319207

  18. Environmental Influences on Human Migration in Rural Ecuador

    PubMed Central

    Gray, Clark; Bilsborrow, Richard

    2013-01-01

    The question of whether environmental conditions influence human migration has recently gained considerable attention, driven by claims that global environmental change will displace large populations. Despite this high level of interest, few quantitative studies have investigated the potential effects of environmental factors on migration, particularly in the developing world and for gradual but pervasive forms of environmental change. To address this, a retrospective migration survey was conducted in rural Ecuador and linked to data on topography, climate, and weather shocks. These data were used to estimate multivariate event history models of alternative forms of mobility (local mobility, internal migration, and international migration), controlling for a large number of covariates. This approach is generalizable to other study areas and responds to calls for the development of more rigorous methods in this field. The results indicate that adverse environmental conditions do not consistently increase rural out-migration and, in some cases, reduce migration. Instead, households respond to environmental factors in diverse ways, resulting in complex migratory responses. Overall, the results support an alternative narrative of environmentally induced migration that recognizes the adaptability of rural households in responding to environmental change. PMID:23319207

  19. Migrant networks and international migration: testing weak ties.

    PubMed

    Liu, Mao-Mei

    2013-08-01

    This article examines the role of migrant social networks in international migration and extends prior research by testing the strength of tie theory, decomposing networks by sources and resources, and disentangling network effects from complementary explanations. Nearly all previous empirical research has ignored friendship ties and has largely neglected extended-family ties. Using longitudinal data from the Migration between Africa and Europe project collected in Africa (Senegal) and Europe (France, Italy, and Spain), this article tests the robustness of network theory-and in particular, the role of weak ties-on first-time migration between Senegal and Europe. Discrete-time hazard model results confirm that weak ties are important and that network influences appear to be gendered, but they do not uphold the contention in previous literature that strong ties are more important than weak ties for male and female migration. Indeed, weak ties play an especially important role in male migration. In terms of network resources, having more resources as a result of strong ties appears to dampen overall migration, while having more resources as a result of weaker ties appears to stimulate male migration. Finally, the diversity of resources has varied effects for male and female migration. PMID:23703222

  20. At the leading edge of three-dimensional cell migration

    PubMed Central

    Petrie, Ryan J.; Yamada, Kenneth M.

    2012-01-01

    Summary Cells migrating on flat two-dimensional (2D) surfaces use actin polymerization to extend the leading edge of the plasma membrane during lamellipodia-based migration. This mode of migration is not universal; it represents only one of several mechanisms of cell motility in three-dimensional (3D) environments. The distinct modes of 3D migration are strongly dependent on the physical properties of the extracellular matrix, and they can be distinguished by the structure of the leading edge and the degree of matrix adhesion. How are these distinct modes of cell motility in 3D environments related to each other and regulated? Recent studies show that the same type of cell migrating in 3D extracellular matrix can switch between different leading edge structures. This mode-switching behavior, or plasticity, by a single cell suggests that the apparent diversity of motility mechanisms is integrated by a common intracellular signaling pathway that governs the mode of cell migration. In this Commentary, we propose that the mode of 3D cell migration is governed by a signaling axis involving cell–matrix adhesions, RhoA signaling and actomyosin contractility, and that this might represent a universal mechanism that controls 3D cell migration. PMID:23378019