Sample records for host parasite interactions

  1. Plant parasitic nematode proteins and the host parasite interaction

    Microsoft Academic Search

    Rosane H. C. Curtis

    2007-01-01

    This review focuses on the proteins and secretions of sedentary plant parasitic nematodes potentially important for plant^ nematode interactions. These nematodes are well equipped for parasitism of plants. Having acquired the ability to manipulate fundamental aspects of plant biology, they are able to hijack host-cell development to make their feeding site. They feed exclusively from feeding sites as they complete

  2. Malaria Proteins Implicated in Host-Parasite Interactions 

    E-print Network

    Anderson, Laura Fay

    2007-01-01

    The invasive and transmission stages of the malaria parasite Plasmodium falciparum express several proteins with domains implicated in host-parasite interactions, that are potential vaccine candidates or drug targets. The expression patterns of two...

  3. A host-parasite multilevel interacting process and continuous approximations

    E-print Network

    Potsdam, Universität

    A host-parasite multilevel interacting process and continuous approximations Sylvie Méléard1) and the evolution of cells (or parasites) of two types living in these individuals. The ecological parameters-death-mutation-competition point process, host-parasite stochastic particle system, nonlinear integro-differential equations

  4. The mode of host-parasite interaction shapes coevolutionary dynamics and the fate of host cooperation

    E-print Network

    McKane, Alan

    The mode of host-parasite interaction shapes coevolutionary dynamics and the fate of host host- parasite model there are four mechanisms: host birth (bacterial duplication), competition among hosts for finite resources, parasite death (virus degradation) and lysis of a bacterium by a phage

  5. Diet quality determines interspecific parasite interactions in host populations

    PubMed Central

    Lange, Benjamin; Reuter, Max; Ebert, Dieter; Muylaert, Koenraad; Decaestecker, Ellen

    2014-01-01

    The widespread occurrence of multiple infections and the often vast range of nutritional resources for their hosts allow that interspecific parasite interactions in natural host populations might be determined by host diet quality. Nevertheless, the role of diet quality with respect to multispecies parasite interactions on host population level is not clear. We here tested the effect of host population diet quality on the parasite community in an experimental study using Daphnia populations. We studied the effect of diet quality on Daphnia population demography and the interactions in multispecies parasite infections of this freshwater crustacean host. The results of our experiment show that the fitness of a low-virulent microsporidian parasite decreased in low, but not in high-host-diet quality conditions. Interestingly, infections with the microsporidium protected Daphnia populations against a more virulent bacterial parasite. The observed interspecific parasite interactions are discussed with respect to the role of diet quality-dependent changes in host fecundity. This study reflects that exploitation competition in multispecies parasite infections is environmentally dependent, more in particular it shows that diet quality affects interspecific parasite competition within a single host and that this can be mediated by host population-level effects. PMID:25247066

  6. Host-parasite interactions and global climate oscillations.

    PubMed

    Doi, Hideyuki; Yurlova, Natalia I

    2011-07-01

    It is suspected that host-parasite interactions are influenced by climatic oscillations such as the North Atlantic Oscillation (NAO). However, the effects of climatic oscillations on host-parasite interactions have never been investigated. A long-term (1982-1999) dataset of the host snail Lymnaea stagnalis and trematode metacercariae infection has been collected for Lake Chany in Western Siberia. Using this dataset, we estimated the impact of the NAO on the population dynamics of hosts and parasites as well as their interactions. The results of general linear models showed that the abundance of dominant parasite species and the total parasite abundance significantly increased with NAO, with the exception of Moliniella anceps. Other climatic and biological factors were relatively weak to explain the abundance. There was no significant relationship between NAO and the population density of host snails. The prevalence of infection was related to the total abundance of parasites, but not to the NAO. Thus, the responses to the NAO differed between the host and parasites, indicating mismatching in host-parasite interactions. Therefore, climatic oscillations, such as the NAO, influence common parasitism. PMID:21733260

  7. Host-parasite interactions: an intimate epigenetic relationship.

    PubMed

    Cheeseman, Kevin; Weitzman, Jonathan B

    2015-08-01

    The epigenetics of host-pathogen interactions is emerging as an interesting angle from which to study how parasites have evolved sophisticated strategies to manipulate host gene transcription and protein expression. In this review, we discuss the application of an operational framework to investigate the host cell signalling pathways that are induced by intracellular parasites and the epigenomic consequences in the host nucleus. To illustrate this conceptual approach, we have focused on examples from two eukaryotic intracellular parasites of the apicomplexa phylum: Theileria and Toxoplasma. We review recent findings on intracellular parasitism strategies for hijacking host nuclear functions and discuss how we might think of the parasite and its proteome as an intracellular epigenator. PMID:26096716

  8. The effect of host heterogeneity and parasite intragenomic interactions on parasite

    E-print Network

    Paterson, Steve

    The effect of host heterogeneity and parasite intragenomic interactions on parasite population Bank, Sheffield S10 2TN, UK Understanding the processes that shape the genetic structure of parasite populations and the functional consequences of different parasite genotypes is critical for our ability

  9. Host-parasite interactions between eastern bluebirds (Sialia sialis) and their blowfly (Protocalliphora sp) parasites

    Microsoft Academic Search

    Kristina Michele Hannam

    1998-01-01

    Nestling birds are often parasitized while in the nest, and the parasites can have significant negative effects on the nestlings. I examined the host-parasite interactions between eastern bluebirds (Sialia sialis) and their blowfly (Protocalliphora sp.) parasites over three field seasons in a Pennsylvania bluebird population. I randomly divided broods into control and experimental groups. Control broods had natural levels of

  10. Empirical evaluation of neutral interactions in host-parasite networks.

    PubMed

    Canard, E F; Mouquet, N; Mouillot, D; Stanko, M; Miklisova, D; Gravel, D

    2014-04-01

    While niche-based processes have been invoked extensively to explain the structure of interaction networks, recent studies propose that neutrality could also be of great importance. Under the neutral hypothesis, network structure would simply emerge from random encounters between individuals and thus would be directly linked to species abundance. We investigated the impact of species abundance distributions on qualitative and quantitative metrics of 113 host-parasite networks. We analyzed the concordance between neutral expectations and empirical observations at interaction, species, and network levels. We found that species abundance accurately predicts network metrics at all levels. Despite host-parasite systems being constrained by physiology and immunology, our results suggest that neutrality could also explain, at least partially, their structure. We hypothesize that trait matching would determine potential interactions between species, while abundance would determine their realization. PMID:24642492

  11. HOST-PARASITE INTERACTIONS ON AN EXPERIMENTAL LANDSCAPE KARL L. KOSCIUCH

    E-print Network

    Sandercock, Brett K.

    HOST-PARASITE INTERACTIONS ON AN EXPERIMENTAL LANDSCAPE by KARL L. KOSCIUCH B. S., East Stroudsburg brood parasites and the behavioral responses of their hosts have served as a model of co-evolution in nature. Host adaptations to reduce the costs of parasitism are countered with novel parasite behaviors

  12. Interacting parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2010-01-01

    Parasitism is the most popular life-style on Earth, and many vertebrates host more than one kind of parasite at a time. A common assumption is that parasite species rarely interact, because they often exploit different tissues in a host, and this use of discrete resources limits competition (1). On page 243 of this issue, however, Telfer et al. (2) provide a convincing case of a highly interactive parasite community in voles, and show how infection with one parasite can affect susceptibility to others. If some human parasites are equally interactive, our current, disease-by-disease approach to modeling and treating infectious diseases is inadequate (3).

  13. Impact of protozoan cell death on parasite-host interactions and pathogenesis

    Microsoft Academic Search

    Carsten GK Lüder; Jenny Campos-Salinas; Elena Gonzalez-Rey; Ger van Zandbergen

    2010-01-01

    PCD in protozoan parasites has emerged as a fascinating field of parasite biology. This not only relates to the underlying mechanisms and their evolutionary implications but also to the impact on the parasite-host interactions within mammalian hosts and arthropod vectors. During recent years, common functions of apoptosis and autophagy in protozoa and during parasitic infections have emerged. Here, we review

  14. Natural variation in the genetic architecture of a host- parasite interaction in the bumblebee Bombus terrestris

    Microsoft Academic Search

    ETH Zürich

    The genetic architecture of fitness-relevant traits in natural populations is a topic that has remained almost untouched by quantitative genetics. Given the importance of parasitism for the host's fitness, we used QTL mapping to study the genetic architecture of traits relevant for host-parasite interactions in the trypanosome parasite, Crithidia bombi and its host, Bombus terrestris . The three traits analysed

  15. Red Queen dynamics in multi-host and multi-parasite interaction system

    PubMed Central

    Rabajante, Jomar F.; Tubay, Jerrold M.; Uehara, Takashi; Morita, Satoru; Ebert, Dieter; Yoshimura, Jin

    2015-01-01

    In host-parasite systems, dominant host types are expected to be eventually replaced by other hosts due to the elevated potency of their specific parasites. This leads to changes in the abundance of both hosts and parasites exhibiting cycles of alternating dominance called Red Queen dynamics. Host-parasite models with less than three hosts and parasites have been demonstrated to exhibit Red Queen cycles, but natural host-parasite interactions typically involve many host and parasite types resulting in an intractable system with many parameters. Here we present numerical simulations of Red Queen dynamics with more than ten hosts and specialist parasites under the condition of no super-host nor super-parasite. The parameter region where the Red Queen cycles arise contracts as the number of interacting host and parasite types increases. The interplay between inter-host competition and parasite infectivity influences the condition for the Red Queen dynamics. Relatively large host carrying capacity and intermediate rates of parasite mortality result in never-ending cycles of dominant types. PMID:25899168

  16. Red Queen dynamics in multi-host and multi-parasite interaction system.

    PubMed

    Rabajante, Jomar F; Tubay, Jerrold M; Uehara, Takashi; Morita, Satoru; Ebert, Dieter; Yoshimura, Jin

    2015-01-01

    In host-parasite systems, dominant host types are expected to be eventually replaced by other hosts due to the elevated potency of their specific parasites. This leads to changes in the abundance of both hosts and parasites exhibiting cycles of alternating dominance called Red Queen dynamics. Host-parasite models with less than three hosts and parasites have been demonstrated to exhibit Red Queen cycles, but natural host-parasite interactions typically involve many host and parasite types resulting in an intractable system with many parameters. Here we present numerical simulations of Red Queen dynamics with more than ten hosts and specialist parasites under the condition of no super-host nor super-parasite. The parameter region where the Red Queen cycles arise contracts as the number of interacting host and parasite types increases. The interplay between inter-host competition and parasite infectivity influences the condition for the Red Queen dynamics. Relatively large host carrying capacity and intermediate rates of parasite mortality result in never-ending cycles of dominant types. PMID:25899168

  17. Long live the Red Queen? Examining environmental influences on host-parasite interactions in Daphnia.

    E-print Network

    West, Stuart

    Long live the Red Queen? Examining environmental influences on host-parasite interactions 2006 #12;Abstract The Red Queen hypothesis proposes that antagonistic coevolution between parasites-dependent selection by parasites against common host genotypes prevents asexual clones capitalising on their two

  18. VECTOR/PATHOGEN/HOST INTERACTION, TRANSMISSION Virulence of a Malaria Parasite, Plasmodium mexicanum, for Its Sand

    E-print Network

    Schall, Joseph J.

    VECTOR/PATHOGEN/HOST INTERACTION, TRANSMISSION Virulence of a Malaria Parasite, Plasmodium mexicanum, for Its Sand Fly Vectors, Lutzomyia vexator and Lutzomyia stewarti (Diptera: Psychodidae) JOS. J that virulence of parasites for mobile vector insects will be low for natural parasite-host associations

  19. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, M.B.; Lafferty, K.D.; van, Oosterhout C.; Cable, J.

    2011-01-01

    Background: Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings: Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance: These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density. ?? 2011 Johnson et al.

  20. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne

    2011-01-01

    Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.

  1. The Common Swift Louse Fly, Crataerina pallida: An Ideal Species for Studying Host-Parasite Interactions

    PubMed Central

    Walker, Mark D.; Rotherham, Ian D.

    2010-01-01

    Little is known of the life-history of many parasitic species. This hinders a full understanding of host-parasitic interactions. The common swift louse fly, Crataerina pallida Latreille (Diptera: Hippoboscidae), an obligate haematophagous parasite of the Common Swift, Apus apus Linnaeus 1758, is one such species. No detrimental effect of its parasitism upon the host has been found. This may be because too little is known about C. pallida ecology, and therefore detrimental effects are also unknown. This is a review of what is known about the life-history of this parasite, with the aim of promoting understanding of its ecology. New, previously unreported observations about C. pallida made from personal observations at a nesting swift colony are described. Unanswered questions are highlighted, which may aid understanding of this host-parasite system. C. pallida may prove a suitable model species for the study of other host-parasite relationships. PMID:21268705

  2. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity.

    PubMed

    Bashey, Farrah

    2015-08-19

    Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases. PMID:26150667

  3. Cooperation and conflict in host manipulation: interactions among macro-parasites and micro-organisms

    PubMed Central

    Cézilly, Frank; Perrot-Minnot, Marie-Jeanne; Rigaud, Thierry

    2014-01-01

    Several parasite species are known to manipulate the phenotype of their hosts in ways that enhance their own transmission. Co-occurrence of manipulative parasites, belonging to the same species or to more than one species, in a single host has been regularly observed. Little is known, however, on interactions between co-occurring manipulative parasites with same or different transmission routes. Several models addressing this problem have provided predictions on how cooperation and conflict between parasites could emerge from multiple infections. Here, we review the empirical evidence in favor of the existence of synergistic or antagonistic interactions between co-occurring parasites, and highlight the neglected role of micro-organisms. We particularly discuss the actual importance of selective forces shaping the evolution of interactions between manipulative parasites in relation to parasite prevalence in natural populations, efficiency in manipulation, and type of transmission (i.e., horizontal versus vertical), and we emphasize the potential for future research. PMID:24966851

  4. Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions

    PubMed Central

    2010-01-01

    Background Plant infestation with parasitic weeds like Cuscuta reflexa induces morphological as well as biochemical changes in the host and the parasite. These modifications could be caused by a change in protein or gene activity. Using a comparative macroarray approach Cuscuta genes specifically upregulated at the host attachment site were identified. Results One of the infestation specific Cuscuta genes encodes a cysteine protease. The protein and its intrinsic inhibitory peptide were heterologously expressed, purified and biochemically characterized. The haustoria specific enzyme was named cuscutain in accordance with similar proteins from other plants, e.g. papaya. The role of cuscutain and its inhibitor during the host parasite interaction was studied by external application of an inhibitor suspension, which induced a significant reduction of successful infection events. Conclusions The study provides new information about molecular events during the parasitic plant - host interaction. Inhibition of cuscutain cysteine proteinase could provide means for antagonizing parasitic plants. PMID:20964874

  5. Testing GxG interactions between coinfecting microbial parasite genotypes within hosts

    PubMed Central

    Bose, Joy; Schulte, Rebecca D.

    2014-01-01

    Host–parasite interactions represent one of the strongest selection pressures in nature. They are often governed by genotype-specific (GxG) interactions resulting in host genotypes that differ in resistance and parasite genotypes that differ in virulence depending on the antagonist’s genotype. Another type of GxG interactions, which is often neglected but which certainly influences host–parasite interactions, are those between coinfecting parasite genotypes. Mechanistically, within-host parasite interactions may range from competition for limited host resources to cooperation for more efficient host exploitation. The exact type of interaction, i.e., whether competitive or cooperative, is known to affect life-history traits such as virulence. However, the latter has been shown for chosen genotype combinations only, not considering whether the specific genotype combination per se may influence the interaction (i.e., GxG interactions). Here, we want to test for the presence of GxG interactions between coinfections of the bacterium Bacillus thuringiensis infecting the nematode Caenorhabditis elegans by combining two non-pathogenic and five pathogenic strains in all possible ways. Furthermore, we evaluate whether the type of interaction, reflected by the direction of virulence change of multiple compared to single infections, is genotype-specific. Generally, we found no indication for GxG interactions between non-pathogenic and pathogenic bacterial strains, indicating that virulence of pathogenic strains is equally affected by both non-pathogenic strains. Specific genotype combinations, however, differ in the strength of virulence change, indicating that the interaction type between coinfecting parasite strains and thus the virulence mechanism is specific for different genotype combinations. Such interactions are expected to influence host–parasite interactions and to have strong implications for coevolution. PMID:24860594

  6. The role of evolutionarily conserved signalling systems in Echinococcus multilocularis development and host–parasite interaction

    Microsoft Academic Search

    Klaus Brehm

    2010-01-01

    Alveolar echinococcosis, one of the most serious and life-threatening zoonoses in the world, is caused by the metacestode\\u000a larval stage of the fox-tapeworm Echinococcus multilocularis. Mostly due to its accessibility to in vitro cultivation, this parasite has recently evolved into an experimental model system\\u000a to study larval cestode development and associated host–parasite interaction mechanisms. Respective advances include the establishment\\u000a of

  7. Betulin derivatives impair Leishmania braziliensis viability and host-parasite interaction.

    PubMed

    Alcazar, Wilmer; López, Adrian Silva; Alakurtti, Sami; Tuononen, Maija-Liisa; Yli-Kauhaluoma, Jari; Ponte-Sucre, Alicia

    2014-11-01

    Leishmaniasis is a public health problem in tropical and subtropical areas of the world, including Venezuela. The incidence of treatment failure and the number of cases with Leishmania-HIV co-infection underscore the importance of developing alternative, economical and effective therapies against this disease. The work presented here analyzed whether terpenoids derived from betulin are active against New World Leishmania parasites. Initially we determined the concentration that inhibits the growth of these parasites by 50% or IC50, and subsequently evaluated the chemotactic effect of four compounds with leishmanicidal activity in the sub-micromolar and micromolar range. That is, we measured the migratory capacity of Leishmania (V.) braziliensis in the presence of increasing concentrations of compounds. Finally, we evaluated their cytotoxicity against the host cell and their effect on the infectivity of L. (V.) braziliensis. The results suggest that (1) compounds 14, 17, 18, 25 and 27 are active at concentrations lower than 10 ?M; (2) compound 26 inhibits parasite growth with an IC50 lower than 1 ?M; (3) compounds 18, 26 and 27 inhibit parasite migration at pico- to nanomolar concentrations, suggesting that they impair host-parasite interaction. None of the tested compounds was cytotoxic against J774.A1 macrophages thus indicating their potential as starting points to develop compounds that might affect parasite-host cell interaction, as well as being leishmanicidal. PMID:25240731

  8. Multitrophic interaction facilitates parasite-host relationship between an invasive beetle and the honey bee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Colony defense by honeybees is associated with a sting and mass attack, fueled by the release of alarm pheromones. As such, alarm pheromones are critically important to survival of honeybee colonies. However, we have discovered that in the host-parasite interaction involving the honeybee and the s...

  9. Host-parasite interactions in acanthocephala: a morphological approach

    Microsoft Academic Search

    Horst Taraschewski

    2000-01-01

    In this review recent morphological and histochemical descriptions have been compiled of (mainly outer) features of all developmental stages of the Acanthocephala as well as what is known about the host's defence measures directed against these worms. From acanthors, for intance, it is documented how they escape melanization inside the haemocoel of a suitable intermediate host after they have been

  10. The three-spined stickleback-Schistocephalus solidus system: an experimental model for investigating host-parasite interactions in fish.

    PubMed

    Barber, I; Scharsack, J P

    2010-03-01

    Plerocercoids of the pseudophyllidean cestode Schistocephalus solidus infect the three-spined stickleback Gasterosteus aculeatus, with important consequences for the biology of host fish. Techniques for culturing the parasite in vitro and generating infective stages that can be used to infect sticklebacks experimentally have been developed, and the system is increasingly used as a laboratory model for investigating aspects of host-parasite interactions. Recent experimental laboratory studies have focused on the immune responses of hosts to infection, the consequences of infection for the growth and reproductive development of host fish and the effects of infection on host behaviour. Here we introduce the host and the parasite, review the major findings of these recent experimental infection studies and identify further aspects of host parasite interactions that might be investigated using the system. PMID:19835650

  11. Dual RNA-seq of Parasite and Host Reveals Gene Expression Dynamics during Filarial Worm–Mosquito Interactions

    PubMed Central

    Mayhew, George F.; Erickson, Sara M.; Christensen, Bruce M.

    2014-01-01

    Background Parasite biology, by its very nature, cannot be understood without integrating it with that of the host, nor can the host response be adequately explained without considering the activity of the parasite. However, due to experimental limitations, molecular studies of parasite-host systems have been predominantly one-sided investigations focusing on either of the partners involved. Here, we conducted a dual RNA-seq time course analysis of filarial worm parasite and host mosquito to better understand the parasite processes underlying development in and interaction with the host tissue, from the establishment of infection to the development of infective-stage larva. Methodology/Principal Findings Using the Brugia malayi–Aedes aegypti system, we report parasite gene transcription dynamics, which exhibited a highly ordered developmental program consisting of a series of cyclical and state-transitioning temporal patterns. In addition, we contextualized these parasite data in relation to the concurrent dynamics of the host transcriptome. Comparative analyses using uninfected tissues and different host strains revealed the influence of parasite development on host gene transcription as well as the influence of the host environment on parasite gene transcription. We also critically evaluated the life-cycle transcriptome of B. malayi by comparing developmental stages in the mosquito relative to those in the mammalian host, providing insight into gene expression changes underpinning the mosquito-borne parasitic lifestyle of this heteroxenous parasite. Conclusions/Significance The data presented herein provide the research community with information to design wet lab experiments and select candidates for future study to more fully dissect the whole set of molecular interactions of both organisms in this mosquito-filarial worm symbiotic relationship. Furthermore, characterization of the transcriptional program over the complete life cycle of the parasite, including stages within the mosquito, could help devise novel targets for control strategies. PMID:24853112

  12. Host-parasite interactions during a biological invasion: The fate of lungworms (Rhabdias spp.) inside native and novel anuran hosts.

    PubMed

    Nelson, Felicity B L; Brown, Gregory P; Shilton, Catherine; Shine, Richard

    2015-08-01

    The cane toad invasion in Australia provides a robust opportunity to clarify the infection process in co-evolved versus de novo host-parasite interactions. We investigated these infection dynamics through histological examination following experimental infections of metamorphs of native frogs (Cyclorana australis) and cane toads (Rhinella marina) with Rhabdias hylae (the lungworm found in native frogs) and Rhabdias pseudosphaerocephala (the lungworm found in cane toads). Cane toads reared under continuous exposure to infective larvae of the frog lungworm were examined after periods of 2, 6, 10 and 15 days. Additionally, both toads and frogs were exposed for 24?h to larvae of either the toad or the frog lungworm, and examined 2, 5, 10 and 20 days post-treatment. R. hylae (frog) lungworms entered cane toads and migrated through the body but were not found in the target tissue, the lungs. Larvae of both lungworm species induced inflammation in both types of hosts, although the immune response (relative numbers of different cell types) differed between hosts and between parasite species. Co-evolution has modified the immune response elicited by infection and (perhaps for that reason) has enhanced the parasite's ability to survive and to reach the host's lungs. PMID:25973392

  13. Parasite-grass-forb interactions and rock-paper- scissor dynamics: predicting the effects of the parasitic plant Rhinanthus minor on host plant communities

    Microsoft Academic Search

    Duncan D. Cameron; Andy White; Janis Antonovics

    2009-01-01

    Summary 1. Parasitic plants affect the growth, reproduction and metabolism of their hosts and may also influence the outcome of competitive interactions between host species and, consequently, the struc- ture of entire host communities. 2. We investigate the effect of the root hemiparasitic plant Rhinanthus minor on plant community dynamics using a spatial theoretical model. The model is parameterized with

  14. Simulation of host—parasite interactions within a resource management framework: impact of brucellosis on bison population dynamics

    Microsoft Academic Search

    M. J. Peterson; W. E. Grant; D. S. Davis

    1991-01-01

    Peterson, M.J., Grant, W.E. and Davis, D.S., 1991. Simulation of host-parasite interactions within a resource management framework: impact of brucellosis on bison population dynamics. Ecol. Modelling, 54: 299-320.

  15. Simulation of host-parasite interactions within a resource management framework: impact of brucellosis on bison population dynamics 

    E-print Network

    Peterson, Markus John

    1990-01-01

    SIMULATION OF HOST-PARASITE INTERACTIONS WITHIN A RESOURCE MANAGEMENT FRAMEWORK: IMPACT OF BRUCELLOSIS ON BISON POPULATION DYNAMICS A Thesis by MARKUS JOHN PETERSON Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1990 Major Subject: Wildlife and Fisheries Sciences SIMULATION OF HOST-PARASITE INTERACTIONS WITHIN A RESOURCE MANAGEMENT FRAMEWORK: IMPACT OF BRUCELLOSIS ON BISON...

  16. Large, rapidly evolving gene families are at the forefront of host-parasite interactions in Apicomplexa.

    PubMed

    Reid, Adam J

    2015-02-01

    The Apicomplexa is a phylum of parasitic protozoa, which includes the malaria parasite Plasmodium, amongst other species that can devastate human and animal health. The past decade has seen the release of genome sequences for many of the most important apicomplexan species, providing an excellent basis for improving our understanding of their biology. One of the key features of each genome is a unique set of large, variant gene families. Although closely related species share the same families, even different types of malaria parasite have distinct families. In some species they tend to be found at the ends of chromosomes, which may facilitate aspects of gene expression regulation and generation of sequence diversity. In others they are scattered apparently randomly across chromosomes. For some families there is evidence they are involved in antigenic variation, immune regulation and immune evasion. For others there are no known functions. Even where function is unknown these families are most often predicted to be exposed to the host, contain much sequence diversity and evolve rapidly. Based on these properties it is clear that they are at the forefront of host-parasite interactions. In this review I compare and contrast the genomic context, gene structure, gene expression, protein localization and function of these families across different species. PMID:25257746

  17. Interactions between frequency-dependent and vertical transmission in host-parasite systems.

    PubMed Central

    Altizer, S M; Augustine, D J

    1997-01-01

    We investigate host-pathogen dynamics and conditions for coexistence in two models incorporating frequency-dependent horizontal transmission in conjunction with vertical transmission. The first model combines frequency-dependent and uniparental vertical transmission, while the second addresses parasites transmitted vertically via both parents. For the first model, we ask how the addition of vertical transmission changes the coexistence criteria for parasites transmitted by a frequency-dependent horizontal route, and show that vertical transmission significantly broadens the conditions for parasite invasion. Host-parasite coexistence is further affected by the form of density-dependent host regulation. Numerical analyses demonstrate that within a host population, a parasite strain with horizontal frequency-dependent transmission can be driven to extinction by a parasite strain that is additionally transmitted vertically for a wide range of parameters. Although models of asexual host populations predict that vertical transmission alone cannot maintain a parasite over time, analysis of our second model shows that vertical transmission via both male and female parents can maintain a parasite at a stable equilibrium. These results correspond with the frequent co-occurrence of vertical with sexual transmission in nature and suggest that these transmission modes can lead to host-pathogen coexistence for a wide range of systems involving hosts with high reproductive rates. PMID:9265188

  18. Nancy E. Beckage (1950-2012): pioneer in insect host-parasite interactions.

    PubMed

    Riddiford, Lynn M; Webb, Bruce A

    2014-01-01

    Nancy E. Beckage is widely recognized for her pioneering work in the field of insect host-parasitoid interactions beginning with endocrine influences of the tobacco hornworm, Manduca sexta, host and its parasitoid wasp Apanteles congregatus (now Cotesia congregata) on each other's development. Moreover, her studies show that the polydnavirus carried by the parasitoid wasp not only protects the parasitoid from the host's immune defenses, but also is responsible for some of the developmental effects of parasitism. Nancy was a highly regarded mentor of both undergraduate and graduate students and more widely of women students and colleagues in entomology. Her service both to her particular area and to entomology in general through participation on federal grant review panels and in the governance of the Entomological Society of America, organization of symposia at both national and international meetings, and editorship of several different journal issues and of several books is legendary. She has left behind a lasting legacy of increased understanding of multilevel endocrine and physiological interactions among insects and other organisms and a strong network of interacting scientists and colleagues in her area of entomology. PMID:24112111

  19. Macrophage-migration Inhibitory Factor (MIF) homologues in the host-parasite interaction

    E-print Network

    Prieto-Lafuente, Lidia

    2007-01-01

    The ability of filarial parasites to persist in an immunological competent host, has led to the suggestion that they have evolved specific measures to counter immune defences. Filarial nematodes produce and secrete excretory-secretory (ES) products...

  20. Host age modulates within-host parasite competition.

    PubMed

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. PMID:25994010

  1. Bacteriophage migration via nematode vectors: host-parasite-consumer interactions in laboratory microcosms.

    PubMed

    Dennehy, John J; Friedenberg, Nicholas A; Yang, Yul W; Turner, Paul E

    2006-03-01

    Pathogens vectored by nematodes pose serious agricultural, economic, and health threats; however, little is known of the ecological and evolutionary aspects of pathogen transmission by nematodes. Here we describe a novel model system with two trophic levels, bacteriophages and nematodes, each of which competes for bacteria. We demonstrate for the first time that nematodes are capable of transmitting phages between spatially distinct patches of bacteria. This model system has considerable advantages, including the ease of maintenance and manipulation at the laboratory bench, the ability to observe many generations in short periods, and the capacity to freeze evolved strains for later comparison to their ancestors. More generally, experimental studies of complex multispecies interactions, host-pathogen coevolution, disease dynamics, and the evolution of virulence may benefit from this model system because current models (e.g., chickens, mosquitoes, and malaria parasites) are costly to maintain, are difficult to manipulate, and require considerable space. Our initial explorations centered on independently assessing the impacts of nematode, bacterium, and phage population densities on virus migration between host patches. Our results indicated that virus transmission increases with worm density and host bacterial abundance; however, transmission decreases with initial phage abundance, perhaps because viruses eliminate available hosts before migration can occur. We discuss the microbial growth dynamics that underlie these results, suggest mechanistic explanations for nematode transmission of phages, and propose intriguing possibilities for future research. PMID:16517645

  2. Host–parasite interaction between branchiurans (Crustacea: Argulidae) and piranhas (Osteichthyes: Serrasalminae) in the Pantanal wetland of Brazil

    Microsoft Academic Search

    Lucélia Nobre Carvalho; Kleber Del-Claro; Ricardo Massato Takemoto

    2003-01-01

    Ecological studies of host–parasite interactions in the tropics are generally restricted to descriptive taxonomic aspects. The present study had as its objective identification of the metazoan ectoparasites of piranhas Pygocentrus nattereri, Serrasalmus spilopleura and S. marginatus in lentic and lotic environments in the Pantanal region, Brazil. We collected the samples in the Miranda River basin and in three ponds. We

  3. Getting What Is Served? Feeding Ecology Influencing Parasite-Host Interactions in Invasive Round Goby Neogobius melanostomus

    PubMed Central

    Emde, Sebastian; Kochmann, Judith; Kuhn, Thomas; Plath, Martin; Klimpel, Sven

    2014-01-01

    Freshwater ecosystems are increasingly impacted by alien invasive species which have the potential to alter various ecological interactions like predator-prey and host-parasite relationships. Here, we simultaneously examined predator-prey interactions and parasitization patterns of the highly invasive round goby (Neogobius melanostomus) in the rivers Rhine and Main in Germany. A total of 350 N. melanostomus were sampled between June and October 2011. Gut content analysis revealed a broad prey spectrum, partly reflecting temporal and local differences in prey availability. For the major food type (amphipods), species compositions were determined. Amphipod fauna consisted entirely of non-native species and was dominated by Dikerogammarus villosus in the Main and Echinogammarus trichiatus in the Rhine. However, the availability of amphipod species in the field did not reflect their relative abundance in gut contents of N. melanostomus. Only two metazoan parasites, the nematode Raphidascaris acus and the acanthocephalan Pomphorhynchus sp., were isolated from N. melanostomus in all months, whereas unionid glochidia were only detected in June and October in fish from the Main. To analyse infection pathways, we examined 17,356 amphipods and found Pomphorhynchus sp. larvae only in D. villosus in the river Rhine at a prevalence of 0.15%. Dikerogammarus villosus represented the most important amphipod prey for N. melanostomus in both rivers but parasite intensities differed between rivers, suggesting that final hosts (large predatory fishes) may influence host-parasite dynamics of N. melanostomus in its introduced range. PMID:25338158

  4. Host–parasite interactions and host species susceptibility of the marine oomycete parasite, Olpidiopsis sp., from Korea that infects red algae

    Microsoft Academic Search

    Tatyana A. Klochkova; Jun Bo Shim; Mi Sook Hwang; Gwang Hoon Kim

    Porphyra farms in Korea occasionally suffer from Olpidiopsis infection. As Porphyra farming proceeds from October to March, this obligatory biotrophic parasite may need an alternative host to survive during\\u000a other months of the year. To find a possible alternative summer host, we collected algae from Wando, Korea, where extensive\\u000a Porphyra plantations are located, and discovered an oomycete assignable to the

  5. Role of cyclooxygenase-2 in Trypanosoma cruzi survival in the early stages of parasite host-cell interaction

    PubMed Central

    Moraes, Karen CM; Diniz, Lívia F; Bahia, Maria Terezinha

    2015-01-01

    Chagas disease, caused by the intracellular protozoan Trypanosoma cruzi, is a serious health problem in Latin America. During this parasitic infection, the heart is one of the major organs affected. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. When cells are infected with T. cruzi, they develop an inflammatory response, in which cyclooxygenase-2 (COX-2) catalyses rate-limiting steps in the arachidonic acid pathway. However, how the parasite interaction modulates COX-2 activity is poorly understood. In this study, the H9c2 cell line was used as our model and we investigated cellular and biochemical aspects during the initial 48 h of parasitic infection. Oscillatory activity of COX-2 was observed, which correlated with the control of the pro-inflammatory environment in infected cells. Interestingly, subcellular trafficking was also verified, correlated with the control of Cox-2 mRNA or the activated COX-2 protein in cells, which is directly connected with the assemble of stress granules structures. Our collective findings suggest that in the very early stage of the T. cruzi-host cell interaction, the parasite is able to modulate the cellular metabolism in order to survives. PMID:25946241

  6. Complex interactions among a nematode parasite (Daubaylia potomaca), a commensalistic annelid (Chaetogaster limnaei limnaei), and trematode parasites in a snail host (Helisoma anceps).

    PubMed

    Zimmermann, Michael R; Luth, Kyle E; Esch, Gerald W

    2011-10-01

    Many biotic interactions can affect the prevalence and intensity of parasite infections in aquatic snails. Historically, these studies have centered on interactions between trematode parasites or between trematodes and other organisms. The present investigation focuses on the nematode parasite Daubaylia potomaca and its interactions with a commensal, Chaetogaster limnaei limnaei , and a variety of trematode species. It was found that the presence of C. l. limnaei indirectly increased the mean intensity of D. potomaca infections, apparently by acting as a restraint for various trematode parasites, particularly the rediae of Echinostoma sp. In turn, Echinostoma sp. rediae adversely affected the mean intensity of D. potomaca by their consumption of both juvenile and adult nematodes present in tissues of the snail. These organisms not only belong to 3 different phyla but occupy distinct trophic levels as well. The complex interactions among these 3 organisms in the snail host provide an excellent example of biotic interactions influencing the infection dynamics of parasites in aquatic snails. PMID:21506797

  7. To eject or to abandon? Life history traits of hosts and parasites interact to influence the fitness payoffs of alternative anti-parasite strategies.

    PubMed

    Servedio, M R; Hauber, M E

    2006-09-01

    Hosts either tolerate avian brood parasitism or reject it by ejecting parasitic eggs, as seen in most rejecter hosts of common cuckoos, Cuculus canorus, or by abandoning parasitized clutches, as seen in most rejecter hosts of brown-headed cowbirds, Molothrus ater. What explains consistent variation between alternative rejection behaviours of hosts within the same species and across species when exposed to different types of parasites? Life history theory predicts that when parasites decrease the fitness of host offspring, but not the future reproductive success of host adults, optimal clutch size should decrease. Consistent with this prediction, evolutionarily old cowbird hosts, but not cuckoo hosts, have lower clutch sizes than related rarely- or newly parasitized species. We constructed a mathematical model to calculate the fitness payoffs of egg ejector vs. nest abandoner hosts to determine if various aspects of host life history traits and brood parasites' virulence on adult and young host fitness differentially influence the payoffs of alternative host defences. These calculations showed that in general egg ejection was a superior anti-parasite strategy to nest abandonment. Yet, increasing parasitism rates and increasing fitness values of hosts' eggs in both currently parasitized and future replacement nests led to switch points in fitness payoffs in favour of nest abandonment. Nonetheless, nest abandonment became selectively more favourable only at lower clutch sizes and only when hosts faced parasitism by a cowbird- rather than a cuckoo-type brood parasite. We suggest that, in addition to evolutionary lag and gape-size limitation, our estimated fitness differences based on life history trait variation provide new insights for the consistent differences observed in the anti-parasite rejection strategies between many cuckoo- and cowbird-hosts. PMID:16910987

  8. Urbanization breaks up host-parasite interactions: a case study on parasite community ecology of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient.

    PubMed

    Calegaro-Marques, Cláudia; Amato, Suzana B

    2014-01-01

    Urbanization drastically alters natural ecosystems and the structure of their plant and animal communities. Whereas some species cope successfully with these environmental changes, others may go extinct. In the case of parasite communities, the expansion of urban areas has a critical effect by changing the availability of suitable substrates for the eggs or free-larval stages of those species with direct life cycles or for the range of hosts of those species with complex cycles. In this study we investigated the influence of the degree of urbanization and environmental heterogeneity on helminth richness, abundance and community structure of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient in the metropolitan region of Porto Alegre, State of Rio Grande do Sul, Brazil. This common native bird species of southern Brazil hosts 15 endoparasite species at the study region. A total of 144 thrushes were collected with mist nets at 11 sites. The degree of urbanization and environmental heterogeneity were estimated by quantifying five landscape elements: buildings, woodlands, fields, bare lands, and water. Landscape analyses were performed at two spatial scales (10 and 100 ha) taking into account home range size and the potential dispersal distance of thrushes and their prey (intermediate hosts). Mean parasite richness showed an inverse relationship with the degree of urbanization, but a positive relationship with environmental heterogeneity. Changes in the structure of component communities along the rural-urban gradient resulted from responses to the availability of particular landscape elements that are compatible with the parasites' life cycles. We found that the replacement of natural environments with buildings breaks up host-parasite interactions, whereas a higher environmental (substrate) diversity allows the survival of a wider range of intermediate hosts and vectors and their associated parasites. PMID:25068271

  9. Urbanization Breaks Up Host-Parasite Interactions: A Case Study on Parasite Community Ecology of Rufous-Bellied Thrushes (Turdus rufiventris) along a Rural-Urban Gradient

    PubMed Central

    Calegaro-Marques, Cláudia; Amato, Suzana B.

    2014-01-01

    Urbanization drastically alters natural ecosystems and the structure of their plant and animal communities. Whereas some species cope successfully with these environmental changes, others may go extinct. In the case of parasite communities, the expansion of urban areas has a critical effect by changing the availability of suitable substrates for the eggs or free-larval stages of those species with direct life cycles or for the range of hosts of those species with complex cycles. In this study we investigated the influence of the degree of urbanization and environmental heterogeneity on helminth richness, abundance and community structure of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient in the metropolitan region of Porto Alegre, State of Rio Grande do Sul, Brazil. This common native bird species of southern Brazil hosts 15 endoparasite species at the study region. A total of 144 thrushes were collected with mist nets at 11 sites. The degree of urbanization and environmental heterogeneity were estimated by quantifying five landscape elements: buildings, woodlands, fields, bare lands, and water. Landscape analyses were performed at two spatial scales (10 and 100 ha) taking into account home range size and the potential dispersal distance of thrushes and their prey (intermediate hosts). Mean parasite richness showed an inverse relationship with the degree of urbanization, but a positive relationship with environmental heterogeneity. Changes in the structure of component communities along the rural-urban gradient resulted from responses to the availability of particular landscape elements that are compatible with the parasites' life cycles. We found that the replacement of natural environments with buildings breaks up host-parasite interactions, whereas a higher environmental (substrate) diversity allows the survival of a wider range of intermediate hosts and vectors and their associated parasites. PMID:25068271

  10. Effects of salinity on an intertidal hostparasite system: Is the parasite more sensitive than its host?

    E-print Network

    Poulin, Robert

    Effects of salinity on an intertidal host­parasite system: Is the parasite more sensitive than its Host­parasite interaction Parasitism Salinity Transmission Trematoda Intertidal habitats are characterised by highly fluctuating environmental conditions including varying salinity regimes. Changes

  11. Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time

    Microsoft Academic Search

    S. G ANDON; Y. MICHALAKIS

    2002-01-01

    Local adaptation of parasites to their sympatric hosts has been investigated on different biological systems through reciprocal transplant experiments. Most of these studies revealed a local adaptation of the parasite. In several cases, however, parasites were found to be locally maladapted or neither adapted nor maladapted. In the present paper, we try to determine the causes of such variability in

  12. Castrating parasites and colonial hosts.

    PubMed

    Hartikainen, H; Okamura, B

    2012-04-01

    Trajectories of life-history traits such as growth and reproduction generally level off with age and increasing size. However, colonial animals may exhibit indefinite, exponential growth via modular iteration thus providing a long-lived host source for parasite exploitation. In addition, modular iteration entails a lack of germ line sequestration. Castration of such hosts by parasites may therefore be impermanent or precluded, unlike the general case for unitary animal hosts. Despite these intriguing correlates of coloniality, patterns of colonial host exploitation have not been well studied. We examined these patterns by characterizing the responses of a myxozoan endoparasite, Tetracapsuloides bryosalmonae, and its colonial bryozoan host, Fredericella sultana, to 3 different resource levels. We show that (1) the development of infectious stages nearly always castrates colonies regardless of host condition, (2) castration reduces partial mortality and (3) development of transmission stages is resource-mediated. Unlike familiar castrator-host systems, this system appears to be characterized by periodic rather than permanent castration. Periodic castration may be permitted by 2 key life history traits: developmental cycling of the parasite between quiescent (covert infections) and virulent infectious stages (overt infections) and the absence of germ line sequestration which allows host reproduction in between bouts of castration. PMID:22309795

  13. Comparing mechanisms of host manipulation across host and parasite taxa

    USGS Publications Warehouse

    Lafferty, Kevin D.; Shaw, Jenny C.

    2013-01-01

    Parasites affect host behavior in several ways. They can alter activity, microhabitats or both. For trophically transmitted parasites (the focus of our study), decreased activity might impair the ability of hosts to respond to final-host predators, and increased activity and altered microhabitat choice might increase contact rates between hosts and final-host predators. In an analysis of trophically transmitted parasites, more parasite groups altered activity than altered microhabitat choice. Parasites that infected vertebrates were more likely to impair the host’s reaction to predators, whereas parasites that infected invertebrates were more likely to increase the host’s contact with predators. The site of infection might affect how parasites manipulate their hosts. For instance, parasites in the central nervous system seem particularly suited to manipulating host behavior. Manipulative parasites commonly occupy the body cavity, muscles and central nervous systems of their hosts. Acanthocephalans in the data set differed from other taxa in that they occurred exclusively in the body cavity of invertebrates. In addition, they were more likely to alter microhabitat choice than activity. Parasites in the body cavity (across parasite types) were more likely to be associated with increased host contact with predators. Parasites can manipulate the host through energetic drain, but most parasites use more sophisticated means. For instance, parasites target four physiological systems that shape behavior in both invertebrates and vertebrates: neural, endocrine, neuromodulatory and immunomodulatory. The interconnections between these systems make it difficult to isolate specific mechanisms of host behavioral manipulation.

  14. When parasites disagree: evidence for parasite-induced sabotage of host manipulation.

    PubMed

    Hafer, Nina; Milinski, Manfred

    2015-03-01

    Host manipulation is a common parasite strategy to alter host behavior in a manner to enhance parasite fitness usually by increasing the parasite's transmission to the next host. In nature, hosts often harbor multiple parasites with agreeing or conflicting interests over host manipulation. Natural selection might drive such parasites to cooperation, compromise, or sabotage. Sabotage would occur if one parasite suppresses the manipulation of another. Experimental studies on the effect of multi-parasite interactions on host manipulation are scarce, clear experimental evidence for sabotage is elusive. We tested the effect of multiple infections on host manipulation using laboratory-bred copepods experimentally infected with the trophically transmitted tapeworm Schistocephalus solidus. This parasite is known to manipulate its host depending on its own developmental stage. Coinfecting parasites with the same aim enhance each other's manipulation but only after reaching infectivity. If the coinfecting parasites disagree over host manipulation, the infective parasite wins this conflict: the noninfective one has no effect. The winning (i.e., infective) parasite suppresses the manipulation of its noninfective competitor. This presents conclusive experimental evidence for both cooperation in and sabotage of host manipulation and hence a proof of principal that one parasite can alter and even neutralize manipulation by another. PMID:25643621

  15. Host plant species affects virulence in monarch butterfly parasites.

    PubMed

    de Roode, Jacobus C; Pedersen, Amy B; Hunter, Mark D; Altizer, Sonia

    2008-01-01

    1. Studies have considered how intrinsic host and parasite properties determine parasite virulence, but have largely ignored the role of extrinsic ecological factors in its expression. 2. We studied how parasite genotype and host plant species interact to determine virulence of the protozoan parasite Ophryocystis elektroscirrha (McLaughlin & Myers 1970) in the monarch butterfly Danaus plexippus L. We infected monarch larvae with one of four parasite genotypes and reared them on two milkweed species that differed in their levels of cardenolides: toxic chemicals involved in predator defence. 3. Parasite infection, replication and virulence were affected strongly by host plant species. While uninfected monarchs lived equally long on both plant species, infected monarchs suffered a greater reduction in their life spans (55% vs. 30%) on the low-cardenolide vs. the high-cardenolide host plant. These life span differences resulted from different levels of parasite replication in monarchs reared on the two plant species. 4. The virulence rank order of parasite genotypes was unaffected by host plant species, suggesting that host plant species affected parasite genotypes similarly, rather than through complex plant species-parasite genotype interactions. 5. Our results demonstrate that host ecology importantly affects parasite virulence, with implications for host-parasite dynamics in natural populations. PMID:18177332

  16. HOST-DEPENDENT GENETIC STRUCTURE OF PARASITE POPULATIONS: DIFFERENTIAL DISPERSAL OF SEABIRD TICK HOST RACES

    Microsoft Academic Search

    Karen D. McCoy; Thierry Boulinier; Claire Tirard; Yannis Michalakis

    2003-01-01

    Despite the fact that parasite dispersal is likely to be one of the most important processes influencing the dynamics and coevolution of host-parasite interactions, little information is available on the factors that affect it. In most cases, opportunities for parasite dispersal should be closely linked to host biology. Here we use microsatellite genetic markers to compare the population structure and

  17. NEOSPORA CANINUM CYCLOPHILIN: A INTERFERON-GAMMA-INDUCING PROTEIN THAT MAY MEDIATE THE PARASITE-HOST INTERACTIONS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interferon-gamma (IFN-gamma) response is required for the development of a host protective immunity when infected by intracellular parasites. Neosporosis, caused by the intracellular protozoan parasite Neospora caninum, is known to be fatal when there is a complete lack of IFN-gamma in the infected ...

  18. Host social behavior and parasitic infection: A multifactorial approach

    USGS Publications Warehouse

    Ezenwa, V.O.

    2004-01-01

    I examined associations between several components of host social organization, including group size and gregariousness, group stability, territoriality and social class, and gastrointestinal parasite load in African bovids. At an intraspecific level, group size was positively correlated with parasite prevalence, but only when the parasite was relatively host specific and only among host species living in stable groups. Social class was also an important predictor of infection rates. Among gazelles, territorial males had higher parasite intensities than did either bachelor males or females and juveniles, suggesting that highly territorial individuals may be either more exposed or more susceptible to parasites. Associations among territoriality, grouping, and parasitism were also found across taxa. Territorial host genera were more likely to be infected with strongyle nematodes than were nonterritorial hosts, and gregarious hosts were more infected than were solitary hosts. Analyses also revealed that gregariousness and territoriality had an interactive effect on individual parasite richness, whereby hosts with both traits harbored significantly more parasite groups than did hosts with only one or neither trait. Overall, study results indicate that multiple features of host social behavior influence infection risk and suggest that synergism between traits also has important effects on host parasite load.

  19. Evolution of host specificity in monogeneans parasitizing African cichlid fish

    PubMed Central

    2014-01-01

    Background The patterns and processes linked to the host specificity of parasites represent one of the central themes in the study of host-parasite interactions. We investigated the evolution and determinants of host specificity in gill monogeneans of Cichlidogyrus and Scutogyrus species parasitizing African freshwater fish of Cichlidae. Methods We analyzed (1) the link between host specificity and parasite phylogeny, (2) potential morphometric correlates of host specificity (i.e. parasite body size and the morphometrics of the attachment apparatus), and (3) potential determinants of host specificity following the hypothesis of ecological specialization and the hypothesis of specialization on predictable resources (i.e. host body size and longevity were considered as measures of host predictability), and (4) the role of brooding behavior of cichlids in Cichlidogyrus and Scutogyrus diversification. Results No significant relationships were found between host specificity and phylogeny of Cichlidogyrus and Scutogyrus species. The mapping of host specificity onto the parasite phylogenetic tree revealed that an intermediate specialist parasitizing congeneric cichlid hosts represents the ancestral state for the Cichlidogyrus/Scutogyrus group. Only a weak relationship was found between the morphometry of the parasites’ attachment apparatus and host specificity. Our study did not support the specialization on predictable resources or ecological specialization hypotheses. Nevertheless, host specificity was significantly related to fish phylogeny and form of parental care. Conclusions Our results confirm that host specificity is not a derived condition for Cichlidogyrus/Scutogyrus parasites and may reflect other than historical constraints. Attachment apparatus morphometry reflects only partially (if at all) parasite adaptation to the host species, probably because of the morphological similarity of rapidly evolved cichlids (analyzed in our study). However, we showed that parental care behavior of cichlids may play an important role linked to host specificity of Cichlidogyrus/Scutogyrus parasites. PMID:24529542

  20. Parasite host range and the evolution of host resistance.

    PubMed

    Gorter, F A; Hall, A R; Buckling, A; Scanlan, P D

    2015-05-01

    Parasite host range plays a pivotal role in the evolution and ecology of hosts and the emergence of infectious disease. Although the factors that promote host range and the epidemiological consequences of variation in host range are relatively well characterized, the effect of parasite host range on host resistance evolution is less well understood. In this study, we tested the impact of parasite host range on host resistance evolution. To do so, we used the host bacterium Pseudomonas fluorescens SBW25 and a diverse suite of coevolved viral parasites (lytic bacteriophage ?2) with variable host ranges (defined here as the number of host genotypes that can be infected) as our experimental model organisms. Our results show that resistance evolution to coevolved phages occurred at a much lower rate than to ancestral phage (approximately 50% vs. 100%), but the host range of coevolved phages did not influence the likelihood of resistance evolution. We also show that the host range of both single parasites and populations of parasites does not affect the breadth of the resulting resistance range in a naïve host but that hosts that evolve resistance to single parasites are more likely to resist other (genetically) more closely related parasites as a correlated response. These findings have important implications for our understanding of resistance evolution in natural populations of bacteria and viruses and other host-parasite combinations with similar underlying infection genetics, as well as the development of phage therapy. PMID:25851735

  1. Dynamics of host–parasite interactions: the example of population biology of the liver fluke ( Fasciola hepatica )

    Microsoft Academic Search

    Sylvie Hurtrez-Boussès; Cécile Meunier; Patrick Durand; François Renaud

    2001-01-01

    Knowledge of the population dynamics of parasites and their hosts is essential to build veterinary and health programs. The example chosen is that of Fasciola hepatica, a food-borne trematode responsible for severe human and animal infections on the five continents. In this paper, we review the relationships between the liver fluke and its intermediate (mollusc) and definitive (vertebrate) hosts.

  2. DISPERSAL IN A PARASITIC WORM AND ITS TWO HOSTS: CONSEQUENCE FOR LOCAL ADAPTATION

    Microsoft Academic Search

    Franck Prugnolle; André Théron; Jean Pierre Pointier; Roula Jabbour-Zahab; Philippe Jarne; Patrick Durand; Thierry de Meeûs

    2005-01-01

    Characterizing host and parasite population genetic structure and estimating gene flow among populations is essential for understanding coevolutionary interactions between hosts and parasites. We examined the population genetic structure of the trematode Schistosoma mansoniand its two host species (the definitive host Rattus rattus and the intermediate host Biomphalaria glabrata) using microsatellite markers. Parasites were sampled from rats. The study was

  3. The evolution of host protection by vertically transmitted parasites

    PubMed Central

    Jones, Edward O.; White, Andrew; Boots, Michael

    2011-01-01

    Hosts are often infected by a variety of different parasites, leading to competition for hosts and coevolution between parasite species. There is increasing evidence that some vertically transmitted parasitic symbionts may protect their hosts from further infection and that this protection may be an important reason for their persistence in nature. Here, we examine theoretically when protection is likely to evolve and its selective effects on other parasites. Our key result is that protection is most likely to evolve in response to horizontally transmitted parasites that cause a significant reduction in host fecundity. The preponderance of sterilizing horizontally transmitted parasites found in arthropods may therefore explain the evolution of protection seen by their symbionts. We also find that protection is more likely to evolve in response to highly transmissible parasites that cause intermediate, rather than high, virulence (increased death rate when infected). Furthermore, intermediate levels of protection select for faster, more virulent horizontally transmitted parasites, suggesting that protective symbionts may lead to the evolution of more virulent parasites in nature. When we allow for coevolution between the symbiont and the parasite, more protection is likely to evolve in the vertically transmitted symbionts of longer lived hosts. Therefore, if protection is found to be common in nature, it has the potential to be a major selective force on host–parasite interactions. PMID:20861052

  4. Host and parasite diversity jointly control disease risk in complex communities

    E-print Network

    Johnson, Pieter

    Host and parasite diversity jointly control disease risk in complex communities Pieter T. J, Berkeley, CA, and approved September 10, 2013 (received for review June 3, 2013) Host­parasite interactions parasites. To date, however, surprisingly few studies have explored the joint effects of host and parasite

  5. Host-parasite interactions between the piranha Pygocentrus nattereri (Characiformes: Characidae) and isopods and branchiurans (Crustacea) in the rio Araguaia basin, Brazil

    Microsoft Academic Search

    Lucélia Nobre Carvalho; Rafael Arruda; Kleber Del-Claro

    2004-01-01

    In the tropics, studies on the ecology of host-parasite interactions are incipient and generally related to taxonomic aspects. The main objective of the present work was to analyze ecological aspects and identify the metazoan fauna of ectoparasites that infest the piranha, Pygocentrus nattereri. In May 2002, field samples were collected in the rio Araguaia basin, State of Goiás (Brazil). A

  6. Potential Parasite Transmission in Multi-Host Networks Based on Parasite Sharing

    PubMed Central

    Pilosof, Shai; Morand, Serge; Krasnov, Boris R.; Nunn, Charles L.

    2015-01-01

    Epidemiological networks are commonly used to explore dynamics of parasite transmission among individuals in a population of a given host species. However, many parasites infect multiple host species, and thus multi-host networks may offer a better framework for investigating parasite dynamics. We investigated the factors that influence parasite sharing – and thus potential transmission pathways – among rodent hosts in Southeast Asia. We focused on differences between networks of a single host species and networks that involve multiple host species. In host-parasite networks, modularity (the extent to which the network is divided into subgroups of rodents that interact with similar parasites) was higher in the multi-species than in the single-species networks. This suggests that phylogeny affects patterns of parasite sharing, which was confirmed in analyses showing that it predicted affiliation of individuals to modules. We then constructed “potential transmission networks” based on the host-parasite networks, in which edges depict the similarity between a pair of individuals in the parasites they share. The centrality of individuals in these networks differed between multi- and single-species networks, with species identity and individual characteristics influencing their position in the networks. Simulations further revealed that parasite dynamics differed between multi- and single-species networks. We conclude that multi-host networks based on parasite sharing can provide new insights into the potential for transmission among hosts in an ecological community. In addition, the factors that determine the nature of parasite sharing (i.e. structure of the host-parasite network) may impact transmission patterns. PMID:25748947

  7. Potential parasite transmission in multi-host networks based on parasite sharing.

    PubMed

    Pilosof, Shai; Morand, Serge; Krasnov, Boris R; Nunn, Charles L

    2015-01-01

    Epidemiological networks are commonly used to explore dynamics of parasite transmission among individuals in a population of a given host species. However, many parasites infect multiple host species, and thus multi-host networks may offer a better framework for investigating parasite dynamics. We investigated the factors that influence parasite sharing--and thus potential transmission pathways--among rodent hosts in Southeast Asia. We focused on differences between networks of a single host species and networks that involve multiple host species. In host-parasite networks, modularity (the extent to which the network is divided into subgroups of rodents that interact with similar parasites) was higher in the multi-species than in the single-species networks. This suggests that phylogeny affects patterns of parasite sharing, which was confirmed in analyses showing that it predicted affiliation of individuals to modules. We then constructed "potential transmission networks" based on the host-parasite networks, in which edges depict the similarity between a pair of individuals in the parasites they share. The centrality of individuals in these networks differed between multi- and single-species networks, with species identity and individual characteristics influencing their position in the networks. Simulations further revealed that parasite dynamics differed between multi- and single-species networks. We conclude that multi-host networks based on parasite sharing can provide new insights into the potential for transmission among hosts in an ecological community. In addition, the factors that determine the nature of parasite sharing (i.e. structure of the host-parasite network) may impact transmission patterns. PMID:25748947

  8. Parasite-host interactions between the Varroa mite and the honey bee

    Microsoft Academic Search

    J. N. M. Calis

    2001-01-01

    Introduction<\\/h3>

    Varroa mites as parasites of honey bees<\\/h4>Varroa destructor (Anderson & Trueman, 2000), is the most important pest of European races of the Western honey bee, Apis mellifera L., weakening bees and vectoring bee diseases (Matheson, 1993). Over the past decades it has spread all over the world and control measures are required to maintain healthy honey bee colonies.Originally, this mite

  9. Heads or Tails: Host-Parasite Interactions in the Drosophila-Wolbachia System

    PubMed Central

    Veneti, Zoe; Clark, Michael E.; Karr, Timothy L.; Savakis, Charalambos; Bourtzis, Kostas

    2004-01-01

    Wolbachia strains are endosymbiotic bacteria typically found in the reproductive tracts of arthropods. These bacteria manipulate host reproduction to ensure maternal transmission. They are usually transmitted vertically, so it has been predicted that they have evolved a mechanism to target the host's germ cells during development. Through cytological analysis we found that Wolbachia strains display various affinities for the germ line of Drosophila. Different Wolbachia strains show posterior, anterior, or cortical localization in Drosophila embryos, and this localization is congruent with the classification of the organisms based on the wsp (Wolbachia surface protein) gene sequence. This embryonic distribution pattern is established during early oogenesis and does not change until late stages of embryogenesis. The posterior and anterior localization of Wolbachia resembles that of oskar and bicoid mRNAs, respectively, which define the anterior-posterior axis in the Drosophila oocyte. By comparing the properties of a single Wolbachia strain in different host backgrounds and the properties of different Wolbachia strains in the same host background, we concluded that bacterial factors determine distribution, while bacterial density seems to be limited by the host. Possible implications concerning cytoplasmic incompatibility and evolution of strains are discussed. PMID:15345422

  10. (macro-) Evolutionary ecology of parasite diversity: From determinants of parasite species richness to host diversification.

    PubMed

    Morand, Serge

    2015-04-01

    The present review summarized the factors or determinants that may explain parasite diversity among host species and the consequences of this parasite diversity on the evolution of host-life history traits. As host-parasite interactions are asymmetrical exploited-exploiter relationships, ecological and epidemiological theories produce hypotheses to find the potential determinants of parasite species richness, while life-history theory helps for testing potential consequences on parasite diversity on the evolution of hosts. This review referred only to studies that have specifically controlled or took into account phylogenetic information illustrated with parasites of mammals. Several points needing more investigation were identified with a special emphasis to develop the metabolic theory of epidemiology. PMID:25830109

  11. Parasite predators exhibit a rapid numerical response to increased parasite abundance and reduce transmission to hosts

    PubMed Central

    Hopkins, Skylar R; Wyderko, Jennie A; Sheehy, Robert R; Belden, Lisa K; Wojdak, Jeremy M

    2013-01-01

    Predators of parasites have recently gained attention as important parts of food webs and ecosystems. In aquatic systems, many taxa consume free-living stages of parasites, and can thus reduce parasite transmission to hosts. However, the importance of the functional and numerical responses of parasite predators to disease dynamics is not well understood. We collected host–parasite–predator cooccurrence data from the field, and then experimentally manipulated predator abundance, parasite abundance, and the presence of alternative prey to determine the consequences for parasite transmission. The parasite predator of interest was a ubiquitous symbiotic oligochaete of mollusks, Chaetogaster limnaei limnaei, which inhabits host shells and consumes larval trematode parasites. Predators exhibited a rapid numerical response, where predator populations increased or decreased by as much as 60% in just 5 days, depending on the parasite:predator ratio. Furthermore, snail infection decreased substantially with increasing parasite predator densities, where the highest predator densities reduced infection by up to 89%. Predators of parasites can play an important role in regulating parasite transmission, even when infection risk is high, and especially when predators can rapidly respond numerically to resource pulses. We suggest that these types of interactions might have cascading effects on entire disease systems, and emphasize the importance of considering disease dynamics at the community level. PMID:24340184

  12. Parasite predators exhibit a rapid numerical response to increased parasite abundance and reduce transmission to hosts.

    PubMed

    Hopkins, Skylar R; Wyderko, Jennie A; Sheehy, Robert R; Belden, Lisa K; Wojdak, Jeremy M

    2013-11-01

    Predators of parasites have recently gained attention as important parts of food webs and ecosystems. In aquatic systems, many taxa consume free-living stages of parasites, and can thus reduce parasite transmission to hosts. However, the importance of the functional and numerical responses of parasite predators to disease dynamics is not well understood. We collected host-parasite-predator cooccurrence data from the field, and then experimentally manipulated predator abundance, parasite abundance, and the presence of alternative prey to determine the consequences for parasite transmission. The parasite predator of interest was a ubiquitous symbiotic oligochaete of mollusks, Chaetogaster limnaei limnaei, which inhabits host shells and consumes larval trematode parasites. Predators exhibited a rapid numerical response, where predator populations increased or decreased by as much as 60% in just 5 days, depending on the parasite:predator ratio. Furthermore, snail infection decreased substantially with increasing parasite predator densities, where the highest predator densities reduced infection by up to 89%. Predators of parasites can play an important role in regulating parasite transmission, even when infection risk is high, and especially when predators can rapidly respond numerically to resource pulses. We suggest that these types of interactions might have cascading effects on entire disease systems, and emphasize the importance of considering disease dynamics at the community level. PMID:24340184

  13. [How does the apicomplexan parasite Theileria control host cell identity?].

    PubMed

    Marsolier, Justine; Weitzman, Jonathan B

    2014-01-01

    Infectious agents, like bacteria or virus, are responsible for a large number of pathologies in mammals. Microbes have developed mechanisms for interacting with host cell pathways and hijacking cellular machinery to change the phenotypic state. In this review, we focus on an interesting apicomplexan parasite called Theileria. Infection by the tick-transmitted T. annulata parasite causes Tropical Theileriosis in North Africa and Asia, and the related T. parva parasite causes East Coast Fever in Sub-Saharan Africa. This parasite is the only eukaryote known to induce the transformation of its mammalian host cells. Indeed, T. annulata and T. parva infect bovine leukocytes leading to transforming phenotypes, which partially mirror human lymphoma pathologies. Theileria infection causes hyperproliferation, invasiveness and escape from apoptosis, presumably through the manipulation of host cellular pathways. Several host-signaling mechanisms have been implicated. Here we describe the mechanisms involved in parasite-induced transformation phenotypes. PMID:25840458

  14. Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    PubMed Central

    2013-01-01

    Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor ?-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor ?-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions. PMID:23302495

  15. Parasite Calcineurin Regulates Host Cell Recognition and Attachment by Apicomplexans.

    PubMed

    Paul, Aditya S; Saha, Sudeshna; Engelberg, Klemens; Jiang, Rays H Y; Coleman, Bradley I; Kosber, Aziz L; Chen, Chun-Ti; Ganter, Markus; Espy, Nicole; Gilberger, Tim W; Gubbels, Marc-Jan; Duraisingh, Manoj T

    2015-07-01

    Apicomplexans invade a variety of metazoan host cells through mechanisms involving host cell receptor engagement and secretion of parasite factors to facilitate cellular attachment. We find that the parasite homolog of calcineurin, a calcium-regulated phosphatase complex central to signal transduction in eukaryotes, also contributes to host cell invasion by the malaria parasite Plasmodium falciparum and related Toxoplasma gondii. Using reverse-genetic and chemical-genetic approaches, we determine that calcineurin critically regulates and stabilizes attachment of extracellular P. falciparum to host erythrocytes before intracellular entry and has similar functions in host cell engagement by T. gondii. Calcineurin-mediated Plasmodium invasion is strongly associated with host receptors required for host cell recognition, and calcineurin function distinguishes this form of receptor-mediated attachment from a second mode of host-parasite adhesion independent of host receptors. This specific role of calcineurin in coordinating physical interactions with host cells highlights an ancestral mechanism for parasitism used by apicomplexans. PMID:26118996

  16. Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts

    PubMed Central

    Hechinger, Ryan F; Lafferty, Kevin D

    2005-01-01

    An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in ‘downstream’ hosts should logically increase with the diversity and abundance of ‘upstream’ hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management. PMID:16024365

  17. Host diversity begets parasite diversity: Bird final hosts and trematodes in snail intermediate hosts

    USGS Publications Warehouse

    Hechinger, R.F.; Lafferty, K.D.

    2005-01-01

    An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management. ?? 2005 The Royal Society.

  18. Differential reproductive success favours strong host preference in a highly specialized brood parasite

    PubMed Central

    De Mársico, María C; Reboreda, Juan C

    2008-01-01

    Obligate avian brood parasites show dramatic variation in the degree to which they are host specialists or host generalists. The screaming cowbird Molothrus rufoaxillaris is one of the most specialized brood parasites, using a single host, the bay-winged cowbird (Agelaioides badius) over most of its range. Coevolutionary theory predicts increasing host specificity the longer the parasite interacts with a particular avian community, as hosts evolve defences that the parasite cannot counteract. According to this view, host specificity can be maintained if screaming cowbirds avoid parasitizing potentially suitable hosts that have developed effective defences against parasitic females or eggs. Specialization may also be favoured, even in the absence of host defences, if the parasite's reproductive success in alternative hosts is lower than that in the main host. We experimentally tested these hypotheses using as alternative hosts two suitable but unparasitized species: house wrens (Troglodytes aedon) and chalk-browed mockingbirds (Mimus saturninus). We assessed host defences against parasitic females and eggs, and reproductive success of the parasite in current and alternative hosts. Alternative hosts did not discriminate against screaming cowbird females or eggs. Egg survival and hatching success were similarly high in current and alternative hosts, but the survival of parasitic chicks was significantly lower in alternative hosts. Our results indicate that screaming cowbirds have the potential to colonize novel hosts, but higher reproductive success in the current host may favour host fidelity. PMID:18647716

  19. Differential reproductive success favours strong host preference in a highly specialized brood parasite.

    PubMed

    De Mársico, María C; Reboreda, Juan C

    2008-11-01

    Obligate avian brood parasites show dramatic variation in the degree to which they are host specialists or host generalists. The screaming cowbird Molothrus rufoaxillaris is one of the most specialized brood parasites, using a single host, the bay-winged cowbird (Agelaioides badius) over most of its range. Coevolutionary theory predicts increasing host specificity the longer the parasite interacts with a particular avian community, as hosts evolve defences that the parasite cannot counteract. According to this view, host specificity can be maintained if screaming cowbirds avoid parasitizing potentially suitable hosts that have developed effective defences against parasitic females or eggs. Specialization may also be favoured, even in the absence of host defences, if the parasite's reproductive success in alternative hosts is lower than that in the main host. We experimentally tested these hypotheses using as alternative hosts two suitable but unparasitized species: house wrens (Troglodytes aedon) and chalk-browed mockingbirds (Mimus saturninus). We assessed host defences against parasitic females and eggs, and reproductive success of the parasite in current and alternative hosts. Alternative hosts did not discriminate against screaming cowbird females or eggs. Egg survival and hatching success were similarly high in current and alternative hosts, but the survival of parasitic chicks was significantly lower in alternative hosts. Our results indicate that screaming cowbirds have the potential to colonize novel hosts, but higher reproductive success in the current host may favour host fidelity. PMID:18647716

  20. Parasitism and phenotypic change in colonial hosts.

    PubMed

    Hartikainen, Hanna; Fontes, Inês; Okamura, Beth

    2013-09-01

    Changes in host phenotype are often attributed to manipulation that enables parasites to complete trophic transmission cycles. We characterized changes in host phenotype in a colonial host–endoparasite system that lacks trophic transmission (the freshwater bryozoan Fredericella sultana and myxozoan parasite Tetracapsuloides bryosalmonae). We show that parasitism exerts opposing phenotypic effects at the colony and module levels. Thus, overt infection (the development of infectious spores in the host body cavity) was linked to a reduction in colony size and growth rate, while colony modules exhibited a form of gigantism. Larger modules may support larger parasite sacs and increase metabolite availability to the parasite. Host metabolic rates were lower in overtly infected relative to uninfected hosts that were not investing in propagule production. This suggests a role for direct resource competition and active parasite manipulation (castration) in driving the expression of the infected phenotype. The malformed offspring (statoblasts) of infected colonies had greatly reduced hatching success. Coupled with the severe reduction in statoblast production this suggests that vertical transmission is rare in overtly infected modules. We show that although the parasite can occasionally infect statoblasts during overt infections, no infections were detected in the surviving mature offspring, suggesting that during overt infections, horizontal transmission incurs a trade-off with vertical transmission. PMID:23965820

  1. Host-parasite network structure is associated with community-level immunogenetic diversity.

    PubMed

    Pilosof, Shai; Fortuna, Miguel A; Cosson, Jean-François; Galan, Maxime; Kittipong, Chaisiri; Ribas, Alexis; Segal, Eran; Krasnov, Boris R; Morand, Serge; Bascompte, Jordi

    2014-01-01

    Genes of the major histocompatibility complex (MHC) encode proteins that recognize foreign antigens and are thus crucial for immune response. In a population of a single host species, parasite-mediated selection drives MHC allelic diversity. However, in a community-wide context, species interactions may modulate selection regimes because the prevalence of a given parasite in a given host may depend on its prevalence in other hosts. By combining network analysis with immunogenetics, we show that host species infected by similar parasites harbour similar alleles with similar frequencies. We further show, using a Bayesian approach, that the probability of mutual occurrence of a functional allele and a parasite in a given host individual is nonrandom and depends on other host-parasite interactions, driving co-evolution within subgroups of parasite species and functional alleles. Therefore, indirect effects among hosts and parasites can shape host MHC diversity, scaling it from the population to the community level. PMID:25312328

  2. Host life history responses to parasitism

    Microsoft Academic Search

    Philip Agnew; Jacob C. Koella; Yannis Michalakis

    2000-01-01

    Parasites and their infections can adversely effect a host's growth, reproduction and survival. These effects are often not immediate, but increase with time since infection. A general prediction from evolutionary biology is that hosts suffering from this type of infection should preferentially allocate resources towards reproduction, even if this is at the expense of their growth and survival. This review

  3. Host sex and parasite genetic diversity

    Microsoft Academic Search

    Damien Caillaud; Franck Prugnolle; Patrick Durand; André Théron; Thierry de Meeûs

    2006-01-01

    Is the genetic diversity of parasites infecting male and female hosts equal or different? This is the question we address in this paper by studying the neutral genetic variability of the plathyhelminth trematode Schistosoma mansoni within males and females of its natural murine host Rattus rattus in the marshy forest focus of Guadeloupe (French West Indies). Using seven microsatellite markers,

  4. Evolution of parasite virulence against qualitative or quantitative host resistance

    E-print Network

    Evolution of parasite virulence against qualitative or quantitative host resistance Sylvain Gandon¡ects of two di¡erent modes of host resistance on the evolution of parasite virulence. Hosts can either adopt of resistance (i.e. which reduces the within-host growth rate of the parasite). We show that the mode of host

  5. Evans Blue Staining Reveals Vascular Leakage Associated with Focal Areas of Host-Parasite Interaction in Brains of Pigs Infected with Taenia solium

    PubMed Central

    Paredes, Adriana; Cangalaya, Carla; Rivera, Andrea; Gonzalez, Armando E.; Mahanty, Siddhartha; Garcia, Hector H.; Nash, Theodore E.

    2014-01-01

    Cysticidal drug treatment of viable Taenia solium brain parenchymal cysts leads to an acute pericystic host inflammatory response and blood brain barrier breakdown (BBB), commonly resulting in seizures. Naturally infected pigs, untreated or treated one time with praziquantel were sacrificed at 48 hr and 120 hr following the injection of Evans blue (EB) to assess the effect of treatment on larval parasites and surrounding tissue. Examination of harvested non encapsulated muscle cysts unexpectedly revealed one or more small, focal round region(s) of Evans blue dye infiltration (REBI) on the surface of otherwise non dye-stained muscle cysts. Histopathological analysis of REBI revealed focal areas of eosinophil-rich inflammatory infiltrates that migrated from the capsule into the tegument and internal structures of the parasite. In addition some encapsulated brain cysts, in which the presence of REBI could not be directly assessed, showed histopathology identical to that of the REBI. Muscle cysts with REBI were more frequent in pigs that had received praziquantel (6.6% of 3736 cysts; n?=?6 pigs) than in those that were untreated (0.2% of 3172 cysts; n?=?2 pigs). Similar results were found in the brain, where 20.7% of 29 cysts showed histopathology identical to muscle REBI cysts in praziquantel-treated pigs compared to the 4.3% of 47 cysts in untreated pigs. Closer examination of REBI infiltrates showed that EB was taken up only by eosinophils, a major component of the cellular infiltrates, which likely explains persistence of EB in the REBI. REBI likely represent early damaging host responses to T. solium cysts and highlight the focal nature of this initial host response and the importance of eosinophils at sites of host-parasite interaction. These findings suggest new avenues for immunomodulation to reduce inflammatory side effects of anthelmintic therapy. PMID:24915533

  6. Host range, host ecology, and distribution of more than 11800 fish parasite species

    USGS Publications Warehouse

    Strona, Giovanni; Palomares, Maria Lourdes D.; Bailly, Nicholas; Galli, Paolo; Lafferty, Kevin D.

    2013-01-01

    Our data set includes 38?008 fish parasite records (for Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda) compiled from the scientific literature, Internet databases, and museum collections paired to the corresponding host ecological, biogeographical, and phylogenetic traits (maximum length, growth rate, life span, age at maturity, trophic level, habitat preference, geographical range size, taxonomy). The data focus on host features, because specific parasite traits are not consistently available across records. For this reason, the data set is intended as a flexible resource able to extend the principles of ecological niche modeling to the host–parasite system, providing researchers with the data to model parasite niches based on their distribution in host species and the associated host features. In this sense, the database offers a framework for testing general ecological, biogeographical, and phylogenetic hypotheses based on the identification of hosts as parasite habitat. Potential applications of the data set are, for example, the investigation of species–area relationships or the taxonomic distribution of host-specificity. The provided host–parasite list is that currently used by Fish Parasite Ecology Software Tool (FishPEST, http://purl.oclc.org/fishpest), which is a website that allows researchers to model several aspects of the relationships between fish parasites and their hosts. The database is intended for researchers who wish to have more freedom to analyze the database than currently possible with FishPEST. However, for readers who have not seen FishPEST, we recommend using this as a starting point for interacting with the database.

  7. Hymenolepis diminuta infections in tenebrionid beetles as a model system for ecological interactions between helminth parasites and terrestrial intermediate hosts: a review and meta-analysis.

    PubMed

    Shostak, Allen W

    2014-02-01

    The cestode Hymenolepis diminuta (Cyclophyllidea) uses a variety of insects as its intermediate host, where ingestion of eggs results in development in the hemocoel of a cysticercoid that is infective to a rat definitive host. Species in 2 genera, Tenebrio and Tribolium (Coleoptera: Tenebrionidae) have been used extensively as laboratory intermediate hosts. This review examines experimental studies on ecological aspects of the relationship between H. diminuta and tenebrionid beetles, including the acquisition and establishment of the parasite, host effects on the parasite, and parasite effects on the host. A meta-analysis of infection results from the literature revealed strong relationships across host species and strains between (1) prevalence and intensity of infection, (2) efficiency of cysticercoid production and exposure conditions, and (3) variance in abundance or intensity of infection relative to their respective means. The underlying mechanisms producing these patterns remain elusive. Comparative studies are infrequent, and the use of divergent methodologies hampers comparisons among studies. In spite of these problems, there is much to recommend this as a terrestrial host-parasite model system. It represents those relationships in which mostly minor, but occasionally major, responses to parasitic infection occur, and in which host genetics and environmental conditions can serve as modifying factors. Moreover, this is a tractable experimental system, and is backed by an extensive literature on host biology. PMID:23952690

  8. The potential for arms race and Red Queen coevolution in a protist host–parasite system

    PubMed Central

    Råberg, Lars; Alacid, Elisabet; Garces, Esther; Figueroa, Rosa

    2014-01-01

    The dynamics and consequences of host–parasite coevolution depend on the nature of host genotype-by-parasite genotype interactions (G × G) for host and parasite fitness. G × G with crossing reaction norms can yield cyclic dynamics of allele frequencies (“Red Queen” dynamics) while G × G where the variance among host genotypes differs between parasite genotypes results in selective sweeps (“arms race” dynamics). Here, we investigate the relative potential for arms race and Red Queen coevolution in a protist host–parasite system, the dinoflagellate Alexandrium minutum and its parasite Parvilucifera sinerae. We challenged nine different clones of A. minutum with 10 clones of P. sinerae in a fully factorial design and measured infection success and host and parasite fitness. Each host genotype was successfully infected by four to ten of the parasite genotypes. There were strong G × Gs for infection success, as well as both host and parasite fitness. About three quarters of the G × G variance components for host and parasite fitness were due to crossing reaction norms. There were no general costs of resistance or infectivity. We conclude that there is high potential for Red Queen dynamics in this host–parasite system. PMID:25558368

  9. Pollination niche overlap between a parasitic plant and its host.

    PubMed

    Ollerton, Jeff; Stott, Adrian; Allnutt, Emma; Shove, Sam; Taylor, Chloe; Lamborn, Ellen

    2007-03-01

    Niche theory predicts that species which share resources should evolve strategies to minimise competition for those resources, or the less competitive species would be extirpated. Some plant species are constrained to co-occur, for example parasitic plants and their hosts, and may overlap in their pollination niche if they flower at the same time and attract the same pollinators. Using field observations and experiments between 1996 and 2006, we tested a series of hypotheses regarding pollination niche overlap between a specialist parasitic plant Orobanche elatior (Orobanchaceae) and its host Centaurea scabiosa (Asteraceae). These species flower more or less at the same time, with some year-to-year variation. The host is pollinated by a diverse range of insects, which vary in their effectiveness, whilst the parasite is pollinated by a single species of bumblebee, Bombus pascuorum, which is also an effective pollinator of the host plant. The two species therefore have partially overlapping pollination niches. These niches are not finely subdivided by differential pollen placement, or by diurnal segregation of the niches. We therefore found no evidence of character displacement within the pollination niches of these species, possibly because pollinators are not a limiting resource for these plants. Direct observation of pollinator movements, coupled with experimental manipulations of host plant inflorescence density, showed that Bombus pascuorum only rarely moves between inflorescences of the host and the parasite and therefore the presence of one plant is unlikely to be facilitating pollination in the other. This is the first detailed examination of pollination niche overlap in a plant parasite system and we suggest avenues for future research in relation to pollination and other shared interactions between parasitic plants and their hosts. PMID:17146683

  10. Host specificity of parasite manipulation

    PubMed Central

    2012-01-01

    Recently we presented how Camponotus ants in Thailand infected with the fungus Ophiocordyceps unilateralis are behaviorally manipulated into dying where the conditions are optimal for fungal development. Death incurred in a very narrow zone of space and here we compare this highly specific manipulation with a related system in Brazil. We show that the behavioral manipulation is less fine-tuned and discuss the potential explanations for this by examining differences in ant host and environmental characteristics. PMID:22808322

  11. Ecological impacts of the microsporidian parasite Pleistophora mulleri on its freshwater amphipod host Gammarus duebeni celticus.

    PubMed

    Fielding, N J; MacNeil, C; Robinson, N; Dick, J T A; Elwood, R W; Terry, R S; Ruiz, Z; Dunn, A M

    2005-09-01

    The microsporidian parasite, Pleistophora mulleri, infects the abdominal muscle of the freshwater amphipod Gammarus duebeni celticus. We recently showed that P. mulleri infection was associated with G. d. celticus hosts being more vulnerable to predation by the invasive amphipod Gammarus pulex. Parasitized G. d. celticus also had a reduced ability to prey upon other co-occurring amphipods. We suggested the parasite may have pervasive influences on host ecology and behaviour. Here, we examine the association between P. mulleri parasitism and parameters influencing individual host fitness, behaviour and interspecific interactions. We also investigate the relationship between parasite prevalence and host population structure in the field. In our G. d. celticus study population, P. mulleri prevalence was strongly seasonal, ranging from 8.5% in summer to 44.9% in winter. The relative abundance of hosts with the heaviest parasite burden increased during summer, which coincided with high host mortality, suggesting that parasitism may regulate host abundance to some degree. Females were more likely to be parasitized than males and parasitized males were paired with smaller females than unparasitized males. Parasitism was associated with reduction in the host's activity level and reduced both its predation on the isopod Asellus aquaticus and aggression towards precopula pairs of the invasive G. pulex. We discuss the pervasive influence of this parasite on the ecology of its host. PMID:16178354

  12. Host social behavior and parasitic infection: a multifactorial approach

    Microsoft Academic Search

    Vanessa O. Ezenwa

    2004-01-01

    I examined associations between several components of host social organization, including group size and gregariousness, group stability, territoriality and social class, and gastrointestinal parasite load in African bovids. At an intraspecific level, group size was positively correlated with parasite prevalence, but only when the parasite was relatively host specific and only among host species living in stable groups. Social class

  13. The evolution of parasite manipulation of host dispersal

    E-print Network

    Lion, Sébastien

    The evolution of parasite manipulation of host dispersal Se´bastien Lion1,*, Minus van Baalen1 of host dispersal behaviour by parasites using spatially explicit individual-based simulations. We find that when dispersal is local, parasites always gain from increasing their hosts' dispersal rate, although

  14. Stability analysis of within-host parasite models with delays

    E-print Network

    Paris-Sud XI, Université de

    Stability analysis of within-host parasite models with delays Abderrahman Iggidr a, Joseph Mbang a. Abstract We provide a global analysis of systems of within-host parasitic infections. The sys- tems studied be thought as systems arising from within-host parasitic systems with distributed continuous delays. We

  15. Infection outcomes under genetic and environmental variation in a host-parasite system: Implications for maintenance of polymorphism and the evolution of virulence 

    E-print Network

    Ferreira do Vale, Pedro Filipe

    2009-01-01

    Virulence (the harm to the host during infection) is the outcome of continuous coevolution between hosts and parasites. This thesis adds to a growing body of work on host-parasite interactions, and describes experiments ...

  16. Parasite abundance and diversity in mammals: correlates with host ecology.

    PubMed Central

    Watve, M G; Sukumar, R

    1995-01-01

    Fecally dispersed parasites of 12 wild mammal species in Mudumalai Sanctuary, southern India, were studied. Fecal propagule densities and parasite diversity measures were correlated with host ecological variables. Host species with higher predatory pressure had lower parasite loads and parasite diversity. Host body weight, home range, population density, gregariousness, and diet did not show predicted effects on parasite loads. Measures of alpha diversity were positively correlated with parasite abundance and were negatively correlated with beta diversity. Based on these data, hypotheses regarding determinants of parasite community are discussed. PMID:7568049

  17. Diversification and host switching in avian malaria parasites.

    PubMed Central

    Ricklefs, Robert E; Fallon, Sylvia M

    2002-01-01

    The switching of parasitic organisms to novel hosts, in which they may cause the emergence of new diseases, is of great concern to human health and the management of wild and domesticated populations of animals. We used a phylogenetic approach to develop a better statistical assessment of host switching in a large sample of vector-borne malaria parasites of birds (Plasmodium and Haemoproteus) over their history of parasite-host relations. Even with sparse sampling, the number of parasite lineages was almost equal to the number of avian hosts. We found that strongly supported sister lineages of parasites, averaging 1.2% sequence divergence, exhibited highly significant host and geographical fidelity. Event-based matching of host and parasite phylogenetic trees revealed significant cospeciation. However, the accumulated effects of host switching and long distance dispersal cause these signals to disappear before 4% sequence divergence is achieved. Mitochondrial DNA nucleotide substitution appears to occur about three times faster in hosts than in parasites, contrary to findings on other parasite-host systems. Using this mutual calibration, the phylogenies of the parasites and their hosts appear to be similar in age, suggesting that avian malaria parasites diversified along with their modern avian hosts. Although host switching has been a prominent feature over the evolutionary history of avian malaria parasites, it is infrequent and unpredictable on time scales germane to public health and wildlife management. PMID:12028770

  18. Larval size in acanthocephalan parasites: Influence of intraspecific competition and effects on intermediate host behavioural changes

    PubMed Central

    2012-01-01

    Background Parasites often face a trade-off between exploitation of host resources and transmission probabilities to the next host. In helminths, larval growth, a major component of adult parasite fitness, is linked to exploitation of intermediate host resources and is influenced by the presence of co-infecting conspecifics. In manipulative parasites, larval growth strategy could also interact with their ability to alter intermediate host phenotype and influence parasite transmission. Methods We used experimental infections of Gammarus pulex by Pomphorhynchus laevis (Acanthocephala), to investigate larval size effects on host behavioural manipulation among different parasite sibships and various degrees of intra-host competition. Results Intra-host competition reduced mean P. laevis cystacanth size, but the largest cystacanth within a host always reached the same size. Therefore, all co-infecting parasites did not equally suffer from intraspecific competition. Under no intra-host competition (1 parasite per host), larval size was positively correlated with host phototaxis. At higher infection intensities, this relationship disappeared, possibly because of strong competition for host resources, and thus larval growth, and limited manipulative abilities of co-infecting larval acanthocephalans. Conclusions Our study indicates that behavioural manipulation is a condition-dependant phenomenon that needs the integration of parasite-related variables to be fully understood. PMID:22876882

  19. Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its Invertebrate Host (Biomphalaria glabrata)

    Microsoft Academic Search

    Emmanuel Roger; Christoph Grunau; Raymond J. Pierce; Hirohisa Hirai; Benjamin Gourbal; Richard Galinier; Rémi Emans; Italo M. Cesari; Céline Cosseau; Guillaume Mitta

    2008-01-01

    Invertebrates were long thought to possess only a simple, effective and hence non-adaptive defence system against microbial and parasitic attacks. However, recent studies have shown that invertebrate immunity also relies on immune receptors that diversify (e.g. in echinoderms, insects and mollusks (Biomphalaria glabrata)). Apparently, individual or population-based polymorphism-generating mechanisms exists that permit the survival of invertebrate species exposed to parasites.

  20. Brood parasitic cowbird nestlings use host young to procure resources.

    PubMed

    Kilner, Rebecca M; Madden, Joah R; Hauber, Mark E

    2004-08-01

    Young brood parasites that tolerate the company of host offspring challenge the existing evolutionary view of family life. In theory, all parasitic nestlings should be ruthlessly self-interested and should kill host offspring soon after hatching. Yet many species allow host young to live, even though they are rivals for host resources. Here we show that the tolerance of host nestlings by the parasitic brown-headed cowbird Molothrus ater is adaptive. Host young procure the cowbird a higher provisioning rate, so it grows more rapidly. The cowbird's unexpected altruism toward host offspring simply promotes its selfish interests in exploiting host parents. PMID:15297677

  1. Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races.

    PubMed

    McCoy, Karen D; Boulinier, Thierry; Tirard, Claire; Michalakis, Yannis

    2003-02-01

    Despite the fact that parasite dispersal is likely to be one of the most important processes influencing the dynamics and coevolution of host-parasite interactions, little information is available on the factors that affect it. In most cases, opportunities for parasite dispersal should be closely linked to host biology. Here we use microsatellite genetic markers to compare the population structure and dispersal of two host races of the seabird tick Ixodes uriae at the scale of the North Atlantic. Interestingly, tick populations showed high within-population genetic variation and relatively low population differentiation. However, gene flow at different spatial scales seemed to depend on the host species exploited. The black-legged kittiwake (Rissa tridactyla) had structured tick populations showing patterns of isolation by distance, whereas tick populations of the Atlantic puffin (Fratercula arctica) were only weakly structured at the largest scale considered. Host-dependent rates of tick dispersal between colonies will alter infestation probabilities and local dynamics and may thus modify the adaptation potential of ticks to local hosts. Moreover, as I. uriae is a vector of the Lyme disease agent Borrelia burgdorferi sensu lato in both hemispheres, the large-scale movements of birds and the subsequent dispersal of ticks will have important consequences for the dynamics and coevolutionary interactions of this microparasite with its different vertebrate and invertebrate hosts. PMID:12683525

  2. Maximum Host Survival at Intermediate Parasite Infection Intensities

    Microsoft Academic Search

    Martin Stjernman; Lars Råberg; Jan-Åke Nilsson; Angus Buckling

    2008-01-01

    BackgroundAlthough parasitism has been acknowledged as an important selective force in the evolution of host life histories, studies of fitness effects of parasites in wild populations have yielded mixed results. One reason for this may be that most studies only test for a linear relationship between infection intensity and host fitness. If resistance to parasites is costly, however, fitness may

  3. Original article Host sex and parasite genetic diversity

    E-print Network

    Original article Host sex and parasite genetic diversity Damien Caillaud a,c,1 , Franck Prugnolle a 21 June 2006 Available online 10 July 2006 Abstract Is the genetic diversity of parasites infecting). Using seven microsatellite markers, we demonstrate that parasites from male hosts are genetically more

  4. Damped long-term host-parasite Red Queen coevolutionary dynamics: a reflection of dilution effects?

    PubMed

    Decaestecker, Ellen; De Gersem, Herbert; Michalakis, Yannis; Raeymaekers, Joost A M

    2013-12-01

    An increase in biological diversity leads to a greater stability of ecosystem properties. For host-parasite interactions, this is illustrated by the 'dilution effect': a negative correlation between host biodiversity and disease risk. We show that a similar mechanism might stabilise host-parasite dynamics at a lower level of diversity, i.e. at the level of genetic diversity within host species. A long-term time shift experiment, based on a historical reconstruction of a Daphnia-parasite coevolution, reveals infectivity cycles with more stable amplitude in experienced than in naive hosts. Coevolutionary models incorporating an increase in host allelic diversity over time explain the detected asymmetry. The accumulation of resistance alleles creates an opportunity for the host to stabilise Red Queen dynamics. It leads to a larger arsenal enhancing the host performance in its coevolution with the parasite in which 'it takes all the running both antagonists can do to keep in the same place'. PMID:24118657

  5. Original article Genetic variability of host-parasite relationship

    E-print Network

    Paris-Sud XI, Université de

    Original article Genetic variability of host-parasite relationship traits: utilization of isofemale lines in a Drosophila simulans parasitic wasp Y. Carton P. Capy A.J. Nappi 1Centre National de la in the successful parasitization of larvae of Drosophila melanogaster and D. simulans by the hymenopteran parasite

  6. Species formation by host shifting in avian malaria parasites

    PubMed Central

    Ricklefs, Robert E.; Outlaw, Diana C.; Svensson-Coelho, Maria; Medeiros, Matthew C. I.; Ellis, Vincenzo A.; Latta, Steven

    2014-01-01

    The malaria parasites (Apicomplexa: Haemosporida) of birds are believed to have diversified across the avian host phylogeny well after the origin of most major host lineages. Although many symbionts with direct transmission codiversify with their hosts, mechanisms of species formation in vector-borne parasites, including the role of host shifting, are poorly understood. Here, we examine the hosts of sister lineages in a phylogeny of 181 putative species of malaria parasites of New World terrestrial birds to determine the role of shifts between host taxa in the formation of new parasite species. We find that host shifting, often across host genera and families, is the rule. Sympatric speciation by host shifting would require local reproductive isolation as a prerequisite to divergent selection, but this mechanism is not supported by the generalized host-biting behavior of most vectors of avian malaria parasites. Instead, the geographic distribution of individual parasite lineages in diverse hosts suggests that species formation is predominantly allopatric and involves host expansion followed by local host–pathogen coevolution and secondary sympatry, resulting in local shifting of parasite lineages across hosts. PMID:25271324

  7. A mutualism-parasitism system modeling host and parasite with mutualism at low density.

    PubMed

    Wang, Yuanshi; Deangelis, Donald L

    2012-04-01

    A mutualism-parasitism system of two species is considered, where mutualism is the dominant interaction when the predators (parasites) are at low density while parasitism is dominant when the predators are at high density. Our aim is to show that mutualism at low density promotes coexistence of the species and leads to high production of the prey (host). The mutualism-parasitism system presented here is a combination of the Lotka-Volterra cooperative model and Lotka-Volterra predator-prey model. By comparing dynamics of this system with those of the Lotka-Volterra predator-prey model, we present the mechanisms by which the mutualism improves the coexistence of the species and production of the prey. Then the parameter space is divided into six regions, which correspond to the four outcomes of mutualism, commensalism, predation/parasitism and neutralism, respectively. When the parameters are varied continuously among the six regions, it is shown that the interaction outcomes of the system transition smoothly among the four outcomes. By comparing the dynamics of the specific system with those of the Lotka-Volterra cooperative model, we show that the parasitism at high density promotes stability of the system. A novel aspect of this paper is the simplicity of the model, which allows rigorous and thorough analysis and transparency of the results. PMID:22901072

  8. Coevolution between Parasite Virulence and Host Life?History Traits

    Microsoft Academic Search

    Sylvain Gandon; Philip Agnew; Yannis Michalakis

    2002-01-01

    Epidemiological models generally explore the evolution of parasite life-history traits, namely, virulence and transmission, against a background of constant host life-history traits. However, life-history models have predicted the evolution of host traits in response to parasitism. The coevolution of host and parasite life- history traits remains largely unexplored. We present an epidemio- logical model, based on resource allocation theory, that

  9. Brood parasitism causes female-biased host nestling mortality regardless of parasite species

    E-print Network

    Zanette, Liana

    Brood parasitism causes female-biased host nestling mortality regardless of parasite species ROBERT Molothrus ater brood parasitism of Song Sparrows Melospiza melodia results in a 50% reduction is as signifi- cant as nest predation in affecting demography. Many avian brood parasites possess special

  10. Host age modulates parasite infectivity, virulence and reproduction.

    PubMed

    Izhar, Rony; Ben-Ami, Frida

    2015-07-01

    Host age is one of the most striking differences among hosts within most populations, but there is very little data on how age-dependent effects impact ecological and evolutionary dynamics of both the host and the parasite. Here, we examined the influence of host age (juveniles, young and old adults) at parasite exposure on host susceptibility, fecundity and survival as well as parasite transmission, using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa. Younger D. magna were more susceptible to infection than older ones, regardless of host or parasite clone. Also, younger-infected D. magna became castrated faster than older hosts, but host and parasite clone effects contributed to this trait as well. Furthermore, the early-infected D. magna produced considerably more parasite transmission stages than late-infected ones, while host age at exposure did not affect virulence as it is defined in models (host mortality). When virulence is defined more broadly as the negative effects of infection on host fitness, by integrating the parasitic effects on host fecundity and mortality, then host age at exposure seems to slide along a negative relationship between host and parasite fitness. Thus, the virulence-transmission trade-off differs strongly among age classes, which in turn affects predictions of optimal virulence. Age-dependent effects on host susceptibility, virulence and parasite transmission could pose an important challenge for experimental and theoretical studies of infectious disease dynamics and disease ecology. Our results present a call for a more explicit stage-structured theory for disease, which will incorporate age-dependent epidemiological parameters. PMID:25661269

  11. Host-parasite biology in the real world: the field voles of Kielder.

    PubMed

    Turner, A K; Beldomenico, P M; Bown, K; Burthe, S J; Jackson, J A; Lambin, X; Begon, M

    2014-07-01

    Research on the interactions between the field voles (Microtus agrestis) of Kielder Forest and their natural parasites dates back to the 1930s. These early studies were primarily concerned with understanding how parasites shape the characteristic cyclic population dynamics of their hosts. However, since the early 2000s, research on the Kielder field voles has expanded considerably and the system has now been utilized for the study of host-parasite biology across many levels, including genetics, evolutionary ecology, immunology and epidemiology. The Kielder field voles therefore represent one of the most intensely and broadly studied natural host-parasite systems, bridging theoretical and empirical approaches to better understand the biology of infectious disease in the real world. This article synthesizes the body of work published on this system and summarizes some important insights and general messages provided by the integrated and multidisciplinary study of host-parasite interactions in the natural environment. PMID:24612619

  12. Ecology of avian brood parasitism at an early interfacing of host and parasite populations

    USGS Publications Warehouse

    Wiley, J.W.

    1982-01-01

    The shiny cowbird (Molothrus bonariensis), a brood parasite, has recently spread into the Greater Antilles from South America via the Lesser Antilles. This species is a host generalist and upon reaching Puerto Rico exploited avian communities with no history of social parasitism. Forty-two percent of the resident non-raptorial land bird species were parasitized in mangrove habitat study areas. Cowbird parasitism affected hosts by (1) depressing nest success an average of 41 percent below non-parasitized nests, and (2) reducing host productivity. Parasitized hosts produced 12 percent fewer eggs and fledged 67 percent fewer of their own chicks than non-parasitized pairs. Growth rates of chicks of some host species were lower in parasitized nests compared with non-parasitized nests while growth of others was not affected by brood parasitism. Cowbird chick growth varied directly with host size; i.e., cowbird chicks grew faster and attained greater fledging weight and body size in nests of larger hosts. Factors important in shiny cowbird host selection were examined within the mangrove study community. Cowbirds did not parasitize avian species in proportion to their abundance. The cowbird breeding season coincided with that of its major hosts, which were high quality foster species, and did not extend into other periods even though nests of poor quality species were available. Food habits and egg size of cowbirds were similar to those of their hosts, suggesting that cowbirds choose hosts partly on the basis of this alignment. Cowbirds locate nests by cryptically watching activities of birds in likely habitat. Despite the recency of the cowbird's arrival in Puerto Rico, some nesting species have effective anti-parasite strategies, including alien egg rejection and nest guarding. Behavior effective in avoiding parasitism is similar to that used by certain birds in evading nest predators. It is suggested that anti-predator behavior is preadaptive to countering cowbird parasitism.

  13. Ecological immunology of a tapeworms' interaction with its two consecutive hosts.

    PubMed

    Hammerschmidt, Katrin; Kurtz, Joachim

    2009-01-01

    Host-parasite interactions in parasites with complex life cycles have recently gained much interest. Here, we take an evolutionary ecologist's perspective and analyse the immunological interaction of such a parasite, the model tapeworm Schistocephalus solidus, with its two intermediate hosts, a cyclopoid copepod and the three-spined stickleback. We will be focussing especially on the parallel links between the different phases during an infection in the different hosts; the immunological interactions between host(s) and parasite; and their impact on parasite establishment, growth, host manipulation and parasite virulence in the next host in the cycle. We propose to extend the 'extended phenotype' concept and not only include the ultimate but also the proximate, physiological causes. In particular, parasite-induced host manipulation is suggested to be caused by the interactions of the parasite with the hosts' immune systems. PMID:19289192

  14. Parasites grow larger in faster growing fish hosts.

    PubMed

    Barber, Iain

    2005-02-01

    Parasites depend on host-derived energy for growth and development, and so are potentially affected by the host's ability to acquire nutrients under competitive foraging scenarios. Although parasites might be expected to grow faster in hosts that are better at acquiring nutrients from natural ecosystems, it is also possible that the most competitive hosts are better at countering infections, if they have an improved immune response or are able to limit the availability of nutrients to parasites. I first quantified the ability of uninfected three-spined sticklebacks Gasterosteus aculeatus to compete in groups for sequentially-presented food items, and then exposed either the best or worst competitors to infective stages of the cestode Schistocephalus solidus. Fish were subsequently raised in their original groups, under competitive feeding regimes, for 96 days, after which fish and parasite growth was determined. Unexpectedly, pre-exposure host competitive ability had no effect on susceptibility to infection, or on post-infection growth rate. Furthermore, despite a 120-fold variation in parasite mass at the end of the study, pre-infection competitive ability was not related to parasite growth. The closest predictor of parasite mass was body size-corrected host growth rate, indicating that the fastest growing fish developed the largest parasites. Faster growing hosts therefore apparently provide ideal environments for growing parasites. This finding has important implications for ecology and aquaculture. PMID:15710434

  15. Density?Dependent Parasitoid Recruitment per Parasitized Host: Effects on Parasitoid?Host Dynamics

    Microsoft Academic Search

    1997-01-01

    Models of parasitoid-host dynamics are analyzed that include direct density depen- dence in the host population and either parasitoid- or host-density-dependent variation in parasit- oid recruitment per parasitized host (parasitoid ''yield''). The principal question addressed is how these forms of density dependence in parasitoid dynamics combine with aggregated parasitism to affect the stability of the models, in relation to suppression

  16. Comparative population structure and genetic diversity of Arceuthobium americanum (Viscaceae) and its Pinus host species: insight into host-parasite evolution in parasitic angiosperms.

    PubMed

    Jerome, Cheryl A; Ford, Bruce A

    2002-03-01

    In a recent study we revealed that the parasitic angiosperm Arceuthobium americanum is comprised of three distinct genetic races, each associated with a different host in regions of allopatry. In order to assess the role of host identity and geographical isolation on race formation in A. americanum, we compared the genetic population structure of this parasite with that of its three principal hosts, Pinus banksiana, Pinus contorta var. latifolia and Pinus contorta var. murrayana. Despite the fact that A. americanum was divided into three genetic races, hosts were divided into only two genetic groups: (i) Pinus banksiana and hybrids, and (ii) P. contorta var. latifolia and var. murrayana. These findings suggest that factors such as geographical isolation and adaptation to different environmental conditions are important for race formation in the absence of host-driven selection pressures. To assess factors impacting population structure at the fine-scale, genetic and geographical distance matrices of host and parasite were compared within A. americanum races. The lack of a relationship between genetic and geographical distance matrices suggests that isolation-by-distance plays a negligible role at this level. The effect of geographical isolation may have been diminished because of the influence of factors such as random seed dispersal by animal vectors or adaptation to nongeographically patterned environmental conditions. Host-parasite interactions might also have impacted the fine-scale structure of A. americanum because the parasite and host were found to have similar patterns of gene flow. PMID:11928707

  17. Parasitic castration by Xenos vesparum depends on host gender

    E-print Network

    Chittka, Lars

    Parasitic castration by Xenos vesparum depends on host gender FEDERICO CAPPA1 *, FABIO MANFREDINI2 2014; accepted 27 February 2014; first published online 28 April 2014) SUMMARY Host castration. One of the most intriguing groups of parasitic castrators is represented by the insects belonging

  18. mRNA-Seq and microarray development for the Grooved carpet shell clam, Ruditapes decussatus: a functional approach to unravel host -parasite interaction

    PubMed Central

    2013-01-01

    Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported. PMID:24168212

  19. Retaliatory mafia behavior by a parasitic cowbird favors host acceptance of parasitic eggs

    PubMed Central

    Hoover, Jeffrey P.; Robinson, Scott K.

    2007-01-01

    Why do many hosts accept costly avian brood parasitism even when parasitic eggs and nestlings differ dramatically in appearance from their own? Scientists argue that evolutionary lag or equilibrium can explain this evolutionary enigma. Few, however, consider the potential of parasitic birds to enforce acceptance by destroying eggs or nestlings of hosts that eject parasitic eggs and thereby reject parasitism. This retaliatory “mafia” behavior has been reported in one species of parasitic cuckoo but never in parasitic cowbirds. Here we present experimental evidence of mafia behavior in the brown-headed cowbird (Molothrus ater), a widely distributed North American brood parasite. We manipulated ejection of cowbird eggs and cowbird access to predator-proof nests in a common host to test experimentally for mafia behavior. When cowbird access was allowed, 56% of “ejector” nests were depredated compared with only 6% of “accepter” nests. No nests were destroyed when cowbird access was always denied or when access was denied after we removed cowbird eggs, indicating that cowbirds were responsible. Nonparasitized nests were depredated at an intermediate rate (20%) when cowbirds were allowed access, suggesting that cowbirds may occasionally “farm” hosts to create additional opportunities for parasitism. Cowbirds parasitized most (85%) renests of the hosts whose nests were depredated. Ejector nests produced 60% fewer host offspring than accepter nests because of the predatory behavior attributed to cowbirds. Widespread predatory behaviors in cowbirds could slow the evolution of rejection behaviors and further threaten populations of some of the >100 species of regular cowbird hosts. PMID:17360549

  20. Long-term coevolution between avian brood parasites and their hosts.

    PubMed

    Soler, Manuel

    2014-08-01

    Coevolutionary theory predicts that the most common long-term outcome of the relationships between brood parasites and their hosts should be coevolutionary cycles based on a dynamic change selecting the currently least-defended host species, given that when well-defended hosts are abandoned, hosts will be selected to decrease their defences as these are usually assumed to be costly. This is assumed to be the case also in brood parasite-host systems. Here I examine the frequency of the three potential long-term outcomes of brood parasite-host coevolution (coevolutionary cycles, lack of rejection, and successful resistance) in 182 host species. The results of simple exploratory comparisons show that coevolutionary cycles are very scarce while the lack of rejection and successful resistance, which are considered evolutionary enigmas, are much more frequent. I discuss these results considering (i) the importance of different host defences at all stages of the breeding cycle, (ii) the role of phenotypic plasticity in long-term coevolution, and (iii) the evolutionary history of host selection. I suggest that in purely antagonistic coevolutionary interactions, such as those involving brood parasites and their hosts, that although cycles will exist during an intermediate phase of the interactions, the arms race will end with the extinction of the host or with the host acquiring successful resistance. As evolutionary time passes, this resistance will force brood parasites to use previously less suitable host species. Furthermore, I present a model that represents the long-term trajectories and outcomes of coevolutionary interactions between brood parasites and their hosts with respect to the evolution of egg-rejection defence. This model suggests that as an increasing number of species acquire successful resistance, other unparasitized host species become more profitable and their parasitism rate and the costs imposed by brood parasitism at the population level will increase, selecting for the evolution of host defences. This means that although acceptance is adaptive when the parasitism rate and the costs of parasitism are very low, this cannot be considered to represent an evolutionary equilibrium, as conventional theory has done to date, because it is not stable. PMID:24330159

  1. Association between host's genetic diversity and parasite burden in damselflies.

    PubMed

    Kaunisto, K M; Viitaniemi, H M; Leder, E H; Suhonen, J

    2013-08-01

    Recent research indicates that low genetic variation in individuals can increase susceptibility to parasite infection, yet evidence from natural invertebrate populations remains scarce. Here, we studied the relationship between genetic heterozygosity, measured as AFLP-based inbreeding coefficient fAFLP , and gregarine parasite burden from eleven damselfly, Calopteryx splendens, populations. We found that in the studied populations, 5-92% of males were parasitized by endoparasitic gregarines (Apicomplexa: Actinocephalidae). Number of parasites ranged from none to 47 parasites per male, and parasites were highly aggregated in a few hosts. Mean individual fAFLP did not differ between populations. Moreover, we found a positive association between individual's inbreeding coefficient and parasite burden. In other words, the more homozygous the individual, the more parasites it harbours. Thus, parasites are likely to pose strong selection pressure against inbreeding and homozygosity. Our results support the heterozygosity-fitness correlation hypothesis, which suggests the importance of heterozygosity for an individual's pathogen resistance. PMID:23865399

  2. Distinct Lineages of Schistocephalus Parasites in Threespine and Ninespine Stickleback Hosts Revealed by DNA Sequence Analysis

    PubMed Central

    Nishimura, Nicole; Heins, David C.; Andersen, Ryan O.; Barber, Iain; Cresko, William A.

    2011-01-01

    Parasitic interactions are often part of complex networks of interspecific relationships that have evolved in biological communities. Despite many years of work on the evolution of parasitism, the likelihood that sister taxa of parasites can co-evolve with their hosts to specifically infect two related lineages, even when those hosts occur sympatrically, is still unclear. Furthermore, when these specific interactions occur, the molecular and physiological basis of this specificity is still largely unknown. The presence of these specific parasitic relationships can now be tested using molecular markers such as DNA sequence variation. Here we test for specific parasitic relationships in an emerging host-parasite model, the stickleback-Schistocephalus system. Threespine and ninespine stickleback fish are intermediate hosts for Schistocephalus cestode parasites that are phenotypically very similar and have nearly identical life cycles through plankton, stickleback, and avian hosts. We analyzed over 2000 base pairs of COX1 and NADH1 mitochondrial DNA sequences in 48 Schistocephalus individuals collected from threespine and ninespine stickleback hosts from disparate geographic regions distributed across the Northern Hemisphere. Our data strongly support the presence of two distinct clades of Schistocephalus, each of which exclusively infects either threespine or ninespine stickleback. These clades most likely represent different species that diverged soon after the speciation of their stickleback hosts. In addition, genetic structuring exists among Schistocephalus taken from threespine stickleback hosts from Alaska, Oregon and Wales, although it is much less than the divergence between hosts. Our findings emphasize that biological communities may be even more complex than they first appear, and beg the question of what are the ecological, physiological, and genetic factors that maintain the specificity of the Schistocephalus parasites and their stickleback hosts. PMID:21811623

  3. Brood parasite eggs enhance egg survivorship in a multiply parasitized host.

    PubMed

    Gloag, Ros; Fiorini, Vanina D; Reboreda, Juan C; Kacelnik, Alex

    2012-05-01

    Despite the costs to avian parents of rearing brood parasitic offspring, many species do not reject foreign eggs from their nests. We show that where multiple parasitism occurs, rejection itself can be costly, by increasing the risk of host egg loss during subsequent parasite attacks. Chalk-browed mockingbirds (Mimus saturninus) are heavily parasitized by shiny cowbirds (Molothrus bonariensis), which also puncture eggs in host nests. Mockingbirds struggle to prevent cowbirds puncturing and laying, but seldom remove cowbird eggs once laid. We filmed cowbird visits to nests with manipulated clutch compositions and found that mockingbird eggs were more likely to escape puncture the more cowbird eggs accompanied them in the clutch. A Monte Carlo simulation of this 'dilution effect', comparing virtual hosts that systematically either reject or accept parasite eggs, shows that acceptors enjoy higher egg survivorship than rejecters in host populations where multiple parasitism occurs. For mockingbirds or other hosts in which host nestlings fare well in parasitized broods, this benefit might be sufficient to offset the fitness cost of rearing parasite chicks, making egg acceptance evolutionarily stable. Thus, counterintuitively, high intensities of parasitism might decrease or even reverse selection pressure for host defence via egg rejection. PMID:22158956

  4. Host-specific races in the holoparasitic angiosperm Orobanche minor: implications for speciation in parasitic plants

    PubMed Central

    Thorogood, C. J.; Rumsey, F. J.; Hiscock, S. J.

    2009-01-01

    Background and Aims Orobanche minor is a root-holoparasitic angiosperm that attacks a wide range of host species, including a number of commonly cultivated crops. The extent to which genetic divergence among natural populations of O. minor is influenced by host specificity has not been determined previously. Here, the host specificity of natural populations of O. minor is quantified for the first time, and evidence that this species may comprise distinct physiological races is provided. Methods A tripartite approach was used to examine the physiological basis for the divergence of populations occurring on different hosts: (1) host–parasite interactions were cultivated in rhizotron bioassays in order to quantify the early stages of the infection and establishment processes; (2) using reciprocal-infection experiments, parasite races were cultivated on their natural and alien hosts, and their fitness determined in terms of biomass; and (3) the anatomy of the host–parasite interface was investigated using histochemical techniques, with a view to comparing the infection process on different hosts. Key Results Races occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota ssp. gummifer) showed distinct patterns of host specificity: parasites cultivated in cross-infection studies showed a higher fitness on their natural hosts, suggesting that races show local adaptation to specific hosts. In addition, histological evidence suggests that clover and carrot roots vary in their responses to infection. Different root anatomy and responses to infection may underpin a physiological basis for host specificity. Conclusions It is speculated that host specificity may isolate races of Orobanche on different hosts, accelerating divergence and ultimately speciation in this genus. The rapid life cycle and broad host range of O. minor make this species an ideal model with which to study the interactions of parasitic plants with their host associates. PMID:19251714

  5. Within-host competition and diversification of macro-parasites

    PubMed Central

    Guilhem, Rascalou; Šimková, Andrea; Morand, Serge; Gourbière, Sébastien

    2012-01-01

    Although competitive speciation is more and more regarded as a plausible mechanism for sympatric speciation of non-parasite species, virtually no empirical or theoretical study has considered this evolutionary process to explain intra-host diversification of parasites. We expanded the theory of competitive speciation to parasite species looking at the effect of macro-parasite life history on the conditions for sympatric speciation under the so-called pleiotropic scenario. We included within-host competition in the classical Anderson and May framework assuming that individuals exploit within-host resources according to a quantitative trait. We derived the invasion fitness function of mutants considering different distributions of individuals among hosts. Although the mutant fitness depends on parameters describing the key features of macro-parasite life history, and on the relative distributions of mutant and residents in hosts, the conditions for competitive speciation of macro-parasites are exactly the same as those previously established for free-living species. As an interesting by-product, within-host competitive speciation is expected not to depend on the aggregation level of the parasites. This theoretical pattern is confirmed by comparing the speciation rate of weakly and strongly aggregated monogenean parasites. PMID:22696483

  6. Suppression of Host Photosynthesis by the Parasitic Plant Rhinanthus minor

    PubMed Central

    Cameron, Duncan D.; Geniez, Jean-Michelle; Seel, Wendy E.; Irving, Louis J.

    2008-01-01

    Background and Aims Parasitism is well understood to have wide-ranging deleterious effects on host performance in species thus far characterized. Photosynthetic performance reductions have been noted in the Striga–Zea mays association; however, no such information exists for facultative hemiparasitic plants and their hosts, nor are the effects of host species understood. Methods Chlorophyll fluorimetry was used to study the effects of parasitism by the hemiparasite Rhinanthus minor on the grass Phleum bertolinii and the forb Plantago lanceolata, and the effects of host species on the photosynthetic apparatus of R. minor. Key Results Parasitism by Rhinanthus led to a significant decrease in the host, and total (host + parasite) biomass in Phleum; however, in Plantago, no significant repression of growth was noted. Maximum quantum yield (Fv/Fm) was reduced in parasitized Plantago, relative to control plants, but not in Phleum. Fv/Fm was significantly lower in R. minor parasitizing Phleum than Plantago, suggesting Phleum to be a superior host to Plantago for R. minor. Steady-state quantum yield (?PSII) was significantly depressed in parasitized Phleum, but only at low irradiances in Plantago. ?PSII was very low for R. minor grown on Plantago, but not Phleum. Conclusions Shown here is the first evidence of the suppression of host photosynthesis by a facultative hemiparasitic plant, which has significant effects on total biomass production. Host identity is a significant factor in parasite success, with the forb Plantago lanceolata exhibiting apparent chemical as well as previously identified physical defences to parasitism. It is proposed that the electron transport rate (as denoted by ?PSII) represents the limiting factor for biomass accumulation in this system, and that Plantago is able to suppress the growth of Rhinanthus by suppressing the electron transport rate. PMID:18211886

  7. A novel method of rejection of brood parasitic eggs reduces parasitism intensity in a cowbird host

    PubMed Central

    De Mársico, María C.; Gloag, Ros; Ursino, Cynthia A.; Reboreda, Juan C.

    2013-01-01

    The hosts of brood parasitic birds are under strong selection pressure to recognize and remove foreign eggs from their nests, but parasite eggs may be too large to be grasped whole and too strong to be readily pierced by the host's bill. Such operating constraints on egg removal are proposed to force some hosts to accept parasite eggs, as the costs of deserting parasitized clutches can outweigh the cost of rearing parasites. By fitting microcameras inside nests, we reveal that the Neotropical baywing (Agelaioides badius), a host of the screaming cowbird (Molothrus rufoaxillaris) and shiny cowbird (Molothrus bonariensis), instead circumvents such constraints by kicking parasite eggs out of the nest. To our knowledge, this is the first report of a passerine bird using its feet to remove objects from the nest. Kick-ejection was an all-or-nothing response. Baywings kick-ejected parasite eggs laid before their own first egg and, if heavily parasitized, they ejected entire clutches and began again in the same nest. Few baywings were able to rid their nests of every parasite egg, but their novel ejection method allowed them to reduce the median parasitism intensity by 75 per cent (from four to one cowbird eggs per nest), providing an effective anti-parasite defence. PMID:23485877

  8. Interactions between hemiparasitic plants and their hosts

    PubMed Central

    Plavcová, Lenka; Cameron, Duncan D

    2010-01-01

    Hemiparasitic plants display a unique strategy of resource acquisition combining parasitism of other species and own photosynthetic activity. Despite the active photoassimilation and green habit, they acquire substantial amount of carbon from their hosts. The organic carbon transfer has a crucial influence on the nature of the interaction between hemiparasites and their hosts which can oscillate between parasitism and competition for light. In this minireview, we summarize methodical approaches and results of various studies dealing with carbon budget of hemiparasites and the ecological implications of carbon heterotrophy in hemiparasites. PMID:20729638

  9. Multi-parasite host susceptibility and multi-host parasite infectivity: a new approach of the Biomphalaria glabrata / Schistosoma mansoni compatibility

    E-print Network

    Boyer, Edmond

    1 Multi-parasite host susceptibility and multi-host parasite infectivity: a new approach mansoni strains. A total of 20 homopatric and heteropatric host- parasite combinations were tested B. glabrata strain by its "multi-parasite susceptibility phenotype" that reflects better

  10. Host-parasite coevolution in a multilocus gene-for-gene system.

    PubMed Central

    Sasaki, A

    2000-01-01

    This paper examines a mathematical model for the coevolution of parasite virulence and host resistance under a multilocus gene-for-gene interaction. The degrees of parasite virulence and host resistance show coevolutionary cycles for sufficiently small costs of virulence and resistance. Besides these coevolutionary cycles of a longer period, multilocus genotype frequencies show complex fluctuations over shorter periods. All multilocus genotypes are maintained within host and parasite classes having the same number of resistant/virulent alleles and their frequencies fluctuate with approximately equally displaced phases. If either the cost of virulence or the number of resistance loci is larger then a threshold, the host maintains the static polymorphism of singly (or doubly or more, depending on the cost of resistance) resistant genotypes and the parasite remains universally avirulent. In other words, host polymorphism can prevent the invasion of any virulent strain in the parasite. Thus, although assuming an empirically common type of asymmetrical gene-for-gene interaction, both host and parasite populations can maintain polymorphism in each locus and retain complex fluctuations. Implications for the red queen hypothesis of the evolution of sex and the control of multiple drug resistance are discussed. PMID:11413631

  11. Patterns of gregarine parasitism in dragonflies: host, habitat, and seasonality.

    PubMed

    Locklin, Jason L; Vodopich, Darrell S

    2010-06-01

    Gregarines are ubiquitous protozoan parasites that infect arthropods worldwide. More than 1,600 gregarine species have been described, but only a small percentage of invertebrates have been surveyed for these apicomplexan parasites. Adult dragonfly populations were surveyed for gregarines at two reservoirs in Texas, USA for 2 years. Gregarine prevalence and intensity were compared intraspecifically between host genders and reservoirs, among wing loads, and through time. Of the 29 dragonfly species collected, 41% hosted gregarines. Nine of these dragonfly species were previously undocumented as hosts. Among the commonly collected hosts, prevalence ranged from 18 to 52%. Parasites were aggregated among hosts and had a median intensity of five parasites per host. Gregarines were found only in hosts exceeding a minimum wing load, indicating that gregarines are likely not transferred from the naiad to adult during emergence. Prevalence and intensity increased during both years, suggesting that gregarine oocyst viability parallels increasing host population densities and may be short-lived. Prevalence and intensity also differed between dragonfly populations at two reservoirs. Regression analyses revealed that host species, host gender, month, and year were significant explanatory variables related to gregarine prevalence and intensity. Abundant information on odonate distributions, diversity, and mating activities makes dragonfly-gregarine systems excellent avenues for ecological, evolutionary, and parasitological research. Our results emphasize the importance of considering season, hosts, and habitat when studying gregarine-dragonfly ecology. PMID:20376487

  12. A review of the helminth parasites using polychaetes as hosts.

    PubMed

    Peoples, Robert C

    2013-10-01

    An updated review of the helminth parasites using polychaetes as hosts is provided. Fifteen relevant search terms were entered into the Institute for Scientific Information Web of Science online database in order to locate papers published since the last review, and subsequent supplementary article, given by Margolis (J Fish Res Board Can 28:1385-1392, 1971, J Fish Res Board Can 30:469-470, 1973), entitled "Polychaetes as intermediate hosts of helminth parasites of vertebrates: a review" and "Additional notes on polychaetes as intermediate hosts of helminth parasites of vertebrates," respectively. The World Register of Marine Species was used to provide the most current scientific names for both helminth parasites and their respective polychaete hosts. A total of 35 new reports were found. Across the taxa examined, digenetic trematodes appear to be the most prominent of the helminth parasites utilizing polychaete annelids as hosts. Nematodes are the second most common helminth grouping--followed by cestodes--using polychaetes as hosts. An incidence of possible parasitism by a turbellarian using a polychaete as a host is also reported. PMID:23828193

  13. Direct and indirect costs of co-infection in the wild: Linking gastrointestinal parasite communities, host hematology, and immune function?

    PubMed Central

    Budischak, Sarah A.; Jolles, Anna E.; Ezenwa, Vanessa O.

    2012-01-01

    Most animals are concurrently infected with multiple parasites, and interactions among these parasites may influence both disease dynamics and host fitness. However, the sublethal costs of parasite infections are difficult to measure and the effects of concomitant infections with multiple parasite species on individual physiology and fitness are poorly described for wild hosts. To understand the direct and indirect physiological costs of co-infection, we investigated the relationships among gastrointestinal parasite richness, species identity, and abundance and host hematological parameters, body condition, and investment in lymphocyte defenses. Using aggregate-scale parasite data from African buffalo (Syncerus caffer), we found few direct or indirect associations between infection and hematology in male hosts, and no significant associations were observed in female hosts or with respect to body condition in either sex. These results suggest that only strong physiological effects are detectable with aggregate-scale parasite data, and that hematological variables may be more sensitive to changes in condition than standard body fat condition indices. Analyses accounting for parasite species identity in female buffalo revealed that different parasites show distinct relationships with host hematology, body condition, and immune investment. However, four of six species-specific associations were obscured when parasites were considered in combination. Overall, fitness-related physiological mediators such as hematological indices may provide assessments of direct and indirect effects of parasite infection, particularly when parasite species identity and community composition are considered. PMID:24533308

  14. Consistent Pattern of Local Adaptation during an Experimental Heat Wave in a Pipefish-Trematode Host-Parasite System

    PubMed Central

    Landis, Susanne H.; Kalbe, Martin; Reusch, Thorsten B. H.; Roth, Olivia

    2012-01-01

    Extreme climate events such as heat waves are expected to increase in frequency under global change. As one indirect effect, they can alter magnitude and direction of species interactions, for example those between hosts and parasites. We simulated a summer heat wave to investigate how a changing environment affects the interaction between the broad-nosed pipefish (Syngnathus typhle) as a host and its digenean trematode parasite (Cryptocotyle lingua). In a fully reciprocal laboratory infection experiment, pipefish from three different coastal locations were exposed to sympatric and allopatric trematode cercariae. In order to examine whether an extreme climatic event disrupts patterns of locally adapted host-parasite combinations we measured the parasite's transmission success as well as the host's adaptive and innate immune defence under control and heat wave conditions. Independent of temperature, sympatric cercariae were always more successful than allopatric ones, indicating that parasites are locally adapted to their hosts. Hosts suffered from heat stress as suggested by fewer cells of the adaptive immune system (lymphocytes) compared to the same groups that were kept at 18°C. However, the proportion of the innate immune cells (monocytes) was higher in the 18°C water. Contrary to our expectations, no interaction between host immune defence, parasite infectivity and temperature stress were found, nor did the pattern of local adaptation change due to increased water temperature. Thus, in this host-parasite interaction, the sympatric parasite keeps ahead of the coevolutionary dynamics across sites, even under increasing temperatures as expected under marine global warming. PMID:22303448

  15. Evolution of parasite virulence when host responses cause disease 

    E-print Network

    Day, Troy; Graham, Andrea; Read, Andrew F

    The trade-off hypothesis of virulence evolution rests on the assumption that infection-induced mortality is a consequence of host exploitation by parasites. This hypothesis lies at the heart of many empirical and theoretical ...

  16. Cell Host & Microbe A Malaria Parasite Formin Regulates Actin

    E-print Network

    that includes malaria parasites and other pathogenic protozoa of humans and livestock. Instead of using either gliding motility, to cross epithelial barriers and invade target host cells (Baum et al., 2006a

  17. Variation in costs of parasite resistance among natural host populations

    E-print Network

    Hall, Spencer

    ­parasite interactions; resistance; trade-off. Abstract Organisms that can resist parasitic infection often have lower using the freshwa- ter crustacean Daphnia dentifera and its natural yeast parasite, Metschnikowia genetic variation in resistance and the small- est epidemics in the previous year. However, yeast

  18. Manipulation of host behaviour by parasites: a weakening paradigm?

    PubMed Central

    Poulin, R

    2000-01-01

    New scientific paradigms often generate an early wave of enthusiasm among researchers and a barrage of studies seeking to validate or refute the newly proposed idea. All else being equal, the strength and direction of the empirical evidence being published should not change over time, allowing one to assess the generality of the paradigm based on the gradual accumulation of evidence. Here, I examine the relationship between the magnitude of published quantitative estimates of parasite-induced changes in host behaviour and year of publication from the time the adaptive host manipulation hypothesis was first proposed. Two independent data sets were used, both originally gathered for other purposes. First, across 137 comparisons between the behaviour of infected and uninfected hosts, the estimated relative influence of parasites correlated negatively with year of publication. This effect was contingent upon the transmission mode of the parasites studied. The negative relationship was very strong among studies of parasites which benefit from host manipulation (transmission to the next host occurs by predation on an infected intermediate host), i.e. among studies which were explicit tests of the adaptive manipulation hypothesis. There was no correlation with year of publication among studies on other types of parasites which do not seem to receive benefits from host manipulation. Second, among 14 estimates of the relative, parasite-mediated increase in transmission rate (i.e. increases in predation rates by definitive hosts on intermediate hosts), the estimated influence of parasites again correlated negatively with year of publication. These results have several possible explanations, but tend to suggest biases with regard to what results are published through time as accepted paradigms changed. PMID:10819148

  19. A shared chemical basis of avian host–parasite egg colour mimicry

    PubMed Central

    Igic, Branislav; Cassey, Phillip; Grim, Tomáš; Greenwood, David R.; Moskát, Csaba; Rutila, Jarkko; Hauber, Mark E.

    2012-01-01

    Avian brood parasites lay their eggs in other birds' nests and impose considerable fitness costs on their hosts. Historically and scientifically, the best studied example of circumventing host defences is the mimicry of host eggshell colour by the common cuckoo (Cuculus canorus). Yet the chemical basis of eggshell colour similarity, which impacts hosts' tolerance towards parasitic eggs, remains unknown. We tested the alternative scenarios that (i) cuckoos replicate host egg pigment chemistry, or (ii) cuckoos use alternative mechanisms to produce a similar perceptual effect to mimic host egg appearance. In parallel with patterns of similarity in avian-perceived colour mimicry, the concentrations of the two key eggshell pigments, biliverdin and protoporphyrin, were most similar between the cuckoo host-races and their respective hosts. Thus, the chemical basis of avian host–parasite egg colour mimicry is evolutionarily conserved, but also intraspecifically flexible. These analyses of pigment composition reveal a novel proximate dimension of coevolutionary interactions between avian brood parasites and hosts, and imply that alternative phenotypes may arise by the modifications of already existing biochemical and physiological mechanisms and pathways. PMID:21920975

  20. No evidence for specificity between host and parasite genotypes in experimental Strongyloides ratti (Nematoda) infections

    E-print Network

    Paterson, Steve

    No evidence for specificity between host and parasite genotypes in experimental Strongyloides ratti host and parasite genotypes, i.e. the resistance of particular host genotypes to particular parasite genotypes and the infectivity of particular parasite genotypes for particular host genotypes. Determining

  1. Brood parasites lay eggs matching the appearance of host clutches.

    PubMed

    Honza, Marcel; Šulc, Michal; Jelínek, Václav; Požgayová, Milica; Procházka, Petr

    2014-01-01

    Interspecific brood parasitism represents a prime example of the coevolutionary arms race where each party has evolved strategies in response to the other. Here, we investigated whether common cuckoos (Cuculus canorus) actively select nests within a host population to match the egg appearance of a particular host clutch. To achieve this goal, we quantified the degree of egg matching using the avian vision modelling approach. Randomization tests revealed that cuckoo eggs in naturally parasitized nests showed lower chromatic contrast to host eggs than those assigned randomly to other nests with egg-laying date similar to naturally parasitized clutches. Moreover, egg matching in terms of chromaticity was better in naturally parasitized nests than it would be in the nests of the nearest active non-parasitized neighbour. However, there was no indication of matching in achromatic spectral characteristics whatsoever. Thus, our results clearly indicate that cuckoos select certain host nests to increase matching of their own eggs with host clutches, but only in chromatic characteristics. Our results suggest that the ability of cuckoos to actively choose host nests based on the eggshell appearance imposes a strong selection pressure on host egg recognition. PMID:24258721

  2. Membrane transport in the malaria parasite and its host erythrocyte.

    PubMed

    Kirk, Kiaran; Lehane, Adele M

    2014-01-01

    As it grows and replicates within the erythrocytes of its host the malaria parasite takes up nutrients from the extracellular medium, exports metabolites and maintains a tight control over its internal ionic composition. These functions are achieved via membrane transport proteins, integral membrane proteins that mediate the passage of solutes across the various membranes that separate the biochemical machinery of the parasite from the extracellular environment. Proteins of this type play a key role in antimalarial drug resistance, as well as being candidate drug targets in their own right. This review provides an overview of recent work on the membrane transport biology of the malaria parasite-infected erythrocyte, encompassing both the parasite-induced changes in the membrane transport properties of the host erythrocyte and the cell physiology of the intracellular parasite itself. PMID:24325549

  3. Incomplete reproductive isolation following host shift in brood parasitic indigobirds

    PubMed Central

    Balakrishnan, Christopher N.; Sefc, Kristina M.; Sorenson, Michael D.

    2008-01-01

    Behavioural and molecular studies suggest that brood parasitic indigobirds (Vidua spp.) rapidly diversified through a process of speciation by host shift. However, behavioural imprinting on host song, the key mechanism promoting speciation in this system, may also lead to hybridization and gene flow among established indigobird species when and if female indigobirds parasitize hosts already associated with other indigobird species. It is therefore not clear to what extent the low level of genetic differentiation among indigobird species is due to recent common ancestry versus ongoing gene flow. We tested for reproductive isolation among three indigobird species in Cameroon, one of which comprises two morphologically indistinguishable host races. Mimicry of host songs corresponded with plumage colour in 184 male indigobirds, suggesting that females rarely parasitize the host of another indigobird species. Paternity analyses, however, suggest that imperfect specificity in host and/or mate choice allows for continuing gene flow between recently formed host races of the Cameroon Indigobird Vidua camerunensis; while 63 pairs of close relatives were associated with the same host, two strongly supported father–son pairs included males mimicking the songs of the two different hosts of V. camerunensis. Thus, complete reproductive isolation is not necessarily an automatic consequence of host shifts, a result that suggests an important role for natural and/or sexual selection in indigobird speciation. PMID:18812294

  4. Parasitism and host-location preference in Habrobracon hebetor (Hymenoptera: Braconidae): role of refuge, choice, and host instar.

    PubMed

    Akinkurolere, R O; Boyer, Sebastien; Chen, Haoliang; Zhang, Hongyu

    2009-04-01

    Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) is a cosmopolitan insect infesting a broad range of commodities, including raw or processed cereal. It has a high fecundity and short generation time, making it a useful tool in testing host-parasitoid hypotheses. The current study examined the interactions between trophic levels during parasitism and host location by Habrobracon hebetor Say (Hymenoptera: Braconidae) within a closed environment by carrying out multiple tests to evaluate the role of refuge and host instar, on the mortality of P. interpunctella and on the emergence of H. hebetor. Results showed that H. hebetor was able to parasitize all instars (first through fourth) of P. interpunctella, but significantly fewer early instars (first through fourth) were parasitized. Parasitized third and fourth instars were more profitable to H. hebetor, irrespective of refuge or choice factors, as significantly more adult parasitoids emerged from third and fourth instars. H. hebetor females consistently showed a preference for fourth instars of P. interpunctella when they were offered a choice between early and late host instars in arenas both with and without a refuge. Generally, parasitization of early instars was higher in no-choice than in choice tests. The behavior of H. hebetor in relation to host choice and its influence on the pest mortality are discussed. PMID:19455754

  5. The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection

    PubMed Central

    de Morais, Carlos Gustavo Vieira; Castro Lima, Ana Karina; dos Santos, Rosiane Freire; Da-Silva, Silvia Amaral Gonçalves; Dutra, Patrícia Maria Lourenço

    2015-01-01

    The intracellular protozoa Leishmania spp. and Trypanosoma cruzi and the causative agents of Leishmaniasis and Chagas disease, respectively, belong to the Trypanosomatidae family. Together, these two neglected tropical diseases affect approximately 25 million people worldwide. Whether the host can control the infection or develops disease depends on the complex interaction between parasite and host. Parasite surface and secreted molecules are involved in triggering specific signaling pathways essential for parasite entry and intracellular survival. The recognition of the parasite antigens by host immune cells generates a specific immune response. Leishmania spp. and T. cruzi have a multifaceted repertoire of strategies to evade or subvert the immune system by interfering with a range of signal transduction pathways in host cells, which causes the inhibition of the protective response and contributes to their persistence in the host. The current therapeutic strategies in leishmaniasis and trypanosomiasis are very limited. Efficacy is variable, toxicity is high, and the emergence of resistance is increasingly common. In this review, we discuss the molecular basis of the host-parasite interaction of Leishmania and Trypanosoma cruzi infection and their mechanisms of subverting the immune response and how this knowledge can be used as a tool for the development of new drugs.

  6. Multi-species interactions among a commensal (Chaetogaster limnaei limnaei), a parasite (Schistosoma mansoni), and an aquatic snail host (Biomphalaria glabrata).

    PubMed

    Rodgers, Jenna K; Sandland, Gregory J; Joyce, Sarah R; Minchella, Dennis J

    2005-06-01

    This study assessed the effects of a commensal, Chaetogaster limnaei limnaei, and a parasitic trematode, Schistosoma mansoni, on infection patterns and life-history responses in the aquatic snail Biomphalaria glabrata. Prevalence of infection was significantly higher in snails that were devoid of C. limnaei limnaei relative to those that were colonized by the commensal, indicating that the oligochaete may protect the host from trematode infection. This finding appeared to be the direct result of the commensal as opposed to indirect stimulation of the immune system, as hemocyte numbers did not differ between C. limnaei limnaei-colonized and noncolonized snails. Snail growth and reproduction were affected by the presence of C. limnaei limnaei and exposure to S. mansoni. Two-way ANOVA revealed a significant effect of both C. limnaei limnaei presence and trematode exposure on B. glabrata growth over the 5-wk study with C. limnaei limnaei-colonized and parasite-infected snails demonstrating the greatest growth. Snails exposed, but uninfected, by S. mansoni demonstrated the lowest growth regardless of commensal colonization. Chaetogaster limnaei limnaei colonization had no effect on egg production, but S. mansoni-infected snails produced significantly more eggs than individuals from other treatment groups. Survival remained over 85% in all treatment groups. The ecological implications of these results are discussed. PMID:16108575

  7. Testing for local host-parasite adaptation: an experiment with Gyrodactylus ectoparasites and guppy hosts.

    PubMed

    Pérez-Jvostov, Felipe; Hendry, Andrew P; Fussmann, Gregor F; Scott, Marilyn E

    2015-05-01

    Hosts and parasites are in a perpetual co-evolutionary "arms race". Due to their short generation time and large reproductive output, parasites are commonly believed to be ahead in this race, although increasing evidence exists that parasites are not always ahead in the arms race - in part owing to evolutionary lineage and recent ecological history. We assess local adaptation of hosts and parasites, and determine whether adaptation was influenced by ecological or evolutionary history, using full reciprocal cross-infections of four Gyrodactylus ectoparasite populations and their four guppy (Poecilia reticulata) host populations in Trinidad. To consider effects of evolutionary lineage and recent ecology, these four populations were collected from two different river drainages (Marianne and Aripo) and two different predation environments (high and low). The highest infection levels were obtained when parasites from the Aripo lineage infected guppies from the Marianne lineage, indicating a higher infectivity, virulence and/or reproductive success of the Aripo parasites. Aripo lineage guppies were also better able to limit Gyrodactylus population growth than guppies from the Marianne River, indicating their strong "resistance" to Gyrodactylus regardless of the source of the parasite. Predation environment had no detectable influence on host-parasite population dynamics of sympatric or allopatric combinations. The much stronger effect of evolutionary lineage (i.e., river) than recent ecological history (i.e., predation) emphasises its importance in driving co-evolutionary dynamics, and should be explored further in future studies on local host-parasite adaptation. PMID:25770861

  8. Gone with the flow: current velocities mediate parasitic infestation of an aquatic host.

    PubMed

    Samsing, Francisca; Solstorm, David; Oppedal, Frode; Solstorm, Frida; Dempster, Tim

    2015-07-01

    Host-parasite interactions are moderated by the environmental conditions of the interaction medium (e.g. air or water). Encounter rate and the time available for a parasite to make physical contact with a host are both influenced by fluid dynamics, yet how they interact is poorly known. Here, we tested whether current velocities altered the initial attachment and post-settlement survival of an ecto-parasitic copepod (Lepeophtheirus salmonis) on Atlantic salmon. Current velocities strongly influenced attachment; infestation levels were 2.5 and 1.3times higher in moderate than high and low velocity currents, respectively, while current velocities did not affect post-settlement survival. An interplay between a reduced host-parasite encounter rate in a low velocity current and reduced contact time in a high velocity current likely explains this result. Initial parasite attachment position was influenced by an interaction between current velocity and swimming behaviour, likely due to different fin positioning by fish in flows of different velocities. Our results imply that rapid swimming by salmon migrating out of coastal waters, usually described as adaptive against predation, could also be adaptive against parasitism. Infestation rates were also highest at the typical swimming speed of farmed salmon in coastal fish farms, which may be a hitherto unrecognised factor contributing to L. salmonis epidemics. PMID:25917926

  9. Higher resources decrease fluctuating selection during host-parasite coevolution.

    PubMed

    Lopez Pascua, Laura; Hall, Alex R; Best, Alex; Morgan, Andrew D; Boots, Mike; Buckling, Angus

    2014-11-01

    We still know very little about how the environment influences coevolutionary dynamics. Here, we investigated both theoretically and empirically how nutrient availability affects the relative extent of escalation of resistance and infectivity (arms race dynamic; ARD) and fluctuating selection (fluctuating selection dynamic; FSD) in experimentally coevolving populations of bacteria and viruses. By comparing interactions between clones of bacteria and viruses both within- and between-time points, we show that increasing nutrient availability resulted in coevolution shifting from FSD, with fluctuations in average infectivity and resistance ranges over time, to ARD. Our model shows that range fluctuations with lower nutrient availability can be explained both by elevated costs of resistance (a direct effect of nutrient availability), and reduced benefits of resistance when population sizes of hosts and parasites are lower (an indirect effect). Nutrient availability can therefore predictably and generally affect qualitative coevolutionary dynamics by both direct and indirect (mediated through ecological feedbacks) effects on costs of resistance. PMID:25167763

  10. Higher resources decrease fluctuating selection during host–parasite coevolution

    PubMed Central

    Lopez Pascua, Laura; Hall, Alex R; Best, Alex; Morgan, Andrew D; Boots, Mike; Buckling, Angus

    2014-01-01

    We still know very little about how the environment influences coevolutionary dynamics. Here, we investigated both theoretically and empirically how nutrient availability affects the relative extent of escalation of resistance and infectivity (arms race dynamic; ARD) and fluctuating selection (fluctuating selection dynamic; FSD) in experimentally coevolving populations of bacteria and viruses. By comparing interactions between clones of bacteria and viruses both within- and between-time points, we show that increasing nutrient availability resulted in coevolution shifting from FSD, with fluctuations in average infectivity and resistance ranges over time, to ARD. Our model shows that range fluctuations with lower nutrient availability can be explained both by elevated costs of resistance (a direct effect of nutrient availability), and reduced benefits of resistance when population sizes of hosts and parasites are lower (an indirect effect). Nutrient availability can therefore predictably and generally affect qualitative coevolutionary dynamics by both direct and indirect (mediated through ecological feedbacks) effects on costs of resistance. PMID:25167763

  11. Host Density and Competency Determine the Effects of Host Diversity on Trematode Parasite Infection

    PubMed Central

    Wojdak, Jeremy M.; Edman, Robert M.; Wyderko, Jennie A.; Zemmer, Sally A.; Belden, Lisa K.

    2014-01-01

    Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other’s densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts) for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans), in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1) replace the focal host species so that the total number of individuals remains constant (substitution) or (2) add to total host density (addition). For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly) when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns. PMID:25119568

  12. The path to host extinction can lead to loss of generalist parasites.

    PubMed

    Farrell, Maxwell J; Stephens, Patrick R; Berrang-Ford, Lea; Gittleman, John L; Davies, T Jonathan

    2015-07-01

    Host extinction can alter disease transmission dynamics, influence parasite extinction and ultimately change the nature of host-parasite systems. While theory predicts that single-host parasites are among the parasite species most susceptible to extinction following declines in their hosts, documented parasite extinctions are rare. Using a comparative approach, we investigate how the richness of single-host and multi-host parasites is influenced by extinction risk among ungulate and carnivore hosts. Host-parasite associations for free-living carnivores (order Carnivora) and terrestrial ungulates (orders Perissodactyla + Cetartiodactyla minus cetaceans) were merged with host trait data and IUCN Red List status to explore the distribution of single-host and multi-host parasites among threatened and non-threatened hosts. We find that threatened ungulates harbour a higher proportion of single-host parasites compared to non-threatened ungulates, which is explained by decreases in the richness of multi-host parasites. However, among carnivores threat status is not a significant predictor of the proportion of single-host parasites, or the richness of single-host or multi-host parasites. The loss of multi-host parasites from threatened ungulates may be explained by decreased cross-species contact as hosts decline and habitats become fragmented. Among carnivores, threat status may not be important in predicting patterns of parasite specificity because host decline results in equal losses of both single-host parasites and multi-host parasites through reduction in average population density and frequency of cross-species contact. Our results contrast with current models of parasite coextinction and highlight the need for updated theories that are applicable across host groups and account for both inter- and intraspecific contact. PMID:25640629

  13. Glycoconjugates in Host-Helminth Interactions

    PubMed Central

    Prasanphanich, Nina Salinger; Mickum, Megan L.; Heimburg-Molinaro, Jamie; Cummings, Richard D.

    2013-01-01

    Helminths are multicellular parasitic worms that comprise a major class of human pathogens and cause an immense amount of suffering worldwide. Helminths possess an abundance of complex and unique glycoconjugates that interact with both the innate and adaptive arms of immunity in definitive and intermediate hosts. These glycoconjugates represent a major untapped reservoir of immunomodulatory compounds, which have the potential to treat autoimmune and inflammatory disorders, and antigenic glycans, which could be exploited as vaccines and diagnostics. This review will survey current knowledge of the interactions between helminth glycans and host immunity and highlight the gaps in our understanding which are relevant to advancing therapeutics, vaccine development, and diagnostics. PMID:24009607

  14. Research paper Are cryptic host species also cryptic to parasites? Host specificity and geographical

    E-print Network

    ) or Acanthocephala (Kennedy, 2006). The existence of multiple host species can have important epidemiological Cryptic species Acanthocephala Amphipods A B S T R A C T Many parasites infect multiple host species. Gammarus pulex is a common host for multiple species of Acanthocephala in Europe but, in Switzerland

  15. Correlated evolution between host immunity and parasite life histories in primates and oxyurid parasites.

    PubMed Central

    Sorci, Gabriele; Skarstein, Frode; Morand, Serge; Hugot, Jean-Pierre

    2003-01-01

    Maturation time is a pivotal life-history trait of parasitic nematodes, determining adult body size, as well as daily and total fecundity. Recent theoretical work has emphasized the influence of prematurational mortality on the optimal values of age and size at maturity in nematodes. Eosinophils are a family of white blood cells often associated with infections by parasitic nematodes. Although the role of eosinophils in nematode resistance is controversial, recent work has suggested that the action of these immune effectors might be limited to the larval stages of the parasite. If eosinophils act on larval survival, one might predict, in line with theoretical models, that nematode species living in hosts with large eosinophil numbers should show reduced age and size at maturity. We tested this prediction using the association between the pinworms (Oxyuridae, Nematoda) and their primate hosts. Pinworms are highly host specific and are expected to be involved in a coevolutionary process with their hosts. We found that the body size of female parasites was negatively correlated with eosinophil concentration, whereas the concentration of two other leucocyte families-neutrophils and lymphocytes-was unrelated to female body size. Egg size of parasites also decreased with host eosinophil concentration, independently of female size. Male body size was unrelated to host immune parameters. Primates with the highest immune defence, therefore, harbour small female pinworms laying small eggs. These results are in agreement with theoretical expectations and suggest that life histories of oxyurid parasites covary with the immune defence of their hosts. Our findings illustrate the potential for host immune defence as a factor driving parasite life-history evolution. PMID:14667339

  16. Inferring host-parasite relationships using stable isotopes: implications for disease transmission and host specificity.

    PubMed

    Stapp, Paul; Salkeld, Daniel J

    2009-11-01

    Identifying the roles of different hosts and vectors is a major challenge in the study of the ecology of diseases caused by multi-host pathogens. Intensive field studies suggested that grasshopper mice (Onychomys leucogaster) help spread the bacterium that causes plague (Yersinia pestis) in prairie dog colonies by sharing fleas with prairie dogs (Cynomys ludovicianus); yet conclusive evidence that prairie dog fleas (Oropsylla hirsuta) feed on grasshopper mice is lacking. Using stable nitrogen isotope analysis, we determined that many blood-engorged O. hirsuta collected from wild grasshopper mice apparently contained blood meals of prairie dogs. These results suggest that grasshopper mice may be infected with Y. pestis via mechanisms other than flea feeding, e.g., early phase or mechanical transmission or scavenging carcasses, and raise questions about the ability of grasshopper mice to maintain Y. pestis in prairie dog colonies during years between plague outbreaks. They also indicate that caution may be warranted when inferring feeding relationships based purely on the occurrence of fleas or other haematophagous ectoparasites on hosts. Stable-isotope analysis may complement or provide a useful alternative to immunological or molecular techniques for identifying hosts of cryptically feeding ectoparasites, and for clarifying feeding relationships in studies of host-parasite interactions. PMID:19967881

  17. COPEPODS AND SCOMBRID FISHES: A STUDY IN HOST-PARASITE RELATIONSHIPS

    E-print Network

    COPEPODS AND SCOMBRID FISHES: A STUDY IN HOST-PARASITE RELATIONSHIPS ROGER F. CRESSEY,I BRUCE B. COLLE'ITE,' AND JOSEPH L. Russo' ABSTRACT Host specificity ofthe copepods parasitic on scombrid fishes is the basis for an analysis ofthe host-parasite relationship. A total of 46 different species of parasitic

  18. Competition promotes the evolution of host generalists in obligate parasites

    PubMed Central

    Johnson, Kevin P.; Malenke, Jael R.; Clayton, Dale H.

    2009-01-01

    Ecological theory traditionally predicts that interspecific competition selects for an increase in ecological specialization. Specialization, in turn, is often thought to be an evolutionary ‘dead end,’ with specialist lineages unlikely to evolve into generalist lineages. In host–parasite systems, this specialization can take the form of host specificity, with more specialized parasites using fewer hosts. We tested the hypothesis that specialists are evolutionarily more derived, and whether competition favours specialization, using the ectoparasitic feather lice of doves. Phylogenetic analyses revealed that complete host specificity is actually the ancestral condition, with generalists repeatedly evolving from specialist ancestors. These multiple origins of generalists are correlated with the presence of potentially competing species of the same genus. A competition experiment with captive doves and lice confirmed that congeneric species of lice do, in fact, have the potential to compete in ecological time. Taken together, these results suggest that interspecific competition can favour the evolution of host generalists, not specialists, over macroevolutionary time. PMID:19710056

  19. Reindeer as hosts for nematode parasites of sheep and cattle

    Microsoft Academic Search

    J. T. Hrabok; A. Oksanen; M. Nieminen; A. Rydzik; A. Uggla; P. J. Waller

    2006-01-01

    The reindeer husbandry range of Scandinavia overlaps with sheep, goat, and cattle pastures. The aim of this study was to determine whether reindeer are suitable hosts for ovine or bovine nematode parasites, and thus may spread these parasites into the reindeer husbandry regions. To render worm-free, twelve 4-month-old male reindeer calves, six lambs, and six bovine calves were given ivermectin

  20. Nematode–coccidia parasite co-infections in African buffalo: Epidemiology and associations with host condition and pregnancy

    PubMed Central

    Gorsich, Erin E.; Ezenwa, Vanessa O.; Jolles, Anna E.

    2014-01-01

    Co-infections are common in natural populations and interactions among co-infecting parasites can significantly alter the transmission and host fitness costs of infection. Because both exposure and susceptibility vary over time, predicting the consequences of parasite interactions on host fitness and disease dynamics may require detailed information on their effects across different environmental (season) and host demographic (age, sex) conditions. This study examines five years of seasonal health and co-infection patterns in African buffalo (Syncerus caffer). We use data on two groups of gastrointestinal parasites, coccidia and nematodes, to test the hypothesis that co-infection and season interact to influence (1) parasite prevalence and intensity and (2) three proxies for host fitness: host pregnancy, host body condition, and parasite aggregation. Our results suggest that season-dependent interactions between nematodes and coccidia affect the distribution of infections. Coccidia prevalence, coccidia intensity and nematode prevalence were sensitive to factors that influence host immunity and exposure (age, sex, and season) but nematode intensity was most strongly predicted by co-infection with coccidia and its interaction with season. The influence of co-infection on host body condition and parasite aggregation occurred in season-dependent manner. Co-infected buffalo in the early wet season were in worse condition, had a less aggregated distribution of nematode parasites, and lower nematode infection intensity than buffalo infected with nematodes alone. We did not detect an effect of infection or co-infection on host pregnancy. These results suggest that demographic and seasonal variation may mediate the effects of parasites, and their interactions, on the distribution and fitness costs of infection. PMID:25161911

  1. Interactions between parasites and microbial communities in the human gut

    PubMed Central

    Berrilli, Federica; Di Cave, David; Cavallero, Serena; D'Amelio, Stefano

    2012-01-01

    The interactions between intestinal microbiota, immune system, and pathogens describe the human gut as a complex ecosystem, where all components play a relevant role in modulating each other and in the maintenance of homeostasis. The balance among the gut microbiota and the human body appear to be crucial for health maintenance. Intestinal parasites, both protozoans and helminths, interact with the microbial community modifying the balance between host and commensal microbiota. On the other hand, gut microbiota represents a relevant factor that may strongly interfere with the pathophysiology of the infections. In addition to the function that gut commensal microbiota may have in the processes that determine the survival and the outcome of many parasitic infections, including the production of nutritive macromolecules, also probiotics can play an important role in reducing the pathogenicity of many parasites. On these bases, there is a growing interest in explaining the rationale on the possible interactions between the microbiota, immune response, inflammatory processes, and intestinal parasites. PMID:23162802

  2. Host-parasite population dynamics under combined frequency-and density-dependent transmission

    E-print Network

    White, Andrew

    Host-parasite population dynamics under combined frequency- and density-dependent transmission, Scotland, EH14 4AS. Many host-parasite models assume that transmission increases linearly with host alternative (usually applied to sexually transmitted parasites) assumes instead that the rate at which hosts

  3. Antagonistic coevolution with parasites increases the cost of host deleterious mutations

    E-print Network

    Buckling, Angus

    Antagonistic coevolution with parasites increases the cost of host deleterious mutations Angus. The significance of host deleterious mutations when hosts and parasites antagonistically coevolve (reciprocal is by definition costly to hosts, but may sometimes provide benefits. For example, parasites that have already

  4. Apicomplexan Parasite, Eimeria falciformis, Co-opts Host Tryptophan Catabolism for Life Cycle Progression in Mouse*

    PubMed Central

    Schmid, Manuela; Lehmann, Maik J.; Lucius, Richard; Gupta, Nishith

    2012-01-01

    The obligate intracellular apicomplexan parasites, e.g. Toxoplasma gondii and Plasmodium species, induce an IFN?-driven induction of host indoleamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme of tryptophan catabolism in the kynurenine pathway. Induction of IDO1 supposedly depletes cellular levels of tryptophan in host cells, which is proposed to inhibit the in vitro growth of auxotrophic pathogens. In vivo function of IDO during infections, however, is not clear, let alone controversial. We show that Eimeria falciformis, an apicomplexan parasite infecting the mouse caecum, induces IDO1 in the epithelial cells of the organ, and the enzyme expression coincides with the parasite development. The absence or inhibition of IDO1/2 and of two downstream enzymes in infected animals is detrimental to the Eimeria growth. The reduced parasite yield is not due to a lack of an immunosuppressive effect of IDO1 in the parasitized IDO1?/? or inhibitor-treated mice because they did not show an accentuated Th1 and IFN? response. Noticeably, the parasite development is entirely rescued by xanthurenic acid, a by-product of tryptophan catabolism inducing exflagellation in male gametes of Plasmodium in the mosquito mid-gut. Our data demonstrate a conceptual subversion of the host defense (IFN?, IDO) by an intracellular pathogen for progression of its natural life cycle. Besides, we show utility of E. falciformis, a monoxenous parasite of a well appreciated host, i.e. mouse, to identify in vivo factors underlying the parasite-host interactions. PMID:22535959

  5. Effects of a native parasitic plant on an exotic invader decrease with increasing host age

    PubMed Central

    Li, Junmin; Yang, Beifen; Yan, Qiaodi; Zhang, Jing; Yan, Min; Li, Maihe

    2015-01-01

    Understanding changes in the interactions between parasitic plants and their hosts in relation to ontogenetic changes in the hosts is crucial for successful use of parasitic plants as biological controls. We investigated growth, photosynthesis and chemical defences in different-aged Bidens pilosa plants in response to infection by Cuscuta australis. We were particularly interested in whether plant responses to parasite infection change with changes in the host plant age. Compared with the non-infected B. pilosa, parasite infection reduced total host biomass and net photosynthetic rates, but these deleterious effects decreased with increasing host age. Parasite infection reduced the concentrations of total phenolics, total flavonoids and saponins in the younger B. pilosa but not in the older B. pilosa. Compared with the relatively older and larger plants, younger and smaller plants suffered from more severe damage and are likely less to recover from the infection, suggesting that C. australis is only a viable biocontrol agent for younger B. pilosa plants. PMID:25838325

  6. Cowbird removals unexpectedly increase productivity of a brood parasite and the songbird host.

    PubMed

    Kosciuch, Karl L; Sandercock, Brett K

    2008-03-01

    Generalist brood parasites reduce productivity and population growth of avian hosts and have been implicated in population declines of several songbirds of conservation concern. To estimate the demographic effects of brood parasitism on Bell's Vireos (Vireo bellii), we removed Brown-headed Cowbirds (Molothrus ater) in a replicated switchback experimental design. Cowbird removals decreased parasitism frequency from 77% and 85% at unmanipulated plots to 58% and 47% at removal plots in 2004 and 2005, respectively. Vireo productivity per pair was higher at cowbird removal plots when years were pooled (mean = 2.6 +/- 0.2 [SE] young per pair) compared to unmanipulated plots (1.2 +/- 0.1). Nest desertion frequency was lower at cowbird removal plots (35% of parasitized nests) compared to unmanipulated plots (69%) because removal of host eggs was the proximate cue for nest desertion, and vireos experienced lower rates of egg loss at cowbird removal plots. Nest success was higher among unparasitized than parasitized nests, and parasitized nests at cowbird removal plots had a higher probability of success than parasitized nests at unmanipulated plots. Unexpectedly, cowbird productivity from vireo pairs was higher at cowbird removal plots (mean = 0.3 +/- 0.06 young per pair) than at unmanipulated plots (0.1 +/- 0.03) because fewer parasitized nests were deserted and the probability of nest success was higher. Our study provides the first evidence that increases in cowbird productivity may be an unintended consequence of cowbird control programs, especially during the initial years of trapping when parasitism may only be moderately reduced. Thus, understanding the demographic impacts of cowbird removals requires an informed understanding of the behavioral ecology of host-parasite interactions. PMID:18488614

  7. Multiple host-switching of Haemosporidia parasites in bats

    PubMed Central

    Duval, Linda; Robert, Vincent; Csorba, Gabor; Hassanin, Alexandre; Randrianarivelojosia, Milijaona; Walston, Joe; Nhim, Thy; Goodman, Steve M; Ariey, Frédéric

    2007-01-01

    Background There have been reported cases of host-switching in avian and lizard species of Plasmodium (Apicomplexa, Haemosporidia), as well as in those infecting different primate species. However, no evidence has previously been found for host-swapping between wild birds and mammals. Methods This paper presents the results of the sampling of blood parasites of wild-captured bats from Madagascar and Cambodia. The presence of Haemosporidia infection in these animals is confirmed and cytochrome b gene sequences were used to construct a phylogenetic analysis. Results Results reveal at least three different and independent Haemosporidia evolutionary histories in three different bat lineages from Madagascar and Cambodia. Conclusion Phylogenetic analysis strongly suggests multiple host-switching of Haemosporidia parasites in bats with those from avian and primate hosts. PMID:18045505

  8. Malaria Parasite Development in the Mosquito and Infection of the Mammalian Host

    PubMed Central

    Aly, Ahmed S.I.; Vaughan, Ashley M.; Kappe, Stefan H.I.

    2010-01-01

    Plasmodium sporozoites are the product of a complex developmental process in the mosquito vector and are destined to infect the mammalian liver. Attention has been drawn to the mosquito stages and preerythrocytic stages owing to recognition that these are bottlenecks in the parasite life cycle and that intervention at these stages can block transmission and prevent infection. Parasite progression in the Anopheles mosquito, sporozoite transmission to the mammalian host by mosquito bite, and subsequent infection of the liver are characterized by extensive migration of invasive stages, cell invasion, and developmental changes. Preparation for the liver phase in the mammalian host begins in the mosquito with an extensive reprogramming of the sporozoite to support efficient infection and survival. Here, we discuss what is known about the molecular and cellular basis of the developmental progression of parasites and their interactions with host tissues in the mosquito and during the early phase of mammalian infection. PMID:19575563

  9. Recurrent evolution of host-specialized races in a globally distributed parasite

    Microsoft Academic Search

    Karen D. McCoy; Elodie Chapuis; Claire Tirard; Thierry Boulinier; Yannis Michalakis; Céline Le Bohec; Yvon Le Maho; Michel Gauthier-Clerc

    2005-01-01

    The outcome of coevolutionary interactions is predicted to vary across landscapes depending on local conditions and levels of gene flow, with some populations evolving more extreme specializations than others. Using a globally distributed parasite of colonial seabirds, the tick Ixodes uriae, we examined how host availability and geographic isolation influences this process. In particular, we sampled ticks from 30 populations

  10. Nocardia species: host-parasite relationships.

    PubMed Central

    Beaman, B L; Beaman, L

    1994-01-01

    The nocardiae are bacteria belonging to the aerobic actinomycetes. They are an important part of the normal soil microflora worldwide. The type species, Nocardia asteroides, and N. brasiliensis, N. farcinica, N. otitidiscaviarum, N. nova, and N. transvalensis cause a variety of diseases in both normal and immunocompromised humans and animals. The mechanisms of pathogenesis are complex, not fully understood, and include the capacity to evade or neutralize the myriad microbicidal activities of the host. The relative virulence of N. asteroides correlates with the ability to inhibit phagosome-lysosome fusion in phagocytes; to neutralize phagosomal acidification; to detoxify the microbicidal products of oxidative metabolism; to modify phagocyte function; to grow within phagocytic cells; and to attach to, penetrate, and grow within host cells. Both activated macrophages and immunologically specific T lymphocytes constitute the major mechanisms for host resistance to nocardial infection, whereas B lymphocytes and humoral immunity do not appear to be as important in protecting the host. Thus, the nocardiae are facultative intracellular pathogens that can persist within the host, probably in a cryptic form (L-form), for life. Silent invasion of brain cells by some Nocardia strains can induce neurodegeneration in experimental animals; however, the role of nocardiae in neurodegenerative diseases in humans needs to be investigated. Images PMID:8055469

  11. Begging Behaviour and Host Exploitation in Parasitic Cowbirds

    Microsoft Academic Search

    Donald C. Dearborn; Gabriela Lichtenstein

    In this chapter we explore the begging behaviour of cowbirds, obligate brood parasites that are typically raised in mixed\\u000a broods with host young. As ‘strangers in the nest’, cowbird nestlings present both challenges and opportunities to evolutionary\\u000a biologists. After a brief overview, we delve into four main topics: (1) the means by which cowbird young achieve success in\\u000a host nests;

  12. Habitat selection for parasite-free space by hosts of parasitic cowbirds

    USGS Publications Warehouse

    Forsman, J.T.; Martin, T.E.

    2009-01-01

    Choice of breeding habitat can have a major impact on fitness. Sensitivity of habitat choice to environmental cues predicting reproductive success, such as density of harmful enemy species, should be favored by natural selection. Yet, experimental tests of this idea are in short supply. Brown-headed cowbirds Molothrus ater commonly reduce reproductive success of a wide diversity of birds by parasitizing their nests. We used song playbacks to simulate high cowbird density and tested whether cowbird hosts avoid such areas in habitat selection. Host species that made settlement decisions during manipulations were significantly less abundant in the cowbird treatment as a group. In contrast, hosts that settled before manipulations started and non-host species did not respond to treatments. These results suggest that hosts of cowbirds can use vocal cues to assess parasitism risk among potential habitat patches and avoid high risk habitats. This can affect community structure by affecting habitat choices of species with differential vulnerability.

  13. The relationship between parasite fitness and host condition in an insect--virus system.

    PubMed

    Tseng, Michelle; Myers, Judith H

    2014-01-01

    Research in host-parasite evolutionary ecology has demonstrated that environmental variation plays a large role in mediating the outcome of parasite infection. For example, crowding or low food availability can reduce host condition and make them more vulnerable to parasite infection. This observation that poor-condition hosts often suffer more from parasite infection compared to healthy hosts has led to the assumption that parasite productivity is higher in poor-condition hosts. However, the ubiquity of this negative relationship between host condition and parasite fitness is unknown. Moreover, examining the effect of environmental variation on parasite fitness has been largely overlooked in the host-parasite literature. Here we investigate the relationship between parasite fitness and host condition by using a laboratory experiment with the cabbage looper Trichoplusia ni and its viral pathogen, AcMNPV, and by surveying published host-parasite literature. Our experiments demonstrated that virus productivity was positively correlated with host food availability and the literature survey revealed both positive and negative relationships between host condition and parasite fitness. Together these data demonstrate that contrary to previous assumptions, parasite fitness can be positively or negatively correlated with host fitness. We discuss the significance of these findings for host-parasite population biology. PMID:25208329

  14. Host switching in cowbird brood parasites: how often does it occur?

    PubMed

    Domínguez, M; de la Colina, M A; Di Giacomo, A G; Reboreda, J C; Mahler, B

    2015-06-01

    Avian obligate brood parasites lay their eggs in nests of host species, which provide all parental care. Brood parasites may be host specialists, if they use one or a few host species, or host generalists, if they parasitize many hosts. Within the latter, strains of host-specific females might coexist. Although females preferentially parasitize one host, they may occasionally successfully parasitize the nest of another species. These host switching events allow the colonization of new hosts and the expansion of brood parasites into new areas. In this study, we analyse host switching in two parasitic cowbirds, the specialist screaming cowbird (Molothrus rufoaxillaris) and the generalist shiny cowbird (M. bonariensis), and compare the frequency of host switches between these species with different parasitism strategies. Contrary to expected, host switches did not occur more frequently in the generalist than in the specialist brood parasite. We also found that migration between hosts was asymmetrical in most cases and host switches towards one host were more recurrent than backwards, thus differing among hosts within the same species. This might depend on a combination of factors including the rate at which females lay eggs in nests of alternative hosts, fledging success of the chicks in this new host and their subsequent success in parasitizing it. PMID:25903962

  15. Selection Strategies of Parasitized Hosts in a Generalist Parasitoid Depend on Patch Quality but Also on Host Size

    Microsoft Academic Search

    Marlène Goubault; Julie Fourrier; Liliane Krespi; Denis Poinsot; AnneMarie Cortesero

    2004-01-01

    Host rejection, superparasitism, and ovicide are three possible host selection strategies that parasitoid females can adopt when they encounter parasitized hosts. These differ in costs (in terms of time and energy required) and benefits (in terms of number and quality of offspring produced). Their relative payoff should vary with patch quality, (i.e., proportion of parasitized hosts present), and female choice

  16. Malaria parasites tolerate a broad range of ionic environments and do not require host cation remodelling.

    PubMed

    Pillai, Ajay D; Addo, Rachel; Sharma, Paresh; Nguitragool, Wang; Srinivasan, Prakash; Desai, Sanjay A

    2013-04-01

    Malaria parasites grow within erythrocytes, but are also free in host plasma between cycles of asexual replication. As a result, the parasite is exposed to fluctuating levels of Na(+) and K(+) , ions assumed to serve important roles for the human pathogen, Plasmodium falciparum. We examined these assumptions and the parasite's ionic requirements by establishing continuous culture in novel sucrose-based media. With sucrose as the primary osmoticant and K(+) and Cl(-) as the main extracellular ions, we obtained parasite growth and propagation at rates indistinguishable from those in physiological media. These conditions abolish long-known increases in intracellular Na(+) via parasite-induced channels, excluding a requirement for erythrocyte cation remodelling. We also dissected Na(+) , K(+) and Cl(-) requirements and found that unexpectedly low concentrations of each ion meet the parasite's demands. Surprisingly, growth was not adversely affected by up to 148 mM K(+) , suggesting that low extracellular K(+) is not an essential trigger for erythrocyte invasion. At the same time, merozoite egress and invasion required a threshold ionic strength, suggesting critical electrostatic interactions between macromolecules at these stages. These findings provide insights into transmembrane signalling in malaria and reveal fundamental differences between host and parasite ionic requirements. PMID:23347042

  17. Blending in with the crowd: social parasites integrate into their host colonies using a flexible chemical signature.

    PubMed Central

    D'Ettorre, P; Mondy, N; Lenoir, A; Errard, C

    2002-01-01

    Social parasites are able to exploit their host's communication code and achieve social integration. For colony foundation, a newly mated slave-making ant queen must usurp a host colony. The parasite's brood is cared for by the hosts and newly eclosed slave-making workers integrate to form a mixed ant colony. To elucidate the social integration strategy of the slave-making workers, Polyergus rufescens, behavioural and chemical analyses were carried out. Cocoons of P. rufescens were introduced into subcolonies of four potential host species: Formica subgenus Serviformica (Formica cunicularia and F. rufibarbis, usual host species; F. gagates, rare host; F. selysi, non-natural host). Slave-making broods were cared for and newly emerged workers showed several social interactions with adult Formica. We recorded the occurrence of abdominal trophallaxis, in which P. rufescens, the parasite, was the donor. Social integration of P. rufescens workers into host colonies appears to rely on the ability of the parasite to modify its cuticular hydrocarbon profile to match that of the rearing species. To study the specific P. rufescens chemical profile, newly emerged callows were reared in isolation from the mother colony (without any contact with adult ants). The isolated P. rufescens workers exhibited a chemical profile closely matching that of the primary host species, indicating the occurrence of local host adaptation in the slave-maker population. However, the high flexibility in the ontogeny of the parasite's chemical signature could allow for host switching. PMID:12350253

  18. Resource limitation alters the consequences of co-infection for both hosts and parasites.

    PubMed

    Budischak, Sarah A; Sakamoto, Kaori; Megow, Lindsey C; Cummings, Kelly R; Urban, Joseph F; Ezenwa, Vanessa O

    2015-06-01

    Most animals are concurrently infected with multiple parasite species and live in environments with fluctuating resource availability. Resource limitation can influence host immune responses and the degree of competition between co-infecting parasites, yet its effects on individual health and pathogen transmission have not been studied for co-infected hosts. To test how resource limitation affects immune trade-offs and co-infection outcomes, we conducted a factorial experiment using laboratory mice. Mice were given a standard or low protein diet, dosed with two species of helminths (alone and in combination), and then challenged with a microparasite. Using a community ecology trophic framework, we found that co-infection influenced parasite survival and reproduction via host immunity, but the magnitude and direction of responses depended on resources and the combination of co-infecting parasites. Our findings highlight that resources and their consequence for host defenses are a key context that shapes the magnitude and direction of parasite interactions. PMID:25812832

  19. Uncovering Dangerous Cheats: How Do Avian Hosts Recognize Adult Brood Parasites?

    PubMed Central

    Trnka, Alfréd; Prokop, Pavol; Grim, Tomáš

    2012-01-01

    Background Co-evolutionary struggles between dangerous enemies (e.g., brood parasites) and their victims (hosts) lead to the emergence of sophisticated adaptations and counter-adaptations. Salient host tricks to reduce parasitism costs include, as front line defence, adult enemy discrimination. In contrast to the well studied egg stage, investigations addressing the specific cues for adult enemy recognition are rare. Previous studies have suggested barred underparts and yellow eyes may provide cues for the recognition of cuckoos Cuculus canorus by their hosts; however, no study to date has examined the role of the two cues simultaneously under a consistent experimental paradigm. Methodology/Principal Findings We modify and extend previous work using a novel experimental approach – custom-made dummies with various combinations of hypothesized recognition cues. The salient recognition cue turned out to be the yellow eye. Barred underparts, the only trait examined previously, had a statistically significant but small effect on host aggression highlighting the importance of effect size vs. statistical significance. Conclusion Relative importance of eye vs. underpart phenotypes may reflect ecological context of host-parasite interaction: yellow eyes are conspicuous from the typical direction of host arrival (from above), whereas barred underparts are poorly visible (being visually blocked by the upper part of the cuckoo's body). This visual constraint may reduce usefulness of barred underparts as a reliable recognition cue under a typical situation near host nests. We propose a novel hypothesis that recognition cues for enemy detection can vary in a context-dependent manner (e.g., depending on whether the enemy is approached from below or from above). Further we suggest a particular cue can trigger fear reactions (escape) in some hosts/populations whereas the same cue can trigger aggression (attack) in other hosts/populations depending on presence/absence of dangerous enemies that are phenotypically similar to brood parasites and costs and benefits associated with particular host responses. PMID:22624031

  20. Host responses to interspecific brood parasitism: a by-product of adaptations to conspecific parasitism?

    PubMed Central

    2014-01-01

    Background Why have birds evolved the ability to reject eggs? Typically, foreign egg discrimination is interpreted as evidence that interspecific brood parasitism (IP) has selected for the host’s ability to recognize and eliminate foreign eggs. Fewer studies explore the alternative hypothesis that rejection of interspecific eggs is a by-product of host defenses, evolved against conspecific parasitism (CP). We performed a large scale study with replication across taxa (two congeneric Turdus thrushes), space (populations), time (breeding seasons), and treatments (three types of experimental eggs), using a consistent design of egg rejection experiments (n?=?1057 nests; including controls), in areas with potential IP either present (Europe; native populations) or absent (New Zealand; introduced populations). These comparisons benefited from the known length of allopatry (one and a half centuries), with no gene flow between native and introduced populations, which is rarely available in host-parasite systems. Results Hosts rejected CP at unusually high rates for passerines (up to 60%). CP rejection rates were higher in populations with higher conspecific breeding densities and no risks of IP, supporting the CP hypothesis. IP rejection rates did not covary geographically with IP risk, contradicting the IP hypothesis. High egg rejection rates were maintained in the relatively long-term isolation from IP despite non-trivial rejection costs and errors. Conclusions These egg rejection patterns, combined with recent findings that these thrushes are currently unsuitable hosts of the obligate parasitic common cuckoo (Cuculus canorus), are in agreement with the hypothesis that the rejection of IP is a by-product of fine-tuned egg discrimination evolved due to CP. Our study highlights the importance of considering both IP and CP simultaneously as potential drivers in the evolution of egg discrimination, and illustrates how populations introduced to novel ecological contexts can provide critical insights into brood parasite-host coevolution. PMID:24834103

  1. Behavioral Ecology Vol. 12 No. 1: 3140 Host activity and the risk of nest parasitism by

    E-print Network

    Martin, Thomas E.

    hosts: dusky flycatchers (Empidonax oberholseri), warbling vireos (Vireo gilvus), yellow warblers parasitism, brown-headed cowbird (Molothrus ater), dusky flycatcher (Empidonax oberholseri), host behaviors

  2. Do parasitic trematode cercariae demonstrate a preference for susceptible host species?

    PubMed

    Sears, Brittany F; Schlunk, Andrea D; Rohr, Jason R

    2012-01-01

    Many parasites are motile and exhibit behavioural preferences for certain host species. Because hosts can vary in their susceptibility to infections, parasites might benefit from preferentially detecting and infecting the most susceptible host, but this mechanistic hypothesis for host-choice has rarely been tested. We evaluated whether cercariae (larval trematode parasites) prefer the most susceptible host species by simultaneously presenting cercariae with four species of tadpole hosts. Cercariae consistently preferred hosts in the following order: Anaxyrus (?=?Bufo) terrestris (southern toad), Hyla squirella (squirrel tree frog), Lithobates (?=?Rana) sphenocephala (southern leopard frog), and Osteopilus septentrionalis (Cuban tree frog). These host species varied in susceptibility to cercariae in an order similar to their attractiveness with a correlation that approached significance. Host attractiveness to parasites also varied consistently and significantly among individuals within a host species. If heritable, this individual-level host variation would represent the raw material upon which selection could act, which could promote a Red Queen "arms race" between host cues and parasite detection of those cues. If, in general, motile parasites prefer to infect the most susceptible host species, this phenomenon could explain aggregated distributions of parasites among hosts and contribute to parasite transmission rates and the evolution of virulence. Parasite preferences for hosts belie the common assumption of disease models that parasites seek and infect hosts at random. PMID:23272084

  3. RESEARCH ARTICLE Open Access The effect of host social system on parasite

    E-print Network

    Alvarez, Nadir

    RESEARCH ARTICLE Open Access The effect of host social system on parasite population genetic structure of a parasite, and consequently its ability to adapt to a given host, is strongly linked to its own life history as well as the life history of its host. While the effects of parasite life history

  4. Host-parasite relatedness shown by protein fingerprinting in a brood parasitic bird.

    PubMed

    Andersson, M; Ahlund, M

    2000-11-21

    Brood parasitism as an alternative female breeding tactic is particularly common in ducks, where hosts often receive eggs laid by parasitic females of the same species and raise their offspring. Herein, we test several aspects of a kin selection explanation for this phenomenon in goldeneye ducks (Bucephala clangula) by using techniques of egg albumen sampling and statistical bandsharing analysis based on resampling. We find that host and primary parasite are indeed often related, with mean r = 0.13, about as high as between first cousins. Relatedness to the host is higher in nests where a parasite lays several eggs than in those where she lays only one. Returning young females parasitize their birth nestmates (social mothers or sisters, which are usually also their genetic mothers and sisters) more often than expected by chance. Such adult relatives are also observed together in the field more often than expected and for longer periods than other females. Relatedness and kin discrimination, which can be achieved by recognition of birth nestmates, therefore play a role in these tactics and probably influence their success. PMID:11050150

  5. Social hackers: integration in the host chemical recognition system by a paper wasp social parasite.

    PubMed

    Turillazzi, S; Sledge, M F; Dani, F R; Cervo, R; Massolo, A; Fondelli, L

    2000-04-01

    Obligate social parasites in the social insects have lost the worker caste and the ability to establish nests. As a result, parasites must usurp a host nest, overcome the host recognition system, and depend on the host workers to rear their offspring. We analysed cuticular hydrocarbon profiles of live parasite females of the paper wasp social parasite Polistes sulcifer before and after usurpation of host nests, using the non-destructive technique of solid-phase micro-extraction. Our results reveal that hydrocarbon profiles of parasites change after usurpation of host nests to match the cuticular profile of the host species. Chemical evidence further shows that the parasite queen changes the odour of the nest by the addition of a parasite-specific hydrocarbon. We discuss the possible role of this in the recognition and acceptance of the parasite and its offspring in the host colony. PMID:10840803

  6. Petromyzon marinus (Petromyzontidae), an unusual host for helminth parasites in western Europe.

    PubMed

    Gérard, Claudia; Verrez-Bagnis, Véronique; Jérôme, Marc; Lasne, Emilien

    2015-04-01

    The sea lamprey Petromyzon marinus, which is among the most phylogenetically ancient vertebrates, is a hematophagous ectoparasite that feeds on vertebrates and is considered vulnerable in Europe but is a pest in the North American Great Lakes. We conducted a literature review of helminth parasites of P. marinus and investigated postmetamorphic lampreys sampled in rivers and northeast Atlantic coastal waters (western France) during spawning migration. Based on the literature review, 16 helminth taxa have been recorded in P. marinus, among them 14 in North America but only 2 in Europe, with no species in common between these areas. Specific parasites are lacking, and helminth parasites recorded in P. marinus are mostly opportunistic and are trophically transmitted to fish hosts with both extremely low prevalence and mean intensity. Thus, P. marinus seems an unusual host that is probably infected through accidental ingestion of parasites by microphagous larvae (ammocoetes) and/or hematophagous postmetamorphs. Our field study supports this hypothesis, since only a single third-stage larva of Anisakis simplex sensu stricto was found in 2 postmetamorphic P. marinus among the 115 individuals dissected. This opportunistic, trophically transmitted, and cosmopolitan nematode species has never been recorded in North American sea lampreys and only once in Galician rivers (southern Europe). Infestation pathways of P. marinus by A. simplex are proposed vis-à-vis the feeding strategy of postmetamorphs and fish host species which potentially harbor anisakid larvae in their musculature. More generally, the complexity of biotic interactions is discussed considering P. marinus both as a host for helminth parasites and as a parasite for hosts such as fish and mammals, which are also potential predators of sea lamprey. PMID:25850404

  7. ALTERNATIVELY ACTIVATED MACROPHAGES ACCUMULATE AT THE HOST PARASITE INTERFACE AND CONTRIBUTE TO PROTECTION AGAINST A NEMATODE PARASITE.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms leading to host protection against intestinal nematode parasites are little understood, although physiological changes in the intestines are sighted as primary host-defense mechanisms. The memory response to Heligmosomoides polygyrus, a natural murine gastrointestinal helminth parasi...

  8. Differences in parasite susceptibility and costs of resistance between naturally exposed and unexposed host populations.

    PubMed

    Hasu, T; Benesh, D P; Valtonen, E T

    2009-04-01

    It is generally assumed that resistance to parasitism entails costs. Consequently, hosts evolving in the absence of parasites are predicted to invest less in costly resistance mechanisms than hosts consistently exposed to parasites. This prediction has, however, rarely been tested in natural populations. We studied the susceptibility of three naïve, three parasitized and one recently isolated Asellus aquaticus isopod populations to an acanthocephalan parasite. We found that parasitized populations, with the exception of the isopod population sympatric with the parasite strain used, were less susceptible to the parasite than the naïve populations. Exposed but uninfected (resistant) isopods from naïve populations, but not from parasitized populations, exhibited greater mortality than controls, implying that resistance entails survival costs primarily for naïve isopods. These results suggest that parasites can drive the evolution of host resistance in the wild, and that co-existence with parasites may increase the cost-effectiveness of defence mechanisms. PMID:19228272

  9. The effect of landscape heterogeneity on host–parasite dynamics

    Microsoft Academic Search

    Min Su; Wenlong Li; Zizhen Li; Fengpan Zhang; Cang Hui

    2009-01-01

    Environmental heterogeneity has been shown to have a profound effect on population dynamics and biological invasions, yet\\u000a the effect of its spatial structure on the dynamics of disease invasion in a spatial host–parasite system has received little\\u000a attention. Here we explore the effect of environment heterogeneity using the pair approximation and the stochastic spatially\\u000a explicit simulation in which the lost

  10. Pollination niche overlap between a parasitic plant and its host

    Microsoft Academic Search

    Jeff Ollerton; Adrian Stott; Emma Allnutt; Sam Shove; Chloe Taylor; Ellen Lamborn

    2007-01-01

    Niche theory predicts that species which share resources should evolve strategies to minimise competition for those resources,\\u000a or the less competitive species would be extirpated. Some plant species are constrained to co-occur, for example parasitic\\u000a plants and their hosts, and may overlap in their pollination niche if they flower at the same time and attract the same pollinators.\\u000a Using field

  11. Parasite infection drives the evolution of state-dependent dispersal of the host.

    PubMed

    Iritani, Ryosuke; Iwasa, Yoh

    2014-03-01

    Dispersal plays a fundamental role in shaping the ecological processes such as host-parasite interactions, and the understanding of host dispersal tendency leads to that of parasites. Here, we present the result of our study on how the evolutionarily stable dispersal of a host would depend on parasite infection, considering kin competition among neighbours. We show that the evolving dispersal rate might be higher for susceptible than for infected individuals (S-biased dispersal) or vice versa (I-biased dispersal). S-biased dispersal is favoured by strong virulence affecting competitive ability, by high rate of parasite release during dispersal, and by low virulence for infected emigrants (i.e. low virulence affecting dispersal ability), whereas I-biased dispersal is favoured in the opposite situation. We also discuss population structure or between-deme genetic differentiation of the host measured with Wright's FST. In I-biased dispersal, between-deme genetic differentiation decreases with the infection rate, while in S-biased dispersal, genetic differentiation increases with infection rate. PMID:24215887

  12. Host activity and the risk of nest parasitism by brown-headed cowbirds

    Microsoft Academic Search

    Alison J. Banks; Thomas E. Martin

    2001-01-01

    Proportions of nests parasitized by brown-headed cowbirds (Molothrus ater) vary greatly among host species, but factors under- lying this variation remain poorly understood. Cowbirds are believed to find nests by watching host behavior. We tested the hypothesis that the activity of hosts during nest building correlates with the probability of parasitism among and within four sympatric hosts: dusky flycatchers (Empidonax

  13. Leishmania development in sand flies: parasite-vector interactions overview

    PubMed Central

    2012-01-01

    Leishmaniases are vector-borne parasitic diseases with 0.9 – 1.4 million new human cases each year worldwide. In the vectorial part of the life-cycle, Leishmania development is confined to the digestive tract. During the first few days after blood feeding, natural barriers to Leishmania development include secreted proteolytic enzymes, the peritrophic matrix surrounding the ingested blood meal and sand fly immune reactions. As the blood digestion proceeds, parasites need to bind to the midgut epithelium to avoid being excreted with the blood remnant. This binding is strictly stage-dependent as it is a property of nectomonad and leptomonad forms only. While the attachment in specific vectors (P. papatasi, P. duboscqi and P. sergenti) involves lipophosphoglycan (LPG), this Leishmania molecule is not required for parasite attachment in other sand fly species experimentally permissive for various Leishmania. During late-stage infections, large numbers of parasites accumulate in the anterior midgut and produce filamentous proteophosphoglycan creating a gel-like plug physically obstructing the gut. The parasites attached to the stomodeal valve cause damage to the chitin lining and epithelial cells of the valve, interfering with its function and facilitating reflux of parasites from the midgut. Transformation to metacyclic stages highly infective for the vertebrate host is the other prerequisite for effective transmission. Here, we review the current state of knowledge of molecular interactions occurring in all these distinct phases of parasite colonization of the sand fly gut, highlighting recent discoveries in the field. PMID:23206339

  14. Marine protected areas facilitate parasite populations among four fished host species of central Chile.

    PubMed

    Wood, Chelsea L; Micheli, Fiorenza; Fernández, Miriam; Gelcich, Stefan; Castilla, Juan Carlos; Carvajal, Juan

    2013-11-01

    1. Parasites comprise a substantial proportion of global biodiversity and exert important ecological influences on hosts, communities and ecosystems, but our knowledge of how parasite populations respond to human impacts is in its infancy. 2. Here, we present the results of a natural experiment in which we used a system of highly successful marine protected areas and matched open-access areas in central Chile to assess the influence of fishing-driven biodiversity loss on parasites of exploited fish and invertebrate hosts. We measured the burden of gill parasites for two reef fishes (Cheilodactylus variegatus and Aplodactylus punctatus), trematode parasites for a keyhole limpet (Fissurella latimarginata), and pinnotherid pea crab parasites for a sea urchin (Loxechinus albus). We also measured host density for all four hosts. 3. We found that nearly all parasite species exhibited substantially greater density (# parasites m(-2)) in protected than in open-access areas, but only one parasite species (a gill monogenean of C. variegatus) was more abundant within hosts collected from protected relative to open-access areas. 4. These data indicate that fishing can drive declines in parasite abundance at the parasite population level by reducing the availability of habitat and resources for parasites, but less commonly affects the abundance of parasites at the infrapopulation level (within individual hosts). 5. Considering the substantial ecological role that many parasites play in marine communities, fishing and other human impacts could exert cryptic but important effects on marine community structure and ecosystem functioning via reductions in parasite abundance. PMID:23855822

  15. Host cues induce egg hatching and pre-parasitic foraging behaviour in the mosquito parasitic nematode, Strelkovimermis spiculatus

    E-print Network

    . Second instar mosquito larvae induced significantly higher hatching rates than any other stages of the mosquito larva where they avoid the host immune system (Shamseldean and Platzer, 1989; Shamseldean et alHost cues induce egg hatching and pre-parasitic foraging behaviour in the mosquito parasitic

  16. Parasite diversity declines with host evolutionary distinctiveness: a global analysis of carnivores.

    PubMed

    Huang, Shan; Drake, John M; Gittleman, John L; Altizer, Sonia

    2015-03-01

    Evolutionarily distinctive host lineages might harbor fewer parasite species because they have fewer opportunities for parasite sharing than hosts having extant close relatives, or because diverse parasite assemblages promote host diversification. We evaluate these hypotheses using data from 930 species of parasites reported to infect free-living carnivores. We applied nonparametric richness estimators to estimate parasite diversity among well-sampled carnivore species and assessed how well host evolutionary distinctiveness, relative to other biological and environmental factors, explained variation in estimated parasite diversity. Species richness estimates indicate that the current published literature captures less than 50% of the true parasite diversity for most carnivores. Parasite species richness declined with evolutionary distinctiveness of carnivore hosts (i.e., length of terminal ranches of the phylogeny) and increased with host species body mass and geographic range area. We found no support for the hypothesis that hosts from more diverse lineages support a higher number of generalist parasites, but we did find evidence that parasite assemblages might have driven host lineage diversification through mechanisms linked to sexual selection. Collectively, this work provides strong support for host evolutionary history being an essential predictor of parasite diversity, and offers a simple model for predicting parasite diversity in understudied carnivore species. PMID:25639279

  17. Does interspecies hybridization affect the host specificity of parasites in cyprinid fish?

    PubMed Central

    2013-01-01

    Background Host specificity varies among parasite species. Some parasites are strictly host-specific, others show a specificity for congeneric or non-congeneric phylogenetically related host species, whilst some others are non-specific (generalists). Two cyprinids, Cyprinus carpio and Carassius gibelio, plus their respective hybrids were investigated for metazoan parasites. The aim of this study was to analyze whether interspecies hybridization affects host specificity. The different degrees of host specificity within a phylogenetic framework were taken into consideration (i.e. strict specialist, intermediate specialist, and intermediate generalist). Methods Fish were collected during harvesting the pond and identified using meristic traits and molecular markers. Metazoan parasite species were collected. Host specificity of parasites was determined using the following classification: strict specialist, intermediate specialist, intermediate generalist and generalist. Parasite species richness was compared between parental species and their hybrids. The effect of host species on abundance of parasites differing in host specificity was tested. Results Hybrids harbored more different parasite species but their total parasite abundance was lower in comparison with parental species. Interspecies hybridization affected the host specificity of ecto- and endoparasites. Parasite species exhibiting different degrees of host specificity for C. carpio and C. gibelio were also present in hybrids. The abundance of strict specialists of C. carpio was significantly higher in parental species than in hybrids. Intermediate generalists parasitizing C. carpio and C. gibelio as two phylogenetically closely related host species preferentially infected C. gibelio when compared to C. carpio, based on prevalence and maximum intensity of infection. Hybrids were less infected by intermediate generalists when compared to C. gibelio. Conclusions This finding does not support strict co-adaptation between host and parasite genotypes resulting in narrow host specificity, and showed that hybrid genotypes are susceptible to parasites exhibiting host specificity. The immune mechanisms specific to parental species might represent potential mechanisms explaining the low abundance of parasites in C. gibelio x C. carpio hybrids. PMID:23587287

  18. Manipulative parasites may not alter intermediate host distribution but still enhance their transmission: field evidence for increased vulnerability to definitive hosts and non-host predator avoidance.

    PubMed

    Lagrue, C; Güvenatam, A; Bollache, L

    2013-02-01

    Behavioural alterations induced by parasites in their intermediate hosts can spatially structure host populations, possibly resulting in enhanced trophic transmission to definitive hosts. However, such alterations may also increase intermediate host vulnerability to non-host predators. Parasite-induced behavioural alterations may thus vary between parasite species and depend on each parasite definitive host species. We studied the influence of infection with 2 acanthocephalan parasites (Echinorhynchus truttae and Polymorphus minutus) on the distribution of the amphipod Gammarus pulex in the field. Predator presence or absence and predator species, whether suitable definitive host or dead-end predator, had no effect on the micro-distribution of infected or uninfected G. pulex amphipods. Although neither parasite species seem to influence intermediate host distribution, E. truttae infected G. pulex were still significantly more vulnerable to predation by fish (Cottus gobio), the parasite's definitive hosts. In contrast, G. pulex infected with P. minutus, a bird acanthocephalan, did not suffer from increased predation by C. gobio, a predator unsuitable as host for P. minutus. These results suggest that effects of behavioural changes associated with parasite infections might not be detectable until intermediate hosts actually come in contact with predators. However, parasite-induced changes in host spatial distribution may still be adaptive if they drive hosts into areas of high transmission probabilities. PMID:23068018

  19. Use of Transgenic Parasites and Host Reporters To Dissect Events That Promote Interleukin-12 Production during Toxoplasmosis

    PubMed Central

    Christian, David A.; Koshy, Anita A.; Reuter, Morgan A.; Betts, Michael R.; Boothroyd, John C.

    2014-01-01

    The intracellular parasite Toxoplasma gondii has multiple strategies to alter host cell function, including the injection of rhoptry proteins into the cytosol of host cells as well as bystander populations, but the consequence of these events is unclear. Here, a reporter system using fluorescent parasite strains that inject Cre recombinase with their rhoptry proteins (Toxoplasma-Cre) was combined with Ai6 Cre reporter mice to identify cells that have been productively infected, that have been rhoptry injected but lack the parasite, or that have phagocytosed T. gondii. The ability to distinguish these host-parasite interactions was then utilized to dissect the events that lead to the production of interleukin-12 p40 (IL-12p40), which is required for resistance to T. gondii. In vivo, the use of invasion-competent or invasion-inhibited (phagocytosed) parasites with IL-12p40 (YET40) reporter mice revealed that dendritic cell (DC) and macrophage populations that phagocytose the parasite or are infected can express IL-12p40 but are not the major source, as larger numbers of uninfected cells secrete this cytokine. Similarly, the use of Toxoplasma-Cre parasite strains indicated that dendritic cells and inflammatory monocytes untouched by the parasite and not cells injected by the parasite are the primary source of IL-12p40. These results imply that a soluble host or parasite factor is responsible for the bulk of IL-12p40 production in vivo, rather than cellular interactions with T. gondii that result in infection, infection and clearance, injection of rhoptry proteins, or phagocytosis of the parasite. PMID:25024368

  20. Extracellular Vesicles from Parasitic Helminths Contain Specific Excretory/Secretory Proteins and Are Internalized in Intestinal Host Cells

    PubMed Central

    Marcilla, Antonio; Trelis, María; Cortés, Alba; Sotillo, Javier; Cantalapiedra, Fernando; Minguez, María Teresa; Valero, María Luz; Sánchez del Pino, Manuel Mateo; Muñoz-Antoli, Carla; Toledo, Rafael; Bernal, Dolores

    2012-01-01

    The study of host-parasite interactions has increased considerably in the last decades, with many studies focusing on the identification of parasite molecules (i.e. surface or excretory/secretory proteins (ESP)) as potential targets for new specific treatments and/or diagnostic tools. In parallel, in the last few years there have been significant advances in the field of extracellular vesicles research. Among these vesicles, exosomes of endocytic origin, with a characteristic size ranging from 30–100 nm, carry several atypical secreted proteins in different organisms, including parasitic protozoa. Here, we present experimental evidence for the existence of exosome-like vesicles in parasitic helminths, specifically the trematodes Echinostoma caproni and Fasciola hepatica. These microvesicles are actively released by the parasites and are taken up by host cells. Trematode extracellular vesicles contain most of the proteins previously identified as components of ESP, as confirmed by proteomic, immunogold labeling and electron microscopy studies. In addition to parasitic proteins, we also identify host proteins in these structures. The existence of extracellular vesicles explains the secretion of atypical proteins in trematodes, and the demonstration of their uptake by host cells suggests an important role for these structures in host-parasite communication, as described for other infectious agents. PMID:23029346

  1. Different meal, same flavor: cospeciation and host switching of haemosporidian parasites in some non-passerine birds

    PubMed Central

    2014-01-01

    Background Previous studies have shown that haemosporidian parasites (Haemoproteus (Parahaemoproteus) and Plasmodium) infecting passerine birds have an evolutionary history of host switching with little cospeciation, in particular at low taxonomic levels (e.g., below the family level), which is suggested as the main speciation mechanism of this group of parasites. Recent studies have characterized diverse clades of haemosporidian parasites (H. (Haemoproteus) and H. (Parahaemoproteus)) infecting non-passerine birds (e.g., Columbiformes, Pelecaniiformes). Here, we explore the cospeciation history of H. (Haemoproteus) and H. (Parahaemoproteus) parasites with their non-passerine hosts. Methods We sequenced the mtDNA cyt b gene of both haemosporidian parasites and their avian non-passerine hosts. We built Bayesian phylogenetic hypotheses and created concensus phylograms that were subsequently used to conduct cospeciation analyses. We used both a global cospeciation test, PACo, and an event-cost algorithm implemented in CoRe-PA. Results The global test suggests that H. (Haemoproteus) and H. (Parahaemoproteus) parasites have a diversification history dominated by cospeciation events particularly at the family level. Host-parasite links from the PACo analysis show that host switching events are common within families (i.e., among genera and among species within genera), and occasionally across different orders (e.g., Columbiformes to Pelecaniiformes). Event-cost analyses show that haemosporidian coevolutionary history is dominated by host switching and some codivergence, but with duplication events also present. Genetic lineages unique to raptor species (e.g., FALC11) commonly switch between Falconiformes and Strigiformes. Conclusions Our results corroborate previous findings that have detected a global cospeciation signal at the family taxonomic level, and they also support a history of frequent switching closer to the tips of the host phylogeny, which seems to be the main diversification mechanism of haemosporidians. Such dynamic host-parasite associations are relevant to the epidemiology of emerging diseases because low parasite host specificity is a prerequisite for the emergence of novel diseases. The evidence on host distributions suggests that haemosporidian parasites have the potential to rapidly develop novel host-associations. This pattern has also been recorded in fish-monogenean interactions, suggesting a general diversification mechanism for parasites when host choice is not restricted by ecological barriers. PMID:24957563

  2. Inferring host range dynamics from comparative data: the protozoan parasites of new world monkeys.

    PubMed

    Waxman, David; Weinert, Lucy A; Welch, John J

    2014-07-01

    Uncovering the ecological determinants of parasite host range is a central goal of comparative parasitology and infectious disease ecology. But while parasites are often distributed nonrandomly across the host phylogeny, such patterns are difficult to interpret without a genealogy for the parasite samples and without knowing what sorts of ecological dynamics might lead to what sorts of nonrandomness. We investigated inferences from comparative data, using presence/absence records from protozoan parasites of the New World monkeys. We first demonstrate several distinct types of phylogenetic signal in these data, showing, for example, that parasite species are clustered on the host tree and that closely related host species harbor similar numbers of parasite species. We then show that all of these patterns can be generated by a single, simple dynamical model, in which parasite host range changes more rapidly than host speciation/extinction and parasites preferentially colonize uninfected host species that are closely related to their existing hosts. Fitting this model to data, we then estimate its parameters. Finally, we caution that quite different ecological processes can lead to similar signatures but show how phylogenetic variation in host susceptibility can be distinguished from a tendency for parasites to colonize closely related hosts. Our new process-based analyses, which estimate meaningful parameters, should be useful for inferring the determinants of parasite host range and transmission success. PMID:24921601

  3. Dynamic transmission, host quality, and population structure in a multihost parasite of bumblebees.

    PubMed

    Ruiz-González, Mario X; Bryden, John; Moret, Yannick; Reber-Funk, Christine; Schmid-Hempel, Paul; Brown, Mark J F

    2012-10-01

    The evolutionary ecology of multihost parasites is predicted to depend upon patterns of host quality and the dynamics of transmission networks. Depending upon the differences in host quality and transmission asymmetries, as well as the balance between intra- and interspecific transmission, the evolution of specialist or generalist strategies is predicted. Using a trypanosome parasite of bumblebees, we ask how host quality and transmission networks relate to parasite population structure across host species, and thus the potential for the evolution of specialist strains adapted to different host species. Host species differed in quality, with parasite growth varying across host species. Highly asymmetric transmission networks, together with differences in host quality, likely explain local population structure of the parasite across host species. However, parasite population structure across years was highly dynamic, with parasite populations varying significantly from one year to the next within individual species at a given site. This suggests that, while host quality and transmission may provide the opportunity for short-term host specialization by the parasite, repeated bottlenecking of the parasite, in combination with its own reproductive biology, overrides these smaller scale effects, resulting in the evolution of a generalist parasite. PMID:23025597

  4. Accelerated evolution of schistosome genes coding for proteins located at the host-parasite interface.

    PubMed

    Philippsen, Gisele S; Wilson, R Alan; DeMarco, Ricardo

    2015-02-01

    Study of proteins located at the host-parasite interface in schistosomes might provide clues about the mechanisms utilized by the parasite to escape the host immune system attack. Micro-exon gene (MEG) protein products and venom allergen-like (VAL) proteins have been shown to be present in schistosome secretions or associated with glands, which led to the hypothesis that they are important components in the molecular interaction of the parasite with the host. Phylogenetic and structural analysis of genes and their transcripts in these two classes shows that recent species-specific expansion of gene number for these families occurred separately in three different species of schistosomes. Enrichment of transposable elements in MEG and VAL genes in Schistosoma mansoni provides a credible mechanism for preferential expansion of gene numbers for these families. Analysis of the ratio between synonymous and nonsynonymous substitution rates (dN/dS) in the comparison between schistosome orthologs for the two classes of genes reveals significantly higher values when compared with a set of a control genes coding for secreted proteins, and for proteins previously localized in the tegument. Additional analyses of paralog genes indicate that exposure of the protein to the definitive host immune system is a determining factor leading to the higher than usual dN/dS values in those genes. The observation that two genes encoding S. mansoni vaccine candidate proteins, known to be exposed at the parasite surface, also display similar evolutionary dynamics suggests a broad response of the parasite to evolutionary pressure imposed by the definitive host immune system. PMID:25567667

  5. 1 Introduction New developments in the study of host-parasite phylogenies have given insights into

    E-print Network

    Barber, Stuart

    1 Introduction New developments in the study of host-parasite phylogenies have given insights of an association between hosts and parasites (Page, 2003). However, there are no reliable statistical tests phyloge- nies imply a lack of cospeciation. Parasites have long been used to make infer- ences about

  6. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum

    E-print Network

    Suresh, Subra

    Host cell deformability is linked to transmission in the human malaria parasite Plasmodium the majority of parasites proliferate asexu- ally in red blood cells, a small fraction of parasites undergo of asexual red blood cell stage parasites has been investigated in great detail. These studies have

  7. Host and parasite recruitment correlated at a regional scale.

    PubMed

    Byers, James E; Rogers, Tanya L; Grabowski, Jonathan H; Hughes, A Randall; Piehler, Michael F; Kimbro, David L

    2014-03-01

    Drivers of large-scale variability in parasite prevalence are not well understood. For logistical reasons, explorations of spatial patterns in parasites are often performed as observational studies. However, to understand the mechanisms that underlie these spatial patterns, standardized and controlled comparisons are needed. Here, we examined spatial variability in infection of an important fishery species and ecosystem engineer, the oyster (Crassostrea virginica) by its pea crab parasite (Zaops ostreus) across 700 km of the southeastern USA coastline. To minimize the influence of host genetics on infection patterns, we obtained juvenile oysters from a homogeneous source stock and raised them in situ for 3 months at multiple sites with similar environmental characteristics. We found that prevalence of pea crab infection varied between 24 and 73% across sites, but not systematically across latitude. Of all measured environmental variables, oyster recruitment correlated most strongly (and positively) with pea crab infection, explaining 92% of the variability in infection across sites. Our data ostensibly suggest that regional processes driving variation in oyster recruitment similarly affect the recruitment of one of its common parasites. PMID:24193001

  8. Using parasite databases to identify potential nontarget hosts of biological control organisms

    Microsoft Academic Search

    John M. McPartland; Judith Nicholson

    2003-01-01

    Biological control organisms undergo host range studies to identify potential nontarget hosts. The selection criterion for host range studies is primarily based on the target host's taxonomy. Thus, inaccuracies in host taxonomy may compromise the validity of host range studies. We propose that biocontrol researchers use internet?available databases to identify potential nontarget organisms that share parasites (biotrophic pathogens and pests)

  9. Host and parasite life history interplay to yield divergent population genetic structures in two ectoparasites living on the same bat species.

    PubMed

    van Schaik, J; Dekeukeleire, D; Kerth, G

    2015-05-01

    Host-parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing-mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing-mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing-mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits. PMID:25809613

  10. Host-parasite coevolutionary dynamics with generalized success/failure infection genetics.

    PubMed

    Engelstädter, Jan

    2015-05-01

    Host-parasite infection genetics can be more complex than envisioned by classic models such as the gene-for-gene or matching-allele models. By means of a mathematical model, I investigate the coevolutionary dynamics arising from a large set of generalized models of infection genetics in which hosts are either fully resistant or fully susceptible to a parasite, depending on the genotype of both individuals. With a single diploid interaction locus in the hosts, many of the infection genetic models produce stable or neutrally stable genotype polymorphisms. However, only a few models, which are all different versions of the matching-allele model, lead to sustained cycles of genotype frequency fluctuations in both interacting species ("Red Queen" dynamics). By contrast, with two diploid interaction loci in the hosts, many infection genetics models that cannot be classified as one of the standard infection genetics models produce Red Queen dynamics. Sexual versus asexual reproduction and, in the former case, the rate of recombination between the interaction loci have a large impact on whether Red Queen dynamics arise from a given infection genetics model. This may have interesting but as yet unexplored implications with respect to the Red Queen hypothesis for the evolution of sex. PMID:25905512

  11. Predator-prey interaction coupled by parasitic infection: Limit cycles and chaotic behavior

    Microsoft Academic Search

    Y. Lenbury; S. Rattanamongkonkul; N. Tumrasvin; S. Amornsamankul

    1999-01-01

    Several extensive studies have been carried out to document the ability of parasites to alter the behavior of infected hosts [13?]. In this paper, we discuss the population dynamic consequences of parasite-induced changes in the behavior of the two interacting species in a predator-prey system, by means of the development and analysis of mathematical models. First, in order to investigate

  12. Brood parasitism by brown-headed cowbirds and the expression of sexual characters in their hosts.

    PubMed

    Garamszegi, László Zsolt; Avilés, Jesús Miguel

    2005-03-01

    Interspecific brood parasites may use the secondary sexual characters of the hosts to decide which species to parasitize. Hence, species with conspicuous and well-recognisable traits may have higher chances of becoming parasitised. Using North American birds and their frequent brood parasite, the brown-headed cowbird Molothrus ater, we tested the relationship between features of song and plumage coloration of hosts and the frequency of brood parasitism while controlling for several potentially confounding factors. Relying on two sets of analysis, we focused separately on the evolutionary view of the parasite and the host. From the cowbird's perspective, we found that males of heavily parasitized species posit songs with low syllable repertoire size, shorter inter-song interval and have brighter plumage. From the host's perspective, a phylogenetic analysis revealed similar associations for features of song, but not for plumage characteristics that were unrelated to brood parasitism. These comparative findings may imply that brood parasites choose novel hosts based on heterospecific signals; and/or host species working against sexual selection escape from brood parasitism by evolving inconspicuous sexual signals. Although our data do not allow us to distinguish between these two evolutionary scenarios, our results suggest that selection factors mediating cowbird parasitism via host recognition by heterospecific signals may have an important role in the evolutionary relationship between brood parasites and their hosts. PMID:15647904

  13. Differential impact of a shared nematode parasite on two gamebird hosts: implications for apparent competition.

    PubMed

    Tompkins, D M; Greenman, J V; Hudson, P J

    2001-02-01

    If the deleterious effects of non-specific parasites are greater on vulnerable host species than on reservoir host species then exclusion of the vulnerable host through apparent competition is more likely. Evidence suggests that such a mechanism occurs in interactions between the ring-necked pheasant (Phasianus colchicus), the grey partridge (Perdix perdix), and their shared caecal nematode Heterakis gallinarum. Modelling of the system predicts that the reduced parasite impact on the pheasant compared to the partridge results in the force of infection transmitted from pheasants to partridges being sufficient to cause partridge exclusion. Since the parasite impacts are currently estimated from correlational work, controlled infections were conducted to experimentally compare the impact of H. gallinarum on the two hosts and verify cause and effect. While challenged partridges showed reduced mass gain, decreased food consumption, and impaired caecal activity, in comparison to controls, the only detectable effect of parasite challenge on the pheasant was impaired caecal activity. The impact of H. gallinarum on challenged partridges conforms with previous correlational data, supporting the prediction that parasite-mediated apparent competition with the ring-necked pheasant may result in grey partridge exclusion. However, the observed decrease in the caecal activity of challenged pheasants could imply that H. gallinarum may also have an impact on the fecundity and survival of pheasants in the wild, particularly if food is limiting. If this is the case, the associated decrease in the force of infection to which the partridge is exposed may be sufficient to change the model prediction from partridge exclusion to pheasant and partridge coexistence. PMID:11272650

  14. Disparate rates of molecular evolution in cospeciating hosts and parasites.

    PubMed

    Hafner, M S; Sudman, P D; Villablanca, F X; Spradling, T A; Demastes, J W; Nadler, S A

    1994-08-19

    DNA sequences for the gene encoding mitochondrial cytochrome oxidase I in a group of rodents (pocket gophers) and their ectoparasites (chewing lice) provide evidence for cospeciation and reveal different rates of molecular evolution in the hosts and their parasites. The overall rate of nucleotide substitution (both silent and replacement changes) is approximately three times higher in lice, and the rate of synonymous substitution (based on analysis of fourfold degenerate sites) is approximately an order of magnitude greater in lice. The difference in synonymous substitution rate between lice and gophers correlates with a difference of similar magnitude in generation times. PMID:8066445

  15. Do Parasitic Trematode Cercariae Demonstrate a Preference for Susceptible Host Species?

    E-print Network

    Rohr, Jason

    Do Parasitic Trematode Cercariae Demonstrate a Preference for Susceptible Host Species? Brittany F, but this mechanistic hypothesis for host-choice has rarely been tested. We evaluated whether cercariae (larval trematode parasites) prefer the most susceptible host species by simultaneously presenting cercariae

  16. Parasite-induced aggression and impaired contest ability in a fish host

    Microsoft Academic Search

    V N Mikheev; A F Pasternak; J Taskinen; E T Valtonen

    2010-01-01

    BACKGROUND: Success of trophically transmitted parasites depends to a great extent on their ability to manipulate their intermediate hosts in a way that makes them easier prey for target hosts. Parasite-induced behavioural changes are the most spectacular and diverse examples of manipulation. Most of the studies have been focused on individual behaviour of hosts including fish. We suggest that agonistic

  17. Early host-pathogen interactions in marine bivalves: Evidence that the alveolate parasite Perkinsus marinus infects through the oyster mantle during

    E-print Network

    Allam, Bassem

    feeding. In this study, we investigated the mechanisms of oyster host colonization by the alveolate of the most studied diseases of mollusks is Perkinsosis or Dermo disease which involves the eastern Oyster marinus infects through the oyster mantle during rejection of pseudofeces Bassem Allam a, , Wade E. Carden

  18. A social parasite evolved reproductive isolation from its fungus-growing ant host in sympatry.

    PubMed

    Rabeling, Christian; Schultz, Ted R; Pierce, Naomi E; Bacci, Maurício

    2014-09-01

    Inquiline social parasitic ant species exploit colonies of other ant species mainly by producing sexual offspring that are raised by the host. Ant social parasites and their hosts are often close relatives (Emery's rule), and two main hypotheses compete to explain the parasites' evolutionary origins: (1) the interspecific hypothesis proposes an allopatric speciation scenario for the parasite, whereas (2) the intraspecific hypothesis postulates that the parasite evolves directly from its host in sympatry [1-10]. Evidence in support of the intraspecific hypothesis has been accumulating for ants [3, 5, 7, 9-12], but sympatric speciation remains controversial as a general speciation mechanism for inquiline parasites. Here we use molecular phylogenetics to assess whether the socially parasitic fungus-growing ant Mycocepurus castrator speciated from its host Mycocepurus goeldii in sympatry. Based on differing patterns of relationship in mitochondrial and individual nuclear genes, we conclude that host and parasite occupy a temporal window in which lineage sorting has taken place in the mitochondrial genes but not yet in the nuclear alleles. We infer that the host originated first and that the parasite originated subsequently from a subset of the host species' populations, providing empirical support for the hypothesis that inquiline parasites can evolve reproductive isolation while living sympatrically with their hosts. PMID:25155509

  19. Indirect effects of parasitism: costs of infection to other individuals can be greater than direct costs borne by the host.

    PubMed

    Granroth-Wilding, Hanna M V; Burthe, Sarah J; Lewis, Sue; Herborn, Katherine A; Takahashi, Emi A; Daunt, Francis; Cunningham, Emma J A

    2015-07-22

    Parasitic infection has a direct physiological cost to hosts but may also alter how hosts interact with other individuals in their environment. Such indirect effects may alter both host fitness and the fitness of other individuals in the host's social network, yet the relative impact of direct and indirect effects of infection are rarely quantified. During reproduction, a host's social environment includes family members who may be in conflict over resource allocation. In such situations, infection may alter how resources are allocated, thereby redistributing the costs of parasitism between individuals. Here, we experimentally reduce parasite burdens of parent and/or nestling European shags (Phalacrocorax aristotelis) infected with Contracaecum nematodes in a factorial design, then simultaneously measure the impact of an individual's infection on all family members. We found no direct effect of infection on parent or offspring traits but indirect effects were detected in all group members, with both immediate effects (mass change and survival) and longer-term effects (timing of parents' subsequent breeding). Our results show that parasite infection can have a major impact on individuals other than the host, suggesting that the effect of parasites on population processes may be greater than previously thought. PMID:26156765

  20. Specific developmental pathways underlie host specificity in the parasitic plant Orobanche

    PubMed Central

    Hiscock, Simon

    2010-01-01

    Parasitic angiosperms are an ecologically and economically important group of plants. However our understanding of the basis for host specificity in these plants is embryonic. Recently we investigated host specificity in the parasitic angiosperm Orobanche minor, and demonstrated that this host generalist parasite comprises genetically defined races that are physiologically adapted to specific hosts. Populations occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota subsp. gummifer) respectively, showed distinct patterns of host specificity at various developmental stages, and a higher fitness on their natural hosts, suggesting these races are locally adapted. Here we discuss the implications of our findings from a broader perspective. We suggest that differences in signal responsiveness and perception by the parasite, as well as qualitative differences in signal production by the host, may elicit host specificity in this parasitic plant. Together with our earlier demonstration that these O. minor races are genetically distinct based on molecular markers, our recent data provide a snapshot of speciation in action, driven by host specificity. Indeed, host specificity may be an underestimated catalyst for speciation in parasitic plants generally. We propose that identifying host specific races using physiological techniques will complement conventional molecular marker-based approaches to provide a framework for delineating evolutionary relationships among cryptic host-specific parasitic plants. PMID:20081361

  1. A Trypanosoma brucei Kinesin Heavy Chain Promotes Parasite Growth by Triggering Host Arginase Activity

    PubMed Central

    De Muylder, Géraldine; Daulouède, Sylvie; Lecordier, Laurence; Uzureau, Pierrick; Morias, Yannick; Van Den Abbeele, Jan; Caljon, Guy; Hérin, Michel; Holzmuller, Philippe; Semballa, Silla; Courtois, Pierrette; Vanhamme, Luc; Stijlemans, Benoît; De Baetselier, Patrick; Barrett, Michael P.; Barlow, Jillian L.; McKenzie, Andrew N. J.; Barron, Luke; Wynn, Thomas A.; Beschin, Alain; Vincendeau, Philippe; Pays, Etienne

    2013-01-01

    Background In order to promote infection, the blood-borne parasite Trypanosoma brucei releases factors that upregulate arginase expression and activity in myeloid cells. Methodology/Principal findings By screening a cDNA library of T. brucei with an antibody neutralizing the arginase-inducing activity of parasite released factors, we identified a Kinesin Heavy Chain isoform, termed TbKHC1, as responsible for this effect. Following interaction with mouse myeloid cells, natural or recombinant TbKHC1 triggered SIGN-R1 receptor-dependent induction of IL-10 production, resulting in arginase-1 activation concomitant with reduction of nitric oxide (NO) synthase activity. This TbKHC1 activity was IL-4R?-independent and did not mirror M2 activation of myeloid cells. As compared to wild-type T. brucei, infection by TbKHC1 KO parasites was characterized by strongly reduced parasitaemia and prolonged host survival time. By treating infected mice with ornithine or with NO synthase inhibitor, we observed that during the first wave of parasitaemia the parasite growth-promoting effect of TbKHC1-mediated arginase activation resulted more from increased polyamine production than from reduction of NO synthesis. In late stage infection, TbKHC1-mediated reduction of NO synthesis appeared to contribute to liver damage linked to shortening of host survival time. Conclusion A kinesin heavy chain released by T. brucei induces IL-10 and arginase-1 through SIGN-R1 signaling in myeloid cells, which promotes early trypanosome growth and favors parasite settlement in the host. Moreover, in the late stage of infection, the inhibition of NO synthesis by TbKHC1 contributes to liver pathogenicity. PMID:24204274

  2. Interactions among four parasite species in an amphipod population from Patagonia.

    PubMed

    Rauque, C A; Semenas, L

    2013-03-01

    Parasites commonly share their hosts with specimens of the same or different parasite species, resulting in multiple parasites obtaining resources from the same host. This could potentially lead to conflicts between co-infecting parasites, especially at high infection intensities. In Pool Los Juncos (Patagonia, Argentina), the amphipod Hyalella patagonica is an intermediate host to three parasites that mature in birds (the acanthocephalan Pseudocorynosoma sp. and larval stages of two Cyclophyllidea cestodes), in addition to a microsporidian (Thelohania sp.), whose life cycle is unknown, but very likely to be monoxenous. The aim of this study was to describe interactions between these parasite species in their amphipod host population. Amphipods were collected monthly between June 2002 and January 2004 to assess parasite infection. Infection prevalence and mean intensity were greatest in larger male amphipods for all parasite species. We also found a positive association between Thelohania sp. and both Pseudocorynosoma sp. and Cyclophyllidea sp. 1 infections, though Pseudocorynosoma sp. and Cyclophyllidea sp. 1 were negatively associated with each other. We conclude that contrasting associations between parasite species may be associated with competition for both food intake and space in the haemocoel. PMID:22335997

  3. Host plant-related parasitism and host feeding activities of Diglyphus isaea (Hymenoptera: Eulophidae) on Liriomyza huidobrensis, Liriomyza sativae, and Liriomyza trifolii (Diptera: Agromyzidae).

    PubMed

    Musundire, Robert; Chabi-Olaye, Adenirin; Salifu, Daisy; Krüger, Kerstin

    2012-02-01

    Host plant species can affect the behavior and attributes of parasitoids, such as host searching, oviposition, and offspring fitness. In this study, parasitism, host feeding, and sex ratios of Diglyphus isaea (Walker) (Hymenoptera: Eulophidae) on Liriomyza huidobrensis (Blanchard), Liriomyza sativae Blanchard, and Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) larvae reared on Phaseolus vulgaris L., Pisum sativum L., Solanum lycopersicum L., and Vicia faba L. were determined. In no-choice tests, L. huidobrensis had the highest rate of parasitism when reared on P. vulgaris (46%), L. sativae when reared on V. faba (59%) and P. vulgaris (59%), and L. trifolii when reared on S. lycopersicum (68%). Host feeding in no-choice tests ranged between 2% and 36% and was highest on L. trifolii reared on V. faba. Results of choice tests showed a significant interaction effect for host plant and Liriomyza species on parasitism and host feeding. Within plant mixtures, L. sativae reared on P. vulgaris had the highest rate of parasitism (31%), followed by L. trifolii on S. lycopersicum (29%) and L. huidobrensis on V. faba (28%). Host feeding was highest on L. trifolii reared on S. lycopersicum (14%) and lowest on L. huidobrensis reared on P. sativum and S. lycopersicum (1%). In some instances, plant mixtures resulted in a higher proportion of females of D. isaea than single plant species. The highest proportion of females was obtained in plant mixtures on L. huidobrensis and L. trifolii on V. faba (71 and 72%, respectively). This study suggests that planting crop mixtures can potentially lead to higher proportions of females, thus improving parasitism and host feeding, depending on Liriomyza and host plant species. PMID:22420268

  4. Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites.

    PubMed

    Lutz, Holly L; Hochachka, Wesley M; Engel, Joshua I; Bell, Jeffrey A; Tkach, Vasyl V; Bates, John M; Hackett, Shannon J; Weckstein, Jason D

    2015-01-01

    Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi. PMID:25853491

  5. Parasite Prevalence Corresponds to Host Life History in a Diverse Assemblage of Afrotropical Birds and Haemosporidian Parasites

    PubMed Central

    Lutz, Holly L.; Hochachka, Wesley M.; Engel, Joshua I.; Bell, Jeffrey A.; Tkach, Vasyl V.; Bates, John M.; Hackett, Shannon J.; Weckstein, Jason D.

    2015-01-01

    Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi. PMID:25853491

  6. Host Plant Use by Competing Acacia-Ants: Mutualists Monopolize While Parasites Share Hosts

    PubMed Central

    Kautz, Stefanie; Ballhorn, Daniel J.; Kroiss, Johannes; Pauls, Steffen U.; Moreau, Corrie S.; Eilmus, Sascha; Strohm, Erhard; Heil, Martin

    2012-01-01

    Protective ant-plant mutualisms that are exploited by non-defending parasitic ants represent prominent model systems for ecology and evolutionary biology. The mutualist Pseudomyrmex ferrugineus is an obligate plant-ant and fully depends on acacias for nesting space and food. The parasite Pseudomyrmex gracilis facultatively nests on acacias and uses host-derived food rewards but also external food sources. Integrative analyses of genetic microsatellite data, cuticular hydrocarbons and behavioral assays showed that an individual acacia might be inhabited by the workers of several P. gracilis queens, whereas one P. ferrugineus colony monopolizes one or more host trees. Despite these differences in social organization, neither of the species exhibited aggressive behavior among conspecific workers sharing a tree regardless of their relatedness. This lack of aggression corresponds to the high similarity of cuticular hydrocarbon profiles among ants living on the same tree. Host sharing by unrelated colonies, or the presence of several queens in a single colony are discussed as strategies by which parasite colonies could achieve the observed social organization. We argue that in ecological terms, the non-aggressive behavior of non-sibling P. gracilis workers — regardless of the route to achieve this social structure — enables this species to efficiently occupy and exploit a host plant. By contrast, single large and long-lived colonies of the mutualist P. ferrugineus monopolize individual host plants and defend them aggressively against invaders from other trees. Our findings highlight the necessity for using several methods in combination to fully understand how differing life history strategies affect social organization in ants. PMID:22662191

  7. Host plant use by competing acacia-ants: mutualists monopolize while parasites share hosts.

    PubMed

    Kautz, Stefanie; Ballhorn, Daniel J; Kroiss, Johannes; Pauls, Steffen U; Moreau, Corrie S; Eilmus, Sascha; Strohm, Erhard; Heil, Martin

    2012-01-01

    Protective ant-plant mutualisms that are exploited by non-defending parasitic ants represent prominent model systems for ecology and evolutionary biology. The mutualist Pseudomyrmex ferrugineus is an obligate plant-ant and fully depends on acacias for nesting space and food. The parasite Pseudomyrmex gracilis facultatively nests on acacias and uses host-derived food rewards but also external food sources. Integrative analyses of genetic microsatellite data, cuticular hydrocarbons and behavioral assays showed that an individual acacia might be inhabited by the workers of several P. gracilis queens, whereas one P. ferrugineus colony monopolizes one or more host trees. Despite these differences in social organization, neither of the species exhibited aggressive behavior among conspecific workers sharing a tree regardless of their relatedness. This lack of aggression corresponds to the high similarity of cuticular hydrocarbon profiles among ants living on the same tree. Host sharing by unrelated colonies, or the presence of several queens in a single colony are discussed as strategies by which parasite colonies could achieve the observed social organization. We argue that in ecological terms, the non-aggressive behavior of non-sibling P. gracilis workers--regardless of the route to achieve this social structure--enables this species to efficiently occupy and exploit a host plant. By contrast, single large and long-lived colonies of the mutualist P. ferrugineus monopolize individual host plants and defend them aggressively against invaders from other trees. Our findings highlight the necessity for using several methods in combination to fully understand how differing life history strategies affect social organization in ants. PMID:22662191

  8. Co-invaders: The effects of alien parasites on native hosts

    PubMed Central

    Lymbery, Alan J.; Morine, Mikayla; Kanani, Hosna Gholipour; Beatty, Stephen J.; Morgan, David L.

    2014-01-01

    We define co-introduced parasites as those which have been transported with an alien host to a new locality, outside of their natural range, and co-invading parasites as those which have been co-introduced and then spread to new, native hosts. Of 98 published studies of co-introductions, over 50% of hosts were freshwater fishes and 49% of parasites were helminths. Although we would expect parasites with simple, direct life cycles to be much more likely to be introduced and establish in a new locality, a substantial proportion (36%) of co-introductions were of parasites with an indirect life cycle. Seventy-eight per cent of co-introduced parasites were found in native host species and can therefore be classed as co-invaders. Host switching was equally common among parasites with direct and indirect life cycles. The magnitude of the threat posed to native species by co-invaders will depend, among other things, on parasite virulence. In 16 cases where co-introduced parasites have switched to native hosts and information was available on relative virulence, 14 (85%) were more virulent in native hosts than in the co-introduced alien host. We argue that this does not necessarily support the naïve host theory that co-invading parasites will have greater pathogenic effects in native hosts with which they have no coevolutionary history, but may instead be a consequence of the greater likelihood for parasites with lower virulence in their natural host to be co-introduced. PMID:25180161

  9. Differences in host species relationships and biogeographic influences produce contrasting patterns of prevalence, community composition and genetic structure in two genera of avian malaria parasites in southern Melanesia.

    PubMed

    Olsson-Pons, Sophie; Clark, Nicholas J; Ishtiaq, Farah; Clegg, Sonya M

    2015-07-01

    Host-parasite interactions have the potential to influence broadscale ecological and evolutionary processes, levels of endemism, divergence patterns and distributions in host populations. Understanding the mechanisms involved requires identification of the factors that shape parasite distribution and prevalence. A lack of comparative information on community-level host-parasite associations limits our understanding of the role of parasites in host population divergence processes. Avian malaria (haemosporidian) parasites in bird communities offer a tractable model system to examine the potential for pathogens to influence evolutionary processes in natural host populations. Using cytochrome b variation, we characterized phylogenetic diversity and prevalence of two genera of avian haemosporidian parasites, Plasmodium and Haemoproteus, and analysed biogeographic patterns of lineages across islands and avian hosts, in southern Melanesian bird communities to identify factors that explain patterns of infection. Plasmodium spp. displayed isolation-by-distance effects, a significant amount of genetic variation distributed among islands but insignificant amounts among host species and families, and strong local island effects with respect to prevalence. Haemoproteus spp. did not display isolation-by-distance patterns, showed marked structuring of genetic variation among avian host species and families, and significant host species prevalence patterns. These differences suggest that Plasmodium spp. infection patterns were shaped by geography and the abiotic environment, whereas Haemoproteus spp. infection patterns were shaped predominantly by host associations. Heterogeneity in the complement and prevalence of parasite lineages infecting local bird communities likely exposes host species to a mosaic of spatially divergent disease selection pressures across their naturally fragmented distributions in southern Melanesia. Host associations for Haemoproteus spp. indicate a capacity for the formation of locally co-adapted host-parasite relationships, a feature that may limit intraspecific gene flow or range expansions of closely related host species. PMID:25704868

  10. Are parasite intensity and related costs of the milichiid fly Carnus hemapterus related to host sociality?

    Microsoft Academic Search

    H. Hoi; J. Krištofík; A. Darolová; C. Hoi

    2010-01-01

    Ectoparasites have often been shown to have detrimental effects on their host. Not much is known, however, about determinants\\u000a of infestation, e.g. the question of which factors affect distribution and occurrence of parasites on different host species\\u000a (degree of host specificity) and their infestation rates. In this study we examine possible effects of host determinants on\\u000a parasite intensity of Carnus

  11. Immunity against helminths: interactions with the host and the intercurrent infections.

    PubMed

    Moreau, Emmanuelle; Chauvin, Alain

    2010-01-01

    Helminth parasites are of considerable medical and economic importance. Studies of the immune response against helminths are of great interest in understanding interactions between the host immune system and parasites. Effector immune mechanisms against tissue-dwelling helminths and helminths localized in the lumen of organs, and their regulation, are reviewed. Helminth infections are characterized by an association of Th2-like and Treg responses. Worms are able to persist in the host and are mainly responsible for chronic infection despite a strong immune response developed by the parasitized host. Two types of protection against the parasite, namely, premune and partial immunities, have been described. Immune responses against helminths can also participate in pathogenesis. Th2/Treg-like immunomodulation allows the survival of both host and parasite by controlling immunopathologic disorders and parasite persistence. Consequences of the modified Th2-like responses on co-infection, vaccination, and inflammatory diseases are discussed. PMID:20150967

  12. Host Longevity and Parasite Species Richness in Natalie Cooper1,2,3

    E-print Network

    Nunn, Charles

    weak relationships between parasite species richness and longevity. We found a significant negative relationship between longevity and parasite species richness for ungulates, but no significant associationsHost Longevity and Parasite Species Richness in Mammals Natalie Cooper1,2,3 *, Jason M. Kamilar4

  13. Naïve hosts of avian brood parasites accept foreign eggs, whereas older hosts fine-tune foreign egg discrimination during laying

    PubMed Central

    2014-01-01

    Background Many potential hosts of social parasites recognize and reject foreign intruders, and reduce or altogether escape the negative impacts of parasitism. The ontogenetic basis of whether and how avian hosts recognize their own and the brood parasitic eggs remains unclear. By repeatedly parasitizing the same hosts with a consistent parasitic egg type, and contrasting the responses of naïve and older breeders, we studied ontogenetic plasticity in the rejection of foreign eggs by the great reed warbler (Acrocephalus arundinaceus), a host species of the common cuckoo (Cuculus canorus). Results In response to experimental parasitism before the onset of laying, first time breeding hosts showed almost no egg ejection, compared to higher rates of ejection in older breeders. Young birds continued to accept foreign eggs when they were subjected to repeated parasitism, whereas older birds showed even higher ejection rates later in the same laying cycle. Conclusions Our results are consistent with the hypotheses that (i) naïve hosts need to see and learn the appearance of their own eggs to discriminate and reject foreign eggs, whereas (ii) experienced breeders possess a recognition template of their own eggs and reject parasitic eggs even without having to see their own eggs. However, we cannot exclude the possibility that other external cues and internal processes, accumulated simply with increasing age, may also modify age-specific patterns in egg rejection (e.g. more sightings of the cuckoo by older breeders). Future research should specifically track the potential role of learning in responses of individual hosts between first and subsequent breeding attempts by testing whether imprinting on a parasitized clutch reduces the rates of rejecting foreign eggs in subsequent parasitized clutches. PMID:25024736

  14. Microevolutionary change and population dynamics of a brood parasite and its primary host: the intermittent arms race hypothesis

    Microsoft Academic Search

    Manuel Soler; Juan J. Soler; Juan G. Martinez; Tomás Pérez-Contreras; Anders P. Møller

    1998-01-01

    A long-term study of the interactions between a brood parasite, the great spotted cuckoo Clamator glandarius, and its primary host the magpie Pica pica, demonstrated local changes in the distribution of both magpies and cuckoos and a rapid increase of rejection of both mimetic\\u000a and non-mimetic model eggs by the host. In rich areas, magpies improved three of their defensive

  15. Ruminant immunity to abomasal parasites 

    E-print Network

    Halliday, Aileen

    2013-11-29

    The studies submitted herein have contributed to our understanding of ruminant immunology, host-parasite interactions during ruminant infection with nematode parasites, and potential vaccine strategies to combat parasitic gastroenteritis (PGE). PGE...

  16. Intestinal distribution and fecundity of two species of Diplostomum parasites in definitive hosts.

    PubMed

    Karvonen, A; Cheng, G-H; Seppälä, O; Valtonen, E T

    2006-03-01

    This paper investigated the intestinal distribution and fecundity of 2 species of Diplostomum parasites, D. spathaceum and D. pseudospathaceum, in 2 species of definitive hosts, herring gull (Larus argentatus) and common gull (L. canus), using both empirical field data and experimental infections. At the level of individual hosts, the parasite species occupied different parts within the intestine, but the fecundity of the worms, measured as the number of eggs in the uterus, did not differ between the parasite species except in wild common gulls. Interestingly, egg numbers in individual hosts were positively correlated between the parasite species suggesting that some birds provided better resources for the parasite species. At the host population level, fecundity of the worms did not differ between the host species or between adult birds and chicks. Both parasite species were also aggregated to the same host individuals and it is likely that aggregation is transferred to gulls from fish intermediate hosts. Individual differences in suitability and parasite numbers between hosts provide important grounds and implications for epidemiological model-based parasite prevention strategies. PMID:16318675

  17. Parasite consumption and host interference can inhibit disease spread in dense populations.

    PubMed

    Civitello, David J; Pearsall, Susan; Duffy, Meghan A; Hall, Spencer R

    2013-05-01

    Disease dynamics hinge on parasite transmission among hosts. However, canonical models for transmission often fit data poorly, limiting predictive ability. One solution involves building mechanistic yet general links between host behaviour and disease spread. To illustrate, we focus on the exposure component of transmission for hosts that consume their parasites, combining experiments, models and field data. Models of transmission that incorporate parasite consumption and foraging interference among hosts vastly outperformed alternatives when fit to experimental data using a zooplankton host (Daphnia dentifera) that consumes spores of a fungus (Metschnikowia bicuspidata). Once plugged into a fully dynamic model, both mechanisms inhibited epidemics overall. Foraging interference further depressed parasite invasion and prevalence at high host density, creating unimodal (hump-shaped) relationships between host density and these indices. These novel results qualitatively matched a unimodal density-prevalence relationship in natural epidemics. Ultimately, a mechanistic approach to transmission can reveal new insights into disease outbreaks. PMID:23452184

  18. Relationship between host abundance and parasite distribution: inferring regulating mechanisms from census data

    Microsoft Academic Search

    MICHAL STANKO; BORIS R. KRASNOV; SERGE MORAND

    2006-01-01

    Summary 1. We studied the effect of host abundance on parasite abundance and prevalence using data on 57 associations of fleas (Siphonaptera) and their mammalian hosts from Slovakia. 2. We assumed that flea-induced host mortality could be inferred from the relationship between flea aggregation and flea abundance, whereas host-induced flea mortality could be inferred from the relationship between flea abundance

  19. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum

    PubMed Central

    Aingaran, Mythili; Zhang, Rou; Law, Sue KaYee; Peng, Zhangli; Undisz, Andreas; Meyer, Evan; Diez-Silva, Monica; Burke, Thomas A.; Spielmann, Tobias; Lim, Chwee Teck; Suresh, Subra; Dao, Ming; Marti, Matthias

    2012-01-01

    SUMMARY Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual conversion and mature over two weeks to become competent for transmission to a mosquito vector. Immature gametocytes sequester in deep tissues while mature stages must be able to circulate, pass the spleen and present themselves to the mosquito vector in order to complete transmission. Sequestration of asexual red blood cell stage parasites has been investigated in great detail. These studies have demonstrated that induction of cytoadherence properties through specific receptor-ligand interactions coincides with a significant increase in host cell stiffness. In contrast, the adherence and biophysical properties of gametocyte-infected red blood cells have not been studied systematically. Utilizing a transgenic line for 3D live imaging, in vitro capillary assays and 3D finite element whole cell modeling, we studied the role of cellular deformability in determining the circulatory characteristics of gametocytes. Our analysis shows that the red blood cell deformability of immature gametocytes displays an overall decrease followed by rapid restoration in mature gametocytes. Intriguingly, simulations suggest that along with deformability variations, the morphological changes of the parasite may play an important role in tissue distribution in vivo. Taken together we present a model, which suggests that mature but not immature gametocytes circulate in the peripheral blood for uptake in the mosquito blood meal and transmission to another human host thus ensuring long term survival of the parasite. PMID:22417683

  20. Host adaptation and host–parasite co-evolution in Cryptosporidium: implications for taxonomy and public health

    Microsoft Academic Search

    Lihua Xiao; Irshad M Sulaiman; Una M Ryan; Ling Zhou; Edward R Atwill; Monica L Tischler; Xichen Zhang; Ronald Fayer; Altaf A Lal

    2002-01-01

    To assess the genetic diversity and evolution of Cryptosporidium parasites, the partial ssrRNA, actin, and 70kDa heat shock protein (HSP70) genes of 15 new Cryptosporidium parasites were sequenced. Sequence data were analysed together with those previously obtained from other Cryptosporidium parasites (10 Cryptosporidium spp. and eight Cryptosporidium genotypes). Results of this multi-locus genetic characterisation indicate that host adaptation is a

  1. Egg puncture allows shiny cowbirds to assess host egg development and suitability for parasitism

    PubMed Central

    Massoni, V.; Reboreda, J. C.

    1999-01-01

    Parasitic cowbirds and cuckoos generally reduce the clutch size of the hosts they parasitize by removing or destroying some of their eggs. Shiny cowbirds (Molothrus bonariensis) puncture their hosts' eggs both when parasitizing the nests and also when they do not parasitize them. We propose that, by puncturing the host's eggs, shiny cowbirds gain an informational benefit. They assess the degree of development of the host's embryos and so avoid laying in nests that would not provide enough incubation time for the parasitic eggs to hatch. Two predictions follow: (i) punctures should occur in advance or immediately before parasitic events, and (ii) the occurrence of parasitism should depend on the degree of development of the host's embryos when punctures occurred, i.e. on the stage of incubation. Both predictions are supported by our data of shiny cowbirds parasitizing yellow-winged blackbirds (Agelaius thilius). Egg punctures are not used to reset the host's nesting attempt when shiny cowbirds do not parasitize the nests. We discuss the potential mechanisms implicated in egg development assessment and propose a critical experiment to test this hypothesis.

  2. Hyperdiverse gene cluster in snail host conveys resistance to human schistosome parasites.

    PubMed

    Tennessen, Jacob A; Théron, André; Marine, Melanie; Yeh, Jan-Ying; Rognon, Anne; Blouin, Michael S

    2015-03-01

    Schistosomiasis, a neglected global pandemic, may be curtailed by blocking transmission of the parasite via its intermediate hosts, aquatic snails. Elucidating the genetic basis of snail-schistosome interaction is a key to this strategy. Here we map a natural parasite-resistance polymorphism from a Caribbean population of the snail Biomphalaria glabrata. In independent experimental evolution lines, RAD genotyping shows that the same genomic region responds to selection for resistance to the parasite Schistosoma mansoni. A dominant allele in this region conveys an 8-fold decrease in the odds of infection. Fine-mapping and RNA-Seq characterization reveal a <1Mb region, the Guadeloupe Resistance Complex (GRC), with 15 coding genes. Seven genes are single-pass transmembrane proteins with putative immunological roles, most of which show strikingly high nonsynonymous divergence (5-10%) among alleles. High linkage disequilibrium among three intermediate-frequency (>25%) haplotypes across the GRC, a significantly non-neutral pattern, suggests that balancing selection maintains diversity at the GRC. Thus, the GRC resembles immune gene complexes seen in other taxa and is likely involved in parasite recognition. The GRC is a potential target for controlling transmission of schistosomiasis, including via genetic manipulation of snails. PMID:25775214

  3. Movement of protein and macromolecules between host plants and the parasitic weed Phelipanche aegyptiaca Pers

    Microsoft Academic Search

    Radi Aly; Noureddine Hamamouch; Jacklin Abu-Nassar; Shmuel Wolf; Daniel M. Joel; Hanan Eizenberg; Efrat Kaisler; Carole Cramer; Amit Gal-On; James H. Westwood

    Little is known about the translocation of proteins and other macromolecules from a host plant to the parasitic weed Phelipanche spp. Long-distance movement of proteins between host and parasite was explored using transgenic tomato plants expressing\\u000a green fluorescent protein (GFP) in their companion cells. We further used fluorescent probes of differing molecular weights\\u000a to trace vascular continuity between the host

  4. INFLUENCE OF ALTERNATE HOST DENSITIES ON BROWN-HEADED COWBIRD PARASITISM RATES IN BLACK-CAPPED VIREOS

    Microsoft Academic Search

    DAVID R. BARBER; THOMAS E. MARTINS

    Brown-headed Cowbird (Molothrus ater) parasitism is thought to be partly influenced by density of the host species, although tests of host density are relatively rare. We examined parasitism rates relative to the density of individual host species and densities of coexisting host species. We monitored 392 nests among coexisting host species and measured their densities among six habitats on Fort

  5. Host-Parasite Biology of Thripinema fuscum (Tylenchida: Allantonematidae) and Frankliniella fusca (Thysanoptera: Thripidae)

    PubMed Central

    Sims, Kelly; Funderburk, Joe; Boucias, Drion

    2005-01-01

    Thripinema fuscum is a natural enemy of Frankliniella fusca in peanut. Laboratory experiments were conducted to determine the reproductive biology of T. fuscum as affected by gender and stage of development of the host and to determine the effects of parasitism on host longevity, fecundity, and mortality. The adult females of F. fusca were the most readily parasitized (P < 0.001) in the laboratory experiments followed by the second instars, the first instars, and the adult males. One generation of T. fuscum developed within the parasitized larvae and adults, with the males and females emerging only during the adult stage of the host. Parasitism did not cause mortality of the host. Parasitism affected male longevity (P < 0.001) but not female longevity. The adult female thrips that were parasitized as first or second instars did not lay eggs, and the adult females stopped laying eggs within 3 days of being parasitized. The female-to-male sex ratio of T. fuscum emerging from parasitized male and female F. fusca was 22 and 18 to 1, respectively. More T. fuscum emerged from female hosts than from male hosts (P < 0.001). More emerged from hosts parasitized as larvae compared with hosts parasitized as adults (P < 0.05). The intrinsic capacity of increase of T. fuscum ranged between 0.29 and 0.37 when parasitizing the adult males and females and between 0.18 and 0.21 when parasitizing the larval males and females. Percent parasitism of F. fusca was estimated in peanut fields. The flowers were the primary site for aggregation of the adults of F. fusca and for the free-living females of T. fuscum to parasitize new hosts. As under laboratory conditions, field parasitism of adult males was less than parasitism of adult females in 2001 and 2002 (P < 0.01 and 0.001, respectively). Our study indicates that T. fuscum is a potential biological control agent capable of suppressing F. fusca populations in peanut. PMID:19262837

  6. Food stoichiometry affects the outcome of Daphnia–parasite interaction

    PubMed Central

    Aalto, Sanni L; Pulkkinen, Katja

    2013-01-01

    Phosphorus (P) is an essential nutrient for growth in consumers. P-limitation and parasite infection comprise one of the most common stressor pairs consumers confront in nature. We conducted a life-table study using a Daphnia–microsporidian parasite model, feeding uninfected or infected Daphnia with either P-sufficient or P-limited algae, and assessed the impact of the two stressors on life-history traits of the host. Both infection and P-limitation negatively affected some life-history traits tested. However, under P-limitation, infected animals had higher juvenile growth rate as compared with uninfected animals. All P-limited individuals died before maturation, regardless of infection. The numbers of spore clusters of the microsporidian parasite did not differ in P-limited or P-sufficient hosts. P-limitation, but not infection, decreased body phosphorus content and ingestion rates of Daphnia tested in separate experiments. As parasite spore production did not suffer even under extreme P-limitation, our results suggest that parasite was less limited by P than the host. We discuss possible interpretations concerning the stoichiometrical demands of parasite and suggest that our results are explained by parasite-driven changes in carbon (C) allocation of the hosts. We conclude that the impact of nutrient starvation and parasite infection on consumers depends not only on the stoichiometric demands of host but also those of the parasite. PMID:23762513

  7. Food stoichiometry affects the outcome of Daphnia-parasite interaction.

    PubMed

    Aalto, Sanni L; Pulkkinen, Katja

    2013-05-01

    Phosphorus (P) is an essential nutrient for growth in consumers. P-limitation and parasite infection comprise one of the most common stressor pairs consumers confront in nature. We conducted a life-table study using a Daphnia-microsporidian parasite model, feeding uninfected or infected Daphnia with either P-sufficient or P-limited algae, and assessed the impact of the two stressors on life-history traits of the host. Both infection and P-limitation negatively affected some life-history traits tested. However, under P-limitation, infected animals had higher juvenile growth rate as compared with uninfected animals. All P-limited individuals died before maturation, regardless of infection. The numbers of spore clusters of the microsporidian parasite did not differ in P-limited or P-sufficient hosts. P-limitation, but not infection, decreased body phosphorus content and ingestion rates of Daphnia tested in separate experiments. As parasite spore production did not suffer even under extreme P-limitation, our results suggest that parasite was less limited by P than the host. We discuss possible interpretations concerning the stoichiometrical demands of parasite and suggest that our results are explained by parasite-driven changes in carbon (C) allocation of the hosts. We conclude that the impact of nutrient starvation and parasite infection on consumers depends not only on the stoichiometric demands of host but also those of the parasite. PMID:23762513

  8. Relic behaviours, coevolution and the retention versus loss of host defences after episodes of avian brood parasitism

    Microsoft Academic Search

    Stephen I. Rothstein

    2001-01-01

    Most previous studies of brood parasitism have stressed that host defences, such as egg recognition, are lost in the absence of parasitism. Such losses could result in coevolutionary cycles in which parasites shift away from well-defended hosts only to switch back to them later at a time when these hosts have lost much or all of their defences and the

  9. Chronology of parasite-induced alteration of fish behaviour: effects of parasite maturation and host experience

    E-print Network

    Wisenden, Brian D.

    Chronology of parasite-induced alteration of fish behaviour: effects of parasite maturation (Ornithodiplostomum ptychocheilus). This parasite develops and then encysts in a region of the brain that mediates experienced the drum. Because maximum parasite- induced reduction in OMR coincided with the period of maximum

  10. Parasite-mediated and direct competition in a two-host shared macroparasite system.

    PubMed

    Greenman, J V; Hudson, P J

    2000-02-01

    This paper investigates the local dynamical behaviour of a deterministic model describing two host species experiencing three forms of competition: direct competition, apparent competition mediated by macroparasites, and intra-specific (density-dependent) competition. The problem of algebraic intractability is sidestepped by adopting a geometric approach, in which an array of maps is constructed in parameter space, each structured by bifurcation surfaces which mark qualitative changes in system behaviour. The maps provide both a succinct and a comprehensive overview of the stability and feasibility structure of the system equilibria, from which can be deduced the possible modes of local dynamical behaviour. A detailed examination of these maps shows that (i) the system is highly sensitive to the effect of infection on fecundity with synchronous sustained cycles readily generated by Hopf bifurcations; (ii) for a broad range of parameter values, pertinent to actual biological systems, apparent competition mediated by macroparasites is sufficient, on its own, to explain host exclusion; (iii) direct competition reinforces parasite-mediated competition to expand the host exclusion region; and (iv) the condition for host exclusion can be expressed simply in a form which holds for both micro- and macroparasite models and which involves just two key indices, measuring tolerance to the infection and the strength of direct competition. The techniques used in this paper are not restricted to the analysis of host-parasite systems but can be applied to a wide range of nonlinear population models. They are therefore as relevant to the analysis of such general issues as exploitative competition and trophic interactions as they are to specific epidemiological problems. PMID:10708626

  11. A metabolic and body-size scaling framework for parasite within-host abundance, biomass, and energy flux.

    PubMed

    Hechinger, Ryan F

    2013-08-01

    Energetics may provide a useful currency for studying the ecology of parasite assemblages within individual hosts. Parasite assemblages may also provide powerful models to study general principles of ecological energetics. Yet there has been little ecological research on parasite-host energetics, probably due to methodological difficulties. However, the scaling relationships of individual metabolic rate with body or cell size and temperature may permit us to tackle the energetics of parasite assemblages in hosts. This article offers the foundations and initial testing of a metabolic theory of ecology (MTE) framework for parasites in hosts. I first provide equations to estimate energetic flux through observed parasite assemblages. I then develop metabolic scaling theory for parasite abundance, energetics, and biomass in individual hosts. In contrast to previous efforts, the theory factors in both host and parasite metabolic scaling, how parasites use host space, and whether energy or space dictates carrying capacity. Empirical tests indicate that host energetic flux can set parasite carrying capacity, which decreases as predicted considering the scaling of host and parasite metabolic rates. The theory and results also highlight that the phenomenon of "energetic equivalence" is not an assumption of MTE but a possible outcome contingent on how species partition resources. Hence, applying MTE to parasites can lend mechanistic, quantitative, predictive insight into the nature of parasitism and can inform general ecological theory. PMID:23852357

  12. Current opinions: Zeros in host–parasite food webs: Are they real??

    PubMed Central

    Rossiter, Wayne

    2013-01-01

    As the data have poured in, and the number of published food webs containing parasites has increased, questions have been raised as to why free-living species consistently outnumber parasites, even though most general reviews on the subject of host:parasite species richness suggest the contrary. Here, I describe this pattern as it exists in the literature, posit both real and artifactual sources of these findings, and suggest ways that we might interpret existing parasite-inclusive food webs. In large part, the reporting of free-living species devoid of any associated parasites (termed here in the coding of food web matrices as “zeros”) is a consequence of either sampling issues or the intent of the study. However, there are also several powerful explanatory features that validate real cases of this phenomenon. Some hosts appear to authentically lack parasitism in portions of their geographic ranges, and parasites are often lost from systems that are either in early phases of community re-colonization or are compromised by environmental perturbation. Additionally, multi-stage parasite life cycles and broad host spectra allow some parasite species to partially saturate systems without providing a corresponding increase in parasite species richness, leading to low parasite species richness values relative to the free-living community. On the whole, the existing published food webs are sufficient to, at least in principle, determine basic patterns and pathways associated with parasite establishment and persistence in free-living communities because (1) for the purpose of those features, species rarity is roughly analogous to absence and (2) the existing data seem to suggest that the addition of more parasite taxa would reinforce the patterns already observed. This is particularly true for helminth parasites, in which our understanding and the resolution of our work is most robust. PMID:24533341

  13. [Photosynthetic characteristics of Cuscuta japonica and its hosts during parasitization and after detachment].

    PubMed

    Wang, Dong; Hu, Fei; Chen, Yu-Fen; Yang, Jun; Kong, Chui-Hua

    2007-08-01

    The study on the photosynthetic characteristics of Cuscuta japonica and its hosts showed that there was a negative correlation between the photosynthetic pigment content (PPC) of C. japonica and its hosts. The PPC increased in the C. japonica-preferred hosts' parasitized and neighboring leaves, but decreased in its less preferred hosts' parasitized and neighboring leaves. The leaves parasitized by C. japonica and their neighboring far from the parasitized ones had a lowered net photosynthesis rate P(n), and the decreasing order accorded with that of parasitization. The decrease of P(n) for C. japonica-less preferred hosts was mainly due to the stomatal factors, but that for the preferred hosts was regulated by multi-factors. Under light, the PPC of C. japonica detached from preferred hosts increased faster than that of C. japonica detached from less preferred hosts, but the dry matter decrease was in adverse. In dark, however, the changes in PPC and dry matter content of C. japonica were not significant, whatever hosts it was detached from. PMID:17974234

  14. Parasitism overrides herbivore identity allowing hyperparasitoids to locate their parasitoid host using herbivore-induced plant volatiles.

    PubMed

    Zhu, Feng; Broekgaarden, Colette; Weldegergis, Berhane T; Harvey, Jeffrey A; Vosman, Ben; Dicke, Marcel; Poelman, Erik H

    2015-06-01

    Foraging success of predators profoundly depends on reliable and detectable cues indicating the presence of their often inconspicuous prey. Carnivorous insects rely on chemical cues to optimize foraging efficiency. Hyperparasitoids that lay their eggs in the larvae or pupae of parasitic wasps may find their parasitoid hosts developing in different herbivores. They can use herbivore-induced plant volatiles (HIPVs) to locate parasitized caterpillars. Because different herbivore species induce different HIPV emission from plants, hyperparasitoids may have to deal with large variation in volatile information that indicates host presence. In this study, we used an ecogenomics approach to first address whether parasitized caterpillars of two herbivore species (Pieris rapae and P. brassicae) induce similar transcriptional and metabolomic responses in wild Brassica oleracea plants and, second, whether hyperparasitoids Lysibia nana are able to discriminate between these induced plant responses to locate their parasitoid host in different herbivores under both laboratory and field conditions. Our study revealed that both herbivore identity and parasitism affect plant transcriptional and metabolic responses to herbivory. We also found that hyperparasitoids are able to respond to HIPVs released by wild B. oleracea under both laboratory and field conditions. In addition, we observed stronger attraction of hyperparasitoids to HIPVs when plants were infested with parasitized caterpillars. However, hyperparasitoids were equally attracted to plants infested by either herbivore species. Our results indicate that parasitism plays a major role in HIPV-mediated plant-hyperparasitoid interactions. Furthermore, these findings also indicate that plant trait-mediated indirect interaction networks play important roles in community-wide species interactions. PMID:25789566

  15. A Transcriptomic Analysis of Echinococcus granulosus Larval Stages: Implications for Parasite Biology and Host Adaptation

    PubMed Central

    Parkinson, John; Wasmuth, James D.; Salinas, Gustavo; Bizarro, Cristiano V.; Sanford, Chris; Berriman, Matthew; Ferreira, Henrique B.; Zaha, Arnaldo; Blaxter, Mark L.; Maizels, Rick M.; Fernández, Cecilia

    2012-01-01

    Background The cestode Echinococcus granulosus - the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide - is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages. Methodology/Principal Findings We generated ?10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs) prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces), and pepsin/H+-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i) a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep) that could either be active molecular species or represent precursors of small RNAs (like piRNAs); (ii) an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii) highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv) candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v) a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi) a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development. Conclusions/Significance This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic analyses focused on cestodes and platyhelminths. PMID:23209850

  16. Within-host Competition Does Not Select for Virulence in Malaria Parasites; Studies with Plasmodium yoelii

    PubMed Central

    Abkallo, Hussein M.; Tangena, Julie-Anne; Tang, Jianxia; Kobayashi, Nobuyuki; Inoue, Megumi; Zoungrana, Augustin; Colegrave, Nick; Culleton, Richard

    2015-01-01

    In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence) were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host) of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii. PMID:25658331

  17. From within-host interactions to epidemiological competition: a general model for multiple infections.

    PubMed

    Sofonea, Mircea T; Alizon, Samuel; Michalakis, Yannis

    2015-08-19

    Many hosts are infected by several parasite genotypes at a time. In these co-infected hosts, parasites can interact in various ways thus creating diverse within-host dynamics, making it difficult to predict the expression and the evolution of virulence. Moreover, multiple infections generate a combinatorial diversity of cotransmission routes at the host population level, which complicates the epidemiology and may lead to non-trivial outcomes. We introduce a new model for multiple infections, which allows any number of parasite genotypes to infect hosts and potentially coexist in the population. In our model, parasites affect one another's within-host growth through density-dependent interactions and by means of public goods and spite. These within-host interactions determine virulence, recovery and transmission rates, which are then integrated in a transmission network. We use analytical solutions and numerical simulations to investigate epidemiological feedbacks in host populations infected by several parasite genotypes. Finally, we discuss general perspectives on multiple infections. PMID:26150669

  18. Host and elevational specificity of parasitic beetles (Amblyopinus Solsky) (Coleoptera: Staphylinidae) in Panama.

    E-print Network

    Timm, Robert M.; Ashe, James S.

    1987-02-01

    The literature on staphylinid beetles of the tribe Amblyopinini, all of which are parasitic on Neotropical or Australian mammals, has provided few specifics on the natural history and host relationships of these beetles. ...

  19. Transmission stage investment of malaria parasites in response to in-host competition 

    E-print Network

    Wargo, Andrew R; de Roode, Jacobus C; Huijben, Silvie; Drew, Damien R; Read, Andrew F

    2007-01-01

    Conspecific competition occurs in a multitude of organisms, particularly in parasites, where several clones are commonly sharing limited resources inside their host. In theory, increased or decreased transmission investment ...

  20. LETTER Parasite consumption and host interference can inhibit disease spread in dense populations

    E-print Network

    Hall, Spencer

    David J. Civitello,1 * Susan Pearsall,1,2 Meghan A. Duffy3,4 and Spencer R. Hall1 Abstract Disease- mission for hosts that consume their parasites, combining experiments, models and field data. Models

  1. GEOGRAPHIC GENETIC DIFFERENTIATION OF A MALARIA PARASITE, PLASMODIUM MEXICANUM, AND ITS LIZARD HOST, SCELOPORUS OCCIDENTALIS

    E-print Network

    Schall, Joseph J.

    , SCELOPORUS OCCIDENTALIS Jennifer M. Fricke, Anne M. Vardo-Zalik*, and Jos. J. SchallÀ Department of Biology parasite Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis, at 8 sites in northern

  2. Parasite diversity and coinfection determine pathogen infection success and host fitness

    E-print Network

    Johnson, Pieter

    ecology for understanding infectious diseases. microbiome | parasite competition | emerging infectious (received for review January 31, 2012) While the importance of changes in host biodiversity for disease risk disease | ecosystem function | amphibian decline Ecological research has focused increasingly on the impor

  3. The review of "The Oestrid Flies: Biology, host-parasite relationships, impact and management"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Oestrid flies are a diverse group of parasitic insects whose larval forms are adapted for a parasitic life-style. Their armament of spines and mouth hooks, enables their migration within host tissues and provides for beastly images as depicted on the front cover of the book and within the text....

  4. The immunology of parasite infections in immunocompromised hosts

    PubMed Central

    Evering, T.; Weiss, L. M.

    2011-01-01

    Summary Immune compromise can modify the severity and manifestation of some parasitic infections. More widespread use of newer immnosuppressive therapies, the growing population of individuals with immunocompromised states as well as the prolonged survival of these patients have altered the pattern of parasitic infection. This review article discusses the burden and immunology of parasitic infections in patients who are immunocompromised secondary to congenital immunodeficiency, malnutrition, malignancy, and immunosuppressive medications. This review does not address the literature on parasitic infections in the setting of HIV-1 infection. PMID:17042927

  5. Geographic genetic differentiation of a malaria parasite, Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis.

    PubMed

    Fricke, Jennifer M; Vardo-Zalik, Anne M; Schall, Jos J

    2010-04-01

    Gene flow, and resulting degree of genetic differentiation among populations, will shape geographic genetic patterns and possibly local adaptation of parasites and their hosts. Some studies of Plasmodium falciparum in humans show substantial differentiation of the parasite in locations separated by only a few kilometers, a paradoxical finding for a parasite in a large, mobile host. We examined genetic differentiation of the malaria parasite Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis, at 8 sites in northern California, with the use of variable microsatellite markers for both species. These lizards are small and highly territorial, so we expected local genetic differentiation of both parasite and lizard. Populations of P. mexicanum were found to be differentiated by analysis of 5 markers (F(st) values >0.05-0.10) over distances as short as 230-400 m, and greatly differentiated (F(st) values >0.25) for sites separated by approximately 10 km. In contrast, the lizard host had no, or very low, levels of differentiation for 3 markers, even for sites >40 km distant. Thus, gene flow for the lizard was great, but despite the mobility of the vertebrate host, the parasite was locally genetically distinct. This discrepancy could result if infected lizards move little, but their noninfected relatives were more mobile. Previous studies on the virulence of P. mexicanum for fence lizards support this hypothesis. However, changing prevalence of the parasite, without changes in density of the lizard, could also result in this pattern. PMID:19916631

  6. Hosts of avian brood parasites have evolved egg signatures with elevated information content.

    PubMed

    Caves, Eleanor M; Stevens, Martin; Iversen, Edwin S; Spottiswoode, Claire N

    2015-07-01

    Hosts of brood-parasitic birds must distinguish their own eggs from parasitic mimics, or pay the cost of mistakenly raising a foreign chick. Egg discrimination is easier when different host females of the same species each lay visually distinctive eggs (egg 'signatures'), which helps to foil mimicry by parasites. Here, we ask whether brood parasitism is associated with lower levels of correlation between different egg traits in hosts, making individual host signatures more distinctive and informative. We used entropy as an index of the potential information content encoded by nine aspects of colour, pattern and luminance of eggs of different species in two African bird families (Cisticolidae parasitized by cuckoo finches Anomalospiza imberbis, and Ploceidae by diederik cuckoos Chrysococcyx caprius). Parasitized species showed consistently higher entropy in egg traits than did related, unparasitized species. Decomposing entropy into two variation components revealed that this was mainly driven by parasitized species having lower levels of correlation between different egg traits, rather than higher overall levels of variation in each individual egg trait. This suggests that irrespective of the constraints that might operate on individual egg traits, hosts can further improve their defensive 'signatures' by arranging suites of egg traits into unpredictable combinations. PMID:26085586

  7. Uncovering Dangerous Cheats: How Do Avian Hosts Recognize Adult Brood Parasites?

    Microsoft Academic Search

    Alfréd Trnka; Pavol Prokop; Tomáš Grim

    2012-01-01

    BackgroundCo-evolutionary struggles between dangerous enemies (e.g., brood parasites) and their victims (hosts) lead to the emergence of sophisticated adaptations and counter-adaptations. Salient host tricks to reduce parasitism costs include, as front line defence, adult enemy discrimination. In contrast to the well studied egg stage, investigations addressing the specific cues for adult enemy recognition are rare. Previous studies have suggested barred

  8. Comparative host-parasite population structures: disentangling prospecting and dispersal in the black-legged kittiwake Rissa tridactyla.

    PubMed

    McCoy, Karen D; Boulinier, Thierry; Tirard, Claire

    2005-08-01

    Although much insight is to be gained through the comparison of the population genetic structures of parasites and hosts, there are, at present, few studies that take advantage of the information on vertebrate life histories available through the consideration of their parasites. Here, we examined the genetic structure of a colonial seabird, the black-legged kittiwake (Rissa tridactyla) using seven polymorphic microsatellite markers to make inferences about population functioning and intercolony dispersal. We sampled kittiwakes from 22 colonies across the species' range and, at the same time, collected individuals of one of its common ectoparasites, the tick Ixodes uriae. Parasites were genotyped at eight microsatellite markers and the population genetic structure of host and parasite were compared. Kittiwake populations are only genetically structured at large spatial scales and show weak patterns of isolation by distance. This may be due to long-distance dispersal events that erase local patterns of population subdivision. However, important additional information is gained by comparing results with those of the parasite. In particular, tick populations are strongly structured at regional scales and show a stepping-stone pattern of gene flow. Due to the parasite's life history, its population structure is directly linked to the frequency and spatial extent of within-breeding season movements of kittiwakes. The comparison of host and parasite gene flow therefore helps us to disentangle the intercolony movements of birds from that of true dispersal events (movement followed by reproduction). In addition, such data can provide essential elements for predicting the outcome of local co-evolutionary interactions. PMID:16029481

  9. The Toxoplasma gondii rhoptry protein ROP 2 is inserted into the parasitophorous vacuole membrane, surrounding the intracellular parasite, and is exposed to the host cell cytoplasm

    PubMed Central

    1994-01-01

    The origin of the vacuole membrane surrounding the intracellular protozoan parasite Toxoplasma gondii is not known. Although unique secretory organelles, the rhoptries, discharge during invasion of the host cell and may contribute to the formation of this parasitophorous vacuole membrane (PVM), no direct evidence for this hypothesis exists. Using a novel approach we have determined that parasite-encoded proteins are present in the PVM, exposed to the host cell cytoplasm. In infected cells incubated with streptolysin-O or low concentrations of digitonin, the host cell plasma membrane was selectively permeabilized without significantly affecting the integrity of the PVM. Antisera prepared against whole parasites or a parasite fraction enriched in rhoptries and dense granules reacted with the PVM in these permeabilized cells, indicating that parasite-encoded antigens were exposed on the cytoplasmic side of the PVM. Parasite antigens responsible for this staining of the PVM were identified by fractionating total parasite proteins by SDS-PAGE and velocity sedimentation, and then affinity purifying "fraction-specific" antibodies from the crude antisera. Proteins responsible for the PVM- staining, identified with fraction-specific antibodies, cofractionated with known rhoptry proteins. The gene encoding one of the rhoptry proteins, ROP 2, was cloned and sequenced, predicting and integral membrane protein. Antibodies specific for ROP 2 reacted with the intact PVM. These results provide the first direct evidence that rhoptry contents participate in the formation of the PVM of T. gondii and suggest a possible role of ROP 2 in parasite-host cell interactions. PMID:7962077

  10. Microbe–Host Interactions are Positively and Negatively Regulated by Galectin–Glycan Interactions

    PubMed Central

    Baum, Linda G.; Garner, Omai B.; Schaefer, Katrin; Lee, Benhur

    2014-01-01

    Microbe–host interactions are complex processes that are directly and indirectly regulated by a variety of factors, including microbe presentation of specific molecular signatures on the microbial surface, as well as host cell presentation of receptors that recognize these pathogen signatures. Cell surface glycans are one important class of microbial signatures that are recognized by a variety of host cell lectins. Host cell lectins that recognize microbial glycans include members of the galectin family of lectins that recognize specific glycan ligands on viruses, bacteria, fungi, and parasites. In this review, we will discuss the ways that the interactions of microbial glycans with host cell galectins positively and negatively regulate pathogen attachment, invasion, and survival, as well as regulate host responses that mitigate microbial pathogenesis. PMID:24995007

  11. Food plant derived disease tolerance and resistance in a natural butterfly-plant-parasite interactions.

    PubMed

    Sternberg, Eleanore D; Lefèvre, Thierry; Li, James; de Castillejo, Carlos Lopez Fernandez; Li, Hui; Hunter, Mark D; de Roode, Jacobus C

    2012-11-01

    Organisms can protect themselves against parasite-induced fitness costs through resistance or tolerance. Resistance includes mechanisms that prevent infection or limit parasite growth while tolerance alleviates the fitness costs from parasitism without limiting infection. Although tolerance and resistance affect host-parasite coevolution in fundamentally different ways, tolerance has often been ignored in animal-parasite systems. Where it has been studied, tolerance has been assumed to be a genetic mechanism, unaffected by the host environment. Here we studied the effects of host ecology on tolerance and resistance to infection by rearing monarch butterflies on 12 different species of milkweed food plants and infecting them with a naturally occurring protozoan parasite. Our results show that monarch butterflies experience different levels of tolerance to parasitism depending on the species of milkweed that they feed on, with some species providing over twofold greater tolerance than other milkweed species. Resistance was also affected by milkweed species, but there was no relationship between milkweed-conferred resistance and tolerance. Chemical analysis suggests that infected monarchs obtain highest fitness when reared on milkweeds with an intermediate concentration, diversity, and polarity of toxic secondary plant chemicals known as cardenolides. Our results demonstrate that environmental factors-such as interacting species in ecological food webs-are important drivers of disease tolerance. PMID:23106703

  12. Using parasites to infer host population history: a new rationale for parasite conservation

    Microsoft Academic Search

    Noah Kerness Whiteman; Patricia G. Parker

    2005-01-01

    Only one of the 5000 extant louse species (Phthiraptera) and no species of flea (Siphonaptera), parasitic helminth (Platyhelminthes), parasitic nematode (Nemata), mite, or tick (Acari) is listed as threatened by the IUCN, despite impassioned pleas for parasite conservation beginning more than a decade ago. Although they should be conserved for their own sake, past arguments, highlighting the intrinsic and utilitarian

  13. Suppression of predation on the intermediate host by two trophically-transmitted parasites when uninfective.

    PubMed

    Weinreich, F; Benesh, D P; Milinski, M

    2013-01-01

    Trophically-transmitted parasites generally need to undergo a period of development in the intermediate host before reaching infectivity. During this vulnerable period, manipulation of the host to reduce susceptibility to predation would be advantageous for parasites, because it increases the probability of surviving until infectivity and thus the probability of transmission. We tested this 'predation suppression' hypothesis in 2 parasite species that use copepods as first hosts: the tapeworm Schistocephalus solidus and the nematode Camallanus lacustris. In a series of prey choice experiments, we found that copepods harbouring uninfective, still-developing worm larvae were less frequently consumed by stickleback predators than uninfected copepods. The levels of predation suppression were similar in the two parasite species, suggestive of convergent evolution. Additionally, copepods harbouring 2 worms of a given species were not more susceptible to predation than those with 1 worm, suggesting that excessive larval parasite growth does not increase host susceptibility to predation. Our results support the idea that parasites can suppress intermediate host susceptibility to predation while uninfective, but we also note that the available studies suggest that this effect is weaker than the frequently observed enhancement of host predation by infective helminth larvae. PMID:22906915

  14. Exploring the host parasitism of the migratory plant-parasitic nematode Ditylenchus destuctor by expressed sequence tags analysis.

    PubMed

    Peng, Huan; Gao, Bing-li; Kong, Ling-an; Yu, Qing; Huang, Wen-kun; He, Xu-feng; Long, Hai-bo; Peng, De-liang

    2013-01-01

    The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response. Comparing the transcriptome and parasitome among different types of plant-parasitic nematodes is the way to understand more fully the parasitic mechanism of plant nematodes. We undertook the approach of sequencing expressed sequence tags (ESTs) derived from a mixed stage cDNA library of D. destructor. This is the first study of D. destructor ESTs. A total of 9800 ESTs were grouped into 5008 clusters including 3606 singletons and 1402 multi-member contigs, representing a catalog of D. destructor genes. Implementing a bioinformatics' workflow, we found 1391 clusters have no match in the available gene database; 31 clusters only have similarities to genes identified from D. africanus, the most closely related species to D. destructor; 1991 clusters were annotated using Gene Ontology (GO); 1550 clusters were assigned enzyme commission (EC) numbers; and 1211 clusters were mapped to 181 KEGG biochemical pathways. 22 ESTs had similarities to reported nematode effectors. Interestedly, most of the effectors identified in this study are involved in host cell wall degradation or modification, such as 1,4-beta-glucanse, 1,3-beta-glucanse, pectate lyase, chitinases and expansin, or host defense suppression such as calreticulin, annexin and venom allergen-like protein. This result implies that the migratory plant-parasitic nematode D. destructor secrets similar effectors to those of sedentary plant nematodes. Finally we further characterized the two D. destructor expansin proteins. PMID:23922743

  15. Presowing Hardening of the Host with Phenolic Acids Reduces Induction of Seed Germination in the Root Parasite Striga asiatica

    Microsoft Academic Search

    Bharathalakshmi; Jayachandra

    1980-01-01

    Striga asiatica (L.) Kuntze, a root parasite, causes severe loss of yield in sorghum and several other crops. The seeds of the parasite are induced to germinate by a stimulant in the host root exudate. Presowing hardening of the host with vanillic acid, caffeic acid and ferulic acid (25 ppm) reduces the induction of seed germination in the parasite by

  16. A Large Repertoire of Parasite Epitopes Matched by a Large Repertoire of Host Immune Receptors in an

    E-print Network

    Paris-Sud XI, Université de

    A Large Repertoire of Parasite Epitopes Matched by a Large Repertoire of Host Immune Receptors in an Invertebrate Host/Parasite Model Yves Mone´1 , Benjamin Gourbal1 , David Duval1 , Louis Du Pasquier2 , Sylvie against trematode parasites. Following not yet well understood somatic mechanisms, the FREP repertoire

  17. Supporting Information 3. Host-parasite simulations Deterministic computer simulations were performed to evaluate the effect of maternally-

    E-print Network

    Agrawal, Aneil F.

    Supporting Information 3. Host-parasite simulations Deterministic computer simulations were performed to evaluate the effect of maternally- transmitted parasites on the evolution of sex. Briefly, the simulations work as follows. Hosts are assumed to be diploid and parasites to be haploid. Both species have

  18. When to go: optimization of host switching in parasites with complex life cycles.

    PubMed

    Hammerschmidt, Katrin; Koch, Kamilla; Milinski, Manfred; Chubb, James C; Parker, Geoff A

    2009-08-01

    Many trophically transmitted parasites have complex life cycles: they pass through at least one intermediate host before reproducing in their final host. Despite their economic and theoretical importance, the evolution of such cycles has rarely been investigated. Here, combining a novel modeling approach with experimental data, we show for the first time that an optimal transfer time between hosts exists for a "model parasite," the tapeworm Schistocephalus solidus, from its first (copepod) to its second (fish) intermediate host. When transferring between hosts around this time, (1) parasite performance in the second intermediate host, (2) reproductive success in the final host, and (3) fitness in the next generation is maximized. At that time, the infected copepod's behavior changes from predation suppression to predation enhancement. The optimal time for switching manipulation results from a trade-off between increasing establishment probability in the next host and reducing mortality in the present host. Our results show that these manipulated behavioral changes are adaptive for S. solidus, rather than an artifact, as they maximize parasite fitness. PMID:19453381

  19. Multi-parasite host susceptibility and multi-host parasite infectivity: a new approach of the Biomphalaria glabrata/Schistosoma mansoni compatibility polymorphism.

    PubMed

    Theron, A; Rognon, A; Gourbal, B; Mitta, G

    2014-08-01

    In this study, we analyze the degree of susceptibility/un-susceptibility of five strains of Biomphalaria glabrata from different geographical origins successively challenged with a panel of 4 Schistosoma mansoni strains. A total of 20 homopatric and heteropatric host-parasite combinations were tested with exposure doses of 1, 10, 20, 30 and 50 miracidia per individual host. By doing this, we characterized each B. glabrata strain by its "multi-parasite susceptibility phenotype" that reflects better the efficiency of their defense mechanism against not only one, but a diversity of schistosome stocks. In the same time, all the S. mansoni strains used were characterized, by their "multi-host infectivity phenotype" that reflects the level of infectivity they display when confronted to diverse snail populations. Based on these results it is possible to select different homogenous stocks of snails with different spectrum of susceptibility/un-susceptibility for several parasite strains. This will be a useful tool for future functional studies conducted to understand the genetics and molecular basis of the compatibility polymorphism in this host/parasite model. PMID:24837670

  20. Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations.

    PubMed

    Tobler, M; Plath, M; Riesch, R; Schlupp, I; Grasse, A; Munimanda, G K; Setzer, C; Penn, D J; Moodley, Y

    2014-05-01

    The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans-species evolution). PMID:24725091

  1. Echinococcus granulosus antigen B: a Hydrophobic Ligand Binding Protein at the host-parasite interface.

    PubMed

    Silva-Álvarez, Valeria; Folle, Ana Maite; Ramos, Ana Lía; Zamarreño, Fernando; Costabel, Marcelo D; García-Zepeda, Eduardo; Salinas, Gustavo; Córsico, Betina; Ferreira, Ana María

    2015-02-01

    Lipids are mainly solubilized by various families of lipid binding proteins which participate in their transport between tissues as well as cell compartments. Among these families, Hydrophobic Ligand Binding Proteins (HLBPs) deserve special consideration since they comprise intracellular and extracellular members, are able to bind a variety of fatty acids, retinoids and some sterols, and are present exclusively in cestodes. Since these parasites have lost catabolic and biosynthetic pathways for fatty acids and cholesterol, HLBPs are likely relevant for lipid uptake and transportation between parasite and host cells. Echinococcus granulosus antigen B (EgAgB) is a lipoprotein belonging to the HLBP family, which is very abundant in the larval stage of this parasite. Herein, we review the literature on EgAgB composition, structural organization and biological properties, and propose an integrated scenario in which this parasite HLBP contributes to adaptation to mammalian hosts by meeting both metabolic and immunomodulatory parasite demands. PMID:25451555

  2. The patterns of organisation and structure of interactions in a fish-parasite network of a neotropical river.

    PubMed

    Bellay, Sybelle; Oliveira, Edson F de; Almeida-Neto, Mário; Abdallah, Vanessa D; Azevedo, Rodney K de; Takemoto, Ricardo M; Luque, José L

    2015-07-01

    The use of the complex network approach to study host-parasite interactions has helped to improve the understanding of the structure and dynamics of ecological communities. In this study, this network approach is applied to evaluate the patterns of organisation and structure of interactions in a fish-parasite network of a neotropical Atlantic Forest river. The network includes 20 fish species and 73 metazoan parasite species collected from the Guandu River, Rio de Janeiro State, Brazil. According to the usual measures in studies of networks, the organisation of the network was evaluated using measures of host susceptibility, parasite dependence, interaction asymmetry, species strength and complementary specialisation of each species as well as the network. The network structure was evaluated using connectance, nestedness and modularity measures. Host susceptibility typically presented low values, whereas parasite dependence was high. The asymmetry and species strength were correlated with host taxonomy but not with parasite taxonomy. Differences among parasite taxonomic groups in the complementary specialisation of each species on hosts were also observed. However, the complementary specialisation and species strength values were not correlated. The network had a high complementary specialisation, low connectance and nestedness, and high modularity, thus indicating variability in the roles of species in the network organisation and the expected presence of many specialist species. PMID:25900213

  3. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    PubMed Central

    Otto, Thomas D.; Rayner, Julian C.; Böhme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, François; Thomas, Alan W.; Prugnolle, Franck; Conway, David J.; Newbold, Chris; Berriman, Matthew

    2014-01-01

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching. PMID:25203297

  4. Influence of original host on chemotaxic behaviour and parasitism in Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    PubMed

    Tognon, R; Sant'Ana, J; Jahnke, S M

    2014-12-01

    The egg parasitoid Telenomus podisi is a natural control agent of pentatomids, including Euschistus heros and Tibraca limbativentris, and success of parasitism is dependent upon the parasitoid finding the host. We tested the influence of host egg volatiles and the synthetic sex pheromone (zingiberenol) of T. limbativentris on chemotaxic behaviour of T. podisi, as well as, the impact of the original host on parasitoid selection. We used mated female T. podisi (48 h old) that emerged from the eggs of T. limbativentris or E. heros. The bioassays related to chemotaxy were performed in a Y-tube olfactometer and, to parasitism success, in laboratory and semi-field conditions. Telenomus podisi females that emerged from either the stink bug eggs, chose the pheromone more than control, or the pheromone plus eggs of E. heros in the semi-field bioassay, led to greater parasitism. Females that emerged from E. heros eggs chose egg volatiles from their original host rather than those from T. limbativentris, while females emerging from T. limbativentris, chose the egg volatiles of both hosts equally. When T. limbativentris was the original host, T. podisi females parasitized T. limbativentris over E. heros, while those emerging from E. heros exclusively parasitized E. heros eggs. These results demonstrated that T. podisi is more likely to parasitize the host in which it developed and that the original host can exert influence on the choice by those parasitoids. Understanding how the factors that mediate host-parasitoid communication are interrelated can help biological control programmes establish more effective and reliable tools with T. podisi. PMID:25375218

  5. The perils of using host relationships in parasite taxonomy: phylogeny of the Degeeriella complex

    E-print Network

    Johnson, Kevin P.

    The perils of using host relationships in parasite taxonomy: phylogeny of the Degeeriella complex taxonomy in louse taxonomy can result in classifications that do not reflect phylogenetic history. Ó 2002 are ectopar- asites of birds and mammals, are often derived directly from host names (Hopkins and Clay, 1952

  6. Induction of apoptosis in host cells: a survival mechanism for Leishmania parasites?

    Microsoft Academic Search

    2008-01-01

    SUMMARY Leishmania parasites invade host macrophages, causing infections that are either limited to skin or spread to internal organs. In this study, 3 species causing cutaneous leishmaniasis, L. major, L. aethiopica and L. tropica, were tested for their ability to interfere with apoptosis in host macrophages in 2 different lines of human monocyte-derived macrophages (cell lines THP- 1 and U937)

  7. Host selection by Blepharipa pratensis (Meigen), a tachinid parasite of the gypsy moth, Lymantria dispar L

    Microsoft Academic Search

    Thomas M. Odell; Paul A. Godwin

    1984-01-01

    The host selection process ofBlepharipa pratensis (Meigen), a tachinid parasite of the gypsy moth,Lymantria dispar L., was investigated. Once in the host's habitat, and following contact with a recently damaged leaf edge (cut, torn, eaten), the fly orients perpendicular to the edge and moves back and forth with the front tarsi grasping the damaged edge. Oviposturing (oviposition intention) may occur.

  8. Recognition of social parasites as nest-mates: adoption of colony-specific host cuticular odours by the paper wasp parasite Polistes sulcifer.

    PubMed Central

    Sledge, M. F.; Dani, F. R.; Cervo, R.; Dapporto, L.; Turillazzi, S.

    2001-01-01

    Colonies of the polistine wasp Polistes dominulus are parasitized by the permanent worker-less social parasite Polistes sulcifer. After usurpation of the host colony, parasite females are characterized by a change in the relative proportions of their cuticular hydrocarbons to match those of the host species. In this paper we present evidence from field data and laboratory experiments that P. sulcifer females adopt a colony-specific host odour that facilitates their acceptance by host females of the usurped colony. Presentation experiments demonstrate that parasite females are recognized as foreign individuals by workers of other parasitized nests. We show that the modification of parasite cuticular compounds is sufficient for this recognition. This provides evidence that, after invasion, P. sulcifer queens do not require appeasement or propaganda substances for their acceptance by host colonies. Furthermore, multivariate discriminant analysis of the cuticular hydrocarbon proportions of the parasites after usurpation assigns the parasites together with P. dominulus females of their own host colony. To the authors' knowledge, this is the first confirmation that social parasites adopt colony-specific host odours. PMID:11674873

  9. Bipteria vetusta n. sp. – an old parasite in an old host: tracing the origin of myxosporean parasitism in vertebrates.

    PubMed

    Kodádková, Alena; Bartošová-Sojková, Pavla; Holzer, Astrid S; Fiala, Ivan

    2015-03-01

    Myxosporea (Myxozoa), a group of parasitic Cnidaria, use mostly bony fishes (Teleostei) as intermediate hosts; however, they can also parasitize other vertebrates such as cartilaginous fish (Chondrichthyes). Molecular data of myxosporeans from sharks and rays (Elasmobranchii) revealed these parasites to be one of the most basal representatives in the myxosporean phylogenetic tree, suggesting their ancient evolutionary history. A new myxosporean species, Bipteria vetusta n. sp., was found in the gall bladder of rabbit fish, Chimaera monstrosa (Holocephali; Chondrichthyes), and ssrDNA-based phylogeny revealed its basal position within the marine myxosporean lineage. Molecular dating based on ssrDNA analysis suggested the origin of a stem lineage leading to the marine myxosporean lineage at the time of the origin of Chondrichthyes in the Silurian era. The two common lineages of Myxozoa, Myxosporea and Malacosporea, were estimated to have split from their common ancestor in the Cambrian era. Tracing the history of evolution of the "vertebrate host type" character in the context of molecular dating showed that cartilaginous fish represented an ancestral state for all myxosporeans. Teleosts were very likely subsequently parasitized by myxozoans four times, independently. Myxosporean radiation and diversification appear to correlate with intermediate host evolution. The first intermediate hosts of myxosporeans were cartilaginous fish. When bony fish evolved and radiated, myxosporeans switched and adapted to bony fish, and subsequently greatly diversified in this new host niche. We believe that the present study is the first attempt at molecular dating of myxozoan evolution based on an old myxosporean species – a living myxosporean fossil. PMID:25659495

  10. PAK in pathogen-host interactions.

    PubMed

    Semblat, Jean-Philippe; Doerig, Christian

    2012-04-01

    Eukaryotic, prokaryotic and viral pathogens are known to interfere with signaling pathways of their host to promote their own survival and proliferation. Here, we present selected examples of modulation of PAK activity in human cells by both intracellular and extracellular pathogens, focusing on one eukaryotic pathogen, the human malaria parasite Plasmodium falciparum, two Gram-negative bacteria (Helicobacter pylori and Pseudomonas aeruginosa), and two viruses belonging to distinct groups, the lentivirus HIV and the orthomyxovirus Influenza virus A. PMID:23125952

  11. Comparative host-parasite population genetic structures: obligate fly ectoparasites on Galapagos seabirds.

    PubMed

    Levin, Iris I; Parker, Patricia G

    2013-08-01

    Parasites often have shorter generation times and, in some cases, faster mutation rates than their hosts, which can lead to greater population differentiation in the parasite relative to the host. Here we present a population genetic study of two ectoparasitic flies, Olfersia spinifera and Olfersia aenescens compared with their respective bird hosts, great frigatebirds (Fregata minor) and Nazca boobies (Sula granti). Olfersia spinifera is the vector of a haemosporidian parasite, Haemoproteus iwa, which infects frigatebirds throughout their range. Interestingly, there is no genetic differentiation in the haemosporidian parasite across this range despite strong genetic differentiation between Galapagos frigatebirds and their non-Galapagos conspecifics. It is possible that the broad distribution of this one H. iwa lineage could be facilitated by movement of infected O. spinifera. Therefore, we predicted more gene flow in both fly species compared with the bird hosts. Mitochondrial DNA sequence data from three genes per species indicated that despite marked differences in the genetic structure of the bird hosts, gene flow was very high in both fly species. A likely explanation involves non-breeding movements of hosts, including movement of juveniles, and movement by adult birds whose breeding attempt has failed, although we cannot rule out the possibility that closely related host species may be involved. PMID:23659306

  12. Relative importance of host environment, transmission potential and host phylogeny to the structure of parasite metacommunities

    E-print Network

    Willig, Michael

    to the structure of parasite metacommunities Tad Dallas and Steven J. Presley T. Dallas (tdallas@uga.edu), Odum, Storrs, CT 06269­4210, USA. Identification of mechanisms that shape parasite community and metacommunity of community assembly in general. Using a long-term dataset on parasites from desert rodents, we examined

  13. Evidence for aggressive mimicry in an adult brood parasitic bird, and generalized defences in its host.

    PubMed

    Feeney, W E; Troscianko, J; Langmore, N E; Spottiswoode, C N

    2015-07-01

    Mimicry of a harmless model (aggressive mimicry) is used by egg, chick and fledgling brood parasites that resemble the host's own eggs, chicks and fledglings. However, aggressive mimicry may also evolve in adult brood parasites, to avoid attack from hosts and/or manipulate their perception of parasitism risk. We tested the hypothesis that female cuckoo finches (Anomalospiza imberbis) are aggressive mimics of female Euplectes weavers, such as the harmless, abundant and sympatric southern red bishop (Euplectes orix). We show that female cuckoo finch plumage colour and pattern more closely resembled those of Euplectes weavers (putative models) than Vidua finches (closest relatives); that their tawny-flanked prinia (Prinia subflava) hosts were equally aggressive towards female cuckoo finches and southern red bishops, and more aggressive to both than to their male counterparts; and that prinias were equally likely to reject an egg after seeing a female cuckoo finch or bishop, and more likely to do so than after seeing a male bishop near their nest. This is, to our knowledge, the first quantitative evidence for aggressive mimicry in an adult bird, and suggests that host-parasite coevolution can select for aggressive mimicry by avian brood parasites, and counter-defences by hosts, at all stages of the reproductive cycle. PMID:26063850

  14. Trypanosoma cruzi: immunological consequences of parasite modification of host cells.

    PubMed Central

    Ribeiro Dos Santos, R; Hudson, L

    1980-01-01

    Parasite antigens released from Trypanosoma cruzi-infected cells were adsorbed to infected and uninfected mammalian cells thus rendering them susceptible to immune lysis by antibody and cell-mediated immunity directed against the parasite. BALB/c mice infected with T. cruzi for 15 days developed cytotoxic T lymphocytes specific for parasite antigens. At 60 days post infection, however, the mice developed an additional population of cytotoxic T lymphocytes that were able to kill normal syngeneic muscle or neuronederived cell lines in vitro. These '60-day" T lymphocytes did not kill HeLa cells unless they were coated with T. cruzi antigens suggesting that the population of atuoaggressive T lymphocytes was not an artefact due to an increase in natural killer cells. PMID:6771080

  15. Hijacking of Host Cellular Functions by an Intracellular Parasite, the Microsporidian Anncaliia algerae

    PubMed Central

    Panek, Johan; El Alaoui, Hicham; Mone, Anne; Urbach, Serge; Demettre, Edith; Texier, Catherine; Brun, Christine; Zanzoni, Andreas; Peyretaillade, Eric; Parisot, Nicolas; Lerat, Emmanuelle; Peyret, Pierre; Delbac, Frederic; Biron, David G.

    2014-01-01

    Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture) quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF) and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi) and 8 days post-infection (dpi). A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN) host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras) and reduction of the translation activity (EIF3) confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system. PMID:24967735

  16. In-silico analysis of caspase-3 and -7 proteases from blood-parasitic Schistosoma species (Trematoda) and their human host

    PubMed Central

    Kumar, Shakti; Biswal, Devendra Kumar; Tandon, Veena

    2013-01-01

    Proteolytic enzymes of the caspase family, which reside as latent precursors in most nucleated metazoan cells, are core effectors of apoptosis. Of them, the executioner caspases- 3 and -7 exist within the cytosol as inactive dimers and are activated by a process called dimerization. Caspase inhibition is looked upon as a promising approach for treating multiple diseases. Though caspases have been extensively studied in the human system, their role in eukaryotic pathogens and parasites of human hosts has not drawn enough attention. In protein sequence analysis, caspases of blood flukes (Schistosoma spp) were revealed to have a low sequence identity with their counterparts in human and other mammalian hosts, which encouraged us to analyse interacting domains that participate in dimerization of caspases in the parasite and to reveal differences, if any, between the host-parasite systems. Significant differences in the molecular surface arrangement of the dimer interfaces reveal that in schistosomal caspases only eight out of forty dimer conformations are similar to human caspase structures. Thus, the parasite-specific dimer conformations (that are different from caspases of the host) may emerge as potential drug targets of therapeutic value against schistosomal infections. Three important factors namely, the size of amino acids, secondary structures and geometrical arrangement of interacting domains influence the pattern of caspase dimer formation, which, in turn, is manifested in varied structural conformations of caspases in the parasite and its human hosts. PMID:23847399

  17. [Baikal whitefish Coregonus baicalensis Dybowski, 1874 parasite communities and host age].

    PubMed

    Dugarov, Zh N; Pronin, N M

    2010-01-01

    Data on the taxonomic diversity of Baikal whitefish parasites are summarized in the study. Significant correlations of some parasite species' relative abundance and parasite communities' (infracommunities and component communities) parameters with host age were found during the study of parasite distribution in the host's age groups in the Baikal whitefish population from Chivyrkui Bay of Lake Baikal. Study of morphobiological and genetic features which have arisen due to long-term geographic isolation allowed confirming the initial specific independence of lake whitefishes of Lake Baikal as Coregonus baicalensis Dybowski, 1874, i.e., the Baikal whitefish (Sukhanova et al., 2000). The main habitats of this Baikal endemic are Barguzin and Chivyrkui bays, Selenga shallow, and Little Sea strait (Pronin et al., 2007). Local populations from these habitats were previously considered to be independent stocks (Krogius, 1933). PMID:21268871

  18. Lower Begging Responsiveness of Host Versus Parasitic Brown-Headed Cowbird (Molothrus ater) Nestlings Is Related to Species Identity but Not to Early Social Experience

    Microsoft Academic Search

    Mark E. Hauber

    2003-01-01

    The survival of young brood parasites depends critically on their many adaptations to exploit hosts. Parasitic survival is particularly related to competitive superiority for foster parental care whenever host young are not destroyed in parasitized nests. Brown-headed cowbirds (Molothrus ater) are generalist obligate parasites whose early social environments are unpredictable regarding host species and numbers of estmates. Young avian brood

  19. Parasitic Central Nervous System Infections in Immunocompromised Hosts

    PubMed Central

    Walker, Melanie; Zunt, Joseph R.

    2009-01-01

    Immunosuppression due to therapy after transplantation or associated with HIV infection increases susceptibility to various central nervous system (CNS) infections. This article discusses how immunosuppression modifies the presentation, diagnosis, and treatment of selected parasitic CNS infections, with a focus on toxoplasmosis, Chagas disease, neurocysticercosis, schistosomiasis, and strongyloidiasis. PMID:15824993

  20. In Planta Processing and Glycosylation of a Nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-Like Effector and Its Interaction with a Host CLAVATA2-Like Receptor to Promote Parasitism1[OPEN

    PubMed Central

    Chen, Shiyan; Lang, Ping; Chronis, Demosthenis; Zhang, Sheng; De Jong, Walter S.; Mitchum, Melissa G.

    2015-01-01

    Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants. PMID:25416475

  1. Lessons from parasitic flatworms about evolution and historical biogeography of their vertebrate hosts.

    PubMed

    Verneau, Olivier; Du Preez, Louis; Badets, Mathieu

    2009-01-01

    Cophylogenetic studies investigate the evolutionary trends within host-parasite associations. Examination of the different levels of fidelity between host and parasite phylogenies provides a powerful tool to inspect patterns and processes of parasite diversification over host evolution and geological times. Within the phylum Platyhelminthes, the monogeneans are mainly fish parasites. The Polystomatidae, however, are known from the sarcopterygian Australian lungfish and tetrapods such as amphibians, freshwater turtles, and the African hippopotamus. Cophylogenetic and biogeographic vicariance analyses, supplemented by molecular calibrations, showed that the Polystomatidae may track the evolutionary history of the first aquatic tetrapods in the Palaeozoic age. Evolutionary lines of the major polystome lineages would also be intimately related to the evolution of their hosts over hundreds of millions years. Since the Mesozoic, evolution of polystomes would have been shaped mainly by plate tectonics during the break-up of Gondwanaland and subsequent dispersal of ancestral neobatrachian host lineages. Therefore the Polystomatidae could serve as a novel model to improve cophylogenetic tools and to inspect a suite of questions about the evolution of vertebrate hosts. PMID:19281948

  2. Parasites and host life-history traits: implications for community ecology and species co-existence

    Microsoft Academic Search

    Frédéric Thomas; Jean-François Guégan; Yannis Michalakis; Francois Renaud

    2000-01-01

    Most of the evidence for a key role of parasites in structuring communities is based on the idea of a differential susceptibility of host species to infection and its consequences. Recent advances in community ecology suggest that life-history traits of free-living species can be an important determinant of their co-existence within communities. On the other hand, parasites have the potential

  3. [Differences of Cynomorium songaricum seed quality and mutual parasitism in different host plants].

    PubMed

    Luo, Guang-Hong; Wang, Jin; Yan, Xia; Zhang, Yong; Zhang, Gui-Xi; Wang, Jian-Qiang

    2013-10-01

    In natural conditions, fully ripe Cynomorium songaricum seeds parasitize in Nitraria tangutorum or N. sphaerocarpa or N. sibirica or Zygophyllum xanthoxylom and Peganum harmala, were used in this study to research the morphological characteristics, embryo rate, seed viability, 1 000-grain weight, purity, water content and the seeds of different host parasitic relationship with each other. The results showed that the morphology, color and surface characteristics of the C. songaricum seeds are very similar in different hosts. According to the seed morphology can not be judged on its host. For the host to N. tangutorum or Peganum harmala or N. sibirica, we should choose the round hole screen less than 0.923 1 mm and larger than 1.066 2 mm to cleaning seeds. For the C. songaricum seeds parasitic in N. sphaerocarpa, the choice of slightly less than 0.926 1 mm and larger than 0.985 3 mm round hole screen to cleaning. For the parasitic seeds in Z. xanthoxylom, less than 0.751 3 mm and slightly larger than 1.035 3 mm round hole screen could be used. Highy significant correlation was found among the morphological indexes in C. songaricum seeds (P < 0.01). Morphological indexes and 1 000-grain weight were significantly correlated (0.01 < P < 0.05), but with the seed viability and the embryo rate were not found significant correlation. Grain weight is not related with the seed viability and the Fully mature C. songaricum seed viability is high and water content is low. The difference of the habitats and the host plants should be considered in the seed quality assessment and classification. The C. songaricum seeds on host plants are not selective, and the C. songaricum seeds from the host plants could be parasitized in other host plants. PMID:24490548

  4. Monte Carlo simulation of age-dependent host parasite relations

    NASA Astrophysics Data System (ADS)

    Stauffer, Dietrich; Proykova, Ana; Lampe, Karl-Heinz

    2007-10-01

    The death of a biological population is an extreme event which we investigate here for a host-parasitoid system. Our simulations using the Penna ageing model show how biological evolution can “teach” the parasitoids to avoid extinction by waiting for the right age of the host. We also show the dependence of extinction time on the population size.

  5. Persistence of host defence behaviour in the absence of avian brood parasitism.

    PubMed

    Peer, Brian D; Kuehn, Michael J; Rothstein, Stephen I; Fleischer, Robert C

    2011-10-23

    The fate of host defensive behaviour in the absence of selection from brood parasitism is critical to long-term host-parasite coevolution. We investigated whether New World Bohemian waxwings Bombycilla garrulus that are allopatric from brown-headed cowbird Molothrus ater and common cuckoo Cuculus canorus parasitism have retained egg rejection behaviour. We found that egg rejection was expressed by 100 per cent of Bohemian waxwings. Our phylogeny revealed that Bohemian and Japanese waxwings Bombycilla japonica were sister taxa, and this clade was sister to the cedar waxwing Bombycilla cedrorum. In addition, there was support for a split between Old and New World Bohemian waxwings. Our molecular clock estimates suggest that egg rejection may have been retained for 2.8-3.0 Myr since New World Bohemian waxwings inherited it from their common ancestor with the rejecter cedar waxwings. These results support the 'single trajectory' model of host-brood parasite coevolution that once hosts evolve defences, they are retained, forcing parasites to become more specialized over time. PMID:21493623

  6. Persistence of host defence behaviour in the absence of avian brood parasitism

    PubMed Central

    Peer, Brian D.; Kuehn, Michael J.; Rothstein, Stephen I.; Fleischer, Robert C.

    2011-01-01

    The fate of host defensive behaviour in the absence of selection from brood parasitism is critical to long-term host–parasite coevolution. We investigated whether New World Bohemian waxwings Bombycilla garrulus that are allopatric from brown-headed cowbird Molothrus ater and common cuckoo Cuculus canorus parasitism have retained egg rejection behaviour. We found that egg rejection was expressed by 100 per cent of Bohemian waxwings. Our phylogeny revealed that Bohemian and Japanese waxwings Bombycilla japonica were sister taxa, and this clade was sister to the cedar waxwing Bombycilla cedrorum. In addition, there was support for a split between Old and New World Bohemian waxwings. Our molecular clock estimates suggest that egg rejection may have been retained for 2.8–3.0 Myr since New World Bohemian waxwings inherited it from their common ancestor with the rejecter cedar waxwings. These results support the ‘single trajectory’ model of host–brood parasite coevolution that once hosts evolve defences, they are retained, forcing parasites to become more specialized over time. PMID:21493623

  7. Supplement 18, Part 7, Parasite-Subject Catalogue: Hosts 

    E-print Network

    Edwards, Shirley J.; Kirby, Margie D.; Crawley, Lila R.; Rayburn, Jane D.; Shaw, Judith H.; Walker, Martha L.

    1974-01-01

    " (gills) Hawaii Neohaliotrema maomao n. g., n. sp. [Abramis brama] leshch seasonal distribution of parasites Iskov, M. P., 1966 b Vasil'evsk hat?hery, Kakhovsk reservoir Acanthagenys rufogularis "spiny-eared honey-eater" Ornitheza metallica Maa....] all from Colorado Leucocytozoon [spp.] Trypanosoma [spp.J Accipiter nisoides Ornithoctona plicata Maa, T. C., 1963 a, 159 Taiwan Accipiter nisus Odening, ?. , 1965 i Neodiplostomuni spathoides Berlin area Accipiter nisus Strigea falconis...

  8. Are there Pros as well as Cons to being Parasitized?

    Microsoft Academic Search

    F Thomas; R Poulin; J-F Guégan; Y Michalakis; F Renaud

    2000-01-01

    The diversity of ways in which parasites reduce the fitness of their hosts has been documented during the past decades, and clearly indicates that parasites can often be considered as direct agents of selection. In natural systems, however, the outcome of a host–parasite interaction might be strongly determined by other ecological factors. Parasites can be detrimental to host fitness in

  9. Host-Size Selection by Parasitic Sea Lampreys

    Microsoft Academic Search

    William D. Swink

    1991-01-01

    When 171 sea lampreys Petromyzon marinus were each offered a onetime choice of one large and two small lake trout Salvelinus namaycush, the ratio of their attacks (49.1%:27.5%: 23.4%) was similar to the ratio of host surface areas (51.4%:26.3%:22.3%) in laboratory tests conducted over 9 months in 1988–1989. When the smallest offered host was 560 mm total length (TL) or

  10. An Evidence for Host Translation Inhibitory Factor Encoded in a Polydnavirus, Cotesia glomerata Bracovirus, Genome and Its Expression in Parasitized Cabbage White Butterfly, Pieris rapae

    Microsoft Academic Search

    Yonggyun Kim

    2007-01-01

    Polydnavirus is a DNA virus symbiotic to some endoparasitic wasps and plays a critical role in accomplishing successful parasitic life cycle of host wasps. Host translation inhibitory factor (HTIF) has been found in some polydnaviral genomes and performs parasitic functions leading to host immunosuppression and redirecting host nutrient usage to wasp development. The cabbage white butterfly, Pieris rapae, parasitized by

  11. Parasite strain coexistence in a heterogeneous host population Darren M. Green, Istvan Z. Kiss and Rowland R. Kao

    E-print Network

    Kiss, Istvan Zoltan

    Parasite strain coexistence in a heterogeneous host population Darren M. Green, Istvan Z. Kiss and Rowland R. Kao Green, D. M., Kiss, I. Z. and Kao, R. R. 2006. Parasite strain coexistence to parasite attack allows a lower transmission rate to sustain an epidemic than is required in homogeneous

  12. Parasite Infections: From Experimental Models To Natural Systems Hosted by the Centre for Immunity, Infection, and Evolution

    E-print Network

    Maizels, Rick

    Parasite Infections: From Experimental Models To Natural Systems Hosted by the Centre for Immunity Consortium for Parasite Infection Programme: 09:00 Registration/Coffee 09:15 Welcome 09:20 Rose Zamoyska and Parasitic Agents and Mycobacteria, Berlin) Setting up a research agenda for Giardasis 12:45 Nishith Gupta

  13. Alteration of host cell phenotype by Theileria annulata and Theileria parva: mining for manipulators in the parasite genomes

    Microsoft Academic Search

    Brian Shiels; Gordon Langsley; William Weir; Arnab Pain; Sue McKellar; Dirk Dobbelaere

    2006-01-01

    The apicomplexan parasites Theileria annulata and Theileria parva cause severe lymphoproliferative disorders in cattle. Disease pathogenesis is linked to the ability of the parasite to transform the infected host cell (leukocyte) and induce uncontrolled proliferation. It is known that transformation involves parasite dependent perturbation of leukocyte signal transduction pathways that regulate apoptosis, division and gene expression, and there is evidence

  14. Effects of intra- and interpatch host density on egg parasitism by three species of Trichogramma.

    PubMed

    Grieshop, Matthew J; Flinn, Paul W; Nechols, James R

    2010-01-01

    Host-foraging responses to different intra- and interpatch densities were used to assess three Trichogramma spp. (Hymenoptera: Trichogrammatidae) Trichogramma deion Pinto and Oatman, T. ostriniae Pang and Chen, and T. pretiosum Riley - as potential biological control agents for the Indian meal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Single naïve females were allowed 6 h to forage in Plexiglas arenas with four different spatial arrangements of host eggs, nine single-egg patches), nine four-egg patches, 36 single-egg patches, and 36 four-egg patches. No significant differences were found among species in the number of patches parasitized. As expected, all three species parasitized the most eggs in the 36 four-egg patch treatment and the least in the nine single-egg patch treatment. T. deion parasitized significantly more eggs than T. pretiosum on the nine four-egg patches. T. ostriniae parasitized significantly more patches when intrapatch density was greater, regardless of interpatch density. In contrast, T. deion only parasitized more patches at the greater intrapatch density when the interpatch density was low. Patch density had no effect on T. pretiosum. The spatial pattern of parasitism was more aggregated for T. deion and T. ostriniae in the 36 four-egg patches treatment compared to the 36 single-egg patches treatment. Therefore, intrapatch density was more important than interpatch density for T. ostriniae, and potentially for T. deion, but not for T. pretiosum. T. deion may be the best candidate for augmentative biological control because it parasitized either slightly or significantly more eggs than the other two species in all four treatments. Furthermore, the pattern of parasitism by T. deion in the 36 four-egg patches treatment was the most aggregated among the three species, suggesting a more thorough searching pattern. In contrast, T. pretiosum had the least aggregated pattern of parasitism and therefore may have used a more random foraging pattern. PMID:20673123

  15. Effects of Intra- and Interpatch Host Density on Egg Parasitism by Three Species of Trichogramma

    PubMed Central

    Grieshop, Matthew J.; Flinn, Paul W.; Nechols, James R.

    2010-01-01

    Host-foraging responses to different intra- and interpatch densities were used to assess three Trichogramma spp. (Hymenoptera: Trichogrammatidae) Trichogramma deion Pinto and Oatman, T. ostriniae Pang and Chen, and T. pretiosum Riley — as potential biological control agents for the Indian meal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Single naïve females were allowed 6 h to forage in Plexiglas arenas with four different spatial arrangements of host eggs, nine single-egg patches), nine four-egg patches, 36 single-egg patches, and 36 four-egg patches. No significant differences were found among species in the number of patches parasitized. As expected, all three species parasitized the most eggs in the 36 four-egg patch treatment and the least in the nine single-egg patch treatment. T. deion parasitized significantly more eggs than T. pretiosum on the nine four-egg patches. T. ostriniae parasitized significantly more patches when intrapatch density was greater, regardless of interpatch density. In contrast, T. deion only parasitized more patches at the greater intrapatch density when the interpatch density was low. Patch density had no effect on T. pretiosum. The spatial pattern of parasitism was more aggregated for T. deion and T. ostriniae in the 36 four-egg patches treatment compared to the 36 single-egg patches treatment. Therefore, intrapatch density was more important than interpatch density for T. ostriniae, and potentially for T. deion, but not for T. pretiosum. T. deion may be the best candidate for augmentative biological control because it parasitized either slightly or significantly more eggs than the other two species in all four treatments. Furthermore, the pattern of parasitism by T. deion in the 36 four-egg patches treatment was the most aggregated among the three species, suggesting a more thorough searching pattern. In contrast, T. pretiosum had the least aggregated pattern of parasitism and therefore may have used a more random foraging pattern. PMID:20673123

  16. Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria

    NASA Astrophysics Data System (ADS)

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Sebina, Ismail; Haque, Ashraful; Davenport, Miles P.

    2015-05-01

    The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.

  17. Anatomical relations among endophytic holoparasitic angiosperms, autotrophic host plants and mycorrhizal fungi: A novel tripartite interaction.

    PubMed

    de Vega, Clara; Arista, Montserrat; Ortiz, Pedro L; Talavera, Salvador

    2010-05-01

    Mycorrhizae are widespread mutualistic symbioses crucial for the functioning of terrestrial ecosystems. Not all plants associate with mycorrhizae; most parasitic plants have been suggested to be nonmycorrhizal because they have developed alternative strategies to obtain nutrients. In endophytic parasitic plants, whose vegetative bodies grow completely inside their mycorrhizal host roots, the opportunity for establishing a tripartite association seems evident, but information on these systems is lacking. In studying natural associations among the endophytic holoparasite Cytinus hypocistis, their Cistaceae host species, and associated mycorrhizal fungi, we found that mycorrhizae were associated with the hosts and the parasites, reaching high frequencies of colonization. In parasitic and host root tissues, mycorrhizal fungi spread in the parenchymatic cells by intracellular growth and formed hyphal coils and vesicles, while the cambium and the vascular tissues were never colonized. This report is the first on a tripartite association of an endophytic parasitic plant, its host, and mycorrhizae in natural conditions, representing a novel trophic interaction not previously reported within the angiosperms. Additional studies on the interactions occurring among these three players are needed because they may be crucial to our understanding of how this mutualistic-antagonistic system is functioning and evolving. PMID:21622439

  18. Parasite-induced Host Mortality: Indirect Evidence From a Long-term Study

    Microsoft Academic Search

    Rune Knudsen; Per-Arne Amundsen; Anders Klemetsen

    2002-01-01

    A long-term field study of a perturbed host–helminth system provides indirect evidence that a long-lived swimbladder nematode, Cystidicola farionis, induces mortality of Arctic charr, Salvelinus alpinus. The prevalence and abundance of this parasite has changed little over the period from 1987 to 1999. The cumulative numbers of L3-stage larvae steadily increased with increasing host age, indicating a continuous exposure to

  19. Transmission ecology of Echinococcus multilocularis: What are the ranges of parasite stability among various host communities in China?

    Microsoft Academic Search

    Patrick Giraudoux; David Pleydell; Francis Raoul; Jean-Pierre Quéré; Qian Wang; Yurong Yang; Dominique A. Vuitton; Jiamen Qiu; Wen Yang; Philip S. Craig

    2006-01-01

    A striking feature of the transmission ecology of Echinococcus multilocularis in China is the diversity of hosts that contribute to the parasite cycle. Considering the population dynamics of key reservoir intermediate hosts and the ratio of their preferred habitat in a landscape (ROMPA) is essential to understanding transmission, but the numerous communities in which the parasite cycles and the extent

  20. Live and Let Live: Invasive Host, Charybdis longicollis (Decapoda: Brachyura: Portunidae), and Invasive Parasite, Heterosaccus dollfusi (Cirripedia: Rhizocephala: Sacculinidae)

    Microsoft Academic Search

    Gianna Innocenti; Bella S. Galil

    \\u000a The Levantine populations of the invasive swimming crab Charybdis longicollis have been parasitized by the rhizocephalan Heterosaccus dollfusi, itself an alien, since 1992. The parasite affects the host morphology, moulting, behaviour, causes its sterilization, and\\u000a induces mortality. The high prevalence of H. dollfusi can be ascribed to the dense population of the host, the year-round reproduction of the parasite that

  1. Stability of within-host–parasite communities in a wild mammal system

    PubMed Central

    Knowles, Sarah C. L.; Fenton, Andy; Petchey, Owen L.; Jones, Trevor R.; Barber, Rebecca; Pedersen, Amy B.

    2013-01-01

    Simultaneous infection by multiple parasite species is ubiquitous in nature. Interactions among co-infecting parasites may have important consequences for disease severity, transmission and community-level responses to perturbations. However, our current view of parasite interactions in nature comes primarily from observational studies, which may be unreliable at detecting interactions. We performed a perturbation experiment in wild mice, by using an anthelminthic to suppress nematodes, and monitored the consequences for other parasite species. Overall, these parasite communities were remarkably stable to perturbation. Only one non-target parasite species responded to deworming, and this response was temporary: we found strong, but short-lived, increases in the abundance of Eimeria protozoa, which share an infection site with the dominant nematode species, suggesting local, dynamic competition. These results, providing a rare and clear experimental demonstration of interactions between helminths and co-infecting parasites in wild vertebrates, constitute an important step towards understanding the wider consequences of similar drug treatments in humans and animals. PMID:23677343

  2. Influence of host nutrition on the development and consequences of nematode parasitism in ruminants

    Microsoft Academic Search

    Robert L Coop; Ilias Kyriazakis

    2001-01-01

    Control of gastrointestinal nematodes of ruminants is based largely on use of anthelmintics combined, where practical, with pasture management. The increasing prevalence of resistance to anthelmintics has led to the search for alternative sustainable control strategies. Here, we consider how nutrition, as a short-term alternative, can influence the host–parasite relationship in ruminants, using gastrointestinal nematode infections of sheep as the

  3. Transmission stage investment of malaria parasites in response to in-host competition

    PubMed Central

    Wargo, Andrew R; de Roode, Jacobus C; Huijben, Silvie; Drew, Damien R; Read, Andrew F

    2007-01-01

    Conspecific competition occurs in a multitude of organisms, particularly in parasites, where several clones are commonly sharing limited resources inside their host. In theory, increased or decreased transmission investment might maximize parasite fitness in the face of competition, but, to our knowledge, this has not been tested experimentally. We developed and used a clone-specific, stage-specific, quantitative PCR protocol to quantify Plasmodium chabaudi replication and transmission stage densities in mixed-clone infections. We co-infected mice from two strains with an avirulent and virulent parasite clone and found competitive suppression of in-host (blood-stage) parasite densities and generally corresponding reductions in transmission stage production, with the virulent clone obtaining overall competitive superiority. In response to competitive suppression, there was little evidence of any alteration in transmission stage investment, apart from a small reduction by one of the two clones in one of the two host strains. This alteration did not result in a competitive advantage, although it might have reduced the disadvantage. This study supports much of the current literature, which predicts that conspecific in-host competition will result in a competitive advantage and positive selection for virulent clones and thus the evolution of higher virulence. PMID:17711832

  4. Immune response and host protection of Nile tilapia against parasite Ichthyophthirius multifiliis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ichthyophthirius multifiliis (Ich) is one of the virulent ciliated parasites and causes heavy economic loss in freshwater fish. Two immunization trials were conducted to evaluate host protection of Nile tilapia, Oreochromis niloticus against Ich. Immunizations were done with live theronts or sonicat...

  5. Distinct immunoregulatory properties of macrophage migration inhibitory factors encoded by Eimeria parasites and their chicken host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays an important role in host defense against a variety of microorganisms including protozoan parasites. Interestingly, some microbial pathogens also express a MIF-like protein, although its role in disease pathogenesi...

  6. Supplement 20, Part 7, Parasite-Subject Catalogue: Hosts

    E-print Network

    Shaw, Judith H.; Edwards, Shirley J.; Rayburn, Jane D.; Tolson, Deborah A.; Hood, Martha W.

    1976-01-01

    Suiowska, Polen Accipiter trivirgatus lay- ardi Degeeriella storeri ?. sp. Accipiter trivirgatus pala- wanus Degeeriella storeei n. sp. Accipiter trivirgatus penln- sulae Degeeriella storeri ?. sp. Accipiter virgatus affinis "Japanese sparrow hawk... ?. sp. Castle Rock, Kanara, Bombay, India Accipiter virgatus affinis Schmidt, G. D.; and Kuntz, "Japanese sparrow hawk" R. E., 1969 ? (intestine) Centrorhynchus amphibius Taiwan Centrorhynchus spp. Far East HOSTS 5 Acerina cernua (gill arches...

  7. Frequent vocalizing is negatively associated with brood parasitism in a host of the brown-headed cowbird

    USGS Publications Warehouse

    Steckler, Sonya E.; Conway, Courtney J.

    2012-01-01

    Brood parasitism by the Brown-headed Cowbird (Molothrus ater) can substantially affect host species' reproductive success. The "host-activity" hypothesis suggests that parasites eavesdrop on conspicuous behaviors to locate and parasitize hosts, and several studies of cowbird hosts support this hypothesis. In contrast, a recent study of the Least Bell's Vireo (Vireo bellii pusillus) reported a negative association between the host's vocalization rate near the nest and brood parasitism. This contradictory pattern is intriguing because Bell's Vireo is a common cowbird host and vocalizes near and on its nests. We tested a key assumption of the host-activity hypothesis in a different subspecies (V. b. arizonae) to determine whether the contradictory pattern reported in V. b. pusillus is an anomaly or could be generalized to other subspecies. Unparasitized vireos vocalized more frequently than parasitized birds, confirming that the pattern in Bell's Vireos is the opposite of that reported for other cowbird hosts. Nesting stage played a role: unparasitized birds vocalized more than parasitized birds only during the nest-building and incubation stages. Given that vocalization rate and other behaviors change through the breeding season, future tests of the host-activity hypothesis should control for nesting stage. Moreover, future efforts to identify the underlying cause for the association between vocalization rate and probability of parasitism should consider the possibility of reciprocal causal relationships between them. We propose five additional hypotheses to explain why in Bell's Vireo the pattern between these two traits is opposite of what has been reported in other birds.

  8. Variation and covariation in infectivity, virulence and immunodepression in the host–parasite association Gammarus pulex–Pomphorhynchus laevis

    PubMed Central

    Cornet, Stéphane; Franceschi, Nathalie; Bollache, Loïc; Rigaud, Thierry; Sorci, Gabriele

    2009-01-01

    Parasites often manipulate host immunity for their own benefit, either by exacerbating or suppressing the immune response and this may directly affect the expression of parasite virulence. However, genetic variation in immunodepression, which is a prerequisite to its evolution, and the relationship between immunodepression and virulence, have rarely been studied. Here, we investigated the variation among sibships of the acanthocephalan parasite, Pomphorhynchus laevis, in infecting and in immunodepressing its amphipod host, Gammarus pulex. We also assessed the covariation between infectivity, parasite-induced immune depression and host mortality (parasite virulence). We found that infectivity, the intensity of immunodepression and virulence were variable among parasite sibships. Infectivity and the level of immunodepression were not correlated across parasite sibships. Whereas infectivity was unrelated to host mortality, we found that gammarids that were exposed to the parasite sibships that immunodepressed their hosts the most survived better. This positive covariation between host survival and immunodepression suggests that gammarids exposed to the less immunodepressive parasites could suffer from damage imposed by a higher activity of the phenoloxidase. PMID:19726474

  9. The Global Diversity of Parasitic Isopods Associated with Crustacean Hosts (Isopoda: Bopyroidea and Cryptoniscoidea)

    PubMed Central

    Williams, Jason D.; Boyko, Christopher B.

    2012-01-01

    Parasitic isopods of Bopyroidea and Cryptoniscoidea (commonly referred to as epicarideans) are unique in using crustaceans as both intermediate and definitive hosts. In total, 795 epicarideans are known, representing ?7.7% of described isopods. The rate of description of parasitic species has not matched that of free-living isopods and this disparity will likely continue due to the more cryptic nature of these parasites. Distribution patterns of epicarideans are influenced by a combination of their definitive (both benthic and pelagic species) and intermediate (pelagic copepod) host distributions, although host specificity is poorly known for most species. Among epicarideans, nearly all species in Bopyroidea are ectoparasitic on decapod hosts. Bopyrids are the most diverse taxon (605 species), with their highest diversity in the North West Pacific (139 species), East Asian Sea (120 species), and Central Indian Ocean (44 species). The diversity patterns of Cryptoniscoidea (99 species, endoparasites of a diverse assemblage of crustacean hosts) are distinct from bopyrids, with the greatest diversity of cryptoniscoids in the North East Atlantic (18 species) followed by the Antarctic, Mediterranean, and Arctic regions (13, 12, and 8 species, respectively). Dajidae (54 species, ectoparasites of shrimp, mysids, and euphausids) exhibits highest diversity in the Antarctic (7 species) with 14 species in the Arctic and North East Atlantic regions combined. Entoniscidae (37 species, endoparasites within anomuran, brachyuran and shrimp hosts) show highest diversity in the North West Pacific (10 species) and North East Atlantic (8 species). Most epicarideans are known from relatively shallow waters, although some bopyrids are known from depths below 4000 m. Lack of parasitic groups in certain geographic areas is likely a sampling artifact and we predict that the Central Indian Ocean and East Asian Sea (in particular, the Indo-Malay-Philippines Archipelago) hold a wealth of undescribed species, reflecting our knowledge of host diversity patterns. PMID:22558143

  10. Host Reticulocytes Provide Metabolic Reservoirs That Can Be Exploited by Malaria Parasites

    PubMed Central

    Srivastava, Anubhav; Creek, Darren J.; Evans, Krystal J.; De Souza, David; Schofield, Louis; Müller, Sylke; Barrett, Michael P.; McConville, Malcolm J.; Waters, Andrew P.

    2015-01-01

    Human malaria parasites proliferate in different erythroid cell types during infection. Whilst Plasmodium vivax exhibits a strong preference for immature reticulocytes, the more pathogenic P. falciparum primarily infects mature erythrocytes. In order to assess if these two cell types offer different growth conditions and relate them to parasite preference, we compared the metabolomes of human and rodent reticulocytes with those of their mature erythrocyte counterparts. Reticulocytes were found to have a more complex, enriched metabolic profile than mature erythrocytes and a higher level of metabolic overlap between reticulocyte resident parasite stages and their host cell. This redundancy was assessed by generating a panel of mutants of the rodent malaria parasite P. berghei with defects in intermediary carbon metabolism (ICM) and pyrimidine biosynthesis known to be important for P. falciparum growth and survival in vitro in mature erythrocytes. P. berghei ICM mutants (pbpepc-, phosphoenolpyruvate carboxylase and pbmdh-, malate dehydrogenase) multiplied in reticulocytes and committed to sexual development like wild type parasites. However, P. berghei pyrimidine biosynthesis mutants (pboprt-, orotate phosphoribosyltransferase and pbompdc-, orotidine 5?-monophosphate decarboxylase) were restricted to growth in the youngest forms of reticulocytes and had a severe slow growth phenotype in part resulting from reduced merozoite production. The pbpepc-, pboprt- and pbompdc- mutants retained virulence in mice implying that malaria parasites can partially salvage pyrimidines but failed to complete differentiation to various stages in mosquitoes. These findings suggest that species-specific differences in Plasmodium host cell tropism result in marked differences in the necessity for parasite intrinsic metabolism. These data have implications for drug design when targeting mature erythrocyte or reticulocyte resident parasites. PMID:26042734

  11. Host reticulocytes provide metabolic reservoirs that can be exploited by malaria parasites.

    PubMed

    Srivastava, Anubhav; Creek, Darren J; Evans, Krystal J; De Souza, David; Schofield, Louis; Müller, Sylke; Barrett, Michael P; McConville, Malcolm J; Waters, Andrew P

    2015-06-01

    Human malaria parasites proliferate in different erythroid cell types during infection. Whilst Plasmodium vivax exhibits a strong preference for immature reticulocytes, the more pathogenic P. falciparum primarily infects mature erythrocytes. In order to assess if these two cell types offer different growth conditions and relate them to parasite preference, we compared the metabolomes of human and rodent reticulocytes with those of their mature erythrocyte counterparts. Reticulocytes were found to have a more complex, enriched metabolic profile than mature erythrocytes and a higher level of metabolic overlap between reticulocyte resident parasite stages and their host cell. This redundancy was assessed by generating a panel of mutants of the rodent malaria parasite P. berghei with defects in intermediary carbon metabolism (ICM) and pyrimidine biosynthesis known to be important for P. falciparum growth and survival in vitro in mature erythrocytes. P. berghei ICM mutants (pbpepc-, phosphoenolpyruvate carboxylase and pbmdh-, malate dehydrogenase) multiplied in reticulocytes and committed to sexual development like wild type parasites. However, P. berghei pyrimidine biosynthesis mutants (pboprt-, orotate phosphoribosyltransferase and pbompdc-, orotidine 5'-monophosphate decarboxylase) were restricted to growth in the youngest forms of reticulocytes and had a severe slow growth phenotype in part resulting from reduced merozoite production. The pbpepc-, pboprt- and pbompdc- mutants retained virulence in mice implying that malaria parasites can partially salvage pyrimidines but failed to complete differentiation to various stages in mosquitoes. These findings suggest that species-specific differences in Plasmodium host cell tropism result in marked differences in the necessity for parasite intrinsic metabolism. These data have implications for drug design when targeting mature erythrocyte or reticulocyte resident parasites. PMID:26042734

  12. Relic behaviours, coevolution and the retention versus loss of host defences after episodes of avian brood parasitism.

    PubMed

    Rothstein, Stephen I.

    2001-01-01

    Most previous studies of brood parasitism have stressed that host defences, such as egg recognition, are lost in the absence of parasitism. Such losses could result in coevolutionary cycles in which parasites shift away from well-defended hosts only to switch back to them later at a time when these hosts have lost much or all of their defences and the parasite's current hosts have built up effective defences. However, the alternative 'single trajectory' model predicts that parasites rarely switch back to old hosts because ex-hosts retain egg recognition for long periods in the absence of parasitism. If true, egg recognition by the host may be a 'relic behaviour', because in the absence of parasitism its adaptive value is close to neutral. Using artificial nonmimetic eggs, I tested for egg recognition in two populations that are currently unparasitized but that are descended from lineages likely to have been parasitized in the past: the grey catbird, Dumetella carolinensis, on Bermuda and the loggerhead shrike, Lanius ludovicianus, in California. Both of these populations showed long-term retention, ejecting nonmimetic eggs at rates of nearly 100%. Because potential present-day selection pressures, such as conspecific parasitism, do not explain this egg recognition, Bermuda catbirds apparently retain recognition from North American conspecifics that were cowbird hosts before colonizing Bermuda and shrikes retain recognition from Old World congeners that were hosts of cuckoos. Retention is also indicated by passerines in California and the Caribbean that had high rejection rates of nonmimetic eggs before coming into contact with cowbirds. These new data suggest that both the coevolutionary cycles and single trajectory models have importance and that rejection behaviour can have insignificant costs, which is consistent with evolutionary lag explanations for the acceptance of parasitic eggs shown by some cuckoo and many cowbird hosts. Copyright 2001 The Association for the Study of Animal Behaviour. PMID:11170700

  13. The effect of host social system on parasite population genetic structure: comparative population genetics of two ectoparasitic mites and their bat hosts

    PubMed Central

    2014-01-01

    Background The population genetic structure of a parasite, and consequently its ability to adapt to a given host, is strongly linked to its own life history as well as the life history of its host. While the effects of parasite life history on their population genetic structure have received some attention, the effect of host social system has remained largely unstudied. In this study, we investigated the population genetic structure of two closely related parasitic mite species (Spinturnix myoti and Spinturnix bechsteini) with very similar life histories. Their respective hosts, the greater mouse-eared bat (Myotis myotis) and the Bechstein’s bat (Myotis bechsteinii) have social systems that differ in several substantial features, such as group size, mating system and dispersal patterns. Results We found that the two mite species have strongly differing population genetic structures. In S. myoti we found high levels of genetic diversity and very little pairwise differentiation, whereas in S. bechsteini we observed much less diversity, strongly differentiated populations and strong temporal turnover. These differences are likely to be the result of the differences in genetic drift and dispersal opportunities afforded to the two parasites by the different social systems of their hosts. Conclusions Our results suggest that host social system can strongly influence parasite population structure. As a result, the evolutionary potential of these two parasites with very similar life histories also differs, thereby affecting the risk and evolutionary pressure exerted by each parasite on its host. PMID:24479530

  14. Host specificity of a parasitic fluke: is Posthodiplostomum minimum a centrarchid-infecting generalist or specialist?

    PubMed

    Lane, Beth; Spier, Timothy; Wiederholt, Julia; Meagher, Shawn

    2015-02-01

    Parasite host specificity has important implications for species diversity estimates, food web dynamics, and host shifts. "White grub" is the metacercaria stage of a fluke ( Posthodiplostomum minimum ) that occurs in many fish species, but no attempt has been made to quantify variation in host use by this worm. Here we used 2 approaches to evaluate host specificity within the strain that infects centrarchids ( P. minimum centrarchi). First, we measured parasite loads in 2 centrarchid hosts, bluegill ( Lepomis macrochirus ) and white crappie ( Pomoxis annularis ), from Spring Lake in McDonough County, Illinois. We found that infection levels differed significantly between these hosts. Prevalence in bluegill was 100% and the median intensity was 940 metacercariae, but only 57% of white crappie were infected (median intensity = 4). Site specificity of white grub also differed significantly between the 2 hosts. In bluegills, kidneys were most heavily infected, whereas in white crappies, livers harbored the most worms. We also performed a literature survey of P. minimum prevalence estimates from 14 centrarchid species from other localities. We calculated the mean white grub prevalence for each host species and used this to calculate STD*, a quantitative index of host specificity. STD* was 1.33, significantly closer to the value for a specialist (STD* = 1.00) than a generalist (STD* = 2.00). This reflects the fact that P. minimum prevalence is higher in Lepomis species than it is in centrarchids outside this genus. These data show that P. minimum centrarchi specializes on Lepomis species, but the causes of this specialization are unknown. This worm may be a single species that differs in host use due to ecological or physiological host differences, or it may be a complex of species that vary in host use for similar reasons. Genetic data are required to evaluate these possibilities. PMID:25260116

  15. Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources

    PubMed Central

    Griffiths, Emily C.; Pedersen, Amy B.; Fenton, Andy; Petchey, Owen L.

    2014-01-01

    Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three levels comprising parasites, the resources they consume and the immune responses they elicit, connected by potential, observed and experimentally proved links. Pairs of parasite species had most potential to interact indirectly through shared resources, rather than through immune responses or other parasites. In addition, the network comprised 10 tightly knit groups, eight of which were associated with particular body parts, and seven of which were dominated by parasite–resource links. Reported co-infection in humans is therefore structured by physical location within the body, with bottom-up, resource-mediated processes most often influencing how, where and which co-infecting parasites interact. The many indirect interactions show how treating an infection could affect other infections in co-infected patients, but the compartmentalized structure of the network will limit how far these indirect effects are likely to spread. PMID:24619434

  16. Matrix Metalloproteinase-9 and Haemozoin: Wedding Rings for Human Host and Plasmodium falciparum Parasite in Complicated Malaria

    PubMed Central

    Prato, Mauro; Giribaldi, Giuliana

    2011-01-01

    It is generally accepted that the combination of both Plasmodium falciparum parasite and human host factors is involved in the pathogenesis of complicated severe malaria, including cerebral malaria (CM). Among parasite products, the malarial pigment haemozoin (HZ) has been shown to impair the functions of mononuclear and endothelial cells. Different CM models were associated with enhanced levels of matrix metalloproteinases (MMPs), a family of proteolytic enzymes able to disrupt subendothelial basement membrane and tight junctions and shed, activate, or inactivate cytokines, chemokines, and other MMPs through cleavage from their precursors. Among MMPs, a good candidate for targeted therapy might be MMP-9, whose mRNA and protein expression enhancement as well as direct proenzyme activation by HZ have been recently investigated in a series of studies by our group and others. In the present paper the role of HZ and MMP-9 in complicated malaria, as well as their interactions, will be discussed. PMID:21760809

  17. Simulation of population dynamics of the parasite Haematoloechus coloradensis Cort 1915 (Digenea: Haematolochidae) in its 3 host species: effects of environmental temperature and precipitation 

    E-print Network

    Marin, Sandra Lorena

    1995-01-01

    in the environment as a function of parasite recruitment and mortality, and snail infection. Snail, odonate, and frog submodels represent population dynamics and infection of the 3 host species, and parasite development within each host. In the snail submodel...

  18. Host-plant genotypic diversity and community genetic interactions mediate aphid spatial distribution

    PubMed Central

    Zytynska, Sharon E; Frantz, Laurent; Hurst, Ben; Johnson, Andrew; Preziosi, Richard F; Rowntree, Jennifer K

    2014-01-01

    Genetic variation in plants can influence the community structure of associated species, through both direct and indirect interactions. Herbivorous insects are known to feed on a restricted range of plants, and herbivore preference and performance can vary among host plants within a species due to genetically based traits of the plant (e.g., defensive compounds). In a natural system, we expect to find genetic variation within both plant and herbivore communities and we expect this variation to influence species interactions. Using a three-species plant-aphid model system, we investigated the effect of genetic diversity on genetic interactions among the community members. Our system involved a host plant (Hordeum vulgare) that was shared by an aphid (Sitobion avenae) and a hemi-parasitic plant (Rhinanthus minor). We showed that aphids cluster more tightly in a genetically diverse host-plant community than in a genetic monoculture, with host-plant genetic diversity explaining up to 24% of the variation in aphid distribution. This is driven by differing preferences of the aphids to the different plant genotypes and their resulting performance on these plants. Within the two host-plant diversity levels, aphid spatial distribution was influenced by an interaction among the aphid's own genotype, the genotype of a competing aphid, the origin of the parasitic plant population, and the host-plant genotype. Thus, the overall outcome involves both direct (i.e., host plant to aphid) and indirect (i.e., parasitic plant to aphid) interactions across all these species. These results show that a complex genetic environment influences the distribution of herbivores among host plants. Thus, in genetically diverse systems, interspecific genetic interactions between the host plant and herbivore can influence the population dynamics of the system and could also structure local communities. We suggest that direct and indirect genotypic interactions among species can influence community structure and processes. PMID:24558568

  19. Host susceptibility is altered by light intensity after exposure to parasites.

    PubMed

    Steinauer, Michelle L; Bonner, Kaitlin M

    2012-10-01

    Translating research advances to natural systems using experimental laboratory studies is often difficult because of the variability between the natural environment and experimental conditions. Because environmental conditions have a large effect on an organism's physiology, responses to stressors like nutrient limitation, temperature, oxygen deprivation, predation, and parasite/pathogen infection are likely to be context dependent. Therefore, it is essential to examine the impact the study environment has on the experimental outcome. Here, we explored the effect of light exposure on susceptibility to parasite infection. The Biomphalaria glabrata / Schistosoma mansoni study system is a well-established model for studying schistosomiasis. It has been general practice to maintain the vector, B. glabrata, in dark conditions after exposure to miracidia of the human pathogen S. mansoni. We evaluated susceptibility of B. glabrata to S. mansoni under 3 different light conditions during the prepatent period, light (125 lx) on a 12-12 cycle, dim light (3 lx) on a 12-12 cycle, and no light (24 hr at 0 lx). We hypothesized that stress due to photoperiod disruption (24 hr of darkness) would result in compromised immune function and lead to higher susceptibility to infection. Prevalence of infected snails differed significantly between the light conditions, and higher susceptibility was observed in the full light and complete dark conditions compared with the low light conditions. The dim conditions are representative of current methods for evaluating susceptibility in this system. Our results indicate that light exposure during the prepatent period can affect infection outcomes, and environmental conditions must therefore be considered when assessing fitness and immune response due to interactions between host genotype and environment. PMID:22642977

  20. Parasitic Plants in Agriculture: Chemical Ecology of Germination and Host-Plant Location as Targets for Sustainable Control: A Review

    Microsoft Academic Search

    Justin B. Runyon; John F. Tooker; Mark C. Mescher; Consuelo M. De Moraes

    \\u000a Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally\\u000a lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient\\u000a control using traditional methods. Seed germination and host location are critical early-growth stages that occur prior to\\u000a host attachment, and provide promising targets for

  1. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens?

    PubMed Central

    Ferguson, Laura V.; Kirk Hillier, N.; Smith, Todd G.

    2012-01-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites. PMID:24533317

  2. StyletChip: a microfluidic device for recording host invasion behaviour and feeding of plant parasitic nematodes.

    PubMed

    Hu, Chunxiao; Kearn, James; Urwin, Peter; Lilley, Catherine; O' Connor, Vincent; Holden-Dye, Lindy; Morgan, Hywel

    2014-07-21

    Plant parasitic nematodes (PPNs) infest the roots of crops and cause global losses with a severe economic impact on food production. Current chemical control agents are being removed from use due to environmental and toxicity concerns and there is a need for new approaches to crop protection. A key feature of parasitic behaviour for the majority of PPNs is a hollow stomastyle or odontostyle required for interaction with the host plant and feeding. This lance-like microscopic structure, often called a stylet, protrudes from the mouth of the worm and thrusts in a rhythmic manner to stab the host root. Studying stylet activity presents technical challenges and as a consequence the underlying biology is poorly understood. We have addressed this by designing a microfluidic chip which traps the PPN Globodera pallida and permits the recording of an electrophysiological signal concomitant with stylet thrusting. The PDMS chip incorporates a precisely designed aperture to trap the nematode securely around a mid-point of its body. It is fabricated using a novel combination of conventional photolithography and two photon polymerization. The chip incorporates valves for rapid application of test compounds and integral electrodes to facilitate acquisition of electrical signals. We show that stylet thrusting can be induced by controlled application of 5-HT (serotonin) to the worm. Each thrust and retraction produces an electrical waveform that characterises the physiological activity associated with the worm's behaviour. The ability to reproducibly record the stylet activity of PPNs provides a new platform for nematicide screening that specifically focuses on a behaviour that is integral to the parasite host interaction. This is the first report of a microfluidic chip capable of electrophysiological recording from nematodes other than Caenorhabditis elegans. The unique approach is optimised for trapping and recording from smaller worms or worms with distinct anterior body shapes and may be applied to other species of economic or medical importance. PMID:24839944

  3. Ex Vivo Host and Parasite Response to Antileishmanial Drugs and Immunomodulators

    PubMed Central

    McMahon-Pratt, Diane; Saravia, Nancy Gore

    2015-01-01

    Background Therapeutic response in infectious disease involves host as well as microbial determinants. Because the immune and inflammatory response to Leishmania (Viannia) species defines the outcome of infection and efficacy of treatment, immunomodulation is considered a promising therapeutic strategy. However, since Leishmania infection and antileishmanial drugs can themselves modulate drug transport, metabolism and/or immune responses, immunotherapeutic approaches require integrated assessment of host and parasite responses. Methodology To achieve an integrated assessment of current and innovative therapeutic strategies, we determined host and parasite responses to miltefosine and meglumine antimoniate alone and in combination with pentoxifylline or CpG 2006 in peripheral blood mononuclear cells (PBMCs) of cutaneous leishmaniasis patients. Parasite survival and secretion of TNF-?, IFN-?, IL-10 and IL-13 were evaluated concomitantly in PBMCs infected with Luc-L. (V.) panamensis exposed to meglumine antimoniate (4, 8, 16, 32 and 64 ?g SbV/mL) or miltefosine (2, 4, 8, 16 and 32 ?M HePC). Concentrations of 4 ?M of miltefosine and 8 ?g SbV/mL were selected for evaluation in combination with immunomodulators based on the high but partial reduction of parasite burden by these antileishmanial concentrations without affecting cytokine secretion of infected PBMCs. Intracellular parasite survival was determined by luminometry and cytokine secretion measured by ELISA and multiplex assays. Principal Findings Anti- and pro-inflammatory cytokines characteristic of L. (V.) panamensis infection were evaluable concomitantly with viability of Leishmania within monocyte-derived macrophages present in PBMC cultures. Both antileishmanial drugs reduced the parasite load of macrophages; miltefosine also suppressed IL-10 and IL-13 secretion in a dose dependent manner. Pentoxifylline did not affect parasite survival or alter antileishmanial effects of miltefosine or meglumine antimoniate. However, pentoxifylline diminished secretion of TNF-?, IFN-? and IL-13, cytokines associated with the outcome of infection by species of the Viannia subgenus. Exposure to CpG diminished the leishmanicidal effect of meglumine antimoniate, but not miltefosine, and significantly reduced secretion of IL -10, alone and in combination with either antileishmanial drug. IL-13 increased in response to CpG plus miltefosine. Conclusions and Significance Human PBMCs allow integrated ex vivo assessment of antileishmanial treatments, providing information on host and parasite determinants of therapeutic response that may be used to tailor therapeutic strategies to optimize clinical resolution. PMID:26024228

  4. Partitioning the aggregation of parasites on hosts into intrinsic and extrinsic components via an extended Poisson-gamma mixture model.

    PubMed

    Calabrese, Justin M; Brunner, Jesse L; Ostfeld, Richard S

    2011-01-01

    It is well known that parasites are often highly aggregated on their hosts such that relatively few individuals host the large majority of parasites. When the parasites are vectors of infectious disease, a key consequence of this aggregation can be increased disease transmission rates. The cause of this aggregation, however, is much less clear, especially for parasites such as arthropod vectors, which generally spend only a short time on their hosts. Regression-based analyses of ticks on various hosts have focused almost exclusively on identifying the intrinsic host characteristics associated with large burdens, but these efforts have had mixed results; most host traits examined have some small influence, but none are key. An alternative approach, the Poisson-gamma mixture distribution, has often been used to describe aggregated parasite distributions in a range of host/macroparasite systems, but lacks a clear mechanistic basis. Here, we extend this framework by linking it to a general model of parasite accumulation. Then, focusing on blacklegged ticks (Ixodes scapularis) on mice (Peromyscus leucopus), we fit the extended model to the best currently available larval tick burden datasets via hierarchical Bayesian methods, and use it to explore the relative contributions of intrinsic and extrinsic factors on observed tick burdens. Our results suggest that simple bad luck-inhabiting a home range with high vector density-may play a much larger role in determining parasite burdens than is currently appreciated. PMID:22216216

  5. Host cell pigmentation in Scenedesmus dimorphus as a beacon for nascent parasite infection.

    PubMed

    Collins, Aaron M; Jones, Howland D T; McBride, Robert C; Behnke, Craig; Timlin, Jerilyn A

    2014-09-01

    Biofuels derived from the mass cultivation of algae represent an emerging industry that aims to partially displace petroleum based fuels. Outdoor, open-pond, and raceway production facilities are attractive options for the mass culture of algae however, this mode of cultivation leaves the algae susceptible to epidemics from a variety of environmental challenges. Infestations can result in complete collapse of the algal populations and destruction of their valuable products making it paramount to understand the host-pathogen relationships of known algal pests in order to develop mitigation strategies. In the present work, we characterize the spatial-temporal response of photosynthetic pigments in Scenedesmus dimorphus to infection from Amoeboaphelidium protococcarum, a destructive endoparasite, with the goal of understanding the potential for early detection of infection via host pigment changes. We employed a hyperspectral confocal fluorescence microscope to quantify these changes in pigmentation with high spatial and spectral resolution during early parasite infection. Carotenoid abundance and autofluorescence increased within the first 24 h of infection while chlorophyll emission remained constant. Changes in host cell photosynthesis and bulk chlorophyll content were found to lag behind parasite replication. The results herein raise the possibility of using host-cell pigment changes as indicators of nascent parasite infection. PMID:24931928

  6. Gas Exchange Characteristics of the Sorghum-Striga Host-Parasite Association

    PubMed Central

    Press, Malcolm C.; Tuohy, Janet M.; Stewart, George R.

    1987-01-01

    Gas exchange characteristics are reported for both members of the sorghum-Striga host-parasite association. Both Striga hermonthica (Del.) Benth and Striga asiatica (L.) Kuntze had transpiration rates considerably in excess of those of sorghum (Sorghum bicolor (L.) Moench, cv CSH1). Stomatal conductance in both Striga spp. showed little response to periods of darkness and moderate water stress. Low rates of net CO2 fixation and high rates of dark respiration led to no net daily (24 hours) C gain, and Striga would appear to be reliant on its host for photosynthate. Infection of sorghum plants with either S. hermonthica or S. asiatica reduced host photosynthetic capacity. Infected sorghum plants were also more prone to water stress, but reduced rates of CO2 fixation could not be accounted for in terms of lower stomatal conductance. Lower stomatal conductances were associated with an increase in water use efficiency (WUE) in uninfected sorghum; however, Striga-infected sorghum plants had lower WUE than those of uninfected plants. We suggest that Striga exerts a specific effect on processes affecting C acquisition in sorghum leaves. The water relations of S. hermonthica and S. asiatica are not characteristic of plants growing in semiarid environments and are more likely to reflect the nature of the parasitic life-style. Despite transfer of water and solutes from host to parasite, the reduction in C fixation observed in infected sorghum plants appears to be the major determinant of growth reductions observed in sorghum supporting Striga. PMID:16665527

  7. Life cycle and parasitic interaction of the lizard-parasitizing mite Ophionyssus galloticolus (Acari: Gamasida: Macronyssidae), with remarks about the evolutionary consequences of parasitism in mites

    Microsoft Academic Search

    B. Bannert; H. Y. Karaca; A. Wohltmann

    2000-01-01

    Wild-caught specimens of the lacertid lizard Gallotia galloti eisentrauti from the Canary Island of Tenerife were checked for ectoparasites. The parasitic gamasid mite Ophionyssus galloticolus Fain and Bannert (2000) was very abundant on these lizards. Additionally, parasitism by larvae of two species of Trombiculidae (Prostigmata: Parasitengona) was observed. O. galloticolus was reared in the laboratory on its natural host in

  8. Filamentous brown algae infected by the marine, holocarpic oomycete Eurychasma dicksonii: first results on the organization and the role of cytoskeleton in both host and parasite.

    PubMed

    Tsirigoti, Amerssa; Kuepper, Frithjof C; Gachon, Claire Mm; Katsaros, Christos

    2013-11-01

    The important role of the cytoskeletal scaffold is increasingly recognized in host-pathogen interactions. The cytoskeleton potentially functions as a weapon for both the plants defending themselves against fungal or oomycete parasites, and for the pathogens trying to overcome the resisting barrier of the plants. This concept, however, had not been investigated in marine algae so far. We are opening this scientific chapter with our study on the functional implications of the cytoskeleton in 3 filamentous brown algal species infected by the marine oomycete Eurychasma dicksonii. Our observations suggest that the cytoskeleton is involved in host defense responses and in fundamental developmental stages of E. dicksonii in its algal host. PMID:24025487

  9. Deconstructing host-pathogen interactions in Drosophila

    PubMed Central

    Bier, Ethan; Guichard, Annabel

    2012-01-01

    Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi) screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host. PMID:21979942

  10. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae): effects of parasitization and venom on host hemocytes

    Microsoft Academic Search

    Jun Cai; Gong-yin Ye; Cui Hu

    2004-01-01

    In contrast to the situation with egg-larval and larval endoparasitic wasps, little is known about the effects of pupal endoparasitoids and their secretions on the hemocytes of their insect hosts. This study focuses on the pupal endoparasitoid, Pteromalus puparum, and its host, the small white butterfly, Pieris rapae. Parasitism by P. puparum, resulted in a significant increase in the total

  11. Comparative Genomics of the Apicomplexan Parasites Toxoplasma gondii and Neospora caninum: Coccidia Differing in Host Range and Transmission Strategy

    Microsoft Academic Search

    Adam James Reid; Sarah J. Vermont; James A. Cotton; David Harris; Grant A. Hill-Cawthorne; Stephanie Könen-Waisman; Sophia M. Latham; Tobias Mourier; Rebecca Norton; Michael A. Quail; Mandy Sanders; Dhanasekaran Shanmugam; Amandeep Sohal; James D. Wasmuth; Brian Brunk; Michael E. Grigg; Jonathan C. Howard; John Parkinson; David S. Roos; Alexander J. Trees; Matthew Berriman; Arnab Pain; Jonathan M. Wastling

    2012-01-01

    Toxoplasma gondii is a zoonotic protozoan parasite which infects nearly one third of the human population and is found in an extraordinary range of vertebrate hosts. Its epidemiology depends heavily on horizontal transmission, especially between rodents and its definitive host, the cat. Neospora caninum is a recently discovered close relative of Toxoplasma, whose definitive host is the dog. Both species

  12. Host-Parasite Relationships of Atalodera spp. (Heteroderidae).

    PubMed

    Mundo-Ocampo, M; Baldwin, J G

    1983-04-01

    Atalodera ucri, Wouts and Sher, 1971, and A. lonicerae, (Wouts, 1973) Luc et al., 1978, induce similar multinucleate syncytia in roots of golden bush and honeysuckle, respectively. The syncytium is initiated in the cortex; as it expands, it includes several partially delimited syncytial units and distorts vascular tissue. Outer walls of the syncytium are relatively smooth and thickest near the feeding site of the nematode; inner walls are interrupted by perforations which enlarge as syncytial units increase in size. The cytoplasm of the syncytium is granular and includes numerous plastids, mitochondria, vacuoles, Golgi, and a complex network of membranes. Nuclei are greatly enlarged and amoeboid in shape. Although more than one nucleus sometimes occur in a given syncytial unit, no mitotic activity was observed. Syncytia induced by species of Atalodera chiefly differ from those of Heterodera sensu lato by the absence of cell wall ingrowths; wall ingrowths increase solute transport and characterize transfer cells. In syncytia of Atalodera spp., a high incidence of pits and pit fields in walls adjacent to vasctdar elements suggests that in this case plasmodesmata provide the pathway for increased entry of sohttes. The formation of a syncytium by species of Atalodera and Heterodera sensu lato, but a single uninucleate giant cell by Sarisodera and Hylonema, indicates a pattern of host responses that may be useful, with other characters, for phylogenetic inference for Heteroderidae. PMID:19295797

  13. Host-Parasite Relationships of Atalodera spp. (Heteroderidae)

    PubMed Central

    Mundo-Ocampo, M.; Baldwin, J. G.

    1983-01-01

    Atalodera ucri, Wouts and Sher, 1971, and A. lonicerae, (Wouts, 1973) Luc et al., 1978, induce similar multinucleate syncytia in roots of golden bush and honeysuckle, respectively. The syncytium is initiated in the cortex; as it expands, it includes several partially delimited syncytial units and distorts vascular tissue. Outer walls of the syncytium are relatively smooth and thickest near the feeding site of the nematode; inner walls are interrupted by perforations which enlarge as syncytial units increase in size. The cytoplasm of the syncytium is granular and includes numerous plastids, mitochondria, vacuoles, Golgi, and a complex network of membranes. Nuclei are greatly enlarged and amoeboid in shape. Although more than one nucleus sometimes occur in a given syncytial unit, no mitotic activity was observed. Syncytia induced by species of Atalodera chiefly differ from those of Heterodera sensu lato by the absence of cell wall ingrowths; wall ingrowths increase solute transport and characterize transfer cells. In syncytia of Atalodera spp., a high incidence of pits and pit fields in walls adjacent to vasctdar elements suggests that in this case plasmodesmata provide the pathway for increased entry of sohttes. The formation of a syncytium by species of Atalodera and Heterodera sensu lato, but a single uninucleate giant cell by Sarisodera and Hylonema, indicates a pattern of host responses that may be useful, with other characters, for phylogenetic inference for Heteroderidae. PMID:19295797

  14. Comparative genomics of parasitic silkworm microsporidia reveal an association between genome expansion and host adaptation

    PubMed Central

    2013-01-01

    Background Microsporidian Nosema bombycis has received much attention because the pébrine disease of domesticated silkworms results in great economic losses in the silkworm industry. So far, no effective treatment could be found for pébrine. Compared to other known Nosema parasites, N. bombycis can unusually parasitize a broad range of hosts. To gain some insights into the underlying genetic mechanism of pathological ability and host range expansion in this parasite, a comparative genomic approach is conducted. The genome of two Nosema parasites, N. bombycis and N. antheraeae (an obligatory parasite to undomesticated silkworms Antheraea pernyi), were sequenced and compared with their distantly related species, N. ceranae (an obligatory parasite to honey bees). Results Our comparative genomics analysis show that the N. bombycis genome has greatly expanded due to the following three molecular mechanisms: 1) the proliferation of host-derived transposable elements, 2) the acquisition of many horizontally transferred genes from bacteria, and 3) the production of abundnant gene duplications. To our knowledge, duplicated genes derived not only from small-scale events (e.g., tandem duplications) but also from large-scale events (e.g., segmental duplications) have never been seen so abundant in any reported microsporidia genomes. Our relative dating analysis further indicated that these duplication events have arisen recently over very short evolutionary time. Furthermore, several duplicated genes involving in the cytotoxic metabolic pathway were found to undergo positive selection, suggestive of the role of duplicated genes on the adaptive evolution of pathogenic ability. Conclusions Genome expansion is rarely considered as the evolutionary outcome acting on those highly reduced and compact parasitic microsporidian genomes. This study, for the first time, demonstrates that the parasitic genomes can expand, instead of shrink, through several common molecular mechanisms such as gene duplication, horizontal gene transfer, and transposable element expansion. We also showed that the duplicated genes can serve as raw materials for evolutionary innovations possibly contributing to the increase of pathologenic ability. Based on our research, we propose that duplicated genes of N. bombycis should be treated as primary targets for treatment designs against pébrine. PMID:23496955

  15. Chemical proteomics of host-pathogen interaction.

    PubMed

    Ge, Jingyan; Yao, Shao Q

    2015-04-23

    In less than two decades, activity-based protein profiling (ABPP) has expanded to become the de facto tool for the study of small molecule-protein interactions in a proteomic environment. In this issue, Na et al. (2015) present another ABPP method, which they called reactive probe-based chemical proteomics, to study host-pathogen interaction and subsequently identify the protein PheA as a potential key effector during the pathogen infection process. PMID:25910239

  16. Survey of Wild Mammal Hosts of Cutaneous Leishmaniasis Parasites in Panamá and Costa Rica

    PubMed Central

    González, Kadir; Calzada, José E.; Saldaña, Azael; Rigg, Chystrie A.; Alvarado, Gilbert; Rodríguez-Herrera, Bernal; Kitron, Uriel D.; Adler, Gregory H.; Gottdenker, Nicole L.; Chaves, Luis Fernando; Baldi, Mario

    2015-01-01

    The eco-epidemiology of American cutaneous leishmaniasis (ACL) is driven by animal reservoir species that are a source of infection for sand flies that serve as vectors infecting humans with Leishmania spp parasites. The emergence and re-emergence of this disease across Latin America calls for further studies to identify reservoir species associated with enzootic transmission. Here, we present results from a survey of 52 individuals from 13 wild mammal species at endemic sites in Costa Rica and Panama where ACL mammal hosts have not been previously studied. For Leishmania spp. diagnostics we employed a novel PCR technique using blood samples collected on filter paper. We only found Leishmania spp parasites in one host, the two-toed sloth, Choloepus hoffmanni. Our findings add further support to the role of two-toed sloths as an important ACL reservoir in Central America. PMID:25859156

  17. Cyclic GMP Balance Is Critical for Malaria Parasite Transmission from the Mosquito to the Mammalian Host

    PubMed Central

    Lakshmanan, Viswanathan; Fishbaugher, Matthew E.; Morrison, Bob; Baldwin, Michael; Macarulay, Michael; Vaughan, Ashley M.; Mikolajczak, Sebastian A.

    2015-01-01

    ABSTRACT Transmission of malaria occurs during Anopheles mosquito vector blood meals, when Plasmodium sporozoites that have invaded the mosquito salivary glands are delivered to the mammalian host. Sporozoites display a unique form of motility that is essential for their movement across cellular host barriers and invasion of hepatocytes. While the molecular machinery powering motility and invasion is increasingly well defined, the signaling events that control these essential parasite activities have not been clearly delineated. Here, we identify a phosphodiesterase (PDE?) in Plasmodium, a regulator of signaling through cyclic nucleotide second messengers. Reverse transcriptase PCR (RT-PCR) analysis and epitope tagging of endogenous PDE? detected its expression in blood stages and sporozoites of Plasmodium yoelii. Deletion of PDE? (pde??) rendered sporozoites nonmotile, and they failed to invade the mosquito salivary glands. Consequently, PDE? deletion completely blocked parasite transmission by mosquito bite. Strikingly, pde?? sporozoites showed dramatically elevated levels of cyclic GMP (cGMP), indicating that a perturbation in cyclic nucleotide balance is involved in the observed phenotypic defects. Transcriptome sequencing (RNA-Seq) analysis of pde?? sporozoites revealed reduced transcript abundance of genes that encode key components of the motility and invasion apparatus. Our data reveal a crucial role for PDE? in maintaining the cyclic nucleotide balance in the malaria parasite sporozoite stage, which in turn is essential for parasite transmission from mosquito to mammal. PMID:25784701

  18. Nest sanitation in passerine birds: implications for egg rejection in hosts of brood parasites

    Microsoft Academic Search

    Mélanie F. Guigueno; Spencer G. Sealy

    We reviewed information on nest sanitation (nest cleaning) by passerine birds because the act of cleaning nests is thought\\u000a to be associated with egg rejection by hosts of brood parasites, and yet there has been no synthesis of the literature on\\u000a nest sanitation. In the first part of the review, we summarized information on nest sanitation. We found that birds

  19. Intestinal parasites of the Arctic fox in relation to the abundance and distribution of intermediate hosts.

    PubMed

    Stien, A; Voutilainen, L; Haukisalmi, V; Fuglei, E; Mørk, T; Yoccoz, N G; Ims, R A; Henttonen, H

    2010-01-01

    The intestinal parasite community of Arctic foxes (Vulpes lagopus) on the Svalbard archipelago in the High Arctic was investigated in relation to the abundance and distribution of intermediate hosts. Five species of cestodes (Echinococcus multilocularis, Taenia crassiceps, Taenia polyacantha, Taenia krabbei and Diphyllobothrium sp.), ascaridoid nematodes and one unidentified acanthocephalan species were found. The cestodes E. multilocularis, T. crassiceps and T. polyacantha all showed a decreasing prevalence in the fox population with increasing distance from their spatially restricted intermediate host population of sibling voles (Microtus levis). In addition, the prevalence of E. multilocularis in a sample from the vole population was directly related to the local vole abundance. The cestode T. krabbei uses reindeer as intermediate host, and its prevalence in female foxes was positively related to the density of reindeer (Rangifer tarandus platyrhyncus). Finally, the prevalence of the ascaridoid nematodes also decreased with increasing distance from the vole population, a finding that is consistent with the idea that voles are involved in transmission, most likely as paratenic hosts. The prevalence of the remaining species (Diphyllobothrium sp. and an unidentified acanthocephalan) was very low. We conclude that the distribution and abundance of intermediate host structure the gastrointestinal parasite community of the Arctic fox on the Svalbard archipelago. PMID:19723357

  20. Phoretic nest parasites use sexual deception to obtain transport to their host's nest

    PubMed Central

    Saul-Gershenz, Leslie S.; Millar, Jocelyn G.

    2006-01-01

    Cooperative behaviors are common among social insects such as bees, wasps, ants, and termites, but they have not been reported from insect species that use aggressive mimicry to manipulate and exploit prey or hosts. Here we show that larval aggregations of the blister beetle Meloe franciscanus, which parasitize nests of the solitary bee Habropoda pallida, cooperate to exploit the sexual communication system of their hosts by producing a chemical cue that mimics the sex pheromone of the female bee. Male bees are lured to larval aggregations, and upon contact (pseudocopulation) the beetle larvae attach to the male bees. The larvae transfer to female bees during mating and subsequently are transported to the nests of their hosts. To mimic the chemical and visual signals of female bees effectively, the parasite larvae must cooperate, emphasizing the adaptive value of cooperation between larvae. The aggressive chemical mimicry by the beetle larvae and their subsequent transport to their hosts' nests by the hosts themselves provide an efficient solution to the problem of locating a critical but scarce resource in a harsh environment. PMID:16966608

  1. Parasitism rate, parasitoid community composition and host specificity on exposed and semi-concealed caterpillars from a tropical rainforest.

    PubMed

    Hrcek, Jan; Miller, Scott E; Whitfield, James B; Shima, Hiroshi; Novotny, Vojtech

    2013-10-01

    The processes maintaining the enormous diversity of herbivore-parasitoid food webs depend on parasitism rate and parasitoid host specificity. The two parameters have to be evaluated in concert to make conclusions about the importance of parasitoids as natural enemies and guide biological control. We document parasitism rate and host specificity in a highly diverse caterpillar-parasitoid food web encompassing 266 species of lepidopteran hosts and 172 species of hymenopteran or dipteran parasitoids from a lowland tropical forest in Papua New Guinea. We found that semi-concealed hosts (leaf rollers and leaf tiers) represented 84% of all caterpillars, suffered a higher parasitism rate than exposed caterpillars (12 vs. 5%) and their parasitoids were also more host specific. Semi-concealed hosts may therefore be generally more amenable to biological control by parasitoids than exposed ones. Parasitoid host specificity was highest in Braconidae, lower in Diptera: Tachinidae, and, unexpectedly, the lowest in Ichneumonidae. This result challenges the long-standing view of low host specificity in caterpillar-attacking Tachinidae and suggests higher suitability of Braconidae and lower suitability of Ichneumonidae for biological control of caterpillars. Semi-concealed hosts and their parasitoids are the largest, yet understudied component of caterpillar-parasitoid food webs. However, they still remain much closer in parasitism patterns to exposed hosts than to what literature reports on fully concealed leaf miners. Specifically, semi-concealed hosts keep an equally low share of idiobionts (2%) as exposed caterpillars. PMID:23463243

  2. Emerging dangers: deadly effects of an emergent parasite in a new pollinator host.

    PubMed

    Graystock, Peter; Yates, Kathryn; Darvill, Ben; Goulson, Dave; Hughes, William O H

    2013-10-01

    There is growing concern about the threats facing many pollinator populations. Emergent diseases are one of the major threats to biodiversity and a microsporidian parasite, Nosema ceranae, has recently jumped host from the Asian to the Western honeybee, spreading rapidly worldwide, and contributing to dramatic colony losses. Bumblebees are ecologically and economically important pollinators of conservation concern, which are likely exposed to N. ceranae by sharing flowers with honeybees. Whilst a further intergeneric jump by N. ceranae to infect bumblebees would be potentially serious, its capacity to do this is unknown. Here we investigate the prevalence of N. ceranae in wild bumblebees in the UK and determine the infectivity of the parasite under controlled conditions. We found N. ceranae in all seven wild bumblebee species sampled, and at multiple sites, with many of the bees having spores from this parasite in their guts. When we fed N. ceranae spores to bumblebees under controlled conditions, we confirmed that the parasite can infect bumblebees. Infections spread from the midgut to other tissues, reduced bumblebee survival by 48% and had sub-lethal effects on behaviour. Although spore production appeared lower in bumblebees than in honeybees, virulence was greater. The parasite N. ceranae therefore represents a real and emerging threat to bumblebees, with the potential to have devastating consequences for their already vulnerable populations. PMID:23816821

  3. Does host plant influence parasitism and parasitoid species composition in Lygus rugulipennis? A molecular approach.

    PubMed

    Gariepy, T D; Kuhlmann, U; Gillott, C; Erlandson, M

    2008-06-01

    Lygus Hahn plant bugs (Hemiptera: Miridae) are serious pests of a wide variety of economically important crops in North America. European Peristenus digoneutis Loan and P. relictus Ruthe (Hymenoptera: Braconidae) are being considered for release in Canada as part of a classical biological control program for Lygus. The attractiveness of different host plants to European Peristenus has not been addressed, but may be an important consideration prior to parasitoid release. Lygus rugulipennis Poppius nymphs were collected in the Northern Temperate Atlantic (NTA) ecoregion on red clover (Trifolium pratense L.; Fabaceae) and chamomile (Matricaria recutita L.; Asteraceae), and in the Western European Broadleaf Forest (WEBF) ecoregion on red clover and alfalfa (Medicago sativa L.; Fabaceae). Parasitism levels and parasitoid species were determined using a multiplex PCR assay for P. digoneutis, P. relictus, and P. pallipes Curtis. Mean parasitism levels in L. rugulipennis were 45-49% in the NTA ecoregion and 25-32% in the WEBF ecoregion. However, in neither ecoregion were parasitism levels and parasitoid species compositions significantly different in nymphs from different host plant species. Furthermore, multiparasitism was low despite the fact that P. digoneutis and P. relictus share the same host species. PMID:18439339

  4. Apoptotic-like Leishmania exploit the host's autophagy machinery to reduce T-cell-mediated parasite elimination.

    PubMed

    Crauwels, Peter; Bohn, Rebecca; Thomas, Meike; Gottwalt, Stefan; Jäckel, Florian; Krämer, Susi; Bank, Elena; Tenzer, Stefan; Walther, Paul; Bastian, Max; van Zandbergen, Ger

    2015-01-01

    Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed--in contrast to viable parasites--that apoptotic-like parasites enter an LC3(+), autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4(+) T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells' autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis. PMID:25801301

  5. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    Microsoft Academic Search

    Jeffrey P Mower; Saša Stefanovi?; Weilong Hao; Julie S Gummow; Kanika Jain; Dana Ahmed; Jeffrey D Palmer

    2010-01-01

    BACKGROUND: Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. RESULTS: In order to uncover the mechanistic details of

  6. Comparative host-parasite population structures: disentangling prospecting and dispersal in the black-legged kittiwake Rissa tridactyla

    Microsoft Academic Search

    KAREN D. McCOY; THIERRY BOULINIER; CLAIRE TIRARD

    2005-01-01

    Although much insight is to be gained through the comparison of the population genetic structures of parasites and hosts, there are, at present, few studies that take advantage of the information on vertebrate life histories available through the consideration of their parasites. Here, we examined the genetic structure of a colonial seabird, the black-legged kittiwake ( Rissa tridactyla ) using

  7. Functional Annotation of Cotesia congregata Bracovirus: Identification of Viral Genes Expressed in Parasitized Host Immune Tissues

    PubMed Central

    Thézé, Julien; Cambier, Sébastien; Poulain, Julie; Da Silva, Corinne; Bézier, Annie; Musset, Karine; Moreau, Sébastien J. M.; Drezen, Jean-Michel

    2014-01-01

    ABSTRACT Bracoviruses (BVs) from the Polydnaviridae family are symbiotic viruses used as biological weapons by parasitoid wasps to manipulate lepidopteran host physiology and induce parasitism success. BV particles are produced by wasp ovaries and injected along with the eggs into the caterpillar host body, where viral gene expression is necessary for wasp development. Recent sequencing of the proviral genome of Cotesia congregata BV (CcBV) identified 222 predicted virulence genes present on 35 proviral segments integrated into the wasp genome. To date, the expressions of only a few selected candidate virulence genes have been studied in the caterpillar host, and we lacked a global vision of viral gene expression. In this study, a large-scale transcriptomic analysis by 454 sequencing of two immune tissues (fat body and hemocytes) of parasitized Manduca sexta caterpillar hosts allowed the detection of expression of 88 CcBV genes expressed 24 h after the onset of parasitism. We linked the expression profiles of these genes to several factors, showing that different regulatory mechanisms control viral gene expression in the host. These factors include the presence of signal peptides in encoded proteins, diversification of promoter regions, and, more surprisingly, gene position on the proviral genome. Indeed, most genes for which expression could be detected are localized in particular proviral regions globally producing higher numbers of circles. Moreover, this polydnavirus (PDV) transcriptomic analysis also reveals that a majority of CcBV genes possess at least one intron and an arthropod transcription start site, consistent with an insect origin of these virulence genes. IMPORTANCE Bracoviruses (BVs) are symbiotic polydnaviruses used by parasitoid wasps to manipulate lepidopteran host physiology, ensuring wasp offspring survival. To date, the expressions of only a few selected candidate BV virulence genes have been studied in caterpillar hosts. We performed a large-scale analysis of BV gene expression in two immune tissues of Manduca sexta caterpillars parasitized by Cotesia congregata wasps. Genes for which expression could be detected corresponded to genes localized in particular regions of the viral genome globally producing higher numbers of circles. Our study thus brings an original global vision of viral gene expression and paves the way to the determination of the regulatory mechanisms enabling the expression of BV genes in targeted organisms, such as major insect pests. In addition, we identify sequence features suggesting that most BV virulence genes were acquired from insect genomes. PMID:24872581

  8. Differential response of stomata to air humidity in the parasitic mistletoe ( Phthirusa pyrifolia ) and its host, mandarin orange ( Citrus resitulata )

    Microsoft Academic Search

    Mabrouk A. El-Sharkawy; James H. Cock; Ana Pilar Hernandez

    1986-01-01

    Measurements of CO2 and H2O exchange rate and the calculated leaf conductance of attached leaves were conducted over a range of leaf-to-air vapour pressure difference (VPD) (1.5 to 5.5 kPa) to compare the response of the parasitic mistletoe, Phthirusa pyrifolia, with that of its host, the mandarin orange, Citrus reticulata. Seedlings of the host infected with the parasite were grown

  9. Host-pathogen interaction in HIV infection

    PubMed Central

    Chowdhury, Ankita; Silvestri, Guido

    2013-01-01

    The host pathogen interaction is strikingly complex during HIV infection. While several immune effector mechanisms (i.e., cytotoxic T cells, neutralizing antibodies, NK cells, etc) can play a strong antiviral role in vivo, the virus is remarkably able to evade these responses. In addition, the virus preferentially infects and kills activated memory CD4+ T cells, thus exploiting the host antiviral immune response as a source of new cellular targets for infection. Recent advances in understanding (i) how HIV perturbs the host immune system, (ii) how the immune system fights HIV; and (iii) how HIV disease persists when virus replication is suppressed by antiretroviral drugs may hopefully lead to better prevention and treatment strategies for this deadly viral infection. PMID:23890585

  10. Female host sex-biased parasitism with the rodent stomach nematode Mastophorus muris in wild bank voles (Myodes glareolus).

    PubMed

    Grzybek, Maciej; Bajer, Anna; Behnke-Borowczyk, Jolanta; Al-Sarraf, Mohammed; Behnke, Jerzy M

    2015-02-01

    Abundance and prevalence of helminth infections often differ between host sexes, and are usually biased in favor of males. Relatively few cases of female-biased parasitism have been reported. We sampled bank voles in three woodland sites in N.E. Poland over 11 years at 3-4-year intervals, and assessed their parasite burdens. Prevalence and abundance of the stomach nematode Mastophorus muris were consistently higher among females. Among adult female bank voles from the two sites that showed the highest prevalence with M. muris, both prevalence and abundance were significantly higher in lactating bank voles, but not pregnant animals, and the effect of lactation was evident in both sites, in all four surveys, and in both age classes. Although the magnitude of the effect of lactation varied between years, it was not confounded by any significant interactions with other factors. We hypothesize that mature and reproductively active female bank voles are subject to higher exposure compared with males of similar age, as a consequence of the increased content of invertebrates in their diet, including the intermediate hosts of M. muris, required to meet the higher increased energy and protein demands of nursing litters throughout the summer months. PMID:25395256

  11. Parasites in marine food webs

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2013-01-01

    Most species interactions probably involve parasites. This review considers the extent to which marine ecologists should consider parasites to fully understand marine communities. Parasites are influential parts of food webs in estuaries, temperate reefs, and coral reefs, but their ecological importance is seldom recognized. Though difficult to observe, parasites can have substantial biomass, and they can be just as common as free-living consumers after controlling for body mass and trophic level. Parasites have direct impacts on the energetics of their hosts and some affect host behaviors, with ecosystem-level consequences. Although they cause disease, parasites are sensitive components of ecosystems. In particular, they suffer secondary extinctions due to biodiversity loss. Some parasites can also return to a system after habitat restoration. For these reasons, parasites can make good indicators of ecosystem integrity. Fishing can indirectly increase or decrease parasite populations and the effects of climate change on parasites are likely to be equally as complex.

  12. Emphasizing the ecology in parasite community ecology

    E-print Network

    Pedersen, Amy B.

    Emphasizing the ecology in parasite community ecology Amy B. Pedersen1 and Andy Fenton2 1 Institute of parasites. However, the significance of interactions between species and the processes that shape within-host parasite communities remain unclear. Studies of parasite community ecology are often descriptive, focusing

  13. Interacting populations : hosts and pathogens, prey and predators

    E-print Network

    Klepac, Petra

    2007-01-01

    The interactions between populations can be positive, neutral or negative. Predation and parasitism are both relationships where one species benefits from the interaction at the expense of the other. Predators kill their ...

  14. Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts

    Microsoft Academic Search

    Todd A Ciche; Paul W Sternberg

    2007-01-01

    BACKGROUND: Heterorhabditis bacteriophora is applied throughout the world for the biological control of insects and is an animal model to study interspecies interactions, e.g. mutualism, parasitism and vector-borne disease. H. bacteriophora nematodes are mutually associated with the insect pathogen, Photorhabdus luminescens. The developmentally arrested infective juvenile (IJ) stage nematode (vector) specifically transmits Photorhabdus luminescens bacteria (pathogen) in its gut mucosa

  15. Lower begging responsiveness of host versus parasitic brown-headed cowbird (Molothrus ater) nestlings is related to species identity but not to early social experience.

    PubMed

    Hauber, Mark E

    2003-03-01

    The survival of young brood parasites depends critically on their many adaptations to exploit hosts. Parasitic survival is particularly related to competitive superiorty for foster parental care whenever host young are not destroyed in parasitized nests.Brown-headed cowbirds (Molothrus ater) are generalist obligate parasites whose early social environments are unpredictable regarding host species and numbers of nestmates. Young avian brood parasites typically beg more intensively and loudly than foster siblings, but an untested prediction is that young parasites are also more likely to respond by begging to a wider variety of stimulus types. Avian vocalizations were used in a playback experiment to stimulate begging behavior in cowbird hosts. Compared with age-matched cowbird nestlings, hosts begged less frequently to acoustic stimuli, and lower begging responsiveness was irrespective of whether hosts had been reared in parasitized nests. PMID:12735360

  16. Chemical attraction of Dermacentor variabilis ticks parasitic to Peromyscus leucopus based on host body mass and sex.

    PubMed

    Dallas, Tad; Foré, Stephanie

    2013-10-01

    Macroparasites are commonly aggregated on a small subset of a host population. Previous explanations for this aggregation relate to differences in immunocompetence or the degree to which hosts encounter parasites. We propose active tick host choice through chemical attraction as a potential mechanism leading to aggregated tick burdens. We test this hypothesis using a Y-maze olfactometer, comparing chemical attraction responses of larval and nymphal Dermacentor variabilis ticks parasitic to the white-footed mouse, Peromyscus leucopus, as a function of host sex and host body mass. We hypothesized that larger hosts and male hosts would be most attractive to searching ticks, as these hosts commonly have higher tick burdens in the field. Chemical attraction trials were run in the presence and absence of a known tick attractant, host-produced carbon dioxide (CO2). Male hosts and larger hosts were preferred by nymphal D. variabilis in the presence and absence of CO2, whereas larvae had no detectable host preference. The current study suggests that host-produced chemical cues may promote aggregated tick burdens among hosts of a single species based on host body mass and sex. PMID:23543274

  17. Prevalence Patterns of Avian Plasmodium and Haemoproteus Parasites and the Influence of Host Relative Abundance in Southern China

    PubMed Central

    Zhang, Yanhua; Wu, Yuchun; Zhang, Qiang; Su, Dongdong; Zou, Fasheng

    2014-01-01

    Infectious diseases threaten the health and survival of wildlife populations. Consequently, relationships between host diversity, host abundance, and parasite infection are important aspects of disease ecology and conservation research. Here, we report on the prevalence patterns of avian Plasmodium and Haemoproteus infections and host relative abundance influence based on sampling 728 wild-caught birds representing 124 species at seven geographically widespread sites in southern China. The overall prevalence of two haemoprotozoan parasites, Plasmodium and Haemoproteus, was 29.5%, with 22.0% attributable to Haemoproteus and 7.8% to Plasmodium. Haemoproteus prevalence differed significantly among different avian host families, with the highest prevalence in Nectariniidae, Pycnonotidae and Muscicapidae, whereas Plasmodium prevalence varied significantly among host species. Seventy-nine mitochondrial lineages including 25 from Plasmodium and 54 from Haemoproteus were identified, 80% of which were described here for the first time. The phylogenetic relationships among these parasites indicated stronger host-species specificity for Haemoproteus than Plasmodium. Well-supported host-family (Timaliidae) specific clades were found in both Plasmodium and Haemoproteus. The Haemoproteus tree shows regional subclades, whereas the Plasmodium clades are “scattered” among different geographical regions. Interestingly, there were statistically significant variations in the prevalence of Plasmodium and Haemoproteus among the geographical regions. Furthermore, the prevalence of Plasmodium and Haemoproteus were not significantly correlated with host relative abundance. Further efforts will focus on exploring the relationships between parasite prevalence and sex, age, and immune defense of the host. PMID:24911323

  18. The Genome of Spraguea lophii and the Basis of Host-Microsporidian Interactions

    PubMed Central

    Campbell, Scott E.; Williams, Tom A.; Yousuf, Asim; Soanes, Darren M.; Paszkiewicz, Konrad H.; Williams, Bryony A. P.

    2013-01-01

    Microsporidia are obligate intracellular parasites with the smallest known eukaryotic genomes. Although they are increasingly recognized as economically and medically important parasites, the molecular basis of microsporidian pathogenicity is almost completely unknown and no genetic manipulation system is currently available. The fish-infecting microsporidian Spraguea lophii shows one of the most striking host cell manipulations known for these parasites, converting host nervous tissue into swollen spore factories known as xenomas. In order to investigate the basis of these interactions between microsporidian and host, we sequenced and analyzed the S. lophii genome. Although, like other microsporidia, S. lophii has lost many of the protein families typical of model eukaryotes, we identified a number of gene family expansions including a family of leucine-rich repeat proteins that may represent pathogenicity factors. Building on our comparative genomic analyses, we exploited the large numbers of spores that can be obtained from xenomas to identify potential effector proteins experimentally. We used complex-mix proteomics to identify proteins released by the parasite upon germination, resulting in the first experimental isolation of putative secreted effector proteins in a microsporidian. Many of these proteins are not related to characterized pathogenicity factors or indeed any other sequences from outside the Microsporidia. However, two of the secreted proteins are members of a family of RICIN B-lectin-like proteins broadly conserved across the phylum. These proteins form syntenic clusters arising from tandem duplications in several microsporidian genomes and may represent a novel family of conserved effector proteins. These computational and experimental analyses establish S. lophii as an attractive model system for understanding the evolution of host-parasite interactions in microsporidia and suggest an important role for lineage-specific innovations and fast evolving proteins in the evolution of the parasitic microsporidian lifecycle. PMID:23990793

  19. Induction of apoptosis in host cells: a survival mechanism for Leishmania parasites?

    PubMed

    Getti, G T; Cheke, R A; Humber, D P

    2008-10-01

    Leishmania parasites invade host macrophages, causing infections that are either limited to skin or spread to internal organs. In this study, 3 species causing cutaneous leishmaniasis, L. major, L. aethiopica and L. tropica, were tested for their ability to interfere with apoptosis in host macrophages in 2 different lines of human monocyte-derived macrophages (cell lines THP-1 and U937) and the results confirmed in peripheral blood mononuclear cells (PBMC). All 3 species induced early apoptosis 48 h after infection (expression of phosphatidyl serine on the outer membrane). There were significant increases in the percentage of apoptotic cells both for U937 and PBMC following infection with each of the 3 species. Early apoptotic events were confirmed by mitochondrial membrane permeabilization detection and caspase activation 48 and 72 h after infection. Moreover, the percentage of infected THP-1 and U937 macrophages increased significantly (up to 100%) following treatment with an apoptosis inducer. Since phosphatidyl serine externalization on apoptosing cells acts as a signal for engulfment by macrophages, induction of apoptosis in the parasitized cells could actively participate in spreading the infection. In summary, parasite-containing apoptotic bodies with intact membranes could be released and phagocytosed by uninfected macrophages. PMID:18775094

  20. Effects of Maturity and Determinacy in Soybean on Host-Parasite Relationships of Heterodera glycines

    PubMed Central

    Todd, T. C.; Long, J. H.; Oakley, T. R.

    2000-01-01

    The effects of soybean maturity and determinacy on the host-parasite relationships of Heterodera glycines were investigated in a field microplot study over 2 years. Determinate and indeterminate isolines of the maturity group (MG) III cultivar Williams 82 and the MG V cultivar Essex were grown in microplots artificially infested with a race 3 isolate of H. glycines at three initial population (Pi) densities (0, 300, and 3,000 eggs/100 cm³ soil). Soybean seed yields, nematode final population (Pf) densities and reproductive index (Pf/Pi), and root colonization by Macrophomina phaseolina, the causal agent of charcoal rot, were monitored in each year. Seed yields were reduced (P ? 0.05) in the presence of H. glycines in both years, but losses were greater in 1996 in the absence of drought stress. Yield loss was lower (P ? 0.06) for the determinate isoline of Essex than for the other cultivar-isoline treatments across years. Nematode reproduction was density-dependent in the more conducive environment of 1996 but was unaffected by soybean maturity or determinacy traits. Root colonization by M. phaseolina increased (P ? 0.05) in the presence of high H. glycines densities on determinate, but not indeterminate, isolines. Differences in H. glycines-induced yield loss among cultivar-isoline treatments were not related to nematode reproduction, M. phaseolina colonization, or environmental stresses. These results indicate that the effects of soybean maturity and determinacy on H. glycines-soybean interactions are not independent and that their combined effects must be considered in geographic regions where both traits vary. PMID:19271013

  1. Parasite invasion following host reintroduction: a case study of Yellowstone's wolves

    PubMed Central

    Almberg, Emily S.; Cross, Paul C.; Dobson, Andrew P.; Smith, Douglas W.; Hudson, Peter J.

    2012-01-01

    Wildlife reintroductions select or treat individuals for good health with the expectation that these individuals will fare better than infected animals. However, these individuals, new to their environment, may also be particularly susceptible to circulating infections and this may result in high morbidity and mortality, potentially jeopardizing the goals of recovery. Here, using the reintroduction of the grey wolf (Canis lupus) into Yellowstone National Park as a case study, we address the question of how parasites invade a reintroduced population and consider the impact of these invasions on population performance. We find that several viral parasites rapidly invaded the population inside the park, likely via spillover from resident canid species, and we contrast these with the slower invasion of sarcoptic mange, caused by the mite Sarcoptes scabiei. The spatio-temporal patterns of mange invasion were largely consistent with patterns of host connectivity and density, and we demonstrate that the area of highest resource quality, supporting the greatest density of wolves, is also the region that appears most susceptible to repeated disease invasion and parasite-induced declines. The success of wolf reintroduction appears not to have been jeopardized by infectious disease, but now shows signs of regulation or limitation modulated by parasites. PMID:22966139

  2. Parasite invasion following host reintroduction: a case of Yellowstone’s wolves

    USGS Publications Warehouse

    Cross, Paul C.; Almberg, Emily S.; Dobson, Andrew P.; Smith, Douglas W.; Hudson, Peter J.

    2012-01-01

    Wildlife reintroductions select or treat individuals for good health with the expectation that these individuals will fare better than infected animals. However, these individuals, new to their environment, may also be particularly susceptible to circulating infections and this may result in high morbidity and mortality, potentially jeopardizing the goals of recovery. Here, using the reintroduction of the grey wolf (Canis lupus) into Yellowstone National Park as a case study, we address the question of how parasites invade a reintroduced population and consider the impact of these invasions on population performance. We find that several viral parasites rapidly invaded the population inside the park, likely via spillover from resident canid species, and we contrast these with the slower invasion of sarcoptic mange, caused by the mite Sarcoptes scabiei. The spatio-temporal patterns of mange invasion were largely consistent with patterns of host connectivity and density, and we demonstrate that the area of highest resource quality, supporting the greatest density of wolves, is also the region that appears most susceptible to repeated disease invasion and parasite-induced declines. The success of wolf reintroduction appears not to have been jeopardized by infectious disease, but now shows signs of regulation or limitation modulated by parasites.

  3. Host-parasite relationships of longnose dace, Rhinichthys cataractae, from the Ford River, Michigan.

    PubMed

    Muzzall, P M; Whelan, G E; Taylor, W W

    1992-10-01

    A total of 1,115 longnose dace, Rhinichthys cataractae (family Cyprinidae), were examined for parasites from May 1983 through October 1986 from 3 localities in the Ford River in Michigan's Upper Peninsula. Thirteen parasite species (1 Monogenea, 2 Digenea, 2 Cestoda, 4 Nematoda, 1 Acanthocephala, 3 Protozoa) infected dace. The parasite faunas of dace, taxonomically and in species number, were similar between localities. Posthodiplostomum minimum minimum, Neascus sp., and Rhabdochona canadensis were the most common helminths infecting dace from each locality. The first 2 species did not exhibit consistent seasonal infection patterns between years, whereas the prevalence and mean intensity of R. canadensis in dace from the downriver locality were higher in summer 1983, 1984, and 1985. The intensity of infection of each of these helminth species significantly increased with host length. The prevalences and mean intensities of P. m. minimum, Neascus sp., and R. canadensis as well as the helminth infracommunity diversity were highest in dace from the upriver locality. The major factors that influenced parasite intensity were environmental factors that occurred when and where a fish began its life, the sequence of events that occurred in each habitat the fish encountered during its life, and the length of exposure (age of fish). Dace have isolationist helminth infracommunities arising from factors including ectothermy, a simple enteric system, restricted vagility, and being gape-limited. Allogenic helminths with indirect life cycles predominate in the depauperate helminth fauna of dace. PMID:1403425

  4. Nematomorph parasites indirectly alter the food web and ecosystem function of streams through behavioural manipulation of their cricket hosts.

    USGS Publications Warehouse

    Sato, T.; Egusa, T.; Fukushima, K.; Oda, T.; Ohte, N.; Tokuchi, Naoko; Watanabe, Katsutoshi; Kanaiwa, Minoru; Murakami, Isaya; Lafferty, Kevin D.

    2012-01-01

    Nematomorph parasites manipulate crickets to enter streams where the parasites reproduce. These manipulated crickets become a substantial food subsidy for stream fishes. We used a field experiment to investigate how this subsidy affects the stream community and ecosystem function. When crickets were available, predatory fish ate fewer benthic invertebrates. The resulting release of the benthic invertebrate community from fish predation indirectly decreased the biomass of benthic algae and slightly increased leaf break-down rate. This is the first experimental demonstration that host manipulation by a parasite can reorganise a community and alter ecosystem function. Nematomorphs are common, and many other parasites have dramatic effects on host phenotypes, suggesting that similar effects of parasites on ecosystems might be widespread.

  5. Disease ecology in the Galápagos Hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies

    PubMed Central

    Whiteman, Noah Kerness; Matson, Kevin D; Bollmer, Jennifer L; Parker, Patricia G

    2005-01-01

    An increased susceptibility to disease is one hypothesis explaining how inbreeding hastens extinction in island endemics and threatened species. Experimental studies show that disease resistance declines as inbreeding increases, but data from in situ wildlife systems are scarce. Genetic diversity increases with island size across the entire range of an extremely inbred Galápagos endemic bird, providing the context for a natural experiment examining the effects of inbreeding on disease susceptibility. Extremely inbred populations of Galápagos hawks had higher parasite abundances than relatively outbred populations. We found a significant island effect on constitutively produced natural antibody (NAb) levels and inbred populations generally harboured lower average and less variable NAb levels than relatively outbred populations. Furthermore, NAb levels explained abundance of amblyceran lice, which encounter the host immune system. This is the first study linking inbreeding, innate immunity and parasite load in an endemic, in situ wildlife population and provides a clear framework for assessment of disease risk in a Galápagos endemic. PMID:16618672

  6. Relative geographic range of sibling species of host damselflies does not reliably predict differential parasitism by water mites

    PubMed Central

    2013-01-01

    Background One of the main challenges in evolutionary parasitology is to determine the factors that explain variation among host species in parasitism. In this study, we addressed whether host phylogeny or ecology was important in determining host species use by water mites. Parasitism (prevalence and intensity) by Arrenurus water mites was examined in relation to geographic distribution of host damselflies from sibling species pairs. In addition, the likelihood of putative mite species parasitizing both species of a host species pair was explored. Results A total of 1162 damselflies were examined for water mites across four sites in Southeastern Ontario. These damselflies represent ten species (five closely related host species pairs) in the Coenagrionidae. Only two of the five species pairs showed near significant or significant differences in prevalence of infection by mites. In one of those species comparisons, it was the less widespread host that had higher water mite prevalence and in the other species comparison, the less widespread host species had lower water mite prevalence. Only one of the five pairs showed a significant difference in intensity of infection; intensity was higher in the species with a smaller geographic distribution. Based on the COI barcode, there were nine water mite clades (OTU) infecting these ten host species. Three Arrenurus OTUs may be host monospecific, four OTUs were specific to a given host species pair, and two OTUs infected at least three host species. Host species in each species pairs tend to share at least one of the Arrenurus OTU. No striking differences in mite species diversity were found among species in any species pair. Finally, the Arrenurus examined in this study appear to be ecological specialists, restricted to a particular type of habitat, parasitizing few to many of the host species present in that site or habitat. Conclusions Although differences in levels of parasitism by water mites exist for some closely related hosts species, no such differences were found between other related host species. Differences in geographic range of related host species does not reliably explain differential levels of parasitism by water mites. PMID:24351055

  7. Parasites

    MedlinePLUS

    ... are easily treated and some are not. The burden of these diseases often rests on communities in the tropics and subtropics, but parasitic infections also affect people in developed countries. More about parasites ... ...

  8. Manipulation of the vertebrate host's testosterone does not affect gametocyte sex ratio of a malaria parasite.

    PubMed

    Osgood, Sarah M; Eisen, Rebecca J; Wargo, Andrew R; Schall, Jos J

    2003-02-01

    Gametocyte sex ratio of the malaria parasite Plasmodium mexicanum is variable in its host, the western fence lizard (Sceloporus occidentalis), both among infections and within infections over time. We sought to determine the effect of host physiological quality on the gametocyte sex ratio in experimentally induced infections of P. mexicanum. Adult male lizards were assigned to 4 treatment groups: castrated, castrated + testosterone implant, sham implant, and unmanipulated control. No significant difference in gametocyte sex ratio was found among the 4 treatment groups. Two other analyses were performed. A surgery stress analysis compared infection sex ratio of castrated, castrated + testosterone implant, and sham implant groups with the unmanipulated control group. A testosterone alteration analysis compared infection sex ratio of the castrated and castrated + testosterone implant groups with the sham implant and unmanipulated control groups. Again, no significant difference was observed for these 2 comparisons. Thus, physiological changes expected for experimentally induced variation in host testosterone and the stress of surgery were not associated with any change in the gametocyte sex ratio. Also, theex-periment suggests testosterone is not a cue for shaping the sex ratio of gametocytes in P. mexicanum. These results are related to the evolutionary theory of sex ratios as applied to malaria parasites. PMID:12659329

  9. Acephaline gregarine parasites (Monocystis sp.) are not transmitted sexually among their lumbricid earthworm hosts.

    PubMed

    Field, Stuart G; Michiels, Nico K

    2006-04-01

    The precise transmission mode(s) of acephaline gregarines in their earthworm hosts has long been questioned, yet a rigorous experimental evaluation of sexual transmission is currently lacking. That Monocystis sp., a common gregarine parasite of the earthworm Lumbricus terrestris, infects the sexual organs of its host is suggestive of sexual transmission. Considering the divergent evolutionary consequences of various modes of transmission, excluding or proving sexual transmission in this host-parasite system is critical to fully understanding it. We cultured uninfected earthworms from cocoons and subsequently mated them to either an infected or uninfected partner (from the wild). We then compared these individuals with an orally infected group, which were infected using a newly developed gavage (oral injection) method. Our data have unambiguously established that (1) horizontal sexual transmission does not play a significant role in the transmission of Monocystis sp., and (2) oral transmission through the soil is likely the principal mode of transmission between earthworms. This finding is important to models of mate-choice because infection avoidance does not appear to drive mating decisions. Finally, we further report a successful and relatively simple method to obtain infection-free individuals, which can subsequently be infected via oral gavage and used in empirical studies. PMID:16729685

  10. CYTOKINE REGULATION OF HOST DEFENSE AGAINST PARASITIC GASTROINTESTINAL NEMATODES:Lessons from Studies with Rodent Models*1

    Microsoft Academic Search

    Fred D. Finkelman; Terez Shea-Donohue; Jon Goldhill; Carolyn A. Sullivan; Suzanne C. Morris; Kathleen B. Madden; William C. Gause

    1997-01-01

    Studies with rodents infected with Trichinella spiralis, Heligmosomoides poly- gyrus, Nippostrongylus brasiliensis, and Trichuris muris have provided consid- erable information about immune mechanisms that protect against parasitic gas- trointestinal nematodes. Four generalizations can be made: 1. CD4 C T cells are critical for host protection; 2. IL-12 and IFN- inhibit protective immunity; 3. IL-4 can: (a) be required for host

  11. Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: a priori differences and induced changes.

    PubMed

    Johnsen, Hanne R; Striberny, Bernd; Olsen, Stian; Vidal-Melgosa, Silvia; Fangel, Jonatan U; Willats, William G T; Rose, Jocelyn K C; Krause, Kirsten

    2015-08-01

    Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection. Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself. Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself. Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants. PMID:25808919

  12. Sphingolipids in parasitic protozoa

    PubMed Central

    Zhang, Kai; Bangs, James D.; Beverley, Stephen M.

    2009-01-01

    The surface of most protozoan parasites relies heavily upon lipid-anchored molecules, to form protective barriers and play critical functions required for infectivity. Sphingolipids (SLs) play important roles through their abundance and involvement in membrane microdomain formation, as well as serving as the lipid anchor for many of these molecules, and in some but possibly not all species, as important signaling molecules. Interactions of parasite sphingolipid metabolism with that of the host may potentially contribute to parasite survival and/or host defense. In this chapter we summarize current knowledge of SL structure, synthesis and function in several of the major parasitic protozoan groups. PMID:20919659

  13. The ecological significance of manipulative parasites

    Microsoft Academic Search

    Thierry Lefevre; Camille Lebarbenchon; Michel Gauthier-Clerc; Dorothee Misse ´; Robert Poulin; Frederic Thomas

    2008-01-01

    The diversity of ways in which host manipulation by parasites interferes with ecological and evolutionary processes governing biotic interactions has been recently documented, and indicates that manipulative parasites are full participants in the functioning of eco- systems. Phenotypic alterations in parasitised hosts modify host population ecology, apparent competition processes, food web structure and energy and nutrient flow between habitats, as

  14. A slowly evolving host moves first in symbiotic interactions

    PubMed Central

    Damore, James A.; Gore, Jeff

    2011-01-01

    Symbiotic relationships, both parasitic and mutualistic, are ubiquitous in nature. Understanding how these symbioses evolve, from bacteria and their phages to humans and our gut microflora, is crucial in understanding how life operates. Often, symbioses consist of a slowly evolving host species with each host only interacting with its own sub-population of symbionts. The Red Queen hypothesis describes coevolutionary relationships as constant arms races with each species rushing to evolve an advantage over the other, suggesting that faster evolution is favored. Here, we use a simple game theoretic model of host-symbiont coevolution that includes population structure to show that if the symbionts evolve much faster than the host, the equilibrium distribution is the same as it would be if it were a sequential game where the host moves first against its symbionts. For the slowly evolving host, this will prove to be advantageous in mutualisms and a handicap in antagonisms. The result follows from rapid symbiont adaptation to its host and is robust to changes in the parameters, even generalizing to continuous and multiplayer games. Our findings provide insight into a wide range of symbiotic phenomena and help to unify the field of coevolutionary theory. Symbioses play a vital role in nearly all ecosystems, but surprisingly little is known about how they evolve (Eberhard 1980; Neish 2002; Nechaev and Severinov 2008). Empirical and theoretical studies often restrict themselves to specific forms of interactions and complicated models that make it difficult to form powerful generalities (Herre et al. 1999; Edwards et al. 2006; Holland et al. 2004). However, in most symbiotic relationships, one partner evolves much faster than the other because of an asymmetry in generation time, mutation rate, or importance of the interaction (Van Valen 1973; Dawkins and Krebs 1979; Moran et al. 1995; Bergstrom and Lachmann 2003). Therefore, in an effort to better understand symbiotic interactions, many have employed the Red Queen hypothesis, which describes coevolutionary relationships as constant arms races to gain the upper hand, thus favoring rapid rates of evolution. This coevolutionary race can be clearly seen in interactions between bacteria and their phage where the bacteria struggle to gain resistance and the phages rush to overcome it. In fact, high evolutionary rates can be so highly favored that bacteria coevolving with phage develop mutation rates 10–100 fold higher than wild-type (Pal et al. 2007). However, a recent theoretical study found an exception to the Red Queen hypothesis that they called the Red King effect: when two species fight over the benefits of a mutualism, the slower evolving species can actually have an advantage (Bergstrom and Lachmann 2003). In their basic model, the two species were assumed to be in a well-mixed environment, meaning that each member from both species interacted with every member of the other species. For some parameter regimes describing the interaction, the population reached the equilibrium that favored the slowly evolving species in a larger fraction of initial conditions, particularly those where both species start out being selfish. While being able to rapidly adapt may be advantageous in purely antagonistic relationships, sometimes being committed to a strategy can be beneficial. The authors liken this to “having one's hands tied” during a bargaining process, forcing the quickly evolving species to yield to rather than outrun its slowly evolving partner. PMID:21790584

  15. Polymerase chain reaction detection of human host preference and Plasmodium parasite infections in field collected potential malaria vectors

    PubMed Central

    Dhiman, Sunil; Bhola, Rakesh Kumar; Goswami, Diganta; Rabha, Bipul; Kumar, Dinesh; Baruah, Indra; Singh, Lokendra

    2012-01-01

    This study was carried out to determine the human host preference and presence of Plasmodium parasite in field collected Anopheles mosquitoes among four villages around a military cantonment located in malaria endemic Sonitpur district of Assam, India. Encountered malaria vector mosquitoes were identified and tested for host preference and Plasmodium presence using PCR method. Human host preference was detected using simple PCR, whereas vectorial status for Plasmodium parasite was confirmed using first round PCR with genus specific primers and thereafter nested PCR with three Plasmodium species specific primers. Out of 1874 blood fed vector mosquitoes collected, 187 (10%) were processed for PCR, which revealed that 40.6% had fed on human blood; 9.2% of human blood fed mosquito were harbouring Plasmodium parasites, 71.4% of which were confirmed to Plasmodium falciparum. In addition to An. minimus, An. annularis and An. culicifacies were also found positive for malaria parasites. The present study exhibits the human feeding tendency of Anopheles vectors highlighting their malaria parasite transmission potential. The present study may serve as a model for understanding the human host preference of malaria vectors and detection of malaria parasite inside the anopheline vector mosquitoes in order to update their vectorial status for estimating the possible role of these mosquitoes in malaria transmission. The study has used PCR method and suggests that PCR-based method should be used in this entire malarious region to correctly report the vectorial position of different malaria vectors. PMID:23265376

  16. Experimental Shifts in Intraclutch Egg Color Variation Do Not Affect Egg Rejection in a Host of a Non-Egg-Mimetic Avian Brood Parasite

    PubMed Central

    Croston, Rebecca; Hauber, Mark E.

    2015-01-01

    Avian brood parasites lay their eggs in the nests of other birds, and impose the costs associated with rearing parasitic young onto these hosts. Many hosts of brood parasites defend against parasitism by removing foreign eggs from the nest. In systems where parasitic eggs mimic host eggs in coloration and patterning, extensive intraclutch variation in egg appearances may impair the host’s ability to recognize and reject parasitic eggs, but experimental investigation of this effect has produced conflicting results. The cognitive mechanism by which hosts recognize parasitic eggs may vary across brood parasite hosts, and this may explain variation in experimental outcome across studies investigating egg rejection in hosts of egg-mimicking brood parasites. In contrast, for hosts of non-egg-mimetic parasites, intraclutch egg color variation is not predicted to co-vary with foreign egg rejection, irrespective of cognitive mechanism. Here we tested for effects of intraclutch egg color variation in a host of nonmimetic brood parasite by manipulating egg color in American robins (Turdus migratorius), hosts of brown-headed cowbirds (Molothrus ater). We recorded robins’ behavioral responses to simulated cowbird parasitism in nests where color variation was artificially enhanced or reduced. We also quantified egg color variation within and between unmanipulated robin clutches as perceived by robins themselves using spectrophotometric measures and avian visual modeling. In unmanipulated nests, egg color varied more between than within robin clutches. As predicted, however, manipulation of color variation did not affect rejection rates. Overall, our results best support the scenario wherein egg rejection is the outcome of selective pressure by a nonmimetic brood parasite, because robins are efficient rejecters of foreign eggs, irrespective of the color variation within their own clutch. PMID:25831051

  17. Stage-specific excretory/secretory small heat shock proteins from the parasitic nematode Strongyloides ratti: putative links to host’s intestinal mucosal defense system

    PubMed Central

    Younis, Abuelhassan Elshazly; Geisinger, Frank; Ajonina-Ekoti, Irene; Soblik, Hanns; Steen, Hanno; Mitreva, Makedonka; Erttmann, Klaus D.; Perbandt, Markus; Liebau, Eva; Brattig, Norbert W.

    2013-01-01

    SUMMARY In search of molecules involved in the interaction of intestinal nematodes and mammalian mucosal host cells, we performed mass spectrometry to identify excretory/secretory proteins (ESP) from Strongyloides ratti. In addition to other peptides, we detected in the ESP of parasitic female stage peptides homologous to the Caenorhabditis elegans heat shock protein-17, named Sra-HSP-17.1 (~19 kDa) and Sra-HSP-17.2 (~ 18 kDa) with 49% amino acid identity. The full-length cDNAs (483 bp and 474 bp, respectively) were identified and the genomic organization analyzed. To allow further characterization, the proteins were recombinantly expressed and purified. Profiling of transcription by qRT-PCR and of protein by ELISA in various developmental stages revealed parasitic female-specific expression. The sequence analysis of both DNA and amino acid sequence showed two genes share a conserved alpha-crystallin domain and variable N-terminals. The Sra-HSP-17 proteins showed the highest homology to the deduced small heat-shock protein sequence of the human pathogen S. stercoralis. We observed strong immunogenicity of both proteins, leading to high IgG responses following infection of rats. Flow cytometric analysis indicated the binding of Sra-HSP-17s to the monocytes/macrophage lineage but not to peripheral lymphocytes or neutrophils. A rat intestinal epithelial cell line showed dose dependent binding to Sra-HSP-17.1, but not to Sra-HSP-17.2. Exposed monocytes released IL-10 but not TNF-alpha in response to Sra-HSP-17s, suggesting a possible involvement of secreted female proteins in host immune responses. PMID:21762402

  18. Comparisons of host specificity in feather louse genera (Insecta: Phthiraptera: Philopteridae) parasitizing gulls (Aves: Laridae: Larus).

    PubMed

    Yamagishi, Ayaka; Yao, Izumi; Johnson, Kevin P; Yoshizawa, Kazunori

    2014-06-01

    Data from gene sequences and morphological structures were collected for the gull feather lice, Saemundssonia lari, Quadraceps punctatus, and Q. ornatus, parasitizing Larus crassirostris and L. schistisagus. Saemundssonia lari was collected from both gull species, and no detectable morphological and genetic differences were found between lice collected from the two different hosts. In contrast, Q. punctatus was only collected from L. crassirostris, whereas Q. ornatus was only collected from L. schistisagus. The two Quadraceps species were genetically highly divergent, and body-size differences corresponding to the gull's body size (Harrison's rule) were also detected between them. Both Quadraceps species were collected from the interbarb of the remex or rectrix, and a match in body size between the louse and the interbarb space may be important in escape from host preening defenses. In contrast, Saemundssonia is a head louse, inhabiting the finer feathers of the head and neck, which the bird cannot preen. A close match to host body size may be less important for lice in the head microhabitat. The differences in the pattern of host-specificity between Saemundssonia and Quadraceps on the two focal host species of this study were probably due to their different microhabitat preferences. More broadly, comparisons of the gene sequences of S. lari and Q. punctatus to those from other gull hosts showed that genetically almost undifferentiated populations of both species were distributed on wide range of gull species. Frequent interspecific hybridization of gulls is one possible factor that may allow these lice to maintain gene flow across multiple host species. PMID:24882099

  19. Citrus tristeza virus-host interactions

    PubMed Central

    Dawson, W. O.; Garnsey, S. M.; Tatineni, S.; Folimonova, S. Y.; Harper, S. J.; Gowda, S.

    2013-01-01

    Citrus tristeza virus (CTV) is a phloem-limited virus whose natural host range is restricted to citrus and related species. Although the virus has killed millions of trees, almost destroying whole industries, and continually limits production in many citrus growing areas, most isolates are mild or symptomless in most of their host range. There is little understanding of how the virus causes severe disease in some citrus and none in others. Movement and distribution of CTV differs considerably from that of well-studied viruses of herbaceous plants where movement occurs largely through adjacent cells. In contrast, CTV systemically infects plants mainly by long-distance movement with only limited cell-to-cell movement. The virus is transported through sieve elements and occasionally enters an adjacent companion or phloem parenchyma cell where virus replication occurs. In some plants this is followed by cell-to-cell movement into only a small cluster of adjacent cells, while in others there is no cell-to-cell movement. Different proportions of cells adjacent to sieve elements become infected in different plant species. This appears to be related to how well viral gene products interact with specific hosts. CTV has three genes (p33, p18, and p13) that are not necessary for infection of most of its hosts, but are needed in different combinations for infection of certain citrus species. These genes apparently were acquired by the virus to extend its host range. Some specific viral gene products have been implicated in symptom induction. Remarkably, the deletion of these genes from the virus genome can induce large increases in stem pitting (SP) symptoms. The p23 gene, which is a suppressor of RNA silencing and a regulator of viral RNA synthesis, has been shown to be the cause of seedling yellows (SY) symptoms in sour orange. Most isolates of CTV in nature are populations of different strains of CTV. The next frontier of CTV biology is the understanding how the virus variants in those mixtures interact with each other and cause diseases. PMID:23717303

  20. Citrus tristeza virus-host interactions.

    PubMed

    Dawson, W O; Garnsey, S M; Tatineni, S; Folimonova, S Y; Harper, S J; Gowda, S

    2013-01-01

    Citrus tristeza virus (CTV) is a phloem-limited virus whose natural host range is restricted to citrus and related species. Although the virus has killed millions of trees, almost destroying whole industries, and continually limits production in many citrus growing areas, most isolates are mild or symptomless in most of their host range. There is little understanding of how the virus causes severe disease in some citrus and none in others. Movement and distribution of CTV differs considerably from that of well-studied viruses of herbaceous plants where movement occurs largely through adjacent cells. In contrast, CTV systemically infects plants mainly by long-distance movement with only limited cell-to-cell movement. The virus is transported through sieve elements and occasionally enters an adjacent companion or phloem parenchyma cell where virus replication occurs. In some plants this is followed by cell-to-cell movement into only a small cluster of adjacent cells, while in others there is no cell-to-cell movement. Different proportions of cells adjacent to sieve elements become infected in different plant species. This appears to be related to how well viral gene products interact with specific hosts. CTV has three genes (p33, p18, and p13) that are not necessary for infection of most of its hosts, but are needed in different combinations for infection of certain citrus species. These genes apparently were acquired by the virus to extend its host range. Some specific viral gene products have been implicated in symptom induction. Remarkably, the deletion of these genes from the virus genome can induce large increases in stem pitting (SP) symptoms. The p23 gene, which is a suppressor of RNA silencing and a regulator of viral RNA synthesis, has been shown to be the cause of seedling yellows (SY) symptoms in sour orange. Most isolates of CTV in nature are populations of different strains of CTV. The next frontier of CTV biology is the understanding how the virus variants in those mixtures interact with each other and cause diseases. PMID:23717303

  1. The Interaction Between Pathogens and the Host Coagulation System

    NSDL National Science Digital Library

    Dr. Hongmin Sun (University of Michigan Life Sciences Institute)

    2006-08-01

    There is mounting evidence that the hemostatic system is critical in host responses to bacterial infection. Invasive bacteria have evolved virulence strategies to interact with host hemostatic factors such as plasminogen and fibrinogen for infection. Furthermore, genetic variations in host hemostatic factors also influence host response to bacterial infection.

  2. Conditional Degradation of Plasmodium Calcineurin Reveals Functions in Parasite Colonization of both Host and Vector.

    PubMed

    Philip, Nisha; Waters, Andrew P

    2015-07-01

    Functional analysis of essential genes in the malarial parasite, Plasmodium, is hindered by lack of efficient strategies for conditional protein regulation. We report the development of a rapid, specific, and inducible chemical-genetic tool in the rodent malaria parasite, P. berghei, in which endogenous proteins engineered to contain the auxin-inducible degron (AID) are selectively degraded upon adding auxin. Application of AID to the calcium-regulated protein phosphatase, calcineurin, revealed functions in host and vector stages of parasite development. Whereas depletion of calcineurin in late-stage schizonts demonstrated its critical role in erythrocyte attachment and invasion in vivo, stage-specific depletion uncovered roles in gamete development, fertilization, and ookinete-to-oocyst and sporozoite-to-liver stage transitions. Furthermore, AID technology facilitated concurrent generation and phenotyping of transgenic lines, allowing multiple lines to be assessed simultaneously with significant reductions in animal use. This study highlights the broad applicability of AID for functional analysis of proteins across the Plasmodium life cycle. PMID:26118994

  3. Non-Specific Manipulation of Gammarid Behaviour by P. minutus Parasite Enhances Their Predation by Definitive Bird Hosts

    PubMed Central

    Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent

    2014-01-01

    Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a “collateral damage”, manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments. PMID:25000519

  4. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts.

    PubMed

    Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent

    2014-01-01

    Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments. PMID:25000519

  5. Host-pathogen interaction in invasive Salmonellosis.

    PubMed

    de Jong, Hanna K; Parry, Chris M; van der Poll, Tom; Wiersinga, W Joost

    2012-01-01

    Salmonella enterica infections result in diverse clinical manifestations. Typhoid fever, caused by S. enterica serovar Typhi (S. Typhi) and S. Paratyphi A, is a bacteremic illness but whose clinical features differ from other Gram-negative bacteremias. Non-typhoidal Salmonella (NTS) serovars cause self-limiting diarrhea with occasional secondary bacteremia. Primary NTS bacteremia can occur in the immunocompromised host and infants in sub-Saharan Africa. Recent studies on host-pathogen interactions in Salmonellosis using genome sequencing, murine models, and patient studies have provided new insights. The full genome sequences of numerous S. enterica serovars have been determined. The S. Typhi genome, compared to that of S. Typhimurium, harbors many inactivated or disrupted genes. This can partly explain the different immune responses both serovars induce upon entering their host. Similar genome degradation is also observed in the ST313 S. Typhimurium strain implicated in invasive infection in sub-Saharan Africa. Virulence factors, most notably, type III secretion systems, Vi antigen, lipopolysaccharide and other surface polysaccharides, flagella, and various factors essential for the intracellular life cycle of S. enterica have been characterized. Genes for these factors are commonly carried on Salmonella Pathogenicity Islands (SPIs). Plasmids also carry putative virulence-associated genes as well as those responsible for antimicrobial resistance. The interaction of Salmonella pathogen-associated molecular patterns (PAMPs) with Toll-like receptors (TLRs) and NOD-like receptors (NLRs) leads to inflammasome formation, activation, and recruitment of neutrophils and macrophages and the production of pro-inflammatory cytokines, most notably interleukin (IL)-6, IL-1?, tumor necrosis factor (TNF)-?, and interferon-gamma (IFN)-?. The gut microbiome may be an important modulator of this immune response. S. Typhimurium usually causes a local intestinal immune response, whereas S. Typhi, by preventing neutrophil attraction resulting from activation of TLRs, evades the local response and causes systemic infection. Potential new therapeutic strategies may lead from an increased understanding of infection pathogenesis. PMID:23055923

  6. Parasite Virulence 14Parasite Virulence

    E-print Network

    Schall, Joseph J.

    Parasite Virulence 14Parasite Virulence Jos J. Schall Department of Biology, University of Vermont, Burlington, VT 05405, USA The Problem Some parasites exact a terrible price from their hosts, causing severe pathology and reducing the host's fitness, whereas other parasites are essentially benign. Several kinds

  7. Experimental shifts in intraclutch egg color variation do not affect egg rejection in a host of a non-egg-mimetic avian brood parasite.

    PubMed

    Croston, Rebecca; Hauber, Mark E

    2015-01-01

    Avian brood parasites lay their eggs in the nests of other birds, and impose the costs associated with rearing parasitic young onto these hosts. Many hosts of brood parasites defend against parasitism by removing foreign eggs from the nest. In systems where parasitic eggs mimic host eggs in coloration and patterning, extensive intraclutch variation in egg appearances may impair the host's ability to recognize and reject parasitic eggs, but experimental investigation of this effect has produced conflicting results. The cognitive mechanism by which hosts recognize parasitic eggs may vary across brood parasite hosts, and this may explain variation in experimental outcome across studies investigating egg rejection in hosts of egg-mimicking brood parasites. In contrast, for hosts of non-egg-mimetic parasites, intraclutch egg color variation is not predicted to co-vary with foreign egg rejection, irrespective of cognitive mechanism. Here we tested for effects of intraclutch egg color variation in a host of nonmimetic brood parasite by manipulating egg color in American robins (Turdus migratorius), hosts of brown-headed cowbirds (Molothrus ater). We recorded robins' behavioral responses to simulated cowbird parasitism in nests where color variation was artificially enhanced or reduced. We also quantified egg color variation within and between unmanipulated robin clutches as perceived by robins themselves using spectrophotometric measures and avian visual modeling. In unmanipulated nests, egg color varied more between than within robin clutches. As predicted, however, manipulation of color variation did not affect rejection rates. Overall, our results best support the scenario wherein egg rejection is the outcome of selective pressure by a nonmimetic brood parasite, because robins are efficient rejecters of foreign eggs, irrespective of the color variation within their own clutch. PMID:25831051

  8. A Physical and Regulatory Map of Host-Influenza Interactions

    E-print Network

    A Physical and Regulatory Map of Host-Influenza Interactions Reveals Pathways in H1N1 Infection During the course of a viral infection, viral proteins interact with an array of host proteins influenza and its human host. A combination of yeast two- hybrid analysis and genome-wide expression pro

  9. The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies.

    PubMed

    Bächtold, Alexandra; Alves-Silva, Estevão; Kaminski, Lucas A; Del-Claro, Kleber

    2014-11-01

    Ovipositing adult females of myrmecophilous lycaenids are expected to select plants based on ant presence in order to maximize the survivorship of immature stages. Usually, larvae feed ants with honey-like solutions and, in turn, ants ward off parasitoids. Nonetheless, a rarely investigated approach is whether ant partners can also extend their protective behavior towards lycaenids eggs. Here, we investigated the ant-related oviposition pattern of Allosmaitia strophius and Rekoa marius; then, we compared egg parasitism according to the presence of ants. Lycaenid oviposition and egg parasitism (in percent) were experimentally compared in ant-present and ant-excluded treatments. The study plant, Heteropterys byrsonimifolia, is an extrafloral nectaried shrub which supports several ant species. We sampled 280 eggs, of which 39.65 % belonged to A. strophius and 60.35 % to R. marius. Both lycaenids eggs were significantly more abundant on branches with ants, especially those with Camponotus crassus and Camponotus blandus, two ant species known to attend to lycaenids. A. strophius and R. marius parasitism was 4.5- and 2.4-fold higher, respectively, in ant-present treatments, but the results were not statistically significant. Our study shows that ant-mediated host plant selection in lycaenids might be much more widespread than previously thought, and not restricted to obligate myrmecophilous species. Tending ants may be inefficient bodyguards of lycaenid eggs, because unlike larvae which release sugared liquids, eggs do not offer obvious rewards to ants. Ants can ward off parasitoids of larvae, as observed elsewhere, but our findings show that positive ant-lycaenid interactions are conditional and depend on immature ontogeny. PMID:25200736

  10. Production of early expressed parasitism-specific proteins in alternate sphingid hosts of the braconid wasp Cotesia congregata.

    PubMed

    Harwood, S H; McElfresh, J S; Nguyen, A; Conlan, C A; Beckage, N E

    1998-05-01

    Parasitism of Manduca sexta larvae by the braconid wasp Cotesia congregata or injection of C. congregata polydnavirus (CcPDV) causes numerous alterations in host physiology, including developmental arrest, abrogation of host immunity, and the production of three abundant early expressed proteins (EP1, EP2, and EP3) that are secreted in large amounts into the host's hemolymph. Here we compare the levels of these proteins present in the hemolymph of three other sphingid species that vary in their compatibility for C. congregata. Hyles lineata was found to be permissive for C. congregata and EP1, EP2, and EP3 were present in larval hemolymph at levels comparable to those found in hemolymph from parasitized M. sexta larvae. By contrast, the lowest levels of EP proteins were found in hemolymph from parasitized Pachysphinx occidentalis larvae and this species was found to be completely refractory, since C. congregata eggs were invariably encapsulated. Parasitism of Sphinx vashti by C. congregata resulted in moderate levels of EP production. While the observed immune response was incomplete and some encapsulation of C. congregata eggs and/or larvae was observed, low numbers of S. vashti nevertheless were able to complete their development and emerge as adults. Thus, a correlation was established between host compatibility and induction of synthesis of the three parasitism-specific proteins, although the linkage between quantitative levels of EP production and the extent of encapsulation was variable. PMID:9538034

  11. Host-to-host variation of ecological interactions in polymicrobial infections.

    PubMed

    Mukherjee, Sayak; Weimer, Kristin E; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Swords, W Edward; Das, Jayajit

    2014-01-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species. PMID:25473880

  12. Who is in control of the stickleback immune system: interactions between Schistocephalus solidus and its specific vertebrate host.

    PubMed

    Scharsack, Jörn Peter; Koch, Kamilla; Hammerschmidt, Katrin

    2007-12-22

    The cestode Schistocephalus solidus is a frequent parasite of three-spined sticklebacks and has a large impact on its host's fitness. Selection pressure should therefore be high on stickleback defence mechanisms, like an efficient immune system, and also on parasite strategies to overcome these. Even though there are indications for manipulation of the immune system of its specific second intermediate host by the cestode, nothing is yet known about the chronology of specific interactions of S. solidus with the stickleback immune system. We here expected sticklebacks to first mount an innate immune response directly post-exposure to the parasite to clear the infection at an early stage and after an initial lag phase to upregulate adaptive immunity. Most interestingly, we did not find any upregulation of the specific lymphocyte-mediated immune response. Also, the pattern of activation of the innate immune system did not match our expectations: the proliferation of monocytes followed fluctuating kinetics suggesting that the parasite repeatedly installs a new surface coat not immunogenic to the host. Furthermore, the respiratory burst activity, which has the potential to clear an early S. solidus infection, was upregulated very late during infection, when the parasite was too big to be cleared but ready for transmission to its final host. We here suggest that the late activation of the innate immune system interferes with the neuroendocrine system, which mediates reduced predation avoidance behaviour and so facilitates the transmission to the final host. PMID:17939987

  13. Environmental constraints influencing survival of an African parasite in a north temperate habitat: effects of temperature on development within the host.

    PubMed

    Tinsley, R C; York, J E; Stott, L C; Everard, A L E; Chapple, S J; Tinsley, M C

    2011-07-01

    The monogenean Protopolystoma xenopodis has been established in Wales for >40 years following introduction with Xenopus laevis from South Africa. This provides an experimental system for determining constraints affecting introduced species in novel environments. Parasite development post-infection was followed at 15, 20 and 25°C for 15 weeks and at 10°C for ?1 year and correlated with temperatures recorded in Wales. Development was slowed/arrested at ?10°C which reflects habitat conditions for >6 months/year. There was wide variation in growth at constant temperature (body size differing by >10 times) potentially attributable in part to genotype-specific host-parasite interactions. Parasite density had no effect on size but host sex did: worms in males were 1·8 times larger than in females. Minimum time to patency was 51 days at 25°C and 73 days at 20°C although some infections were still not patent at both temperatures by 105 days p.i. In Wales, fastest developing infections may mature within one summer (about 12 weeks), possibly accelerated by movements of hosts into warmer surface waters. Otherwise, development slows/stops in October-April, delaying patency to about 1 year p.i., while wide variation in developmental rates may impose delays of 2 years in some primary infections and even longer in secondary infections. PMID:21733261

  14. Partial host fidelity in nest selection by the shiny cowbird (Molothrus bonariensis), a highly generalist avian brood parasite.

    PubMed

    Mahler, B; Confalonieri, V A; Lovette, I J; Reboreda, J C

    2007-09-01

    Obligate avian brood parasites can be host specialists or host generalists. In turn, individual females within generalist brood parasites may themselves be host specialists or generalists. The shiny cowbird Molothrus bonariensis is an extreme generalist, but little is known about individual female host fidelity. We examined variation in mitochondrial control region sequences from cowbird chicks found in nests of four common Argentinean hosts. Haplotype frequency distributions differed among cowbird chicks from nests of these hosts, primarily because eggs laid in nests of house wrens Troglodytes aedon differed genetically from those laid in nests of the other three hosts (chalk-browed mockingbird Mimus saturninus, brown-and-yellow marshbird Pseudoleistes virescens, and rufous-collared sparrow Zonotrichia capensis). These differences in a maternally inherited marker indicate the presence of a nonrandom laying behaviour in the females of this otherwise generalist brood parasite, which may be guided by choice for nest type, as house wrens nest in cavities whereas the other three species are open cup nesters. PMID:17714308

  15. Systems Integration of Biodefense Omics Data for Analysis of Pathogen-Host Interactions and Identification of Potential Targets

    Microsoft Academic Search

    Peter B. McGarvey; Hongzhan Huang; Raja Mazumder; Jian Zhang; Yongxing Chen; Chengdong Zhang; Stephen Cammer; Rebecca Will; Margie Odle; Bruno Sobral; Margaret Moore; Cathy H. Wu; Jörg Hoheisel

    2009-01-01

    The NIAID (National Institute for Allergy and Infectious Diseases) Biodefense Proteomics program aims to identify targets for potential vaccines, therapeutics, and diagnostics for agents of concern in bioterrorism, including bacterial, parasitic, and viral pathogens. The program includes seven Proteomics Research Centers, generating diverse types of pathogen-host data, including mass spectrometry, microarray transcriptional profiles, protein interactions, protein structures and biological reagents.

  16. The Inflammasomes: Molecular Effectors of Host Resistance Against Bacterial, Viral, Parasitic, and Fungal Infections

    PubMed Central

    Skeldon, Alexander; Saleh, Maya

    2010-01-01

    The inflammasomes are large multi-protein complexes scaffolded by cytosolic pattern recognition receptors (PRRs) that form an important part of the innate immune system. They are activated following the recognition of microbial-associated molecular patterns or host-derived danger signals (danger-associated molecular patterns) by PRRs. This recognition results in the recruitment and activation of the pro-inflammatory protease caspase-1, which cleaves its preferred substrates pro-interleukin-1? (IL-1?) and pro-IL-18 into their mature biologically active cytokine forms. Through processing of a number of other cellular substrates, caspase-1 is also required for the release of “alarmins” and the induction and execution of an inflammatory form of cell death termed pyroptosis. A growing spectrum of inflammasomes have been identified in the host defense against a variety of pathogens. Reciprocally, pathogens have evolved effector strategies to antagonize the inflammasome pathway. In this review we discuss recent developments in the understanding of inflammasome-mediated recognition of bacterial, viral, parasitic, and fungal infections and the beneficial or detrimental effects of inflammasome signaling in host resistance. PMID:21716947

  17. LIFE HISTORY OF A MALARIA PARASITE ( PLASMODIUM MEXICANUM ) IN ITS HOST, THE WESTERN FENCE LIZARD ( SCELOPORUS OCCIDENTALIS ): HOST TESTOSTERONE AS A SOURCE OF SEASONAL AND AMONG-HOST VARIATION?

    Microsoft Academic Search

    Rebecca J. Eisen; Dale F. DeNardo

    2000-01-01

    The course of infection of a malaria parasite (Plasmodium mexicanum)is highly variable in its host, the fence lizard (Sceloporus occidentalis). However, a seasonal trend is superimposed on this variation such that gametocyte production is inten- sified during mid- to late summer. Host testosterone levels follow a similar seasonal fluctuation and are variable among individual lizards. We sought to determine if

  18. Molecular Characterization of Trypanosoma cruzi SAP Proteins with Host-Cell Lysosome Exocytosis-Inducing Activity Required for Parasite Invasion

    PubMed Central

    Zanforlin, Tamiris; Bayer-Santos, Ethel; Cortez, Cristian; Almeida, Igor C.; Yoshida, Nobuko; da Silveira, José Franco

    2013-01-01

    Background To invade target cells, Trypanosoma cruzi metacyclic forms engage distinct sets of surface and secreted molecules that interact with host components. Serine-, alanine-, and proline-rich proteins (SAP) comprise a multigene family constituted of molecules with a high serine, alanine and proline residue content. SAP proteins have a central domain (SAP-CD) responsible for interaction with and invasion of mammalian cells by metacyclic forms. Methods and Findings Using a 513 bp sequence from SAP-CD in blastn analysis, we identified 39 full-length SAP genes in the genome of T. cruzi. Although most of these genes were mapped in the T. cruzi in silico chromosome TcChr41, several SAP sequences were spread out across the genome. The level of SAP transcripts was twice as high in metacyclic forms as in epimastigotes. Monoclonal (MAb-SAP) and polyclonal (anti-SAP) antibodies produced against the recombinant protein SAP-CD were used to investigate the expression and localization of SAP proteins. MAb-SAP reacted with a 55 kDa SAP protein released by epimastigotes and metacyclic forms and with distinct sets of SAP variants expressed in amastigotes and tissue culture-derived trypomastigotes (TCTs). Anti-SAP antibodies reacted with components located in the anterior region of epimastigotes and between the nucleus and the kinetoplast in metacyclic trypomastigotes. In contrast, anti-SAP recognized surface components of amastigotes and TCTs, suggesting that SAP proteins are directed to different cellular compartments. Ten SAP peptides were identified by mass spectrometry in vesicle and soluble-protein fractions obtained from parasite conditioned medium. Using overlapping sequences from SAP-CD, we identified a 54-aa peptide (SAP-CE) that was able to induce host-cell lysosome exocytosis and inhibit parasite internalization by 52%. Conclusions This study provides novel information about the genomic organization, expression and cellular localization of SAP proteins and proposes a triggering role for extracellular SAP proteins in host-cell lysosome exocytosis during metacyclic internalization. PMID:24391838

  19. Interactions between parasites of the cockle Austrovenus stutchburyi: hitch-hikers, resident-cleaners, and habitat-facilitators

    Microsoft Academic Search

    T. L. F. LEUNG; R. POULIN

    2007-01-01

    SUMMARY The patterns of association between parasites within a particular host are determined by a number of factors. One of these factors is whether or not infection by one parasite influences the probability of acquiring other parasite species. This study investigates the pattern of association between various parasites of the New Zealand cockle Austrovenus stutchburyi. Hundreds of cockles were collected

  20. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants.

    PubMed

    Gehring, Catherine A; Mueller, Rebecca C; Haskins, Kristin E; Rubow, Tine K; Whitham, Thomas G

    2014-01-01

    Plants and mycorrhizal fungi influence each other's abundance, diversity, and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of plant parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis), and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors, and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future. PMID:25009537

  1. Interactive effects between diet and genotypes of host and pathogen define the severity of infection.

    PubMed

    Zhang, Ji; Friman, Ville-Petri; Laakso, Jouni; Mappes, Johanna

    2012-09-01

    Host resistance and parasite virulence are influenced by multiple interacting factors in complex natural communities. Yet, these interactive effects are seldom studied concurrently, resulting in poor understanding of host-pathogen-environment dynamics. Here, we investigated how the level of opportunist pathogen virulence, strength of host immunity and the host condition manipulated via diet affect the survival of wood tiger moth Parasemia plantaginis (Arctidae). Larvae from "low cuticular melanin" and "high cuticular melanin" (considered as low and high pathogen resistance, respectively) selection lines were infected with moderately and highly virulent bacteria strains of Serratia marcescens, while simultaneously manipulating host diet (with or without antibacterial compounds). We measured host survival and food preference before and after infection to test whether the larvae "self-medicate" by choosing an anti-infection diet (Plantago major, i.e., plantain leaf) over lettuce (Lactuca sativa). "High melanin" larvae were more resistant than "low melanin" larvae to the less virulent strain that had slower growth and colonization rate compared with the more virulent strain. Cuticular melanin did not enhance survival when the larvae were infected with the highly virulent strain. Anti-infection diet enhanced survival of the "high melanin" but not the "low melanin" hosts. Survival was dependent on family origin even within the melanin selection lines. Despite the intrinsic preference for lettuce, no evidence of self-medication was found. These results demonstrate that the relative benefit of host cuticular melanin depends on both diet and pathogen virulence: plantain diet only boosted the immunity of already resistant "high melanin" hosts, and cuticular melanin increased host survival only when infected with moderately virulent pathogen. Moreover, there was considerable variation in host survival between families within both melanin lines suggesting genetic basis for resistance. These results indicate that although melanin is an important predictor of insect immunity, its effect on disease outcomes greatly depends on other interacting factors. PMID:23139892

  2. Heterologous antagonistic and synergistic interactions between helminths and between helminths and protozoans in concurrent experimental infection of mammalian hosts

    Microsoft Academic Search

    N. Ø. Christensen; P. Nansen; B. O. Fagbemi; J. Monrad

    1987-01-01

    Experimental concurrent infection with two or more parasite species in mammalian host models may result in heterologous antagonistic and synergistic interactions ranging in magnitude from reduced\\/enhanced growth and fecundity to blockage\\/enhancement of establishment\\/expulsion. With some exceptions only, there is a reasonable correlation between the levels of interaction monitored by parasitological and by clinico-pathological parameters. Heterologous antagonistic interactions mediated by functional

  3. Models of Parasite Virulence

    Microsoft Academic Search

    Steven A. Frank

    1996-01-01

    Several evolutionary processes influence virulence, the amount of damage a parasite causes to its host. For example, parasites are favored to exploit their hosts prudently to prolong infection and avoid killing the host. Parasites also need to use some host resources to reproduce and transmit infections to new hosts. Thus parasites face a tradeoff between prudent exploitation and rapid reproduction—

  4. Male hosts are responsible for the transmission of a trophically transmitted parasite, Pterygodermatites peromysci, to the intermediate host in the absence of sex-biased infection.

    PubMed

    Luong, Lien T; Grear, Daniel A; Hudson, Peter J

    2009-09-01

    Field studies have identified that male-biased infection can lead to increased rates of transmission, so we examined the relative importance of host sex on the transmission of a trophically transmitted parasite (Pterygodermatites peromysci) where there is no sex-biased infection. We experimentally reduced infection levels in either male or female white-footed mice (Peromyscus leucopus) on independent trapping grids with an anthelmintic and recorded subsequent infection levels in the intermediate host, the camel cricket (Ceuthophilus pallidipes). We found that anthelmintic treatment significantly reduced the prevalence of infection among crickets in both treatment groups compared with the control, and at a rate proportional to the number of mice de-wormed, indicating prevalence was not affected by the sex of the shedding definitive host. In contrast, parasite abundance in crickets was higher on the grids where females were treated compared with the grids where males were treated. These findings indicate that male hosts contribute disproportionately more infective stages to the environment and may therefore be responsible for the majority of parasite transmission even when there is no discernable sex-biased infection. We also investigated whether variation in nematode length between male and female hosts could account for this male-biased infectivity, but found no evidence to support that hypothesis. PMID:19397911

  5. Immunosuppression in the Definitive and Intermediate Hosts of the Human Parasite Schistosoma mansoni by Release of Immunoactive Neuropeptides

    Microsoft Academic Search

    Odile Duvaux-Miret; George B. Stefano; Eric M. Smith; Colette Dissous; Andre Capron

    1992-01-01

    Evidence supporting the concept that the parasitic trematode Schistosoma mansoni may escape immune reactions from its vertebrate (man) or invertebrate (the fresh-water snail Biomphalaria glabrata) hosts by using signal molecules it has in common with these hosts was obtained by the following experiments. The presence of immunoactive proopiomelanocortin (POMC)-derived peptides [corticotropin (ACTH), beta-endorphin] in, and their release from, S. mansoni

  6. Helminth and arthropod parasites of the brown pelican, Pelecanus occidentalis, in Puerto Rico, with a compilation of all metazoan parasites reported from this host in the Western Hemisphere.

    PubMed

    Dyer, William G; Williams, Ernest H; Mignucci-Giannoni, Antonio A; Jiménez-Marrero, Nilda M; Bunkley-Williams, Lucy; Moore, Debra P; Pence, Danny B

    2002-10-01

    Seven species of helminths and six species of arthropods are reported from 23 of 40 brown pelicans, Pelecanus occidentalis, collected from various localities in Puerto Rico. Helminth parasites include three nematodes (Contracaecum multipapillatum, Contracaecum mexicanum, and Eustrongylides sp.), three trematodes (Galactosomum darbyi, Mesostephanus appendiculatoides, and Ribeiroia ondatrae), and one cestode (Tetrabothrium sulae). Arthropod parasites include Colpocephalum occidentalis, Neottialges apunctatus, Ornithodoros capensis, Phalacrodectus pelecani, Phalacrodectus punctatissimus, and Phalacrodectus sp. The presence of R. ondatrae in the brown pelican is a new species host record, and P. pelecani, P. punctatissimus and N. apunctatus are new subspecies host records. C. multipapillatum, C. mexicanum, G. darbyi and M. appendiculatoides are new locality records for Puerto Rico, and N. apunctatus, P. pelecani, P. punctatissimus and T. sulae are new locality records for the Caribbean. Necrosis produced by C. multipapillatum, C. mexicanum, and R. ondatrae may have contributed to the emaciation and death of the brown pelicans examined in the present study. PMID:12427338

  7. Advances in gastropod immunity from the study of the interaction between the snail Biomphalaria glabrata and its parasites: A review of research progress over the last decade.

    PubMed

    Coustau, C; Gourbal, B; Duval, D; Yoshino, T P; Adema, C M; Mitta, G

    2015-09-01

    This review summarizes the research progress made over the past decade in the field of gastropod immunity resulting from investigations of the interaction between the snail Biomphalaria glabrata and its trematode parasites. A combination of integrated approaches, including cellular, genetic and comparative molecular and proteomic approaches have revealed novel molecular components involved in mediating Biomphalaria immune responses that provide insights into the nature of host-parasite compatibility and the mechanisms involved in parasite recognition and killing. The current overview emphasizes that the interaction between B. glabrata and its trematode parasites involves a complex molecular crosstalk between numerous antigens, immune receptors, effectors and anti-effector systems that are highly diverse structurally and extremely variable in expression between and within host and parasite populations. Ultimately, integration of these molecular signals will determine the outcome of a specific interaction between a B. glabrata individual and its interacting trematodes. Understanding these complex molecular interactions and identifying key factors that may be targeted to impairment of schistosome development in the snail host is crucial to generating new alternative schistosomiasis control strategies. PMID:25662712

  8. Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its

    E-print Network

    Boyer, Edmond

    Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting to possess only a simple, effective and hence non-adaptive defence system against microbial and parasitic exposed to parasites. Consequently, the generally accepted arms race hypothesis predicts that molecular

  9. HPIDB - a unified resource for host-pathogen interactions

    Microsoft Academic Search

    Ranjit Kumar; Bindu Nanduri

    2010-01-01

    BACKGROUND: Protein-protein interactions (PPIs) play a crucial role in initiating infection in a host-pathogen system. Identification of these PPIs is important for understanding the underlying biological mechanism of infection and identifying putative drug targets. Database resources for studying host-pathogen systems are scarce and are either host specific or dedicated to specific pathogens. RESULTS: Here we describe \\

  10. Linear Dispersal of the Filth Fly Parasitoid Spalangia cameroni (Hymenoptera: Pteromalidae) and Parasitism of Hosts at Increasing Distances

    PubMed Central

    Machtinger, Erika T.; Geden, Christopher J.; Leppla, Norman C.

    2015-01-01

    Release of parasitic wasps (Hymenoptera: Pteromalidae) as biological control agents for house flies and stable flies in livestock confinements has had variable success. In part, this may reflect a lack of knowledge regarding the optimal distance to be used between parasitoid release stations. In the current study, we assessed the effect of linear distance on host parasitism by the wasp Spalangia cameroni Perkins. In open fields at distances ranging from 1 m to 60 m from a central point, house fly puparia were placed in a mixture of pine shavings soiled with equine manure, urine, and alfalfa hay. Releases of S. cameroni then were made using a 5:1 host: parasitoid ratio. Host pupae were parasitized at all distances, with the highest rate of total parasitism (68.9%) recorded ? 5 m from the release site. Analyses of results using non-linear and linear models suggest that S. cameroni should be released in close proximity to host development areas. Additionally, releases may not be suitable in pasture situations where long-distance flight is required for control. However, further testing is needed to examine the effect of density-dependent dispersal and diffusion of S. cameroni. PMID:26061882

  11. PERIPHERAL CD4 CELLS RAPIDLY ACCUMULATE AT THE HOST: PARASITE INTERFACE AN INFLAMMATORY TH2 MEMORY RESPONSE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Memory peripheral Th2 immune responses resulting in host protection are not well studied due to the lack of suitable models and the difficulty of assessing Th2 cytokine expression at sites of inflammation. We have examined the localized immune response elicited by parasitic larvae of an intestinal ...

  12. Host-Parasite Relationship Between Utah Juniper and Juniper Mistletoe in the Spring Mountains of Southern Nevada

    Microsoft Academic Search

    Simon A. Lei

    The infection of Utah juniper by parasitic juniper mistletoe was quantitatively investigated at a blackbrush-Utah juniper ecotone in Pine Creek of southern Nevada. Juniper mistletoes significantly reduced the vigor, viability, and reproduc­ tive success of their host. The abundance of juniper mistletoe was significantly and positively correlated -with the height of Utah juniper. Diurnal and seasonal leaf water potentials of

  13. Network position of hosts in food webs and their parasite diversity

    Microsoft Academic Search

    Hsuan-Wien Chen; Wei-Chung Liu; Andrew J. Davis; Ferenc Jordán; Ming-Jing Hwang; Kwan-Tsao Shao

    2008-01-01

    Parasites are ubiquitous in ecological communities but it is only recently that they have been routinely included in food web studies. Using recently published data and the tool of network analysis, we elucidate features associated with the pattern of parasitism in ecological communities. First we show here that parasitism is non-random in food webs. Second we demonstrate that parasite diversity,

  14. Population Dynamics and Parasite Load of a Foraminifer on Its Antarctic Scallop Host with Their Carbonate Biomass Contributions

    PubMed Central

    Pérez-Huerta, Alberto; Bowser, Samuel S.

    2015-01-01

    We studied the population dynamics and parasite load of the foraminifer Cibicides antarcticus on its host the Antarctic scallop Adamussium colbecki from three localities differing by sea ice cover within western McMurdo Sound, Ross Sea, Antarctica: Explorers Cove, Bay of Sails and Herbertson Glacier. We also estimated CaCO3 biomass and annual production for both species. Cibicides populations varied by locality, valve type, and depth. Explorers Cove with multiannual sea ice had larger populations than the two annual sea ice localities, likely related to differences in nutrients. Populations were higher on Adamussium top valves, a surface that is elevated above the sediment. Depth did not affect Cibicides distributions except at Bay of Sails. Cibicides parasite load (the number of complete boreholes in Adamussium valves) varied by locality between 2% and 50%. For most localities the parasite load was < 20%, contrary to a previous report that ~50% of Cibicides were parasitic. The highest and lowest parasite load occurred at annual sea ice localities, suggesting that sea ice condition is not important. Rather, the number of adults that are parasitic could account for these differences. Cibicides bioerosion traces were categorized into four ontogenetic stages, ranging from newly attached recruits to parasitic adults. These traces provide an excellent proxy for population structure, revealing that Explorers Cove had a younger population than Bay of Sails. Both species are important producers of CaCO3. Cibicides CaCO3 biomass averaged 47-73 kg ha-1 and Adamussium averaged 4987-6806 kg ha-1 by locality. Annual production rates were much higher. Moreover, Cibicides represents 1.0-2.3% of the total host-parasite CaCO3 biomass. Despite living in the coldest waters on Earth, these species can contribute a substantial amount of CaCO3 to the Ross Sea and need to be incorporated into food webs, ecosystem models, and carbonate budgets for Antarctica. PMID:26186724

  15. Interactions between intermediate snail hosts of the genus Bulinus and schistosomes of the Schistosoma haematobium group.

    PubMed

    Rollinson, D; Stothard, J R; Southgate, V R

    2001-01-01

    Within each of the four species groups of Bulinus there are species that act as intermediate hosts for one or more of the seven species of schistosomes in the Schistosoma haematobium group, which includes the important human pathogens S. haematobium and S. intercalatum. Bulinus species have an extensive distribution throughout much of Africa and some surrounding islands including Madagascar, parts of the Middle East and the Mediterranean region. Considerable variation in intermediate host specificity can be found and differences in compatibility between snail and parasite can be observed over small geographical areas. Molecular studies for detection of genetic variation and the discrimination of Bulinus species are reviewed and two novel assays, allele-specific amplification (ASA) and SNaPshot, are introduced and shown to be of value for detecting nucleotide changes in characterized genes such as cytochrome oxidase 1. The value and complexity of compatibility studies is illustrated by case studies of S. haematobium transmission. In Senegal, where B. globosus, B. umbilicatus, B. truncatus and B. senegalensis may act as intermediate hosts, distinct differences have been observed in the infectivity of different isolates of S. haematobium. In Zanzibar, molecular characterization studies to discriminate between B. globosus and B. nasutus have been essential to elucidate the roles of snails in transmission. B. globosus is an intermediate host on Unguja and Pemba. Further studies are required to establish the intermediate hosts in the coastal areas of East Africa. Biological factors central to the transmission of schistosomes, including cercarial emergence rhythms and interactions with other parasites and abiotic factors including temperature, rainfall, water velocity, desiccation and salinity are shown to impact on the intermediate host-parasite relationship. PMID:11769287

  16. Parasites as predators: unifying natural enemy ecology

    E-print Network

    Rohr, Jason

    Parasites as predators: unifying natural enemy ecology Thomas R. Raffel, Lynn B. Martin and Jason R Parasitism and predation have long been considered analogous interactions. Yet by and large, ecologists continue to study parasite­host and predator­prey ecology separately. Here we discuss strengths

  17. Insights From Natural Host-Parasite Interactions: The Drosophila Model

    PubMed Central

    Keebaugh, Erin S.; Schlenke, Todd A.

    2013-01-01

    Immune responses against opportunistic pathogens have been extensively studied in Drosophila, leading to a detailed map of the genetics behind innate immunity networks including the Toll, Imd, Jak-Stat, and JNK pathways. However, immune mechanisms of other organisms, particularly plants, have primarily been investigated using natural pathogens. It was the use of natural pathogens in plant research that revealed the plant R/Avr system, a specialized immune response derived from antagonistic coevolution between plant immune proteins and their natural pathogens’ virulence proteins. Thus, we recommend that researchers begin to use natural Drosophila pathogens to identify novel immune mechanisms that may have arisen through antagonistic coevolution with common natural pathogens. In this review, we address the benefits of using natural pathogens in research, describe the known natural pathogens of Drosophila, and discuss exciting prospects for future research on select natural pathogens of Drosophila. PMID:23764256

  18. Distribution, prevalence and host specificity of avian malaria parasites across the breeding range of the migratory lark sparrow (Chondestes grammacus).

    PubMed

    Swanson, Bethany L; Lyons, Amanda C; Bouzat, Juan L

    2014-06-01

    The lark sparrow (Chondestes grammacus) is a ground-nesting passerine that breeds across much of the central North American steppe and sand barrens. Through genotyping and sequencing of avian malaria parasites we examined levels of malaria prevalence and determined the distribution of Haemoproteus and Plasmodium lineages across the breeding range of the lark sparrow. Analysis of 365 birds collected from five breeding locations revealed relatively high levels of malaria prevalence in adults (80 %) and juveniles (46 %), with infections being primarily of Haemoproteus (91 % of sequenced samples). Levels of genetic diversity and genetic structure of malaria parasites with respect to the avian host populations revealed distinct patterns for Haemoproteus and Plasmodium, most likely as a result of their distinct life histories, host specificity, and transmission vectors. With the exception of one common Haemoproteus haplotype detected in all populations, all other haplotypes were either population-specific or shared by two to three populations. A hierarchical analysis of molecular variance of Haemoproteus sequences revealed that 15-18 % of the genetic variation can be explained by differences among host populations/locations (p < 0.001). In contrast to the regional patterns of genetic differentiation detected for the lark sparrow populations, Haemoproteus parasites showed high levels of population-specific variation and no significant differences among regions, which suggests that the population dynamics of the parasites may be driven by evolutionary processes operating at small spatial scales (e.g., at the level of host populations). These results highlight the potential effects of host population structure on the demographic and evolutionary dynamics of parasites. PMID:24880788

  19. Yersinia pestis Intracellular Parasitism of Macrophages from Hosts Exhibiting High and Low Severity of Plague

    PubMed Central

    Ponnusamy, Duraisamy; Clinkenbeard, Kenneth D.

    2012-01-01

    Background Yersinia pestis causes severe disease in natural rodent hosts, but mild to inapparent disease in certain rodent predators such as dogs. Y. pestis initiates infection in susceptible hosts by parasitizing and multiplying intracellularly in local macrophages prior to systemic dissemination. Thus, we hypothesize that Y. pestis disease severity may depend on the degree to which intracellular Y. pestis overcomes the initial host macrophage imposed stress. Methodology/Principal Findings To test this hypothesis, the progression of in vitro infection by Y. pestis KIM62053.1+ of mouse splenic and RAW264.7 tissue culture macrophages and dog peripheral blood-derived and DH82 tissue culture macrophages was studied using microscopy and various parameters of infection. The study showed that during the early stage of infection, intracellular Y. pestis assumed filamentous cellular morphology with multiple copies of the genome per bacterium in both mouse and dog macrophages. Later, in mouse macrophages, the infection elicited spacious vacuolar extension of Yersinia containing vacuoles (YCV), and the filamentous Y. pestis reverted to coccobacillary morphology with genomic equivalents approximately equaling colony forming units. In contrast, Y. pestis infected dog macrophages did not show noticeable extension of YCV, and intracellular Y. pestis retained the filamentous cellular morphology for the entire experiment in DH82 cells or were killed by blood-derived macrophages. In addition, during the later stage of infection, Y. pestis infected mouse macrophages exhibited cell lysis whereas dog macrophages did not. Conclusion/Significance Overall, these results support our hypothesis that Y. pestis in mouse macrophages can overcome the initial intracellular stress necessary for subsequent systemic infection. However, in dogs, failure of Y. pestis to overcome macrophage imposed stress may result in mild or in apparent disease in dogs. PMID:22848745

  20. Intraspecific competition: the role of lags between attack and death in host-parasitoid interactions.

    PubMed

    Cameron, T C; Metcalfe, D; Beckerman, A P; Sait, S M

    2007-05-01

    Many natural enemies do not immediately kill their host, and the lag this creates between attack and host death results in mixed populations of uninfected and infected hosts. Both competition and parasitism are known to be major structuring forces in ecological communities; however, surprisingly little is known about how the competitive nature of infected hosts could affect the survival and dynamics of remaining uninfected host populations. Using a laboratory system comprising the Indian meal moth, Plodia interpunctella, and a solitary koinobiont parasitoid, Venturia canescens, we address this question by conducting replicated competition experiments between the unparasitized and parasitized classes of host larvae. For varying proportions of parasitized host larvae and competitor densities, we consider the effects of competition within (intraclass) and between (interclass) unparasitized and parasitized larvae on the survival, development time, and size of adult moths and parasitoid wasps. The greatest effects were on survival: increased competitor densities reduced survival of both parasitized and unparasitized larvae. However, unparasitized larvae survival, but not parasitized larvae survival, was reduced by increasing interclass competition. To our knowledge, this is the first experimental demonstration of the competitive superiority of parasitized over unparasitized hosts for limiting resources. We discuss possible mechanisms for this phenomenon, why it may have evolved, and its possible influence on the stability of host-parasite dynamics. PMID:17536408

  1. The cost of host egg damage caused by a brood parasite: experiments on great spotted cuckoos ( Clamator glandarius ) and magpies ( Pica pica )

    Microsoft Academic Search

    Manuel Soler; Juan José Soler; Tomás Pérez-Contreras

    1999-01-01

    Adult great spotted cuckoos, Clamator glandarius, frequently damage one or more eggs of their magpie host, Pica pica, without removing or eating them. The presence of damaged host eggs could signal parasitism thereby increasing the probability\\u000a that the parasitic egg is ejected. This hypothesis was tested by experimentally introducing a model cuckoo egg with or without\\u000a damaged host eggs. Magpie

  2. Fight or flight? A geographic mosaic in host reaction and potency of a chemical weapon in the social parasite Harpagoxenus sublaevis

    Microsoft Academic Search

    Sabine Bauer; Volker Witte; Melanie Böhm; Susanne Foitzik

    2009-01-01

    Ant social parasites use chemical warfare to facilitate host colony takeover, which is a critical but recurring step in their\\u000a life cycle. Many slave-making ants use the secretion of the Dufour gland to manipulate host behaviour during parasitic nest\\u000a foundation and slave raids. Harpagoxenus sublaevis applies this chemical weapon onto defending Leptothorax host workers, which elicits deadly fights amongst them.

  3. Characterization of the interaction between Toxoplasma gondii rhoptry neck protein 4 and host cellular ?-tubulin

    PubMed Central

    Takemae, Hitoshi; Sugi, Tatsuki; Kobayashi, Kyousuke; Gong, Haiyan; Ishiwa, Akiko; Recuenco, Frances C.; Murakoshi, Fumi; Iwanaga, Tatsuya; Inomata, Atsuko; Horimoto, Taisuke; Akashi, Hiroomi; Kato, Kentaro

    2013-01-01

    Toxoplasma rhoptry neck protein 4 (TgRON4) is a component of the moving junction macromolecular complex that plays a central role during invasion. TgRON4 is exposed on the cytosolic side of the host cell during invasion, but its molecular interactions remain unclear. Here, we identified host cellular ?-tubulin as a binding partner of TgRON4, but not Plasmodium RON4. Coimmunoprecipitation studies in mammalian cells demonstrated that the C-terminal 15-kDa region of ?-tubulin was sufficient for binding to TgRON4, and that a 17-kDa region in the proximal C-terminus of TgRON4 was required for binding to the C-terminal region of ?-tubulin. Analysis of T. gondii-infected lysates from CHO cells expressing the TgRON4-binding region showed that the C-terminal region of ?-tubulin interacted with TgRON4 at early invasion step. Our results provide evidence for a parasite-specific interaction between TgRON4 and the host cell cytoskeleton in parasite-infected cells. PMID:24217438

  4. HOST ADAPTION AND HOST-PARASITE CO-EVOLUTION IN CRYPTOSPORIDIUM: IMPLICATIONS FOR TAXONOMY AND PUBLIC AND PUBLIC HEALTH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To assess the genetic diversity and evolution of Cryptosporidium parasites, the small subunit (SSU) rRNA, actin, and 70 kDa heat shock protein (HSP70) genes of 15 new Cryptosporidium parasites were sequenced. Sequence data were analyzed and compared with data previously obtained from other Cryptospo...

  5. Host protective roles of type 2 immunity: Parasite killing and tissue repair, flip sides of the same coin

    PubMed Central

    Allen, Judith E.; Sutherland, Tara E.

    2014-01-01

    Metazoan parasites typically induce a type 2 immune response, characterized by T helper 2 (Th2) cells that produce the cytokines IL-4, IL-5 and IL-13 among others. The type 2 response is host protective, reducing the number of parasites either through direct killing in the tissues, or expulsion from the intestine. Type 2 immunity also protects the host against damage mediated by these large extracellular parasites as they migrate through the body. At the center of both the innate and adaptive type 2 immune response, is the IL-4R? that mediates many of the key effector functions. Here we highlight the striking overlap between the molecules, cells and pathways that mediate both parasite control and tissue repair. We have proposed that adaptive Th2 immunity evolved out of our innate repair pathways to mediate both accelerated repair and parasite control in the face of continual assault from multicellular pathogens. Type 2 cytokines are involved in many aspects of mammalian physiology independent of helminth infection. Therefore understanding the evolutionary relationship between helminth killing and tissue repair should provide new insight into immune mechanisms of tissue protection in the face of physical injury. PMID:25028340

  6. When should a trophically and vertically transmitted parasite manipulate its intermediate host? The case of Toxoplasma gondii

    PubMed Central

    Lélu, Maud; Langlais, Michel; Poulle, Marie-Lazarine; Gilot-Fromont, Emmanuelle; Gandon, Sylvain

    2013-01-01

    Parasites with complex life cycles are expected to manipulate the behaviour of their intermediate hosts (IHs), which increase their predation rate and facilitate the transmission to definitive hosts (DHs). This ability, however, is a double-edged sword when the parasite can also be transmitted vertically in the IH. In this situation, as the manipulation of the IH behaviour increases the IH death rate, it conflicts with vertical transmission, which requires healthy and reproducing IHs. The protozoan Toxoplasma gondii, a widespread pathogen, combines both trophic and vertical transmission strategies. Is parasite manipulation of host behaviour still adaptive in this situation? We model the evolution of the IH manipulation by T. gondii to study the conflict between these two routes of transmission under different epidemiological situations. Model outputs show that manipulation is particularly advantageous for virulent strains and in epidemic situations, and that different levels of manipulation may evolve depending on the sex of the IH and the transmission routes considered. These results may help to understand the variability of strain characteristics encountered for T. gondii and may extend to other trophically transmitted parasites. PMID:23825211

  7. When should a trophically and vertically transmitted parasite manipulate its intermediate host? The case of Toxoplasma gondii.

    PubMed

    Lélu, Maud; Langlais, Michel; Poulle, Marie-Lazarine; Gilot-Fromont, Emmanuelle; Gandon, Sylvain

    2013-08-22

    Parasites with complex life cycles are expected to manipulate the behaviour of their intermediate hosts (IHs), which increase their predation rate and facilitate the transmission to definitive hosts (DHs). This ability, however, is a double-edged sword when the parasite can also be transmitted vertically in the IH. In this situation, as the manipulation of the IH behaviour increases the IH death rate, it conflicts with vertical transmission, which requires healthy and reproducing IHs. The protozoan Toxoplasma gondii, a widespread pathogen, combines both trophic and vertical transmission strategies. Is parasite manipulation of host behaviour still adaptive in this situation? We model the evolution of the IH manipulation by T. gondii to study the conflict between these two routes of transmission under different epidemiological situations. Model outputs show that manipulation is particularly advantageous for virulent strains and in epidemic situations, and that different levels of manipulation may evolve depending on the sex of the IH and the transmission routes considered. These results may help to understand the variability of strain characteristics encountered for T. gondii and may extend to other trophically transmitted parasites. PMID:23825211

  8. Hepatitis C virus – host interactions, replication, and viral assembly

    PubMed Central

    Shulla, Ana; Randall, Glenn

    2012-01-01

    As a relatively simple virus, hepatitis C virus (HCV) depends extensively on its host to infect, replicate and disseminate. HCV has evolved host interactions that result in a restricted tropism, both in terms of cell type and species. Efforts into identifying and validating HCV-host interactions have been hampered by a limited number of infectious virus clones and cell lines that support HCV infection. Despite these limitations, consensus HCV-host interactions have emerged that help define the entry, replication, assembly, and tropism of HCV. This has had important implications in expanding our in vitro and in vivo systems to study HCV replication and pathogenesis. Additionally, a number of these host factors are being targeted for therapeutic development. In this review, we focus on medically relevant pro-viral host factors, their role in HCV biology, and their importance in expanding our model systems. PMID:23083892

  9. Independent host switching events by digenean parasites of cetaceans inferred from ribosomal DNA.

    PubMed

    Fraija-Fernández, Natalia; Olson, Peter D; Crespo, Enrique A; Raga, Juan A; Aznar, Francisco J; Fernández, Mercedes

    2015-02-01

    Cetaceans harbour a unique fauna of digeneans whose origin and relationships have sparked considerable debate during recent decades. Disparity in the species reported indicates that they do not share close affinities, but their unusual morphology has made their taxonomic identities and phylogenetic positions uncertain. Here we use sequence data to investigate the phylogenetic relationships of the main species of flukes infecting cetaceans. We sequenced the 18S, 28S and internal transcribed spacer 2 rDNA of digenean species representing all known families reported from cetaceans: Braunina cordiformis (Brauninidae), Ogmogaster antarcticus (Notocotylidae), Pholeter gastrophilus (Heterophyidae), and Campula oblonga, Nasitrema sp. and Oschmarinella rochebruni (Brachycladiidae). The phylogenetic position of the taxa was estimated by Bayesian inference and maximum likelihood incorporating published sequences of 177 species of Digenea. Further Bayesian and maximum likelihood analyses were performed with sequences of 14 Heterophyidae and Opisthorchiidae taxa, incorporating new sequences of P. gastrophilus. Species nominally assigned to the Brachycladiidae formed a clade that was embedded among species of the Acanthocolpidae, thus making the latter family paraphyletic. Braunina cordiformis formed a sister lineage to the Strigeidae and Diplostomidae, whereas O. antarcticus was placed within the Notocotylidae, in agreement with the previous taxonomy of this genus. Similarly, P. gastrophilus was placed within the Heterophyidae as originally described. Our results suggest a paraphyletic relationship between the Heterophyidae and Opisthorchiidae, mirroring the uncertain taxonomic placement of P. gastrophilus, which has been assigned to both families in the past. The digenean families involved are parasites of fish-eating birds and mammals (i.e. Strigeidae, Diplostomidae and Heterophyidae), parasites of marine fish (i.e. Acanthocolpidae) and other herbivorous aquatic birds and mammals (i.e. Notocotylidae). The phylogenetic positions of these taxa indicate that the digenean fauna of cetaceans may have been acquired through independent host-capture events, with two clades showing subsequent diversification exclusively among marine mammals. PMID:25444860

  10. Factors affecting patterns of Amblyomma triste (Acari: Ixodidae) parasitism in a rodent host.

    PubMed

    Colombo, Valeria C; Nava, Santiago; Antoniazzi, Leandro R; Monje, Lucas D; Racca, Andrea L; Guglielmone, Alberto A; Beldomenico, Pablo M

    2015-07-30

    Here we offer a multivariable analysis that explores associations of different factors (i.e., environmental, host parameters, presence of other ectoparasites) with the interaction of Amblyomma triste immature stages and one of its main hosts in Argentina, the rodent Akodon azarae. Monthly and for two years, we captured and sampled rodents at 16 points located at 4 different sites in the Parana River Delta region. The analyses were conducted with Generalized Linear Mixed Models with a negative binomial response (counts of larvae or nymphs). The independent variables assessed were: (a) environmental: trapping year, season, presence of cattle; type of vegetation (natural grassland or implanted forest); rodent abundance; (b) host parameters: body length; sex; body condition; blood cell counts; natural antibody titres; and (c) co-infestation with other ectoparasites: other stage of A. triste; Ixodes loricatus; lice; mites; and fleas. Two-way interaction terms deemed a priori as relevant were also included in the analysis. Larvae were affected by all environmental variables assessed and by the presence of other ectoparasites (lice, fleas and other tick species). Host factors significantly associated with larval count were sex and levels of natural antibodies. Nymphs were associated with season, presence of cattle, body condition, body length and with burdens of I. loricatus. In most cases, the direction and magnitude of the associations were context-dependent (many interaction terms were significant). The findings of greater significance and implications of our study are two. Firstly, as burdens of A. triste larvae and nymphs were greater where cattle were present, and larval tick burdens were higher in implanted forests, silvopastoral practices developing in the region may affect the population dynamics of A. triste, and consequently the eco-epidemiology of Rickettsia parkeri. Secondly, strong associations and numerous interactions with other ectoparasites suggest that co-infestations may be more important for tick dynamics than has so far been appreciated. PMID:26104965

  11. [Parasitic systems of Microsporidia: descriptions and terminology questions].

    PubMed

    Issi, I V

    2002-01-01

    Three parasitic systems of Microsporidia are described: the system of monoxenic Vairimorpha mesnili with paraxenic hosts presented lepidopteran and hymenopteran species; the system of dixenic Amblyospora sp. with metaxenic hosts presented bloodsucking mosquitoes and crustaceans and the system of Metchnikovella sp. as parasite of other obligate parasite. The last case is characterized by very intimate interrelations between hyperparasite (microsporidian species), obligate parasite--host of Microsporidia (gregarine) and hyperhost--host of gregarine (polychaeta). This hyperparasite system is exclusive case of parasitic systems. Parasitic and hyperparasitic systems reflects a population level of host-parasite interactions. On biocenotic level many other organisms such as predators, vectors and reservators of invasion stages of Microsporidia affect parasitic systems giving a chance to one of the members of the system (to the host or to the parasite). These organisms form epiparasitic system. In all cases of the parasitic systems there are two-way communications between parasites and their hosts. In systems on biocenotic level--parasitic consortium--members of epiparasitic systems acts on parasitic systems, but members of parasitic systems don't affect epiparasitic systems. PMID:12624964

  12. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum

    E-print Network

    Aingaran, Mythili

    Gametocyte maturation in Plasmodium falciparum is a critical step in the transmission of malaria. While the majority of parasites proliferate asexually in red blood cells, a small fraction of parasites undergo sexual ...

  13. The interaction between viral protein and host actin facilitates the virus infection to host.

    PubMed

    Yang, Geng; Xiao, Xiao; Yin, Dongsheng; Zhang, Xiaobo

    2012-10-10

    Although the virus-host interaction has attracted extensive studies, the host proteins essential for virus infection remain largely unknown. To address this issue, the shrimp Penaeus stylirostris densovirus (PstDNV), belonging to the family Parvoviridae, was characterized. PstDNV, a single-stranded DNA virus with a 3.9-kb genome, encoded only three open reading frames (ORFs). Among the three viral proteins, the PstDNV ORF2-encoded protein was discovered to interact with the shrimp actin, suggesting that the host actin played a very important role in virus infection. The RNAi assays revealed that the ORF2-encoded protein was required for the PstDNV infection. The confocal evidence demonstrated that the interaction between the ORF2-encoded protein and actin was essential for the virus infection. Therefore our study indicated that the manipulation of the host actin cytoskeleton was a necessary strategy for viral pathogens to invade host cells. PMID:22750318

  14. Spatial heterogeneity of daphniid parasitism within lakes.

    PubMed

    Hall, Spencer R; Duffy, Meghan A; Tessier, Alan J; Cáceres, Carla E

    2005-05-01

    Spatially explicit models show that local interactions of hosts and parasites can strongly influence invasion and persistence of parasites and can create lasting spatial patchiness of parasite distributions. These predictions have been supported by experiments conducted in two-dimensional landscapes. Yet, three-dimensional systems, such as lakes, ponds, and oceans, have received comparatively little attention from epidemiologists. Freshwater zooplankton hosts often aggregate horizontally and vertically in lakes, potentially leading to local host-parasite interactions in one-, two-, or three-dimensions. To evaluate the potential spatial component of daphniid parasitism driven by these local interactions (patchiness), we surveyed vertical and horizontal heterogeneity of pelagic Daphnia infected with multiple microparasites in several north temperate lakes. These surveys uncovered little evidence for persistent vertical patchiness of parasitism, since the prevalence of two parasites showed little consistent trend with depth in four lakes (but more heterogeneity during day than at night). On a horizontal scale of tens of meters, we found little systematic evidence of strong aggregation and spatial patterning of daphniid hosts and parasites. Yet, we observed broad-scale, basin-wide patterns of parasite prevalence. These patterns suggest that nearshore offshore gradients, rather than local-scale interactions, could play a role in governing epidemiology of this open water host-parasite system. PMID:15909131

  15. COSTS OF PARASITISM INCURRED BY TWO SONGBIRD SPECIES AND THEIR QUALITY AS COWBIRD HOSTS

    Microsoft Academic Search

    Dirk E. Burhans; Frank R. Thompson; John Faaborg

    2000-01-01

    We measured the costs of Brown-headed Cowbi!;d (Molothrus ater) parasitism incurred by Field Sparrows (Spizella pusilla) and Indigo Buntings (Passerina cyanea). We predicted that the frequent occurrence of nest desertion as a response to cowbird parasitism - in Field Sparrows would be reflected by a higher cost of parasitism for that species. We also compared growth and survival of cowbird

  16. Host pollination mode and mutualist pollinator presence: net effect of internally ovipositing parasite in the fig-wasp mutualism

    NASA Astrophysics Data System (ADS)

    Zhang, Fengping; Peng, Yanqiong; Compton, Stephen G.; Zhao, Yi; Yang, Darong

    2009-04-01

    The Ficus-their specific pollinating fig wasps (Chalcidoidea, Agaonidae) interaction presents a striking example of mutualism. Figs also shelter numerous non-pollinating fig wasps (NPFW) that exploit the fig-pollinator mutualism. Only a few NPFW species can enter figs to oviposit, they do not belong to the pollinating lineage Agaonidae. The internally ovipositing non-agaonid fig wasps can efficiently pollinate the Ficus species that were passively pollinated. However, there is no study to focus on the net effect of these internally ovipositing non-agaonid wasps in actively pollinated Ficus species. By collecting the data of fig wasp community and conducting controlled experiments, our results showed that internally ovipositing Diaziella bizarrea cannot effectively pollinate Ficus glaberrima, an actively pollinated monoecious fig tree. Furthermore, D. bizarrea failed to reproduce if they were introduced into figs without Eupristina sp., the regular pollinator, as all the figs aborted. Furthermore, although D. bizarrea had no effect on seed production in shared figs, it significantly reduced the number of Eupristina sp. progeny emerging from them. Thus, our experimental evidence shows that reproduction in Diaziella depends on the presence of agaonid pollinators, and whether internally ovipositing parasites can act as pollinators depends on the host fig’s pollination mode (active or passive). Overall, this study and others suggest a relatively limited mutualistic role for internally ovipositing fig wasps from non-pollinator (non-Agaonidae) lineages.

  17. Coregulation of host-response genes in integument: switchover of gene expression correlation pattern and impaired immune responses induced by dipteran parasite infection in the silkworm, Bombyx mori.

    PubMed

    Jayaram, Anitha; Pradeep, Appukuttan Nair R; Awasthi, Arvind K; Murthy, Geetha N; Ponnuvel, Kangayam M; Sasibhushan, Sirigineedi; Rao, Guruprasad C

    2014-05-01

    The activation of host response proteins against parasitic infection is dependent on the coregulation of immune gene expression. The infection of commercially important silkworm Bombyx mori through endoparasite Exorista bombycis enhanced host-response gene expression in integument early in the infection and was lowered asymptotically. Principal component analysis (PCA) showed heterogeneity while explaining ?80 % variance among expression timings. PCA showed positive and negative correlation with gene expression and differentiated transcriptional timings, and revealed cross talk within the immune system. Pearson correlation analysis showed significant linear correlation (mean R (2)?=?>0.7; P?parasitism. The genes showed pleiotropic interaction among them, with four genes each for prophenoloxidase activating enzyme (PPAE) and caspase. Besides, after parasitism, exclusive correlation of five gene pairs including PPAE-Spatzle pair (R (2)?=?0.9; P?parasitized integument revealed deviation from gene coregulation, leading to impaired immune responses, characterized by lowered gene expression and varied phenotypic consequences. PMID:24310719

  18. Now you see it, now you don't: flushing hosts prior to experimentation can predict their responses to brood parasitism

    PubMed Central

    Hanley, Daniel; Samaš, Peter; Heryán, Josef; Hauber, Mark E.; Grim, Tomáš

    2015-01-01

    Brood parasitic birds lay their eggs in other birds' nests, leaving hosts to raise their offspring. To understand parasite-host coevolutionary arms races, many studies have examined host responses to experimentally introduced eggs. However, attending parents often need to be flushed from their nests to add experimental eggs. If these birds witness parasitism events, they may recognize and reject foreign eggs more readily than parents who did not. We found that, after being flushed, female blackbirds, Turdus merula, remained close to their nests. Flushed females were more likely to eject foreign eggs and did so more quickly than females that were not flushed during experimentation. In contrast, flushing did not predict responses and latency to responses to parasitism by song thrush, Turdus philomelos, which flew farther from their nests and likely did not witness experimental parasitism. When statistically considering flushing, previously published conclusions regarding both species' response to experimental parasitism did not change. Nevertheless, we recommend that researchers record and statistically control for whether hosts were flushed prior to experimental parasitism. Our results have broad implications because more vigilant and/or bolder parents can gain more information about parasitism events and therefore have better chances of successfully defending against brood parasitism. PMID:25762433

  19. Now you see it, now you don't: flushing hosts prior to experimentation can predict their responses to brood parasitism.

    PubMed

    Hanley, Daniel; Samaš, Peter; Heryán, Josef; Hauber, Mark E; Grim, Tomáš

    2015-01-01

    Brood parasitic birds lay their eggs in other birds' nests, leaving hosts to raise their offspring. To understand parasite-host coevolutionary arms races, many studies have examined host responses to experimentally introduced eggs. However, attending parents often need to be flushed from their nests to add experimental eggs. If these birds witness parasitism events, they may recognize and reject foreign eggs more readily than parents who did not. We found that, after being flushed, female blackbirds, Turdus merula, remained close to their nests. Flushed females were more likely to eject foreign eggs and did so more quickly than females that were not flushed during experimentation. In contrast, flushing did not predict responses and latency to responses to parasitism by song thrush, Turdus philomelos, which flew farther from their nests and likely did not witness experimental parasitism. When statistically considering flushing, previously published conclusions regarding both species' response to experimental parasitism did not change. Nevertheless, we recommend that researchers record and statistically control for whether hosts were flushed prior to experimental parasitism. Our results have broad implications because more vigilant and/or bolder parents can gain more information about parasitism events and therefore have better chances of successfully defending against brood parasitism. PMID:25762433

  20. Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions

    PubMed Central

    2012-01-01

    Background Striga species are noxious root hemi-parasitic weeds that debilitate cereal production in sub-Saharan Africa (SSA). Control options for Striga are limited and developing Striga resistant crop germplasm is regarded as the best and most sustainable control measure. Efforts to improve germplasm for Striga resistance by a non-Genetic Modification (GM) approach, for example by exploiting natural resistance, or by a GM approach are constrained by limited information on the biological processes underpinning host-parasite associations. Additionaly, a GM approach is stymied by lack of availability of candidate resistance genes for introduction into hosts and robust transformation methods to validate gene functions. Indeed, a majority of Striga hosts, the world’s most cultivated cereals, are recalcitrant to genetic transformation. In maize, the existing protocols for transformation and regeneration are tedious, lengthy, and highly genotype-specific with low efficiency of transformation. Results We used Agrobacterium rhizogenes strain K599 carrying a reporter gene construct, Green Fluorescent Protein (GFP), to generate transgenic composite maize plants that were challenged with the parasitic plant Striga hermonthica. Eighty five percent of maize plants produced transgenic hairy roots expressing GFP. Consistent with most hairy roots produced in other species, transformed maize roots exhibited a hairy root phenotype, the hallmark of A. rhizogenes mediated transformation. Transgenic hairy roots resulting from A. rhizogenes transformation were readily infected by S. hermonthica. There were no significant differences in the number and size of S. hermonthica individuals recovered from either transgenic or wild type roots. Conclusions This rapid, high throughput, transformation technique will advance our understanding of gene function in parasitic plant-host interactions. PMID:22720750

  1. Host Preferences of Trichogramma pretiosum and the Influence of Prior Ovipositional Experience on the Parasitism of Plutella xylostella and Pseudoplusia includens Eggs

    Microsoft Academic Search

    Richard W. H. Pluke; Gary L. Leibee

    2006-01-01

    Trichogramma wasps are generalist egg parasitoids used in biological control efforts. In a multi host situation they may preferentially parasitize a non-target host species to the detriment of the control program. Plutella xylostella Linnaeus (Lepidoptera: Plutellidae) is a very serious pest of cabbage, but is only one in a number of species in the ‘cabbageworm’ complex. We investigated the host

  2. Influence of Host Gender on Infection Rate, Density and Distribution of the Parasitic Fungus, Hesperomyces virescens, on the Multicolored Asian Lady Beetle, Harmonia axyridis

    Microsoft Academic Search

    E. W. Riddick

    2006-01-01

    Hesperomyces virescens Thaxter (Laboulbeniales: Laboulbeniaceae) is a parasitic fungus that infects lady beetles (Coleoptera: Coccinellidae) via horizontal transmission between adults at overwintering and feeding sites. The differential behavior of male and female hosts could have profound effects on intensity of infection and positioning of fungus on the host's integument. The influence of host gender on infection rate, density and distribution

  3. A New Method for Estimating Species Age Supports the Coexistence of Malaria Parasites and Their Mammalian Hosts

    PubMed Central

    Silva, Joana C.; Egan, Amy; Arze, Cesar; Spouge, John L.; Harris, David G.

    2015-01-01

    Species in the genus Plasmodium cause malaria in humans and infect a variety of mammals and other vertebrates. Currently, estimated ages for several mammalian Plasmodium parasites differ by as much as one order of magnitude, an inaccuracy that frustrates reliable estimation of evolutionary rates of disease-related traits. We developed a novel statistical approach to dating the relative age of evolutionary lineages, based on Total Least Squares regression. We validated this lineage dating approach by applying it to the genus Drosophila. Using data from the Drosophila 12 Genomes project, our approach accurately reconstructs the age of well-established Drosophila clades, including the speciation event that led to the subgenera Drosophila and Sophophora, and age of the melanogaster species subgroup. We applied this approach to hundreds of loci from seven mammalian Plasmodium species. We demonstrate the existence of a molecular clock specific to individual Plasmodium proteins, and estimate the relative age of mammalian-infecting Plasmodium. These analyses indicate that: 1) the split between the human parasite Plasmodium vivax and P. knowlesi, from Old World monkeys, occurred 6.1 times earlier than that between P. falciparum and P. reichenowi, parasites of humans and chimpanzees, respectively; and 2) mammalian Plasmodium parasites originated 22 times earlier than the split between P. falciparum and P. reichenowi. Calibrating the absolute divergence times for Plasmodium with eukaryotic substitution rates, we show that the split between P. falciparum and P. reichenowi occurred 3.0–5.5 Ma, and that mammalian Plasmodium parasites originated over 64 Ma. Our results indicate that mammalian-infecting Plasmodium evolved contemporaneously with their hosts, with little evidence for parasite host-switching on an evolutionary scale, and provide a solid timeframe within which to place the evolution of new Plasmodium species. PMID:25589738

  4. A new method for estimating species age supports the coexistence of malaria parasites and their Mammalian hosts.

    PubMed

    Silva, Joana C; Egan, Amy; Arze, Cesar; Spouge, John L; Harris, David G

    2015-05-01

    Species in the genus Plasmodium cause malaria in humans and infect a variety of mammals and other vertebrates. Currently, estimated ages for several mammalian Plasmodium parasites differ by as much as one order of magnitude, an inaccuracy that frustrates reliable estimation of evolutionary rates of disease-related traits. We developed a novel statistical approach to dating the relative age of evolutionary lineages, based on Total Least Squares regression. We validated this lineage dating approach by applying it to the genus Drosophila. Using data from the Drosophila 12 Genomes project, our approach accurately reconstructs the age of well-established Drosophila clades, including the speciation event that led to the subgenera Drosophila and Sophophora, and age of the melanogaster species subgroup. We applied this approach to hundreds of loci from seven mammalian Plasmodium species. We demonstrate the existence of a molecular clock specific to individual Plasmodium proteins, and estimate the relative age of mammalian-infecting Plasmodium. These analyses indicate that: 1) the split between the human parasite Plasmodium vivax and P. knowlesi, from Old World monkeys, occurred 6.1 times earlier than that between P. falciparum and P. reichenowi, parasites of humans and chimpanzees, respectively; and 2) mammalian Plasmodium parasites originated 22 times earlier than the split between P. falciparum and P. reichenowi. Calibrating the absolute divergence times for Plasmodium with eukaryotic substitution rates, we show that the split between P. falciparum and P. reichenowi occurred 3.0-5.5 Ma, and that mammalian Plasmodium parasites originated over 64 Ma. Our results indicate that mammalian-infecting Plasmodium evolved contemporaneously with their hosts, with little evidence for parasite host-switching on an evolutionary scale, and provide a solid timeframe within which to place the evolution of new Plasmodium species. PMID:25589738

  5. A blowfly strike vaccine requires an understanding of host-pathogen interactions.

    PubMed

    Elkington, Rebecca A; Mahony, Timothy J

    2007-07-01

    The phase-out of Mulesing by 2010 means the Australian wool industry requires immediate and viable alternatives for the control and prevention of blowfly strike, an economically important parasitic disease of sheep. In this review we have analysed previous research aimed toward the development of a vaccine against blowfly strike and the reasons why the approaches taken were unsuccessful at the time. Close scrutiny has provided new insight into this host-parasite interaction and identified new opportunities for the development of a vaccine. Here we propose that addressing immunosuppression together with the induction of cellular immunity is likely to result in an anti-blowfly strike vaccine, as opposed to the use of "standard" approaches aimed at inducing humoral immunity. PMID:17531359

  6. Host recognition by the specialist hoverfly Microdon mutabilis, a social parasite of the ant Formica lemani.

    PubMed

    Schönrogge, Karsten; Napper, Emma K V; Birkett, Michael A; Woodcock, Christine M; Pickett, John A; Wadhams, Lester J; Thomas, Jeremy A

    2008-02-01

    The larva of the hoverfly Microdon mutabilis is a specialist social parasite of the ant Formica lemani that is adapted to local groups of F. lemani colonies but mal-adapted to colonies of the same species situated only a few hundred meters away. At a study site in Ireland, F. lemani shares its habitat with four other ant species. All nest under stones, making the oviposition choice by M. mutabilis females crucial to offspring survival. In this study, we tested the hypothesis that, as an extreme specialist, M. mutabilis should respond to cues derived from its host rather than from its microenvironment, a phenomenon that has hitherto only been addressed in the context of herbivorous insects and their parasitoids. In behavioral assays, M. mutabilis females reacted to volatiles from F. lemani colonies by extending their ovipositors, presumably probing for an oviposition substrate. This behavior was not observed toward negative controls or volatiles from colonies of Myrmica scabrinodis, the host ant of the closely related Microdon myrmicae. Coupled gas chromatography-electroantennography (GC-EAG) that used antennal preparations of M. mutabilis located a single physiologically active compound within an extract of heads of F. lemani workers. Coupled GC-mass spectrometry (GC-MS) tentatively identified the compound as a methylated methylsalicylate. GC co-injection of the extract with authentic samples showed that of the four possible isomers (methyl 3-, 4-, 5-, and 6-methylsalicylate), only methyl 6-methylsalicylate co-eluted with the EAG-active peak. Furthermore, the response to methyl 6-methylsalicylate was four times higher than to those of the other isomers. Coupled GC-EAG and GC-MS also revealed physiological responses to two constituents, 3-octanone and 3-octanol, of the M. scabrinodis alarm pheromone. However, the behavioral trials did not reveal any behavior that could be attributed to these compounds. Results are discussed in the context of four phases of host location behavior, and of the characteristics, which volatile cues should provide to be useful for an extreme specialist such as M. mutabilis. PMID:18185959

  7. Heterogeneity in host-parasitoid interactions: 'Aggregation of risk' and the 'CV(2) > 1 Rule'.

    PubMed

    Taylor, A D

    1993-11-01

    In host-parasitoid interactions the coefficient of variation (CV) of the risk of parasitism measures, at least approximately, the stabilizing influence of many forms of heterogeneity. This realization emphasizes the underlying similarity of these heterogeneities, and should end two decades of confusion about how to study them in nature. The first applications of this approach suggest that roughly one-third of systems studied show substantial measurable heterogeneity. Proper use of the CV measure, however, requires that the density-dependent processes linking this static phenomenon to temporal population dynamics also be examined; this has yet to be done for any system. PMID:21236211

  8. Effects of the protozoan parasite Sarcocystis rauschorum on open-field behaviour of its intermediate vertebrate host, Dicrostonyx richardsoni.

    PubMed

    Quinn, S C; Brooks, R J; Cawthorn, R J

    1987-04-01

    Behaviour and activity levels were measured in varying lemmings experimentally infected with the heteroxenous parasite, Sarcocystis rauschorum to test the hypothesis that the parasite alters behaviour of this intermediate host and thereby increases probability of transmission to the definitive host, the snowy owl (Nyctea scandiaca). Measures of short-term activity levels on a running wheel indicated no effect of the parasite, either directly, or indirectly as a result of illness. We observed behaviour of infected lemmings placed in an "open field" (arena). Lemmings would increase their susceptibility to predators if they spent more time away from cover, used crypsis (stationary postures) less, spent more time exploring (especially in unfamiliar areas), or responded inappropriately to threats from predators. We found that only exploratory activity showed significant change after infection. The frequency of exploratory activity increased and became disassociated from the usual fear response. This may increase the lemmings' susceptibility to aerial predation. The mechanism for this effect is unknown, but neurological lesions have been observed. The examination of the modes of transmission of the S. rauschorum parasite within lemming populations and of a possible fecundity compensation strategy adopted by the lemmings, and their relevance to population control, are suggested as areas for future study. PMID:3108477

  9. Abdominal angiostrongylosis in southern Brazil--prevalence and parasitic burden in mollusc intermediate hosts from eighteen endemic foci.

    PubMed

    Rambo, P R; Agostini, A A; Graeff-Teixeira, C

    1997-01-01

    Angiostrongylus costaricensis is a parasitic nematode of rodents and molluscs are the intermediate hosts. Nocturnal collection of molluscs and search for infective third stage larvae of A. costaricensis was carried out in 18 endemic foci identified by the notification of a confirmed diagnosis in human biopsies or surgical specimens. Molluscs were digested in acidic solution and isolation of larvae eventually present was done in a Baermann funnel. Larvae identified by the presence of a delicate groove in the tail were counted to assess the individual parasitic burden. Four species were found infected, with ranges of prevalence in parenthesis: Phyllocaulis variegatus (7% to 33.3%); Bradybaena similaris (11.7% to 24.1%); Belocaulus angustipes (8.3%) and Phyllocaulis soleiformis (3.3% to 14.2%). Parasitic burden varied from 1 to 75 with P. variegatus, 1 to 98 with B. similaris. 1 to 13 with B. angustipes and 1 larvae in each of two specimens of P. solciformis. P. variegatus was present in all sites and was found infected with the highest prevalence figures and the highest individual parasitic burdens. These data stress the importance of veronicellid slugs as intermediate hosts for A. costaricensis in the endemic areas in Rio Grande do Sul, Brazil. PMID:9302406

  10. Who is the puppet master? Replication of a parasitic wasp-associated virus correlates with host behaviour manipulation.

    PubMed

    Dheilly, Nolwenn M; Maure, Fanny; Ravallec, Marc; Galinier, Richard; Doyon, Josée; Duval, David; Leger, Lucas; Volkoff, Anne-Nathalie; Missé, Dorothée; Nidelet, Sabine; Demolombe, Vincent; Brodeur, Jacques; Gourbal, Benjamin; Thomas, Frédéric; Mitta, Guillaume

    2015-03-22

    Many parasites modify their host behaviour to improve their own transmission and survival, but the proximate mechanisms remain poorly understood. An original model consists of the parasitoid Dinocampus coccinellae and its coccinellid host, Coleomegilla maculata; during the behaviour manipulation, the parasitoid is not in contact with its host anymore. We report herein the discovery and characterization of a new RNA virus of the parasitoid (D. coccinellae paralysis virus, DcPV). Using a combination of RT-qPCR and transmission electron microscopy, we demonstrate that DcPV is stored in the oviduct of parasitoid females, replicates in parasitoid larvae and is transmitted to the host during larval development. Next, DcPV replication in the host's nervous tissue induces a severe neuropathy and antiviral immune response that correlate with the paralytic symptoms characterizing the behaviour manipulation. Remarkably, virus clearance correlates with recovery of normal coccinellid behaviour. These results provide evidence that changes in ladybeetle behaviour most likely result from DcPV replication in the cerebral ganglia rather than by manipulation by the parasitoid. This offers stimulating prospects for research on parasitic manipulation by suggesting for the first time that behaviour manipulation could be symbiont-mediated. PMID:25673681

  11. Host-pathogen interactions during Mycobacterium tuberculosis infections.

    PubMed

    Stanley, Sarah A; Cox, Jeffery S

    2013-01-01

    The intimate and persistent connection between Mycobacterium tuberculosis and its human host suggests that the pathogen has evolved extensive mechanisms to evade eradication by the immune system. In particular, the organism has adapted to replicate within phagocytic cells, especially macrophages, which are specialized to kill microbes. Over the past decade of M. tuberculosis research, the means to manipulate both the organism and the host has ushered in an exciting time that has uncovered some of the mechanisms of the innate macrophage-pathogen interactions that lie at the heart of M. tuberculosis pathogenesis, though many interactions likely still await discovery. In this chapter, we will delve into some of these advances, with an emphasis on the interactions that occur on the cellular level when M. tuberculosis cells encounter macrophages. In particular, we focus on two major aspects of M. tuberculosis biology regarding the proximal physical interface between the bacterium and host, namely the interactions with the phagosomal membrane as well as the distinctive mycobacterial cell wall. Importantly, some of the emerging paradigms in M. tuberculosis pathogenesis and host response represent common themes in bacterial pathogenesis, such as the role of host cell membrane perforation in intracellular survival and host response. However, the array of unique bacterial lipid mediators and their interaction with host cells highlights the unique biology of this persistent pathogen. PMID:23881288

  12. Clonal diversity of a malaria parasite, Plasmodium mexicanum, and its transmission success from its vertebrate-to-insect host.

    PubMed

    Vardo-Zalik, A M

    2009-12-01

    Infections of the lizard malaria parasite Plasmodium mexicanum are often genetically complex within their fence lizard host (Sceloporus occidentalis) harbouring two or more clones of parasite. The role of clonal diversity in transmission success was studied for P. mexicanum by feeding its sandfly vectors (Lutzomyia vexator and Lutzomyia stewarti) on experimentally infected lizards. Experimental infections consisted of one, two, three or more clones, assessed using three microsatellite markers. After 5days, vectors were dissected to assess infection status, oocyst burden and genetic composition of the oocysts. A high proportion (92%) of sandflies became infected and carried high oocyst burdens (mean of 56 oocysts) with no influence of clonal diversity on these two measures of transmission success. Gametocytemia was positively correlated with transmission success and the more common vector (L. vexator) developed more oocysts on midguts. A high proportion ( approximately 74%) of all alleles detected in the lizard blood was found in infected vectors. The relative proportion of clones within mixed infections, determined by peak heights on pherograms produced by the genetic analyser instrument, was very similar for the lizard's blood and infections in the vectors. These results demonstrate that P. mexicanum achieves high transmission success, with most clones making the transition from vertebrate-to-insect host, and thus explains in part the high genetic diversity of the parasite among all hosts at the study site. PMID:19523471

  13. Citrus tristeza virus-host interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus tristeza virus (CTV) is a phloem-limited virus whose natural host range is restricted to citrus and related species. Although the virus has killed millions of trees, almost destroying whole industries, and continually limits production in many citrus growing areas, most isolates are mild or s...

  14. Horizontal Transfer and the Evolution of Host-Pathogen Interactions

    PubMed Central

    de la Casa-Esperón, Elena

    2012-01-01

    Horizontal gene transfer has been long known in viruses and prokaryotes, but its importance in eukaryotes has been only acknowledged recently. Close contact between organisms, as it occurs between pathogens and their hosts, facilitates the occurrence of DNA transfer events. Once inserted in a foreign genome, DNA sequences have sometimes been coopted by pathogens to improve their survival or infectivity, or by hosts to protect themselves against the harm of pathogens. Hence, horizontal transfer constitutes a source of novel sequences that can be adopted to change the host-pathogen interactions. Therefore, horizontal transfer can have an important impact on the coevolution of pathogens and their hosts. PMID:23227424

  15. 2010 by The University of Chicago. All rights reserved. DOI: 10.1086/653002 Appendix from A. Best et al., "The Evolution of Host-Parasite Range"

    E-print Network

    White, Andrew

    et al., "The Evolution of Host-Parasite Range" (Am. Nat., vol. 176, no. 1, p. 000) Methods Derivation and in the parasite.v Given these trade-offs and the transmission rate of equation (2), we can rewrite the dynamics ). In the parasite, we can simply express the dynamics of the rare mutant as , where¯dY/dt p r(v, u, v)Y 1¯v2(u

  16. Symbiosis and Pathogenesis: Evolution of the Microbe-Host Interaction

    NASA Astrophysics Data System (ADS)

    Steinert, M.; Hentschel, U.; Hacker, J.

    Symbiotic and pathogenic bacteria have in common that they live in or on host organisms or host cells. To make a successful living in eukaryotic hosts, bacteria must possess the traits to recognize a given host and establish adherence. When the bacterial location is internal or intracellular, they must further have the ability to invade, to establish a niche, and finally to multiply within a host. The underlying mechanisms which allow this form of existence show similarities between symbiotic and pathogenic bacteria. The final outcome, however, may result in a wide spectrum of consequences for the host ranging from the acquisition of novel metabolic pathways to damage or death. Despite the vastly different forms of interactions, symbiotic and pathogenic bacteria have in common that they are adapted to a particular environmental niche represented by the host organism or compartment thereof. This contribution reviews the evolutionary forces which have shaped the microbial-host interactions. Particular emphasis is placed on the genetic and molecular mechanisms that drive bacterial evolution in response to the selective pressures of the host environment.

  17. Bradyzoite-Specific Surface Antigen SRS9 Plays a Role in Maintaining Toxoplasma gondii Persistence in the Brain and in Host Control of Parasite Replication in the Intestine

    Microsoft Academic Search

    Seon-Kyeong Kim; Ariela Karasov; John C. Boothroyd

    2007-01-01

    Toxoplasma gondii is a ubiquitous parasite that persists for the life of a healthy mammalian host. A latent, chronic infection can reactivate upon immunosuppression and cause life-threatening diseases, such as en- cephalitis. A key to the pathogenesis is the parasite's interconversion between the tachyzoite (in acute infection) and bradyzoite (in chronic infection) stages. This developmental switch is marked by differential

  18. Evidence for aggressive mimicry in an adult brood parasitic bird, and generalized defences in its host

    E-print Network

    Feeney, W. E.; Troscianko, J.; Langmore, N. E.; Spottiswoode, C. N.

    2015-06-10

    range of grasslands/grassy savannahs and are variably social granivores [18,19,27]. This provides an opportunity to compare the plumage of a putative mimic with that of both its closest relatives and its putative models, which all live in the same... , grasslands and agricultural fields, where prinias are abundant and regularly parasitized by cuckoo finches (at least 19% of nests experience parasitism attempts [6]). Prinias suffer high fitness costs as a result of brood parasitism (cuckoo finches remove...

  19. Interaction of Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease, with host proteins in the kidney of Salmo trutta.

    PubMed

    Kumar, Gokhlesh; Gotesman, Michael; El-Matbouli, Mansour

    2015-05-01

    Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids which are found in Europe and North America. Less information about the interactions of T. bryosalmonae proteins with salmonid proteins during parasite development is known. In this study, anti-T. bryosalmonae monoclonal antibody-linked to N-hydroxysuccinimide-activated spin columns were used to purify parasite and host proteins from the kidneys of infected and non-infected brown trout (Salmo trutta) Linnaeus, 1758. The samples were next analyzed by electrospray ionization coupled to mass spectrometry to identify proteins that may be involved in the infection and proliferation of T. bryosalmonae within the brown trout host. A total of 6 parasite proteins and 40 different host proteins were identified in this analysis. The identified host proteins function in various processes, which include host defense, enzymatic, and structural components. In conjunction with modern molecular based tools, such siRNA, gene replacement, or gene disruption, this data can ultimately be used to develop novel control methods for T. bryosalmonae, based on the proteins or pathways identified in this study. PMID:25663070

  20. Both host and parasite MIF molecules bind to chicken macrophages via CD74 surface receptor.

    PubMed

    Kim, Sungwon; Cox, Chasity M; Jenkins, Mark C; Fetterer, Ray H; Miska, Katarzyna B; Dalloul, Rami A

    2014-12-01

    Macrophage migration inhibitory factor (MIF) is recognized as a soluble protein that inhibits the random migration of macrophages and plays a pivotal immunoregulatory function in innate and adaptive immunity. Our group has identified both chicken and Eimeria MIFs, and characterized their function in enhancing innate immune responses during inflammation. In this study, we report that chicken CD74 (ChCD74), a type II transmembrane protein, functions as a macrophage surface receptor that binds to MIF molecules. First, to examine the binding of MIF to chicken monocytes/macrophages, fresh isolated chicken peripheral blood mononuclear cells (PBMCs) were stimulated with rChIFN-? and then incubated with recombinant chicken MIF (rChMIF). Immunofluorescence staining with anti-ChMIF followed by flow cytometry revealed the binding of MIF to stimulated PBMCs. To verify that ChCD74 acts as a surface receptor for MIF molecules, full-length ChCD74p41 was cloned, expressed and its recombinant protein (rChCD74p41) transiently over-expressed with green fluorescent protein in chicken fibroblast DF-1 cells. Fluorescence analysis revealed a higher population of cells double positive for CD74p41 and rChMIF, indicating the binding of rChMIF to DF-1 cells via rChCD74p41. Using a similar approach, it was found that Eimeria MIF (EMIF), which is secreted by Eimeria sp. during infection, bound to chicken macrophages via ChCD74p41 as a surface receptor. Together, this study provides conclusive evidence that both host and parasite MIF molecules bind to chicken macrophages via the surface receptor ChCD74. PMID:25086294