Science.gov

Sample records for host parasite interactions

  1. Systems analysis of host-parasite interactions.

    PubMed

    Swann, Justine; Jamshidi, Neema; Lewis, Nathan E; Winzeler, Elizabeth A

    2015-11-01

    Parasitic diseases caused by protozoan pathogens lead to hundreds of thousands of deaths per year in addition to substantial suffering and socioeconomic decline for millions of people worldwide. The lack of effective vaccines coupled with the widespread emergence of drug-resistant parasites necessitates that the research community take an active role in understanding host-parasite infection biology in order to develop improved therapeutics. Recent advances in next-generation sequencing and the rapid development of publicly accessible genomic databases for many human pathogens have facilitated the application of systems biology to the study of host-parasite interactions. Over the past decade, these technologies have led to the discovery of many important biological processes governing parasitic disease. The integration and interpretation of high-throughput -omic data will undoubtedly generate extraordinary insight into host-parasite interaction networks essential to navigate the intricacies of these complex systems. As systems analysis continues to build the foundation for our understanding of host-parasite biology, this will provide the framework necessary to drive drug discovery research forward and accelerate the development of new antiparasitic therapies. WIREs Syst Biol Med 2015, 7:381-400. doi: 10.1002/wsbm.1311 For further resources related to this article, please visit the WIREs website. PMID:26306749

  2. Biological warfare: Microorganisms as drivers of host-parasite interactions.

    PubMed

    Dheilly, Nolwenn M; Poulin, Robert; Thomas, Frédéric

    2015-08-01

    Understanding parasite strategies for evasion, manipulation or exploitation of hosts is crucial for many fields, from ecology to medical sciences. Generally, research has focused on either the host response to parasitic infection, or the parasite virulence mechanisms. More recently, integrated studies of host-parasite interactions have allowed significant advances in theoretical and applied biology. However, these studies still provide a simplistic view of these as mere two-player interactions. Host and parasite are associated with a myriad of microorganisms that could benefit from the improved fitness of their partner. Illustrations of such complex multi-player interactions have emerged recently from studies performed in various taxa. In this conceptual article, we propose how these associated microorganisms may participate in the phenotypic alterations induced by parasites and hence in host-parasite interactions, from an ecological and evolutionary perspective. Host- and parasite-associated microorganisms may participate in the host-parasite interaction by interacting directly or indirectly with the other partner. As a result, parasites may develop (i) the disruptive strategy in which the parasite alters the host microbiota to its advantage, and (ii) the biological weapon strategy where the parasite-associated microorganism contributes to or modulates the parasite's virulence. Some phenotypic alterations induced by parasite may also arise from conflicts of interests between the host or parasite and its associated microorganism. For each situation, we review the literature and propose new directions for future research. Specifically, investigating the role of host- and parasite-associated microorganisms in host-parasite interactions at the individual, local and regional level will lead to a holistic understanding of how the co-evolution of the different partners influences how the other ones respond, both ecologically and evolutionary. The conceptual framework we propose here is important and relevant to understand the proximate basis of parasite strategies, to predict their evolutionary dynamics and potentially to prevent therapeutic failures. PMID:26026593

  3. Malaria Proteins Implicated in Host-Parasite Interactions 

    E-print Network

    Anderson, Laura Fay

    2007-01-01

    The invasive and transmission stages of the malaria parasite Plasmodium falciparum express several proteins with domains implicated in host-parasite interactions, that are potential vaccine candidates or drug targets. The ...

  4. A host-parasite multilevel interacting process and continuous approximations

    E-print Network

    Potsdam, Universität

    A host-parasite multilevel interacting process and continuous approximations Sylvie Méléard1) and the evolution of cells (or parasites) of two types living in these individuals. The ecological parameters-death-mutation-competition point process, host-parasite stochastic particle system, nonlinear integro-differential equations

  5. Diet quality determines interspecific parasite interactions in host populations

    PubMed Central

    Lange, Benjamin; Reuter, Max; Ebert, Dieter; Muylaert, Koenraad; Decaestecker, Ellen

    2014-01-01

    The widespread occurrence of multiple infections and the often vast range of nutritional resources for their hosts allow that interspecific parasite interactions in natural host populations might be determined by host diet quality. Nevertheless, the role of diet quality with respect to multispecies parasite interactions on host population level is not clear. We here tested the effect of host population diet quality on the parasite community in an experimental study using Daphnia populations. We studied the effect of diet quality on Daphnia population demography and the interactions in multispecies parasite infections of this freshwater crustacean host. The results of our experiment show that the fitness of a low-virulent microsporidian parasite decreased in low, but not in high-host-diet quality conditions. Interestingly, infections with the microsporidium protected Daphnia populations against a more virulent bacterial parasite. The observed interspecific parasite interactions are discussed with respect to the role of diet quality-dependent changes in host fecundity. This study reflects that exploitation competition in multispecies parasite infections is environmentally dependent, more in particular it shows that diet quality affects interspecific parasite competition within a single host and that this can be mediated by host population-level effects. PMID:25247066

  6. The mode of host-parasite interaction shapes coevolutionary dynamics and the fate of host cooperation

    E-print Network

    McKane, Alan

    The mode of host-parasite interaction shapes coevolutionary dynamics and the fate of host host- parasite model there are four mechanisms: host birth (bacterial duplication), competition among hosts for finite resources, parasite death (virus degradation) and lysis of a bacterium by a phage

  7. Host-Parasite Interactions in Some Fish Species

    PubMed Central

    Khan, R. A.

    2012-01-01

    Host-parasite interactions are complex, compounded by factors that are capable of shifting the balance in either direction. The host's age, behaviour, immunological status, and environmental change can affect the association that is beneficial to the host whereas evasion of the host's immune response favours the parasite. In fish, some infections that induce mortality are age and temperature dependent. Environmental change, especially habitat degradation by anthropogenic pollutants and oceanographic alterations induced by climatic, can influence parasitic-host interaction. The outcome of these associations will hinge on susceptibility and resistance. PMID:22900144

  8. The effect of host heterogeneity and parasite intragenomic interactions on parasite

    E-print Network

    Paterson, Steve

    The effect of host heterogeneity and parasite intragenomic interactions on parasite population Bank, Sheffield S10 2TN, UK Understanding the processes that shape the genetic structure of parasite populations and the functional consequences of different parasite genotypes is critical for our ability

  9. Climate impacts on landlocked sea lamprey: Implications for host-parasite interactions

    E-print Network

    Wisconsin at Madison, University of

    Climate impacts on landlocked sea lamprey: Implications for host-parasite interactions and invasive sea lamprey: Implications for host-parasite interactions and invasive species management. Ecosphere 5 influence host-parasite interactions and invasive species, both potentially impacting valuable ecosystem

  10. HOST-PARASITE INTERACTIONS ON AN EXPERIMENTAL LANDSCAPE KARL L. KOSCIUCH

    E-print Network

    Sandercock, Brett K.

    HOST-PARASITE INTERACTIONS ON AN EXPERIMENTAL LANDSCAPE by KARL L. KOSCIUCH B. S., East Stroudsburg brood parasites and the behavioral responses of their hosts have served as a model of co-evolution in nature. Host adaptations to reduce the costs of parasitism are countered with novel parasite behaviors

  11. Interacting parasites

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2010-01-01

    Parasitism is the most popular life-style on Earth, and many vertebrates host more than one kind of parasite at a time. A common assumption is that parasite species rarely interact, because they often exploit different tissues in a host, and this use of discrete resources limits competition (1). On page 243 of this issue, however, Telfer et al. (2) provide a convincing case of a highly interactive parasite community in voles, and show how infection with one parasite can affect susceptibility to others. If some human parasites are equally interactive, our current, disease-by-disease approach to modeling and treating infectious diseases is inadequate (3).

  12. Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix

    PubMed Central

    Piña-Vázquez, Carolina; Reyes-López, Magda; Ortíz-Estrada, Guillermo; de la Garza, Mireya; Serrano-Luna, Jesús

    2012-01-01

    Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina). The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa. PMID:22792442

  13. Host-parasite interactions between whiteflies and their parasitoids.

    PubMed

    Gelman, Dale B; Gerling, Dan; Blackburn, Michael B; Hu, Jing S

    2005-12-01

    There is relatively little information available concerning the physiological and biochemical interactions between whiteflies and their parasitoids. In this report, we describe interactions between aphelinid parasitoids and their aleyrodid hosts that we have observed in four host-parasite systems: Bemisia tabaci/Encarsia formosa, Trialeurodes vaporariorum/E. formosa, B. tabaci/Eretmocerus mundus, and T. lauri/Encarsia scapeata. In the absence of reported polydnavirus and teratocytes, these parasitoids probably inject and/or produce compounds that interfere with the host immune response and also manipulate host development to suit their own needs. In addition, parasitoids must coordinate their own development with that of their host. Although eggs are deposited under all four instars of B. tabaci, Eretmocerus larvae only penetrate 4th instar B. tabaci nymphs. A pre-penetrating E. mundus first instar was capable of inducing permanent developmental arrest in its host, and upon penetration stimulated its host to produce a capsule (epidermal in origin) in which the parasitoid larva developed. T. vaporariorum and B. tabaci parasitized by E. formosa initiated adult development, and, on occasion, produced abnormal adult wings and eyes. In these systems, the site of parasitoid oviposition depended on the host species, occurring within or pressing into the ventral ganglion in T. vaporariorum and at various locations in B. tabaci. E. formosa's final larval molt is cued by the initiation of adult development in its host. In the T. lauri-E. scapeata system, both the host whitefly and the female parasitoid diapause during most of the year, i.e., from June until the middle of February (T. lauri) or from May until the end of December (E. scapeata). It appears that the growth and development of the insects are directed by the appearance of new, young foliage on Arbutus andrachne, the host tree. When adult female parasitoids emerged in the spring, they laid unfertilized male-producing eggs in whiteflies containing a female parasitoid [autoparasitism (development of male larvae utilizing female parasitoid immatures for nutrition)]. Upon hatching, these male larvae did not diapause, but initiated development, and the adult males that emerged several weeks later mated with available females to produce the next generation of parasitoid females. Thus, the interactions that exist between whiteflies and their parasitoids are complex and can be quite diverse in the various host-parasitoid systems. PMID:16304614

  14. VECTOR/PATHOGEN/HOST INTERACTION, TRANSMISSION Virulence of a Malaria Parasite, Plasmodium mexicanum, for Its Sand

    E-print Network

    Schall, Joseph J.

    VECTOR/PATHOGEN/HOST INTERACTION, TRANSMISSION Virulence of a Malaria Parasite, Plasmodium that virulence of parasites for mobile vector insects will be low for natural parasite-host associations that have coevolved. I determined virulence of the malaria parasite of lizards, Plasmodium mexicanum

  15. Temperature-driven shifts in a host-parasite interaction drive nonlinear changes in disease risk

    E-print Network

    Johnson, Pieter

    Temperature-driven shifts in a host-parasite interaction drive nonlinear changes in disease risk and pathogens may respond differentially to climate shifts, however, predicting the net effects on disease of temperature, which likely resulted from changes in both host and parasite processes. Both hosts and parasites

  16. Red Queen dynamics in multi-host and multi-parasite interaction system

    PubMed Central

    Rabajante, Jomar F.; Tubay, Jerrold M.; Uehara, Takashi; Morita, Satoru; Ebert, Dieter; Yoshimura, Jin

    2015-01-01

    In host-parasite systems, dominant host types are expected to be eventually replaced by other hosts due to the elevated potency of their specific parasites. This leads to changes in the abundance of both hosts and parasites exhibiting cycles of alternating dominance called Red Queen dynamics. Host-parasite models with less than three hosts and parasites have been demonstrated to exhibit Red Queen cycles, but natural host-parasite interactions typically involve many host and parasite types resulting in an intractable system with many parameters. Here we present numerical simulations of Red Queen dynamics with more than ten hosts and specialist parasites under the condition of no super-host nor super-parasite. The parameter region where the Red Queen cycles arise contracts as the number of interacting host and parasite types increases. The interplay between inter-host competition and parasite infectivity influences the condition for the Red Queen dynamics. Relatively large host carrying capacity and intermediate rates of parasite mortality result in never-ending cycles of dominant types. PMID:25899168

  17. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, Mirelle B.; Lafferty, Kevin D.; van Oosterhout, Cock; Cable, Joanne

    2011-01-01

    Background Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density.

  18. Parasite transmission in social interacting hosts: Monogenean epidemics in guppies

    USGS Publications Warehouse

    Johnson, M.B.; Lafferty, K.D.; van, Oosterhout C.; Cable, J.

    2011-01-01

    Background: Infection incidence increases with the average number of contacts between susceptible and infected individuals. Contact rates are normally assumed to increase linearly with host density. However, social species seek out each other at low density and saturate their contact rates at high densities. Although predicting epidemic behaviour requires knowing how contact rates scale with host density, few empirical studies have investigated the effect of host density. Also, most theory assumes each host has an equal probability of transmitting parasites, even though individual parasite load and infection duration can vary. To our knowledge, the relative importance of characteristics of the primary infected host vs. the susceptible population has never been tested experimentally. Methodology/Principal Findings: Here, we examine epidemics using a common ectoparasite, Gyrodactylus turnbulli infecting its guppy host (Poecilia reticulata). Hosts were maintained at different densities (3, 6, 12 and 24 fish in 40 L aquaria), and we monitored gyrodactylids both at a population and individual host level. Although parasite population size increased with host density, the probability of an epidemic did not. Epidemics were more likely when the primary infected fish had a high mean intensity and duration of infection. Epidemics only occurred if the primary infected host experienced more than 23 worm days. Female guppies contracted infections sooner than males, probably because females have a higher propensity for shoaling. Conclusions/Significance: These findings suggest that in social hosts like guppies, the frequency of social contact largely governs disease epidemics independent of host density. ?? 2011 Johnson et al.

  19. Genetic variation changes the interactions between the parasitic plant-ecosystem engineer Rhinanthus and its hosts

    PubMed Central

    Rowntree, Jennifer K.; Cameron, Duncan D.; Preziosi, Richard F.

    2011-01-01

    Within-species genetic variation is a potent factor influencing between-species interactions and community-level structure. Species of the hemi-parasitic plant genus Rhinanthus act as ecosystem engineers, significantly altering above- and below-ground community structure in grasslands. Here, we show the importance of genotypic variation within a single host species (barley—Hordeum vulgare), and population-level variation among two species of parasite (Rhinanthus minor and Rhinanthus angustifolius) on the outcome of parasite infection for both partners. We measured host fitness (number of seeds) and calculated parasite virulence as the difference in seed set between infected and uninfected hosts (the inverse of host tolerance). Virulence was determined by genetic variation within the host species and among the parasite species, but R. angustifolius was consistently more virulent than R. minor. The most tolerant host had the lowest inherent fitness and did not gain a fitness advantage over other infected hosts. We measured parasite size as a proxy for transmission ability (ability to infect further hosts) and host resistance. Parasite size depended on the specific combination of host genotype, parasite species and parasite population, and no species was consistently larger. We demonstrate that the outcome of infection by Rhinanthus depends not only on the host species, but also on the underlying genetics of both host and parasite. Thus, genetic variations within host and parasite are probably essential components of the ecosystem-altering effects of Rhinanthus. PMID:21444312

  20. Genetic variation changes the interactions between the parasitic plant-ecosystem engineer Rhinanthus and its hosts.

    PubMed

    Rowntree, Jennifer K; Cameron, Duncan D; Preziosi, Richard F

    2011-05-12

    Within-species genetic variation is a potent factor influencing between-species interactions and community-level structure. Species of the hemi-parasitic plant genus Rhinanthus act as ecosystem engineers, significantly altering above- and below-ground community structure in grasslands. Here, we show the importance of genotypic variation within a single host species (barley-Hordeum vulgare), and population-level variation among two species of parasite (Rhinanthus minor and Rhinanthus angustifolius) on the outcome of parasite infection for both partners. We measured host fitness (number of seeds) and calculated parasite virulence as the difference in seed set between infected and uninfected hosts (the inverse of host tolerance). Virulence was determined by genetic variation within the host species and among the parasite species, but R. angustifolius was consistently more virulent than R. minor. The most tolerant host had the lowest inherent fitness and did not gain a fitness advantage over other infected hosts. We measured parasite size as a proxy for transmission ability (ability to infect further hosts) and host resistance. Parasite size depended on the specific combination of host genotype, parasite species and parasite population, and no species was consistently larger. We demonstrate that the outcome of infection by Rhinanthus depends not only on the host species, but also on the underlying genetics of both host and parasite. Thus, genetic variations within host and parasite are probably essential components of the ecosystem-altering effects of Rhinanthus. PMID:21444312

  1. Long live the Red Queen? Examining environmental influences on host-parasite interactions in Daphnia.

    E-print Network

    West, Stuart

    Long live the Red Queen? Examining environmental influences on host-parasite interactions 2006 #12;Abstract The Red Queen hypothesis proposes that antagonistic coevolution between parasites-dependent selection by parasites against common host genotypes prevents asexual clones capitalising on their two

  2. Host-Parasite Interactions from the Inside: Plant Reproductive Ontogeny Drives Specialization in Parasitic Insects

    PubMed Central

    Boivin, Thomas; Gidoin, Cindy; von Aderkas, Patrick; Safrana, Jonathan; Candau, Jean-Noël; Chalon, Alain; Sondo, Marion; El Maâtaoui, Mohamed

    2015-01-01

    Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule’s nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule’s megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism. PMID:26441311

  3. The Use of Arabidopsis to Study Interactions between Parasitic Angiosperms and Their Plant Hosts

    PubMed Central

    Goldwasser, Y.; Westwood, J. H.; Yoder, J. I.

    2002-01-01

    Parasitic plants invade host plants in order to rob them of water, minerals and nutrients. The consequences to the infected hosts can be debilitating and some of the world's most pernicious agricultural weeds are parasitic. Parasitic genera of the Scrophulariaceae and Orobanchaceae directly invade roots of neighboring plants via underground structures called haustoria. The mechanisms by which these parasites identify and associate with host plants present unsurpassed opportunities for studying chemical signaling in plant-plant interactions. Seeds of some parasites require specific host factors for efficient germination, thereby insuring the availability of an appropriate host root prior to germination. A second set of signal molecules is required to induce haustorium development and the beginning of heterotrophy. Later stages in parasitism also require the presence of host factors, although these have not yet been well characterized. Arabidopsis is being used as a model host plant to identify genetic loci associated with stimulating parasite germination, haustorium development, and parasite support. Arabidopsis is also being employed to explore how host plants respond to parasite attack. Current methodologies and recent findings in Arabidopsis – parasitic plant interactions will be discussed. PMID:22303205

  4. Lectin Activation in Giardia lamblia by Host Protease: A Novel Host-Parasite Interaction

    NASA Astrophysics Data System (ADS)

    Lev, Boaz; Ward, Honorine; Keusch, Gerald T.; Pereira, Miercio E. A.

    1986-04-01

    A lectin in Giardia lamblia was activated by secretions from the human duodenum, the environment where the parasite lives. Incubation of the secretions with trypsin inhibitors prevented the appearance of lectin activity, implicating proteases as the activating agent. Accordingly, lectin activation was also produced by crystalline trypsin and Pronase; other proteases tested were ineffective. When activated, the lectin agglutinated intestinal cells to which the parasite adheres in vivo. The lectin was most specific to mannose-6-phosphate and apparently was bound to the plasma membrane. Activation of a parasite lectin by a host protease represents a novel mechanism of hostparasite interaction and may contribute to the affinity of Giardia lamblia to the infection site.

  5. On the evolutionary ecology of host-parasite interactions: addressing the question with regard to bumblebees and their parasites

    NASA Astrophysics Data System (ADS)

    Schmid-Hempel, Paul

    2001-05-01

    Over the last decade, there has been a major shift in the study of adaptive patterns and processes towards including the role of host-parasite interactions, informed by concepts from evolutionary ecology. As a consequence, a number of major questions have emerged. For example, how genetics affects host-parasite interactions, whether parasitism selects for offspring diversification, whether parasite virulence is an adaptive trait, and what constrains the use of the host's immune defences. Using bumblebees, Bombus spp, and their parasites as a model system, answers to some of these questions have been found, while at the same time the complexity of the interaction has led expectations away from simple theoretical models. In addition, the results have also led to the unexpected discovery of novel phenomena concerning, for instance, female mating strategies.

  6. The Common Swift Louse Fly, Crataerina pallida: An Ideal Species for Studying Host-Parasite Interactions

    PubMed Central

    Walker, Mark D.; Rotherham, Ian D.

    2010-01-01

    Little is known of the life-history of many parasitic species. This hinders a full understanding of host-parasitic interactions. The common swift louse fly, Crataerina pallida Latreille (Diptera: Hippoboscidae), an obligate haematophagous parasite of the Common Swift, Apus apus Linnaeus 1758, is one such species. No detrimental effect of its parasitism upon the host has been found. This may be because too little is known about C. pallida ecology, and therefore detrimental effects are also unknown. This is a review of what is known about the life-history of this parasite, with the aim of promoting understanding of its ecology. New, previously unreported observations about C. pallida made from personal observations at a nesting swift colony are described. Unanswered questions are highlighted, which may aid understanding of this host-parasite system. C. pallida may prove a suitable model species for the study of other host-parasite relationships. PMID:21268705

  7. Cooperation and conflict in host manipulation: interactions among macro-parasites and micro-organisms

    PubMed Central

    Cézilly, Frank; Perrot-Minnot, Marie-Jeanne; Rigaud, Thierry

    2014-01-01

    Several parasite species are known to manipulate the phenotype of their hosts in ways that enhance their own transmission. Co-occurrence of manipulative parasites, belonging to the same species or to more than one species, in a single host has been regularly observed. Little is known, however, on interactions between co-occurring manipulative parasites with same or different transmission routes. Several models addressing this problem have provided predictions on how cooperation and conflict between parasites could emerge from multiple infections. Here, we review the empirical evidence in favor of the existence of synergistic or antagonistic interactions between co-occurring parasites, and highlight the neglected role of micro-organisms. We particularly discuss the actual importance of selective forces shaping the evolution of interactions between manipulative parasites in relation to parasite prevalence in natural populations, efficiency in manipulation, and type of transmission (i.e., horizontal versus vertical), and we emphasize the potential for future research. PMID:24966851

  8. Exploring the role of biogenic amines in schistosome host-parasite interactions.

    PubMed

    Ribeiro, Paula

    2015-09-01

    Biogenic amines (BAs) are important neurotransmitters of the schistosome nervous system, but their role in the host-parasite interaction is poorly understood. Recent findings suggest that BAs may play an important role in the interaction with the snail intermediate host. This new evidence adds an important piece of information to our understanding of this complex system. PMID:26254959

  9. A walk on the tundra: Host–parasite interactions in an extreme environment

    PubMed Central

    Kutz, Susan J.; Hoberg, Eric P.; Molnár, Péter K.; Dobson, Andy; Verocai, Guilherme G.

    2014-01-01

    Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host–parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host–parasite interactions elsewhere. We specifically examine the impacts of climate change on host–parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host–parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems. PMID:25180164

  10. A walk on the tundra: Host-parasite interactions in an extreme environment.

    PubMed

    Kutz, Susan J; Hoberg, Eric P; Molnár, Péter K; Dobson, Andy; Verocai, Guilherme G

    2014-08-01

    Climate change is occurring very rapidly in the Arctic, and the processes that have taken millions of years to evolve in this very extreme environment are now changing on timescales as short as decades. These changes are dramatic, subtle and non-linear. In this article, we discuss the evolving insights into host-parasite interactions for wild ungulate species, specifically, muskoxen and caribou, in the North American Arctic. These interactions occur in an environment that is characterized by extremes in temperature, high seasonality, and low host species abundance and diversity. We believe that lessons learned in this system can guide wildlife management and conservation throughout the Arctic, and can also be generalized to more broadly understand host-parasite interactions elsewhere. We specifically examine the impacts of climate change on host-parasite interactions and focus on: (I) the direct temperature effects on parasites; (II) the importance of considering the intricacies of host and parasite ecology for anticipating climate change impacts; and (III) the effect of shifting ecological barriers and corridors. Insights gained from studying the history and ecology of host-parasite systems in the Arctic will be central to understanding the role that climate change is playing in these more complex systems. PMID:25180164

  11. Avian brood parasitism and ectoparasite richness-scale-dependent diversity interactions in a three-level host-parasite system.

    PubMed

    Vas, Zoltán; Fuisz, Tibor I; Fehérvári, Péter; Reiczigel, Jen?; Rózsa, Lajos

    2013-04-01

    Brood parasitic birds, their foster species and their ectoparasites form a complex coevolving system composed of three hierarchical levels. However, effects of hosts' brood parasitic life-style on the evolution of their louse (Phthiraptera: Amblycera, Ischnocera) lineages have never been tested. We present two phylogenetic analyses of ectoparasite richness of brood parasitic clades. Our hypothesis was that brood parasitic life-style affects louse richness negatively across all avian clades due to the lack of vertical transmission routes. Then, narrowing our scope to brood parasitic cuckoos, we explored macroevolutionary factors responsible for the variability of their louse richness. Our results show that taxonomic richness of lice is lower on brood parasitic clades than on their nonparasitic sister clades. However, we found a positive covariation between the richness of cuckoos' Ischnoceran lice and the number of their foster species, possibly due to the complex and dynamic subpopulation structure of cuckoo species that utilize several host species. We documented diversity interactions across a three-level host parasite system and we found evidence that brood parasitism has opposing effects on louse richness at two slightly differing macroevolutionary scales, namely the species richness and the genera richness. PMID:23550748

  12. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants

    PubMed Central

    Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B.; Albert, Markus

    2015-01-01

    By comparison with plant–microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant–plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato. PMID:25699071

  13. A proteomics view of programmed cell death mechanisms during host-parasite interactions.

    PubMed

    Cuervo, Patricia; Fernandes, Nilma; de Jesus, Jose Batista

    2011-12-10

    Protozoan parasites are responsible for an impressive disease burden in developing and less-developed countries. The development of vaccines and effective new therapies for dealing with these organisms are among the main gaps to be filled in the control of protozoan parasite diseases. Programmed cell death (PCD) pathways have gained attention in recent years because they comprise complex signalling pathways that can be explored for therapeutic developments. In addition, high-resolution proteomics approaches offer the opportunity to determine protein patterns associated with either cell survival or cell death. This review will focus on proteomics studies of PCD mechanisms during host-protozoan parasite interactions. PMID:21843666

  14. Trace Fossil Evidence of Trematode-Bivalve Parasite-Host Interactions in Deep Time.

    PubMed

    Huntley, John Warren; De Baets, Kenneth

    2015-01-01

    Parasitism is one of the most pervasive phenomena amongst modern eukaryotic life and yet, relative to other biotic interactions, almost nothing is known about its history in deep time. Digenean trematodes (Platyhelminthes) are complex life cycle parasites, which have practically no body fossil record, but induce the growth of characteristic malformations in the shells of their bivalve hosts. These malformations are readily preserved in the fossil record, but, until recently, have largely been overlooked by students of the fossil record. In this review, we present the various malformations induced by trematodes in bivalves, evaluate their distribution through deep time in the phylogenetic and ecological contexts of their bivalve hosts and explore how various taphonomic processes have likely biased our understanding of trematodes in deep time. Trematodes are known to negatively affect their bivalve hosts in a number of ways including castration, modifying growth rates, causing immobilization and, in some cases, altering host behaviour making the host more susceptible to their own predators. Digeneans are expected to be significant agents of natural selection. To that end, we discuss how bivalves may have adapted to their parasites via heterochrony and suggest a practical methodology for testing such hypotheses in deep time. PMID:26597068

  15. Involvement of Apoptosis in Host-Parasite Interactions in the Zebra Mussel

    PubMed Central

    Minguez, Laëtitia; Brulé, Nelly; Sohm, Bénédicte; Devin, Simon; Giambérini, Laure

    2013-01-01

    The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism. PMID:23785455

  16. Involvement of apoptosis in host-parasite interactions in the zebra mussel.

    PubMed

    Minguez, Laëtitia; Brulé, Nelly; Sohm, Bénédicte; Devin, Simon; Giambérini, Laure

    2013-01-01

    The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism. PMID:23785455

  17. Host-parasite interactions during a biological invasion: The fate of lungworms (Rhabdias spp.) inside native and novel anuran hosts.

    PubMed

    Nelson, Felicity B L; Brown, Gregory P; Shilton, Catherine; Shine, Richard

    2015-08-01

    The cane toad invasion in Australia provides a robust opportunity to clarify the infection process in co-evolved versus de novo host-parasite interactions. We investigated these infection dynamics through histological examination following experimental infections of metamorphs of native frogs (Cyclorana australis) and cane toads (Rhinella marina) with Rhabdias hylae (the lungworm found in native frogs) and Rhabdias pseudosphaerocephala (the lungworm found in cane toads). Cane toads reared under continuous exposure to infective larvae of the frog lungworm were examined after periods of 2, 6, 10 and 15 days. Additionally, both toads and frogs were exposed for 24?h to larvae of either the toad or the frog lungworm, and examined 2, 5, 10 and 20 days post-treatment. R. hylae (frog) lungworms entered cane toads and migrated through the body but were not found in the target tissue, the lungs. Larvae of both lungworm species induced inflammation in both types of hosts, although the immune response (relative numbers of different cell types) differed between hosts and between parasite species. Co-evolution has modified the immune response elicited by infection and (perhaps for that reason) has enhanced the parasite's ability to survive and to reach the host's lungs. PMID:25973392

  18. Host–parasite interactions during a biological invasion: The fate of lungworms (Rhabdias spp.) inside native and novel anuran hosts

    PubMed Central

    Nelson, Felicity B.L.; Brown, Gregory P.; Shilton, Catherine; Shine, Richard

    2015-01-01

    The cane toad invasion in Australia provides a robust opportunity to clarify the infection process in co-evolved versus de novo host–parasite interactions. We investigated these infection dynamics through histological examination following experimental infections of metamorphs of native frogs (Cyclorana australis) and cane toads (Rhinella marina) with Rhabdias hylae (the lungworm found in native frogs) and Rhabdias pseudosphaerocephala (the lungworm found in cane toads). Cane toads reared under continuous exposure to infective larvae of the frog lungworm were examined after periods of 2, 6, 10 and 15 days. Additionally, both toads and frogs were exposed for 24?h to larvae of either the toad or the frog lungworm, and examined 2, 5, 10 and 20 days post-treatment. R. hylae (frog) lungworms entered cane toads and migrated through the body but were not found in the target tissue, the lungs. Larvae of both lungworm species induced inflammation in both types of hosts, although the immune response (relative numbers of different cell types) differed between hosts and between parasite species. Co-evolution has modified the immune response elicited by infection and (perhaps for that reason) has enhanced the parasite's ability to survive and to reach the host's lungs. PMID:25973392

  19. The ecology, evolution, impacts and management of host-parasite interactions of marine molluscs.

    PubMed

    Coen, Loren D; Bishop, Melanie J

    2015-10-01

    Molluscs are economically and ecologically important components of aquatic ecosystems. In addition to supporting valuable aquaculture and wild-harvest industries, their populations determine the structure of benthic communities, cycling of nutrients, serve as prey resources for higher trophic levels and, in some instances, stabilize shorelines and maintain water quality. This paper reviews existing knowledge of the ecology of host-parasite interactions involving marine molluscs, with a focus on gastropods and bivalves. It considers the ecological and evolutionary impacts of molluscan parasites on their hosts and vice versa, and on the communities and ecosystems in which they are a part, as well as disease management and its ecological impacts. An increasing number of case studies show that disease can have important effects on marine molluscs, their ecological interactions and ecosystem services, at spatial scales from centimeters to thousands of kilometers and timescales ranging from hours to years. In some instances the cascading indirect effects arising from parasitic infection of molluscs extend well beyond the temporal and spatial scales at which molluscs are affected by disease. In addition to the direct effects of molluscan disease, there can be large indirect impacts on marine environments resulting from strategies, such as introduction of non-native species and selective breeding for disease resistance, put in place to manage disease. Much of our understanding of impacts of molluscan diseases on the marine environment has been derived from just a handful of intensively studied marine parasite-host systems, namely gastropod-trematode, cockle-trematode, and oyster-protistan interactions. Understanding molluscan host-parasite dynamics is of growing importance because: (1) expanding aquaculture; (2) current and future climate change; (3) movement of non-native species; and (4) coastal development are modifying molluscan disease dynamics, ultimately leading to complex relationships between diseases and cultivated and natural molluscan populations. Further, in some instances the enhancement or restoration of valued ecosystem services may be contingent on management of molluscan disease. The application of newly emerging molecular tools and remote sensing techniques to the study of molluscan disease will be important in identifying how changes at varying spatial and temporal scales with global change are modifying host-parasite systems. PMID:26341124

  20. Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity.

    PubMed

    Reynolds, Lisa A; Finlay, B Brett; Maizels, Rick M

    2015-11-01

    Both intestinal helminth parasites and certain bacterial microbiota species have been credited with strong immunomodulatory effects. Recent studies reported that the presence of helminth infection alters the composition of the bacterial intestinal microbiota and, conversely, that the presence and composition of the bacterial microbiota affect helminth colonization and persistence within mammalian hosts. This article reviews recent findings on these reciprocal relationships, in both human populations and mouse models, at the level of potential mechanistic pathways and the implications these bear for immunomodulatory effects on allergic and autoimmune disorders. Understanding the multidirectional complex interactions among intestinal microbes, helminth parasites, and the host immune system allows for a more holistic approach when using probiotics, prebiotics, synbiotics, antibiotics, and anthelmintics, as well as when designing treatments for autoimmune and allergic conditions. PMID:26477048

  1. Host-microbe and microbe-microbe interactions in the evolution of obligate plant parasitism.

    PubMed

    Kemen, Ariane C; Agler, Matthew T; Kemen, Eric

    2015-06-01

    Research on obligate biotrophic plant parasites, which reproduce only on living hosts, has revealed a broad diversity of filamentous microbes that have independently acquired complex morphological structures, such as haustoria. Genome studies have also demonstrated a concerted loss of genes for metabolism and lytic enzymes, and gain of diversity of genes coding for effectors involved in host defense suppression. So far, these traits converge in all known obligate biotrophic parasites, but unexpected genome plasticity remains. This plasticity is manifested as transposable element (TE)-driven increases in genome size, observed to be associated with the diversification of virulence genes under selection pressure. Genome expansion could result from the governing of the pathogen response to ecological selection pressures, such as host or nutrient availability, or to microbial interactions, such as competition, hyperparasitism and beneficial cooperations. Expansion is balanced by alternating sexual and asexual cycles, as well as selfing and outcrossing, which operate to control transposon activity in populations. In turn, the prevalence of these balancing mechanisms seems to be correlated with external biotic factors, suggesting a complex, interconnected evolutionary network in host-pathogen-microbe interactions. Therefore, the next phase of obligate biotrophic pathogen research will need to uncover how this network, including multitrophic interactions, shapes the evolution and diversity of pathogens. PMID:25622918

  2. Assessing the Effects of Climate on Host-Parasite Interactions: A Comparative Study of European Birds and Their Parasites

    PubMed Central

    Møller, Anders Pape; Merino, Santiago; Soler, Juan José; Antonov, Anton; Badás, Elisa P.; Calero-Torralbo, Miguel A.; de Lope, Florentino; Eeva, Tapio; Figuerola, Jordi; Flensted-Jensen, Einar; Garamszegi, Laszlo Z.; González-Braojos, Sonia; Gwinner, Helga; Hanssen, Sveinn Are; Heylen, Dieter; Ilmonen, Petteri; Klarborg, Kurt; Korpimäki, Erkki; Martínez, Javier; Martínez-de la Puente, Josue; Marzal, Alfonso; Matthysen, Erik; Matyjasiak, Piotr; Molina-Morales, Mercedes; Moreno, Juan; Mousseau, Timothy A.; Nielsen, Jan Tøttrup; Pap, Péter László; Rivero-de Aguilar, Juan; Shurulinkov, Peter; Slagsvold, Tore; Szép, Tibor; Szöll?si, Eszter; Török, Janos; Vaclav, Radovan; Valera, Francisco; Ziane, Nadia

    2013-01-01

    Background Climate change potentially has important effects on distribution, abundance, transmission and virulence of parasites in wild populations of animals. Methodology/Principal Finding Here we analyzed paired information on 89 parasite populations for 24 species of bird hosts some years ago and again in 2010 with an average interval of 10 years. The parasite taxa included protozoa, feather parasites, diptera, ticks, mites and fleas. We investigated whether change in abundance and prevalence of parasites was related to change in body condition, reproduction and population size of hosts. We conducted analyses based on the entire dataset, but also on a restricted dataset with intervals between study years being 5–15 years. Parasite abundance increased over time when restricting the analyses to datasets with an interval of 5–15 years, with no significant effect of changes in temperature at the time of breeding among study sites. Changes in host body condition and clutch size were related to change in temperature between first and second study year. In addition, changes in clutch size, brood size and body condition of hosts were correlated with change in abundance of parasites. Finally, changes in population size of hosts were not significantly related to changes in abundance of parasites or their prevalence. Conclusions/Significance Climate change is associated with a general increase in parasite abundance. Variation in laying date depended on locality and was associated with latitude while body condition of hosts was associated with a change in temperature. Because clutch size, brood size and body condition were associated with change in parasitism, these results suggest that parasites, perhaps mediated through the indirect effects of temperature, may affect fecundity and condition of their hosts. The conclusions were particularly in accordance with predictions when the restricted dataset with intervals of 5–15 years was used, suggesting that short intervals may bias findings. PMID:24391725

  3. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction

    PubMed Central

    Anand, Namrata; Kanwar, Rupinder K; Dubey, Mohan Lal; Vahishta, R K; Sehgal, Rakesh; Verma, Anita K; Kanwar, Jagat R

    2015-01-01

    Background Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs) and macrophages (human monocytic cell line-derived macrophages THP1 cells). Methods Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections. Results The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene expression and cellular activity depending on the degree of iron saturation of lactoferrin. A significant increase (P<0.05) in production of reactive oxygen species, phagocytic activity, and Toll-like receptor expression was observed in host cells incubated with iron-saturated lactoferrin when compared with an untreated control group. However, there was no significant (P>0.05) change in percentage viability in the different groups of host cells treated, and no downregulation of survivin gene expression was found at 48 hours post-incubation. Upregulation of the Toll-like receptor and downregulation of the P-gp gene confirmed the immunomodulatory potential of lactoferrin protein. Conclusion The present study details the interaction between lactoferrin and parasite host cells, ie, RBCs and macrophages, using various cellular processes and expression studies. The study reveals the possible mechanism of action against various intracellular pathogens such as Toxoplasma, Plasmodium, Leishmania, Trypanosoma, and Mycobacterium. The presence of iron in lactoferrin plays an important role in enhancing the various activities taking place inside these cells. This work provides a lot of information about targeting lactoferrin against many parasitic infections which can rule out the exact pathways for inhibition of diseases caused by intracellular microbes mainly targeting RBCs and macrophages for their survival. Therefore, this initial study can serve as a baseline for further evaluation of the mechanism of action of lactoferrin against parasitic diseases, which is not fully understood to date. PMID:26251568

  4. Host-parasite interactions in closed and open microbial cultivation system

    NASA Astrophysics Data System (ADS)

    Pisman, T. I.; Pechurkin, N. S.

    We studied interaction between bacteria and phages within a host-parasite system the members of the system being continuously and closely cultivated The objects of our research were auxotrophic strain Brevibacterium 22L and bacteriophage Brevibacterium sp strain A discovered in the soil of the Soviet Union Republic of Latvia using enrichment method 1 Closed system We investigated the dependence of bacteriolysis time upon the multiplicity of phage infection It was shown that reduction of phage amount by one bacterium leads to increase of marked lysis Another important factor determining cytolysis in fluid medium is the physiological state of bacterial population Specific growth rate of bacteria at the moment of phage infection was chosen as the index of the physiological state of bacteria It was revealed that the shortest latent period and the maximal phage burst is observed when the bacteria located in a favorable nutrient medium are in the logarithmic phase If the bacterial population has already passed from the logarithmic phase to the stationary one the cells become a bad host for phage reproduction and lysis occurs very slowly or even never starts at all 2 Open system In the process of continuous cultivation the members of the host-parasite system showed an ability to coexist over a long period of time After phage infection there were variations in the size of both populations and then the density of the host population reached the level close to that of the uninfected culture In this situation the phage population

  5. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions.

    PubMed

    Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C

    2015-10-22

    Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems. PMID:26468247

  6. Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies

    PubMed Central

    Nazzi, Francesco; Brown, Sam P.; Annoscia, Desiderato; Del Piccolo, Fabio; Di Prisco, Gennaro; Varricchio, Paola; Della Vedova, Giorgio; Cattonaro, Federica; Caprio, Emilio; Pennacchio, Francesco

    2012-01-01

    The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-?B. The centrality of NF-?B in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health. PMID:22719246

  7. Host Sexual Dimorphism and Parasite Adaptation

    PubMed Central

    Duneau, David; Ebert, Dieter

    2012-01-01

    In species with separate sexes, parasite prevalence and disease expression is often different between males and females. This effect has mainly been attributed to sex differences in host traits, such as immune response. Here, we make the case for how properties of the parasites themselves can also matter. Specifically, we suggest that differences between host sexes in many different traits, such as morphology and hormone levels, can impose selection on parasites. This selection can eventually lead to parasite adaptations specific to the host sex more commonly encountered, or to differential expression of parasite traits depending on which host sex they find themselves in. Parasites adapted to the sex of the host in this way can contribute to differences between males and females in disease prevalence and expression. Considering those possibilities can help shed light on host–parasite interactions, and impact epidemiological and medical science. PMID:22389630

  8. Sea lamprey (Petromyzon marinus) parasite-host interactions in the Great Lakes

    USGS Publications Warehouse

    Bence, James R.; Bergstedt, Roger A.; Christie, Gavin C.; Cochran, Phillip A.; Ebener, Mark P.; Koonce, Joseph F.; Rutter, Michael A.; Swink, William D.

    2003-01-01

    Prediction of how host mortality responds to efforts to control sea lampreys (Petromyzon marinus) is central to the integrated management strategy for sea lamprey (IMSL) in the Great Lakes. A parasite-host submodel is used as part of this strategy, and this includes a type-2 multi-species functional response, a developmental response, but no numerical response. General patterns of host species and size selection are consistent with the model assumptions, but some observations appear to diverge. For example, some patterns in sea lamprey marking on hosts suggest increases in selectivity for less preferred hosts and lower host survival when preferred hosts are scarce. Nevertheless, many of the IMSL assumptions may be adequate under conditions targeted by fish community objectives. Of great concern is the possibility that the survival of young parasites (parasitic-phase sea lampreys) varies substantially among lakes or over time. Joint analysis of abundance estimates for parasites being produced in streams and returning spawners could address this. Data on sea lamprey marks is a critical source of information on sea lamprey activity and potential effects. Theory connecting observed marks to sea lamprey feeding activity and host mortality is reviewed. Uncertainties regarding healing and attachment times, the probability of hosts surviving attacks, and problems in consistent classification of marks have led to widely divergent estimates of damages caused by sea lamprey. Laboratory and field studies are recommended to provide a firmer linkage between host blood loss, host mortality, and observed marks on surviving hosts, so as to improve estimates of damage.

  9. Macrophage-migration Inhibitory Factor (MIF) homologues in the host-parasite interaction

    E-print Network

    Prieto-Lafuente, Lidia

    2007-01-01

    The ability of filarial parasites to persist in an immunological competent host, has led to the suggestion that they have evolved specific measures to counter immune defences. Filarial nematodes produce and secrete excretory-secretory (ES) products...

  10. What is a pathogen? Toward a process view of host-parasite interactions

    PubMed Central

    Méthot, Pierre-Olivier; Alizon, Samuel

    2014-01-01

    Until quite recently and since the late 19th century, medical microbiology has been based on the assumption that some micro-organisms are pathogens and others are not. This binary view is now strongly criticized and is even becoming untenable. We first provide a historical overview of the changing nature of host-parasite interactions, in which we argue that large-scale sequencing not only shows that identifying the roots of pathogenesis is much more complicated than previously thought, but also forces us to reconsider what a pathogen is. To address the challenge of defining a pathogen in post-genomic science, we present and discuss recent results that embrace the microbial genetic diversity (both within- and between-host) and underline the relevance of microbial ecology and evolution. By analyzing and extending earlier work on the concept of pathogen, we propose pathogenicity (or virulence) should be viewed as a dynamical feature of an interaction between a host and microbes. PMID:25483864

  11. Insights into the Trypanosome-Host Interactions Revealed through Transcriptomic Analysis of Parasitized Tsetse Fly Salivary Glands

    PubMed Central

    Zhao, Xin; Savage, Amy F.; Regmi, Sandesh; e Silva, Thiago Luiz Alves; O'Neill, Michelle; Aksoy, Serap

    2014-01-01

    The agents of sleeping sickness disease, Trypanosoma brucei complex parasites, are transmitted to mammalian hosts through the bite of an infected tsetse. Information on tsetse-trypanosome interactions in the salivary gland (SG) tissue, and on mammalian infective metacyclic (MC) parasites present in the SG, is sparse. We performed RNA-seq analyses from uninfected and T. b. brucei infected SGs of Glossina morsitans morsitans. Comparison of the SG transcriptomes to a whole body fly transcriptome revealed that only 2.7% of the contigs are differentially expressed during SG infection, and that only 263 contigs (0.6%) are preferentially expressed in the SGs (SG-enriched). The expression of only 37 contigs (0.08%) and 27 SG-enriched contigs (10%) were suppressed in infected SG. These suppressed contigs accounted for over 55% of the SG transcriptome, and included the most abundant putative secreted proteins with anti-hemostatic functions present in saliva. In contrast, expression of putative host proteins associated with immunity, stress, cell division and tissue remodeling were enriched in infected SG suggesting that parasite infections induce host immune and stress response(s) that likely results in tissue renewal. We also performed RNA-seq analysis from mouse blood infected with the same parasite strain, and compared the transcriptome of bloodstream form (BSF) cells with that of parasites obtained from the infected SG. Over 30% of parasite transcripts are differentially regulated between the two stages, and reflect parasite adaptations to varying host nutritional and immune ecology. These differences are associated with the switch from an amino acid based metabolism in the SG to one based on glucose utilization in the blood, and with surface coat modifications that enable parasite survival in the different hosts. This study provides a foundation on the molecular aspects of the trypanosome dialogue with its tsetse and mammalian hosts, necessary for future functional investigations. PMID:24763140

  12. Interactions among host diet, nutritional status and gastrointestinal parasite infection in wild bovids

    USGS Publications Warehouse

    Ezenwa, V.O.

    2004-01-01

    In this study, I explored the interactions among host diet, nutritional status and gastrointestinal parasitism in wild bovids by examining temporal patterns of nematode faecal egg shedding in species with different diet types during a drought and non-drought year. Study species included three grass and roughage feeders (buffalo, hartebeest, waterbuck), four mixed or intermediate feeders (eland, Grant's gazelle, impala, Thomson's gazelle) and two concentrate selectors (dik-dik, klipspringer). Six out of the nine focal species had higher mean faecal egg counts in the drought year compared to the normal year, and over the course of the dry year, monthly faecal egg counts were correlated with drought intensity in four species with low-quality diets, but no such relationship was found for species with high-quality diets. Comparisons of dietary crude protein and faecal egg count in impala showed that during the dry season, individuals with high faecal egg counts (???1550 eggs/g of faeces) had significantly lower crude protein levels than individuals with low (0-500 eggs/g) or moderate (550-1500 eggs/g) egg counts. These results suggest that under drought conditions, species unable to maintain adequate nutrition, mainly low-quality feeders, are less able to cope with gastrointestinal parasite infections. In particular, during dry periods, reduced protein intake seems to be associated with declining resilience and resistance to infection. ?? 2003 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  13. Haemonchus contortus P-Glycoproteins Interact with Host Eosinophil Granules: A Novel Insight into the Role of ABC Transporters in Host-Parasite Interaction

    PubMed Central

    Issouf, Mohamed; Guégnard, Fabrice; Koch, Christine; Le Vern, Yves; Blanchard-Letort, Alexandra; Che, Hua; Beech, Robin N.; Kerboeuf, Dominique; Neveu, Cedric

    2014-01-01

    Eosinophils are one of the major mammalian effector cells encountered by helminths during infection. In the present study, we investigated the effects of eosinophil granule exposure on the sheep parasitic nematode Haemonchus contortus as a model. H. contortus eggs exposed to eosinophil granule products showed increased rhodamine 123 efflux and this effect was not due to loss of egg integrity. Rh123 is known to be a specific P-glycoprotein (Pgp) substrate and led to the hypothesis that in addition to their critical role in xenobiotic resistance, helminth ABC transporters such as Pgp may also be involved in the detoxification of host cytotoxic products. We showed by quantitative RT-PCR that, among nine different H. contortus Pgp genes, Hco-pgp-3, Hco-pgp-9.2, Hco-pgp-11 and, Hco-pgp-16 were specifically up-regulated in parasitic life stages suggesting a potential involvement of these Pgps in the detoxification of eosinophil granule products. Using exsheathed L3 larvae that mimic the first life stage in contact with the host, we demonstrated that eosinophil granules induced a dose dependent overexpression of Hco-pgp-3 and the closely related Hco-pgp-16. Taken together, our results provide the first evidence that a subset of helminth Pgps interact with, and could be involved in the detoxification of, host products. This opens the way for further studies aiming to explore the role of helminth Pgps in the host-parasite interaction, including evasion of the host immune response. PMID:24498376

  14. Getting What Is Served? Feeding Ecology Influencing Parasite-Host Interactions in Invasive Round Goby Neogobius melanostomus

    PubMed Central

    Emde, Sebastian; Kochmann, Judith; Kuhn, Thomas; Plath, Martin; Klimpel, Sven

    2014-01-01

    Freshwater ecosystems are increasingly impacted by alien invasive species which have the potential to alter various ecological interactions like predator-prey and host-parasite relationships. Here, we simultaneously examined predator-prey interactions and parasitization patterns of the highly invasive round goby (Neogobius melanostomus) in the rivers Rhine and Main in Germany. A total of 350 N. melanostomus were sampled between June and October 2011. Gut content analysis revealed a broad prey spectrum, partly reflecting temporal and local differences in prey availability. For the major food type (amphipods), species compositions were determined. Amphipod fauna consisted entirely of non-native species and was dominated by Dikerogammarus villosus in the Main and Echinogammarus trichiatus in the Rhine. However, the availability of amphipod species in the field did not reflect their relative abundance in gut contents of N. melanostomus. Only two metazoan parasites, the nematode Raphidascaris acus and the acanthocephalan Pomphorhynchus sp., were isolated from N. melanostomus in all months, whereas unionid glochidia were only detected in June and October in fish from the Main. To analyse infection pathways, we examined 17,356 amphipods and found Pomphorhynchus sp. larvae only in D. villosus in the river Rhine at a prevalence of 0.15%. Dikerogammarus villosus represented the most important amphipod prey for N. melanostomus in both rivers but parasite intensities differed between rivers, suggesting that final hosts (large predatory fishes) may influence host-parasite dynamics of N. melanostomus in its introduced range. PMID:25338158

  15. Getting what is served? Feeding ecology influencing parasite-host interactions in invasive round goby Neogobius melanostomus.

    PubMed

    Emde, Sebastian; Kochmann, Judith; Kuhn, Thomas; Plath, Martin; Klimpel, Sven

    2014-01-01

    Freshwater ecosystems are increasingly impacted by alien invasive species which have the potential to alter various ecological interactions like predator-prey and host-parasite relationships. Here, we simultaneously examined predator-prey interactions and parasitization patterns of the highly invasive round goby (Neogobius melanostomus) in the rivers Rhine and Main in Germany. A total of 350 N. melanostomus were sampled between June and October 2011. Gut content analysis revealed a broad prey spectrum, partly reflecting temporal and local differences in prey availability. For the major food type (amphipods), species compositions were determined. Amphipod fauna consisted entirely of non-native species and was dominated by Dikerogammarus villosus in the Main and Echinogammarus trichiatus in the Rhine. However, the availability of amphipod species in the field did not reflect their relative abundance in gut contents of N. melanostomus. Only two metazoan parasites, the nematode Raphidascaris acus and the acanthocephalan Pomphorhynchus sp., were isolated from N. melanostomus in all months, whereas unionid glochidia were only detected in June and October in fish from the Main. To analyse infection pathways, we examined 17,356 amphipods and found Pomphorhynchus sp. larvae only in D. villosus in the river Rhine at a prevalence of 0.15%. Dikerogammarus villosus represented the most important amphipod prey for N. melanostomus in both rivers but parasite intensities differed between rivers, suggesting that final hosts (large predatory fishes) may influence host-parasite dynamics of N. melanostomus in its introduced range. PMID:25338158

  16. Stage-Regulated GFP Expression in Trypanosoma cruzi: Applications from Host-Parasite Interactions to Drug Screening

    PubMed Central

    Pontello Rampazzo, Rita de Cássia; Lourenço, Édio Elígio; Fidêncio, Nilson José; Manhaes, Lauro; Probst, Christian Macagnan; Ávila, Andréa Rodrigues; Fragoso, Stenio Perdigão

    2013-01-01

    Trypanosoma cruzi is the etiological agent of Chagas disease, an illness that affects about 10 million people, mostly in South America, for which there is no effective treatment or vaccine. In this context, transgenic parasites expressing reporter genes are interesting tools for investigating parasite biology and host-parasite interactions, with a view to developing new strategies for disease prevention and treatment. We describe here the construction of a stably transfected fluorescent T. cruzi clone in which the GFP gene is integrated into the chromosome carrying the ribosomal cistron in T. cruzi Dm28c. This fluorescent T. cruzi produces detectable amounts of GFP only at replicative stages (epimastigote and amastigote), consistent with the larger amounts of GFP mRNA detected in these forms than in the non replicative trypomastigote stages. The fluorescence signal was also strongly correlated with the total number of parasites in T. cruzi cultures, providing a simple and rapid means of determining the growth inhibitory dose of anti-T.cruzi drugs in epimastigotes, by fluorometric microplate screening, and in amastigotes, by the flow cytometric quantification of T. cruzi-infected Vero cells. This fluorescent T. cruzi clone is, thus, an interesting tool for unbiased detection of the proliferating stages of the parasite, with multiple applications in the genetic analysis of T. cruzi, including analyses of host-parasite interactions, gene expression regulation and drug development. PMID:23840703

  17. Controlled Chaos of Polymorphic Mucins in a Metazoan Parasite (Schistosoma mansoni) Interacting with Its Invertebrate Host (Biomphalaria glabrata)

    PubMed Central

    Roger, Emmanuel; Grunau, Christoph; Pierce, Raymond J.; Hirai, Hirohisa; Gourbal, Benjamin; Galinier, Richard; Emans, Rémi; Cesari, Italo M.; Cosseau, Céline; Mitta, Guillaume

    2008-01-01

    Invertebrates were long thought to possess only a simple, effective and hence non-adaptive defence system against microbial and parasitic attacks. However, recent studies have shown that invertebrate immunity also relies on immune receptors that diversify (e.g. in echinoderms, insects and mollusks (Biomphalaria glabrata)). Apparently, individual or population-based polymorphism-generating mechanisms exists that permit the survival of invertebrate species exposed to parasites. Consequently, the generally accepted arms race hypothesis predicts that molecular diversity and polymorphism also exist in parasites of invertebrates. We investigated the diversity and polymorphism of parasite molecules (Schistosoma mansoni Polymorphic Mucins, SmPoMucs) that are key factors for the compatibility of schistosomes interacting with their host, the mollusc Biomphalaria glabrata. We have elucidated the complex cascade of mechanisms acting both at the genomic level and during expression that confer polymorphism to SmPoMuc. We show that SmPoMuc is coded by a multi-gene family whose members frequently recombine. We show that these genes are transcribed in an individual-specific manner, and that for each gene, multiple splice variants exist. Finally, we reveal the impact of this polymorphism on the SmPoMuc glycosylation status. Our data support the view that S. mansoni has evolved a complex hierarchical system that efficiently generates a high degree of polymorphism—a “controlled chaos”—based on a relatively low number of genes. This contrasts with protozoan parasites that generate antigenic variation from large sets of genes such as Trypanosoma cruzi, Trypanosoma brucei and Plasmodium falciparum. Our data support the view that the interaction between parasites and their invertebrate hosts are far more complex than previously thought. While most studies in this matter have focused on invertebrate host diversification, we clearly show that diversifying mechanisms also exist on the parasite side of the interaction. Our findings shed new light on how and why invertebrate immunity develops. PMID:19002242

  18. A combined parasitological molecular approach for noninvasive characterization of parasitic nematode communities in wild hosts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most hosts are concurrently or sequentially infected with multiple parasites, thus fully understanding interactions between individual parasite species and their hosts depends on accurate characterization of the parasite community. For parasitic nematodes, non-invasive methods for obtaining quantita...

  19. Interactions between secreted GRA proteins and host cell proteins across the parasitophorous vacuolar membrane in the parasitism of Toxoplasma gondii

    PubMed Central

    Ahn, Hye-Jin; Kim, Sehra; Kim, Hee-Eun

    2006-01-01

    Interactions between GRA proteins of dense granules in Toxoplasma gondii and host cell proteins were analyzed by yeast two-hybrid technique. The cMyc-GRA fusion proteins expressed from pGBKT7 plasmid in Y187 yeast were bound to host cell proteins from pGADT7-Rec-HeLa cDNA library transformed to AH109 yeast by mating method. By the selection procedures, a total of 939 colonies of the SD/-AHLT culture, 348 colonies of the X-?-gal positive and PCR, 157 colonies of the X-?-gal assay were chosen for sequencing the cDNA and finally 90 colonies containing ORF were selected to analyze the interactions. GRA proteins interacted with a variety of host cell proteins such as enzymes, structural and functional proteins of organellar proteins of broad spectrum. Several specific bindings of each GRA protein to host proteins were discussed presumptively the role of GRA proteins after secreting into the parasitophorous vacuoles (PV) and the PV membrane in the parasitism of this parasite. PMID:17170572

  20. Neuroimmunoendocrine modulation in the host by helminth parasites: a novel form of host-parasite coevolution?

    PubMed

    Escobedo, Galileo; López-Griego, Lorena; Morales-Montor, Jorge

    2009-01-01

    Helminth parasites have evolved diverse molecular mechanisms that facilitate their establishment, growth and reproduction inside an immunologically hostile environment. Thus, the physiological interactions during the course of the immune response to helminths are complex. Infection induces antigen-specific recognition by the immune system, which is consequently charged with the responsibility of marshalling the appropriate effector responses necessary to destroy the parasite, or at the very least inhibit its progression. Obviously, the immune system should accomplish this task while minimizing collateral damage to the host. As our understanding of the neuroendocrine system grows, it has become increasingly clear that this complex network of neurotransmitters, hormones, and cytokines plays an important role in mediating immunity. Helminths present an especially complex relationship between pathogen and these physiological systems, with hormonally dependent host factors such as sex and age correlated with parasite success. On top of the effect that this particular type of parasites may have on the invaded host, recent experimental evidence suggests that helminth parasites not only actively evade immune response, but are also able to exploit the hormonal microenvironment within their host to favor their establishment, growth and reproduction. This complex strategy of host-parasite relationship is much better exemplified by two helminth parasites: the trematode Schistosoma mansoni and the cestode Taenia crassiceps that respond to adrenal steroids and sexual steroids, respectively. Understanding how the host endocrine system can under certain circumstances favor the establishment of a parasitic infection opens interesting perspectives into the host-parasite relationship field. PMID:19212127

  1. Proceedings of the 4th International Workshop on Genetics of Host-Parasite Interactions in Forestry

    E-print Network

    mutualists that protect the host plant from pathogens and herbivores. Defensive mutualism appears to hold 5 Endophyte Mediated Plant-Herbivore Interactions or Cross Resistance to Fungi and Insect Herbivores Kari Saikkonen1 and Marjo Helander2 Abstract Endophytic fungi are generally considered to be plant

  2. The cytoskeleton and motor proteins of human schistosomes and their roles in surface maintenance and host-parasite interactions.

    PubMed

    Jones, Malcolm K; Gobert, Geoffrey N; Zhang, Lihua; Sunderland, Philip; McManus, Donald P

    2004-07-01

    Schistosomes are parasitic blood flukes, responsible for significant human disease in tropical and developing nations. Here we review information on the organization of the cytoskeleton and associated motor proteins of schistosomes, with particular reference to the organization of the syncytial tegument, a unique cellular adaptation of these and other neodermatan flatworms. Extensive EST databases show that the molecular constituents of the cytoskeleton and associated molecular systems are likely to be similar to those of other eukaryotes, although there are potentially some molecules unique to schistosomes and platyhelminths. The biology of some components, particular those contributing to host-parasite interactions as well as chemotherapy and immunotherapy are discussed. Unresolved questions in relation to the structure and function of the tegument relate to dynamic organization of the syncytial layer. PMID:15221857

  3. Comparing mechanisms of host manipulation across host and parasite taxa

    USGS Publications Warehouse

    Lafferty, Kevin D.; Shaw, Jenny C.

    2013-01-01

    Parasites affect host behavior in several ways. They can alter activity, microhabitats or both. For trophically transmitted parasites (the focus of our study), decreased activity might impair the ability of hosts to respond to final-host predators, and increased activity and altered microhabitat choice might increase contact rates between hosts and final-host predators. In an analysis of trophically transmitted parasites, more parasite groups altered activity than altered microhabitat choice. Parasites that infected vertebrates were more likely to impair the host’s reaction to predators, whereas parasites that infected invertebrates were more likely to increase the host’s contact with predators. The site of infection might affect how parasites manipulate their hosts. For instance, parasites in the central nervous system seem particularly suited to manipulating host behavior. Manipulative parasites commonly occupy the body cavity, muscles and central nervous systems of their hosts. Acanthocephalans in the data set differed from other taxa in that they occurred exclusively in the body cavity of invertebrates. In addition, they were more likely to alter microhabitat choice than activity. Parasites in the body cavity (across parasite types) were more likely to be associated with increased host contact with predators. Parasites can manipulate the host through energetic drain, but most parasites use more sophisticated means. For instance, parasites target four physiological systems that shape behavior in both invertebrates and vertebrates: neural, endocrine, neuromodulatory and immunomodulatory. The interconnections between these systems make it difficult to isolate specific mechanisms of host behavioral manipulation.

  4. When parasites disagree: Evidence for parasite-induced sabotage of host manipulation

    PubMed Central

    Hafer, Nina; Milinski, Manfred

    2015-01-01

    Host manipulation is a common parasite strategy to alter host behavior in a manner to enhance parasite fitness usually by increasing the parasite's transmission to the next host. In nature, hosts often harbor multiple parasites with agreeing or conflicting interests over host manipulation. Natural selection might drive such parasites to cooperation, compromise, or sabotage. Sabotage would occur if one parasite suppresses the manipulation of another. Experimental studies on the effect of multi-parasite interactions on host manipulation are scarce, clear experimental evidence for sabotage is elusive. We tested the effect of multiple infections on host manipulation using laboratory-bred copepods experimentally infected with the trophically transmitted tapeworm Schistocephalus solidus. This parasite is known to manipulate its host depending on its own developmental stage. Coinfecting parasites with the same aim enhance each other's manipulation but only after reaching infectivity. If the coinfecting parasites disagree over host manipulation, the infective parasite wins this conflict: the noninfective one has no effect. The winning (i.e., infective) parasite suppresses the manipulation of its noninfective competitor. This presents conclusive experimental evidence for both cooperation in and sabotage of host manipulation and hence a proof of principal that one parasite can alter and even neutralize manipulation by another. PMID:25643621

  5. Evidence of horizontal transfer of non-autonomous Lep1 Helitrons facilitated by host-parasite interactions.

    PubMed

    Guo, Xuezhu; Gao, Jingkun; Li, Fei; Wang, Jianjun

    2014-01-01

    Horizontal transfer (HT) of transposable elements has been recognized to be a major force driving genomic variation and biological innovation of eukaryotic organisms. However, the mechanisms of HT in eukaryotes remain poorly appreciated. The non-autonomous Helitron family, Lep1, has been found to be widespread in lepidopteran species, and showed little interspecific sequence similarity of acquired sequences at 3' end, which makes Lep1 a good candidate for the study of HT. In this study, we describe the Lep1-like elements in multiple non-lepidopteran species, including two aphids, Acyrthosiphon pisum and Aphis gossypii, two parasitoid wasps, Cotesia vestalis, and Copidosoma floridanum, one beetle, Anoplophora glabripennis, as well as two bracoviruses in parasitoid wasps, and one intracellular microsporidia parasite, Nosema bombycis. The patchy distribution and high sequence similarity of Lep1-like elements among distantly related lineages as well as incongruence of Lep1-like elements and host phylogeny suggest the occurrence of HT. Remarkably, the acquired sequences of both NbLep1 from N. bombycis and CfLep1 from C. floridanum showed over 90% identity with their lepidopteran host Lep1. Thus, our study provides evidence of HT facilitated by host-parasite interactions. Furthermore, in the context of these data, we discuss the putative directions and vectors of HT of Lep1 Helitrons. PMID:24874102

  6. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale.

    PubMed

    Striberny, Bernd; Krause, Kirsten

    2015-11-01

    The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas. PMID:26367804

  7. Missing links: testing the completeness of host-parasite checklists.

    PubMed

    Poulin, Robert; Besson, Anne A; Morin, Mathieu B; Randhawa, Haseeb S

    2016-01-01

    Host-parasite checklists are essential resources in ecological parasitology, and are regularly used as sources of data in comparative studies of parasite species richness across host species, or of host specificity among parasite species. However, checklists are only useful datasets if they are relatively complete, that is, close to capturing all host-parasite associations occurring in a particular region. Here, we use three approaches to assess the completeness of 25 checklists of metazoan parasites in vertebrate hosts from various geographic regions. First, treating checklists as interaction networks between a set of parasite species and a set of host species, we identify networks with a greater connectance (proportion of realized host-parasite associations) than expected for their size. Second, assuming that the cumulative rise over time in the number of known host-parasite associations in a region tends toward an asymptote as their discovery progresses, we attempt to extrapolate the estimated total number of existing associations. Third, we test for a positive correlation between the number of published reports mentioning an association and the time since its first record, which is expected because observing and reporting host-parasite associations are frequency-dependent processes. Overall, no checklist fared well in all three tests, and only three of 25 passed two of the tests. These results suggest that most checklists, despite being useful syntheses of regional host-parasite associations, cannot be used as reliable sources of data for comparative analyses. PMID:26549369

  8. From parasitism to mutualism: unexpected interactions between a cuckoo and its host.

    PubMed

    Canestrari, Daniela; Bolopo, Diana; Turlings, Ted C J; Röder, Gregory; Marcos, José M; Baglione, Vittorio

    2014-03-21

    Avian brood parasites lay eggs in the nests of other birds, which raise the unrelated chicks and typically suffer partial or complete loss of their own brood. However, carrion crows Corvus corone corone can benefit from parasitism by the great spotted cuckoo Clamator glandarius. Parasitized nests have lower rates of predation-induced failure due to production of a repellent secretion by cuckoo chicks, but among nests that are successful, those with cuckoo chicks fledge fewer crows. The outcome of these counterbalancing effects fluctuates between parasitism and mutualism each season, depending on the intensity of predation pressure. PMID:24653032

  9. Bursaphelenchus xylophilus: opportunities in comparative genomics and molecular host-parasite interactions.

    PubMed

    Jones, John T; Moens, Maurice; Mota, Manuel; Li, Hongmei; Kikuchi, Taisei

    2008-05-01

    Most Bursaphelenchus species are fungal feeding nematodes that colonize dead or dying trees. However, Bursaphelenchus xylophilus, the pine wood nematode, is also a pathogen of trees and is the causal agent of pine wilt disease. B. xylophilus is native to North America and here it causes little damage to trees. Where it is introduced to new regions it causes huge damage. The most severely affected areas are found in the Far East but more recently B. xylophilus has been introduced into Portugal and the potential for damage here is also high. As incidence and severity of pine wilt disease are linked to temperature we suggest that climate change is likely to exacerbate the problems caused by B. xylophilus and, in addition, will extend (northwards in Europe) the range in which pine wilt disease can occur. Here we review what is currently known about the interactions of B. xylophilus with its hosts, including recent developments in our understanding of the molecular biology of pathogenicity in the nematode. We also examine the potential developments that could be made by more widespread use of genomics tools to understand interactions between B. xylophilus, bacterial pathogens that have been implicated in disease and host trees. PMID:18705876

  10. Host social behavior and parasitic infection: A multifactorial approach

    USGS Publications Warehouse

    Ezenwa, V.O.

    2004-01-01

    I examined associations between several components of host social organization, including group size and gregariousness, group stability, territoriality and social class, and gastrointestinal parasite load in African bovids. At an intraspecific level, group size was positively correlated with parasite prevalence, but only when the parasite was relatively host specific and only among host species living in stable groups. Social class was also an important predictor of infection rates. Among gazelles, territorial males had higher parasite intensities than did either bachelor males or females and juveniles, suggesting that highly territorial individuals may be either more exposed or more susceptible to parasites. Associations among territoriality, grouping, and parasitism were also found across taxa. Territorial host genera were more likely to be infected with strongyle nematodes than were nonterritorial hosts, and gregarious hosts were more infected than were solitary hosts. Analyses also revealed that gregariousness and territoriality had an interactive effect on individual parasite richness, whereby hosts with both traits harbored significantly more parasite groups than did hosts with only one or neither trait. Overall, study results indicate that multiple features of host social behavior influence infection risk and suggest that synergism between traits also has important effects on host parasite load.

  11. Watermite Parasitism of Corixidae: Infection Parameters, Larval Mite Growth, Competitive Interaction and Host Response

    E-print Network

    McCarthy, T.K.

    -148. Parasitism of four corixid species in Lough Corrib, western Ireland, by larval water- mites of the genera bugs. Increased feeding by parasitised C. bonsdorfi may have been an attempt to compensate water- The aim of this paper is to describe the parasitic phase mites (Acari: Hydrachnellae

  12. Evolution of host specificity in monogeneans parasitizing African cichlid fish

    PubMed Central

    2014-01-01

    Background The patterns and processes linked to the host specificity of parasites represent one of the central themes in the study of host-parasite interactions. We investigated the evolution and determinants of host specificity in gill monogeneans of Cichlidogyrus and Scutogyrus species parasitizing African freshwater fish of Cichlidae. Methods We analyzed (1) the link between host specificity and parasite phylogeny, (2) potential morphometric correlates of host specificity (i.e. parasite body size and the morphometrics of the attachment apparatus), and (3) potential determinants of host specificity following the hypothesis of ecological specialization and the hypothesis of specialization on predictable resources (i.e. host body size and longevity were considered as measures of host predictability), and (4) the role of brooding behavior of cichlids in Cichlidogyrus and Scutogyrus diversification. Results No significant relationships were found between host specificity and phylogeny of Cichlidogyrus and Scutogyrus species. The mapping of host specificity onto the parasite phylogenetic tree revealed that an intermediate specialist parasitizing congeneric cichlid hosts represents the ancestral state for the Cichlidogyrus/Scutogyrus group. Only a weak relationship was found between the morphometry of the parasites’ attachment apparatus and host specificity. Our study did not support the specialization on predictable resources or ecological specialization hypotheses. Nevertheless, host specificity was significantly related to fish phylogeny and form of parental care. Conclusions Our results confirm that host specificity is not a derived condition for Cichlidogyrus/Scutogyrus parasites and may reflect other than historical constraints. Attachment apparatus morphometry reflects only partially (if at all) parasite adaptation to the host species, probably because of the morphological similarity of rapidly evolved cichlids (analyzed in our study). However, we showed that parental care behavior of cichlids may play an important role linked to host specificity of Cichlidogyrus/Scutogyrus parasites. PMID:24529542

  13. Fundamental Factors Determining the Nature of Parasite Aggregation in Hosts

    PubMed Central

    Gourbière, Sébastien; Morand, Serge; Waxman, David

    2015-01-01

    The distribution of parasites in hosts is typically aggregated: a few hosts harbour many parasites, while the remainder of hosts are virtually parasite free. The origin of this almost universal pattern is central to our understanding of host-parasite interactions; it affects many facets of their ecology and evolution. Despite this, the standard statistical framework used to characterize parasite aggregation does not describe the processes generating such a pattern. In this work, we have developed a mathematical framework for the distribution of parasites in hosts, starting from a simple statistical description in terms of two fundamental processes: the exposure of hosts to parasites and the infection success of parasites. This description allows the level of aggregation of parasites in hosts to be related to the random variation in these two processes and to true host heterogeneity. We show that random variation can generate an aggregated distribution and that the common view, that encounters and success are two equivalent filters, applies to the average parasite burden under neutral assumptions but it does not apply to the variance of the parasite burden, and it is not true when heterogeneity between hosts is incorporated in the model. We find that aggregation decreases linearly with the number of encounters, but it depends non-linearly on parasite success. We also find additional terms in the variance of the parasite burden which contribute to the actual level of aggregation in specific biological systems. We have derived the formal expressions of these contributions, and these provide new opportunities to analyse empirical data and tackle the complexity of the origin of aggregation in various host-parasite associations. PMID:25689685

  14. Parasites gained: alien parasites switching to native hosts.

    PubMed

    El-Rashidy, Hoda H; Boxshall, Geoff A

    2009-12-01

    Three parasitic copepods new to the well-studied Mediterranean fauna are reported. Two of them, Mitrapus oblongus (Pillai, 1964) and Clavellisa ilishae Pillai, 1962, are of Indo-Pacific origin and are considered here to have co-invaded the Mediterranean through the Suez Canal on Erythrean (Red Sea) immigrant hosts. Both are reported here from native Mediterranean clupeid fish hosts; this is the first evidence of host switching of any metazoan parasites from Erythrean immigrants to native fish hosts. The third parasite, Nothobomolochus fradei Marques, 1965, was previously known from the Gulf of Guinea and the Arabian Gulf. Possible explanations of its presence on clupeid hosts in Egyptian waters off Alexandria are discussed. The parasite utilizes an Erythrean immigrant clupeid and a native Mediterranean species as hosts. This account provides evidence of parasite and host faunal mixing on an unexpected scale. PMID:19642811

  15. Host and parasite diversity jointly control disease risk in complex communities

    E-print Network

    Johnson, Pieter

    Host and parasite diversity jointly control disease risk in complex communities Pieter T. J, Berkeley, CA, and approved September 10, 2013 (received for review June 3, 2013) Host­parasite interactions parasites. To date, however, surprisingly few studies have explored the joint effects of host and parasite

  16. Potential Parasite Transmission in Multi-Host Networks Based on Parasite Sharing

    PubMed Central

    Pilosof, Shai; Morand, Serge; Krasnov, Boris R.; Nunn, Charles L.

    2015-01-01

    Epidemiological networks are commonly used to explore dynamics of parasite transmission among individuals in a population of a given host species. However, many parasites infect multiple host species, and thus multi-host networks may offer a better framework for investigating parasite dynamics. We investigated the factors that influence parasite sharing – and thus potential transmission pathways – among rodent hosts in Southeast Asia. We focused on differences between networks of a single host species and networks that involve multiple host species. In host-parasite networks, modularity (the extent to which the network is divided into subgroups of rodents that interact with similar parasites) was higher in the multi-species than in the single-species networks. This suggests that phylogeny affects patterns of parasite sharing, which was confirmed in analyses showing that it predicted affiliation of individuals to modules. We then constructed “potential transmission networks” based on the host-parasite networks, in which edges depict the similarity between a pair of individuals in the parasites they share. The centrality of individuals in these networks differed between multi- and single-species networks, with species identity and individual characteristics influencing their position in the networks. Simulations further revealed that parasite dynamics differed between multi- and single-species networks. We conclude that multi-host networks based on parasite sharing can provide new insights into the potential for transmission among hosts in an ecological community. In addition, the factors that determine the nature of parasite sharing (i.e. structure of the host-parasite network) may impact transmission patterns. PMID:25748947

  17. Repeated targeting of the same hosts by a brood parasite compromises host egg rejection.

    PubMed

    Stevens, Martin; Troscianko, Jolyon; Spottiswoode, Claire N

    2013-01-01

    Cuckoo eggs famously mimic those of their foster parents to evade rejection from discriminating hosts. Here we test whether parasites benefit by repeatedly parasitizing the same host nest. This should make accurate rejection decisions harder, regardless of the mechanism that hosts use to identify foreign eggs. Here we find strong support for this prediction in the African tawny-flanked prinia (Prinia subflava), the most common host of the cuckoo finch (Anomalospiza imberbis). We show experimentally that hosts reject eggs that differ from an internal template, but crucially, as the proportion of foreign eggs increases, hosts are less likely to reject them and require greater differences in appearance to do so. Repeated parasitism by the same cuckoo finch female is common in host nests and likely to be an adaptation to increase the probability of host acceptance. Thus, repeated parasitism interacts with egg mimicry to exploit cognitive and sensory limitations in host defences. PMID:24064931

  18. Parasite predators exhibit a rapid numerical response to increased parasite abundance and reduce transmission to hosts

    PubMed Central

    Hopkins, Skylar R; Wyderko, Jennie A; Sheehy, Robert R; Belden, Lisa K; Wojdak, Jeremy M

    2013-01-01

    Predators of parasites have recently gained attention as important parts of food webs and ecosystems. In aquatic systems, many taxa consume free-living stages of parasites, and can thus reduce parasite transmission to hosts. However, the importance of the functional and numerical responses of parasite predators to disease dynamics is not well understood. We collected host–parasite–predator cooccurrence data from the field, and then experimentally manipulated predator abundance, parasite abundance, and the presence of alternative prey to determine the consequences for parasite transmission. The parasite predator of interest was a ubiquitous symbiotic oligochaete of mollusks, Chaetogaster limnaei limnaei, which inhabits host shells and consumes larval trematode parasites. Predators exhibited a rapid numerical response, where predator populations increased or decreased by as much as 60% in just 5 days, depending on the parasite:predator ratio. Furthermore, snail infection decreased substantially with increasing parasite predator densities, where the highest predator densities reduced infection by up to 89%. Predators of parasites can play an important role in regulating parasite transmission, even when infection risk is high, and especially when predators can rapidly respond numerically to resource pulses. We suggest that these types of interactions might have cascading effects on entire disease systems, and emphasize the importance of considering disease dynamics at the community level. PMID:24340184

  19. Host preference of an introduced `generalist' parasite for a non-native Victor M. Frankel a,b,

    E-print Network

    Hendry, Andrew

    Host preference of an introduced `generalist' parasite for a non-native host Victor M. Frankel a 2015 Accepted 16 March 2015 Available online 6 June 2015 Keywords: Host­parasite interactions Biological invasions Host range Host preference Host specificity Introduced parasites Trematode Cichlid a b

  20. Host–parasite behavioral interactions in a recently introduced, whooping crane population

    USGS Publications Warehouse

    King, Richard S.; McKann, Patrick C.; Gray, Brian R.; Putnam, Michael S.

    2015-01-01

    The whooping crane Grus americana has a long conservation history, but despite multiple attempts across North America, introduction success is lacking. Recently introduced, captively reared whooping cranes have had periods of poor reproductive performance in central Wisconsin that sometimes coincided with black fly (Diptera: Simuliidae) emergences. Sandhill crane Grus canadensis reproductive performance in central Wisconsin is approximately double that of whooping cranes. We used comfort behaviors as a measure of black fly harassment to infer whether behavioral differences existed between nesting sandhill cranes and nesting whooping cranes and between successful and unsuccessful whooping crane pairs. To further explore the interaction between black flies and incubating whooping cranes, we examined differences in behaviors between incubating birds and their off-nest mates. Compared to their off-nest mates, incubating whooping cranes exhibited elevated comfort behaviors, suggesting a bird at a nest may experience greater harassment from black flies. Sandhill cranes had elevated head-flicks over whooping cranes. Whooping cranes exhibited more head-rubs than sandhill cranes, and successful whooping crane pairs had elevated head-rubs over pairs that deserted their nests. Behavioral differences between sandhill cranes and whooping cranes as well as differences in reproductive performance, could be explained by exposure to local breeding conditions. Whereas sandhill cranes have nested in the area for hundreds, if not thousands, of years, whooping cranes were only recently introduced to the area. Behavioral differences between the species as well as those between successful and unsuccessful whooping crane pairs could also be explained by the effect of captive exposure, which could affect all whooping crane introductions.

  1. Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    PubMed Central

    2013-01-01

    Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor ?-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor ?-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions. PMID:23302495

  2. Host diversity begets parasite diversity: Bird final hosts and trematodes in snail intermediate hosts

    USGS Publications Warehouse

    Hechinger, R.F.; Lafferty, K.D.

    2005-01-01

    An unappreciated facet of biodiversity is that rich communities and high abundance may foster parasitism. For parasites that sequentially use different host species throughout complex life cycles, parasite diversity and abundance in 'downstream' hosts should logically increase with the diversity and abundance of 'upstream' hosts (which carry the preceding stages of parasites). Surprisingly, this logical assumption has little empirical support, especially regarding metazoan parasites. Few studies have attempted direct tests of this idea and most have lacked the appropriate scale of investigation. In two different studies, we used time-lapse videography to quantify birds at fine spatial scales, and then related bird communities to larval trematode communities in snail populations sampled at the same small spatial scales. Species richness, species heterogeneity and abundance of final host birds were positively correlated with species richness, species heterogeneity and abundance of trematodes in host snails. Such community-level interactions have rarely been demonstrated and have implications for community theory, epidemiological theory and ecosystem management. ?? 2005 The Royal Society.

  3. Echinococcus multilocularis phosphoglucose isomerase (EmPGI): a glycolytic enzyme involved in metacestode growth and parasite-host cell interactions.

    PubMed

    Stadelmann, Britta; Spiliotis, Markus; Müller, Joachim; Scholl, Sabrina; Müller, Norbert; Gottstein, Bruno; Hemphill, Andrew

    2010-11-01

    In Echinococcus multilocularis metacestodes, the surface-associated and highly glycosylated laminated layer, and molecules associated with this structure, is believed to be involved in modulating the host-parasite interface. We report on the molecular and functional characterisation of E. multilocularis phosphoglucose isomerase (EmPGI), which is a component of this laminated layer. The EmPGI amino acid sequence is virtually identical to that of its homologue in Echinococcus granulosus, and shares 64% identity and 86% similarity with human PGI. Mammalian PGI is a multi-functional protein which, besides its glycolytic function, can also act as a cytokine, growth factor and inducer of angiogenesis, and plays a role in tumour growth, development and metastasis formation. Recombinant EmPGI (recEmPGI) is also functionally active as a glycolytic enzyme and was found to be present, besides the laminated layer, in vesicle fluid and in germinal layer cell extracts. EmPGI is released from metacestodes and induces a humoral immune response in experimentally infected mice, and vaccination of mice with recEmPGI renders these mice more resistant towards secondary challenge infection, indicating that EmPGI plays an important role in parasite development and/or in modulating the host-parasite relationship. We show that recEmPGI stimulates the growth of isolated E. multilocularis germinal layer cells in vitro and selectively stimulates the proliferation of bovine adrenal cortex endothelial cells but not of human fibroblasts and rat hepatocytes. Thus, besides its role in glycolysis, EmPGI could also act as a factor that stimulates parasite growth and potentially induces the formation of novel blood vessels around the developing metacestode in vivo. PMID:20600070

  4. Parasitism and phenotypic change in colonial hosts.

    PubMed

    Hartikainen, Hanna; Fontes, Inês; Okamura, Beth

    2013-09-01

    Changes in host phenotype are often attributed to manipulation that enables parasites to complete trophic transmission cycles. We characterized changes in host phenotype in a colonial host–endoparasite system that lacks trophic transmission (the freshwater bryozoan Fredericella sultana and myxozoan parasite Tetracapsuloides bryosalmonae). We show that parasitism exerts opposing phenotypic effects at the colony and module levels. Thus, overt infection (the development of infectious spores in the host body cavity) was linked to a reduction in colony size and growth rate, while colony modules exhibited a form of gigantism. Larger modules may support larger parasite sacs and increase metabolite availability to the parasite. Host metabolic rates were lower in overtly infected relative to uninfected hosts that were not investing in propagule production. This suggests a role for direct resource competition and active parasite manipulation (castration) in driving the expression of the infected phenotype. The malformed offspring (statoblasts) of infected colonies had greatly reduced hatching success. Coupled with the severe reduction in statoblast production this suggests that vertical transmission is rare in overtly infected modules. We show that although the parasite can occasionally infect statoblasts during overt infections, no infections were detected in the surviving mature offspring, suggesting that during overt infections, horizontal transmission incurs a trade-off with vertical transmission. PMID:23965820

  5. Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite

    E-print Network

    Yoder, John I.

    Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression Honaas et al. Honaas et al. BMC Plant genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host

  6. Host-parasite network structure is associated with community-level immunogenetic diversity.

    PubMed

    Pilosof, Shai; Fortuna, Miguel A; Cosson, Jean-François; Galan, Maxime; Kittipong, Chaisiri; Ribas, Alexis; Segal, Eran; Krasnov, Boris R; Morand, Serge; Bascompte, Jordi

    2014-01-01

    Genes of the major histocompatibility complex (MHC) encode proteins that recognize foreign antigens and are thus crucial for immune response. In a population of a single host species, parasite-mediated selection drives MHC allelic diversity. However, in a community-wide context, species interactions may modulate selection regimes because the prevalence of a given parasite in a given host may depend on its prevalence in other hosts. By combining network analysis with immunogenetics, we show that host species infected by similar parasites harbour similar alleles with similar frequencies. We further show, using a Bayesian approach, that the probability of mutual occurrence of a functional allele and a parasite in a given host individual is nonrandom and depends on other host-parasite interactions, driving co-evolution within subgroups of parasite species and functional alleles. Therefore, indirect effects among hosts and parasites can shape host MHC diversity, scaling it from the population to the community level. PMID:25312328

  7. The Interaction of Classical Complement Component C1 with Parasite and Host Calreticulin Mediates Trypanosoma cruzi Infection of Human Placenta

    PubMed Central

    Castillo, Christian; Ramírez, Galia; Valck, Carolina; Aguilar, Lorena; Maldonado, Ismael; Rosas, Carlos; Galanti, Norbel; Kemmerling, Ulrike; Ferreira, Arturo

    2013-01-01

    Background 9 million people are infected with Trypanosoma cruzi in Latin America, plus more than 300,000 in the United States, Canada, Europe, Australia, and Japan. Approximately 30% of infected individuals develop circulatory or digestive pathology. While in underdeveloped countries transmission is mainly through hematophagous arthropods, transplacental infection prevails in developed ones. Methodology/Principal Findings During infection, T. cruzi calreticulin (TcCRT) translocates from the endoplasmic reticulum to the area of flagellum emergence. There, TcCRT acts as virulence factor since it binds maternal classical complement component C1q that recognizes human calreticulin (HuCRT) in placenta, with increased parasite infectivity. As measured ex vivo by quantitative PCR in human placenta chorionic villi explants (HPCVE) (the closest available correlate of human congenital T. cruzi infection), C1q mediated up to a 3–5-fold increase in parasite load. Because anti-TcCRT and anti-HuCRT F(ab?)2 antibody fragments are devoid of their Fc-dependent capacity to recruit C1q, they reverted the C1q-mediated increase in parasite load by respectively preventing its interaction with cell-bound CRTs from both parasite and HPCVE origins. The use of competing fluid-phase recombinant HuCRT and F(ab?)2 antibody fragments anti-TcCRT corroborated this. These results are consistent with a high expression of fetal CRT on placental free chorionic villi. Increased C1q-mediated infection is paralleled by placental tissue damage, as evidenced by histopathology, a damage that is ameliorated by anti-TcCRT F(ab?)2 antibody fragments or fluid-phase HuCRT. Conclusions/Significance T. cruzi infection of HPCVE is importantly mediated by human and parasite CRTs and C1q. Most likely, C1q bridges CRT on the parasite surface with its receptor orthologue on human placental cells, thus facilitating the first encounter between the parasite and the fetal derived placental tissue. The results presented here have several potential translational medicine aspects, specifically related with the capacity of antibody fragments to inhibit the C1q/CRT interactions and thus T. cruzi infectivity. PMID:23991234

  8. Evans Blue Staining Reveals Vascular Leakage Associated with Focal Areas of Host-Parasite Interaction in Brains of Pigs Infected with Taenia solium

    PubMed Central

    Paredes, Adriana; Cangalaya, Carla; Rivera, Andrea; Gonzalez, Armando E.; Mahanty, Siddhartha; Garcia, Hector H.; Nash, Theodore E.

    2014-01-01

    Cysticidal drug treatment of viable Taenia solium brain parenchymal cysts leads to an acute pericystic host inflammatory response and blood brain barrier breakdown (BBB), commonly resulting in seizures. Naturally infected pigs, untreated or treated one time with praziquantel were sacrificed at 48 hr and 120 hr following the injection of Evans blue (EB) to assess the effect of treatment on larval parasites and surrounding tissue. Examination of harvested non encapsulated muscle cysts unexpectedly revealed one or more small, focal round region(s) of Evans blue dye infiltration (REBI) on the surface of otherwise non dye-stained muscle cysts. Histopathological analysis of REBI revealed focal areas of eosinophil-rich inflammatory infiltrates that migrated from the capsule into the tegument and internal structures of the parasite. In addition some encapsulated brain cysts, in which the presence of REBI could not be directly assessed, showed histopathology identical to that of the REBI. Muscle cysts with REBI were more frequent in pigs that had received praziquantel (6.6% of 3736 cysts; n?=?6 pigs) than in those that were untreated (0.2% of 3172 cysts; n?=?2 pigs). Similar results were found in the brain, where 20.7% of 29 cysts showed histopathology identical to muscle REBI cysts in praziquantel-treated pigs compared to the 4.3% of 47 cysts in untreated pigs. Closer examination of REBI infiltrates showed that EB was taken up only by eosinophils, a major component of the cellular infiltrates, which likely explains persistence of EB in the REBI. REBI likely represent early damaging host responses to T. solium cysts and highlight the focal nature of this initial host response and the importance of eosinophils at sites of host-parasite interaction. These findings suggest new avenues for immunomodulation to reduce inflammatory side effects of anthelmintic therapy. PMID:24915533

  9. Maintenance of host variation in tolerance to pathogens and parasites

    E-print Network

    White, Andrew

    growth rate (``fighting the parasite''), resistance reduces parasite prevalence. Resistance genesMaintenance of host variation in tolerance to pathogens and parasites A. Besta,1 , A. Whiteb and resistance provide hosts with two distinct defense strategies against parasitism. In resistance the hosts

  10. Deviance partitioning of host factors affecting parasitization in the European brown hare ( Lepus europaeus)

    NASA Astrophysics Data System (ADS)

    Alzaga, Vanesa; Tizzani, Paolo; Acevedo, Pelayo; Ruiz-Fons, Francisco; Vicente, Joaquín; Gortázar, Christian

    2009-10-01

    Deviance partitioning can provide new insights into the ecology of host-parasite interactions. We studied the host-related factors influencing parasite prevalence, abundance, and species richness in European brown hares ( Lepus europaeus) from northern Spain. We defined three groups of explanatory variables: host environment, host population, and individual factors. We hypothesised that parasite infection rates and species richness were determined by different host-related factors depending on the nature of the parasite (endo- or ectoparasite, direct or indirect life cycle). To assess the relative importance of these components, we used deviance partitioning, an innovative approach. The explained deviance (ED) was higher for parasite abundance models, followed by those of prevalence and then by species richness, suggesting that parasite abundance models may best describe the host factors influencing parasitization. Models for parasites with a direct life cycle yielded higher ED values than those for indirect life cycle ones. As a general trend, host individual factors explained the largest proportion of the ED, followed by host environmental factors and, finally, the interaction between host environmental and individual factors. Similar hierarchies were found for parasite prevalence, abundance, and species richness. Individual factors comprised the most relevant group of explanatory variables for both types of parasites. However, host environmental factors were also relevant in models for indirect life-cycle parasites. These findings are consistent with the idea of the host as the main habitat of the parasite; whereas, for indirect life-cycle parasites, transmission would be also modulated by environmental conditions. We suggest that parasitization can be used not only as an indicator of individual fitness but also as an indicator of environmental quality for the host. This research underlines the importance of monitoring parasite rates together with environmental, population, and host factors.

  11. Host range, host ecology, and distribution of more than 11800 fish parasite species

    USGS Publications Warehouse

    Strona, Giovanni; Palomares, Maria Lourdes D.; Bailly, Nicholas; Galli, Paolo; Lafferty, Kevin D.

    2013-01-01

    Our data set includes 38?008 fish parasite records (for Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda) compiled from the scientific literature, Internet databases, and museum collections paired to the corresponding host ecological, biogeographical, and phylogenetic traits (maximum length, growth rate, life span, age at maturity, trophic level, habitat preference, geographical range size, taxonomy). The data focus on host features, because specific parasite traits are not consistently available across records. For this reason, the data set is intended as a flexible resource able to extend the principles of ecological niche modeling to the host–parasite system, providing researchers with the data to model parasite niches based on their distribution in host species and the associated host features. In this sense, the database offers a framework for testing general ecological, biogeographical, and phylogenetic hypotheses based on the identification of hosts as parasite habitat. Potential applications of the data set are, for example, the investigation of species–area relationships or the taxonomic distribution of host-specificity. The provided host–parasite list is that currently used by Fish Parasite Ecology Software Tool (FishPEST, http://purl.oclc.org/fishpest), which is a website that allows researchers to model several aspects of the relationships between fish parasites and their hosts. The database is intended for researchers who wish to have more freedom to analyze the database than currently possible with FishPEST. However, for readers who have not seen FishPEST, we recommend using this as a starting point for interacting with the database.

  12. Gene expression differences underlying genotype-by-genotype specificity in a host–parasite system

    PubMed Central

    Barribeau, Seth M.; Sadd, Ben M.; du Plessis, Louis; Schmid-Hempel, Paul

    2014-01-01

    In many systems, host–parasite evolutionary dynamics have led to the emergence and maintenance of diverse parasite and host genotypes within the same population. Genotypes vary in key attributes: Parasite genotypes vary in ability to infect, host genotypes vary in susceptibility, and infection outcome is frequently the result of both parties’ genotypic identities. These host–parasite genotype-by-genotype (GH × GP) interactions influence evolutionary and ecological dynamics in important ways. Interactions can be produced through genetic variation; however, here, we assess the role of variable gene expression as an additional source of GH × GP interactions. The bumblebee Bombus terrestris and its trypanosome gut parasite Crithidia bombi are a model system for host–parasite matching. Full-transcriptome sequencing of the bumblebee host revealed that different parasite genotypes indeed induce fundamentally different host expression responses and host genotypes vary in their responses to the infecting parasite genotype. It appears that broadly and successfully infecting parasite genotypes lead to reduced host immune gene expression relative to unexposed bees but induce the expression of genes responsible for controlling gene expression. Contrastingly, a poorly infecting parasite genotype induced the expression of immunologically important genes, including antimicrobial peptides. A targeted expression assay confirmed the transcriptome results and also revealed strong host genotype effects. In all, the expression of a number of genes depends on the host genotype and the parasite genotype and the interaction between both host and parasite genotypes. These results suggest that alongside sequence variation in coding immunological genes, variation that controls immune gene expression can also produce patterns of host–parasite specificity. PMID:24550506

  13. In vitro modeling of host-parasite interactions: the 'subgingival' biofilm challenge of primary human epithelial cells

    PubMed Central

    2009-01-01

    Background Microbial biofilms are known to cause an increasing number of chronic inflammatory and infectious conditions. A classical example is chronic periodontal disease, a condition initiated by the subgingival dental plaque biofilm on gingival epithelial tissues. We describe here a new model that permits the examination of interactions between the bacterial biofilm and host cells in general. We use primary human gingival epithelial cells (HGEC) and an in vitro grown biofilm, comprising nine frequently studied and representative subgingival plaque bacteria. Results We describe the growth of a mature 'subgingival' in vitro biofilm, its composition during development, its ability to adapt to aerobic conditions and how we expose in vitro a HGEC monolayer to this biofilm. Challenging the host derived HGEC with the biofilm invoked apoptosis in the epithelial cells, triggered release of pro-inflammatory cytokines and in parallel induced rapid degradation of the cytokines by biofilm-generated enzymes. Conclusion We developed an experimental in vitro model to study processes taking place in the gingival crevice during the initiation of inflammation. The new model takes into account that the microbial challenge derives from a biofilm community and not from planktonically cultured bacterial strains. It will facilitate easily the introduction of additional host cells such as neutrophils for future biofilm:host cell challenge studies. Our methodology may generate particular interest, as it should be widely applicable to other biofilm-related chronic inflammatory diseases. PMID:20043840

  14. Social learning of a brood parasite by its host.

    PubMed

    Feeney, William E; Langmore, Naomi E

    2013-08-23

    Arms races between brood parasites and their hosts provide model systems for studying the evolutionary repercussions of species interactions. However, how naive hosts identify brood parasites as enemies remains poorly understood, despite its ecological and evolutionary significance. Here, we investigate whether young, cuckoo-naive superb fairy-wrens, Malurus cyaneus, can learn to recognize cuckoos as a threat through social transmission of information. Naive individuals were initially unresponsive to a cuckoo specimen, but after observing conspecifics mob a cuckoo, they made more whining and mobbing alarm calls, and spent more time physically mobbing the cuckoo. This is the first direct evidence that naive hosts can learn to identify brood parasites as enemies via social learning. PMID:23760171

  15. Social learning of a brood parasite by its host

    PubMed Central

    Feeney, William E.; Langmore, Naomi E.

    2013-01-01

    Arms races between brood parasites and their hosts provide model systems for studying the evolutionary repercussions of species interactions. However, how naive hosts identify brood parasites as enemies remains poorly understood, despite its ecological and evolutionary significance. Here, we investigate whether young, cuckoo-naive superb fairy-wrens, Malurus cyaneus, can learn to recognize cuckoos as a threat through social transmission of information. Naive individuals were initially unresponsive to a cuckoo specimen, but after observing conspecifics mob a cuckoo, they made more whining and mobbing alarm calls, and spent more time physically mobbing the cuckoo. This is the first direct evidence that naive hosts can learn to identify brood parasites as enemies via social learning. PMID:23760171

  16. The evolutionary dynamics of variant antigen genes in Babesia reveal a history of genomic innovation underlying host–parasite interaction

    PubMed Central

    Jackson, Andrew P.; Otto, Thomas D.; Darby, Alistair; Ramaprasad, Abhinay; Xia, Dong; Echaide, Ignacio Eduardo; Farber, Marisa; Gahlot, Sunayna; Gamble, John; Gupta, Dinesh; Gupta, Yask; Jackson, Louise; Malandrin, Laurence; Malas, Tareq B.; Moussa, Ehab; Nair, Mridul; Reid, Adam J.; Sanders, Mandy; Sharma, Jyotsna; Tracey, Alan; Quail, Mike A.; Weir, William; Wastling, Jonathan M.; Hall, Neil; Willadsen, Peter; Lingelbach, Klaus; Shiels, Brian; Tait, Andy; Berriman, Matt; Allred, David R.; Pain, Arnab

    2014-01-01

    Babesia spp. are tick-borne, intraerythrocytic hemoparasites that use antigenic variation to resist host immunity, through sequential modification of the parasite-derived variant erythrocyte surface antigen (VESA) expressed on the infected red blood cell surface. We identified the genomic processes driving antigenic diversity in genes encoding VESA (ves1) through comparative analysis within and between three Babesia species, (B. bigemina, B. divergens and B. bovis). Ves1 structure diverges rapidly after speciation, notably through the evolution of shortened forms (ves2) from 5? ends of canonical ves1 genes. Phylogenetic analyses show that ves1 genes are transposed between loci routinely, whereas ves2 genes are not. Similarly, analysis of sequence mosaicism shows that recombination drives variation in ves1 sequences, but less so for ves2, indicating the adoption of different mechanisms for variation of the two families. Proteomic analysis of the B. bigemina PR isolate shows that two dominant VESA1 proteins are expressed in the population, whereas numerous VESA2 proteins are co-expressed, consistent with differential transcriptional regulation of each family. Hence, VESA2 proteins are abundant and previously unrecognized elements of Babesia biology, with evolutionary dynamics consistently different to those of VESA1, suggesting that their functions are distinct. PMID:24799432

  17. The host-parasite neuroimmunoendocrine network in schistosomiasis: consequences to the host and the parasite.

    PubMed

    Morales-Montor, J; Hall, C A

    2007-12-01

    The physiological interactions during the course of any immune response are complex. Infection induces antigen-specific recognition by the immune system, which is consequently charged with the responsibility of marshalling the appropriate effector responses necessary to destroy the pathogen, or at the very least inhibit its progression. Obviously, the immune system should accomplish this while minimizing collateral damage to the host or it risks, winning a Pyrrhic victory. As our understanding of the neuroendocrine system grows, it has become increasingly clear that this complex network of neurotransmitters, hormones and cytokines plays an important role in mediating immunity. Schistosomes present an especially complex relationship between pathogen and these physiological systems, with hormonally dependent host factors such as sex and age correlated with parasite success. In this report, we review the current literature on sex and age associations between infection and progression of disease. We then follow with a discussion on interactions between the host neuroendocrine and immune systems. We also speculate on strategies to apply this knowledge to novel treatment strategies. Results argue for a complex network comprising the immune, endocrinological and nervous systems of both host and schistosome in the regulation of the plural outcomes of infection. PMID:18042167

  18. The potential for arms race and Red Queen coevolution in a protist host–parasite system

    PubMed Central

    Råberg, Lars; Alacid, Elisabet; Garces, Esther; Figueroa, Rosa

    2014-01-01

    The dynamics and consequences of host–parasite coevolution depend on the nature of host genotype-by-parasite genotype interactions (G × G) for host and parasite fitness. G × G with crossing reaction norms can yield cyclic dynamics of allele frequencies (“Red Queen” dynamics) while G × G where the variance among host genotypes differs between parasite genotypes results in selective sweeps (“arms race” dynamics). Here, we investigate the relative potential for arms race and Red Queen coevolution in a protist host–parasite system, the dinoflagellate Alexandrium minutum and its parasite Parvilucifera sinerae. We challenged nine different clones of A. minutum with 10 clones of P. sinerae in a fully factorial design and measured infection success and host and parasite fitness. Each host genotype was successfully infected by four to ten of the parasite genotypes. There were strong G × Gs for infection success, as well as both host and parasite fitness. About three quarters of the G × G variance components for host and parasite fitness were due to crossing reaction norms. There were no general costs of resistance or infectivity. We conclude that there is high potential for Red Queen dynamics in this host–parasite system. PMID:25558368

  19. Optimal time to patency in parasitic nematodes: host mortality matters

    E-print Network

    Poulin, Robert

    Optimal time to patency in parasitic nematodes: host mortality matters Abstract We develop in parasitic nematodes in relation to host mortality and parasite mortality. We found that the optimal time an optimality model that predicts the optimal age at maturity (i.e. time to patency) for parasitic nematodes

  20. Explaining variability in parasite aggregation levels among host samples

    E-print Network

    Poulin, Robert

    of parasite aggregation are generally thought to involve heterogeneity in the rates at which parasitesExplaining variability in parasite aggregation levels among host samples ROBERT POULIN* Department distributions among individual hosts are a defining feature of metazoan parasite populations. Heterogeneity

  1. Local host specialization, host-switching, and dispersal shape the regional distributions of avian haemosporidian parasites.

    PubMed

    Ellis, Vincenzo A; Collins, Michael D; Medeiros, Matthew C I; Sari, Eloisa H R; Coffey, Elyse D; Dickerson, Rebecca C; Lugarini, Camile; Stratford, Jeffrey A; Henry, Donata R; Merrill, Loren; Matthews, Alix E; Hanson, Alison A; Roberts, Jackson R; Joyce, Michael; Kunkel, Melanie R; Ricklefs, Robert E

    2015-09-01

    The drivers of regional parasite distributions are poorly understood, especially in comparison with those of free-living species. For vector-transmitted parasites, in particular, distributions might be influenced by host-switching and by parasite dispersal with primary hosts and vectors. We surveyed haemosporidian blood parasites (Plasmodium and Haemoproteus) of small land birds in eastern North America to characterize a regional parasite community. Distributions of parasite populations generally reflected distributions of their hosts across the region. However, when the interdependence between hosts and parasites was controlled statistically, local host assemblages were related to regional climatic gradients, but parasite assemblages were not. Moreover, because parasite assemblage similarity does not decrease with distance when controlling for host assemblages and climate, parasites evidently disperse readily within the distributions of their hosts. The degree of specialization on hosts varied in some parasite lineages over short periods and small geographic distances independently of the diversity of available hosts and potentially competing parasite lineages. Nonrandom spatial turnover was apparent in parasite lineages infecting one host species that was well-sampled within a single year across its range, plausibly reflecting localized adaptations of hosts and parasites. Overall, populations of avian hosts generally determine the geographic distributions of haemosporidian parasites. However, parasites are not dispersal-limited within their host distributions, and they may switch hosts readily. PMID:26305975

  2. Modelling Parasite Transmission in a Grazing System: The Importance of Host Behaviour and Immunity

    PubMed Central

    Fox, Naomi J.; Marion, Glenn; Davidson, Ross S.; White, Piran C. L.; Hutchings, Michael R.

    2013-01-01

    Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts’ immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites’ free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance) can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes is required to fully understand transmission dynamics. Understanding of both physiological and behavioural defence strategies will aid the development of novel approaches for control. PMID:24223133

  3. Rapid evolution of antimicrobial peptide genes in an insect host-social parasite system.

    PubMed

    Erler, Silvio; Lhomme, Patrick; Rasmont, Pierre; Lattorff, H Michael G

    2014-04-01

    Selection, as a major driver for evolution in host-parasite interactions, may act on two levels; the virulence of the pathogen, and the hosts' defence system. Effectors of the host defence system might evolve faster than other genes e.g. those involved in adaptation to changes in life history or environmental fluctuations. Host-parasite interactions at the level of hosts and their specific social parasites, present a special setting for evolutionarily driven selection, as both share the same environmental conditions and pathogen pressures. Here, we study the evolution of antimicrobial peptide (AMP) genes, in six host bumblebee and their socially parasitic cuckoo bumblebee species. The selected AMP genes evolved much faster than non-immune genes, but only defensin-1 showed significant differences between host and social parasite. Nucleotide diversity and codon-by-codon analyses confirmed that purifying selection is the main selective force acting on bumblebee defence genes. PMID:24530902

  4. Cross-talk in host-parasite associations: What do past and recent proteomics approaches tell us?

    PubMed

    Chetouhi, Chérif; Panek, Johan; Bonhomme, Ludovic; ElAlaoui, Hicham; Texier, Catherine; Langin, Thierry; de Bekker, Charissa; Urbach, Serge; Demettre, Edith; Missé, Dorothée; Holzmuller, Philippe; Hughes, David P; Zanzoni, Andreas; Brun, Christine; Biron, David G

    2015-07-01

    A cross-talk in host-parasite associations begins when a host encounters a parasite. For many host-parasite relationships, this cross-talk has been taking place for hundreds of millions of years. The co-evolution of hosts and parasites, the familiar 'arms race' results in fascinating adaptations. Over the years, host-parasite interactions have been studied extensively from both the host and parasitic point of view. Proteomics studies have led to new insights into host-parasite cross-talk and suggest that the molecular strategies used by parasites attacking animals and plants share many similarities. Likewise, animals and plants use several common molecular tactics to counter parasite attacks. Based on proteomics surveys undertaken since the post-genomic era, a synthesis is presented on the molecular strategies used by intra- and extracellular parasites to invade and create the needed habitat for growth inside the host, as well as strategies used by hosts to counter these parasite attacks. Pitfalls in deciphering host-parasite cross-talk are also discussed. To conclude, helpful advice is given with regard to new directions that are needed to discover the generic and specific molecular strategies used by the host against parasite invasion as well as by the parasite to invade, survive, and grow inside their hosts, and to finally discover parasitic molecular signatures associated with their development. PMID:25913042

  5. FORUM PAPER Impact of host behavioral defenses on parasitization efficacy

    E-print Network

    Lucas, Éric

    parasitize their hosts. Host defensive behaviors influence the parasitoid parasitism success becauseFORUM PAPER Impact of host behavioral defenses on parasitization efficacy of a larval and adult parasitoid Annabelle Firlej · E´ ric Lucas · Daniel Coderre · Guy Boivin Received: 21 January 2009 / Accepted

  6. The evolution of parasite manipulation of host dispersal

    E-print Network

    Lion, Sébastien

    The evolution of parasite manipulation of host dispersal Se´bastien Lion1,*, Minus van Baalen1 of host dispersal behaviour by parasites using spatially explicit individual-based simulations. We find that when dispersal is local, parasites always gain from increasing their hosts' dispersal rate, although

  7. From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.

    PubMed

    Nagler, Christina; Haug, Joachim T

    2015-01-01

    Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species. PMID:26597067

  8. Infection outcomes under genetic and environmental variation in a host-parasite system: Implications for maintenance of polymorphism and the evolution of virulence 

    E-print Network

    Ferreira do Vale, Pedro Filipe

    2009-01-01

    Virulence (the harm to the host during infection) is the outcome of continuous coevolution between hosts and parasites. This thesis adds to a growing body of work on host-parasite interactions, and describes experiments ...

  9. Diversification and host switching in avian malaria parasites.

    PubMed Central

    Ricklefs, Robert E; Fallon, Sylvia M

    2002-01-01

    The switching of parasitic organisms to novel hosts, in which they may cause the emergence of new diseases, is of great concern to human health and the management of wild and domesticated populations of animals. We used a phylogenetic approach to develop a better statistical assessment of host switching in a large sample of vector-borne malaria parasites of birds (Plasmodium and Haemoproteus) over their history of parasite-host relations. Even with sparse sampling, the number of parasite lineages was almost equal to the number of avian hosts. We found that strongly supported sister lineages of parasites, averaging 1.2% sequence divergence, exhibited highly significant host and geographical fidelity. Event-based matching of host and parasite phylogenetic trees revealed significant cospeciation. However, the accumulated effects of host switching and long distance dispersal cause these signals to disappear before 4% sequence divergence is achieved. Mitochondrial DNA nucleotide substitution appears to occur about three times faster in hosts than in parasites, contrary to findings on other parasite-host systems. Using this mutual calibration, the phylogenies of the parasites and their hosts appear to be similar in age, suggesting that avian malaria parasites diversified along with their modern avian hosts. Although host switching has been a prominent feature over the evolutionary history of avian malaria parasites, it is infrequent and unpredictable on time scales germane to public health and wildlife management. PMID:12028770

  10. Host–Parasite interactions in Entamoeba histolytica and Entamoeba dispar: what have we learned from their genomes?

    PubMed Central

    Wilson, I W; Weedall, G D; Hall, N

    2012-01-01

    Invasive amoebiasis caused by Entamoeba histolytica is a major global health problem. Virulence is a rare outcome of infection, occurring in fewer than 1 in 10 infections. Not all strains of the parasite are equally virulent, and understanding the mechanisms and causes of virulence is an important goal of Entamoeba research. The sequencing of the genome of E. histolytica and the related avirulent species Entamoeba dispar has allowed whole-genome-scale analyses of genetic divergence and differential gene expression to be undertaken. These studies have helped elucidate mechanisms of virulence and identified genes differentially expressed in virulent and avirulent parasites. Here, we review the current status of the E. histolytica and E. dispar genomes and the findings of a number of genome-scale studies comparing parasites of different virulence. PMID:21810102

  11. Biogeographical patterns of blood parasite lineage diversity in avian hosts

    E-print Network

    ORIGINAL ARTICLE Biogeographical patterns of blood parasite lineage diversity in avian hosts from and Haemoproteus parasites in different island populations of the same host genus (Aves: Zosterops). (2) To compare distance­decay relationships (turnover) between parasite communities and those with potential avian

  12. Species formation by host shifting in avian malaria parasites

    PubMed Central

    Ricklefs, Robert E.; Outlaw, Diana C.; Svensson-Coelho, Maria; Medeiros, Matthew C. I.; Ellis, Vincenzo A.; Latta, Steven

    2014-01-01

    The malaria parasites (Apicomplexa: Haemosporida) of birds are believed to have diversified across the avian host phylogeny well after the origin of most major host lineages. Although many symbionts with direct transmission codiversify with their hosts, mechanisms of species formation in vector-borne parasites, including the role of host shifting, are poorly understood. Here, we examine the hosts of sister lineages in a phylogeny of 181 putative species of malaria parasites of New World terrestrial birds to determine the role of shifts between host taxa in the formation of new parasite species. We find that host shifting, often across host genera and families, is the rule. Sympatric speciation by host shifting would require local reproductive isolation as a prerequisite to divergent selection, but this mechanism is not supported by the generalized host-biting behavior of most vectors of avian malaria parasites. Instead, the geographic distribution of individual parasite lineages in diverse hosts suggests that species formation is predominantly allopatric and involves host expansion followed by local host–pathogen coevolution and secondary sympatry, resulting in local shifting of parasite lineages across hosts. PMID:25271324

  13. Knowing your enemies: seasonal dynamics of host social parasite recognition

    NASA Astrophysics Data System (ADS)

    D'Ettorre, Patrizia; Brunner, Elisabeth; Wenseleers, Tom; Heinze, Jürgen

    2004-12-01

    Despite its evolutionary significance, behavioural flexibility of social response has rarely been investigated in insects. We studied a host social parasite system: the slave-making ant Polyergus rufescens and its host Formica rufibarbis. Free-living host workers from parasitized and from unparasitized areas were compared in their level of aggression against the parasite and alien conspecifics. We expected that a seasonal change would occur in the acceptance threshold of F. rufibarbis workers from a parasitized area towards the parasite, whereas F. rufibarbis workers from an unparasitized area would not show substantial changes connected with the parasite’s peak in activity (raiding and colony-founding season). The results showed a significant adaptive behavioural flexibility of host species workers and are consistent with the acceptance threshold model’s (Reeve 1989) prediction that recognition systems are not fixed but context-dependent. In particular, host workers from the unparasitized area were highly aggressive towards the parasite regardless of the season, whereas host workers from the parasitized area significantly increased their aggression towards the parasite during its raiding and colony-founding season. Being able to detect and possibly kill a Polyergus scout searching for host nests can be an effective strategy for a Formica colony to avoid being raided or usurped by a parasite queen.

  14. LETTER Experimental warming drives a seasonal shift in the timing of host-parasite dynamics with consequences for disease risk

    E-print Network

    Johnson, Pieter

    systems, including infectious diseases. Using a host­parasite system involving freshwater snails than changes in total parasite output for predict- ing climate-driven changes in disease risk. Keywords elevate disease risk by facilitating novel host­ parasite interactions through changes in species ranges

  15. Host Longevity and Parasite Species Richness in Mammals

    PubMed Central

    Cooper, Natalie; Kamilar, Jason M.; Nunn, Charles L.

    2012-01-01

    Hosts and parasites co-evolve, with each lineage exerting selective pressures on the other. Thus, parasites may influence host life-history characteristics, such as longevity, and simultaneously host life-history may influence parasite diversity. If parasite burden causes increased mortality, we expect a negative association between host longevity and parasite species richness. Alternatively, if long-lived species represent a more stable environment for parasite establishment, host longevity and parasite species richness may show a positive association. We tested these two opposing predictions in carnivores, primates and terrestrial ungulates using phylogenetic comparative methods and controlling for the potentially confounding effects of sampling effort and body mass. We also tested whether increased host longevity is associated with increased immunity, using white blood cell counts as a proxy for immune investment. Our analyses revealed weak relationships between parasite species richness and longevity. We found a significant negative relationship between longevity and parasite species richness for ungulates, but no significant associations in carnivores or primates. We also found no evidence for a relationship between immune investment and host longevity in any of our three groups. Our results suggest that greater parasite burden is linked to higher host mortality in ungulates. Thus, shorter-lived ungulates may be more vulnerable to disease outbreaks, which has implications for ungulate conservation, and may be applicable to other short-lived mammals. PMID:22879916

  16. Host age modulates parasite infectivity, virulence and reproduction.

    PubMed

    Izhar, Rony; Ben-Ami, Frida

    2015-07-01

    Host age is one of the most striking differences among hosts within most populations, but there is very little data on how age-dependent effects impact ecological and evolutionary dynamics of both the host and the parasite. Here, we examined the influence of host age (juveniles, young and old adults) at parasite exposure on host susceptibility, fecundity and survival as well as parasite transmission, using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa. Younger D. magna were more susceptible to infection than older ones, regardless of host or parasite clone. Also, younger-infected D. magna became castrated faster than older hosts, but host and parasite clone effects contributed to this trait as well. Furthermore, the early-infected D. magna produced considerably more parasite transmission stages than late-infected ones, while host age at exposure did not affect virulence as it is defined in models (host mortality). When virulence is defined more broadly as the negative effects of infection on host fitness, by integrating the parasitic effects on host fecundity and mortality, then host age at exposure seems to slide along a negative relationship between host and parasite fitness. Thus, the virulence-transmission trade-off differs strongly among age classes, which in turn affects predictions of optimal virulence. Age-dependent effects on host susceptibility, virulence and parasite transmission could pose an important challenge for experimental and theoretical studies of infectious disease dynamics and disease ecology. Our results present a call for a more explicit stage-structured theory for disease, which will incorporate age-dependent epidemiological parameters. PMID:25661269

  17. Brood parasitism causes female-biased host nestling mortality regardless of parasite species

    E-print Network

    Zanette, Liana

    Brood parasitism causes female-biased host nestling mortality regardless of parasite species ROBERT Molothrus ater brood parasitism of Song Sparrows Melospiza melodia results in a 50% reduction is as signifi- cant as nest predation in affecting demography. Many avian brood parasites possess special

  18. On Genetic Specificity in Symbiont-Mediated Host-Parasite Coevolution

    PubMed Central

    Kwiatkowski, Marek; Engelstädter, Jan; Vorburger, Christoph

    2012-01-01

    Existing theory of host-parasite interactions has identified the genetic specificity of interaction as a key variable affecting the outcome of coevolution. The Matching Alleles (MA) and Gene For Gene (GFG) models have been extensively studied as the canonical examples of specific and non-specific interaction. The generality of these models has recently been challenged by uncovering real-world host-parasite systems exhibiting specificity patterns that fit neither MA nor GFG, and by the discovery of symbiotic bacteria protecting insect hosts against parasites. In the present paper we address both challenges, simulating a large number of non-canonical models of host-parasite interactions that explicitly incorporate symbiont-based host resistance. To assess the genetic specialisation in these hybrid models, we develop a quantitative index of specificity applicable to any coevolutionary model based on a fitness matrix. We find qualitative and quantitative effects of host-parasite and symbiont-parasite specificities on genotype frequency dynamics, allele survival, and mean host and parasite fitnesses. PMID:22956894

  19. Brood parasitism selects for no defence in a cuckoo host

    E-print Network

    Krüger, Oliver

    Brood parasitism selects for no defence in a cuckoo host Oliver Kru¨ger1,2,* 1 Department cuckoos and their hosts, it is easy to understand why the host is under selection favouring anti' their host, such as mimetic eggs. But what about cases where the cuckoo egg is not mimetic and where the host

  20. Ecology of avian brood parasitism at an early interfacing of host and parasite populations

    USGS Publications Warehouse

    Wiley, J.W.

    1982-01-01

    The shiny cowbird (Molothrus bonariensis), a brood parasite, has recently spread into the Greater Antilles from South America via the Lesser Antilles. This species is a host generalist and upon reaching Puerto Rico exploited avian communities with no history of social parasitism. Forty-two percent of the resident non-raptorial land bird species were parasitized in mangrove habitat study areas. Cowbird parasitism affected hosts by (1) depressing nest success an average of 41 percent below non-parasitized nests, and (2) reducing host productivity. Parasitized hosts produced 12 percent fewer eggs and fledged 67 percent fewer of their own chicks than non-parasitized pairs. Growth rates of chicks of some host species were lower in parasitized nests compared with non-parasitized nests while growth of others was not affected by brood parasitism. Cowbird chick growth varied directly with host size; i.e., cowbird chicks grew faster and attained greater fledging weight and body size in nests of larger hosts. Factors important in shiny cowbird host selection were examined within the mangrove study community. Cowbirds did not parasitize avian species in proportion to their abundance. The cowbird breeding season coincided with that of its major hosts, which were high quality foster species, and did not extend into other periods even though nests of poor quality species were available. Food habits and egg size of cowbirds were similar to those of their hosts, suggesting that cowbirds choose hosts partly on the basis of this alignment. Cowbirds locate nests by cryptically watching activities of birds in likely habitat. Despite the recency of the cowbird's arrival in Puerto Rico, some nesting species have effective anti-parasite strategies, including alien egg rejection and nest guarding. Behavior effective in avoiding parasitism is similar to that used by certain birds in evading nest predators. It is suggested that anti-predator behavior is preadaptive to countering cowbird parasitism.

  1. Do parasites adopt different strategies in different intermediate hosts? Host size, not host species, influences Coitocaecum parvum (Trematoda) life history strategy, size and egg production.

    PubMed

    Daniels, R Ruiz; Beltran, S; Poulin, R; Lagrue, C

    2013-02-01

    Host exploitation induces host defence responses and competition between parasites, resulting in individual parasites facing highly variable environments. Alternative life strategies may thus be expressed in context-dependent ways, depending on which host species is used and intra-host competition between parasites. Coitocaecum parvum (Trematode) can use facultative progenesis in amphipod intermediate hosts, Paracalliope fluviatilis, to abbreviate its life cycle in response to such environmental factors. Coitocaecum parvum also uses another amphipod host, Paracorophium excavatum, a species widely different in size and ecology from P. fluviatilis. In this study, parasite infection levels and strategies in the two amphipod species were compared to determine whether the adoption of progenesis by C. parvum varied between these two hosts. Potential differences in size and/or egg production between C. parvum individuals according to amphipod host species were also investigated. Results show that C. parvum life strategy was not influenced by host species. In contrast, host size significantly affected C. parvum strategy, size and egg production. Since intra-host interactions between co-infecting parasites also influenced C. parvum strategy, size and fecundity, it is highly likely that within-host resource limitations affect C. parvum life strategy and overall fitness regardless of host species. PMID:23068071

  2. Host nutrition alters the variance in parasite transmission potential

    PubMed Central

    Vale, Pedro F.; Choisy, Marc; Little, Tom J.

    2013-01-01

    The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts. PMID:23407498

  3. Host cell preference and variable transmission strategies in malaria parasites

    E-print Network

    West, Stuart

    Host cell preference and variable transmission strategies in malaria parasites Sarah E. Reece1LA, UK Malaria and other haemosporin parasites must undergo a round of sexual reproduction that, consistent with evolutionary theory, the sex ratios of malaria parasites are negatively

  4. Relative reproductive success of co-infecting parasite genotypes under intensified within-host competition.

    PubMed

    Seppälä, Otto; Louhi, Katja-Riikka; Karvonen, Anssi; Rellstab, Christian; Jokela, Jukka

    2015-12-01

    In nature, host individuals are commonly simultaneously infected with more than one genotype of the same parasite species. These co-infecting parasites often interact, which can affect their fitness and shape host-parasite ecology and evolution. Many of such interactions take place through competition for limited host resources. Therefore, variation in ecological factors modifying the host resource level could be important in determining the intensity of competition and the outcome of co-infections. We tested this hypothesis by measuring the relative reproductive success of co-infecting genotypes of the trematode parasite Diplostomum pseudospathaceum in its snail host Lymnaea stagnalis while experimentally manipulating snail resource level using contrasting feeding treatments (ad libitum food supply, no food). We found that food deprivation constrained the overall parasite within-host reproduction as the release of parasite transmission stages (cercariae) was reduced. This indicates intensified competition among the parasite genotypes. The genotypic composition of the released cercariae, however, was not affected by the feeding treatments. This suggests that in this system, the relative reproductive success of co-infecting parasite genotypes, which is an important component determining their fitness, is robust to variation in ecological factors modifying the strength of resource competition. PMID:26296607

  5. Host stadium specificity in the gregarine assemblage parasitizing Tenebrio molitor.

    PubMed

    Clopton, R E; Janovy, J; Percival, T J

    1992-04-01

    Reciprocal cross-stadia experimental infections were used to demonstrate stadium specificity within the gregarine assemblage parasitizing Tenebrio molitor, the yellow mealworm. Gregarina cuneata, Gregarina polymorpha, and Gregarina steini are characteristic parasites of larval T. molitor. Gregarina niphandrodes is a characteristic parasite of adult T. molitor. Experimental infections were produced in all homologous host-parasite combinations. No infection was produced in heterologous or cross-stadia combinations. This study introduces the concept of separate, distinct parasite niches corresponding to separate life cycle stages and established by known, predictable life cycle events within a single host species. PMID:1556647

  6. Inbreeding within human Schistosoma mansoni: do host-specific factors shape the genetic composition of parasite populations?

    PubMed

    Van den Broeck, F; Meurs, L; Raeymaekers, J A M; Boon, N; Dieye, T N; Volckaert, F A M; Polman, K; Huyse, T

    2014-07-01

    The size, structure and distribution of host populations are key determinants of the genetic composition of parasite populations. Despite the evolutionary and epidemiological merits, there has been little consideration of how host heterogeneities affect the evolutionary trajectories of parasite populations. We assessed the genetic composition of natural populations of the parasite Schistosoma mansoni in northern Senegal. A total of 1346 parasites were collected from 14 snail and 57 human hosts within three villages and individually genotyped using nine microsatellite markers. Human host demographic parameters (age, gender and village of residence) and co-infection with Schistosoma haematobium were documented, and S. mansoni infection intensities were quantified. F-statistics and clustering analyses revealed a random distribution (panmixia) of parasite genetic variation among villages and hosts, confirming the concept of human hosts as 'genetic mixing bowls' for schistosomes. Host gender and village of residence did not show any association with parasite genetics. Host age, however, was significantly correlated with parasite inbreeding and heterozygosity, with children being more infected by related parasites than adults. The patterns may be explained by (1) genotype-dependent 'concomitant immunity' that leads to selective recruitment of genetically unrelated worms with host age, and/or (2) the 'genetic mixing bowl' hypothesis, where older hosts have been exposed to a wider variety of parasite strains than children. The present study suggests that host-specific factors may shape the genetic composition of schistosome populations, revealing important insights into host-parasite interactions within a natural system. PMID:24619176

  7. mRNA-Seq and microarray development for the Grooved carpet shell clam, Ruditapes decussatus: a functional approach to unravel host -parasite interaction

    PubMed Central

    2013-01-01

    Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported. PMID:24168212

  8. LETTER Phylogenetic host specificity and understanding parasite sharing in primates

    E-print Network

    Nunn, Charles

    mode (e.g. sexually transmitted diseases are less likely to be encountered by new hosts than environmentally transmitted diseases); the parasite's abundance in the original host; and similarities how parasites are transmitted to new species is of great importance for human health, agri- culture

  9. Anthelmintic treatment alters the parasite community in a wild mouse host

    PubMed Central

    Pedersen, Amy B.; Antonovics, Janis

    2013-01-01

    Individuals are often co-infected with several parasite species, yet the consequences of drug treatment on the dynamics of parasite communities in wild populations have rarely been measured. Here, we experimentally reduced nematode infection in a wild mouse population and measured the effects on other non-target parasites. A single oral dose of the anthelmintic, ivermectin, significantly reduced nematode infection, but resulted in a reciprocal increase in other gastrointestinal parasites, specifically coccidial protozoans and cestodes. These results highlight the possibility that drug therapy may have unintended consequences for non-target parasites and that host–parasite dynamics cannot always be fully understood in the framework of single host–parasite interactions. PMID:23658004

  10. Host-Parasite Co-evolution and Optimal Mutation Rates for Semi-conservative Quasispecies

    E-print Network

    Yisroel Brumer; Eugene I. Shakhnovich

    2004-01-20

    In this paper, we extend a model of host-parasite co-evolution to incorporate the semi-conservative nature of DNA replication for both the host and the parasite. We find that the optimal mutation rate for the semi-conservative and conservative hosts converge for realistic genome lengths, thus maintaining the admirable agreement between theory and experiment found previously for the conservative model and justifying the conservative approximation in some cases. We demonstrate that, while the optimal mutation rate for a conservative and semi-conservative parasite interacting with a given immune system is similar to that of a conservative parasite, the properties away from this optimum differ significantly. We suspect that this difference, coupled with the requirement that a parasite optimize survival in a range of viable hosts, may help explain why semi-conservative viruses are known to have significantly lower mutation rates than their conservative counterparts.

  11. Host-parasite coevolution and optimal mutation rates for semiconservative quasispecies

    NASA Astrophysics Data System (ADS)

    Brumer, Yisroel; Shakhnovich, Eugene I.

    2004-06-01

    In this paper, we extend a model of host-parasite coevolution to incorporate the semiconservative nature of DNA replication for both the host and the parasite. We find that the optimal mutation rate for the semiconservative and conservative hosts converge for realistic genome lengths, thus maintaining the admirable agreement between theory and experiment found previously for the conservative model and justifying the conservative approximation in some cases. We demonstrate that, while the optimal mutation rate for a conservative and semiconservative parasite interacting with a given immune system is similar to that of a conservative parasite, the properties away from this optimum differ significantly. We suspect that this difference, coupled with the requirement that a parasite optimize survival in a range of viable hosts, may help explain why semiconservative viruses are known to have significantly lower mutation rates than their conservative counterparts.

  12. Retaliatory mafia behavior by a parasitic cowbird favors host acceptance of parasitic eggs

    PubMed Central

    Hoover, Jeffrey P.; Robinson, Scott K.

    2007-01-01

    Why do many hosts accept costly avian brood parasitism even when parasitic eggs and nestlings differ dramatically in appearance from their own? Scientists argue that evolutionary lag or equilibrium can explain this evolutionary enigma. Few, however, consider the potential of parasitic birds to enforce acceptance by destroying eggs or nestlings of hosts that eject parasitic eggs and thereby reject parasitism. This retaliatory “mafia” behavior has been reported in one species of parasitic cuckoo but never in parasitic cowbirds. Here we present experimental evidence of mafia behavior in the brown-headed cowbird (Molothrus ater), a widely distributed North American brood parasite. We manipulated ejection of cowbird eggs and cowbird access to predator-proof nests in a common host to test experimentally for mafia behavior. When cowbird access was allowed, 56% of “ejector” nests were depredated compared with only 6% of “accepter” nests. No nests were destroyed when cowbird access was always denied or when access was denied after we removed cowbird eggs, indicating that cowbirds were responsible. Nonparasitized nests were depredated at an intermediate rate (20%) when cowbirds were allowed access, suggesting that cowbirds may occasionally “farm” hosts to create additional opportunities for parasitism. Cowbirds parasitized most (85%) renests of the hosts whose nests were depredated. Ejector nests produced 60% fewer host offspring than accepter nests because of the predatory behavior attributed to cowbirds. Widespread predatory behaviors in cowbirds could slow the evolution of rejection behaviors and further threaten populations of some of the >100 species of regular cowbird hosts. PMID:17360549

  13. Brood parasite eggs enhance egg survivorship in a multiply parasitized host

    PubMed Central

    Gloag, Ros; Fiorini, Vanina D.; Reboreda, Juan C.; Kacelnik, Alex

    2012-01-01

    Despite the costs to avian parents of rearing brood parasitic offspring, many species do not reject foreign eggs from their nests. We show that where multiple parasitism occurs, rejection itself can be costly, by increasing the risk of host egg loss during subsequent parasite attacks. Chalk-browed mockingbirds (Mimus saturninus) are heavily parasitized by shiny cowbirds (Molothrus bonariensis), which also puncture eggs in host nests. Mockingbirds struggle to prevent cowbirds puncturing and laying, but seldom remove cowbird eggs once laid. We filmed cowbird visits to nests with manipulated clutch compositions and found that mockingbird eggs were more likely to escape puncture the more cowbird eggs accompanied them in the clutch. A Monte Carlo simulation of this ‘dilution effect’, comparing virtual hosts that systematically either reject or accept parasite eggs, shows that acceptors enjoy higher egg survivorship than rejecters in host populations where multiple parasitism occurs. For mockingbirds or other hosts in which host nestlings fare well in parasitized broods, this benefit might be sufficient to offset the fitness cost of rearing parasite chicks, making egg acceptance evolutionarily stable. Thus, counterintuitively, high intensities of parasitism might decrease or even reverse selection pressure for host defence via egg rejection. PMID:22158956

  14. The costs of avian brood parasitism explain variation in egg rejection behaviour in hosts.

    PubMed

    Medina, Iliana; Langmore, Naomi E

    2015-07-01

    Many bird species can reject foreign eggs from their nests. This behaviour is thought to have evolved in response to brood parasites, birds that lay their eggs in the nest of other species. However, not all hosts of brood parasites evict parasitic eggs. In this study, we collate data from egg rejection experiments on 198 species, and perform comparative analyses to understand the conditions under which egg rejection evolves. We found evidence, we believe for the first time in a large-scale comparative analysis, that (i) non-current host species have rejection rates as high as current hosts, (ii) egg rejection is more likely to evolve when the parasite is relatively large compared with its host and (iii) egg rejection is more likely to evolve when the parasite chick evicts all the host eggs from the nest, such as in cuckoos. Our results suggest that the interactions between brood parasites and their hosts have driven the evolution of egg rejection and that variation in the costs inflicted by parasites is fundamental to explaining why only some host species evolve egg rejection. PMID:26156128

  15. Distinct Lineages of Schistocephalus Parasites in Threespine and Ninespine Stickleback Hosts Revealed by DNA Sequence Analysis

    PubMed Central

    Nishimura, Nicole; Heins, David C.; Andersen, Ryan O.; Barber, Iain; Cresko, William A.

    2011-01-01

    Parasitic interactions are often part of complex networks of interspecific relationships that have evolved in biological communities. Despite many years of work on the evolution of parasitism, the likelihood that sister taxa of parasites can co-evolve with their hosts to specifically infect two related lineages, even when those hosts occur sympatrically, is still unclear. Furthermore, when these specific interactions occur, the molecular and physiological basis of this specificity is still largely unknown. The presence of these specific parasitic relationships can now be tested using molecular markers such as DNA sequence variation. Here we test for specific parasitic relationships in an emerging host-parasite model, the stickleback-Schistocephalus system. Threespine and ninespine stickleback fish are intermediate hosts for Schistocephalus cestode parasites that are phenotypically very similar and have nearly identical life cycles through plankton, stickleback, and avian hosts. We analyzed over 2000 base pairs of COX1 and NADH1 mitochondrial DNA sequences in 48 Schistocephalus individuals collected from threespine and ninespine stickleback hosts from disparate geographic regions distributed across the Northern Hemisphere. Our data strongly support the presence of two distinct clades of Schistocephalus, each of which exclusively infects either threespine or ninespine stickleback. These clades most likely represent different species that diverged soon after the speciation of their stickleback hosts. In addition, genetic structuring exists among Schistocephalus taken from threespine stickleback hosts from Alaska, Oregon and Wales, although it is much less than the divergence between hosts. Our findings emphasize that biological communities may be even more complex than they first appear, and beg the question of what are the ecological, physiological, and genetic factors that maintain the specificity of the Schistocephalus parasites and their stickleback hosts. PMID:21811623

  16. Cross-kingdom host shifts of phytomyxid parasites

    PubMed Central

    2014-01-01

    Background Phytomyxids (plasmodiophorids and phagomyxids) are cosmopolitan, obligate biotrophic protist parasites of plants, diatoms, oomycetes and brown algae. Plasmodiophorids are best known as pathogens or vectors for viruses of arable crops (e.g. clubroot in brassicas, powdery potato scab, and rhizomania in sugar beet). Some phytomyxid parasites are of considerable economic and ecologic importance globally, and their hosts include important species in marine and terrestrial environments. However most phytomyxid diversity remains uncharacterised and knowledge of their relationships with host taxa is very fragmentary. Results Our molecular and morphological analyses of phytomyxid isolates–including for the first time oomycete and sea-grass parasites–demonstrate two cross-kingdom host shifts between closely related parasite species: between angiosperms and oomycetes, and from diatoms/brown algae to angiosperms. Switching between such phylogenetically distant hosts is generally unknown in host-dependent eukaryote parasites. We reveal novel plasmodiophorid lineages in soils, suggesting a much higher diversity than previously known, and also present the most comprehensive phytomyxid phylogeny to date. Conclusion Such large-scale host shifts between closely related obligate biotrophic eukaryote parasites is to our knowledge unique to phytomyxids. Phytomyxids may readily adapt to a wide diversity of new hosts because they have retained the ability to covertly infect alternative hosts. A high cryptic diversity and ubiquitous distribution in agricultural and natural habitats implies that in a changing environment phytomyxids could threaten the productivity of key species in marine and terrestrial environments alike via host shift speciation. PMID:24559266

  17. A sensory code for host seeking in parasitic nematodes

    PubMed Central

    Hallem, Elissa A.; Dillman, Adler R.; Hong, Annie V.; Zhang, Yuanjun; Yano, Jessica M.; DeMarco, Stephanie F.

    2011-01-01

    Summary Nematodes comprise a large phylum of both free-living and parasitic species that show remarkably diverse lifestyles, ecological niches, and behavioral repertoires. Parasitic species in particular often display highly specialized host-seeking behaviors that reflect their specific host preferences. Many host-seeking behaviors can be triggered by the presence of host odors, yet little is known about either the specific olfactory cues that trigger these behaviors or the neural circuits that underlie them. Heterorhabditis bacteriophora and Steinernema carpocapsae are phylogenetically distant insect-parasitic nematodes whose host-seeking and host-invasion behavior resembles that of some of the most devastating human- and plant-parasitic nematodes. Here we compare the olfactory responses of H. bacteriophora and S. carpocapsae infective juveniles (IJs) to those of Caenorhabditis elegans dauers, which are analogous life stages [1]. We show that the broad host range of these parasites results from their ability to respond to the universally-produced signal carbon dioxide (CO2) as well as a wide array of odors, including host-specific odors that we identified using TD-GC-MS. We show that CO2 is attractive for the parasitic IJs and C. elegans dauers despite being repulsive for C. elegans adults [2–4], and we identify an ancient and conserved sensory neuron that mediates CO2 response in both parasitic and free-living species regardless of whether CO2 is an attractive or a repulsive cue. Finally, we show that the parasites’ odor response profiles are more similar to each other than to that of C. elegans despite their greater phylogenetic distance, likely reflecting evolutionary convergence to insect parasitism. Our results suggest that the olfactory responses of parasitic versus free-living nematodes are highly diverse and that this diversity is critical to the evolution of nematode behavior. PMID:21353558

  18. Co-extinction in a host-parasite network: identifying key hosts for network stability

    PubMed Central

    Dallas, Tad; Cornelius, Emily

    2015-01-01

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability. PMID:26278333

  19. Temporal, spatial, and between-host comparisons of patterns of parasitism in lake zooplankton.

    PubMed

    Duffy, Meghan A; Cáceres, Carla E; Hall, Spencer R; Tessier, Alan J; Ives, Anthony R

    2010-11-01

    In nature, multiple parasite species infect multiple host species and are influenced by processes operating across different spatial and temporal scales. Data sets incorporating these complexities offer exciting opportunities to examine factors that shape epidemics. We present a method using generalized linear mixed models in a multilevel modeling framework to analyze patterns of variances and correlations in binomially distributed prevalence data. We then apply it to a multi-lake, multiyear data set involving two Daphnia host species and nine microparasite species. We found that the largest source of variation in parasite prevalence was the species identities of host-parasite pairs, indicating strong host-parasite specificity. Within host-parasite combinations, spatial variation (among lakes) exceeded interannual variation. This suggests that factors promoting differences among lakes (e.g., habitat characteristics and species interactions) better explain variation in peak infection prevalence in our data set than factors driving differences among years (e.g., climate). Prevalences of parasites in D. dentifera were more positively correlated than those for D. pulicaria, suggesting that similar factors influenced epidemic size among parasites in D. dentifera. Overall, this study demonstrates a method for parsing patterns of variation and covariation in infection prevalence data, providing greater insight into the relative importance of different underlying drivers of parasitism. PMID:21141193

  20. Evolution of parasite virulence when host responses cause disease 

    E-print Network

    Day, Troy; Graham, Andrea; Read, Andrew F

    The trade-off hypothesis of virulence evolution rests on the assumption that infection-induced mortality is a consequence of host exploitation by parasites. This hypothesis lies at the heart of many empirical and theoretical ...

  1. Parasitic castration by Xenos vesparum depends on host gender.

    PubMed

    Cappa, Federico; Manfredini, Fabio; Dallai, Romano; Gottardo, Marco; Beani, Laura

    2014-07-01

    Host castration represents a mechanism used by parasites to exploit energy resources from their hosts by interfering with their reproductive development or to extend host lifespan by removing risks associated with reproductive activity. One of the most intriguing groups of parasitic castrators is represented by the insects belonging to the order Strepsiptera. The macroparasite Xenos vesparum can produce dramatic phenotypic alterations in its host, the paper wasp Polistes dominula. Parasitized female wasps have undeveloped ovaries and desert the colony without performing any social task. However, very little attention has been given to the parasitic impact of X. vesparum on the male phenotype. Here, we investigated the effects of this parasite on the sexual behaviour and the morpho-physiology of P. dominula males. We found that, differently from female wasps, parasitized males are not heavily affected by Xenos: they maintain their sexual behaviour and ability to discriminate between female castes. Furthermore, the structure of their reproductive apparatus is not compromised by the parasite. We think that our results, demonstrating that the definition of X. vesparum as a parasitoid does not apply to infected males of P. dominula, provide a new perspective to discuss and maybe reconsider the traditional view of strepsipteran parasites. PMID:24776461

  2. Consistent Pattern of Local Adaptation during an Experimental Heat Wave in a Pipefish-Trematode Host-Parasite System

    PubMed Central

    Landis, Susanne H.; Kalbe, Martin; Reusch, Thorsten B. H.; Roth, Olivia

    2012-01-01

    Extreme climate events such as heat waves are expected to increase in frequency under global change. As one indirect effect, they can alter magnitude and direction of species interactions, for example those between hosts and parasites. We simulated a summer heat wave to investigate how a changing environment affects the interaction between the broad-nosed pipefish (Syngnathus typhle) as a host and its digenean trematode parasite (Cryptocotyle lingua). In a fully reciprocal laboratory infection experiment, pipefish from three different coastal locations were exposed to sympatric and allopatric trematode cercariae. In order to examine whether an extreme climatic event disrupts patterns of locally adapted host-parasite combinations we measured the parasite's transmission success as well as the host's adaptive and innate immune defence under control and heat wave conditions. Independent of temperature, sympatric cercariae were always more successful than allopatric ones, indicating that parasites are locally adapted to their hosts. Hosts suffered from heat stress as suggested by fewer cells of the adaptive immune system (lymphocytes) compared to the same groups that were kept at 18°C. However, the proportion of the innate immune cells (monocytes) was higher in the 18°C water. Contrary to our expectations, no interaction between host immune defence, parasite infectivity and temperature stress were found, nor did the pattern of local adaptation change due to increased water temperature. Thus, in this host-parasite interaction, the sympatric parasite keeps ahead of the coevolutionary dynamics across sites, even under increasing temperatures as expected under marine global warming. PMID:22303448

  3. Host preference of an introduced 'generalist' parasite for a non-native host.

    PubMed

    Frankel, Victor M; Hendry, Andrew P; Rolshausen, Gregor; Torchin, Mark E

    2015-09-01

    Parasites can invade new ecosystems if they are introduced with their native hosts or if they successfully infect and colonise new hosts upon arrival. Here, we ask to what extent an introduced parasite demonstrates specialisation among novel host species. Infection surveys across three field sites in Gatun Lake, Panama, revealed that the invasive peacock bass, Cichla monoculus, was more commonly infected by the introduced trematode parasite Centrocestus formosanus than were three other common cichlid fishes. Laboratory infection experiments were conducted to determine whether parasitism might be driven by differential encounter/exposure to parasites or by differential infection susceptibility/preference across different host species. These experiments were performed by controlling for parasite exposure in single host (compatibility) experiments and in mixed host (preference) experiments. In all cases, the peacock bass exhibited higher infection rates with viable metacercariae relative to the other potential fish hosts. Our experiments thus support that an introduced generalist parasite shows apparent specialisation on a specific novel host. Further studies are needed to determine whether these patterns of specialisation are the result of local adaptation following invasion by the parasite. PMID:26056736

  4. The host-parasite relationship in pregnant cattle infected with Neospora caninum.

    PubMed

    Innes, Elisabeth A

    2007-01-01

    The protozoan parasite Neospora caninum is an important cause of reproductive disease in cattle worldwide. The dog is a definitive host for the parasite and the oocyst stage, shed in the faeces, is a source of infection for cattle through consumption of contaminated feed or water. In addition, transplacental transmission of N. caninum is a very efficient means of the parasite infecting a new host and this can occur in successive pregnancies and over several generations. Neospora parasites may cause disease during pregnancy resulting in death of the foetus or birth of live congenitally infected calves that may show some neurological clinical signs at birth. The stage of pregnancy at which infection/parasitaemia occurs is an important factor in determining disease severity. Neospora infection in the first trimester of pregnancy may have more severe consequences for the foetus compared with infection occurring in the final trimester. The host-parasite relationship during pregnancy is a fascinating interaction and research in this area will improve understanding of disease pathogenesis and the various consequences of the host immune response, being host-protective, parasite protective and contributing to disease pathology. Pregnancy poses an interesting problem for the immune system of the dam as she is essentially carrying a semi-allogeneic tissue graft (the foetus) without immunological rejection taking place. To facilitate the pregnancy the cytokine environment in the placenta favours the regulatory Th-2-type cytokines, whose role is to counteract the pro-inflammatory Th1-type immune responses. Protective immunity to N. caninum, similar to many other intracellular parasites, involves Th1-type immune responses, which may pose problems for the dam trying to control a Neospora infection during pregnancy. This paper will discuss the host-parasite relationship at different stages of gestation in pregnant cattle and review the implications of this research for our understanding of disease pathogenesis, parasite transmission and host protection. PMID:17958926

  5. Brood parasites lay eggs matching the appearance of host clutches.

    PubMed

    Honza, Marcel; Šulc, Michal; Jelínek, Václav; Požgayová, Milica; Procházka, Petr

    2014-01-01

    Interspecific brood parasitism represents a prime example of the coevolutionary arms race where each party has evolved strategies in response to the other. Here, we investigated whether common cuckoos (Cuculus canorus) actively select nests within a host population to match the egg appearance of a particular host clutch. To achieve this goal, we quantified the degree of egg matching using the avian vision modelling approach. Randomization tests revealed that cuckoo eggs in naturally parasitized nests showed lower chromatic contrast to host eggs than those assigned randomly to other nests with egg-laying date similar to naturally parasitized clutches. Moreover, egg matching in terms of chromaticity was better in naturally parasitized nests than it would be in the nests of the nearest active non-parasitized neighbour. However, there was no indication of matching in achromatic spectral characteristics whatsoever. Thus, our results clearly indicate that cuckoos select certain host nests to increase matching of their own eggs with host clutches, but only in chromatic characteristics. Our results suggest that the ability of cuckoos to actively choose host nests based on the eggshell appearance imposes a strong selection pressure on host egg recognition. PMID:24258721

  6. Brood parasites lay eggs matching the appearance of host clutches

    PubMed Central

    Honza, Marcel; Šulc, Michal; Jelínek, Václav; Požgayová, Milica; Procházka, Petr

    2014-01-01

    Interspecific brood parasitism represents a prime example of the coevolutionary arms race where each party has evolved strategies in response to the other. Here, we investigated whether common cuckoos (Cuculus canorus) actively select nests within a host population to match the egg appearance of a particular host clutch. To achieve this goal, we quantified the degree of egg matching using the avian vision modelling approach. Randomization tests revealed that cuckoo eggs in naturally parasitized nests showed lower chromatic contrast to host eggs than those assigned randomly to other nests with egg-laying date similar to naturally parasitized clutches. Moreover, egg matching in terms of chromaticity was better in naturally parasitized nests than it would be in the nests of the nearest active non-parasitized neighbour. However, there was no indication of matching in achromatic spectral characteristics whatsoever. Thus, our results clearly indicate that cuckoos select certain host nests to increase matching of their own eggs with host clutches, but only in chromatic characteristics. Our results suggest that the ability of cuckoos to actively choose host nests based on the eggshell appearance imposes a strong selection pressure on host egg recognition. PMID:24258721

  7. Diversity and patterns of interaction of an anuran-parasite network in a neotropical wetland.

    PubMed

    Campião, K M; Ribas, A; Tavares, L E R

    2015-12-01

    We describe the diversity and structure of a host-parasite network of 11 anuran species and their helminth parasites in the Pantanal wetland, Brazil. Specifically, we investigate how the heterogeneous use of space by hosts changes parasite community diversity, and how the local pool of parasites exploits sympatric host species of different habits. We examined 229 anuran specimens, interacting with 32 helminth parasite taxa. Mixed effect models indicated the influence of anuran body size, but not habit, as a determinant of parasite species richness. Variation in parasite taxonomic diversity, however, was not significantly correlated with host size or habit. Parasite community composition was not correlated with host phylogeny, indicating no strong effect of the evolutionary relationships among anurans on the similarities in their parasite communities. Host-parasite network showed a nested and non-modular pattern of interaction, which is probably a result of the low host specificity observed for most helminths in this study. Overall, we found host body size was important in determining parasite community richness, whereas low parasite specificity was important to network structure. PMID:26442794

  8. THE ENDOPARASITOID Pteromalus puparum INFLUENCES HOST GENE EXPRESSION WITHIN FIRST HOUR OF PARASITIZATION.

    PubMed

    Zhu, Yu; Fang, Qi; Liu, Yang; Gao, Ling-Feng; Yan, Zhi-Chao; Ye, Gong-Yin

    2015-11-01

    The small cabbage butterfly, Pieris rapae, is an important pest of cruciferous corps, and Pteromalus puparum is a predominant pupal endoparasitoid wasp of this butterfly. For successful development of parasitoid offspring, female parasitoids usually introduce one or several kinds of maternal factors into the hemocoels during oviposition to suppress host immunity. To investigate the early changes in host immune-related genes following parasitization, we analyzed transcriptomes of parasitized and unparasitized, control, host pupae. Approximately 17.7 and 19.3 million paired-end reads were generated from nonparasitized and parasitized host pupae, and assembled de novo into 45,639 transcripts and 27,659 nonredundant unigenes. The average unigene length was 790 bp. A total 18,377 of 27,659 unigenes were annotated and we identified 557 differentially expressed unigenes in host pupae at 1 h after parasitization, of which 21 were immune-related. Parasitization led to downregulation of most pattern recognition receptors and upregulation of all serine protease inhibitors. The transcirptomic profile of P. rapae is considerably affected by parasitization. This study provides valuable sources for future investigations of the molecular interaction between P. puparum and its host P. rapae. PMID:26241821

  9. No evidence for specificity between host and parasite genotypes in experimental Strongyloides ratti (Nematoda) infections

    E-print Network

    Paterson, Steve

    No evidence for specificity between host and parasite genotypes in experimental Strongyloides ratti host and parasite genotypes, i.e. the resistance of particular host genotypes to particular parasite genotypes and the infectivity of particular parasite genotypes for particular host genotypes. Determining

  10. Ectoparasitism and stress hormones: strategy of host exploitation, common host-parasite history and energetics matter.

    PubMed

    St Juliana, Justin R; Khokhlova, Irina S; Wielebnowski, Nadja; Kotler, Burt P; Krasnov, Boris R

    2014-09-01

    Parasites are thought to have numerous negative effects on their hosts. These negative effects may be associated with stress in a host. We evaluated the effects of four species of flea ectoparasites (Parapulex chephrenis, Synosternus cleopatrae, Xenopsylla conformis and Xenopsylla ramesis) on non-specific responses of eight species of rodents (Meriones crassus, Gerbillus dasyurus, Gerbillus andersoni, Gerbillus pyramidum, Gerbillus nanus, Acomys cahirinus, Acomys russatus and Mesocricetus auratus) and measured faecal glucocorticoid metabolites concentrations (FGMC) produced by the hosts. We found no effect of body mass of an individual rodent on FGMCs. Parasitism by fleas with a 'stay on the host body' exploitation strategy was associated with higher host FGMCs than parasitism by fleas that spent most of their life 'off-host'. FGMCs among rodents infested by the same flea species were correlated positively with the phylogenetic distance of a given rodent from the principal host of this flea; changes in FGMCs were lower in the host species more closely related to the flea's principal host. Changes in FMGCs of a host while parasitized were correlated with a host's change in body mass, where hosts that lost more body mass had higher FGMCs. Our results suggest that ectoparasitism can be stressful to their hosts. However, the occurrence of parasite-induced stress seems to depend on the identity of both host and parasite species and the evolutionary history of a host-parasite association. To our knowledge, this is the first multispecies study to evaluate the effect of ectoparasites on glucocorticoid hormones in small mammals. PMID:24661039

  11. The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection

    PubMed Central

    de Morais, Carlos Gustavo Vieira; Castro Lima, Ana Karina; dos Santos, Rosiane Freire; Da-Silva, Silvia Amaral Gonçalves; Dutra, Patrícia Maria Lourenço

    2015-01-01

    The intracellular protozoa Leishmania spp. and Trypanosoma cruzi and the causative agents of Leishmaniasis and Chagas disease, respectively, belong to the Trypanosomatidae family. Together, these two neglected tropical diseases affect approximately 25 million people worldwide. Whether the host can control the infection or develops disease depends on the complex interaction between parasite and host. Parasite surface and secreted molecules are involved in triggering specific signaling pathways essential for parasite entry and intracellular survival. The recognition of the parasite antigens by host immune cells generates a specific immune response. Leishmania spp. and T. cruzi have a multifaceted repertoire of strategies to evade or subvert the immune system by interfering with a range of signal transduction pathways in host cells, which causes the inhibition of the protective response and contributes to their persistence in the host. The current therapeutic strategies in leishmaniasis and trypanosomiasis are very limited. Efficacy is variable, toxicity is high, and the emergence of resistance is increasingly common. In this review, we discuss the molecular basis of the host-parasite interaction of Leishmania and Trypanosoma cruzi infection and their mechanisms of subverting the immune response and how this knowledge can be used as a tool for the development of new drugs. PMID:26090399

  12. Testing for local host-parasite adaptation: an experiment with Gyrodactylus ectoparasites and guppy hosts.

    PubMed

    Pérez-Jvostov, Felipe; Hendry, Andrew P; Fussmann, Gregor F; Scott, Marilyn E

    2015-05-01

    Hosts and parasites are in a perpetual co-evolutionary "arms race". Due to their short generation time and large reproductive output, parasites are commonly believed to be ahead in this race, although increasing evidence exists that parasites are not always ahead in the arms race - in part owing to evolutionary lineage and recent ecological history. We assess local adaptation of hosts and parasites, and determine whether adaptation was influenced by ecological or evolutionary history, using full reciprocal cross-infections of four Gyrodactylus ectoparasite populations and their four guppy (Poecilia reticulata) host populations in Trinidad. To consider effects of evolutionary lineage and recent ecology, these four populations were collected from two different river drainages (Marianne and Aripo) and two different predation environments (high and low). The highest infection levels were obtained when parasites from the Aripo lineage infected guppies from the Marianne lineage, indicating a higher infectivity, virulence and/or reproductive success of the Aripo parasites. Aripo lineage guppies were also better able to limit Gyrodactylus population growth than guppies from the Marianne River, indicating their strong "resistance" to Gyrodactylus regardless of the source of the parasite. Predation environment had no detectable influence on host-parasite population dynamics of sympatric or allopatric combinations. The much stronger effect of evolutionary lineage (i.e., river) than recent ecological history (i.e., predation) emphasises its importance in driving co-evolutionary dynamics, and should be explored further in future studies on local host-parasite adaptation. PMID:25770861

  13. Cophylogeny of the anther smut fungi and their caryophyllaceous hosts: Prevalence of host shifts and importance of delimiting parasite species for inferring cospeciation

    PubMed Central

    2008-01-01

    Background Using phylogenetic approaches, the expectation that parallel cladogenesis should occur between parasites and hosts has been validated in some studies, but most others provided evidence for frequent host shifts. Here we examine the evolutionary history of the association between Microbotryum fungi that cause anther smut disease and their Caryophyllaceous hosts. We investigated the congruence between host and parasite phylogenies, inferred cospeciation events and host shifts, and assessed whether geography or plant ecology could have facilitated the putative host shifts identified. For cophylogeny analyses on microorganisms, parasite strains isolated from different host species are generally considered to represent independent evolutionary lineages, often without checking whether some strains actually belong to the same generalist species. Such an approach may mistake intraspecific nodes for speciation events and thus bias the results of cophylogeny analyses if generalist species are found on closely related hosts. A second aim of this study was therefore to evaluate the impact of species delimitation on the inferences of cospeciation. Results We inferred a multiple gene phylogeny of anther smut strains from 21 host plants from several geographic origins, complementing a previous study on the delimitation of fungal species and their host specificities. We also inferred a multi-gene phylogeny of their host plants, and the two phylogenies were compared. A significant level of cospeciation was found when each host species was considered to harbour a specific parasite strain, i.e. when generalist parasite species were not recognized as such. This approach overestimated the frequency of cocladogenesis because individual parasite species capable of infecting multiple host species (i.e. generalists) were found on closely related hosts. When generalist parasite species were appropriately delimited and only a single representative of each species was retained, cospeciation events were not more frequent than expected under a random distribution, and many host shifts were inferred. Current geographic distributions of host species seemed to be of little relevance for understanding the putative historical host shifts, because most fungal species had overlapping geographic ranges. We did detect some ecological similarities, including shared pollinators and habitat types, between host species that were diseased by closely related anther smut species. Overall, genetic similarity underlying the host-parasite interactions appeared to have the most important influence on specialization and host-shifts: generalist multi-host parasite species were found on closely related plant species, and related species in the Microbotryum phylogeny were associated with members of the same host clade. Conclusion We showed here that Microbotryum species have evolved through frequent host shifts to moderately distant hosts, and we show further that accurate delimitation of parasite species is essential for interpreting cophylogeny studies. PMID:18371215

  14. Gone with the flow: current velocities mediate parasitic infestation of an aquatic host.

    PubMed

    Samsing, Francisca; Solstorm, David; Oppedal, Frode; Solstorm, Frida; Dempster, Tim

    2015-07-01

    Host-parasite interactions are moderated by the environmental conditions of the interaction medium (e.g. air or water). Encounter rate and the time available for a parasite to make physical contact with a host are both influenced by fluid dynamics, yet how they interact is poorly known. Here, we tested whether current velocities altered the initial attachment and post-settlement survival of an ecto-parasitic copepod (Lepeophtheirus salmonis) on Atlantic salmon. Current velocities strongly influenced attachment; infestation levels were 2.5 and 1.3 times higher in moderate than high and low velocity currents, respectively, while current velocities did not affect post-settlement survival. An interplay between a reduced host-parasite encounter rate in a low velocity current and reduced contact time in a high velocity current likely explains this result. Initial parasite attachment position was influenced by an interaction between current velocity and swimming behaviour, likely due to different fin positioning by fish in flows of different velocities. Our results imply that rapid swimming by salmon migrating out of coastal waters, usually described as adaptive against predation, could also be adaptive against parasitism. Infestation rates were also highest at the typical swimming speed of farmed salmon in coastal fish farms, which may be a hitherto unrecognised factor contributing to L. salmonis epidemics. PMID:25917926

  15. Glycoconjugates in Host-Helminth Interactions

    PubMed Central

    Prasanphanich, Nina Salinger; Mickum, Megan L.; Heimburg-Molinaro, Jamie; Cummings, Richard D.

    2013-01-01

    Helminths are multicellular parasitic worms that comprise a major class of human pathogens and cause an immense amount of suffering worldwide. Helminths possess an abundance of complex and unique glycoconjugates that interact with both the innate and adaptive arms of immunity in definitive and intermediate hosts. These glycoconjugates represent a major untapped reservoir of immunomodulatory compounds, which have the potential to treat autoimmune and inflammatory disorders, and antigenic glycans, which could be exploited as vaccines and diagnostics. This review will survey current knowledge of the interactions between helminth glycans and host immunity and highlight the gaps in our understanding which are relevant to advancing therapeutics, vaccine development, and diagnostics. PMID:24009607

  16. Host Density and Competency Determine the Effects of Host Diversity on Trematode Parasite Infection

    PubMed Central

    Wojdak, Jeremy M.; Edman, Robert M.; Wyderko, Jennie A.; Zemmer, Sally A.; Belden, Lisa K.

    2014-01-01

    Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other’s densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts) for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans), in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1) replace the focal host species so that the total number of individuals remains constant (substitution) or (2) add to total host density (addition). For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly) when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns. PMID:25119568

  17. Chemical interrogation of malarial host and parasite kinomes

    PubMed Central

    Zuzarte-Luís, Vanessa; Magalhães, Andreia D.; Kato, Nobutaka; Sanschagrin, Paul C.; Wang, Jinhua; Zhou, Wenjun; Miduturu, Chandrasekhar V.; Mazitschek, Ralph; Sliz, Piotr; Mota, Maria M.; Gray, Nathanael S.

    2014-01-01

    Malaria, an infectious disease caused by eukaryotic parasites from the genus Plasmodium, afflicts hundreds of millions of people every year. Both the parasite and its host utilize protein kinases to regulate essential cellular processes. Bioinformatic analyses of parasite genomes predict at least 65 protein kinases, but their biological functions and therapeutic potential are largely unknown. We profiled 1,358 small molecule kinase inhibitors to evaluate the role of both the human and malaria kinomes in Plasmodium infection of liver cells, the parasites’ obligatory but transient developmental stage that precedes the symptomatic blood stage. The screen identified several small molecules that inhibit parasite load in liver cells, some with nanomolar efficacy, and each compound was subsequently assessed for activity against blood stage malaria. Most of the screening hits inhibited both liver and blood stage malaria parasites, which have dissimilar gene expression profiles and infect different host cells. Evaluation of existing kinase activity profiling data for the library members suggests several kinases are essential to malaria parasites, including cyclin-dependent kinases, glycogen synthase kinases, and phosphoinositide-3-kinases. CDK inhibitors were found to bind to Plasmodium protein kinase 5, but it is likely that these compounds target multiple parasite kinases. The dual stage inhibition of the identified kinase inhibitors makes them useful chemical probes and promising starting points for antimalarial development. PMID:25111632

  18. Toxoplasma gondii Relies on Both Host and Parasite Isoprenoids and Can Be Rendered Sensitive to Atorvastatin

    PubMed Central

    Li, Zhu-Hong; Ramakrishnan, Srinivasan; Striepen, Boris; Moreno, Silvia N. J.

    2013-01-01

    Intracellular pathogens have complex metabolic interactions with their host cells to ensure a steady supply of energy and anabolic building blocks for rapid growth. Here we use the obligate intracellular parasite Toxoplasma gondii to probe this interaction for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Synthesis of precursors for isoprenoids in Apicomplexa occurs in the apicoplast and is essential. To synthesize longer isoprenoids from these precursors, T. gondii expresses a bifunctional farnesyl diphosphate/geranylgeranyl diphosphate synthase (TgFPPS). In this work we construct and characterize T. gondii null mutants for this enzyme. Surprisingly, these mutants have only a mild growth phenotype and an isoprenoid composition similar to wild type parasites. However, when extracellular, the loss of the enzyme becomes phenotypically apparent. This strongly suggests that intracellular parasite salvage FPP and/or geranylgeranyl diphosphate (GGPP) from the host. We test this hypothesis using inhibitors of host cell isoprenoid synthesis. Mammals use the mevalonate pathway, which is susceptible to statins. We document strong synergy between statin treatment and pharmacological or genetic interference with the parasite isoprenoid pathway. Mice can be cured with atorvastatin (Lipitor) from a lethal infection with the TgFPPs mutant. We propose a double-hit strategy combining inhibitors of host and parasite pathways as a novel therapeutic approach against Apicomplexan parasites. PMID:24146616

  19. Network transmission inference: host behavior and parasite life cycle make social networks meaningful in disease ecology.

    PubMed

    Grear, Daniel A; Luong, Lien T; Hudson, Peter J

    2013-12-01

    The process of disease transmission is determined by the interaction of host susceptibility and exposure to parasite infectious stages. Host behavior is an important determinant of the likelihood of exposure to infectious stages but is difficult to measure and often assumed to be homogenous in models of disease spread. We evaluated the importance of precisely defining host contact when using networks that estimate exposure and predict infection prevalence in a replicated, empirical system. In particular, we hypothesized that infection patterns would be predicted only by a contact network that is defined according to host behavior and parasite life cycle. Two competing host contact criteria were used to construct networks defined by parasite life cycle and social contacts. First, parasite-defined contacts were based on shared space with a time delay corresponding to the environmental development time of nematode parasites with a direct fecal-oral life cycle. Second, social contacts were defined by shared space in the same time period. To quantify the competing networks of exposure and infection, we sampled natural populations of the eastern chipmunk (Tamias striatus) and infection of their gastrointestinal helminth community using replicated longitudinal capture-mark-recapture techniques. We predicted that (1) infection with parasites with direct fecal-oral life cycles would be explained by the time delay contact network, but not the social contact network; (2) infection with parasites with trophic life cycles (via a mobile intermediate host; thus, spatially decoupling transmission from host contact) would not be explained by either contact network. The prevalence of fecal-oral life cycle nematode parasites was strongly correlated to the number and strength of network connections from the parasite-defined network (including the time delay), while the prevalence of trophic life cycle parasites was not correlated with any network metrics. We concluded that incorporating the parasite life cycle, relative to the way that exposure is measured, is key to inferring transmission and can be empirically quantified using network techniques. In addition, appropriately defining and measuring contacts according the life history of the parasite and relevant behaviors of the host is a crucial step in applying network analyses to empirical systems. PMID:24555316

  20. Research paper Are cryptic host species also cryptic to parasites? Host specificity and geographical

    E-print Network

    ) or Acanthocephala (Kennedy, 2006). The existence of multiple host species can have important epidemiological Cryptic species Acanthocephala Amphipods A B S T R A C T Many parasites infect multiple host species. Gammarus pulex is a common host for multiple species of Acanthocephala in Europe but, in Switzerland

  1. Below-ground abiotic and biotic heterogeneity shapes above-ground infection outcomes and spatial divergence in a host-parasite interaction.

    PubMed

    Tack, Ayco J M; Laine, Anna-Liisa; Burdon, Jeremy J; Bissett, Andrew; Thrall, Peter H

    2015-09-01

    We investigated the impact of below-ground and above-ground environmental heterogeneity on the ecology and evolution of a natural plant-pathogen interaction. We combined field measurements and a reciprocal inoculation experiment to investigate the potential for natural variation in abiotic and biotic factors to mediate infection outcomes in the association between the fungal pathogen Melampsora lini and its wild flax host, Linum marginale, where pathogen strains and plant lines originated from two ecologically distinct habitat types that occur in close proximity ('bog' and 'hill'). The two habitat types differed strikingly in soil moisture and soil microbiota. Infection outcomes for different host-pathogen combinations were strongly affected by the habitat of origin of the plant lines and pathogen strains, the soil environment and their interactions. Our results suggested that tradeoffs play a key role in explaining the evolutionary divergence in interaction traits among the two habitat types. Overall, we demonstrate that soil heterogeneity, by mediating infection outcomes and evolutionary divergence, can contribute to the maintenance of variation in resistance and pathogenicity within a natural host-pathogen metapopulation. PMID:25872137

  2. Disease and the Extended Phenotype: Parasites Control Host Performance and Survival through Induced

    E-print Network

    Johnson, Pieter

    Disease and the Extended Phenotype: Parasites Control Host Performance and Survival through Induced fitness. Citation: Goodman BA, Johnson PTJ (2011) Disease and the Extended Phenotype: Parasites Control, parasites harm their hosts. However, some forms of parasite-induced alterations increase parasite

  3. The effect of the host immune response on the parasitic nematode Strongyloides ratti

    E-print Network

    Paterson, Steve

    The effect of the host immune response on the parasitic nematode Strongyloides ratti C. P. WILKES1 2003) SUMMARY The host immune response has profound effects on parasitic nematode infections. Here we. INTRODUCTION The host immune response has profound effects on parasitic nematodes. With the parasitic nematode

  4. Host responses to historical climate change shape parasite communities in North America’s intermountain west

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-parasite co-speciation, in which parasite divergence occurs in response to host divergence, is commonly proposed as a driver of parasite diversification, yet few empirical examples of strict co-speciation exist. Host-parasite co-evolutionary histories commonly reflect complex mosaics of co-spe...

  5. COPEPODS AND SCOMBRID FISHES: A STUDY IN HOST-PARASITE RELATIONSHIPS

    E-print Network

    COPEPODS AND SCOMBRID FISHES: A STUDY IN HOST-PARASITE RELATIONSHIPS ROGER F. CRESSEY,I BRUCE B. COLLE'ITE,' AND JOSEPH L. Russo' ABSTRACT Host specificity ofthe copepods parasitic on scombrid fishes is the basis for an analysis ofthe host-parasite relationship. A total of 46 different species of parasitic

  6. Interactions between parasites and microbial communities in the human gut

    PubMed Central

    Berrilli, Federica; Di Cave, David; Cavallero, Serena; D'Amelio, Stefano

    2012-01-01

    The interactions between intestinal microbiota, immune system, and pathogens describe the human gut as a complex ecosystem, where all components play a relevant role in modulating each other and in the maintenance of homeostasis. The balance among the gut microbiota and the human body appear to be crucial for health maintenance. Intestinal parasites, both protozoans and helminths, interact with the microbial community modifying the balance between host and commensal microbiota. On the other hand, gut microbiota represents a relevant factor that may strongly interfere with the pathophysiology of the infections. In addition to the function that gut commensal microbiota may have in the processes that determine the survival and the outcome of many parasitic infections, including the production of nutritive macromolecules, also probiotics can play an important role in reducing the pathogenicity of many parasites. On these bases, there is a growing interest in explaining the rationale on the possible interactions between the microbiota, immune response, inflammatory processes, and intestinal parasites. PMID:23162802

  7. Horizontal transmission of a parasite is influenced by infected host phenotype and density.

    PubMed

    Roberts, K E; Hughes, W O H

    2015-02-01

    Transmission is a key determinant of parasite fitness, and understanding the dynamics of transmission is fundamental to the ecology and evolution of host-parasite interactions. Successful transmission is often reliant on contact between infected individuals and susceptible hosts. The social insects consist of aggregated groups of genetically similar hosts, making them particularly vulnerable to parasite transmission. Here we investigate how the ratio of infected to susceptible individuals impacts parasite transmission, using the honey bee, Apis mellifera and its microsporidian parasite Nosema ceranae. We used 2 types of infected hosts found simultaneously in colonies; sterile female workers and sexual males. We found a higher ratio of infected to susceptible individuals in groups resulted in a greater proportion of susceptibles becoming infected, but this effect was non-linear and interestingly, the ratio also affected the spore production of infected individuals. The transmission level was much greater in an experiment where the infected individuals were drones than in an experiment where they were workers, suggesting drones may act as intracolonial 'superspreaders'. Understanding the subtleties of transmission and how it is influenced by the phenotype of the infected/susceptible individuals is important for understanding pathogen transmission at population level, and for optimum targeting of parasite control strategies. PMID:25111753

  8. The evolution of parasites from their hosts: intra- and interspecific parasitism and Emery's rule.

    PubMed Central

    Lowe, Roger M; Ward, Seamus A; Crozier, Ross H

    2002-01-01

    In some taxa of Hymenoptera, fungi, red algae and mistletoe, parasites and their hosts are either sibling species or at least closely related (Emery's rule). Three evolutionary mechanisms have been proposed for this phenomenon: (i) intraspecific parasitism is followed by sympatric speciation; (ii) allopatric speciation is followed by secondary sympatry and the subsequent parasitism of one sibling species by the other; and (iii) allopatric speciation of a species with intraspecific parasitism is followed by secondary sympatry, in which one species becomes an obligate parasite of the other. Mechanisms (i) and (ii) are problematic, while mechanism (iii) has not, to our knowledge, been analysed quantitatively. In this paper, we develop a model for single- and two-species evolutionary stable strategies (ESSs) to examine the basis for Emery's rule and to determine whether mechanism (iii) is consistent with ESS reasoning. In secondary sympatry after allopatric speciation, the system's evolution depends on the relative abundances of the two sibling species and on the proportional damage wrought by parasites of each species on non-parasitic members of the other. Depending on these interspecific effects, either the rarer or the commoner species may become the parasite and the levels of within-species parasitism need not determine which evolves to obligate parasitism. PMID:12065048

  9. Effects of a native parasitic plant on an exotic invader decrease with increasing host age

    PubMed Central

    Li, Junmin; Yang, Beifen; Yan, Qiaodi; Zhang, Jing; Yan, Min; Li, Maihe

    2015-01-01

    Understanding changes in the interactions between parasitic plants and their hosts in relation to ontogenetic changes in the hosts is crucial for successful use of parasitic plants as biological controls. We investigated growth, photosynthesis and chemical defences in different-aged Bidens pilosa plants in response to infection by Cuscuta australis. We were particularly interested in whether plant responses to parasite infection change with changes in the host plant age. Compared with the non-infected B. pilosa, parasite infection reduced total host biomass and net photosynthetic rates, but these deleterious effects decreased with increasing host age. Parasite infection reduced the concentrations of total phenolics, total flavonoids and saponins in the younger B. pilosa but not in the older B. pilosa. Compared with the relatively older and larger plants, younger and smaller plants suffered from more severe damage and are likely less to recover from the infection, suggesting that C. australis is only a viable biocontrol agent for younger B. pilosa plants. PMID:25838325

  10. Effects of a native parasitic plant on an exotic invader decrease with increasing host age.

    PubMed

    Li, Junmin; Yang, Beifen; Yan, Qiaodi; Zhang, Jing; Yan, Min; Li, Maihe

    2015-01-01

    Understanding changes in the interactions between parasitic plants and their hosts in relation to ontogenetic changes in the hosts is crucial for successful use of parasitic plants as biological controls. We investigated growth, photosynthesis and chemical defences in different-aged Bidens pilosa plants in response to infection by Cuscuta australis. We were particularly interested in whether plant responses to parasite infection change with changes in the host plant age. Compared with the non-infected B. pilosa, parasite infection reduced total host biomass and net photosynthetic rates, but these deleterious effects decreased with increasing host age. Parasite infection reduced the concentrations of total phenolics, total flavonoids and saponins in the younger B. pilosa but not in the older B. pilosa. Compared with the relatively older and larger plants, younger and smaller plants suffered from more severe damage and are likely less to recover from the infection, suggesting that C. australis is only a viable biocontrol agent for younger B. pilosa plants. PMID:25838325

  11. Nocardia species: host-parasite relationships.

    PubMed Central

    Beaman, B L; Beaman, L

    1994-01-01

    The nocardiae are bacteria belonging to the aerobic actinomycetes. They are an important part of the normal soil microflora worldwide. The type species, Nocardia asteroides, and N. brasiliensis, N. farcinica, N. otitidiscaviarum, N. nova, and N. transvalensis cause a variety of diseases in both normal and immunocompromised humans and animals. The mechanisms of pathogenesis are complex, not fully understood, and include the capacity to evade or neutralize the myriad microbicidal activities of the host. The relative virulence of N. asteroides correlates with the ability to inhibit phagosome-lysosome fusion in phagocytes; to neutralize phagosomal acidification; to detoxify the microbicidal products of oxidative metabolism; to modify phagocyte function; to grow within phagocytic cells; and to attach to, penetrate, and grow within host cells. Both activated macrophages and immunologically specific T lymphocytes constitute the major mechanisms for host resistance to nocardial infection, whereas B lymphocytes and humoral immunity do not appear to be as important in protecting the host. Thus, the nocardiae are facultative intracellular pathogens that can persist within the host, probably in a cryptic form (L-form), for life. Silent invasion of brain cells by some Nocardia strains can induce neurodegeneration in experimental animals; however, the role of nocardiae in neurodegenerative diseases in humans needs to be investigated. Images PMID:8055469

  12. COTTON HOST-MICROBE INTERACTIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herein discuss the beneficial cotton-microbe interactions, especially as they relate to control of cotton pests, and disease interactions in which specificity of interactions, influence of environment, mechanisms of parasitism and pathogenesis, responses to pathogens, and consequences of disease are...

  13. Friendly competition: evidence for a dilution effect among competitors in a planktonic host-parasite system.

    PubMed

    Hall, Spencer R; Becker, Claes R; Simonis, Joseph L; Duffy, Meghan A; Tessier, Alan J; Cáceres, Carla E

    2009-03-01

    The "dilution effect" concept in disease ecology offers the intriguing possibility that clever manipulation of less competent hosts could reduce disease prevalence in populations of more competent hosts. The basic concept is straightforward: host species vary in suitability (competence) for parasites, and disease transmission decreases when there are more incompetent hosts interacting with vectors or removing free-living stages of a parasite. However, host species also often interact with each other in other ecological ways, e.g., as competitors for resources. The net result of these simultaneous, multiple interactions (disease dilution and resource competition) is challenging to predict. Nonetheless, we see the signature of both roles operating concurrently in a planktonic host-parasite system. We document pronounced spatiotemporal variation in the size of epidemics of a virulent fungus (Metschnikowia bicuspidata) in Midwestern U.S. lake populations of a dominant crustacean grazer (Daphnia dentifera). We show that some of this variation is captured by changes in structure of Daphnia assemblages. Lake-years with smaller epidemics were characterized by assemblages dominated by less suitable hosts ("diluters," D. pulicaria and D. retrocurva, whose suitabilties were determined in lab experiments and field surveys) at the start of epidemics. Furthermore, within a season, less suitable hosts increased as epidemics declined. These observations are consistent with a dilution effect. However, more detailed time series analysis (using multivariate autoregressive models) of three intensively sampled epidemics show the signature of a likely interaction between dilution and resource competition between these Daphnia species. The net outcome of this interaction likely promoted termination of these fungal outbreaks. Should this outcome always arise in "friendly competition" systems where diluting hosts compete with more competent hosts? The answers to this question lie at a frontier of disease ecology. PMID:19341148

  14. Bacterial symbiont sharing in Megalomyrmex social parasites and their fungus-growing ant hosts.

    PubMed

    Liberti, Joanito; Sapountzis, Panagiotis; Hansen, Lars H; Sørensen, Søren J; Adams, Rachelle M M; Boomsma, Jacobus J

    2015-06-01

    Bacterial symbionts are important fitness determinants of insects. Some hosts have independently acquired taxonomically related microbes to meet similar challenges, but whether distantly related hosts that live in tight symbiosis can maintain similar microbial communities has not been investigated. Varying degrees of nest sharing between Megalomyrmex social parasites (Solenopsidini) and their fungus-growing ant hosts (Attini) from the genera Cyphomyrmex, Trachymyrmex and Sericomyrmex allowed us to address this question, as both ant lineages rely on the same fungal diet, interact in varying intensities and are distantly related. We used tag-encoded FLX 454 pyrosequencing and diagnostic PCR to map bacterial symbiont diversity across the Megalomyrmex phylogenetic tree, which also contains free-living generalist predators. We show that social parasites and hosts share a subset of bacterial symbionts, primarily consisting of Entomoplasmatales, Bartonellaceae, Acinetobacter, Wolbachia and Pseudonocardia and that Entomoplasmatales and Bartonellaceae can co-infect specifically associated combinations of hosts and social parasites with identical 16S rRNA genotypes. We reconstructed in more detail the population-level infection dynamics for Entomoplasmatales and Bartonellaceae in Megalomyrmex symmetochus guest ants and their Sericomyrmex amabilis hosts. We further assessed the stability of the bacterial communities through a diet manipulation experiment and evaluated possible transmission modes in shared nests such as consumption of the same fungus garden food, eating of host brood by social parasites, trophallaxis and grooming interactions between the ants, or parallel acquisition from the same nest environment. Our results imply that cohabiting ant social parasites and hosts may obtain functional benefits from bacterial symbiont transfer even when they are not closely related. PMID:25907143

  15. Phylogeny, host-parasite relationship and zoogeography

    PubMed Central

    1999-01-01

    Phylogeny is the evolutionary history of a group or the lineage of organisms and is reconstructed based on morphological, molecular and other characteristics. The genealogical relationship of a group of taxa is often expressed as a phylogenetic tree. The difficulty in categorizing the phylogeny is mainly due to the existence of frequent homoplasies that deceive observers. At the present time, cladistic analysis is believed to be one of the most effective methods of reconstructing a phylogenetic tree. Excellent computer program software for phylogenetic analysis is available. As an example, cladistic analysis was applied for nematode genera of the family Acuariidae, and the phylogenetic tree formed was compared with the system used currently. Nematodes in the genera Nippostrongylus and Heligmonoides were also analyzed, and the validity of the reconstructed phylogenetic trees was observed from a zoogeographical point of view. Some of the theories of parasite evolution were briefly reviewed as well. Coevolution of parasites and humans was discussed with special reference to the evolutionary relationship between Enterobius and primates. PMID:10634036

  16. Multiple host shifts by the emerging honeybee parasite, Varroa jacobsoni.

    PubMed

    Roberts, J M K; Anderson, D L; Tay, W T

    2015-05-01

    Host shifts are a key mechanism of parasite evolution and responsible for the emergence of many economically important pathogens. Varroa destructor has been a major factor in global honeybee (Apis mellifera) declines since shifting hosts from the Asian honeybee (Apis cerana) > 50 years ago. Until recently, only two haplotypes of V. destructor (Korea and Japan) had successfully host shifted to A. mellifera. In 2008, the sister species V. jacobsoni was found for the first time parasitizing A. mellifera in Papua New Guinea (PNG). This recent host shift presents a serious threat to world apiculture but also provides the opportunity to examine host shifting in this system. We used 12 microsatellites to compare genetic variation of V. jacobsoni on A. mellifera in PNG with mites on A. cerana in both PNG and surrounding regions. We identified two distinct lineages of V. jacobsoni reproducing on A. mellifera in PNG. Our analysis indicated independent host shift events have occurred through small numbers of mites shifting from local A. cerana populations. Additional lineages were found in the neighbouring Papua and Solomon Islands that had partially host shifted to A. mellifera, that is producing immature offspring on drone brood only. These mites were likely in transition to full colonization of A. mellifera. Significant population structure between mites on the different hosts suggested host shifted V. jacobsoni populations may not still reproduce on A. cerana, although limited gene flow may exist. Our studies provide further insight into parasite host shift evolution and help characterize this new Varroa mite threat to A. mellifera worldwide. PMID:25846956

  17. Habitat selection for parasite-free space by hosts of parasitic cowbirds

    USGS Publications Warehouse

    Forsman, J.T.; Martin, T.E.

    2009-01-01

    Choice of breeding habitat can have a major impact on fitness. Sensitivity of habitat choice to environmental cues predicting reproductive success, such as density of harmful enemy species, should be favored by natural selection. Yet, experimental tests of this idea are in short supply. Brown-headed cowbirds Molothrus ater commonly reduce reproductive success of a wide diversity of birds by parasitizing their nests. We used song playbacks to simulate high cowbird density and tested whether cowbird hosts avoid such areas in habitat selection. Host species that made settlement decisions during manipulations were significantly less abundant in the cowbird treatment as a group. In contrast, hosts that settled before manipulations started and non-host species did not respond to treatments. These results suggest that hosts of cowbirds can use vocal cues to assess parasitism risk among potential habitat patches and avoid high risk habitats. This can affect community structure by affecting habitat choices of species with differential vulnerability.

  18. A combined parasitological molecular approach for noninvasive characterization of parasitic nematode communities in wild hosts.

    PubMed

    Budischak, Sarah A; Hoberg, Eric P; Abrams, Art; Jolles, Anna E; Ezenwa, Vanessa O

    2015-09-01

    Most hosts are concurrently or sequentially infected with multiple parasites; thus, fully understanding interactions between individual parasite species and their hosts depends on accurate characterization of the parasite community. For parasitic nematodes, noninvasive methods for obtaining quantitative, species-specific infection data in wildlife are often unreliable. Consequently, characterization of gastrointestinal nematode communities of wild hosts has largely relied on lethal sampling to isolate and enumerate adult worms directly from the tissues of dead hosts. The necessity of lethal sampling severely restricts the host species that can be studied, the adequacy of sample sizes to assess diversity, the geographic scope of collections and the research questions that can be addressed. Focusing on gastrointestinal nematodes of wild African buffalo, we evaluated whether accurate characterization of nematode communities could be made using a noninvasive technique that combined conventional parasitological approaches with molecular barcoding. To establish the reliability of this new method, we compared estimates of gastrointestinal nematode abundance, prevalence, richness and community composition derived from lethal sampling with estimates derived from our noninvasive approach. Our noninvasive technique accurately estimated total and species-specific worm abundances, as well as worm prevalence and community composition when compared to the lethal sampling method. Importantly, the rate of parasite species discovery was similar for both methods, and only a modest number of barcoded larvae (n = 10) were needed to capture key aspects of parasite community composition. Overall, this new noninvasive strategy offers numerous advantages over lethal sampling methods for studying nematode-host interactions in wildlife and can readily be applied to a range of study systems. PMID:25644900

  19. Human C1-Inhibitor Suppresses Malaria Parasite Invasion and Cytoadhesion via Binding to Parasite Glycosylphosphatidylinositol and Host Cell Receptors.

    PubMed

    Mejia, Pedro; Diez-Silva, Monica; Kamena, Faustin; Lu, Fengxin; Fernandes, Stacey M; Seeberger, Peter H; Davis, Alvin E; Mitchell, James R

    2016-01-01

    Plasmodium falciparum-induced severe malaria remains a continuing problem in areas of endemicity, with elevated morbidity and mortality. Drugs targeting mechanisms involved in severe malaria pathology, including cytoadhesion of infected red blood cells (RBCs) to host receptors and production of proinflammatory cytokines, are still necessary. Human C1-inhibitor (C1INH) is a multifunctional protease inhibitor that regulates coagulation, vascular permeability, and inflammation, with beneficial effects in inflammatory disease models, including septic shock. We found that human C1INH, at therapeutically relevant doses, blocks severe malaria pathogenic processes by 2 distinct mechanisms. First, C1INH bound to glycan moieties within P. falciparum glycosylphosphatidylinositol (PfGPI) molecules on the parasite surface, inhibiting parasite RBC invasion and proinflammatory cytokine production by parasite-stimulated monocytes in vitro and reducing parasitemia in a rodent model of experimental cerebral malaria (ECM) in vivo. Second, C1INH bound to host CD36 and chondroitin sulfate A molecules, interfering with cytoadhesion of infected RBCs by competitive binding to these receptors in vitro and reducing sequestration in specific tissues and protecting against ECM in vivo. This study reveals that C1INH is a potential therapeutic antimalarial molecule able to interfere with severe-disease etiology at multiple levels through specific interactions with both parasite PfGPIs and host cell receptors. PMID:26347576

  20. Recognition and polymorphism in host--parasite STEVEN A. FRANK

    E-print Network

    Frank, Steven A.

    , restriction enzymes in bacterial defence against viruses, and bacterial plasmids that compete by toxin, and bacterial plasmids that compete by toxin production and toxin immunity. In each of these systems the hosts by the need to recognize a wide range of parasitic invaders (Potts & Wakeland 1993). The numerous bacterial

  1. The Relationship between Parasite Fitness and Host Condition in an Insect - Virus System

    PubMed Central

    Tseng, Michelle; Myers, Judith H.

    2014-01-01

    Research in host-parasite evolutionary ecology has demonstrated that environmental variation plays a large role in mediating the outcome of parasite infection. For example, crowding or low food availability can reduce host condition and make them more vulnerable to parasite infection. This observation that poor-condition hosts often suffer more from parasite infection compared to healthy hosts has led to the assumption that parasite productivity is higher in poor-condition hosts. However, the ubiquity of this negative relationship between host condition and parasite fitness is unknown. Moreover, examining the effect of environmental variation on parasite fitness has been largely overlooked in the host-parasite literature. Here we investigate the relationship between parasite fitness and host condition by using a laboratory experiment with the cabbage looper Trichoplusia ni and its viral pathogen, AcMNPV, and by surveying published host-parasite literature. Our experiments demonstrated that virus productivity was positively correlated with host food availability and the literature survey revealed both positive and negative relationships between host condition and parasite fitness. Together these data demonstrate that contrary to previous assumptions, parasite fitness can be positively or negatively correlated with host fitness. We discuss the significance of these findings for host-parasite population biology. PMID:25208329

  2. Host switching in cowbird brood parasites: how often does it occur?

    PubMed

    Domínguez, M; de la Colina, M A; Di Giacomo, A G; Reboreda, J C; Mahler, B

    2015-06-01

    Avian obligate brood parasites lay their eggs in nests of host species, which provide all parental care. Brood parasites may be host specialists, if they use one or a few host species, or host generalists, if they parasitize many hosts. Within the latter, strains of host-specific females might coexist. Although females preferentially parasitize one host, they may occasionally successfully parasitize the nest of another species. These host switching events allow the colonization of new hosts and the expansion of brood parasites into new areas. In this study, we analyse host switching in two parasitic cowbirds, the specialist screaming cowbird (Molothrus rufoaxillaris) and the generalist shiny cowbird (M. bonariensis), and compare the frequency of host switches between these species with different parasitism strategies. Contrary to expected, host switches did not occur more frequently in the generalist than in the specialist brood parasite. We also found that migration between hosts was asymmetrical in most cases and host switches towards one host were more recurrent than backwards, thus differing among hosts within the same species. This might depend on a combination of factors including the rate at which females lay eggs in nests of alternative hosts, fledging success of the chicks in this new host and their subsequent success in parasitizing it. PMID:25903962

  3. Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response?

    PubMed

    van Die, Irma; Cummings, Richard D

    2010-01-01

    Parasitic helminths (worms) co-evolved with vertebrate immune systems to enable long-term survival of worms in infected hosts. Among their survival strategies, worms use their glycans within glycoproteins and glycolipids, which are abundant on helminth surfaces and in their excretory/ secretory products, to regulate and suppress host immune responses. Many helminths express unusual and antigenic (nonhost-like) glycans, including those containing polyfucose, tyvelose, terminal GalNAc, phosphorylcholine, methyl groups, and sugars in unusual linkages. In addition, some glycan antigens are expressed that share structural features with those in their intermediate and vertebrate hosts (host-like glycans), including Le(X) (Galbeta1-4[Fucalpha1-3]GlcNAc-), LDNF (GalNAcbeta1-4[Fucalpha1-3]GlcNAc-), LDN (GalNAcbeta1-4GlcNAc-), and Tn (GalNAcalpha1-O-Thr/Ser) antigens. The expression of host-like glycan determinants is remarkable and suggests that helminths may gain advantages by synthesizing such glycans. The expression of host-like glycans by parasites previously led to the concept of "molecular mimicry," in which molecules are either derived from the pathogen or acquired from the host to evade recognition by the host immune system. However, recent discoveries into the potential of host glycan-binding proteins (GBPs), such as C-type lectin receptors and galectins, to functionally interact with various host-like helminth glycans provide new insights. Host GBPs through their interactions with worm-derived glycans participate in shaping innate and adaptive immune responses upon infection. We thus propose an alternative concept termed "glycan gimmickry," which is defined as an active strategy of parasites to use their glycans to target GBPs within the host to promote their survival. PMID:19748975

  4. Host ant independent oviposition in the parasitic butterfly Maculinea alcon

    PubMed Central

    Fürst, Matthias A.; Nash, David R.

    2010-01-01

    Parasitic Maculinea alcon butterflies can only develop in nests of a subset of available Myrmica ant species, so female butterflies have been hypothesized to preferentially lay eggs on plants close to colonies of the correct host ants. Previous correlational investigations of host-ant-dependent oviposition in this and other Maculinea species have, however, shown equivocal results, leading to a long-term controversy over support for this hypothesis. We therefore conducted a controlled field experiment to study the egg-laying behaviour of M. alcon. Matched potted Gentiana plants were set out close to host-ant nests and non-host-ant nests, and the number and position of eggs attached were assessed. Our results show no evidence for host-ant-based oviposition in M. alcon, but support an oviposition strategy based on plant characteristics. This suggests that careful management of host-ant distribution is necessary for conservation of this endangered butterfly. PMID:19864269

  5. Response of Flour Beetles to Multiple Stressors of Parasitic (Hymenolepis diminuta), Environmental (Diatomaceous Earth), and Host (Reproduction) Origin.

    PubMed

    Shostak, Allen W; Van Buuren, Kala G; Cook, Ranon

    2015-08-01

    Organisms face a multitude of potential stressors, and the way these stressors interact can provide insights into underlying biological processes. This study examined the flour beetle Tribolium confusum and its survival, net fecundity, and surface-seeking behavior in response to combinations of stressors from 3 categories. Infection by the cestode Hymenolepis diminuta provided a stress of parasitic origin. Exposure to diatomaceous earth (DE) provided a stress of environmental origin. Use of virgin and mated beetles evaluated reproduction as a stress of host origin. Single and multiple exposure of beetles to parasite eggs achieved a maximum mean abundance of 21 parasites/beetle and a maximum intensity of 90 parasites in an individual beetle. DE reduced initial parasite establishment, but did not directly affect survival of parasites after their establishment in the host. A rehydration technique was used to recover parasites from dead beetles, enabling this to be the first study to correlate H. diminuta intensity at time of death directly to mortality of T. confusum. A dichotomous intensity-mortality relationship was observed in 8% DE, whereby lightly infected (<20 parasites) hosts were killed by DE in an intensity-independent manner, but more heavily infected hosts were killed in an intensity-dependent manner. Host mating status did not affect host survival, but there were interactions among mating status, parasitism, and DE on net fecundity and surface-seeking behavior. However, these effects were minor compared to the host mortality that occurred when parasite abundance and DE concentration were both high. The aggregated distribution of T. confusum in beetles, the difficulty of achieving high mean abundances, and an apparent need for the stressors to have strong effects individually if they are to have enhanced effects when in combination, suggests that exposure to multiple stressors would seriously impact only a small proportion of the host population. PMID:25932498

  6. Trade-offs in host choice of an herbivorous insect based on parasitism and larval performance.

    PubMed

    Murphy, Shannon M; Loewy, Katrina J

    2015-11-01

    Herbivore diet breadth is predicted to evolve in response to both bottom-up and top-down selective pressures, including host plant abundance, quality and natural enemy pressure. As the relative importance and strength of interactions change over an herbivore's geographic range, local patterns of host plant use should change in response, altering local diet breadths. Fall webworm (Hyphantria cunea) is a widespread, polyphagous moth species that feeds on hundreds of plant species worldwide. Populations of fall webworm in Colorado remain polyphagous, but their diet breadth is restricted compared to other populations and thus present an ideal opportunity to test the ecological drivers of host use by a polyphagous herbivore. We investigated how host abundance, larval performance, and parasitism affect host use for fall webworm to test how these selective pressures may act individually or in concert, as well as the role of any trade-offs among fitness components, to explain diet breadth and host use. We found that host abundance was a significant predictor of host use, which suggests a selective pressure to reduce search time for oviposition sites by adult females. We also detected an important trade-off between bottom-up and top-down selective pressures: higher quality host plants also had a greater proportion of larval mortality due to parasitism. Local patterns of host plant abundance appear to narrow the set of hosts used by fall webworms in Colorado, while the trade-off between host quality and risk of parasitism helps explain the maintenance of a generalized feeding strategy within this restricted set of hosts. PMID:26099361

  7. Host responses to interspecific brood parasitism: a by-product of adaptations to conspecific parasitism?

    PubMed Central

    2014-01-01

    Background Why have birds evolved the ability to reject eggs? Typically, foreign egg discrimination is interpreted as evidence that interspecific brood parasitism (IP) has selected for the host’s ability to recognize and eliminate foreign eggs. Fewer studies explore the alternative hypothesis that rejection of interspecific eggs is a by-product of host defenses, evolved against conspecific parasitism (CP). We performed a large scale study with replication across taxa (two congeneric Turdus thrushes), space (populations), time (breeding seasons), and treatments (three types of experimental eggs), using a consistent design of egg rejection experiments (n?=?1057 nests; including controls), in areas with potential IP either present (Europe; native populations) or absent (New Zealand; introduced populations). These comparisons benefited from the known length of allopatry (one and a half centuries), with no gene flow between native and introduced populations, which is rarely available in host-parasite systems. Results Hosts rejected CP at unusually high rates for passerines (up to 60%). CP rejection rates were higher in populations with higher conspecific breeding densities and no risks of IP, supporting the CP hypothesis. IP rejection rates did not covary geographically with IP risk, contradicting the IP hypothesis. High egg rejection rates were maintained in the relatively long-term isolation from IP despite non-trivial rejection costs and errors. Conclusions These egg rejection patterns, combined with recent findings that these thrushes are currently unsuitable hosts of the obligate parasitic common cuckoo (Cuculus canorus), are in agreement with the hypothesis that the rejection of IP is a by-product of fine-tuned egg discrimination evolved due to CP. Our study highlights the importance of considering both IP and CP simultaneously as potential drivers in the evolution of egg discrimination, and illustrates how populations introduced to novel ecological contexts can provide critical insights into brood parasite-host coevolution. PMID:24834103

  8. Host cues induce egg hatching and pre-parasitic foraging behaviour in the mosquito parasitic nematode, Strelkovimermis spiculatus

    E-print Network

    Host cues induce egg hatching and pre-parasitic foraging behaviour in the mosquito parasitic Diapause Eggs Egg hatching Host location Chemical cues Vibration a b s t r a c t The responses of eggs induced the egg hatching. The hatching rate increased when larger numbers of host larvae were present

  9. Parasite Manipulation of Host Behaviour: Acanthocephalans and Shrimps in the Laboratory.

    ERIC Educational Resources Information Center

    Brown, A. F.; Thompson, D. B. A.

    1986-01-01

    Describes three experiments for undergraduates which illustrate associations of parasites with their host. Includes a table of parasite-induced alterations of selected host species. Instructional suggestions are also provided. (ML)

  10. Live Imaging of Host-Parasite Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous System Invasion

    PubMed Central

    Tenor, Jennifer L.; Oehlers, Stefan H.; Yang, Jialu L.

    2015-01-01

    ABSTRACT The human fungal pathogen Cryptococcus neoformans is capable of infecting a broad range of hosts, from invertebrates like amoebas and nematodes to standard vertebrate models such as mice and rabbits. Here we have taken advantage of a zebrafish model to investigate host-pathogen interactions of Cryptococcus with the zebrafish innate immune system, which shares a highly conserved framework with that of mammals. Through live-imaging observations and genetic knockdown, we establish that macrophages are the primary immune cells responsible for responding to and containing acute cryptococcal infections. By interrogating survival and cryptococcal burden following infection with a panel of Cryptococcus mutants, we find that virulence factors initially identified as important in causing disease in mice are also necessary for pathogenesis in zebrafish larvae. Live imaging of the cranial blood vessels of infected larvae reveals that C. neoformans is able to penetrate the zebrafish brain following intravenous infection. By studying a C. neoformans FNX1 gene mutant, we find that blood-brain barrier invasion is dependent on a known cryptococcal invasion-promoting pathway previously identified in a murine model of central nervous system invasion. The zebrafish-C. neoformans platform provides a visually and genetically accessible vertebrate model system for cryptococcal pathogenesis with many of the advantages of small invertebrates. This model is well suited for higher-throughput screening of mutants, mechanistic dissection of cryptococcal pathogenesis in live animals, and use in the evaluation of therapeutic agents. PMID:26419880

  11. Effects of parasites on host energy expenditure: the resting metabolic rate stalemate

    E-print Network

    Effects of parasites on host energy expenditure: the resting metabolic rate stalemate Nicholas Robar, Dennis L. Murray, and Gary Burness Abstract: Detrimental effects of parasitism on host fitness are frequently attributed to parasite-associated perturbations to host energy budgets. It has therefore been

  12. vol. 176, no. 1 the american naturalist july 2010 The Evolution of Host-Parasite Range

    E-print Network

    Antonovics, Janis

    vol. 176, no. 1 the american naturalist july 2010 The Evolution of Host-Parasite Range A. Best,1 enhancement: appendix. abstract: Understanding the coevolution of hosts and parasites is one of the key and maintain variation. Here, we examine a coevolutionary model of hosts and parasites where infection does

  13. Petromyzon marinus (Petromyzontidae), an unusual host for helminth parasites in western Europe.

    PubMed

    Gérard, Claudia; Verrez-Bagnis, Véronique; Jérôme, Marc; Lasne, Emilien

    2015-04-01

    The sea lamprey Petromyzon marinus, which is among the most phylogenetically ancient vertebrates, is a hematophagous ectoparasite that feeds on vertebrates and is considered vulnerable in Europe but is a pest in the North American Great Lakes. We conducted a literature review of helminth parasites of P. marinus and investigated postmetamorphic lampreys sampled in rivers and northeast Atlantic coastal waters (western France) during spawning migration. Based on the literature review, 16 helminth taxa have been recorded in P. marinus, among them 14 in North America but only 2 in Europe, with no species in common between these areas. Specific parasites are lacking, and helminth parasites recorded in P. marinus are mostly opportunistic and are trophically transmitted to fish hosts with both extremely low prevalence and mean intensity. Thus, P. marinus seems an unusual host that is probably infected through accidental ingestion of parasites by microphagous larvae (ammocoetes) and/or hematophagous postmetamorphs. Our field study supports this hypothesis, since only a single third-stage larva of Anisakis simplex sensu stricto was found in 2 postmetamorphic P. marinus among the 115 individuals dissected. This opportunistic, trophically transmitted, and cosmopolitan nematode species has never been recorded in North American sea lampreys and only once in Galician rivers (southern Europe). Infestation pathways of P. marinus by A. simplex are proposed vis-à-vis the feeding strategy of postmetamorphs and fish host species which potentially harbor anisakid larvae in their musculature. More generally, the complexity of biotic interactions is discussed considering P. marinus both as a host for helminth parasites and as a parasite for hosts such as fish and mammals, which are also potential predators of sea lamprey. PMID:25850404

  14. Host-parasite relationship in cystic echinococcosis: an evolving story.

    PubMed

    Siracusano, Alessandra; Delunardo, Federica; Teggi, Antonella; Ortona, Elena

    2012-01-01

    The larval stage of Echinococcus granulosus causes cystic echinococcosis, a neglected infectious disease that constitutes a major public health problem in developing countries. Despite being under constant barrage by the immune system, E. granulosus modulates antiparasite immune responses and persists in the human hosts with detectable humoral and cellular responses against the parasite. In vitro and in vivo immunological approaches, together with molecular biology and immunoproteomic technologies, provided us exciting insights into the mechanisms involved in the initiation of E. granulosus infection and the consequent induction and regulation of the immune response. Although the last decade has clarified many aspects of host-parasite relationship in human cystic echinococcosis, establishing the full mechanisms that cause the disease requires more studies. Here, we review some of the recent developments and discuss new avenues in this evolving story of E. granulosus infection in man. PMID:22110535

  15. Sex-specific effects of a parasite evolving in a female-biased host population

    PubMed Central

    2012-01-01

    Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts. PMID:23249484

  16. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation

    PubMed Central

    Marsolier, J.; Perichon, M.; DeBarry, JD.; Villoutreix, BO.; Chluba, J.; Lopez, T.; Garrido, C.; Zhou, XZ.; Lu, KP.; Fritsch, L.; Ait-Si-Ali, S.; Mhadhbi, M; Medjkane, S.; Weitzman, JB.

    2014-01-01

    Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack the genetic and epigenetic machinery to change phenotypic states. Amongst the Apicomplexa phylum of obligate intracellular parasites which cause veterinary and human diseases, Theileria is the only genus which transforms its mammalian host cells1. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-12. The transformed phenotypes are reversed by treatment with the theilericidal drug Buparvaquone3. We used comparative genomics to identify a homologue of the Peptidyl Prolyl Isomerase Pin1 (designated TaPin1) in T. annulata which is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPin1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7 leading to its degradation and subsequent stabilization of c-Jun which promotes transformation. We performed in vitro analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPin1 is directly inhibited by the anti-parasite drug Buparvaquone (and other known Pin1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerisation is thus a conserved mechanism which is important in cancer and is used by Theileria parasites to manipulate host oncogenic signaling. PMID:25624101

  17. Spatial heterogeneity lowers rather than increases host-parasite specialization.

    PubMed

    Hesse, E; Best, A; Boots, M; Hall, A R; Buckling, A

    2015-09-01

    Abiotic environmental heterogeneity can promote the evolution of diverse resource specialists, which in turn may increase the degree of host-parasite specialization. We coevolved Pseudomonas fluorescens and lytic phage ?2 in spatially structured populations, each consisting of two interconnected subpopulations evolving in the same or different nutrient media (homogeneous and heterogeneous environments, respectively). Counter to the normal expectation, host-parasite specialization was significantly lower in heterogeneous compared with homogeneous environments. This result could not be explained by dispersal homogenizing populations, as this would have resulted in the heterogeneous treatments having levels of specialization equal to or greater than that of the homogeneous environments. We argue that selection for costly generalists is greatest when the coevolving species are exposed to diverse environmental conditions and that this can provide an explanation for our results. A simple coevolutionary model of this process suggests that this can be a general mechanism by which environmental heterogeneity can reduce rather than increase host-parasite specialization. PMID:26135011

  18. Mimetic host shifts in an endangered social parasite of ants

    PubMed Central

    Thomas, Jeremy A.; Elmes, Graham W.; Sielezniew, Marcin; Stankiewicz-Fiedurek, Anna; Simcox, David J.; Settele, Josef; Schönrogge, Karsten

    2013-01-01

    An emerging problem in conservation is whether listed morpho-species with broad distributions, yet specialized lifestyles, consist of more than one cryptic species or functionally distinct forms that have different ecological requirements. We describe extreme regional divergence within an iconic endangered butterfly, whose socially parasitic young stages use non-visual, non-tactile cues to infiltrate and supplant the brood in ant societies. Although indistinguishable morphologically or when using current mitochondrial and nuclear sequence-, or microsatellite data, Maculinea rebeli from Spain and southeast Poland exploit different Myrmica ant species and experience 100 per cent mortality with each other's hosts. This reflects major differences in the hydrocarbons synthesized from each region by the larvae, which so closely mimic the recognition profiles of their respective hosts that nurse ants afford each parasite a social status above that of their own kin larvae. The two host ants occupy separate niches within grassland; thus, conservation management must differ in each region. Similar cryptic differentiation may be common, yet equally hard to detect, among the approximately 10 000 unstudied morpho-species of social parasite that are estimated to exist, many of which are Red Data Book listed. PMID:23193127

  19. The host-parasite relationship in bovine neosporosis.

    PubMed

    Innes, Elisabeth A; Wright, Steve; Bartley, Paul; Maley, Stephen; Macaldowie, Colin; Esteban-Redondo, Irma; Buxton, David

    2005-10-18

    Infection with the protozoan parasite Neospora caninum is thought to be a major cause of reproductive failure in cattle worldwide. Cattle infected with the parasite are three to seven times more likely to abort compared to uninfected cattle. The parasite may be transmitted to cattle through the ingestion of oocysts that are shed in the faeces of acutely infected dogs (definitive host of N. caninum) or by congenital infection from mother to foetus via the placenta. Interestingly, transplacental transmission can occur over consecutive pregnancies and congenitally infected heifers can transmit the parasite to their own offspring. This repeated vertical transmission observed in naturally infected cattle suggests that cattle do not easily develop effective immunity to the parasite, presenting a significant challenge to the development of a control strategy based on vaccination. Neosporosis is a disease of pregnancy and studying the bovine maternal and foetal immune responses during pregnancy will help us to understand the change in the balance between the parasite and the host that may result in disease of the foetus. Studies in non-pregnant cattle and in murine models of infection have shown the importance of T-helper 1-type immune responses involving pro-inflammatory cytokines, such as IFNgamma and IL-12, in limiting intracellular multiplication of the parasite. During pregnancy, changes occur in the immune system allowing the mother to accept the foetal allograft. Research in other species has stressed the crucial role of T-helper 2-type cytokines at the materno-foetal interface in maintaining the pregnancy and regulating the potentially damaging effect of Th-1 responses. Studies in cattle have shown that cell proliferation and IFNgamma responses may be significantly down-regulated around mid-gestation. This may mean that cattle are less able to cope with N. caninum infection at this time and are more likely to transmit the parasite to the foetus. Another important factor is the gestational age and hence immuno-competence of the foetus at the time of infection. Early in gestation, N. caninum infection of the placenta and subsequently the foetus usually proves fatal, whereas infection occurring in mid to late pregnancy may result in the birth of a congenitally infected but otherwise healthy calf. Studies of foetal immune responses have shown that at 14 weeks of gestation, lymphocytes only respond to mitogen, while by 24 weeks (mid-gestation), they respond to antigen by proliferating and releasing IFNgamma. Clearly, there are several factors influencing the outcome of N. caninum infection in pregnancy: the timing, quantity and duration of parasitaemia, the effectiveness of the maternal immune response and the ability of the foetus to mount an immune response against the parasite. The challenge is to design a vaccine that will prevent foetal infection by N. caninum. This is likely to involve a fine balancing act with the immune system that will allow intervention in a manner that will tip the host-parasite balance in favour of the host without compromising the pregnancy. PMID:16098610

  20. Does interspecies hybridization affect the host specificity of parasites in cyprinid fish?

    PubMed Central

    2013-01-01

    Background Host specificity varies among parasite species. Some parasites are strictly host-specific, others show a specificity for congeneric or non-congeneric phylogenetically related host species, whilst some others are non-specific (generalists). Two cyprinids, Cyprinus carpio and Carassius gibelio, plus their respective hybrids were investigated for metazoan parasites. The aim of this study was to analyze whether interspecies hybridization affects host specificity. The different degrees of host specificity within a phylogenetic framework were taken into consideration (i.e. strict specialist, intermediate specialist, and intermediate generalist). Methods Fish were collected during harvesting the pond and identified using meristic traits and molecular markers. Metazoan parasite species were collected. Host specificity of parasites was determined using the following classification: strict specialist, intermediate specialist, intermediate generalist and generalist. Parasite species richness was compared between parental species and their hybrids. The effect of host species on abundance of parasites differing in host specificity was tested. Results Hybrids harbored more different parasite species but their total parasite abundance was lower in comparison with parental species. Interspecies hybridization affected the host specificity of ecto- and endoparasites. Parasite species exhibiting different degrees of host specificity for C. carpio and C. gibelio were also present in hybrids. The abundance of strict specialists of C. carpio was significantly higher in parental species than in hybrids. Intermediate generalists parasitizing C. carpio and C. gibelio as two phylogenetically closely related host species preferentially infected C. gibelio when compared to C. carpio, based on prevalence and maximum intensity of infection. Hybrids were less infected by intermediate generalists when compared to C. gibelio. Conclusions This finding does not support strict co-adaptation between host and parasite genotypes resulting in narrow host specificity, and showed that hybrid genotypes are susceptible to parasites exhibiting host specificity. The immune mechanisms specific to parental species might represent potential mechanisms explaining the low abundance of parasites in C. gibelio x C. carpio hybrids. PMID:23587287

  1. Evidence of long-term structured cuckoo parasitism on individual magpie hosts.

    PubMed

    Molina-Morales, Mercedes; Gabriel Martínez, Juan; Martín-Gálvez, David; A Dawson, Deborah; Rodríguez-Ruiz, Juan; Burke, Terry; Avilés, Jesús M

    2013-03-01

    Brood parasites usually reduce their host's breeding success, resulting in strong selection for the evolution of host defences. Intriguingly, some host individuals/populations show no defence against parasitism, which has been explained within the frame of three different evolutionary hypotheses. One of these hypotheses posits that intermediate levels of defence at the population level may result from nonrandom distribution of parasitism among host individuals (i.e. structured parasitism). Empirical evidence for structured brood parasitism is, however, lacking for hosts of European cuckoos due to the absence of long-term studies. Here, we seek to identify the patterns of structured parasitism by studying great spotted cuckoo parasitism on individual magpie hosts over five breeding seasons. We also aim to identify whether individual characteristics of female magpies and/or their territories were related to the status of repeated parasitism. We found that 28·3% of the females in our population consistently escaped from cuckoo parasitism. Only 11·3% of females were always parasitized, and the remaining 60·4% changed their parasitism status. The percentage of females that maintained their status of parasitism (i.e. either parasitized or nonparasitized) between consecutive years varied over the study. Females that never suffered cuckoo parasitism built bigger nests than parasitized females at the beginning of the breeding season and smaller nests than those of parasitized females later in the season. Nonparasitized females also moved little from year to year and preferred areas with different characteristics over the course of the breeding season than parasitized females. Overall, females escaping from cuckoo parasitism reared twice as many chicks per year than those that were parasitized. In conclusion, our study reveals for first time the existence of a structured pattern of cuckoo parasitism based on phenotypic characteristics of individual hosts and of their territories. PMID:23237197

  2. Different meal, same flavor: cospeciation and host switching of haemosporidian parasites in some non-passerine birds

    PubMed Central

    2014-01-01

    Background Previous studies have shown that haemosporidian parasites (Haemoproteus (Parahaemoproteus) and Plasmodium) infecting passerine birds have an evolutionary history of host switching with little cospeciation, in particular at low taxonomic levels (e.g., below the family level), which is suggested as the main speciation mechanism of this group of parasites. Recent studies have characterized diverse clades of haemosporidian parasites (H. (Haemoproteus) and H. (Parahaemoproteus)) infecting non-passerine birds (e.g., Columbiformes, Pelecaniiformes). Here, we explore the cospeciation history of H. (Haemoproteus) and H. (Parahaemoproteus) parasites with their non-passerine hosts. Methods We sequenced the mtDNA cyt b gene of both haemosporidian parasites and their avian non-passerine hosts. We built Bayesian phylogenetic hypotheses and created concensus phylograms that were subsequently used to conduct cospeciation analyses. We used both a global cospeciation test, PACo, and an event-cost algorithm implemented in CoRe-PA. Results The global test suggests that H. (Haemoproteus) and H. (Parahaemoproteus) parasites have a diversification history dominated by cospeciation events particularly at the family level. Host-parasite links from the PACo analysis show that host switching events are common within families (i.e., among genera and among species within genera), and occasionally across different orders (e.g., Columbiformes to Pelecaniiformes). Event-cost analyses show that haemosporidian coevolutionary history is dominated by host switching and some codivergence, but with duplication events also present. Genetic lineages unique to raptor species (e.g., FALC11) commonly switch between Falconiformes and Strigiformes. Conclusions Our results corroborate previous findings that have detected a global cospeciation signal at the family taxonomic level, and they also support a history of frequent switching closer to the tips of the host phylogeny, which seems to be the main diversification mechanism of haemosporidians. Such dynamic host-parasite associations are relevant to the epidemiology of emerging diseases because low parasite host specificity is a prerequisite for the emergence of novel diseases. The evidence on host distributions suggests that haemosporidian parasites have the potential to rapidly develop novel host-associations. This pattern has also been recorded in fish-monogenean interactions, suggesting a general diversification mechanism for parasites when host choice is not restricted by ecological barriers. PMID:24957563

  3. Collective defence portfolios of ant hosts shift with social parasite pressure

    PubMed Central

    Jongepier, Evelien; Kleeberg, Isabelle; Job, Sylwester; Foitzik, Susanne

    2014-01-01

    Host defences become increasingly costly as parasites breach successive lines of defence. Because selection favours hosts that successfully resist parasitism at the lowest possible cost, escalating coevolutionary arms races are likely to drive host defence portfolios towards ever more expensive strategies. We investigated the interplay between host defence portfolios and social parasite pressure by comparing 17 populations of two Temnothorax ant species. When successful, collective aggression not only prevents parasitation but also spares host colonies the cost of searching for and moving to a new nest site. However, once parasites breach the host's nest defence, host colonies should resort to flight as the more beneficial resistance strategy. We show that under low parasite pressure, host colonies more likely responded to an intruding Protomognathus americanus slavemaker with collective aggression, which prevented the slavemaker from escaping and potentially recruiting nest-mates. However, as parasite pressure increased, ant colonies of both host species became more likely to flee rather than to fight. We conclude that host defence portfolios shift consistently with social parasite pressure, which is in accordance with the degeneration of frontline defences and the evolution of subsequent anti-parasite strategies often invoked in hosts of brood parasites. PMID:25100690

  4. Inferring host range dynamics from comparative data: the protozoan parasites of new world monkeys.

    PubMed

    Waxman, David; Weinert, Lucy A; Welch, John J

    2014-07-01

    Uncovering the ecological determinants of parasite host range is a central goal of comparative parasitology and infectious disease ecology. But while parasites are often distributed nonrandomly across the host phylogeny, such patterns are difficult to interpret without a genealogy for the parasite samples and without knowing what sorts of ecological dynamics might lead to what sorts of nonrandomness. We investigated inferences from comparative data, using presence/absence records from protozoan parasites of the New World monkeys. We first demonstrate several distinct types of phylogenetic signal in these data, showing, for example, that parasite species are clustered on the host tree and that closely related host species harbor similar numbers of parasite species. We then show that all of these patterns can be generated by a single, simple dynamical model, in which parasite host range changes more rapidly than host speciation/extinction and parasites preferentially colonize uninfected host species that are closely related to their existing hosts. Fitting this model to data, we then estimate its parameters. Finally, we caution that quite different ecological processes can lead to similar signatures but show how phylogenetic variation in host susceptibility can be distinguished from a tendency for parasites to colonize closely related hosts. Our new process-based analyses, which estimate meaningful parameters, should be useful for inferring the determinants of parasite host range and transmission success. PMID:24921601

  5. Do Parasitic Trematode Cercariae Demonstrate a Preference for Susceptible Host Species?

    E-print Network

    Rohr, Jason

    belie the common assumption of disease models that parasites seek and infect hosts at random. CitationDo Parasitic Trematode Cercariae Demonstrate a Preference for Susceptible Host Species? Brittany F, Tampa, Florida, United States of America Abstract Many parasites are motile and exhibit behavioural

  6. Parasite-induced and parasite development-dependent alteration of the swimming behavior of fish hosts.

    PubMed

    Santos, E G N; Santos, C Portes

    2013-07-01

    Parasites with complex life cycles have the ability to change the behavior of their intermediate host in a way that increases their transmission rate to the next host. However, the level of behavioral changes can vary considerably, depending on the stage of parasite development and parasite intensity. To investigate the influence of such parameters, we evaluated the locomotory activity of the fish Poecilia vivipara prior to experimental infections, 7 days post-infection (dpi) and 14dpi with cercariae of the digenean Ascocotyle (Phagicola) pindoramensis. The locomotory activity was monitored using an image system, Videomex(®), linked to with a video camera able to record the swimming behavior of the fishes. At the end of the experiments, fishes were dissected and all metacercariae from the gills and mesenteries, the specific sites utilized by A. (P.) pindoramensis, were recovered and counted. There was a significant decrease in the swimming behavior of fishes after 14dpi. Similarly, we found a significant correlation between the swimming behavior of the fishes and parasite intensity in both sites of infection. It is surmised that the decrease in locomotory activity of P. vivipara caused by A. (P.) pindoramensis can disturb its predator-prey relationship in natural environment. PMID:23545127

  7. Co-infection, kin selection, and the rate of host exploitation by a parasitic nematode

    E-print Network

    Lively, Curt

    Co-infection, kin selection, and the rate of host exploitation by a parasitic nematode Farrah parasites should reproduce at a faster rate than related parasites. Organisms: The parasitic nematode of high-migration (unrelated) and low-migration (related) nematode populations, and allowed them to evolve

  8. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum

    E-print Network

    Dao, Ming

    Host cell deformability is linked to transmission in the human malaria parasite Plasmodium the majority of parasites proliferate asexu- ally in red blood cells, a small fraction of parasites undergo of asexual red blood cell stage parasites has been investigated in great detail. These studies have

  9. Early host-pathogen interactions in marine bivalves: Evidence that the alveolate parasite Perkinsus marinus infects through the oyster mantle during

    E-print Network

    Allam, Bassem

    marinus infects through the oyster mantle during rejection of pseudofeces Bassem Allam a, , Wade E. Carden feeding. In this study, we investigated the mechanisms of oyster host colonization by the alveolate Perkinsus marinus and focused on how oysters process infective waterborne P. marinus cells during feeding

  10. Host-parasite coevolutionary dynamics with generalized success/failure infection genetics.

    PubMed

    Engelstädter, Jan

    2015-05-01

    Host-parasite infection genetics can be more complex than envisioned by classic models such as the gene-for-gene or matching-allele models. By means of a mathematical model, I investigate the coevolutionary dynamics arising from a large set of generalized models of infection genetics in which hosts are either fully resistant or fully susceptible to a parasite, depending on the genotype of both individuals. With a single diploid interaction locus in the hosts, many of the infection genetic models produce stable or neutrally stable genotype polymorphisms. However, only a few models, which are all different versions of the matching-allele model, lead to sustained cycles of genotype frequency fluctuations in both interacting species ("Red Queen" dynamics). By contrast, with two diploid interaction loci in the hosts, many infection genetics models that cannot be classified as one of the standard infection genetics models produce Red Queen dynamics. Sexual versus asexual reproduction and, in the former case, the rate of recombination between the interaction loci have a large impact on whether Red Queen dynamics arise from a given infection genetics model. This may have interesting but as yet unexplored implications with respect to the Red Queen hypothesis for the evolution of sex. PMID:25905512

  11. Heritable variation in host tolerance and resistance inferred from a wild host-parasite system.

    PubMed

    Mazé-Guilmo, Elise; Loot, Géraldine; Páez, David J; Lefèvre, Thierry; Blanchet, Simon

    2014-03-22

    Hosts have evolved two distinct defence strategies against parasites: resistance (which prevents infection or limit parasite growth) and tolerance (which alleviates the fitness consequences of infection). However, heritable variation in resistance and tolerance and the genetic correlation between these two traits have rarely been characterized in wild host populations. Here, we estimate these parameters for both traits in Leuciscus burdigalensis, a freshwater fish parasitized by Tracheliastes polycolpus. We used a genetic database to construct a full-sib pedigree in a wild L. burdigalensis population. We then used univariate animal models to estimate inclusive heritability (i.e. all forms of genetic and non-genetic inheritance) in resistance and tolerance. Finally, we assessed the genetic correlation between these two traits using a bivariate animal model. We found significant heritability for resistance (H = 17.6%; 95% CI: 7.2-32.2%) and tolerance (H = 18.8%; 95% CI: 4.4-36.1%), whereas we found no evidence for the existence of a genetic correlation between these traits. Furthermore, we confirm that resistance and tolerance are strongly affected by environmental effects. Our results demonstrate that (i) heritable variation exists for parasite resistance and tolerance in wild host populations, and (ii) these traits can evolve independently in populations. PMID:24478295

  12. Heritable variation in host tolerance and resistance inferred from a wild host–parasite system

    PubMed Central

    Mazé-Guilmo, Elise; Loot, Géraldine; Páez, David J.; Lefèvre, Thierry; Blanchet, Simon

    2014-01-01

    Hosts have evolved two distinct defence strategies against parasites: resistance (which prevents infection or limit parasite growth) and tolerance (which alleviates the fitness consequences of infection). However, heritable variation in resistance and tolerance and the genetic correlation between these two traits have rarely been characterized in wild host populations. Here, we estimate these parameters for both traits in Leuciscus burdigalensis, a freshwater fish parasitized by Tracheliastes polycolpus. We used a genetic database to construct a full-sib pedigree in a wild L. burdigalensis population. We then used univariate animal models to estimate inclusive heritability (i.e. all forms of genetic and non-genetic inheritance) in resistance and tolerance. Finally, we assessed the genetic correlation between these two traits using a bivariate animal model. We found significant heritability for resistance (H = 17.6%; 95% CI: 7.2–32.2%) and tolerance (H = 18.8%; 95% CI: 4.4–36.1%), whereas we found no evidence for the existence of a genetic correlation between these traits. Furthermore, we confirm that resistance and tolerance are strongly affected by environmental effects. Our results demonstrate that (i) heritable variation exists for parasite resistance and tolerance in wild host populations, and (ii) these traits can evolve independently in populations. PMID:24478295

  13. POPULATION ECOLOGY Parasitization Site on the Host of the Parasitoid Wasp Spalangia endius

    E-print Network

    King, Bethia H.

    POPULATION ECOLOGY Parasitization Site on the Host of the Parasitoid Wasp Spalangia endius of host age. KEY WORDS Spalangia endius, parasitization site, pteromalid, parasitoid wasp, house ßy, hostKalb, IL 60115 Environ. Entomol. 30(2): 346Ð349 (2001) ABSTRACT Spalangia endius Walker, a parasitoid wasp

  14. Genetic, ecological and geographic covariables explaining host range and specificity of a microsporidian parasite.

    PubMed

    Lange, Benjamin; Kaufmann, Andrea Patricia; Ebert, Dieter

    2015-11-01

    Parasites often have a smaller geographic distribution than their hosts. Common garden infection trials can untangle the role that historical contingencies, ecological conditions and the genetic constitution of local host populations play in limiting parasite geographic range; however, infection trials usually overestimate the range of hosts in which a parasite could naturally persist. This study overcomes that problem by using multigeneration, long-term persistence experiments. We study the microsporidian parasite Hamiltosporidium tvaerminnensis in monoclonal populations of Daphnia magna from 43 widely spread sites. The parasite persisted well in hosts collected from its natural geographic range, but demonstrated long-term persistence in only a few host genotypes outside this range. Genetic distance between hosts from the parasite's origin site and newly tested host populations correlated negatively with parasite persistence. Furthermore, the parasite persisted only in host populations from habitats with a high likelihood of drying up in summer, although we excluded environmental variation in our experiments. Together, our results suggest that host genetic factors play the dominant role in explaining the limited geographic range of parasites and that these genetic differences covary with geographic distance and the habitat type the host is adapted to. PMID:26147623

  15. Egg color variation, but not egg rejection behavior, changes in a cuckoo host breeding in the absence of brood parasitism.

    PubMed

    Yang, Canchao; Liu, Yang; Zeng, Lijin; Liang, Wei

    2014-06-01

    Interactions between parasitic cuckoos and their songbird hosts form a classical reciprocal "arms race," and are an excellent model for understanding the process of coevolution. Changes in host egg coloration via the evolution of interclutch variation in egg color or intraclutch consistency in egg color are hypothesized counter adaptations that facilitate egg recognition and thus limit brood parasitism. Whether these antiparasitism strategies are maintained when the selective pressure of parasitism is relaxed remains debated. However, introduced species provide unique opportunities for testing the direction and extent of natural selection on phenotypic trait maintenance and variation. Here, we investigated egg rejection behavior and egg color polymorphism in the red-billed leiothrix (Leiothrix lutea), a common cuckoo (Cuculus canorus) host, in a population introduced to Hawaii 100 years ago (breeding without cuckoos) and a native population in China (breeding with cuckoos). We found that egg rejection ability was equally strong in both the native and the introduced populations, but levels of interclutch variation and intraclutch consistency in egg color in the native population were higher than in the introduced population. This suggests that egg rejection behavior in hosts can be maintained in the absence of brood parasitism and that egg appearance is maintained by natural selection as a counter adaptation to brood parasitism. This study provides rare evidence that host antiparasitism strategies can change under parasite-relaxed conditions and reduced selection pressure. PMID:25360264

  16. The Role of Host Traits, Season and Group Size on Parasite Burdens in a Cooperative Mammal

    PubMed Central

    Viljoen, Hermien; Bennett, Nigel C.; Ueckermann, Edward A.; Lutermann, Heike

    2011-01-01

    The distribution of parasites among hosts is often characterised by a high degree of heterogeneity with a small number of hosts harbouring the majority of parasites. Such patterns of aggregation have been linked to variation in host exposure and susceptibility as well as parasite traits and environmental factors. Host exposure and susceptibility may differ with sexes, reproductive effort and group size. Furthermore, environmental factors may affect both the host and parasite directly and contribute to temporal heterogeneities in parasite loads. We investigated the contributions of host and parasite traits as well as season on parasite loads in highveld mole-rats (Cryptomys hottentotus pretoriae). This cooperative breeder exhibits a reproductive division of labour and animals live in colonies of varying sizes that procreate seasonally. Mole-rats were parasitised by lice, mites, cestodes and nematodes with mites (Androlaelaps sp.) and cestodes (Mathevotaenia sp.) being the dominant ecto- and endoparasites, respectively. Sex and reproductive status contributed little to the observed parasite prevalence and abundances possibly as a result of the shared burrow system. Clear seasonal patterns of parasite prevalence and abundance emerged with peaks in summer for mites and in winter for cestodes. Group size correlated negatively with mite abundance while it had no effect on cestode burdens and group membership affected infestation with both parasites. We propose that the mode of transmission as well as social factors constrain parasite propagation generating parasite patterns deviating from those commonly predicted. PMID:22069481

  17. Host behaviour drives parasite genetics at multiple geographic scales: population genetics of the chewing louse, Thomomydoecus minor.

    PubMed

    Harper, Sheree E; Spradling, Theresa A; Demastes, James W; Calhoun, Courtney S

    2015-08-01

    Pocket gophers and their symbiotic chewing lice form a host-parasite assemblage known for a high degree of cophylogeny, thought to be driven by life history parameters of both host and parasite that make host switching difficult. However, little work to date has focused on determining whether these life histories actually impact louse populations at the very fine scale of louse infrapopulations (individuals on a single host) at the same or at nearby host localities. We used microsatellite and mtDNA sequence data to make comparisons of chewing-louse (Thomomydoecus minor) population subdivision over time and over geographic space where there are different potential amounts of host interaction surrounding a zone of contact between two hybridizing pocket-gopher subspecies. We found that chewing lice had high levels of population isolation consistent with a paucity of horizontal transmission even at the very fine geographic scale of a single alfalfa field. We also found marked genetic discontinuity in louse populations corresponding with host subspecies and little, if any, admixture in the louse genetic groups even though the lice are closely related. The correlation of louse infrapopulation differentiation with host interaction at multiple scales, including across a discontinuity in pocket-gopher habitat, suggests that host behaviour is the primary driver of parasite genetics. This observation makes sense in light of the life histories of both chewing lice and pocket gophers and provides a powerful explanation for the well-documented pattern of parallel cladogenesis in pocket gophers and chewing lice. PMID:26152795

  18. Impacts of a native parasitic plant on an introduced and a native host species: implications for the control of an invasive weed

    PubMed Central

    Prider, Jane; Watling, Jennifer; Facelli, José M.

    2009-01-01

    Background and Aims While invasive species may escape from natural enemies in the new range, the establishment of novel biotic interactions with species native to the invaded range can determine their success. Biological control of plant populations can be achieved by manipulation of a species' enemies in the invaded range. Interactions were therefore investigated between a native parasitic plant and an invasive legume in Mediterranean-type woodlands of South Australia. Methods The effects of the native stem parasite, Cassytha pubescens, on the introduced host, Cytisus scoparius, and a co-occurring native host, Leptospermum myrsinoides, were compared. The hypothesis that the parasitic plant would have a greater impact on the introduced host than the native host was tested. In a field study, photosynthesis, growth and survival of hosts and parasite were examined. Key Results As predicted, Cassytha had greater impacts on the introduced host than the native host. Dead Cytisus were associated with dense Cassytha infections but mortality of Leptospermum was not correlated with parasite infection. Cassytha infection reduced the photosynthetic rates of both hosts. Infected Cytisus showed slower recovery of photosystem II efficiency, lower transpiration rates and reduced photosynthetic biomass in comparison with uninfected plants. Parasite photosynthetic rates and growth rates were higher when growing on the introduced host Cytisus, than on Leptospermum. Conclusions Infection by a native parasitic plant had strong negative effects on the physiology and above-ground biomass allocation of an introduced species and was correlated with increased plant mortality. The greater impact of the parasite on the introduced host may be due to either the greater resources that this host provides or increased resistance to infection by the native host. This disparity of effects between introduced host and native host indicates the potential for Cassytha to be exploited as a control tool. PMID:19001426

  19. Non-specific Patterns of Vector, Host, and Avian Malaria Parasite Associations in a Central African Rainforest

    PubMed Central

    Njabo, Kevin Y; Cornel, Anthony J.; Bonneaud, Camille; Toffelmier, Erin; Sehgal, R.N.M.; Valki?nas, Gediminas; Russell, Andrew F.; Smith, Thomas B.

    2010-01-01

    Malaria parasites use vertebrate hosts for asexual multiplication and Culicidae mosquitoes for sexual and asexual development, yet the literature on avian malaria remains biased towards examining the asexual stages of the life cycle in birds. To fully understand parasite evolution and mechanism of malaria transmission, knowledge of all three components of the vector-host-parasite system is essential. Little is known about avian parasite-vector associations in African rainforests where numerous species of birds are infected with avian haemosporidians of the genera Plasmodium and Haemoproteus. Here we applied high resolution melt qPCR-based techniques and nested PCR to examine the occurrence and diversity of mitochondrial cytochrome b gene sequences of haemosporidian parasites in wild-caught mosquitoes sampled across 12 sites in Cameroon. In all, 3134 mosquitoes representing 27 species were screened. Mosquitoes belonging to four genera (Aedes, Coquillettidia, Culex, and Mansonia) were infected with twenty-two parasite lineages (18 Plasmodium spp. and 4 Haemoproteus spp.). Presence of Plasmodium sporozoites in salivary glands of Coquillettidia aurites further established these mosquitoes as likely vectors. Occurrence of parasite lineages differed significantly among genera, as well as their probability of being infected with malaria across species and sites. Approximately one-third of these lineages were previously detected in other avian host species from the region, indicating that vertebrate host sharing is a common feature and that avian Plasmodium spp. vector breadth does not always accompany vertebrate-host breadth. This study suggests extensive invertebrate host shifts in mosquito-parasite interactions and that avian Plasmodium species are most likely not tightly coevolved with vector species. PMID:21134011

  20. Interactions among four parasite species in an amphipod population from Patagonia.

    PubMed

    Rauque, C A; Semenas, L

    2013-03-01

    Parasites commonly share their hosts with specimens of the same or different parasite species, resulting in multiple parasites obtaining resources from the same host. This could potentially lead to conflicts between co-infecting parasites, especially at high infection intensities. In Pool Los Juncos (Patagonia, Argentina), the amphipod Hyalella patagonica is an intermediate host to three parasites that mature in birds (the acanthocephalan Pseudocorynosoma sp. and larval stages of two Cyclophyllidea cestodes), in addition to a microsporidian (Thelohania sp.), whose life cycle is unknown, but very likely to be monoxenous. The aim of this study was to describe interactions between these parasite species in their amphipod host population. Amphipods were collected monthly between June 2002 and January 2004 to assess parasite infection. Infection prevalence and mean intensity were greatest in larger male amphipods for all parasite species. We also found a positive association between Thelohania sp. and both Pseudocorynosoma sp. and Cyclophyllidea sp. 1 infections, though Pseudocorynosoma sp. and Cyclophyllidea sp. 1 were negatively associated with each other. We conclude that contrasting associations between parasite species may be associated with competition for both food intake and space in the haemocoel. PMID:22335997

  1. Born in an alien nest: how do social parasite male offspring escape from host aggression?

    PubMed

    Lhomme, Patrick; Ayasse, Manfred; Valterová, Irena; Lecocq, Thomas; Rasmont, Pierre

    2012-01-01

    Social parasites exploit the colony resources of social insects. Some of them exploit the host colony as a food resource or as a shelter whereas other species also exploit the brood care behavior of their social host. Some of these species have even lost the worker caste and rely completely on the host's worker force to rear their offspring. To avoid host defenses and bypass their recognition code, these social parasites have developed several sophisticated chemical infiltration strategies. These infiltration strategies have been highly studied in several hymenopterans. Once a social parasite has successfully entered a host nest and integrated its social system, its emerging offspring still face the same challenge of avoiding host recognition. However, the strategy used by the offspring to survive within the host nest without being killed is still poorly documented. In cuckoo bumblebees, the parasite males completely lack the morphological and chemical adaptations to social parasitism that the females possess. Moreover, young parasite males exhibit an early production of species-specific cephalic secretions, used as sexual pheromones. Host workers might thus be able to recognize them. Here we used a bumblebee host-social parasite system to test the hypothesis that social parasite male offspring exhibit a chemical defense strategy to escape from host aggression during their intranidal life. Using behavioral assays, we showed that extracts from the heads of young cuckoo bumblebee males contain a repellent odor that prevents parasite males from being attacked by host workers. We also show that social parasitism reduces host worker aggressiveness and helps parasite offspring acceptance. PMID:23028441

  2. A Trypanosoma brucei Kinesin Heavy Chain Promotes Parasite Growth by Triggering Host Arginase Activity

    PubMed Central

    De Muylder, Géraldine; Daulouède, Sylvie; Lecordier, Laurence; Uzureau, Pierrick; Morias, Yannick; Van Den Abbeele, Jan; Caljon, Guy; Hérin, Michel; Holzmuller, Philippe; Semballa, Silla; Courtois, Pierrette; Vanhamme, Luc; Stijlemans, Benoît; De Baetselier, Patrick; Barrett, Michael P.; Barlow, Jillian L.; McKenzie, Andrew N. J.; Barron, Luke; Wynn, Thomas A.; Beschin, Alain; Vincendeau, Philippe; Pays, Etienne

    2013-01-01

    Background In order to promote infection, the blood-borne parasite Trypanosoma brucei releases factors that upregulate arginase expression and activity in myeloid cells. Methodology/Principal findings By screening a cDNA library of T. brucei with an antibody neutralizing the arginase-inducing activity of parasite released factors, we identified a Kinesin Heavy Chain isoform, termed TbKHC1, as responsible for this effect. Following interaction with mouse myeloid cells, natural or recombinant TbKHC1 triggered SIGN-R1 receptor-dependent induction of IL-10 production, resulting in arginase-1 activation concomitant with reduction of nitric oxide (NO) synthase activity. This TbKHC1 activity was IL-4R?-independent and did not mirror M2 activation of myeloid cells. As compared to wild-type T. brucei, infection by TbKHC1 KO parasites was characterized by strongly reduced parasitaemia and prolonged host survival time. By treating infected mice with ornithine or with NO synthase inhibitor, we observed that during the first wave of parasitaemia the parasite growth-promoting effect of TbKHC1-mediated arginase activation resulted more from increased polyamine production than from reduction of NO synthesis. In late stage infection, TbKHC1-mediated reduction of NO synthesis appeared to contribute to liver damage linked to shortening of host survival time. Conclusion A kinesin heavy chain released by T. brucei induces IL-10 and arginase-1 through SIGN-R1 signaling in myeloid cells, which promotes early trypanosome growth and favors parasite settlement in the host. Moreover, in the late stage of infection, the inhibition of NO synthesis by TbKHC1 contributes to liver pathogenicity. PMID:24204274

  3. Habitat selection for parasite-free space by hosts of parasitic Jukka T. Forsman and Thomas E. Martin

    E-print Network

    Martin, Thomas E.

    Habitat selection for parasite-free space by hosts of parasitic cowbirds Jukka T. Forsman Unit, Univ. of Montana, Missoula, MT 59812, USA. Choice of breeding habitat can have a major impact on fitness. Sensitivity of habitat choice to environmental cues predicting reproductive success

  4. Parasite Prevalence Corresponds to Host Life History in a Diverse Assemblage of Afrotropical Birds and Haemosporidian Parasites

    PubMed Central

    Lutz, Holly L.; Hochachka, Wesley M.; Engel, Joshua I.; Bell, Jeffrey A.; Tkach, Vasyl V.; Bates, John M.; Hackett, Shannon J.; Weckstein, Jason D.

    2015-01-01

    Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi. PMID:25853491

  5. Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites.

    PubMed

    Lutz, Holly L; Hochachka, Wesley M; Engel, Joshua I; Bell, Jeffrey A; Tkach, Vasyl V; Bates, John M; Hackett, Shannon J; Weckstein, Jason D

    2015-01-01

    Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon) collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified) based on BLAST queries against the avian malaria database, MalAvi. PMID:25853491

  6. Geographic variation in parasitism rates of two sympatric cuckoo hosts in China.

    PubMed

    Yang, Can-Chao; Li, Dong-Lai; Wang, Long-Wu; Liang, Guo-Xian; Zhang, Zheng-Wang; Liang, Wei

    2014-01-01

    Rates of brood parasitism vary extensively among host species and populations of a single host species. In this study, we documented and compared parasitism rates of two sympatric hosts, the Oriental Reed Warbler (Acrocephalus orientalis) and the Reed Parrotbill (Paradoxornis heudei), in three populations in China. We found that the Common Cuckoo (Cuculus canorus) is the only parasite using both the Oriental Reed Warbler and Reed Parrotbill as hosts, with a parasitism rate of 22.4%-34.3% and 0%-4.6%, respectively. The multiple parasitism rates were positively correlated with local parasitism rates across three geographic populations of Oriental Reed Warbler, which implies that higher pressure of parasitism lead to higher multiple parasitism rate. Furthermore, only one phenotype of cuckoo eggs was found in the nests of these two host species. Our results lead to two conclusions: (1) The Oriental Reed Warbler should be considered the major host of Common Cuckoo in our study sites; and (2) obligate parasitism on Oriental Reed Warbler by Common Cuckoo is specialized but flexible to some extent, i.e., using Reed Parrotbill as a secondary host. Further studies focusing on egg recognition and rejection behaviour of these two host species should be conducted to test our predictions. PMID:24470456

  7. Host-Parasite Interactions in Chagas Disease: Genetically Unidentical Isolates of a Single Trypanosoma cruzi Strain Identified In Vitro via LSSP-PCR

    PubMed Central

    Nogueira-Paiva, Nívia Carolina; Vieira, Paula Melo de Abreu; Oliveri, Larissa Maris Rezende; Fonseca, Kátia da Silva; Pound-Lana, Gwenaelle; de Oliveira, Maykon Tavares; de Lana, Marta; Veloso, Vanja Maria; Reis, Alexandre Barbosa; Carneiro, Cláudia Martins

    2015-01-01

    The present study aims at establishing whether the diversity in pathogenesis within a genetically diverse host population infected with a single polyclonal strain of Trypanosoma cruzi is due to selection of specific subpopulations within the strain. For this purpose we infected Swiss mice, a genetically diverse population, with the polyclonal strain of Trypanosoma cruzi Berenice-78 and characterized via LSSP-PCR the kinetoplast DNA of subpopulations isolated from blood samples collected from the animals at various times after inoculation (3, 6 and 12 months after inoculation). We examined the biological behavior of the isolates in acellular medium and in vitro profiles of infectivity in Vero cell medium. We compared the characteristics of the isolates with the inoculating strain and with another strain, Berenice 62, isolated from the same patient 16 years earlier. We found that one of the isolates had intermediate behavior in comparison with Berenice-78 and Berenice-62 and a significantly different genetic profile by LSSP-PCR in comparison with the inoculating strain. We hereby demonstrate that genetically distinct Trypanosoma cruzi isolates may be obtained upon experimental murine infection with a single polyclonal Trypanosoma cruzi strain. PMID:26359864

  8. Galectin-11: A novel host mediator targeting specific stages of the gastrointestinal nematode parasite, Haemonchus contortus.

    PubMed

    Preston, S J M; Beddoe, T; Walkden-Brown, S; Meeusen, E; Piedrafita, D

    2015-10-01

    Galectin-11 is released from epithelial cells of the gastrointestinal tract, specifically following infection with gastrointestinal parasites including the highly pathogenic nematode, Haemonchus contortus. The function(s) of galectin-11 are currently unknown but seem to be associated with the development of immunity by the host. The aim of the present study was to examine the interaction of galectin-11 with the different parasitic life cycle stages of H. contortus and determine any effects on parasite development. The results of this study showed that galectin-11 binds to the surface of the L4 and adult stages of the parasite but not to the exsheathed L3 stage. In addition, at a lower concentration, binding to the L4 was specifically localised to the pharynx region. Subsequent in vitro assays demonstrated significant inhibition of larval growth and development in the presence of recombinant galectin-11. These results indicate, to our knowledge for the first time, a functional role for galectin-11 in gastrointestinal nematode infection of ruminants and a mechanism of action of galectin-11, targeting the development and growth of the L4 and possibly the adult parasite stage. PMID:26215057

  9. Egg puncturing by the brood parasitic Greater Honeyguide and potential host

    E-print Network

    Spottiswoode, Claire

    robust adversary to their own. Selection on host eggshell properties was also implied by honeyguide host species having thicker eggshells than congeneric nonhost species. Although correlational, these findings: brood parasitism, coevolution, egg shape, eggshell thickness, honeyguides, selection. [Behav Ecol

  10. Habitat fragmentation alters the properties of a host-parasite network: rodents and their helminths in South-East Asia.

    PubMed

    Bordes, Frédéric; Morand, Serge; Pilosof, Shai; Claude, Julien; Krasnov, Boris R; Cosson, Jean-François; Chaval, Yannick; Ribas, Alexis; Chaisiri, Kittipong; Blasdell, Kim; Herbreteau, Vincent; Dupuy, Stéphane; Tran, Annelise

    2015-09-01

    While the effects of deforestation and habitat fragmentation on parasite prevalence or richness are well investigated, host-parasite networks are still understudied despite their importance in understanding the mechanisms of these major disturbances. Because fragmentation may negatively impact species occupancy, abundance and co-occurrence, we predict a link between spatiotemporal changes in habitat and the architecture of host-parasite networks. For this, we used an extensive data set on 16 rodent species and 29 helminth species from seven localities of South-East Asia. We analysed the effects of rapid deforestation on connectance and modularity of helminth-parasite networks. We estimated both the degree of fragmentation and the rate of deforestation through the development of land uses and their changes through the last 20 to 30 years in order to take into account the dynamics of habitat fragmentation in our statistical analyses. We found that rapid fragmentation does not affect helminth species richness per se but impacts host-parasite interactions as the rodent-helminth network becomes less connected and more modular. Our results suggest that parasite sharing among host species may become more difficult to maintain with the increase of habitat disturbance. PMID:25777342

  11. Inflammation and oxidative stress in vertebrate host-parasite systems.

    PubMed

    Sorci, Gabriele; Faivre, Bruno

    2009-01-12

    Innate, inflammation-based immunity is the first line of vertebrate defence against micro-organisms. Inflammation relies on a number of cellular and molecular effectors that can strike invading pathogens very shortly after the encounter between inflammatory cells and the intruder, but in a non-specific way. Owing to this non-specific response, inflammation can generate substantial costs for the host if the inflammatory response, and the associated oxygen-based damage, get out of control. This imposes strong selection pressure that acts to optimize two key features of the inflammatory response: the timing of activation and resolution (the process of downregulation of the response). In this paper, we review the benefits and costs of inflammation-driven immunity. Our aim is to emphasize the importance of resolution of inflammation as a way of maintaining homeostasis against oxidative stress and to prevent the 'horror autotoxicus' of chronic inflammation. Nevertheless, host immune regulation also opens the way to pathogens to subvert host defences. Therefore, quantifying inflammatory costs requires assessing (i) short-term negative effects, (ii) delayed inflammation-driven diseases, and (iii) parasitic strategies to subvert inflammation. PMID:18930878

  12. Co-invaders: The effects of alien parasites on native hosts

    PubMed Central

    Lymbery, Alan J.; Morine, Mikayla; Kanani, Hosna Gholipour; Beatty, Stephen J.; Morgan, David L.

    2014-01-01

    We define co-introduced parasites as those which have been transported with an alien host to a new locality, outside of their natural range, and co-invading parasites as those which have been co-introduced and then spread to new, native hosts. Of 98 published studies of co-introductions, over 50% of hosts were freshwater fishes and 49% of parasites were helminths. Although we would expect parasites with simple, direct life cycles to be much more likely to be introduced and establish in a new locality, a substantial proportion (36%) of co-introductions were of parasites with an indirect life cycle. Seventy-eight per cent of co-introduced parasites were found in native host species and can therefore be classed as co-invaders. Host switching was equally common among parasites with direct and indirect life cycles. The magnitude of the threat posed to native species by co-invaders will depend, among other things, on parasite virulence. In 16 cases where co-introduced parasites have switched to native hosts and information was available on relative virulence, 14 (85%) were more virulent in native hosts than in the co-introduced alien host. We argue that this does not necessarily support the naïve host theory that co-invading parasites will have greater pathogenic effects in native hosts with which they have no coevolutionary history, but may instead be a consequence of the greater likelihood for parasites with lower virulence in their natural host to be co-introduced. PMID:25180161

  13. Co-invaders: The effects of alien parasites on native hosts.

    PubMed

    Lymbery, Alan J; Morine, Mikayla; Kanani, Hosna Gholipour; Beatty, Stephen J; Morgan, David L

    2014-08-01

    We define co-introduced parasites as those which have been transported with an alien host to a new locality, outside of their natural range, and co-invading parasites as those which have been co-introduced and then spread to new, native hosts. Of 98 published studies of co-introductions, over 50% of hosts were freshwater fishes and 49% of parasites were helminths. Although we would expect parasites with simple, direct life cycles to be much more likely to be introduced and establish in a new locality, a substantial proportion (36%) of co-introductions were of parasites with an indirect life cycle. Seventy-eight per cent of co-introduced parasites were found in native host species and can therefore be classed as co-invaders. Host switching was equally common among parasites with direct and indirect life cycles. The magnitude of the threat posed to native species by co-invaders will depend, among other things, on parasite virulence. In 16 cases where co-introduced parasites have switched to native hosts and information was available on relative virulence, 14 (85%) were more virulent in native hosts than in the co-introduced alien host. We argue that this does not necessarily support the naïve host theory that co-invading parasites will have greater pathogenic effects in native hosts with which they have no coevolutionary history, but may instead be a consequence of the greater likelihood for parasites with lower virulence in their natural host to be co-introduced. PMID:25180161

  14. The expression of virulence for a mixed-mode transmitted parasite in a diapausing host.

    PubMed

    Sheikh-Jabbari, Elham; Hall, Matthew D; Ben-Ami, Frida; Ebert, Dieter

    2014-07-01

    Many parasites survive harsh periods together with their hosts. Without the possibility of horizontal transmission during host diapause, parasite persistence depends entirely on host survival. We therefore hypothesize that a parasite should be avirulent during its host's diapausing stage. In contrast, the parasite may express higher virulence, i.e. parasite-induced fitness reduction of the host, during host life stages with good opportunities for horizontal transmission. Here we study the effects of a vertically and horizontally transmitted microsporidium parasite, Hamiltosporidium tvaerminnensis, on the quantity and survival of resting eggs of its host Daphnia magna. We find that the parasite did not affect egg volume, hatching success and time to hatching of the Daphnia's resting eggs, although it did strongly reduce the number of resting eggs produced by infected females, revealing high virulence during the non-diapause phase of the host's life cycle. These results also explain another aspect of this system - namely the strong decline in natural population prevalence across diapause. This decline is not caused by mortality in infected resting stages, as was previously hypothesized, but because infected female hosts produce lower rates of resting eggs. Together, these results help explain the epidemiological dynamics of a microsporidian disease and highlight the adaptive nature of life stage-dependent parasite virulence. PMID:24786012

  15. Effects of Rearing Host Species on the Host-Feeding Capacity and Parasitism of the Whitefly Parasitoid Encarsia formosa

    PubMed Central

    Dai, Peng; Ruan, Changchun; Zang, Liansheng; Wan, Fanghao; Liu, Linzhou

    2014-01-01

    Parasitoids of the Encarsia genus (Hymenoptera: Aphelinidae) are important biological control agents against whiteflies. Some of the species in this genus not only parasitize their hosts, but also kill them through host feeding. The whitefly parasitoid, Encarsia formosa Gahan, was examined to determine whether the rearing host species affects its subsequent host-feeding capacity and parasitism. E. formosa wasps were reared on Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) and Bemisia tabaci (Gennadius) ‘Q’, and their subsequent host-feeding capacity and parasitism of T. vaporariorum and B. tabaci were examined. E. formosa reared on T. vaporariorum were significantly larger in body size than those reared on B. tabaci, but these wasps killed a similar number of whitefly nymphs by host feeding when they attacked the same host species on which they were reared. Regardless of the species on which it was reared, E. formosa fed significantly more on the B. tabaci nymphs than on the T. vaporariorum nymphs. The number of whitefly nymphs parasitized by E. formosa differed between the wasps reared on T. vaporariorum and those reared on B. tabaci depending on which whitefly species was offered as a host. In addition, the wasps reared on T. vaporariorum parasitized significantly more on T. vaporariorum than those reared on B. tabaci. The wasps reared on B. tabaci, however, parasitized similar numbers of whiteflies of both host species. The results indicated that the host-feeding capacity of E. formosa was affected more by the host species attacked than by the rearing host species, but the parasitism was affected by the host species attacked and the rearing host species. Generally, E. formosa reared on T. vaporariorum killed more T. vaporariorum nymphs by parasitism and host feeding than those reared on B. tabaci. Additionally, a similar number of B. tabaci nymphs were killed by parasitism and host feeding regardless of the rearing host species. Currently coexistence of B. tabaci and T. vaporariorum on vegetable crops usually occurs in some areas; our results may provide helpful information on using mass-reared parasitoids against mixed whitefly infestations in biological control programs. PMID:25368062

  16. Effects of rearing host species on the host-feeding capacity and parasitism of the whitefly parasitoid Encarsia formosa.

    PubMed

    Dai, Peng; Ruan, Changchun; Zang, Liansheng; Wan, Fanghao; Liu, Linzhou

    2014-01-01

    Parasitoids of the Encarsia genus (Hymenoptera: Aphelinidae) are important biological control agents against whiteflies. Some of the species in this genus not only parasitize their hosts, but also kill them through host feeding. The whitefly parasitoid, Encarsia formosa Gahan, was examined to determine whether the rearing host species affects its subsequent host-feeding capacity and parasitism. E. formosa wasps were reared on Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) and Bemisia tabaci (Gennadius) 'Q', and their subsequent host-feeding capacity and parasitism of T. vaporariorum and B. tabaci were examined. E. formosa reared on T. vaporariorum were significantly larger in body size than those reared on B. tabaci, but these wasps killed a similar number of whitefly nymphs by host feeding when they attacked the same host species on which they were reared. Regardless of the species on which it was reared, E. formosa fed significantly more on the B. tabaci nymphs than on the T. vaporariorum nymphs. The number of whitefly nymphs parasitized by E. formosa differed between the wasps reared on T. vaporariorum and those reared on B. tabaci depending on which whitefly species was offered as a host. In addition, the wasps reared on T. vaporariorum parasitized significantly more on T. vaporariorum than those reared on B. tabaci. The wasps reared on B. tabaci, however, parasitized similar numbers of whiteflies of both host species. The results indicated that the host-feeding capacity of E. formosa was affected more by the host species attacked than by the rearing host species, but the parasitism was affected by the host species attacked and the rearing host species. Generally, E. formosa reared on T. vaporariorum killed more T. vaporariorum nymphs by parasitism and host feeding than those reared on B. tabaci. Additionally, a similar number of B. tabaci nymphs were killed by parasitism and host feeding regardless of the rearing host species. Currently coexistence of B. tabaci and T. vaporariorum on vegetable crops usually occurs in some areas; our results may provide helpful information on using mass-reared parasitoids against mixed whitefly infestations in biological control programs. PMID:25368062

  17. Immune modulation by helminth parasites of ruminants: implications for vaccine development and host immune competence

    PubMed Central

    McNeilly, Tom N.; Nisbet, Alasdair J.

    2014-01-01

    Parasitic helminths reside in immunologically-exposed extracellular locations within their hosts, yet they are capable of surviving for extended periods. To enable this survival, these parasites have developed complex and multifaceted mechanisms to subvert or suppress host immunity. This review summarises current knowledge of immune modulation by helminth parasites of ruminants and the parasite-derived molecules involved in driving this modulation. Such immunomodulatory molecules have considerable promise as vaccine targets, as neutralisation of their function is predicted to enhance anti-parasite immunity and, as such, current knowledge in this area is presented herein. Furthermore, we summarise current evidence that, as well as affecting parasite-specific immunity, immune modulation by these parasites may also affect the ability of ruminant hosts to control concurrent diseases or mount effective responses to vaccination. PMID:25292481

  18. Estimates of coextinction risk: how anuran parasites respond to the extinction of their hosts.

    PubMed

    Campião, Karla Magalhães; de Aquino Ribas, Augusto Cesar; Cornell, Stephen J; Begon, Michael; Tavares, Luiz Eduardo Roland

    2015-12-01

    Amphibians are known as the most threatened vertebrate group. One of the outcomes of a species' extinction is the coextinction of its dependents. Here, we estimate the extinction risk of helminth parasites of South America anurans. Parasite coextinction probabilities were modeled, assuming parasite specificity and host vulnerability to extinction as determinants. Parasite species associated with few hosts were the most prone to extinction, and extinction risk varied amongst helminth species of different taxonomic groups and life cycle complexity. Considering host vulnerability in the model decreased the extinction probability of most parasites species. However, parasite specificity and host vulnerability combined to increase the extinction probabilities of 44% of the helminth species reported in a single anuran species. PMID:26432294

  19. Intestinal distribution and fecundity of two species of Diplostomum parasites in definitive hosts.

    PubMed

    Karvonen, A; Cheng, G-H; Seppälä, O; Valtonen, E T

    2006-03-01

    This paper investigated the intestinal distribution and fecundity of 2 species of Diplostomum parasites, D. spathaceum and D. pseudospathaceum, in 2 species of definitive hosts, herring gull (Larus argentatus) and common gull (L. canus), using both empirical field data and experimental infections. At the level of individual hosts, the parasite species occupied different parts within the intestine, but the fecundity of the worms, measured as the number of eggs in the uterus, did not differ between the parasite species except in wild common gulls. Interestingly, egg numbers in individual hosts were positively correlated between the parasite species suggesting that some birds provided better resources for the parasite species. At the host population level, fecundity of the worms did not differ between the host species or between adult birds and chicks. Both parasite species were also aggregated to the same host individuals and it is likely that aggregation is transferred to gulls from fish intermediate hosts. Individual differences in suitability and parasite numbers between hosts provide important grounds and implications for epidemiological model-based parasite prevention strategies. PMID:16318675

  20. Wasp behavior leads to uniform parasitism of a host available only a few hours per year

    E-print Network

    van Nouhuys, Saskya

    uniformity of parasitism by H. horticola is unusual for a parasitoid with a narrow host range ( Jones et alWasp behavior leads to uniform parasitism of a host available only a few hours per year Saskya van 65 (Viikinkaari 1), FIN-00014 University of Helsinki, Finland The parasitoid wasp, Hyposoter

  1. HOST PARTITIONING BY PARASITES IN AN INTERTIDAL CRUSTACEAN COMMUNITY Anson V. Koehler and Robert Poulin

    E-print Network

    Poulin, Robert

    HOST PARTITIONING BY PARASITES IN AN INTERTIDAL CRUSTACEAN COMMUNITY Anson V. Koehler and Robert, immunology, and behavior. We looked at parasite transmission in the intertidal crustacean community of Lower the major crustacean species, (2) identifying hosts that play the most important transmission role for each

  2. Similar evolutionary potentials in an obligate ant parasite and its two host species

    PubMed Central

    Pennings, P S; Achenbach, A; Foitzik, S

    2011-01-01

    The spatial structure of host–parasite coevolution is shaped by population structure and genetic diversity of the interacting species. We analysed these population genetic parameters in three related ant species: the parasitic slavemaking ant Protomognathus americanus and its two host species Temnothorax longispinosus and T. curvispinosus. We sampled throughout their range, genotyped ants on six to eight microsatellite loci and an MtDNA sequence and found high levels of genetic variation and strong population structure in all three species. Interestingly, the most abundant species and primary host, T. longispinosus, is characterized by less structure, but lower local genetic diversity. Generally, differences between the species were small, and we conclude that they have similar evolutionary potentials. The coevolutionary interaction between this social parasite and its hosts may therefore be less influenced by divergent evolutionary potentials, but rather by varying selection pressures. We employed different methods to quantify and compare genetic diversity and structure between species and genetic markers. We found that Jost D is well suited for these comparisons, as long as mutation rates between markers and species are similar. If this is not the case, for example, when using MtDNA and microsatellites to study sex-specific dispersal, model-based inference should be used instead of descriptive statistics (such as D or GST). Using coalescent-based methods, we indeed found that males disperse much more than females, but this sex bias in dispersal differed between species. The findings of the different approaches with regard to genetic diversity and structure were in good accordance with each other. PMID:21324025

  3. The path to host extinction can lead to loss of generalist parasites

    E-print Network

    Dhindsa, Rajinder

    by extinction risk among ungulate and carnivore hosts. Host­par- asite associations for free-living carnivores is explained by decreases in the richness of multi-host parasites. However, among carnivores threat status-species contact as hosts decline and habitats become fragmented. Among carnivores, threat status may

  4. Exploring Host-Microbe Interactions in Hydra

    E-print Network

    hosts interact with epithelial-bound microorganisms Sebastian Fraune, Rene´ Augustin, and Thomas C. G against patho- gens, much like other more complex organisms. Further, microorganisms colonize hosts interact with epithelial- bound microorganisms. Hydra are cnidarians, which includes corals, jelly

  5. Alternative mechanisms of increased eggshell hardness of avian brood parasites relative to host species

    PubMed Central

    Igic, Branislav; Braganza, Kim; Hyland, Margaret M.; Silyn-Roberts, Heather; Cassey, Phillip; Grim, Tomas; Rutila, Jarkko; Moskát, Csaba; Hauber, Mark E.

    2011-01-01

    Obligate brood parasitic birds lay their eggs in nests of other species and parasite eggs typically have evolved greater structural strength relative to host eggs. Increased mechanical strength of the parasite eggshell is an adaptation that can interfere with puncture ejection behaviours of discriminating hosts. We investigated whether hardness of eggshells is related to differences between physical and chemical traits from three different races of the parasitic common cuckoo Cuculus canorus, and their respective hosts. Using tools developed for materials science, we discovered a novel correlate of increased strength of parasite eggs: the common cuckoo's egg exhibits a greater microhardness, especially in the inner region of the shell matrix, relative to its host and sympatric non-host species. We then tested predictions of four potential mechanisms of shell strength: (i) increased relative thickness overall, (ii) greater proportion of the structurally harder shell layers, (iii) higher concentration of inorganic components in the shell matrix, and (iv) elevated deposition of a high density compound, MgCO3, in the shell matrix. We confirmed support only for hypothesis (i). Eggshell characteristics did not differ between parasite eggs sampled from different host nests in distant geographical sites, suggesting an evolutionarily shared microstructural mechanism of stronger parasite eggshells across diverse host-races of brood parasitic cuckoos. PMID:21561966

  6. Host genotype and age have no effect on rejection of parasitic eggs.

    PubMed

    Procházka, Petr; Konvi?ková-Patzenhauerová, Hana; Požgayová, Milica; Trnka, Alfréd; Jelínek, Václav; Honza, Marcel

    2014-05-01

    Egg rejection belongs to a widely used host tactic to prevent the costs incurred by avian brood parasitism. However, the genetic basis of this behaviour and the effect of host age on the probability of rejecting the parasitic egg remain largely unknown. Here, we used a set of 15 polymorphic microsatellite loci, including a previously detected candidate locus (Ase64), to link genotypes of female great reed warblers (Acrocephalus arundinaceus), a known rejecter, with their egg rejection responses in two host populations. We also tested whether host female age, as a measure of the experience with own eggs, plays a role in rejection of common cuckoo (Cuculus canorus) eggs. We failed to find any consistent association of egg rejection responses with host female genotypes or age. It seems that host decisions on egg rejection show high levels of phenotypic plasticity and are likely to depend on the spatiotemporal variation in the parasitism pressure. Future studies exploring the repeatability of host responses towards parasitic eggs and the role of host individual experience with parasitic eggs would greatly improve our understanding of the variations in host behaviours considering the persistence of brood parasitism in host populations with rejecter phenotypes. PMID:24718778

  7. Host genotype and age have no effect on rejection of parasitic eggs

    NASA Astrophysics Data System (ADS)

    Procházka, Petr; Konvi?ková-Patzenhauerová, Hana; Požgayová, Milica; Trnka, Alfréd; Jelínek, Václav; Honza, Marcel

    2014-05-01

    Egg rejection belongs to a widely used host tactic to prevent the costs incurred by avian brood parasitism. However, the genetic basis of this behaviour and the effect of host age on the probability of rejecting the parasitic egg remain largely unknown. Here, we used a set of 15 polymorphic microsatellite loci, including a previously detected candidate locus (Ase64), to link genotypes of female great reed warblers ( Acrocephalus arundinaceus), a known rejecter, with their egg rejection responses in two host populations. We also tested whether host female age, as a measure of the experience with own eggs, plays a role in rejection of common cuckoo ( Cuculus canorus) eggs. We failed to find any consistent association of egg rejection responses with host female genotypes or age. It seems that host decisions on egg rejection show high levels of phenotypic plasticity and are likely to depend on the spatiotemporal variation in the parasitism pressure. Future studies exploring the repeatability of host responses towards parasitic eggs and the role of host individual experience with parasitic eggs would greatly improve our understanding of the variations in host behaviours considering the persistence of brood parasitism in host populations with rejecter phenotypes.

  8. Food stoichiometry affects the outcome of Daphnia–parasite interaction

    PubMed Central

    Aalto, Sanni L; Pulkkinen, Katja

    2013-01-01

    Phosphorus (P) is an essential nutrient for growth in consumers. P-limitation and parasite infection comprise one of the most common stressor pairs consumers confront in nature. We conducted a life-table study using a Daphnia–microsporidian parasite model, feeding uninfected or infected Daphnia with either P-sufficient or P-limited algae, and assessed the impact of the two stressors on life-history traits of the host. Both infection and P-limitation negatively affected some life-history traits tested. However, under P-limitation, infected animals had higher juvenile growth rate as compared with uninfected animals. All P-limited individuals died before maturation, regardless of infection. The numbers of spore clusters of the microsporidian parasite did not differ in P-limited or P-sufficient hosts. P-limitation, but not infection, decreased body phosphorus content and ingestion rates of Daphnia tested in separate experiments. As parasite spore production did not suffer even under extreme P-limitation, our results suggest that parasite was less limited by P than the host. We discuss possible interpretations concerning the stoichiometrical demands of parasite and suggest that our results are explained by parasite-driven changes in carbon (C) allocation of the hosts. We conclude that the impact of nutrient starvation and parasite infection on consumers depends not only on the stoichiometric demands of host but also those of the parasite. PMID:23762513

  9. The parasite's long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host.

    PubMed

    Beros, Sara; Jongepier, Evelien; Hagemeier, Felizitas; Foitzik, Susanne

    2015-11-22

    Parasites can induce alterations in host phenotypes in order to enhance their own survival and transmission. Parasites of social insects might not only benefit from altering their individual hosts, but also from inducing changes in uninfected group members. Temnothorax nylanderi ant workers infected with the tapeworm Anomotaenia brevis are known to be chemically distinct from nest-mates and do not contribute to colony fitness, but are tolerated in their colonies and well cared for. Here, we investigated how tapeworm- infected workers affect colony aggression by manipulating their presence in ant colonies and analysing whether their absence or presence resulted in behavioural alterations in their nest-mates. We report a parasite-induced shift in colony aggression, shown by lower aggression of uninfected nest-mates from parasitized colonies towards conspecifics, potentially explaining the tolerance towards infected ants. We also demonstrate that tapeworm-infected workers showed a reduced flight response and higher survival, while their presence caused a decrease in survival of uninfected nest-mates. This anomalous behaviour of infected ants, coupled with their increased survival, could facilitate the parasites' transmission to its definitive hosts, woodpeckers. We conclude that parasites exploiting individuals that are part of a society not only induce phenotypic changes within their individual hosts, but in uninfected group members as well. PMID:26582019

  10. Interactions between sources of mortality and the evolution of parasite virulence

    E-print Network

    Day, Troy

    reliable predictions about virulence evolution can be made. Moreover, mortality-source interactions makeInteractions between sources of mortality and the evolution of parasite virulence Paul D. Williams. This prediction, however, is derived from models that assume that host mortality sources combine additively

  11. Consistent isotopic differences between Schistocephalus spp. parasites and their stickleback hosts.

    PubMed

    Eloranta, Antti P; Knudsen, Rune; Amundsen, Per-Arne; Merilä, Juha

    2015-07-23

    Parasite-host systems show markedly variable patterns in isotopic fractionation: parasites can be either depleted or enriched in ¹?N and ¹³C as compared to their hosts. However, it remains unknown whether isotopic fractionation patterns are similar in comparable parasite-host systems from markedly different ecosystems. Results of this study show that large-sized Schistocephalus spp. endoparasites are consistently depleted in ¹?N (by on average -2.13 to -2.20 ‰) as compared to their nine-spined stickleback Pungitius pungitius and three-spined stickleback Gasterosteus aculeatus hosts. The differences between parasites and host for both ?¹?N and ?¹³C were consistent in both study systems despite marked biogeographical differences between the study localities. Although the stable isotope values in general were strongly correlated between the hosts and their parasites, Schistocephalus specimens occupying the same nine-spined stickleback host showed sometimes substantial individual variation in ?¹³C. This might be due to selective use of different carbon sources, or different metabolic or feeding rates. Further studies on selective feeding, physiology and metabolism of parasites are needed to better understand the role of parasites in the structure and functioning of aquatic food webs. PMID:26203883

  12. Resource limitation alters the consequences of co-infection for both hosts and parasites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most animals are concurrently infected with multiple parasites and live in environments with fluctuating resource availability. Compelling evidence from humans, laboratory model systems, and wildlife suggests that interactions among co-infecting parasites can influence disease dynamics, individual h...

  13. Host-parasite relationships as determinants of heavy metal concentrations in perch (Perca fluviatilis) and its intestinal parasite infection.

    PubMed

    Brázová, Tímea; Hanzelová, Vladimíra; Miklisová, Dana; Šalamún, Peter; Vidal-Martínez, Víctor M

    2015-12-01

    The concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn and their bioconcentration factors (BCFs) were determined in two intestinal parasites, an acanthocephalan, Acanthocephalus lucii, a tapeworm, Proteocephalus percae, present in the same host, the European perch (Perca fluviatilis, L.), in the heavily polluted Ružín reservoir in eastern Slovakia. The bioaccumulation of heavy metals in the fish organs and parasites was studied for acanthocephalan and tapeworm monoinfections or mixed infections by the two parasites and for the size of their parasitic infrapopulations. Bioconcentration factors (c[parasite]/c[muscle tissue]) showed that the concentrations of As, Ni, Pb and Zn were higher in mixed infections than in monoinfections. Negative correlations between heavy metal concentrations in perch organs and the parasites were found. For example, higher concentrations of Ni and Zn in both parasite species corresponded with lower metal concentrations in perch and hard roe. Likewise, significant negative relationships between metal concentrations in fish organs and number of parasites were noticed with lower levels of Pb in fish harbouring higher numbers of tapeworms. Similarly, in both parasite species the concentrations of some essential elements (Cr, Mn) were lower at high infection intensities compared to low intensities. Our study revealed that the differential concentration of heavy metals in perch organs was affected by the type of infection (mono- or mixed-infection), and needs to be considered in field ecotoxicological and parasitological studies as a potentially important factor influencing the pollutant concentrations in fish. PMID:26432028

  14. Active invasion and/or encapsulation? A reappraisal of host-cell parasitism by Cryptosporidium.

    PubMed

    Borowski, Hanna; Clode, Peta L; Thompson, R C Andrew

    2008-11-01

    Host-cell invasion by Cryptosporidium is a complex process that requires many different factors derived from both the parasite and the host cell. However, the exact natures of the processes have yet to be resolved. Here, research on different components of the invasion process is put in context, and the sequence of events and pathways associated with the establishment of Cryptosporidium in its unique niche is clarified. In addition, initial parasite-host contact, host-cell invasion and host-cell responses are described. The roles of parasite and host-cell-derived components in the invasion process are examined, as is the question of whether Cryptosporidium actively invades cells and to what extent host-cell responses are involved. PMID:18801703

  15. The perils of using host relationships in parasite taxonomy: phylogeny of the Degeeriella complex

    E-print Network

    Johnson, Kevin P.

    The perils of using host relationships in parasite taxonomy: phylogeny of the Degeeriella complex in revised form 1 December 2001 Abstract The taxonomy of lice (Insecta: Phthiraptera) is often heavily influenced by host taxonomy. The use of host information to define genera of avian lice in the widespread

  16. [Parasitism capacity of Trichogramma pratissolii Querino & Zucchi (Hymenoptera: Trichogrammatidae) on alternative hosts, under different temperatures].

    PubMed

    Zago, Hugo B; Pratissoli, Dirceu; Barros, Reginaldo; Gondim, Manoel G C; Santos, Hugo J G Dos

    2007-01-01

    The successful use of Trichogramma as biocontrol agent depends on its mass production in laboratory, a fundamental step for any biological control program among other factors. This work investigated the parasitism capacity of Trichogramma pratissolii Querino & Zuchi (Hymenoptera: Trichogrammatidae), a new recorded Trichogramma species, parasitizing eggs of Anagasta kuehniella (Zeller) and Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae) under the temperatures of 15, 18, 21, 24, 27, 30 and 33 degree Celsius. Eggs of these hosts were offered to newly emerged females during 24h. This procedure was repeated daily for each female and each temperature up to female death, in order to estimate daily and accumulated parasitism, and female longevity. On both hosts, the daily parasitism decreased as function of the female age. Under all temperatures studied and both hosts the highest rate of parasitism was observed during the first 24h of host exposure, and reached 80% of total parasitism in the 4th and 3rd days when parasitizing A. kuehniella and C. cephalonica, respectively. On both hosts, the highest parasitism rate was observed under temperatures from 21 degree Celsius to 27 degree Celsius. Average longevities of T. pratissolii females deprived of food emerging from A. kuehniella and C. cephalonica lived for 1.0 and 8.9 days when reared at 15 degree Celsius e 33 degree Celsius, respectively. The results indicate that eggs of A. kuehniella and C. cephalonica and temperatures from 21 degree Celsius to 27 degree Celsius were appropriate to rear T. pratissolii. PMID:17420865

  17. Do malaria parasites manipulate the escape behaviour of their avian hosts? An experimental study.

    PubMed

    Garcia-Longoria, Luz; Møller, Anders P; Balbontín, Javier; de Lope, Florentino; Marzal, Alfonso

    2015-12-01

    Escape behaviour is the behaviour that birds and other animals display when already caught by a predator. An individual exhibiting higher intensity of such anti-predator behaviour could have greater probabilities of escape from predators. Parasites are known to affect different aspects of host behaviour to increase their own fitness. Vector-transmitted parasites such as malaria parasites should gain by manipulating their hosts to enhance the probability of transmission. Several studies have shown that malaria parasites can manipulate their vectors leading to increased transmission success. However, little is known about whether malaria parasites can manipulate escape behaviour of their avian hosts thereby increasing the spread of the parasite. Here we used an experimental approach to explore if Plasmodium relictum can manipulate the escape behaviour of one of its most common avian hosts, the house sparrow Passer domesticus. We experimentally tested whether malaria parasites manipulate the escape behaviour of their avian host. We showed a decrease in the intensity of biting and tonic immobility after removal of infection with anti-malaria medication compared to pre-experimental behaviour. These outcomes suggest that infected sparrows performed more intense escape behaviour, which would increase the likelihood of individuals escaping from predators, but also benefit the parasite by increasing its transmission opportunities. PMID:26337268

  18. How to evade a coevolving brood parasite: egg discrimination versus egg variability as host defences

    PubMed Central

    Spottiswoode, Claire N.; Stevens, Martin

    2011-01-01

    Arms races between avian brood parasites and their hosts often result in parasitic mimicry of host eggs, to evade rejection. Once egg mimicry has evolved, host defences could escalate in two ways: (i) hosts could improve their level of egg discrimination; and (ii) negative frequency-dependent selection could generate increased variation in egg appearance (polymorphism) among individuals. Proficiency in one defence might reduce selection on the other, while a combination of the two should enable successful rejection of parasitic eggs. We compared three highly variable host species of the Afrotropical cuckoo finch Anomalospiza imberbis, using egg rejection experiments and modelling of avian colour and pattern vision. We show that each differed in their level of polymorphism, in the visual cues they used to reject foreign eggs, and in their degree of discrimination. The most polymorphic host had the crudest discrimination, whereas the least polymorphic was most discriminating. The third species, not currently parasitized, was intermediate for both defences. A model simulating parasitic laying and host rejection behaviour based on the field experiments showed that the two host strategies result in approximately the same fitness advantage to hosts. Thus, neither strategy is superior, but rather they reflect alternative potential evolutionary trajectories. PMID:21490019

  19. The ecological success of a social parasite increases with manipulation of collective host behaviour.

    PubMed

    Jongepier, E; Kleeberg, I; Foitzik, S

    2015-12-01

    Many parasites alter the behaviour of their host to their own advantage, yet hosts often vary in their susceptibility to manipulation. The ecological and evolutionary implications of such variation can be profound, as resistant host populations may suffer lower parasite pressures than those susceptible to manipulation. To test this prediction, we assessed parasite-induced aggressive behaviours across 16 populations of two Temnothorax ant species, many of which harbour the slavemaker ant Protomognathus americanus. This social parasite uses its Dufour's gland secretions to manipulate its hosts into attacking nestmates, which may deter defenders away from itself during invasion. We indeed find that colonies that were manipulated into attacking their Dufour-treated nestmates were less aggressive towards the slavemaker than those that did not show slavemaker-induced nestmate attack. Slavemakers benefited from altering their hosts' aggression, as both the likelihood that slavemakers survived host encounters and slavemaker prevalence in ant communities increased with slavemaker-induced nestmate attack. Finally, we show that Temnothorax longispinosus colonies were more susceptible to manipulation than Temnothorax curvispinosus colonies. This explains why T. curvispinosus colonies responded with more aggression towards invading slavemakers, why they were less likely to let slavemakers escape and why they were less frequently parasitized by the slavemaker than T. longispinosus. Our findings highlight that large-scale geographic variation in resistance to manipulation can have important implications for the prevalence and host preference of parasites. PMID:26299653

  20. Parasitism overrides herbivore identity allowing hyperparasitoids to locate their parasitoid host using herbivore-induced plant volatiles.

    PubMed

    Zhu, Feng; Broekgaarden, Colette; Weldegergis, Berhane T; Harvey, Jeffrey A; Vosman, Ben; Dicke, Marcel; Poelman, Erik H

    2015-06-01

    Foraging success of predators profoundly depends on reliable and detectable cues indicating the presence of their often inconspicuous prey. Carnivorous insects rely on chemical cues to optimize foraging efficiency. Hyperparasitoids that lay their eggs in the larvae or pupae of parasitic wasps may find their parasitoid hosts developing in different herbivores. They can use herbivore-induced plant volatiles (HIPVs) to locate parasitized caterpillars. Because different herbivore species induce different HIPV emission from plants, hyperparasitoids may have to deal with large variation in volatile information that indicates host presence. In this study, we used an ecogenomics approach to first address whether parasitized caterpillars of two herbivore species (Pieris rapae and P. brassicae) induce similar transcriptional and metabolomic responses in wild Brassica oleracea plants and, second, whether hyperparasitoids Lysibia nana are able to discriminate between these induced plant responses to locate their parasitoid host in different herbivores under both laboratory and field conditions. Our study revealed that both herbivore identity and parasitism affect plant transcriptional and metabolic responses to herbivory. We also found that hyperparasitoids are able to respond to HIPVs released by wild B. oleracea under both laboratory and field conditions. In addition, we observed stronger attraction of hyperparasitoids to HIPVs when plants were infested with parasitized caterpillars. However, hyperparasitoids were equally attracted to plants infested by either herbivore species. Our results indicate that parasitism plays a major role in HIPV-mediated plant-hyperparasitoid interactions. Furthermore, these findings also indicate that plant trait-mediated indirect interaction networks play important roles in community-wide species interactions. PMID:25789566

  1. Mixed-host aggregations and helminth parasite sharing in an East African wildlife-livestock system.

    PubMed

    VanderWaal, Kimberly; Omondi, George Paul; Obanda, Vincent

    2014-09-15

    Parasitic infections transmitted between livestock and wildlife pose a significant risk to wildlife conservation efforts and constrain livestock productivity in tropical regions of the world. Gastrointestinal helminths are among the most ubiquitous parasites, and many parasites within this taxon can readily infect a wide range of host species. Factors shaping bidirectional transmission of parasites in wildlife-livestock systems are understudied. In this study, we investigate the prevalence and diversity of helminth infections in an East African community of wild and domestic ungulates. We also identify pairs of host species between which transmission may be possible based on shared parasite taxa, and explore the role of multi-host aggregations in shaping patterns of parasite sharing. Helminth taxa detected included Trichostrongylus, Trichuris, Paramphistomum, Skrjabinema, Strongyloides, Strongylus spp., and other strongyle-type nematodes. We found that nearly 50% of individuals harbored at least one species of helminth, but certain species, such as zebra and impala, exhibited higher prevalence than others. High canopy feeders, like giraffe, had lower prevalence than hosts feeding at medium and low foraging heights. For helminths, patterns of parasite sharing likely emerge from shared space use, which is mediated in part by mixed-species aggregations. The frequency with which host species associated together in mixed-species aggregations was positively correlated with the number of parasite taxa shared. We suggest that variation among species in their tendency to form mixed-species aggregations creates heterogeneity in transmission opportunities, and consequently, parasite sharing across ungulate species. These results enhance our understanding of the role of spatiotemporal relationships among host species in shaping parasite communities in mixed wildlife-livestock grazing systems. PMID:25086496

  2. Within-host Competition Does Not Select for Virulence in Malaria Parasites; Studies with Plasmodium yoelii

    PubMed Central

    Abkallo, Hussein M.; Tangena, Julie-Anne; Tang, Jianxia; Kobayashi, Nobuyuki; Inoue, Megumi; Zoungrana, Augustin; Colegrave, Nick; Culleton, Richard

    2015-01-01

    In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence) were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host) of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii. PMID:25658331

  3. Transmission stage investment of malaria parasites in response to in-host competition 

    E-print Network

    Wargo, Andrew R; de Roode, Jacobus C; Huijben, Silvie; Drew, Damien R; Read, Andrew F

    2007-01-01

    Conspecific competition occurs in a multitude of organisms, particularly in parasites, where several clones are commonly sharing limited resources inside their host. In theory, increased or decreased transmission investment ...

  4. From pathogen genomes to host plant processes: the power of plant parasitic oomycetes

    PubMed Central

    2013-01-01

    Recent pathogenomic research on plant parasitic oomycete effector function and plant host responses has resulted in major conceptual advances in plant pathology, which has been possible thanks to the availability of genome sequences. PMID:23809564

  5. Host Cell Phosphatidylcholine Is a Key Mediator of Malaria Parasite Survival during Liver Stage Infection

    E-print Network

    Itoe, Maurice A.

    During invasion, Plasmodium, the causative agent of malaria, wraps itself in a parasitophorous vacuole membrane (PVM), which constitutes a critical interface between the parasite and its host cell. Within hepatocytes, each ...

  6. Parasite diversity and coinfection determine pathogen infection success and host fitness

    E-print Network

    Johnson, Pieter

    ecology for understanding infectious diseases. microbiome | parasite competition | emerging infectious (received for review January 31, 2012) While the importance of changes in host biodiversity for disease risk disease | ecosystem function | amphibian decline Ecological research has focused increasingly on the impor

  7. Do Native Parasitic Plants Cause More Damage to Exotic Invasive Hosts Than Native Non-Invasive Hosts? An Implication for Biocontrol

    PubMed Central

    Li, Junmin; Jin, Zexin; Song, Wenjing

    2012-01-01

    Field studies have shown that native, parasitic plants grow vigorously on invasive plants and can cause more damage to invasive plants than native plants. However, no empirical test has been conducted and the mechanism is still unknown. We conducted a completely randomized greenhouse experiment using 3 congeneric pairs of exotic, invasive and native, non-invasive herbaceous plant species to quantify the damage caused by parasitic plants to hosts and its correlation with the hosts' growth rate and resource use efficiency. The biomass of the parasitic plants on exotic, invasive hosts was significantly higher than on congeneric native, non-invasive hosts. Parasites caused more damage to exotic, invasive hosts than to congeneric, native, non-invasive hosts. The damage caused by parasites to hosts was significantly positively correlated with the biomass of parasitic plants. The damage of parasites to hosts was significantly positively correlated with the relative growth rate and the resource use efficiency of its host plants. It may be the mechanism by which parasitic plants grow more vigorously on invasive hosts and cause more damage to exotic, invasive hosts than to native, non-invasive hosts. These results suggest a potential biological control effect of native, parasitic plants on invasive species by reducing the dominance of invasive species in the invaded community. PMID:22493703

  8. Geographical variation in host specificity of fleas (Siphonaptera) parasitic on small mammals: the influence of phylogeny and local

    E-print Network

    Poulin, Robert

    Geographical variation in host specificity of fleas (Siphonaptera) parasitic on small mammals. S. and Poulin, R. 2004. Geographical variation in host specificity of fleas (Siphonaptera) parasitic tackle three basic questions about host specificity using data on host use by fleas (Siphonaptera) from

  9. COMPLEX HOST-PARASITE SYSTEMS IN MARTES: IMPLICATIONS FOR CONSERVATION BIOLOGY OF ENDEMIC FAUNAS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complex assemblages of hosts and parasites reveal insights about biogeography and ecology and inform us about processes which serve to structure faunal diversity and the biosphere in space and time. Exploring aspects of parasite diversity among martens (species of Martes) and other mustelids reveal...

  10. Diversity and disease: community structure drives parasite transmission and host fitness

    E-print Network

    Johnson, Pieter

    LETTER Diversity and disease: community structure drives parasite transmission and host fitness inhibit parasite transmission and reduce disease (Ôdilution effectÕ sensu; Keesing et al. 2006). Because been linked to disease, but the mechanisms underlying such relationships and their applicability to non

  11. Human land use and patterns of parasitism in tropical amphibian hosts

    E-print Network

    McKenzie, Valerie

    Human land use and patterns of parasitism in tropical amphibian hosts Valerie J. Mc: Amphibian Parasite Land use Tropics Forest Pasture A B S T R A C T Landscape alterations by humans can amphibians was associated with land use change, I studied three species of amphibians, Rana vaillanti

  12. Are parasite richness and abundance linked to prey species richness and individual feeding preferences in fish hosts?

    PubMed

    Cirtwill, Alyssa R; Stouffer, Daniel B; Poulin, Robert; Lagrue, Clément

    2016-01-01

    Variations in levels of parasitism among individuals in a population of hosts underpin the importance of parasites as an evolutionary or ecological force. Factors influencing parasite richness (number of parasite species) and load (abundance and biomass) at the individual host level ultimately form the basis of parasite infection patterns. In fish, diet range (number of prey taxa consumed) and prey selectivity (proportion of a particular prey taxon in the diet) have been shown to influence parasite infection levels. However, fish diet is most often characterized at the species or fish population level, thus ignoring variation among conspecific individuals and its potential effects on infection patterns among individuals. Here, we examined parasite infections and stomach contents of New Zealand freshwater fish at the individual level. We tested for potential links between the richness, abundance and biomass of helminth parasites and the diet range and prey selectivity of individual fish hosts. There was no obvious link between individual fish host diet and helminth infection levels. Our results were consistent across multiple fish host and parasite species and contrast with those of earlier studies in which fish diet and parasite infection were linked, hinting at a true disconnect between host diet and measures of parasite infections in our study systems. This absence of relationship between host diet and infection levels may be due to the relatively low richness of freshwater helminth parasites in New Zealand and high host-parasite specificity. PMID:26573385

  13. Hosts of avian brood parasites have evolved egg signatures with elevated information content.

    PubMed

    Caves, Eleanor M; Stevens, Martin; Iversen, Edwin S; Spottiswoode, Claire N

    2015-07-01

    Hosts of brood-parasitic birds must distinguish their own eggs from parasitic mimics, or pay the cost of mistakenly raising a foreign chick. Egg discrimination is easier when different host females of the same species each lay visually distinctive eggs (egg 'signatures'), which helps to foil mimicry by parasites. Here, we ask whether brood parasitism is associated with lower levels of correlation between different egg traits in hosts, making individual host signatures more distinctive and informative. We used entropy as an index of the potential information content encoded by nine aspects of colour, pattern and luminance of eggs of different species in two African bird families (Cisticolidae parasitized by cuckoo finches Anomalospiza imberbis, and Ploceidae by diederik cuckoos Chrysococcyx caprius). Parasitized species showed consistently higher entropy in egg traits than did related, unparasitized species. Decomposing entropy into two variation components revealed that this was mainly driven by parasitized species having lower levels of correlation between different egg traits, rather than higher overall levels of variation in each individual egg trait. This suggests that irrespective of the constraints that might operate on individual egg traits, hosts can further improve their defensive 'signatures' by arranging suites of egg traits into unpredictable combinations. PMID:26085586

  14. Hosts of avian brood parasites have evolved egg signatures with elevated information content

    PubMed Central

    Caves, Eleanor M.; Stevens, Martin; Iversen, Edwin S.; Spottiswoode, Claire N.

    2015-01-01

    Hosts of brood-parasitic birds must distinguish their own eggs from parasitic mimics, or pay the cost of mistakenly raising a foreign chick. Egg discrimination is easier when different host females of the same species each lay visually distinctive eggs (egg ‘signatures’), which helps to foil mimicry by parasites. Here, we ask whether brood parasitism is associated with lower levels of correlation between different egg traits in hosts, making individual host signatures more distinctive and informative. We used entropy as an index of the potential information content encoded by nine aspects of colour, pattern and luminance of eggs of different species in two African bird families (Cisticolidae parasitized by cuckoo finches Anomalospiza imberbis, and Ploceidae by diederik cuckoos Chrysococcyx caprius). Parasitized species showed consistently higher entropy in egg traits than did related, unparasitized species. Decomposing entropy into two variation components revealed that this was mainly driven by parasitized species having lower levels of correlation between different egg traits, rather than higher overall levels of variation in each individual egg trait. This suggests that irrespective of the constraints that might operate on individual egg traits, hosts can further improve their defensive ‘signatures' by arranging suites of egg traits into unpredictable combinations. PMID:26085586

  15. Involvement of the Cytokine MIF in the Snail Host Immune Response to the Parasite Schistosoma mansoni

    PubMed Central

    Baeza Garcia, Alvaro; Pierce, Raymond J.; Gourbal, Benjamin; Werkmeister, Elisabeth; Colinet, Dominique; Reichhart, Jean-Marc; Dissous, Colette; Coustau, Christine

    2010-01-01

    We have identified and characterized a Macrophage Migration Inhibitory Factor (MIF) family member in the Lophotrochozoan invertebrate, Biomphalaria glabrata, the snail intermediate host of the human blood fluke Schistosoma mansoni. In mammals, MIF is a widely expressed pleiotropic cytokine with potent pro-inflammatory properties that controls cell functions such as gene expression, proliferation or apoptosis. Here we show that the MIF protein from B. glabrata (BgMIF) is expressed in circulating immune defense cells (hemocytes) of the snail as well as in the B. glabrata embryonic (Bge) cell line that has hemocyte-like features. Recombinant BgMIF (rBgMIF) induced cell proliferation and inhibited NO-dependent p53-mediated apoptosis in Bge cells. Moreover, knock-down of BgMIF expression in Bge cells interfered with the in vitro encapsulation of S. mansoni sporocysts. Furthermore, the in vivo knock-down of BgMIF prevented the changes in circulating hemocyte populations that occur in response to an infection by S. mansoni miracidia and led to a significant increase in the parasite burden of the snails. These results provide the first functional evidence that a MIF ortholog is involved in an invertebrate immune response towards a parasitic infection and highlight the importance of cytokines in invertebrate-parasite interactions. PMID:20886098

  16. Visual modeling shows that avian host parents use multiple visual cues in rejecting parasitic eggs

    PubMed Central

    Spottiswoode, Claire N.; Stevens, Martin

    2010-01-01

    One of the most striking outcomes of coevolution between species is egg mimicry by brood parasitic birds, resulting from rejection behavior by discriminating host parents. Yet, how exactly does a host detect a parasitic egg? Brood parasitism and egg rejection behavior provide a model system for exploring the relative importance of different visual cues used in a behavioral task. Although hosts are discriminating, we do not know exactly what cues they use, and to answer this it is crucial to account for the receiver's visual perception. Color, luminance (“perceived lightness”) and pattern information have never been simultaneously quantified and experimentally tested through a bird's eye. The cuckoo finch Anomalospiza imberbis and its hosts show spectacular polymorphisms in egg appearance, providing a good opportunity for investigating visual discrimination owing to the large range of patterns and colors involved. Here we combine field experiments in Africa with modeling of avian color vision and pattern discrimination to identify the specific visual cues used by hosts in making rejection decisions. We found that disparity between host and foreign eggs in both color and several aspects of pattern (dispersion, principal marking size, and variability in marking size) were important predictors of rejection, especially color. These cues correspond exactly to the principal differences between host and parasitic eggs, showing that hosts use the most reliable available cues in making rejection decisions, and select for parasitic eggs that are increasingly mimetic in a range of visual attributes. PMID:20421497

  17. Food plant derived disease tolerance and resistance in a natural butterfly-plant-parasite interactions.

    PubMed

    Sternberg, Eleanore D; Lefèvre, Thierry; Li, James; de Castillejo, Carlos Lopez Fernandez; Li, Hui; Hunter, Mark D; de Roode, Jacobus C

    2012-11-01

    Organisms can protect themselves against parasite-induced fitness costs through resistance or tolerance. Resistance includes mechanisms that prevent infection or limit parasite growth while tolerance alleviates the fitness costs from parasitism without limiting infection. Although tolerance and resistance affect host-parasite coevolution in fundamentally different ways, tolerance has often been ignored in animal-parasite systems. Where it has been studied, tolerance has been assumed to be a genetic mechanism, unaffected by the host environment. Here we studied the effects of host ecology on tolerance and resistance to infection by rearing monarch butterflies on 12 different species of milkweed food plants and infecting them with a naturally occurring protozoan parasite. Our results show that monarch butterflies experience different levels of tolerance to parasitism depending on the species of milkweed that they feed on, with some species providing over twofold greater tolerance than other milkweed species. Resistance was also affected by milkweed species, but there was no relationship between milkweed-conferred resistance and tolerance. Chemical analysis suggests that infected monarchs obtain highest fitness when reared on milkweeds with an intermediate concentration, diversity, and polarity of toxic secondary plant chemicals known as cardenolides. Our results demonstrate that environmental factors-such as interacting species in ecological food webs-are important drivers of disease tolerance. PMID:23106703

  18. Host egg age of Leptoglossus occidentalis (Heteroptera, Coreidae) and parasitism by Gryon pennsylvanicum (Hymenoptera, Platygastridae).

    PubMed

    Peverieri, Giuseppino Sabbatini; Furlan, Paola; Benassai, Daniele; Caradonna, Sarah; Strong, Ward B; Roversi, Pio Federico

    2013-04-01

    Leptoglossus occidentalis Heidemann (Heteroptera, Coreidae) is native to Western North America and is a serious pest for seed production of conifers. The pest was accidentally introduced into Europe in the 1990s. Since then, seed loss has been recorded in Pinus pinea (L.) forests, with a negative impact on the commercial production of pine nuts. Classical biological control of this pest in P. pinea stands is an attractive proposition. Previous work showed that the egg-parasitoid Gryon pennsylvanicum (Ashmead) (Hymenoptera, Platygastridae) had promising life history traits in laboratory studies using L. occidentalis eggs as host. In the present work, the effect of host egg age on parasitization rate was evaluated in the laboratory, using choice and no-choice tests. Host eggs ranged in age from < 24 h to within a day of hatching. Results showed that parasitization rate, juvenile survival rate, sex ratio, and longevity of female G. pennsylvanicum were not significantly affected by the age of the host eggs. However, egg-parasitoid development time was longer in older host eggs, and females were smaller than those that developed in younger host eggs. Parasitization behaviors (drumming, oviposition, and marking) were not affected by the age of the host. G. pennsylvanicum females tended to parasitize all available host eggs within a cluster before moving to a new cluster, without displaying a preferences for host egg age. The ability to exploit host eggs of any age class improves the prospect of successful classical biological control using this egg-parasitoid. PMID:23786048

  19. Exploring the Host Parasitism of the Migratory Plant-Parasitic Nematode Ditylenchus destuctor by Expressed Sequence Tags Analysis

    PubMed Central

    Peng, Huan; Gao, Bing-li; Kong, Ling-an; Yu, Qing; Huang, Wen-kun; He, Xu-feng; Long, Hai-bo; Peng, De-liang

    2013-01-01

    The potato rot nematode, Ditylenchus destructor, is a very destructive nematode pest on many agriculturally important crops worldwide, but the molecular characterization of its parasitism of plant has been limited. The effectors involved in nematode parasitism of plant for several sedentary endo-parasitic nematodes such as Heterodera glycines, Globodera rostochiensis and Meloidogyne incognita have been identified and extensively studied over the past two decades. Ditylenchus destructor, as a migratory plant parasitic nematode, has different feeding behavior, life cycle and host response. Comparing the transcriptome and parasitome among different types of plant-parasitic nematodes is the way to understand more fully the parasitic mechanism of plant nematodes. We undertook the approach of sequencing expressed sequence tags (ESTs) derived from a mixed stage cDNA library of D. destructor. This is the first study of D. destructor ESTs. A total of 9800 ESTs were grouped into 5008 clusters including 3606 singletons and 1402 multi-member contigs, representing a catalog of D. destructor genes. Implementing a bioinformatics' workflow, we found 1391 clusters have no match in the available gene database; 31 clusters only have similarities to genes identified from D. africanus, the most closely related species to D. destructor; 1991 clusters were annotated using Gene Ontology (GO); 1550 clusters were assigned enzyme commission (EC) numbers; and 1211 clusters were mapped to 181 KEGG biochemical pathways. 22 ESTs had similarities to reported nematode effectors. Interestedly, most of the effectors identified in this study are involved in host cell wall degradation or modification, such as 1,4-beta-glucanse, 1,3-beta-glucanse, pectate lyase, chitinases and expansin, or host defense suppression such as calreticulin, annexin and venom allergen-like protein. This result implies that the migratory plant-parasitic nematode D. destructor secrets similar effectors to those of sedentary plant nematodes. Finally we further characterized the two D. destructor expansin proteins. PMID:23922743

  20. The importance of gobies (Gobiidae, Teleostei) as hosts and transmitters of parasites in the SW Baltic

    NASA Astrophysics Data System (ADS)

    Zander, C. D.; Strohbach, U.; Groenewold, S.

    1993-02-01

    The parasite fauna of five goby species (Gobiidae, Teleostei) was investigated in the Baltic Sea during the period 1987 to 1990. 13 parasite species were found in samples from the Lübeck Bight: Bothriocephalus scorpii, Schistocephalus sp. (Cestoda); Cryptocotyle concavum, Cryptocotyle lingua, Podocotyle atomon, Derogenes varicus (Digenea); Hysterothylacium sp. (cf. auctum), Contracaecum sp., Anisakis simplex (Nematoda); Corynosoma sp., Echinorhynchus gadi, Neoechinorhynchus rutili, Pomphorhynchus laevis (Acanthocephala). The number of parasite species were: 10 in the sand goby Pomatoschistus minutus, 8 in the black goby Gobius niger, 7 in the two-spotted goby Gobiusculus flavescens, 6 in the common goby Pomatoschistus microps, and 5 in the painted goby Pomatoschistus pictus. Neoechinorhynchus rutili occurred only in P. minutus, and Corynosoma sp. only in G. niger. The extent to which the gobies were parasitized clearly depended on the respective ways of life and, moreover, on the kind of prey ingested by the hosts. Additionally, the age of the hosts might be important. The highest rate of parasitism, more than 60%, was reached by Hysterothylacium sp. in G. niger and by Cryptocotyle concavum in P. microps. Infestation incidence lay mostly below 40% which means a satellite species status (Holmes, 1991). The number of parasite species was highest in summer; the highest intensities of single parasites occurred in spring ( Podocotyle atomon) or autumn ( Crytocotyle concavum). Bothriocephalus scorpii, Hysterothylacium sp. and Podocotyle infested their juvenile hosts very early, but only Hysterothylacium was accumulated by G. niger during its whole life span, whereas Bothriocephalus persisted also in older gobies in low intensities. The cercariae of Cryptocotyle spp. penetrate actively into their hosts; all the other parasites named were transmitted in larval form by prey organisms which consisted mainly of planktonic and benthic crustaceans. The gobies were final hosts for only 5 parasites; but two species may be transmitted to larger fish, and 6 species to sea birds or mammals. The parasite community of the five gobies may possibly be taken to characterize the ecological quality of the environment of the Lübeck Bight.

  1. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants.

    PubMed

    Siddique, Shahid; Radakovic, Zoran S; De La Torre, Carola M; Chronis, Demosthenis; Novák, Ond?ej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G; Grundler, Florian M W

    2015-10-13

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction. PMID:26417108

  2. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants

    PubMed Central

    Siddique, Shahid; Radakovic, Zoran S.; De La Torre, Carola M.; Chronis, Demosthenis; Novák, Ond?ej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G.; Grundler, Florian M. W.

    2015-01-01

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction. PMID:26417108

  3. When to go: optimization of host switching in parasites with complex life cycles.

    PubMed

    Hammerschmidt, Katrin; Koch, Kamilla; Milinski, Manfred; Chubb, James C; Parker, Geoff A

    2009-08-01

    Many trophically transmitted parasites have complex life cycles: they pass through at least one intermediate host before reproducing in their final host. Despite their economic and theoretical importance, the evolution of such cycles has rarely been investigated. Here, combining a novel modeling approach with experimental data, we show for the first time that an optimal transfer time between hosts exists for a "model parasite," the tapeworm Schistocephalus solidus, from its first (copepod) to its second (fish) intermediate host. When transferring between hosts around this time, (1) parasite performance in the second intermediate host, (2) reproductive success in the final host, and (3) fitness in the next generation is maximized. At that time, the infected copepod's behavior changes from predation suppression to predation enhancement. The optimal time for switching manipulation results from a trade-off between increasing establishment probability in the next host and reducing mortality in the present host. Our results show that these manipulated behavioral changes are adaptive for S. solidus, rather than an artifact, as they maximize parasite fitness. PMID:19453381

  4. The Eurasian beaver (Castor fiber) is apparently not a host to blood parasites in Norway.

    PubMed

    Cross, Hannah B; Campbell-Palmer, Róisín; Girling, Simon; Rosell, Frank

    2012-11-23

    Parasites can alter the physiology and behaviour of host species and negatively impact on their fitness thus affecting population densities. This is the first investigation into the presence of blood parasites in the Eurasian beaver (Castor fiber); a species that has been the subject of many translocation and reintroduction programmes. Two hundred and seventy blood slides prepared from the blood of 27 beavers from southern Norway were microscopically analysed for the presence of blood parasites. This study reports an absence of blood parasites in the Norwegian Eurasian beavers sampled. PMID:22770707

  5. Host Cell Phosphatidylcholine Is a Key Mediator of Malaria Parasite Survival during Liver Stage Infection

    PubMed Central

    Itoe, Maurice A.; Sampaio, Júlio L.; Cabal, Ghislain G.; Real, Eliana; Zuzarte-Luis, Vanessa; March, Sandra; Bhatia, Sangeeta N.; Frischknecht, Friedrich; Thiele, Christoph; Shevchenko, Andrej; Mota, Maria M.

    2014-01-01

    Summary During invasion, Plasmodium, the causative agent of malaria, wraps itself in a parasitophorous vacuole membrane (PVM), which constitutes a critical interface between the parasite and its host cell. Within hepatocytes, each Plasmodium sporozoite generates thousands of new parasites, creating high demand for lipids to support this replication and enlarge the PVM. Here, a global analysis of the total lipid repertoire of Plasmodium-infected hepatocytes reveals an enrichment of neutral lipids and the major membrane phospholipid, phosphatidylcholine (PC). While infection is unaffected in mice deficient in key enzymes involved in neutral lipid synthesis and lipolysis, ablation of rate-limiting enzymes in hepatic PC biosynthetic pathways significantly decreases parasite numbers. Host PC is taken up by both P. berghei and P. falciparum and is necessary for correct localization of parasite proteins to the PVM, which is essential for parasite survival. Thus, Plasmodium relies on the abundance of these lipids within hepatocytes to support infection. PMID:25498345

  6. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    PubMed Central

    Otto, Thomas D.; Rayner, Julian C.; Böhme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, François; Thomas, Alan W.; Prugnolle, Franck; Conway, David J.; Newbold, Chris; Berriman, Matthew

    2014-01-01

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching. PMID:25203297

  7. Competition, virulence, host body mass and the diversification of macro-parasites

    PubMed Central

    Rascalou, Guilhem; Gourbière, Sébastien

    2014-01-01

    Adaptive speciation has been much debated in recent years, with a strong emphasis on how competition can lead to the diversification of ecological and sexual traits. Surprisingly, little attention has been paid to this evolutionary process to explain intrahost diversification of parasites. We expanded the theory of competitive speciation to look at the effect of key features of the parasite lifestyle, namely fragmentation, aggregation and virulence, on the conditions and rate of sympatric speciation under the standard ‘pleiotropic scenario’. The conditions for competitive speciation were found similar to those for non-parasite species, but not the rate of diversification. Adaptive evolution proceeds faster in highly fragmented parasite populations and for weakly aggregated and virulent parasites. Combining these theoretical results with standard empirical allometric relationships, we showed that parasite diversification can be faster in host species of intermediate body mass. The increase in parasite load with body mass, indeed, fuels evolution by increasing mutants production, but because of the deleterious effect of virulence, it simultaneously weakens selection for resource specialization. Those two antagonistic effects lead to optimal parasite burden and host body mass for diversification. Data on the diversity of fishes' gills parasites were found consistent with the existence of such optimum. PMID:24522783

  8. Influence of original host on chemotaxic behaviour and parasitism in Telenomus podisi Ashmead (Hymenoptera: Platygastridae).

    PubMed

    Tognon, R; Sant'Ana, J; Jahnke, S M

    2014-12-01

    The egg parasitoid Telenomus podisi is a natural control agent of pentatomids, including Euschistus heros and Tibraca limbativentris, and success of parasitism is dependent upon the parasitoid finding the host. We tested the influence of host egg volatiles and the synthetic sex pheromone (zingiberenol) of T. limbativentris on chemotaxic behaviour of T. podisi, as well as, the impact of the original host on parasitoid selection. We used mated female T. podisi (48 h old) that emerged from the eggs of T. limbativentris or E. heros. The bioassays related to chemotaxy were performed in a Y-tube olfactometer and, to parasitism success, in laboratory and semi-field conditions. Telenomus podisi females that emerged from either the stink bug eggs, chose the pheromone more than control, or the pheromone plus eggs of E. heros in the semi-field bioassay, led to greater parasitism. Females that emerged from E. heros eggs chose egg volatiles from their original host rather than those from T. limbativentris, while females emerging from T. limbativentris, chose the egg volatiles of both hosts equally. When T. limbativentris was the original host, T. podisi females parasitized T. limbativentris over E. heros, while those emerging from E. heros exclusively parasitized E. heros eggs. These results demonstrated that T. podisi is more likely to parasitize the host in which it developed and that the original host can exert influence on the choice by those parasitoids. Understanding how the factors that mediate host-parasitoid communication are interrelated can help biological control programmes establish more effective and reliable tools with T. podisi. PMID:25375218

  9. Influence of halophytic hosts on their parasites—the case of Plicosepalus acaciae

    PubMed Central

    Veste, Maik; Todt, Henning; Breckle, Siegmar-W.

    2015-01-01

    Halophytes develop various morphological and physiological traits that enable them to grow successfully on saline substrates. Parasitic plants on halophytic hosts may also encounter salt stress. We investigated the mistletoe Plicosepalus acaciae (syn: Loranthus acacia; Loranthaceae), which occurs on 5 halophytic and at least 10 non-halophytic hosts in the Southern Arava Valley (Israel). Plicosepalus acaciae is a common parasite north of Eilat to the Dead Sea area and in the Jordan Valley. Morphological and physiological responses of P. acaciae to salinity were investigated by comparison of plants on halophytic with those on non-halophytic hosts. Ion patterns of different host–parasite associations were determined as was the development of leaf succulence at different growth stages. The leaf water content of P. acaciae increased and leaves developed succulence when growing on halophytic hosts, especially on Tamarix species, where leaf water content was three times higher than that on non-halophytic hosts and the leaf volume increased four to five times. The reason for increased succulence was a higher ion concentration of, and osmotic adjustment with, Na+ and Cl?. Plicosepalus acaciae showed a high morphological and ecophysiological plasticity, enabling it to cope with salt stress, and can be classified as a facultative eu-halophyte, which increases its halo-succulence according to the host. Host–parasite associations are a model system for the investigation of halophytes under different salt stress conditions. PMID:25515726

  10. A generalist brood parasite modifies use of a host in response to reproductive success.

    PubMed

    Louder, Matthew I M; Schelsky, Wendy M; Albores, Amber N; Hoover, Jeffrey P

    2015-09-01

    Avian obligate brood parasites, which rely solely on hosts to raise their young, should choose the highest quality hosts to maximize reproductive output. Brown-headed cowbirds (Molothrus ater) are extreme host generalists, yet female cowbirds could use information based on past reproductive outcomes to make egg-laying decisions thus minimizing fitness costs associated with parasitizing low-quality hosts. We use a long-term (21 years) nest-box study of a single host, the prothonotary warbler (Protonotaria citrea), to show that local cowbird reproductive success, but not host reproductive success, was positively correlated with the probability of parasitism the following year. Experimental manipulations of cowbird success corroborated that female cowbirds make future decisions about which hosts to use based on information pertaining to past cowbird success, both within and between years. The within-year pattern, in particular, points to local cowbird females selecting hosts based on past reproductive outcomes. This, coupled with high site fidelity of female cowbirds between years, points to information use, rather than cowbird natal returns alone, increasing parasitism rates on highly productive sites between years. PMID:26336180

  11. Non-random patterns of host use by the different parasite species exploiting a cockle population

    E-print Network

    Poulin, Robert

    289 Non-random patterns of host use by the different parasite species exploiting a cockle the same definitive host. In the New Zealand cockle, Austrovenus stutchburyi, metacercariae of the digenean is found in different cockle samples, and is independent of cockle shell size, which suggests

  12. Parasites lead to evolution of robustness against gene loss in host signaling networks

    E-print Network

    Salathé, Marcel

    Parasites lead to evolution of robustness against gene loss in host signaling networks Marcel against single gene loss. However, the evolutionary mechanisms responsible for such robustness remain driving the emergence of robustness against gene loss. Using a model of host signaling networks

  13. Parasite transfer from crustacean to fish hosts in the Lübeck Bight, SW Baltic Sea

    NASA Astrophysics Data System (ADS)

    Zander, C. D.; Groenewold, S.; Strohbach, U.

    1994-03-01

    Four helminth parasites out of 19 species found in the Lübeck Bight, Baltic Sea, were chosen for investigations on the transfer from invertebrate to small-sized fish hosts: larvae of the tapeworms Schistocephalus sp. and Bothriocephalus sp. (Cestoda) living in planktonic copepods as primary hosts; Podocotyle atomon (Digenea) and Hysterothylacium sp. (Nematoda) were found in benthic crustaceans, especially Gammarus spp. These hosts were the prey of 3 gobiid fishes, Gobiusculus flavescens (feeding mainly on plankton), Pomatoschistus minutus (preferring benthos), and P. pictus (feeding more on plankton than benthos). Because the fishes selected smaller sizes of crustaceans, they ingested all stages of the copepods but only the smaller-sized groups of gammarids which were often less infested by parasites. In order to evaluate the probability for a fish to be parasitized by a helminth, an infestation potential index (IP) was calculated. Podocotyle atomon and Hysterothylacium sp. revealed an IP which was far lower in gobies than expected when the prevalences of the previous hosts were taken into consideration. The IP of tapeworm larvae was mainly influenced by the feeding pressure of the gobiid predators, which might change with developmental stage and season. It is concluded that parasite transfer to the next host decreases when sizes of prey and predator differ only moderately. This mechanism can reduce the numbers of parasites transferred to less suitable or wrong hosts.

  14. Parasitism by Cuscuta pentagona Attenuates Host Plant Defenses against Insect Herbivores1

    PubMed Central

    Runyon, Justin B.; Mescher, Mark C.; De Moraes, Consuelo M.

    2008-01-01

    Considerable research has examined plant responses to concurrent attack by herbivores and pathogens, but the effects of attack by parasitic plants, another important class of plant-feeding organisms, on plant defenses against other enemies has not been explored. We investigated how attack by the parasitic plant Cuscuta pentagona impacted tomato (Solanum lycopersicum) defenses against the chewing insect beet armyworm (Spodoptera exigua; BAW). In response to insect feeding, C. pentagona-infested (parasitized) tomato plants produced only one-third of the antiherbivore phytohormone jasmonic acid (JA) produced by unparasitized plants. Similarly, parasitized tomato, in contrast to unparasitized plants, failed to emit herbivore-induced volatiles after 3 d of BAW feeding. Although parasitism impaired antiherbivore defenses, BAW growth was slower on parasitized tomato leaves. Vines of C. pentagona did not translocate JA from BAW-infested plants: amounts of JA in parasite vines grown on caterpillar-fed and control plants were similar. Parasitized plants generally contained more salicylic acid (SA), which can inhibit JA in some systems. Parasitized mutant (NahG) tomato plants deficient in SA produced more JA in response to insect feeding than parasitized wild-type plants, further suggesting cross talk between the SA and JA defense signaling pathways. However, JA induction by BAW was still reduced in parasitized compared to unparasitized NahG, implying that other factors must be involved. We found that parasitized plants were capable of producing induced volatiles when experimentally treated with JA, indicating that resource depletion by the parasite does not fully explain the observed attenuation of volatile response to herbivore feeding. Collectively, these findings show that parasitic plants can have important consequences for host plant defense against herbivores. PMID:18165323

  15. Bipteria vetusta n. sp. – an old parasite in an old host: tracing the origin of myxosporean parasitism in vertebrates.

    PubMed

    Kodádková, Alena; Bartošová-Sojková, Pavla; Holzer, Astrid S; Fiala, Ivan

    2015-03-01

    Myxosporea (Myxozoa), a group of parasitic Cnidaria, use mostly bony fishes (Teleostei) as intermediate hosts; however, they can also parasitize other vertebrates such as cartilaginous fish (Chondrichthyes). Molecular data of myxosporeans from sharks and rays (Elasmobranchii) revealed these parasites to be one of the most basal representatives in the myxosporean phylogenetic tree, suggesting their ancient evolutionary history. A new myxosporean species, Bipteria vetusta n. sp., was found in the gall bladder of rabbit fish, Chimaera monstrosa (Holocephali; Chondrichthyes), and ssrDNA-based phylogeny revealed its basal position within the marine myxosporean lineage. Molecular dating based on ssrDNA analysis suggested the origin of a stem lineage leading to the marine myxosporean lineage at the time of the origin of Chondrichthyes in the Silurian era. The two common lineages of Myxozoa, Myxosporea and Malacosporea, were estimated to have split from their common ancestor in the Cambrian era. Tracing the history of evolution of the "vertebrate host type" character in the context of molecular dating showed that cartilaginous fish represented an ancestral state for all myxosporeans. Teleosts were very likely subsequently parasitized by myxozoans four times, independently. Myxosporean radiation and diversification appear to correlate with intermediate host evolution. The first intermediate hosts of myxosporeans were cartilaginous fish. When bony fish evolved and radiated, myxosporeans switched and adapted to bony fish, and subsequently greatly diversified in this new host niche. We believe that the present study is the first attempt at molecular dating of myxozoan evolution based on an old myxosporean species – a living myxosporean fossil. PMID:25659495

  16. Host social rank and parasites: plains zebra (Equus quagga) and intestinal helminths in Uganda.

    PubMed

    Fugazzola, M C; Stancampiano, L

    2012-08-13

    The main aim of this study was to evaluate the relationship between the social hierarchy of plain zebra, Equus quagga, and the level of parasitism. For the study 141 fecal samples from the same number of animals were collected within the two major populations of E. quagga of Uganda (Lake Mburo Conservation Area and Kidepo Valley National Park). Quantitative (eggs per gram of feces) and qualitative parasite assessment were performed with standard methods. The relationship between parasite burden and individual host features was analyzed using Generalized Linear Models. Strongyles, cestodes, Strongyloides sp. and oxiurids where present in the examined samples. Social rank and age class significantly affect all parasites' abundance with dominant individuals being less parasitized than subordinate individuals, regardless of the parasite groups excluding oxiurids. Sex could not been shown to be related with any of the found parasites. Age was positively related with strongyles and oxiurids abundance and negatively related with cestodes and Strongyloides sp. The main result of the present study was the evidence that social status influences parasite level with dominant zebras shedding less parasite eggs than subordinate ones. Social rank appears, therefore, as an important factor giving rise to parasite aggregation in plain zebras. PMID:22521976

  17. Differential tolerances to ocean acidification by parasites that share the same host.

    PubMed

    MacLeod, C D; Poulin, R

    2015-06-01

    Ocean acidification is predicted to cause major changes in marine ecosystem structure and function over the next century, as species-specific tolerances to acidified seawater may alter previously stable relationships between coexisting organisms. Such differential tolerances could affect marine host-parasite associations, as either host or parasite may prove more susceptible to the stressors associated with ocean acidification. Despite their important role in many ecological processes, parasites have not been studied in the context of ocean acidification. We tested the effects of low pH seawater on the cercariae and, where possible, the metacercariae of four species of marine trematode parasite. Acidified seawater (pH 7.6 and 7.4, 12.5 °C) caused a 40-60% reduction in cercarial longevity and a 0-78% reduction in metacercarial survival. However, the reduction in longevity and survival varied distinctly between parasite taxa, indicating that the effects of reduced pH may be species-specific. These results suggest that ocean acidification has the potential to reduce the transmission success of many trematode species, decrease parasite abundance and alter the fundamental regulatory role of multi-host parasites in marine ecosystems. PMID:25819713

  18. Relative importance of host environment, transmission potential and host phylogeny to the structure of parasite metacommunities

    E-print Network

    Willig, Michael

    to the structure of parasite metacommunities Tad Dallas and Steven J. Presley T. Dallas (tdallas@uga.edu), Odum, Storrs, CT 06269­4210, USA. Identification of mechanisms that shape parasite community and metacommunity of community assembly in general. Using a long-term dataset on parasites from desert rodents, we examined

  19. Metazoan-protozoan parasite co-infections and host body weight in St Kilda Soay sheep.

    PubMed

    Craig, B H; Tempest, L J; Pilkington, J G; Pemberton, J M

    2008-04-01

    For hundreds of years, the unmanaged Soay sheep population on St Kilda has survived despite enduring presumably deleterious co-infections of helminth, protozoan and arthropod parasites and intermittent periods of starvation. Important parasite taxa in young Soay sheep are strongyles (Trichostrongylus axei, Trichostrongylus vitrinus and Teladorsagia circumcincta), coccidia (11 Eimeria species) and keds (Melophagus ovinus) and in older animals, Teladorsagia circumcincta. In this research, associations between the intensity of different parasite taxa were investigated. Secondly, the intensities of different parasite taxa were tested for associations with variation in host weight, which is itself a determinant of over-winter survival in the host population. In lambs, the intensity of strongyle eggs was positively correlated with that of Nematodirus spp. eggs, while in yearlings and adults strongyle eggs and coccidia oocysts were positively correlated. In lambs and yearlings, of the parasite taxa tested, only strongyle eggs were significantly and negatively associated with host weight. However, in adult hosts, strongyles and coccidia were independently and negatively associated with host weight. These results are consistent with the idea that strongyles and coccidia are exerting independent selection on Soay sheep. PMID:18215336

  20. Evidence for aggressive mimicry in an adult brood parasitic bird, and generalized defences in its host

    PubMed Central

    Feeney, W. E.; Troscianko, J.; Langmore, N. E.; Spottiswoode, C. N.

    2015-01-01

    Mimicry of a harmless model (aggressive mimicry) is used by egg, chick and fledgling brood parasites that resemble the host's own eggs, chicks and fledglings. However, aggressive mimicry may also evolve in adult brood parasites, to avoid attack from hosts and/or manipulate their perception of parasitism risk. We tested the hypothesis that female cuckoo finches (Anomalospiza imberbis) are aggressive mimics of female Euplectes weavers, such as the harmless, abundant and sympatric southern red bishop (Euplectes orix). We show that female cuckoo finch plumage colour and pattern more closely resembled those of Euplectes weavers (putative models) than Vidua finches (closest relatives); that their tawny-flanked prinia (Prinia subflava) hosts were equally aggressive towards female cuckoo finches and southern red bishops, and more aggressive to both than to their male counterparts; and that prinias were equally likely to reject an egg after seeing a female cuckoo finch or bishop, and more likely to do so than after seeing a male bishop near their nest. This is, to our knowledge, the first quantitative evidence for aggressive mimicry in an adult bird, and suggests that host–parasite coevolution can select for aggressive mimicry by avian brood parasites, and counter-defences by hosts, at all stages of the reproductive cycle. PMID:26063850

  1. Evidence for aggressive mimicry in an adult brood parasitic bird, and generalized defences in its host.

    PubMed

    Feeney, W E; Troscianko, J; Langmore, N E; Spottiswoode, C N

    2015-07-01

    Mimicry of a harmless model (aggressive mimicry) is used by egg, chick and fledgling brood parasites that resemble the host's own eggs, chicks and fledglings. However, aggressive mimicry may also evolve in adult brood parasites, to avoid attack from hosts and/or manipulate their perception of parasitism risk. We tested the hypothesis that female cuckoo finches (Anomalospiza imberbis) are aggressive mimics of female Euplectes weavers, such as the harmless, abundant and sympatric southern red bishop (Euplectes orix). We show that female cuckoo finch plumage colour and pattern more closely resembled those of Euplectes weavers (putative models) than Vidua finches (closest relatives); that their tawny-flanked prinia (Prinia subflava) hosts were equally aggressive towards female cuckoo finches and southern red bishops, and more aggressive to both than to their male counterparts; and that prinias were equally likely to reject an egg after seeing a female cuckoo finch or bishop, and more likely to do so than after seeing a male bishop near their nest. This is, to our knowledge, the first quantitative evidence for aggressive mimicry in an adult bird, and suggests that host-parasite coevolution can select for aggressive mimicry by avian brood parasites, and counter-defences by hosts, at all stages of the reproductive cycle. PMID:26063850

  2. Hijacking of Host Cellular Functions by an Intracellular Parasite, the Microsporidian Anncaliia algerae

    PubMed Central

    Panek, Johan; El Alaoui, Hicham; Mone, Anne; Urbach, Serge; Demettre, Edith; Texier, Catherine; Brun, Christine; Zanzoni, Andreas; Peyretaillade, Eric; Parisot, Nicolas; Lerat, Emmanuelle; Peyret, Pierre; Delbac, Frederic; Biron, David G.

    2014-01-01

    Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture) quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF) and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi) and 8 days post-infection (dpi). A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN) host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras) and reduction of the translation activity (EIF3) confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system. PMID:24967735

  3. A slowly evolving host moves first in symbiotic interactions

    NASA Astrophysics Data System (ADS)

    Damore, James; Gore, Jeff

    2011-03-01

    Symbiotic relationships, both parasitic and mutualistic, are ubiquitous in nature. Understanding how these symbioses evolve, from bacteria and their phages to humans and our gut microflora, is crucial in understanding how life operates. Often, symbioses consist of a slowly evolving host species with each host only interacting with its own sub-population of symbionts. The Red Queen hypothesis describes coevolutionary relationships as constant arms races with each species rushing to evolve an advantage over the other, suggesting that faster evolution is favored. Here, we use a simple game theoretic model of host- symbiont coevolution that includes population structure to show that if the symbionts evolve much faster than the host, the equilibrium distribution is the same as it would be if it were a sequential game where the host moves first against its symbionts. For the slowly evolving host, this will prove to be advantageous in mutualisms and a handicap in antagonisms. The model allows for symbiont adaptation to its host, a result that is robust to changes in the parameters and generalizes to continuous and multiplayer games. Our findings provide insight into a wide range of symbiotic phenomena and help to unify the field of coevolutionary theory.

  4. In Planta Processing and Glycosylation of a Nematode CLAVATA3/ENDOSPERM SURROUNDING REGION-Like Effector and Its Interaction with a Host CLAVATA2-Like Receptor to Promote Parasitism1[OPEN

    PubMed Central

    Chen, Shiyan; Lang, Ping; Chronis, Demosthenis; Zhang, Sheng; De Jong, Walter S.; Mitchum, Melissa G.

    2015-01-01

    Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants. PMID:25416475

  5. PARASITISM OF BEMISIA TABACI ON NUMEROUS SPECIES OF HOST PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of numerous vegetable and other agronomic plant species on incidence of parasitism of the B-biotype sweetpotato whitefly, Bemisia tabaci (Gennadius), by augmentation with parasitoids was determined in field plots. Tests were conducted on 16 taxonomically diversified plant species (Bet...

  6. Attack on all fronts: functional relationships between aerial and root parasitic plants and their woody hosts and consequences for ecosystems.

    PubMed

    Bell, T L; Adams, M A

    2011-01-01

    This review discusses how understanding of functional relationships between parasitic plants and their woody hosts have benefited from a range of approaches to their study. Gross comparisons of nutrient content between infected and uninfected hosts, or parts of hosts, have been widely used to infer basic differences or similarities between hosts and parasites. Coupling of nutrient information with additional evidence of key processes such as transpiration, respiration and photosynthesis has helped elucidate host-parasite relationships and, in some cases, the anatomical nature of their connection and even the physiology of plants in general. For example, detailed analysis of xylem sap from hosts and parasites has increased our understanding of the spatial and temporal movement of solutes within plants. Tracer experiments using natural abundance or enriched application of stable isotopes ((15)N, (13)C, (18)O) have helped us to understand the extent and form of heterotrophy, including the effect of the parasite on growth and functioning of the host (and its converse) as well as environmental effects on the parasite. Nutritional studies of woody hosts and parasites have provided clues to the distribution of parasitic plants and their roles in ecosystems. This review also provides assessment of several corollaries to the host-parasite association. PMID:21388997

  7. Monte Carlo simulation of age-dependent host parasite relations

    NASA Astrophysics Data System (ADS)

    Stauffer, Dietrich; Proykova, Ana; Lampe, Karl-Heinz

    2007-10-01

    The death of a biological population is an extreme event which we investigate here for a host-parasitoid system. Our simulations using the Penna ageing model show how biological evolution can “teach” the parasitoids to avoid extinction by waiting for the right age of the host. We also show the dependence of extinction time on the population size.

  8. Lessons from parasitic flatworms about evolution and historical biogeography of their vertebrate hosts.

    PubMed

    Verneau, Olivier; Du Preez, Louis; Badets, Mathieu

    2009-01-01

    Cophylogenetic studies investigate the evolutionary trends within host-parasite associations. Examination of the different levels of fidelity between host and parasite phylogenies provides a powerful tool to inspect patterns and processes of parasite diversification over host evolution and geological times. Within the phylum Platyhelminthes, the monogeneans are mainly fish parasites. The Polystomatidae, however, are known from the sarcopterygian Australian lungfish and tetrapods such as amphibians, freshwater turtles, and the African hippopotamus. Cophylogenetic and biogeographic vicariance analyses, supplemented by molecular calibrations, showed that the Polystomatidae may track the evolutionary history of the first aquatic tetrapods in the Palaeozoic age. Evolutionary lines of the major polystome lineages would also be intimately related to the evolution of their hosts over hundreds of millions years. Since the Mesozoic, evolution of polystomes would have been shaped mainly by plate tectonics during the break-up of Gondwanaland and subsequent dispersal of ancestral neobatrachian host lineages. Therefore the Polystomatidae could serve as a novel model to improve cophylogenetic tools and to inspect a suite of questions about the evolution of vertebrate hosts. PMID:19281948

  9. Parasitic manipulation of hosts' phenotype, or how to make a zombie--an introduction to the symposium.

    PubMed

    Weinersmith, Kelly; Faulkes, Zen

    2014-07-01

    Nearly all animals in nature are infected by at least one parasite, and many of those parasites can significantly change the phenotype of their hosts, often in ways that increase the parasite's likelihood of transmission. Hosts' phenotypic changes are multidimensional, and manipulated traits include behavior, neurotransmission, coloration, morphology, and hormone levels. The field of parasitic manipulation of hosts' phenotype has now accrued many examples of systems where parasites manipulate the phenotypes of their hosts and focus has shifted to answering three main questions. First, through what mechanisms do parasites manipulate the hosts' phenotype? Parasites often induce changes in the hosts' phenotypes that neuroscientists are unable to recreate under laboratory conditions, suggesting that parasites may have much to teach us about links between the brain, immune system, and the expression of phenotype. Second, what are the ecological implications of phenotypic manipulation? Manipulated hosts are often abundant, and changes in their phenotype may have important population, community, and ecosystem-level implications. Finally, how did parasitic manipulation of hosts' phenotype evolve? The selective pressures faced by parasites are extremely complex, often with multiple hosts that are actively resisting infection, both in physiological and evolutionary time-scales. Here, we provide an overview of how the work presented in this special issue contributes to tackling these three main questions. Studies on parasites' manipulation of their hosts' phenotype are undertaken largely by parasitologists, and a major goal of this symposium is to recruit researchers from other fields to the study of these phenomena. Our ability to answer the three questions outlined above would be greatly enhanced by participation from individuals trained in the fields of, for example, neurobiology, physiology, immunology, ecology, evolutionary biology, and invertebrate biology. Conversely, because parasites that alter their hosts' phenotype are widespread, these fields will benefit from such study. PMID:24771088

  10. Corrigendum to Streicker et al. (2013) Differential sources of host species heterogeneity influence the transmission and control of multi-host parasites.

    PubMed

    Streicker, Daniel G; Fenton, Andy; Pedersen, Amy B

    2015-10-01

    In a recent article, we described a conceptual and analytical model to identify the key host species for parasite transmission in multi-host communities and used data from 11 gastro-intestinal parasites infecting up to five small mammal host species as an illustrative example of how the framework could be applied. A limitation of these empirical data was uncertainty in the identification of parasite species using egg/oocyst morphology, which could overestimate parasite sharing between host species. Here, we show that the key results of the original analysis, namely that (1) parasites naturally infect multiple host species, but typically rely on a small subset of infected host species for long-term maintenance, (2) that different mechanisms underlie how particular host species dominate transmission and (3) that these different mechanisms influence the predicted efficiency of disease control measures, are robust to analysis of a smaller subset of host-parasite combinations that we have greatest confidence in identifying. We further comment briefly on the need for accurate parasite identification, ideally using molecular techniques to quantify cross-species transmission and differentiate covert host specificity from true host generalism. PMID:26346689

  11. Host microbe interactions: a licence to interfere?

    PubMed

    Karavolos, Michail H

    2015-01-01

    Through many millennia of continuous evolution hosts and microorganisms have developed sophisticated and sometimes extremely complex mechanisms of coexisting through symbiosis and mutualism. It is now known that in humans, the population of commensal bacteria on or inside the body significantly outnumbers the host cells. Despite their numerical superiority, microorganisms have adjusted their physiological clocks to benefit themselves and at the same time their host through the maintenance of a healthy state. This very fine and multifaceted balance can be disrupted occasionally through the introduction of pathogens in the commensal bacterial population. The equilibrium is then perturbed to promote dysbiosis and the onset of disease. Through myriads of interactions within their host milieu, bacterial pathogens have developed mechanisms to sense bacterial or host-derived signalling molecules and adjust their physiology accordingly to favour their survival and propagation within their host. At the same time, the host has evolved systems to interfere with bacterial signalling in such a way as to support pathogen clearing and re-establishment of the balance. An example of a captivating interaction is the one involving the catecholamine hormones adrenaline and noradrenaline. This article will summarise the major findings involving host pathogen communication through bacterial or host-derived molecules and discuss ways to take advantage of our potential to interfere with this intricate signalling to profit the host and prolong a healthy life. PMID:25420724

  12. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach?

    PubMed Central

    Catalano, Sarah R.; Whittington, Ian D.; Donnellan, Stephen C.; Gillanders, Bronwyn M.

    2013-01-01

    We review the use of parasites as biological tags of marine fishes and cephalopods in host population structure studies. The majority of the work published has focused on marine fish and either single parasite species or more recently, whole parasite assemblages, as biological tags. There is representation of host organisms and parasites from a diverse range of taxonomic groups, although focus has primarily been on host species of commercial importance. In contrast, few studies have used parasites as tags to assess cephalopod population structure, even though records of parasites infecting cephalopods are well-documented. Squid species are the only cephalopod hosts for which parasites as biological tags have been applied, with anisakid nematode larvae and metacestodes being the parasite taxa most frequently used. Following a brief insight into the importance of accurate parasite identification, the population studies that have used parasites as biological tags for marine fishes and cephalopods are reviewed, including comments on the dicyemid mesozoans. The advancement of molecular genetic techniques is discussed in regards to the new ways parasite genetic data can be incorporated into population structure studies, alongside host population genetic analyses, followed by an update on the guidelines for selecting a parasite species as a reliable tag candidate. As multiple techniques and methods can be used to assess the population structure of marine organisms (e.g. artificial tags, phenotypic characters, biometrics, life history, genetics, otolith microchemistry and parasitological data), we conclude by commenting on a holistic approach to allow for a deeper insight into population structuring. PMID:25197624

  13. Persistence of host defence behaviour in the absence of avian brood parasitism

    PubMed Central

    Peer, Brian D.; Kuehn, Michael J.; Rothstein, Stephen I.; Fleischer, Robert C.

    2011-01-01

    The fate of host defensive behaviour in the absence of selection from brood parasitism is critical to long-term host–parasite coevolution. We investigated whether New World Bohemian waxwings Bombycilla garrulus that are allopatric from brown-headed cowbird Molothrus ater and common cuckoo Cuculus canorus parasitism have retained egg rejection behaviour. We found that egg rejection was expressed by 100 per cent of Bohemian waxwings. Our phylogeny revealed that Bohemian and Japanese waxwings Bombycilla japonica were sister taxa, and this clade was sister to the cedar waxwing Bombycilla cedrorum. In addition, there was support for a split between Old and New World Bohemian waxwings. Our molecular clock estimates suggest that egg rejection may have been retained for 2.8–3.0 Myr since New World Bohemian waxwings inherited it from their common ancestor with the rejecter cedar waxwings. These results support the ‘single trajectory’ model of host–brood parasite coevolution that once hosts evolve defences, they are retained, forcing parasites to become more specialized over time. PMID:21493623

  14. Leishmania vaccine development: exploiting the host-vector-parasite interface.

    PubMed

    Reed, S G; Coler, R N; Mondal, D; Kamhawi, S; Valenzuela, J G

    2016-01-01

    Visceral leishmaniasis (VL) is a disease transmitted by phlebotomine sand flies, fatal if untreated, and with no available human vaccine. In rodents, cellular immunity to Leishmania parasite proteins as well as salivary proteins of the sand fly is associated with protection, making them worthy targets for further exploration as vaccines. This review discusses the notion that a combination vaccine including Leishmania and vector salivary antigens may improve vaccine efficacy by targeting the parasite at its most vulnerable stage just after transmission. Furthermore, we put forward the notion that better modeling of natural transmission is needed to test efficacy of vaccines. For example, the fact that individuals living in endemic areas are exposed to sand fly bites and will mount an immune response to salivary proteins should be considered in pre-clinical and clinical evaluation of leishmaniasis vaccines. Nevertheless, despite remaining obstacles there is good reason to be optimistic that safe and effective vaccines against leishmaniasis can be developed. PMID:26595093

  15. An Emerging Approach for Parallel Quantification of Intracellular Protozoan Parasites and Host Cell Characterization Using TissueFAXS Cytometry

    PubMed Central

    Schmid, Maximilian; Dufner, Bianca; Dürk, Julius; Bedal, Konstanze; Stricker, Kristina; Prokoph, Lukas Ali; Koch, Christoph; Wege, Anja K.; Zirpel, Henner; van Zandbergen, Ger; Ecker, Rupert; Boghiu, Bogdan; Ritter, Uwe

    2015-01-01

    Characterization of host-pathogen interactions is a fundamental approach in microbiological and immunological oriented disciplines. It is commonly accepted that host cells start to change their phenotype after engulfing pathogens. Techniques such as real time PCR or ELISA were used to characterize the genes encoding proteins that are associated either with pathogen elimination or immune escape mechanisms. Most of such studies were performed in vitro using primary host cells or cell lines. Consequently, the data generated with such approaches reflect the global RNA expression or protein amount recovered from all cells in culture. This is justified when all host cells harbor an equal amount of pathogens under experimental conditions. However, the uptake of pathogens by phagocytic cells is not synchronized. Consequently, there are host cells incorporating different amounts of pathogens that might result in distinct pathogen-induced protein biosynthesis. Therefore, we established a technique able to detect and quantify the number of pathogens in the corresponding host cells using immunofluorescence-based high throughput analysis. Paired with multicolor staining of molecules of interest it is now possible to analyze the infection profile of host cell populations and the corresponding phenotype of the host cells as a result of parasite load. PMID:26488169

  16. The ecology of fish parasites with particular reference to helminth parasites and their salmonid fish hosts in Welsh rivers: a review of some of the central questions.

    PubMed

    Thomas, J D

    2002-01-01

    Ecological studies carried out in Welsh rivers on the feeding behaviour of salmonid fish, their helminth parasites and intermediate hosts in the early 1950s and in 1998 have been used as a basis to review the literature dealing with the following questions. First, how are the helminth populations dispersed in space-time? Second, to what extent are the distributional patterns and the life history strategies of the parasites influenced by physicochemical factors? Third, to what extent are populations of helmith parasites in salmonid fish influenced by host characteristics including the genome, sex, age, size, social position and Feeding behaviour? Fourth, are the populations of parasites regulated in a density-dependent manner? Fifth, do the parasites influence the survival and wellbeing of their salmonid hosts and the evolution of sex? Sixth, to what extent is the parasite community influenced by environmental changes including those of an anthropogenic nature and can the parasites be used as bioindicators of pollution? As with most parasites the helminth species found were highly overdispersed thus making it necessary to undertake a log10 (1 + x) conversion for statistical analyses. Statistical analyses confirm that the genome, age and sex of salmonid fish hosts, the station and seasonal change in radiation levels were significant factors in predicting the number of parasites. The evidence given supports the hypothesis that the feeding behaviour and habitat selection by the host fish, their position in the social hierarchy and the overdispersed nature of the transmission sites are the key factors in causing differences in the parasitic fauna related to host species, age, size and sex. Differences in the helminth parasite community related to station can be explained on the basis of differences in water types, sediments and chemistry. Although the evidence presented is in accord with the consensus view that temperature is correlated with seasonal changes in the abundance of many species of helminth parasites, it is argued that it may not be the direct causative mechanism. It is postulated that the life history strategy that results in a decline in abundance of the more vulnerable adult parasites in the gut of the salmonid hosts during the summer has arisen as a result of evolutionary pressures. At this time, the gut environment is particularly inhospitable because of the temperature-related enhancement of the host's immune mechanism and the increased gut turnover rate. In contrast, the larval stages in the immunologically and metabolically more benign intermediate host would be under less intensive selective pressures. It is postulated therefore that evolutionary pressures have caused the parasites to leave the definitive host and concentrate their reproductive efforts in the intermediate hosts during the warmer months. Evidence is given in support of the hypothesis that the parasite populations are regulated in a density-dependent manner and that the regulatory mechanisms may involve the host's immune mechanisms and intraspecies competition and interspecies competition of an exploitative or interference nature. Quantitative studies using 'K' factor analysis and biochemical research to elucidate the nature of the interference mechanisms are required to test this hypothesis. The absence of age-related resistance indicates an old and stable relationship in which the immunosuppressive and immunoavoidance mechanisms of the parasites and hosts, respectively, are in balance. This indicates that the introduction of novel parasites or new genetic strains of host fish could result in harmful epidemics. Despite causing tissue damage, there was no evidence of parasite-induced mortality among the salmonids in the Teifi. This finding is in accord with the generally accepted view that most freshwaters are not troubled by parasite problems. although parasites are present in abundance. In fact, parasite abundance in the salmonid fish in the Teifi was positively correlated with the condition factor and the adipose index. Two testable hypo

  17. Effects of Juvenile Host Density and Food Availability on Adult Immune Response, Parasite Resistance and Virulence in a Daphnia-Parasite System

    PubMed Central

    Schoebel, Corine N.; Auld, Stuart K. J. R.; Spaak, Piet; Little, Tom J.

    2014-01-01

    Host density can increase infection rates and reduce host fitness as increasing population density enhances the risk of becoming infected either through increased encounter rate or because host condition may decline. Conceivably, potential hosts could take high host density as a cue to up-regulate their defence systems. However, as host density usually covaries with food availability, it is difficult to examine the importance of host density in isolation. Thus, we performed two full-factorial experiments that varied juvenile densities of Daphnia magna (a freshwater crustacean) and food availability independently. We also included a simulated high-density treatment, where juvenile experimental animals were kept in filtered media that previously maintained Daphnia at high-density. Upon reaching adulthood, we exposed the Daphnia to their sterilizing bacterial parasite, Pasteuria ramosa, and examined how the juvenile treatments influenced the likelihood and severity of infection (Experiment I) and host immune investment (Experiment II). Neither juvenile density nor food treatments affected the likelihood of infection; however, well-fed hosts that were well-fed as juveniles produced more offspring prior to sterilization than their less well-fed counterparts. By contrast, parasite growth was independent of host juvenile resources or host density. Parasite-exposed hosts had a greater number of circulating haemocytes than controls (i.e., there was a cellular immune response), but the magnitude of immune response was not mediated by food availability or host density. These results suggest that density dependent effects on disease arise primarily through correlated changes in food availability: low food could limit parasitism and potentially curtail epidemics by reducing both the host’s and parasite’s reproduction as both depend on the same food. PMID:24736707

  18. Molecular parasitism in the Escherichia coli-Bdellovibrio bacteriovorus system: translocation of the matrix protein from the host to the parasite outer membrane.

    PubMed Central

    Guerrini, F; Romano, V; Valenzi, M; Di Giulio, M; Mupo, M R; Sacco, M

    1982-01-01

    During the intracellular maturation in Escherichia coli of the parasite Bdellovibrio bacteriovorus the outer membrane, major protein I of E. coli (i.e., the matrix protein) becomes associated with the outer membrane of the emerging parasite cells. The binding properties of this protein with the outer membrane of the host and of the parasite are identical. An analogous phenomenon also occurs during Bdellovibrio parasitism on Klebsiella pneumoniae and on Salmonella typhimurium. Possible roles for this scavenging action of Bdellovibrio, and similar phenomena in other parasitic systems, are discussed. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:6765198

  19. Parasite strain coexistence in a heterogeneous host population Darren M. Green, Istvan Z. Kiss and Rowland R. Kao

    E-print Network

    Kiss, Istvan Zoltan

    Parasite strain coexistence in a heterogeneous host population Darren M. Green, Istvan Z. Kiss and Rowland R. Kao Green, D. M., Kiss, I. Z. and Kao, R. R. 2006. Parasite strain coexistence to parasite attack allows a lower transmission rate to sustain an epidemic than is required in homogeneous

  20. Host-Microbe Interactions in Caenorhabditis elegans

    PubMed Central

    Hou, Aixin

    2013-01-01

    A good understanding of how microbes interact with hosts has a direct bearing on our capability of fighting infectious microbial pathogens and making good use of beneficial ones. Among the model organisms used to study reciprocal actions among microbes and hosts, C. elegans may be the most advantageous in the context of its unique attributes such as the short life cycle, easiness of laboratory maintenance, and the availability of different genetic mutants. This review summarizes the recent advances in understanding host-microbe interactions in C. elegans. Although these investigations have greatly enhanced our understanding of C. elegans-microbe relationships, all but one of them involve only one or few microbial species. We argue here that more research is needed for exploring the evolution and establishment of a complex microbial community in the worm's intestine and its interaction with the host. PMID:23984180

  1. Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria

    NASA Astrophysics Data System (ADS)

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Sebina, Ismail; Haque, Ashraful; Davenport, Miles P.

    2015-05-01

    The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.

  2. Medicinal parasitic plants on diverse hosts with their usages and barcodes.

    PubMed

    Kwanda, Nantiya; Noikotr, Kowit; Sudmoon, Runglawan; Tanee, Tawatchai; Chaveerach, Arunrat

    2013-07-01

    Medicinal properties of parasitic plants were investigated by means of ethnobotanical study in some areas of northeastern Thailand. Important traditional usages are: Scurrula atropurpurea nourishes blood, Dendrophthoe pentandra decreases high blood pressure, and Helixanthera parasitica treats liver disease. Their systematics were also determined. The research is based on findings obtained from 100 parasite-host pairs. Of these, eight parasitic species were recorded; they are members of two families, viz. family Loranthaceae, namely D. lanosa, D. pentandra, H. parasitica, Macrosolen brandisianus, M. cochinchinensis and S. atropurpurea, and family Viscaceae, namely Viscum articulatum and V. ovalifolium. In addition, each parasitic species is found on diverse hosts, indicating non-host-parasitic specificity. Species-specific tagging of all species studied was carried out using the rbcL and psbA-trnH chloroplast regions. These tag sequences are submitted to GenBank databases under accession numbers JN687563-JN687578. Genetic distances calculated from nucleotide variations in a couple of species of each genus, Dendrophthoe, Macrosolen, and Viscum, were 0.032, 0.067 and 0.036 in the rbcL region, and 0.269, 0.073 and 0.264 in the psbA-trnH spacer region, respectively. These variations will be used for further identification of incomplete plant parts or other forms such as capsule, powder, dried or chopped pieces. PMID:22864809

  3. Immunogenomics approaches to study host innate immunity against intestinal parasites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry products including meat and eggs constitute a major protein source in the American diet and disease-causing pathogens represent major challenges to the poultry industry. More than 95 % of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tr...

  4. Stability of within-host–parasite communities in a wild mammal system

    PubMed Central

    Knowles, Sarah C. L.; Fenton, Andy; Petchey, Owen L.; Jones, Trevor R.; Barber, Rebecca; Pedersen, Amy B.

    2013-01-01

    Simultaneous infection by multiple parasite species is ubiquitous in nature. Interactions among co-infecting parasites may have important consequences for disease severity, transmission and community-level responses to perturbations. However, our current view of parasite interactions in nature comes primarily from observational studies, which may be unreliable at detecting interactions. We performed a perturbation experiment in wild mice, by using an anthelminthic to suppress nematodes, and monitored the consequences for other parasite species. Overall, these parasite communities were remarkably stable to perturbation. Only one non-target parasite species responded to deworming, and this response was temporary: we found strong, but short-lived, increases in the abundance of Eimeria protozoa, which share an infection site with the dominant nematode species, suggesting local, dynamic competition. These results, providing a rare and clear experimental demonstration of interactions between helminths and co-infecting parasites in wild vertebrates, constitute an important step towards understanding the wider consequences of similar drug treatments in humans and animals. PMID:23677343

  5. Transmission stage investment of malaria parasites in response to in-host competition

    PubMed Central

    Wargo, Andrew R; de Roode, Jacobus C; Huijben, Silvie; Drew, Damien R; Read, Andrew F

    2007-01-01

    Conspecific competition occurs in a multitude of organisms, particularly in parasites, where several clones are commonly sharing limited resources inside their host. In theory, increased or decreased transmission investment might maximize parasite fitness in the face of competition, but, to our knowledge, this has not been tested experimentally. We developed and used a clone-specific, stage-specific, quantitative PCR protocol to quantify Plasmodium chabaudi replication and transmission stage densities in mixed-clone infections. We co-infected mice from two strains with an avirulent and virulent parasite clone and found competitive suppression of in-host (blood-stage) parasite densities and generally corresponding reductions in transmission stage production, with the virulent clone obtaining overall competitive superiority. In response to competitive suppression, there was little evidence of any alteration in transmission stage investment, apart from a small reduction by one of the two clones in one of the two host strains. This alteration did not result in a competitive advantage, although it might have reduced the disadvantage. This study supports much of the current literature, which predicts that conspecific in-host competition will result in a competitive advantage and positive selection for virulent clones and thus the evolution of higher virulence. PMID:17711832

  6. Immune response and host protection of Nile tilapia against parasite Ichthyophthirius multifiliis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ichthyophthirius multifiliis (Ich) is one of the virulent ciliated parasites and causes heavy economic loss in freshwater fish. Two immunization trials were conducted to evaluate host protection of Nile tilapia, Oreochromis niloticus against Ich. Immunizations were done with live theronts or sonicat...

  7. Host-parasite population dynamics under combined frequency-and density-dependent transmission

    E-print Network

    Knell, Rob

    to `frequency-dependent' transmission for sexually transmitted diseases (STDs) (Getz and Pickering 1983 alternative (usually applied to sexually transmitted parasites) assumes instead that the rate at which hosts), the other density-independent (e.g. sexual contacts). Drawing on a range of biological examples, we propose

  8. Distinct immunoregulatory properties of macrophage migration inhibitory factors encoded by Eimeria parasites and their chicken host

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays an important role in host defense against a variety of microorganisms including protozoan parasites. Interestingly, some microbial pathogens also express a MIF-like protein, although its role in disease pathogenesi...

  9. Born in an Alien Nest : How Do Social Parasite Male Offspring Escape from Host Aggression?

    E-print Network

    Rasmont, Pierre

    Born in an Alien Nest : How Do Social Parasite Male Offspring Escape from Host Aggression? Patrick their intranidal life. Using behavioral assays, we showed that extracts from the heads of young cuckoo bumblebee. Citation: Lhomme P, Ayasse M, Valterova´ I, Lecocq T, Rasmont P (2012) Born in an Alien Nest : How Do

  10. Gastrointestinal parasites in relation to host traits and group factors in wild meerkats Suricata suricatta

    E-print Network

    Leclaire, Sarah

    Gastrointestinal parasites in relation to host traits and group factors in wild meerkats Suricata, UK 2 Kalahari Meerkat Project, Kuruman River Reserve, 8467 Van Zylsrus, Northern Cape, South Africa 3 2014) SUMMARY Meerkats are one of the most endearing of South African's wildlife celebrities and one

  11. Like herbivores, parasitic plants are limited by host nitrogen Steven C. Pennings Juliet C. Simpson

    E-print Network

    Pennings, Steven C.

    Like herbivores, parasitic plants are limited by host nitrogen content Steven C. Pennings Æ Juliet Springer Science+Business Media B.V. 2007 Abstract Herbivores generally benefit from increased plant constraints as do herbi- vores, and both herbivores and holoparasitic plants may respond positively

  12. Host preference and specialization in Gnathia sp., a common parasitic isopod of coral reef fishes

    E-print Network

    Grutter, Alexandra "Lexa"

    ectoparasites of coral reef fishes) from the Great Barrier Reef, Australia, was allowed to choose among fishes Great Barrier Reef (GBR), and nearby Queensland coast have been described (Holdich & Harrison, 1980Host preference and specialization in Gnathia sp., a common parasitic isopod of coral reef fishes L

  13. Genetic and phenotypic influences on clone-level success and host specialization in a generalist parasite

    E-print Network

    Poulin, Robert

    Genetic and phenotypic influences on clone-level success and host specialization in a generalist, physiological and behavio- ural traits that offer a fitness advantage for the organism (Futuyma & Moreno, 1988 variability among infective stages of 20 clones of the parasitic trematode Maritrema novaezealandensis

  14. Frequent vocalizing is negatively associated with brood parasitism in a host of the brown-headed cowbird

    USGS Publications Warehouse

    Steckler, Sonya E.; Conway, Courtney J.

    2012-01-01

    Brood parasitism by the Brown-headed Cowbird (Molothrus ater) can substantially affect host species' reproductive success. The "host-activity" hypothesis suggests that parasites eavesdrop on conspicuous behaviors to locate and parasitize hosts, and several studies of cowbird hosts support this hypothesis. In contrast, a recent study of the Least Bell's Vireo (Vireo bellii pusillus) reported a negative association between the host's vocalization rate near the nest and brood parasitism. This contradictory pattern is intriguing because Bell's Vireo is a common cowbird host and vocalizes near and on its nests. We tested a key assumption of the host-activity hypothesis in a different subspecies (V. b. arizonae) to determine whether the contradictory pattern reported in V. b. pusillus is an anomaly or could be generalized to other subspecies. Unparasitized vireos vocalized more frequently than parasitized birds, confirming that the pattern in Bell's Vireos is the opposite of that reported for other cowbird hosts. Nesting stage played a role: unparasitized birds vocalized more than parasitized birds only during the nest-building and incubation stages. Given that vocalization rate and other behaviors change through the breeding season, future tests of the host-activity hypothesis should control for nesting stage. Moreover, future efforts to identify the underlying cause for the association between vocalization rate and probability of parasitism should consider the possibility of reciprocal causal relationships between them. We propose five additional hypotheses to explain why in Bell's Vireo the pattern between these two traits is opposite of what has been reported in other birds.

  15. Experimental elimination of parasites in nature leads to the evolution of increased resistance in hosts

    PubMed Central

    Dargent, Felipe; Scott, Marilyn E.; Hendry, Andrew P.; Fussmann, Gregor F.

    2013-01-01

    A reduction in the strength of selection is expected to cause the evolution of reduced trait expression. Elimination of a parasite should thus cause the evolution of reduced resistance to that parasite. To test this prediction in nature, we studied the fourth- and eighth-generation descendants of guppies (Poecilia reticulata) introduced into four natural streams following experimental elimination of a common and deleterious parasite (Gyrodactylus spp.). After two generations of laboratory rearing to control for plasticity and maternal effects, we infected individual fish to assess their resistance to the parasite. Contrary to theoretical expectations, the introduced guppy populations had rapidly and repeatably evolved increased resistance to the now-absent parasite. This evolution was not owing to a resistance-tolerance trade-off, nor to differences in productivity among the sites. Instead, a leading candidate hypothesis is that the rapid life-history evolution typical in such introductions pleiotropically increases parasite resistance. Our study adds a new dimension to the growing evidence for contemporary evolution in the wild, and also points to the need for a re-consideration of simple expectations from host–parasite theory. In particular, our results highlight the need for increased consideration of multiple sources of selection and pleiotropy when studying evolution in natural contexts. PMID:24197417

  16. Host Reticulocytes Provide Metabolic Reservoirs That Can Be Exploited by Malaria Parasites

    PubMed Central

    Srivastava, Anubhav; Creek, Darren J.; Evans, Krystal J.; De Souza, David; Schofield, Louis; Müller, Sylke; Barrett, Michael P.; McConville, Malcolm J.; Waters, Andrew P.

    2015-01-01

    Human malaria parasites proliferate in different erythroid cell types during infection. Whilst Plasmodium vivax exhibits a strong preference for immature reticulocytes, the more pathogenic P. falciparum primarily infects mature erythrocytes. In order to assess if these two cell types offer different growth conditions and relate them to parasite preference, we compared the metabolomes of human and rodent reticulocytes with those of their mature erythrocyte counterparts. Reticulocytes were found to have a more complex, enriched metabolic profile than mature erythrocytes and a higher level of metabolic overlap between reticulocyte resident parasite stages and their host cell. This redundancy was assessed by generating a panel of mutants of the rodent malaria parasite P. berghei with defects in intermediary carbon metabolism (ICM) and pyrimidine biosynthesis known to be important for P. falciparum growth and survival in vitro in mature erythrocytes. P. berghei ICM mutants (pbpepc-, phosphoenolpyruvate carboxylase and pbmdh-, malate dehydrogenase) multiplied in reticulocytes and committed to sexual development like wild type parasites. However, P. berghei pyrimidine biosynthesis mutants (pboprt-, orotate phosphoribosyltransferase and pbompdc-, orotidine 5?-monophosphate decarboxylase) were restricted to growth in the youngest forms of reticulocytes and had a severe slow growth phenotype in part resulting from reduced merozoite production. The pbpepc-, pboprt- and pbompdc- mutants retained virulence in mice implying that malaria parasites can partially salvage pyrimidines but failed to complete differentiation to various stages in mosquitoes. These findings suggest that species-specific differences in Plasmodium host cell tropism result in marked differences in the necessity for parasite intrinsic metabolism. These data have implications for drug design when targeting mature erythrocyte or reticulocyte resident parasites. PMID:26042734

  17. Effects of juvenile host density and food availability on adult immune response, parasite resistance and virulence in a Daphnia-parasite system.

    PubMed

    Schoebel, Corine N; Auld, Stuart K J R; Spaak, Piet; Little, Tom J

    2014-01-01

    Host density can increase infection rates and reduce host fitness as increasing population density enhances the risk of becoming infected either through increased encounter rate or because host condition may decline. Conceivably, potential hosts could take high host density as a cue to up-regulate their defence systems. However, as host density usually covaries with food availability, it is difficult to examine the importance of host density in isolation. Thus, we performed two full-factorial experiments that varied juvenile densities of Daphnia magna (a freshwater crustacean) and food availability independently. We also included a simulated high-density treatment, where juvenile experimental animals were kept in filtered media that previously maintained Daphnia at high-density. Upon reaching adulthood, we exposed the Daphnia to their sterilizing bacterial parasite, Pasteuria ramosa, and examined how the juvenile treatments influenced the likelihood and severity of infection (Experiment I) and host immune investment (Experiment II). Neither juvenile density nor food treatments affected the likelihood of infection; however, well-fed hosts that were well-fed as juveniles produced more offspring prior to sterilization than their less well-fed counterparts. By contrast, parasite growth was independent of host juvenile resources or host density. Parasite-exposed hosts had a greater number of circulating haemocytes than controls (i.e., there was a cellular immune response), but the magnitude of immune response was not mediated by food availability or host density. These results suggest that density dependent effects on disease arise primarily through correlated changes in food availability: low food could limit parasitism and potentially curtail epidemics by reducing both the host's and parasite's reproduction as both depend on the same food. PMID:24736707

  18. The effect of host social system on parasite population genetic structure: comparative population genetics of two ectoparasitic mites and their bat hosts

    PubMed Central

    2014-01-01

    Background The population genetic structure of a parasite, and consequently its ability to adapt to a given host, is strongly linked to its own life history as well as the life history of its host. While the effects of parasite life history on their population genetic structure have received some attention, the effect of host social system has remained largely unstudied. In this study, we investigated the population genetic structure of two closely related parasitic mite species (Spinturnix myoti and Spinturnix bechsteini) with very similar life histories. Their respective hosts, the greater mouse-eared bat (Myotis myotis) and the Bechstein’s bat (Myotis bechsteinii) have social systems that differ in several substantial features, such as group size, mating system and dispersal patterns. Results We found that the two mite species have strongly differing population genetic structures. In S. myoti we found high levels of genetic diversity and very little pairwise differentiation, whereas in S. bechsteini we observed much less diversity, strongly differentiated populations and strong temporal turnover. These differences are likely to be the result of the differences in genetic drift and dispersal opportunities afforded to the two parasites by the different social systems of their hosts. Conclusions Our results suggest that host social system can strongly influence parasite population structure. As a result, the evolutionary potential of these two parasites with very similar life histories also differs, thereby affecting the risk and evolutionary pressure exerted by each parasite on its host. PMID:24479530

  19. Analysis of a summary network of co-infection in humans reveals that parasites interact most via shared resources

    PubMed Central

    Griffiths, Emily C.; Pedersen, Amy B.; Fenton, Andy; Petchey, Owen L.

    2014-01-01

    Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three levels comprising parasites, the resources they consume and the immune responses they elicit, connected by potential, observed and experimentally proved links. Pairs of parasite species had most potential to interact indirectly through shared resources, rather than through immune responses or other parasites. In addition, the network comprised 10 tightly knit groups, eight of which were associated with particular body parts, and seven of which were dominated by parasite–resource links. Reported co-infection in humans is therefore structured by physical location within the body, with bottom-up, resource-mediated processes most often influencing how, where and which co-infecting parasites interact. The many indirect interactions show how treating an infection could affect other infections in co-infected patients, but the compartmentalized structure of the network will limit how far these indirect effects are likely to spread. PMID:24619434

  20. [Host-parasite relationships of the genus Hyalomma Koch, 1844 (Acari, Ixodidae) and their connection with microevolutionary process].

    PubMed

    Apanaskevich, D A

    2004-01-01

    Host-parasite relationships of Hyalomma species of the world fauna are analyzed. The majority of species infests predominately various mammals. Birds and reptiles are used as preferred hosts by several Hyalomma species, and only on certain stage: adults of H. aegyptium parasitize tortoises; immature stages of H. marginatum parasitize birds. It is hypothesized that relationships of H. aegyptium adults (subgenus Hyalomma s. str.) with reptiles are secondarily in origin. Immature stages of H. aegyptium retain the primary wide diapason of hosts, which are various small mammals, birds and reptiles. The life cycle of this species is the three-host type that is considered as a primary type in ixodid ticks. A typical scheme of relationships with their hosts in all well-examined Hyalommina species has following features: the adult stage parasitize large and medium sized mammals, immature stages parasitize small mammals, three-host life cycle. A variety of preferred hosts and types of life cycle is observed in the subgenus Euhyalomma. All species of this subgenus can be arranged into two groups. In the first group, the immature stages infest only small mammals and birds, and the adults parasitize large mammals; this type of host preferences is probably primary host-parasite relationships of Hyalomma. This group includes: H. albiparmatum, H. asiaticum, H. excavatum, H. franchinii, H. impeltatum, H. impressum, H. lusitanicum, H. marginatum, H. nitidum, H. schulzei, and H. truncatum. Hyalomma marginatum and H. schulzei are two-host species; H. excavatum is two- or three-host tick. All the remaining species (except H. albiparmatum, which life cycle is unknown) are three-host ticks. In the second group, the immature stages as well as the adult stage parasitize large mammals. This group includes: H. dromedarii, H. anatolicum, and H. scupense. These species are two- or one-host ticks. PMID:15656094

  1. Potassium stimulates fungal epidemics in Daphnia by increasing host and parasite reproduction.

    PubMed

    Civitello, David J; Penczykowski, Rachel M; Hite, Jessica L; Duffy, Meghan A; Hall, Spencer R

    2013-02-01

    As natural enemies, parasites can dramatically harm host populations, and even catalyze their decline. Thus, identifying factors that promote disease spread is paramount. Environmental factors can drive epidemics by altering traits involved in disease spread. For example, nutrients (such as nitrogen and phosphorus) can stimulate reproduction of both hosts and parasites or alter rates of disease transmission by stimulating productivity and nutrition of food resources of hosts. Here, we demonstrate nutrient-trait-epidemic connections between the greatly understudied macronutrient potassium (K) and fungal disease (Metschnikowia bicuspidata) in a zooplankton host (Daphnia dentifera). In a three-year survey, epidemics grew larger in lakes with more potassium. In laboratory assays, potassium enrichment of low-K lake water enhanced both host and parasite reproduction. Parameterized with these data, a model predicted that potassium addition catalyzes disease spread. We confirmed this prediction with an experiment in large mesocosms (6000 L) in a low K-lake: potassium enrichment caused larger epidemics in replicated Daphnia populations. Consequently, the model--data combination mechanistically explained the field pattern and revealed a novel ecological role for the nutrient potassium. Furthermore, our findings highlight the need for further development of theory for nutrient limitation of epidemics. Such theory could help to explain heterogeneous eruptions of disease in space, connect these outbreaks to natural or anthropogenic enrichment of ecosystems, predict the ecological consequences of these outbreaks, and reveal novel strategies for disease management. PMID:23691657

  2. Integrating ecology and physiology of root-hemiparasitic interaction: interactive effects of abiotic resources shape the interplay between parasitism and autotrophy.

    PubMed

    T?šitel, Jakub; T?šitelová, Tamara; Fisher, James P; Lepš, Jan; Cameron, Duncan D

    2015-01-01

    Root hemiparasites are green photosynthetic plants, which parasitically acquire resources from host xylem. Mineral nutrients and water, two principal below-ground abiotic resources, were assumed to affect the interaction between hemiparasites and their hosts. The shape of these effects and the underlying physiological mechanisms have, however, remained unclear. We conducted a glasshouse experiment with root-hemiparasitic Rhinanthus alectorolophus, in which we manipulated the availability of mineral nutrients and water. Biomass production and Chl fluorescence of the hemiparasites and hosts were recorded, together with proportion of host-derived carbon in hemiparasite biomass. The abiotic resources had profound interactive effects on the performance of both the hemiparasite and the hosts, as well as the balance of above-ground biomass between them. These effects were mainly based on an increase of growth and photosynthetic efficiency under high nutrient concentrations, on the hemiparasite's ability to induce strong water stress on the hosts if water is limiting, and on release of the host from parasitism by simultaneous abundance of both resources. Hemiparasitism is a highly variable interaction, in which environmental conditions affect both the parasitic and autotrophic (and thus competitive) components. A hemiparasite's own photosynthesis plays a crucial role in the assimilation of parasitized mineral resources and their transformation into growth and fitness. PMID:25197020

  3. Making the best of a bad situation: host partial resistance and bypass of behavioral manipulation by parasites?

    PubMed

    Daoust, Simon P; King, Kayla C; Brodeur, Jacques; Roitberg, Bernard D; Roche, Benjamin; Thomas, Frédéric

    2015-09-01

    With few exceptions, parasitic manipulation dramatically reduces host fitness. That said, evidence of host resistance to behavior-manipulating parasites is scarce. Here, we suggest that the evolution of partial resistance, as well as bypass, to manipulation (PRM and BPM, respectively) represents new, seldom-explored options for parasitized hosts. Natural selection could favor hosts that partially resist certain manipulative dimensions to postpone their death and perform additional reproductive episodes (PRM). Alternatively, manipulated hosts may express novel traits that do not alter the manipulation per se but that alleviate its detrimental fitness consequences (BPM). If effective, PRM and BPM have many implications for the ecology and evolution of hosts and their parasites, especially the evolution of multidimensional manipulations. PMID:26072349

  4. Since parasitoids can be reared from their hosts and leave evidence of para-sitism after they emerge from hosts, some general outlines of their foraging

    E-print Network

    Giron, David - Institut de Recherche sur la Biologie de l'Insecte, Université François Rabelais

    primarily on the implications of these behaviors for density-dependent parasitism and optimal foraging. 3 they emerge from hosts, some general outlines of their foraging behavior can be inferred from field studies critical aspects of patch use, host finding, and host use. Studies of parasitoid foraging in the field

  5. Host Movement and the Genetic Structure of Populations of Parasitic Nematodes

    PubMed Central

    Blouin, M. S.; Yowell, C. A.; Courtney, C. H.; Dame, J. B.

    1995-01-01

    Mitochondrial DNA (mtDNA) sequence data were used to compare the population genetic structures of five species of parasitic nematodes from three different hosts: Ostertagia ostertagi and Haemonchus placei from cattle, H. contortus and Teladorsagia circumcincta from sheep, and Mazamastrongylus odocoilei from white-tailed deer. The parasites of sheep and cattle showed a pattern consistent with high gene flow among populations. The parasite of deer showed a pattern of substantial population subdivision and isolation by distance. It appears that host movement is an important determinant of population genetic structure in these nematodes. High gene flow in the parasites of livestock also indicates great opportunity for the spread of rare alleles that confer resistance to anthelmintic drugs. All species, including the parasite of deer, had unusually high within-population diversities (averages of 0.019-0.027 substitutions per site between pairs of individuals from the same population). Large effective population sizes (Ne), perhaps in combination with rapid mtDNA evolution, appear to be the most likely explanation for these high within-population diversities. PMID:8582607

  6. Sex-biased differences in the effects of host individual, host population and environmental traits driving tick parasitism in red deer

    PubMed Central

    Ruiz-Fons, Francisco; Acevedo, Pelayo; Sobrino, Raquel; Vicente, Joaquín; Fierro, Yolanda; Fernández-de-Mera, Isabel G.

    2013-01-01

    The interactions between host individual, host population, and environmental factors modulate parasite abundance in a given host population. Since adult exophilic ticks are highly aggregated in red deer (Cervus elaphus) and this ungulate exhibits significant sexual size dimorphism, life history traits and segregation, we hypothesized that tick parasitism on males and hinds would be differentially influenced by each of these factors. To test the hypothesis, ticks from 306 red deer—182 males and 124 females—were collected during 7 years in a red deer population in south-central Spain. By using generalized linear models, with a negative binomial error distribution and a logarithmic link function, we modeled tick abundance on deer with 20 potential predictors. Three models were developed: one for red deer males, another for hinds, and one combining data for males and females and including “sex” as factor. Our rationale was that if tick burdens on males and hinds relate to the explanatory factors in a differential way, it is not possible to precisely and accurately predict the tick burden on one sex using the model fitted on the other sex, or with the model that combines data from both sexes. Our results showed that deer males were the primary target for ticks, the weight of each factor differed between sexes, and each sex specific model was not able to accurately predict burdens on the animals of the other sex. That is, results support for sex-biased differences. The higher weight of host individual and population factors in the model for males show that intrinsic deer factors more strongly explain tick burden than environmental host-seeking tick abundance. In contrast, environmental variables predominated in the models explaining tick burdens in hinds. PMID:23819112

  7. Host range and community structure of avian nest parasites in the genus Philornis (Diptera: Muscidae) on the island of Trinidad

    PubMed Central

    Bulgarella, Mariana; Heimpel, George E

    2015-01-01

    Parasite host range can be influenced by physiological, behavioral, and ecological factors. Combining data sets on host–parasite associations with phylogenetic information of the hosts and the parasites involved can generate evolutionary hypotheses about the selective forces shaping host range. Here, we analyzed associations between the nest-parasitic flies in the genus Philornis and their host birds on Trinidad. Four of ten Philornis species were only reared from one species of bird. Of the parasite species with more than one host bird species, P. falsificus was the least specific and P. deceptivus the most specific attacking only Passeriformes. Philornis flies in Trinidad thus include both specialists and generalists, with varying degrees of specificity within the generalists. We used three quantities to more formally compare the host range of Philornis flies: the number of bird species attacked by each species of Philornis, a phylogenetically informed host specificity index (Poulin and Mouillot's STD), and a branch length-based STD. We then assessed the phylogenetic signal of these measures of host range for 29 bird species. None of these measures showed significant phylogenetic signal, suggesting that clades of Philornis did not differ significantly in their ability to exploit hosts. We also calculated two quantities of parasite species load for the birds – the parasite species richness, and a variant of the STD index based on nodes rather than on taxonomic levels – and assessed the signal of these measures on the bird phylogeny. We did not find significant phylogenetic signal for the parasite species load or the node-based STD index. Finally, we calculated the parasite associations for all bird pairs using the Jaccard index and regressed these similarity values against the number of nodes in the phylogeny separating bird pairs. This analysis showed that Philornis on Trinidad tend to feed on closely related bird species more often than expected by chance. PMID:26380698

  8. StyletChip: a microfluidic device for recording host invasion behaviour and feeding of plant parasitic nematodes.

    PubMed

    Hu, Chunxiao; Kearn, James; Urwin, Peter; Lilley, Catherine; O' Connor, Vincent; Holden-Dye, Lindy; Morgan, Hywel

    2014-07-21

    Plant parasitic nematodes (PPNs) infest the roots of crops and cause global losses with a severe economic impact on food production. Current chemical control agents are being removed from use due to environmental and toxicity concerns and there is a need for new approaches to crop protection. A key feature of parasitic behaviour for the majority of PPNs is a hollow stomastyle or odontostyle required for interaction with the host plant and feeding. This lance-like microscopic structure, often called a stylet, protrudes from the mouth of the worm and thrusts in a rhythmic manner to stab the host root. Studying stylet activity presents technical challenges and as a consequence the underlying biology is poorly understood. We have addressed this by designing a microfluidic chip which traps the PPN Globodera pallida and permits the recording of an electrophysiological signal concomitant with stylet thrusting. The PDMS chip incorporates a precisely designed aperture to trap the nematode securely around a mid-point of its body. It is fabricated using a novel combination of conventional photolithography and two photon polymerization. The chip incorporates valves for rapid application of test compounds and integral electrodes to facilitate acquisition of electrical signals. We show that stylet thrusting can be induced by controlled application of 5-HT (serotonin) to the worm. Each thrust and retraction produces an electrical waveform that characterises the physiological activity associated with the worm's behaviour. The ability to reproducibly record the stylet activity of PPNs provides a new platform for nematicide screening that specifically focuses on a behaviour that is integral to the parasite host interaction. This is the first report of a microfluidic chip capable of electrophysiological recording from nematodes other than Caenorhabditis elegans. The unique approach is optimised for trapping and recording from smaller worms or worms with distinct anterior body shapes and may be applied to other species of economic or medical importance. PMID:24839944

  9. PHYSICAL REVIEW E 83, 046102 (2011) Numerical study of a three-state host-parasite system on the square lattice

    E-print Network

    Masuda, Naoki

    2011-01-01

    PHYSICAL REVIEW E 83, 046102 (2011) Numerical study of a three-state host-parasite system-state host-parasite model on the square lattice motivated by population biology. The model is an extension of the contact process, and the three states correspond to an empty site, a host, and a parasite. We determine

  10. Evolutionary ecology of reproductive strategies in malaria parasites 

    E-print Network

    Carter, Lucy Mary

    2014-11-27

    For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission via mosquitoes ...

  11. Interactive effects of wildfire, forest management, and isolation on amphibian and parasite abundance.

    PubMed

    Hossack, Blake R; Lowe, Winsor H; Honeycutt, R Ken; Parks, Sean A; Corn, Paul Stephen

    2013-03-01

    Projected increases in wildfire and other climate-driven disturbances will affect populations and communities worldwide, including host-parasite relationships. Research in temperate forests has shown that wildfire can negatively affect amphibians, but this research has occurred primarily outside of managed landscapes where interactions with human disturbances could result in additive or synergistic effects. Furthermore, parasites represent a large component of biodiversity and can affect host fitness and population dynamics, yet they are rarely included in studies of how vertebrate hosts respond to disturbance. To determine how wildfire affects amphibians and their parasites, and whether effects differ between protected and managed landscapes, we compared abundance of two amphibians and two nematodes relative to wildfire extent and severity around wetlands in neighboring protected and managed forests (Montana, USA). Population sizes of adult, male long-toed salamanders (Ambystoma macrodactylum) decreased with increased burn severity, with stronger negative effects on isolated populations and in managed forests. In contrast, breeding population sizes of Columbia spotted frogs (Rana luteiventris) increased with burn extent in both protected and managed protected forests. Path analysis showed that the effects of wildfire on the two species of nematodes were consistent with differences in their life history and transmission strategies and the responses of their hosts. Burn severity indirectly reduced abundance of soil-transmitted Cosmocercoides variabilis through reductions in salamander abundance. Burn severity also directly reduced C. variabilis abundance, possibly though changes in soil conditions. For the aquatically transmitted nematode Gyrinicola batrachiensis, the positive effect of burn extent on density of Columbia spotted frog larvae indirectly increased parasite abundance. Our results show that effects of wildfire on amphibians depend upon burn extent and severity, isolation, and prior land use. Through subsequent effects on the parasites, our results also reveal how changes in disturbance regimes can affect communities across trophic levels. PMID:23634596

  12. Interactive effects of wildfire, forest management, and isolation on amphibian and parasite abundance

    USGS Publications Warehouse

    Hossack, Blake R.; Corn, P. Stephen; Winsor H. Lowe; R. Kenneth Honeycutt; Sean A. Parks

    2013-01-01

    Projected increases in wildfire and other climate-driven disturbances will affect populations and communities worldwide, including host–parasite relationships. Research in temperate forests has shown that wildfire can negatively affect amphibians, but this research has occurred primarily outside of managed landscapes where interactions with human disturbances could result in additive or synergistic effects. Furthermore, parasites represent a large component of biodiversity and can affect host fitness and population dynamics, yet they are rarely included in studies of how vertebrate hosts respond to disturbance. To determine how wildfire affects amphibians and their parasites, and whether effects differ between protected and managed landscapes, we compared abundance of two amphibians and two nematodes relative to wildfire extent and severity around wetlands in neighboring protected and managed forests (Montana, USA). Population sizes of adult, male long-toed salamanders (Ambystoma macrodactylum) decreased with increased burn severity, with stronger negative effects on isolated populations and in managed forests. In contrast, breeding population sizes of Columbia spotted frogs (Rana luteiventris) increased with burn extent in both protected and managed protected forests. Path analysis showed that the effects of wildfire on the two species of nematodes were consistent with differences in their life history and transmission strategies and the responses of their hosts. Burn severity indirectly reduced abundance of soil-transmitted Cosmocercoides variabilis through reductions in salamander abundance. Burn severity also directly reduced C. variabilis abundance, possibly though changes in soil conditions. For the aquatically transmitted nematode Gyrinicola batrachiensis, the positive effect of burn extent on density of Columbia spotted frog larvae indirectly increased parasite abundance. Our results show that effects of wildfire on amphibians depend upon burn extent and severity, isolation, and prior land use. Through subsequent effects on the parasites, our results also reveal how changes in disturbance regimes can affect communities across trophic levels.

  13. What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts.

    PubMed

    Kamiya, Tsukushi; O'Dwyer, Katie; Nakagawa, Shinichi; Poulin, Robert

    2014-02-01

    Although a small set of external factors account for much of the spatial variation in plant and animal diversity, the search continues for general drivers of variation in parasite species richness among host species. Qualitative reviews of existing evidence suggest idiosyncrasies and inconsistent predictive power for all proposed determinants of parasite richness. Here, we provide the first quantitative synthesis of the evidence using a meta-analysis of 62 original studies testing the relationship between parasite richness across animal, plant and fungal hosts, and each of its four most widely used presumed predictors: host body size, host geographical range size, host population density, and latitude. We uncover three universal predictors of parasite richness across host species, namely host body size, geographical range size and population density, applicable regardless of the taxa considered and independently of most aspects of study design. A proper match in the primary studies between the focal predictor and both the spatial scale of study and the level at which parasite species richness was quantified (i.e. within host populations or tallied across a host species' entire range) also affected the magnitude of effect sizes. By contrast, except for a couple of indicative trends in subsets of the full dataset, there was no strong evidence for an effect of latitude on parasite species richness; where found, this effect ran counter to the general latitude gradient in diversity, with parasite species richness tending to be higher further from the equator. Finally, the meta-analysis also revealed a negative relationship between the magnitude of effect sizes and the year of publication of original studies (i.e. a time-lag bias). This temporal bias may be due to the increasing use of phylogenetic correction in comparative analyses of parasite richness over time, as this correction yields more conservative effect sizes. Overall, these findings point to common underlying processes of parasite diversification fundamentally different from those controlling the diversity of free-living organisms. PMID:23782597

  14. Dynamics of Belonolaimus longicaudatus Parasitism on a Susceptible St. Augustinegrass Host

    PubMed Central

    Giblin-Davis, Robin M.; Busey, Philip; Center, Barbara J.

    1992-01-01

    St. Augustinegrass (Stenotaphrum secundatum) cv FX-313 was used as a model laboratory host for monitoring population growth of the sting nematode, Belonolaimus longicaudatus, and for quantifying the effects of sting nematode parasitism on host performance in two samples of autoclaved native Margate fine sand with contrasting amounts of organic matter (OM = 7.9% and 3.8%). Following inoculation with 50 Belonolaimus longicaudatus per pot, nematodes peaked at a mean of 2,139 nematodes per pot 84 days after inoculation, remained stable through 168 days at 2,064 nematodes per pot, and declined at 210 days. The relative numbers of juveniles and adults demonstrated senescence after 84 days. Root dry weight of nematode-inoculated plants increased briefly to an apparent equilibrium 84 days after inoculation, whereas root weights of uninoculated controls continued to increase, exceeding those of inoculated plants from 84 to 210 days (P < 0.01). At 210 days, uninoculated plants had 227% the root dry weight of inoculated plants. Transpiration of FX-313 was reduced by nematodes (P < 0.0001) at 84 and 126 days after inoculation; reduction was first observed at 42 days and last observed 168 days after inoculation (P < 0.05). OM content affected all plant performance variables at multiple dates, and generally there were no inoculation x OM content interactions. OM content had no effect on nematode numbers per pot, although there was a slight (P < 0.05) increase in the number of nematodes per gram root dry weight in the low-OM soil compared with the high-OM soil. PMID:19283019

  15. Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity

    PubMed Central

    Hewitson, James P.; Grainger, John R.; Maizels, Rick M.

    2009-01-01

    Helminths are masterful immunoregulators. A characteristic feature of helminth infection is a Th2-dominated immune response, but stimulation of immunoregulatory cell populations, such as regulatory T cells and alternatively activated macrophages, is equally common. Typically, Th1/17 immunity is blocked and productive effector responses are muted, allowing survival of the parasite in a “modified Th2” environment. Drug treatment to clear the worms reverses the immunoregulatory effects, indicating that a state of active suppression is maintained by the parasite. Hence, research has focussed on “excretory–secretory” products released by live parasites, which can interfere with every aspect of host immunity from initial recognition to end-stage effector mechanisms. In this review, we survey our knowledge of helminth secreted molecules, and summarise current understanding of the growing number of individual helminth mediators that have been shown to target key receptors or pathways in the mammalian immune system. PMID:19406170

  16. Global warming is changing the dynamics of Arctic host–parasite systems

    PubMed Central

    Kutz, S.J; Hoberg, E.P; Polley, L; Jenkins, E.J

    2005-01-01

    Global climate change is altering the ecology of infectious agents and driving the emergence of disease in people, domestic animals, and wildlife. We present a novel, empirically based, predictive model for the impact of climate warming on development rates and availability of an important parasitic nematode of muskoxen in the Canadian Arctic, a region that is particularly vulnerable to climate change. Using this model, we show that warming in the Arctic may have already radically altered the transmission dynamics of this parasite, escalating infection pressure for muskoxen, and that this trend is expected to continue. This work establishes a foundation for understanding responses to climate change of other host–parasite systems, in the Arctic and globally. PMID:16321777

  17. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome

    PubMed Central

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-? and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2. PMID:26466097

  18. Survey of wild mammal hosts of cutaneous leishmaniasis parasites in panamá and costa rica.

    PubMed

    González, Kadir; Calzada, José E; Saldaña, Azael; Rigg, Chystrie A; Alvarado, Gilbert; Rodríguez-Herrera, Bernal; Kitron, Uriel D; Adler, Gregory H; Gottdenker, Nicole L; Chaves, Luis Fernando; Baldi, Mario

    2015-03-01

    The eco-epidemiology of American cutaneous leishmaniasis (ACL) is driven by animal reservoir species that are a source of infection for sand flies that serve as vectors infecting humans with Leishmania spp parasites. The emergence and re-emergence of this disease across Latin America calls for further studies to identify reservoir species associated with enzootic transmission. Here, we present results from a survey of 52 individuals from 13 wild mammal species at endemic sites in Costa Rica and Panama where ACL mammal hosts have not been previously studied. For Leishmania spp. diagnostics we employed a novel PCR technique using blood samples collected on filter paper. We only found Leishmania spp parasites in one host, the two-toed sloth, Choloepus hoffmanni. Our findings add further support to the role of two-toed sloths as an important ACL reservoir in Central America. PMID:25859156

  19. Survey of Wild Mammal Hosts of Cutaneous Leishmaniasis Parasites in Panamá and Costa Rica

    PubMed Central

    González, Kadir; Calzada, José E.; Saldaña, Azael; Rigg, Chystrie A.; Alvarado, Gilbert; Rodríguez-Herrera, Bernal; Kitron, Uriel D.; Adler, Gregory H.; Gottdenker, Nicole L.; Chaves, Luis Fernando; Baldi, Mario

    2015-01-01

    The eco-epidemiology of American cutaneous leishmaniasis (ACL) is driven by animal reservoir species that are a source of infection for sand flies that serve as vectors infecting humans with Leishmania spp parasites. The emergence and re-emergence of this disease across Latin America calls for further studies to identify reservoir species associated with enzootic transmission. Here, we present results from a survey of 52 individuals from 13 wild mammal species at endemic sites in Costa Rica and Panama where ACL mammal hosts have not been previously studied. For Leishmania spp. diagnostics we employed a novel PCR technique using blood samples collected on filter paper. We only found Leishmania spp parasites in one host, the two-toed sloth, Choloepus hoffmanni. Our findings add further support to the role of two-toed sloths as an important ACL reservoir in Central America. PMID:25859156

  20. Cuckoo hosts shift from accepting to rejecting parasitic eggs across their lifetime.

    PubMed

    Molina-Morales, Mercedes; Martínez, Juan G; Martín-Gálvez, David; Dawson, Deborah A; Burke, Terry; Avilés, Jesús M

    2014-10-01

    One of the best-known outcomes of coevolution between species is the rejection of mimetic parasite eggs by avian hosts, which has evolved to reduce costly cuckoo parasitism. How this behavioral adaptation varies along the life of individual hosts remains poorly understood. Here, we identify for the first time, lifetime patterns of egg rejection in a parasitized long-lived bird, the magpie Pica pica and show that, during the years they were studied, some females accept, others reject, and some others modify their response to model eggs, in all cases switching from acceptance to rejection. Females tested in their first breeding attempt always accepted the model egg, even those individuals whose mothers were egg rejecters. A longitudinal analysis showed that the probability of egg rejection increased with the relative age of the female, but was not related to the risk of parasitism in the population. We conclude that ontogeny plays a fundamental role in the process leading to egg rejection in magpies. PMID:24916150

  1. Mathematical modelling of spatial sorting and evolution in a host-parasite system.

    PubMed

    Chan, Matthew H; Shine, Richard; Brown, Gregory P; Kim, Peter S

    2015-09-01

    There have been numerous empirical and agent-based modelling studies on the spatial self-structuring of traits, particularly in regard to dispersal ability (termed spatial sorting) of cane toads in northern Australia, but few mathematical modelling studies. In this study, we formulate a reaction-diffusion based partial-integro-differential equation model based on an earlier model by Bouin et al. (2012) to examine this spatial self-structuring of traits in both a cane toad population and lungworm parasite population, which evolves with the cane toad population. In particular, the traits we focus on are dispersal ability for the cane toad population and both prepatent period and larval size for the lungworm parasite population. Apart from the spatial self-structuring of these traits, our results confirm a number of observations made in empirical and agent-based studies; particularly, that there is a noticeable lag between the host and parasite population which is critically dependent on the parasite functional response to host densities, that older populations regress back to lower dispersal speeds and that spatial sorting can still occur with a disadvantage in reproductivity and/or survival in more motile individuals. Moreover, we find that such a disadvantage in reproductivity and/or survival is unlikely to be large if spatial sorting is to have a noticeable effect on the rate of range expansion, as it has been observed to have over the last 60 years in northern Australia. PMID:26119556

  2. Fasciola hepatica mucin-encoding gene: expression, variability and its potential relevance in host-parasite relationship.

    PubMed

    Cancela, Martín; Santos, Guilherme B; Carmona, Carlos; Ferreira, Henrique B; Tort, José Francisco; Zaha, Arnaldo

    2015-12-01

    Fasciola hepatica is the causative agent of fasciolosis, a zoonosis with significant impact both in human and animal health. Understanding the basic processes of parasite biology, especially those related to interactions with its host, will contribute to control F. hepatica infections and hence liver pathology. Mucins have been described as important mediators for parasite establishment within its host, due to their key roles in immune evasion. In F. hepatica, mucin expression is upregulated in the mammalian invasive newly excysted juvenile (NEJ) stage in comparison with the adult stage. Here, we performed sequencing of mucin cDNAs prepared from NEJ RNA, resulting in six different cDNAs clusters. The differences are due to the presence of a tandem repeated sequence of 66 bp encoded by different exons. Two groups of apomucins one with three and the other with four repeats, with 459 and 393 bp respectively, were identified. These cDNAs have open reading frames encoding Ser-Thr enriched proteins with an N-terminal signal peptide, characteristic of apomucin backbone. We cloned a 4470 bp gene comprising eight exons and seven introns that encodes all the cDNA variants identified in NEJs. By real time polymerase chain reaction and high-resolution melting approaches of individual flukes we infer that fhemuc-1 is a single-copy gene, with at least two different alleles. Our data suggest that both gene polymorphism and alternative splicing might account for apomucin variability in the fhemuc-1 gene that is upregulated in NEJ invasive stage. The relevance of this variation in host-parasite interplay is discussed. PMID:26440911

  3. Fahrenholz's Rule and Resource Tracking: A Study of Host-Parasite Coevolution

    E-print Network

    Timm, Robert M.

    1983-01-01

    that northern and southern populations of New World arctic ground squirrels are more similar to the Siberian ground squirrels than either is to the other. A second and contrasting model of host-parasite coevo- lution, is Resource Tracking. Here "...the...) described a new genus, Geomydoecus, within the family Trichodectidae for this group of lice. In 1897, Chapman described Trichodectes califomicus on 234 Robert M. Tirnm the basis of a single female obtained from a pocket mouse, Perognathus sp...

  4. Phoretic nest parasites use sexual deception to obtain transport to their host's nest

    PubMed Central

    Saul-Gershenz, Leslie S.; Millar, Jocelyn G.

    2006-01-01

    Cooperative behaviors are common among social insects such as bees, wasps, ants, and termites, but they have not been reported from insect species that use aggressive mimicry to manipulate and exploit prey or hosts. Here we show that larval aggregations of the blister beetle Meloe franciscanus, which parasitize nests of the solitary bee Habropoda pallida, cooperate to exploit the sexual communication system of their hosts by producing a chemical cue that mimics the sex pheromone of the female bee. Male bees are lured to larval aggregations, and upon contact (pseudocopulation) the beetle larvae attach to the male bees. The larvae transfer to female bees during mating and subsequently are transported to the nests of their hosts. To mimic the chemical and visual signals of female bees effectively, the parasite larvae must cooperate, emphasizing the adaptive value of cooperation between larvae. The aggressive chemical mimicry by the beetle larvae and their subsequent transport to their hosts' nests by the hosts themselves provide an efficient solution to the problem of locating a critical but scarce resource in a harsh environment. PMID:16966608

  5. Adaptation of gastrointestinal nematode parasites to host genotype: single locus simulation models

    PubMed Central

    2013-01-01

    Background Breeding livestock for improved resistance to disease is an increasingly important selection goal. However, the risk of pathogens adapting to livestock bred for improved disease resistance is difficult to quantify. Here, we explore the possibility of gastrointestinal worms adapting to sheep bred for low faecal worm egg count using computer simulation. Our model assumes sheep and worm genotypes interact at a single locus, such that the effect of an A allele in sheep is dependent on worm genotype, and the B allele in worms is favourable for parasitizing the A allele sheep but may increase mortality on pasture. We describe the requirements for adaptation and test if worm adaptation (1) is slowed by non-genetic features of worm infections and (2) can occur with little observable change in faecal worm egg count. Results Adaptation in worms was found to be primarily influenced by overall worm fitness, viz. the balance between the advantage of the B allele during the parasitic stage in sheep and its disadvantage on pasture. Genetic variation at the interacting locus in worms could be from de novo or segregating mutations, but de novo mutations are rare and segregating mutations are likely constrained to have (near) neutral effects on worm fitness. Most other aspects of the worm infection we modelled did not affect the outcomes. However, the host-controlled mechanism to reduce faecal worm egg count by lowering worm fecundity reduced the selection pressure on worms to adapt compared to other mechanisms, such as increasing worm mortality. Temporal changes in worm egg count were unreliable for detecting adaptation, despite the steady environment assumed in the simulations. Conclusions Adaptation of worms to sheep selected for low faecal worm egg count requires an allele segregating in worms that is favourable in animals with improved resistance but less favourable in other animals. Obtaining alleles with this specific property seems unlikely. With support from experimental data, we conclude that selection for low faecal worm egg count should be stable over a short time frame (e.g. 20 years). We are further exploring model outcomes with multiple loci and comparing outcomes to other control strategies. PMID:23714384

  6. Trichodina modesta: an exotic ciliate in the Neotropical region parasitizing an unusual host.

    PubMed

    Valladão, Gustavo Moraes Ramos; Giannecchini, Luiz Gustavo; Martins, Maurício Laterça; de Pádua, Santiago Benites

    2015-01-01

    In this study, an important ornamental fish, Betta splendens (Osphronemidae), from three different Brazilian states was examined for parasitic infestations. Smears with parasites were impregnated with silver nitrate or stained using Giemsa for taxonomic evaluation. A disc-shaped trichodinid with a body diameter of 39.7 ± 3.3 µm, adhesive disc diameter of 32.9 ± 3.1 µm and denticulate ring diameter of 19.5 ± 2.0 µm was found. The morphological characteristics resembled those of Trichodina modesta Lom, 1970, a species that shows clear host specificity for Cypriniformes. Until now, its occurrence was restricted to the Eurasian region. In the present study, a new host for T. modesta is reported and therefore the first occurrence of this species in the Americas. The parasite was possibly introduced into the Neotropical region through the exotic fish trade, especially of Cypriniformes used by aquarists. The distribution of this ciliate is discussed and a checklist of localities and hosts for the species is provided. PMID:26154956

  7. Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region

    USGS Publications Warehouse

    Beadell, J.S.; Gering, E.; Austin, J.; Dumbacher, J.P.; Peirce, M.A.; Pratt, T.K.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The degree to which widespread avian blood parasites in the genera Plasmodium and Haemoproteus pose a threat to novel hosts depends in part on the degree to which they are constrained to a particular host or host family. We examined the host distribution and host-specificity of these parasites in birds from two relatively understudied and isolated locations: Australia and Papua New Guinea. Using polymerase chain reaction (PCR), we detected infection in 69 of 105 species, representing 44% of individuals surveyed (n = 428). Across host families, prevalence of Haemoproteus ranged from 13% (Acanthizidae) to 56% (Petroicidae) while prevalence of Plasmodium ranged from 3% (Petroicidae) to 47% (Ptilonorhynchidae). We recovered 78 unique mitochondrial lineages from 155 sequences. Related lineages of Haemoproteus were more likely to derive from the same host family than predicted by chance at shallow (average LogDet genetic distance = 0, n = 12, P = 0.001) and greater depths (average distance = 0.014, n = 11, P < 0.001) within the parasite phylogeny. Within two major Haemoproteus subclades identified in a maximum likelihood phylogeny, host-specificity was evident up to parasite genetic distances of 0.029 and 0.007 based on logistic regression. We found no significant host relationship among lineages of Plasmodium by any method of analysis. These results support previous evidence of strong host-family specificity in Haemoproteus and suggest that lineages of Plasmodium are more likely to form evolutionarily-stable associations with novel hosts.

  8. Apoptotic-like Leishmania exploit the host's autophagy machinery to reduce T-cell-mediated parasite elimination.

    PubMed

    Crauwels, Peter; Bohn, Rebecca; Thomas, Meike; Gottwalt, Stefan; Jäckel, Florian; Krämer, Susi; Bank, Elena; Tenzer, Stefan; Walther, Paul; Bastian, Max; van Zandbergen, Ger

    2015-01-01

    Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed--in contrast to viable parasites--that apoptotic-like parasites enter an LC3(+), autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4(+) T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells' autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis. PMID:25801301

  9. Drosophila parasitoid-host interactions:vibrotaxisand ovipositorsearchingfrom the host's perspective

    E-print Network

    Sokolowski, Marla

    Drosophila parasitoid-host interactions:vibrotaxisand ovipositorsearchingfrom the host SOKOLOWSKI,M. B., and T. C. J. TURLINGS.1987.Drosophila parasitoid-host interactions: vibrotaxis and ovipositor searching from the host's perspective. Can. J. Zool. 65: 461-464. Two strains of Drosophila

  10. Schistosoma mansoni: the egg, biosynthesis of the shell and interaction with the host.

    PubMed

    deWalick, Saskia; Tielens, Aloysius G M; van Hellemond, Jaap J

    2012-09-01

    The schistosome eggshell is a hardened and tanned structure made from cross-linked proteins. It is synthesized within the female worm from many different kinds of proteins and glycoproteins. Once the egg is released in the circulation, the outer surface of the eggshell is exposed and hence a direct site of interaction between the parasite and the host. The major eggshell protein is p14, but about one third of the eggshell is made from common cellular proteins, some of which are known to be immunogenic. This has many consequences for parasite-host interactions. However, so far, the eggshell has gained little attention from researchers. We will discuss the structure of the eggshell and its role in granuloma formation, host factor binding and egg excretion. PMID:21840309

  11. Meso- and bathy-pelagic fish parasites at the Mid-Atlantic Ridge (MAR): Low host specificity and restricted parasite diversity

    NASA Astrophysics Data System (ADS)

    Klimpel, Sven; Busch, Markus Wilhelm; Sutton, Tracey; Palm, Harry Wilhelm

    2010-04-01

    Seven meso- and bathy-pelagic fish species from the Mid-Atlantic Ridge (MAR) were firstly studied for fish parasites and feeding ecology. With a total of seven parasite species, the 247 meso- and bathy-pelagic deep-sea fish specimens belonging to the families Melamphaidae (3 spp.), Myctophidae (3 spp.) and Stomiidae (1 sp.) revealed low parasite diversity. The genetically identified nematodes Anisakis simplex (s.s.) and Anisakis pegreffii from the body cavity, liver and muscles of Myctophum punctatum were the most abundant parasites, reaching a prevalence of 91.4% and mean intensity of 3.1 (1-14). Anisakis sp. (unidentified) infected Chauliodus sloani and Poromitra crassiceps. Bothriocephalidean and tetraphyllidean cestode larvae infected Benthosema glaciale, the latter also occurring in C. sloani and Scopelogadus beanii, at low prevalences. Adult parasites at low infection rates included the digenean Lethadena sp. (2.9%), and the two copepod species Sarcotretes scopeli (5.7%) and Tautochondria dolichoura (5.3-11.4%). The myctophid Lampanyctus macdonaldi and the melamphaid Scopelogadus mizolepis mizolepis were free of parasites. Analyses of the stomach contents revealed crustaceans, especially copepods and euphausiids for the myctophids and also amphipods for the melamphaids as predominant prey items. While all stomachs showing distinct content comprising often unidentified 'tissue' (possibly gelatinous zooplankton), only C. sloani preyed upon fish. Though this feeding habit would enable transfer of a variety of crustacean-transmitted parasites into the fish, the parasite fauna in the meso- and bathy-pelagic fish was species poor. All observed parasites showed low host specificity, demonstrating no distinct pattern of host-parasite co-evolution. The MAR is no barrier for the parasite distribution in the North Atlantic meso- and bathy-pelagial.

  12. A PRELIMINARY LOOK AT THE POTENTIAL FOR USING A PARASITIC ISOPOD FOR AUGMENTATIVE BIOLOGICAL CONTROL OF ITS BURROWING SHRIMP HOST

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An investigation of the life history and host-parasite ecology of a newly described bopyrid isopod (Orthione griffenis, Markham 2004) was initiated after discovering that mud shrimp (Upogebia pugettensis) populations along the West coast of the US were heavily infested with this parasite(>85% preval...

  13. Spatial heterogeneity in parasite loads in the New Zealand cockle: the importance of host condition and density

    E-print Network

    Poulin, Robert

    Spatial heterogeneity in parasite loads in the New Zealand cockle: the importance of host condition of the New Zealand cockle Austrovenus stutchburyi (Veneridae) collected at two di¡erent intertidal levels not di¡er between sites. At both sites there was a positive relationship between parasite load and cockle

  14. Reciprocal Trophic Interactions and Transmission of Blood Parasites between Mosquitoes and Frogs

    PubMed Central

    Ferguson, Laura V.; Smith, Todd G.

    2012-01-01

    The relationship between mosquitoes and their amphibian hosts is a unique, reciprocal trophic interaction. Instead of a one-way, predator-prey relationship, there is a cyclical dance of avoidance and attraction. This has prompted spatial and temporal synchrony between organisms, reflected in emergence time of mosquitoes in the spring and choice of habitat for oviposition. Frog-feeding mosquitoes also possess different sensory apparatuses than do their mammal-feeding counterparts. The reciprocal nature of this relationship is exploited by various blood parasites that use mechanical, salivary or trophic transmission to pass from mosquitoes to frogs. It is important to investigate the involvement of mosquitoes, frogs and parasites in this interaction in order to understand the consequences of anthropogenic actions, such as implementing biocontrol efforts against mosquitoes, and to determine potential causes of the global decline of amphibian species. PMID:26466534

  15. Interacting populations : hosts and pathogens, prey and predators

    E-print Network

    Klepac, Petra

    2007-01-01

    The interactions between populations can be positive, neutral or negative. Predation and parasitism are both relationships where one species benefits from the interaction at the expense of the other. Predators kill their ...

  16. Postembryonic RNAi in Heterorhabditis bacteriophora: a nematode insect parasite and host for insect pathogenic symbionts

    PubMed Central

    Ciche, Todd A; Sternberg, Paul W

    2007-01-01

    Background Heterorhabditis bacteriophora is applied throughout the world for the biological control of insects and is an animal model to study interspecies interactions, e.g. mutualism, parasitism and vector-borne disease. H. bacteriophora nematodes are mutually associated with the insect pathogen, Photorhabdus luminescens. The developmentally arrested infective juvenile (IJ) stage nematode (vector) specifically transmits Photorhabdus luminescens bacteria (pathogen) in its gut mucosa to the haemocoel of insects (host). The nematode vector and pathogen alone are not known to cause insect disease. RNA interference is an excellent reverse genetic tool to study gene function in C. elegans, and it would be useful in H. bacteriophora to exploit the H. bacteriophora genome project, currently in progress. Results Soaking L1 stage H. bacteriophora with seven dsRNAs of genes whose C. elegans orthologs had severe RNAi phenotypes resulted in highly penetrant and obvious developmental and reproductive abnormalities. The efficacy of postembryonic double strand RNA interference (RNAi) was evident by abnormal gonad morphology and sterility of adult H. bacteriophora and C. elegans presumable due to defects in germ cell proliferation and gonad development. The penetrance of RNAi phenotypes in H. bacteriophora was high for five genes (87–100%; Hba-cct-2, Hba-daf-21, Hba-icd-1; Hba-nol-5, and Hba-W01G7.3) and moderate for two genes (usually 30–50%; Hba-rack-1 and Hba-arf-1). RNAi of three additional C. elegans orthologs for which RNAi phenotypes were not previously detected in C. elegans, also did not result in any apparent phenotypes in H. bacteriophora. Specific and severe reduction in transcript levels in RNAi treated L1s was determined by quantitative real-time RT-PCR. These results suggest that postembryonic RNAi by soaking is potent and specific. Conclusion Although RNAi is conserved in animals and plants, RNAi using long dsRNA is not. These results demonstrate that RNAi can be used effectively in H. bacteriophora and can be applied for analyses of nematode genes involved in symbiosis and parasitism. It is likely that RNAi will be an important tool for functional genomics utilizing the high quality draft H. bacteriophora genome sequence. PMID:17803822

  17. Toxoplasma on the Brain: Understanding Host-Pathogen Interactions in Chronic CNS Infection

    PubMed Central

    Kamerkar, Sushrut; Davis, Paul H.

    2012-01-01

    Toxoplasma gondii is a prevalent obligate intracellular parasite which chronically infects more than a third of the world's population. Key to parasite prevalence is its ability to form chronic and nonimmunogenic bradyzoite cysts, which typically form in the brain and muscle cells of infected mammals, including humans. While acute clinical infection typically involves neurological and/or ocular damage, chronic infection has been more recently linked to behavioral changes. Establishment and maintenance of chronic infection involves a balance between the host immunity and parasite evasion of the immune response. Here, we outline the known cellular interplay between Toxoplasma gondii and cells of the central nervous system and review the reported effects of Toxoplasma gondii on behavior and neurological disease. Finally, we review new technologies which will allow us to more fully understand host-pathogen interactions. PMID:22545203

  18. Malaria parasites target the hepatocyte receptor EphA2 for successful host infection.

    PubMed

    Kaushansky, Alexis; Douglass, Alyse N; Arang, Nadia; Vigdorovich, Vladimir; Dambrauskas, Nicholas; Kain, Heather S; Austin, Laura S; Sather, D Noah; Kappe, Stefan H I

    2015-11-27

    The invasion of a suitable host hepatocyte by mosquito-transmitted Plasmodium sporozoites is an essential early step in successful malaria parasite infection. Yet precisely how sporozoites target their host cell and facilitate productive infection remains largely unknown. We found that the hepatocyte EphA2 receptor was critical for establishing a permissive intracellular replication compartment, the parasitophorous vacuole. Sporozoites productively infected hepatocytes with high EphA2 expression, and the deletion of EphA2 protected mice from liver infection. Lack of host EphA2 phenocopied the lack of the sporozoite proteins P52 and P36. Our data suggest that P36 engages EphA2, which is likely to be a key step in establishing the permissive replication compartment. PMID:26612952

  19. Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps

    NASA Astrophysics Data System (ADS)

    Turlings, T. C. J.; Tumlinson, J. H.; Lewis, W. J.

    1990-11-01

    Corn seedlings release large amounts of terpenoid volatiles after they have been fed upon by caterpillars. Artificially damaged seedlings do not release these volatiles in significant amounts unless oral secretions from the caterpillars are applied to the damaged sites. Undamaged leaves, whether or not they are treated with oral secretions, do not release detectable amounts of the terpenoids. Females of the parasitic wasp Cotesia marginiventris (Cresson) learn to take advantage of those plant-produced volatiles to locate hosts when exposed to these volatiles in association with hosts or host by-products. The terpenoids may be produced in defense against herbivores but may also serve a secondary function in attracting the natural enemies of these herbivores.

  20. Research project for a MSc or a PhD student in the immunology of parasitic Project title: Biology of the interactions between Leishmania parasites and the immune system

    E-print Network

    : Biology of the interactions between Leishmania parasites and the immune system Institution: INRS on the functionality of infected cells and on the immune response. Research area: host-pathogen interactions, cell biology, immune response, Leishmania, macrophages. Starting date: Summer or Fall 2016 Research advisor: Dr

  1. Genetic diversity, temporal dynamics, and host specificity in blood parasites of passerines in north China.

    PubMed

    Huang, Xi; Dong, Lu; Zhang, Chenglin; Zhang, Yanyun

    2015-12-01

    Avian blood parasites have been preliminarily studied in East Asia, but no data are available from long-term monitoring. The aim of this study was to evaluate the prevalence, genetic diversity, and temporal dynamics of Plasmodium, Haemoproteus, and Leucocytozoon in two passerine communities (one forest and one urban) in north China from 2008 to 2013, as well as the association between infected lineages and host specificities. Out of 633 birds from 40 species, 157 individuals (24.8 %) were infected; overall prevalence was 26.7 % and 16.8 % in two sites, respectively. The dominant avian blood parasite genus in the forest park changed yearly between Plasmodium and Haemoproteus, while the Leucocytozoon maintained a low infection level. Forty-four haplotypes were identified by sequencing a 432-bp fragment of the cytochrome b (cyt b) gene; more than 70 % were novel (six Plasmodium lineages, 16 Haemoproteus lineages, and nine Leucocytozoon lineages). Based on our data gathered over consecutive years, we found that the highly observed lineages of Haemoproteus showed higher host diversities than those of Plasmodium, and the most infected lineage EMEL01 (100 % identity with SGS1) take on the highest host diversity but low temporal diversity of the two genera, implying that this lineage infected a great diversity of species in certain years, but maintained a lower infection level or even disappeared in other years. The results suggest that genetic diversity of avian blood parasites in East Asia is high and provides scope for further research. In addition, compared with overall analysis, yearly prevalence monitoring is important in uncovering the temporal dynamic and host specificity variations over time. PMID:26385465

  2. The Genome of Spraguea lophii and the Basis of Host-Microsporidian Interactions

    PubMed Central

    Campbell, Scott E.; Williams, Tom A.; Yousuf, Asim; Soanes, Darren M.; Paszkiewicz, Konrad H.; Williams, Bryony A. P.

    2013-01-01

    Microsporidia are obligate intracellular parasites with the smallest known eukaryotic genomes. Although they are increasingly recognized as economically and medically important parasites, the molecular basis of microsporidian pathogenicity is almost completely unknown and no genetic manipulation system is currently available. The fish-infecting microsporidian Spraguea lophii shows one of the most striking host cell manipulations known for these parasites, converting host nervous tissue into swollen spore factories known as xenomas. In order to investigate the basis of these interactions between microsporidian and host, we sequenced and analyzed the S. lophii genome. Although, like other microsporidia, S. lophii has lost many of the protein families typical of model eukaryotes, we identified a number of gene family expansions including a family of leucine-rich repeat proteins that may represent pathogenicity factors. Building on our comparative genomic analyses, we exploited the large numbers of spores that can be obtained from xenomas to identify potential effector proteins experimentally. We used complex-mix proteomics to identify proteins released by the parasite upon germination, resulting in the first experimental isolation of putative secreted effector proteins in a microsporidian. Many of these proteins are not related to characterized pathogenicity factors or indeed any other sequences from outside the Microsporidia. However, two of the secreted proteins are members of a family of RICIN B-lectin-like proteins broadly conserved across the phylum. These proteins form syntenic clusters arising from tandem duplications in several microsporidian genomes and may represent a novel family of conserved effector proteins. These computational and experimental analyses establish S. lophii as an attractive model system for understanding the evolution of host-parasite interactions in microsporidia and suggest an important role for lineage-specific innovations and fast evolving proteins in the evolution of the parasitic microsporidian lifecycle. PMID:23990793

  3. Parasites in marine food webs

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2013-01-01

    Most species interactions probably involve parasites. This review considers the extent to which marine ecologists should consider parasites to fully understand marine communities. Parasites are influential parts of food webs in estuaries, temperate reefs, and coral reefs, but their ecological importance is seldom recognized. Though difficult to observe, parasites can have substantial biomass, and they can be just as common as free-living consumers after controlling for body mass and trophic level. Parasites have direct impacts on the energetics of their hosts and some affect host behaviors, with ecosystem-level consequences. Although they cause disease, parasites are sensitive components of ecosystems. In particular, they suffer secondary extinctions due to biodiversity loss. Some parasites can also return to a system after habitat restoration. For these reasons, parasites can make good indicators of ecosystem integrity. Fishing can indirectly increase or decrease parasite populations and the effects of climate change on parasites are likely to be equally as complex.

  4. Emphasizing the ecology in parasite community ecology

    E-print Network

    Pedersen, Amy B.

    Emphasizing the ecology in parasite community ecology Amy B. Pedersen1 and Andy Fenton2 1 Institute of parasites. However, the significance of interactions between species and the processes that shape within-host parasite communities remain unclear. Studies of parasite community ecology are often descriptive, focusing

  5. Parasite invasion following host reintroduction: a case of Yellowstone’s wolves

    USGS Publications Warehouse

    Cross, Paul C.; Almberg, Emily S.; Dobson, Andrew P.; Smith, Douglas W.; Hudson, Peter J.

    2012-01-01

    Wildlife reintroductions select or treat individuals for good health with the expectation that these individuals will fare better than infected animals. However, these individuals, new to their environment, may also be particularly susceptible to circulating infections and this may result in high morbidity and mortality, potentially jeopardizing the goals of recovery. Here, using the reintroduction of the grey wolf (Canis lupus) into Yellowstone National Park as a case study, we address the question of how parasites invade a reintroduced population and consider the impact of these invasions on population performance. We find that several viral parasites rapidly invaded the population inside the park, likely via spillover from resident canid species, and we contrast these with the slower invasion of sarcoptic mange, caused by the mite Sarcoptes scabiei. The spatio-temporal patterns of mange invasion were largely consistent with patterns of host connectivity and density, and we demonstrate that the area of highest resource quality, supporting the greatest density of wolves, is also the region that appears most susceptible to repeated disease invasion and parasite-induced declines. The success of wolf reintroduction appears not to have been jeopardized by infectious disease, but now shows signs of regulation or limitation modulated by parasites.

  6. Lethal interactions between parasites and prey increase niche diversity in a tropical community.

    PubMed

    Condon, Marty A; Scheffer, Sonja J; Lewis, Matthew L; Wharton, Robert; Adams, Dean C; Forbes, Andrew A

    2014-03-14

    Ecological specialization should minimize niche overlap, yet herbivorous neotropical flies (Blepharoneura) and their lethal parasitic wasps (parasitoids) exhibit both extreme specialization and apparent niche overlap in host plants. From just two plant species at one site in Peru, we collected 3636 flowers yielding 1478 fly pupae representing 14 Blepharoneura fly species, 18 parasitoid species (14 Bellopius species), and parasitoid-host associations, all discovered through analysis of molecular data. Multiple sympatric species specialize on the same sex flowers of the same fly host-plant species-which suggests extreme niche overlap; however, niche partitioning was exposed by interactions between wasps and flies. Most Bellopius species emerged as adults from only one fly species, yet evidence from pupae (preadult emergence samples) show that most Bellopius also attacked additional fly species but never emerged as adults from those flies. PMID:24626926

  7. Nematomorph parasites indirectly alter the food web and ecosystem function of streams through behavioural manipulation of their cricket hosts.

    USGS Publications Warehouse

    Sato, T.; Egusa, T.; Fukushima, K.; Oda, T.; Ohte, N.; Tokuchi, Naoko; Watanabe, Katsutoshi; Kanaiwa, Minoru; Murakami, Isaya; Lafferty, Kevin D.

    2012-01-01

    Nematomorph parasites manipulate crickets to enter streams where the parasites reproduce. These manipulated crickets become a substantial food subsidy for stream fishes. We used a field experiment to investigate how this subsidy affects the stream community and ecosystem function. When crickets were available, predatory fish ate fewer benthic invertebrates. The resulting release of the benthic invertebrate community from fish predation indirectly decreased the biomass of benthic algae and slightly increased leaf break-down rate. This is the first experimental demonstration that host manipulation by a parasite can reorganise a community and alter ecosystem function. Nematomorphs are common, and many other parasites have dramatic effects on host phenotypes, suggesting that similar effects of parasites on ecosystems might be widespread.

  8. The IL-12 Response of Primary Human Dendritic Cells and Monocytes to Toxoplasma gondii Is Stimulated by Phagocytosis of Live Parasites Rather Than Host Cell Invasion.

    PubMed

    Tosh, Kevin W; Mittereder, Lara; Bonne-Annee, Sandra; Hieny, Sara; Nutman, Thomas B; Singer, Steven M; Sher, Alan; Jankovic, Dragana

    2016-01-01

    As a major natural host for Toxoplasma gondii, the mouse is widely used for the study of the immune response to this medically important protozoan parasite. However, murine innate recognition of toxoplasma depends on the interaction of parasite profilin with TLR11 and TLR12, two receptors that are functionally absent in humans. This raises the question of how human cells detect and respond to T. gondii. In this study, we show that primary monocytes and dendritic cells from peripheral blood of healthy donors produce IL-12 and other proinflammatory cytokines when exposed to toxoplasma tachyzoites. Cell fractionation studies determined that IL-12 and TNF-? secretion is limited to CD16(+) monocytes and the CD1c(+) subset of dendritic cells. In direct contrast to their murine counterparts, human myeloid cells fail to respond to soluble tachyzoite extracts and instead require contact with live parasites. Importantly, we found that tachyzoite phagocytosis, but not host cell invasion, is required for cytokine induction. Together these findings identify CD16(+) monocytes and CD1c(+) dendritic cells as the major myeloid subsets in human blood-producing innate cytokines in response to T. gondii and demonstrate an unappreciated requirement for phagocytosis of live parasites in that process. This form of pathogen sensing is distinct from that used by mice, possibly reflecting a direct involvement of rodents and not humans in the parasite life cycle. PMID:26597011

  9. The consequences of parasitic infection for the behavior of the mammalian host.

    PubMed Central

    Donovick, P J; Burright, R G

    1987-01-01

    As many as one billion people may be infected with animal parasites. The behavioral consequences of such infection, or of illness in general, is poorly understood. This issue is discussed using as an example infection of mice with Toxocara canis, the common roundworm of dogs. Current literature suggests that two-thirds of all dogs have been infected with this parasite, and 7% of all humans have antibodies to T. canis. T. canis completes its life cycle in dogs, but when it infects aberrant mammalian hosts (e.g., humans or mice), larvae migrate through various organ systems including the brain, where they can remain viable and mobile for extended periods of time. Changes in motor activity, sensory reactivity, and learning of mice infected with T. canis have been observed. The pattern of behavioral changes is influenced by the infection regime and exposure to other toxicants such as lead. PMID:3665867

  10. Interactions among virulence, coinfection and drug resistance in a complex life-cycle parasite

    E-print Network

    Feng, Zhilan

    Interactions among virulence, coinfection and drug resistance in a complex life-cycle parasite January 2012 Accepted 29 March 2012 Available online 8 April 2012 Keywords: Schistosomiasis Parasite by multiple parasite strains on the evolution of parasites' drug resistance. Through the examination

  11. Evidence that microgynes of Myrmica rubra ants are social parasites that attack old host colonies.

    PubMed

    Schär, S; Nash, D R

    2014-11-01

    Ant microgynes are miniaturized queen forms found together with normal queens (macrogynes) in species occurring across the ant phylogeny. Their role is not yet fully understood: in some cases, they seem to be nonparasitic alternative reproductive morphs, in others incipient social parasites, and thus potential models for studying the evolution of social parasitism. Whether they are regarded as parasitic or not has traditionally been based on genetic differentiation from syntopic macrogynes and/or the queen/worker ratio of their offspring rather than measuring fitness traits. We confirmed previously reported genetic differentiation between microgynes and macrogynes of Myrmica rubra in a population studied for the first time. Further, we measured virulence and infectivity of M. rubra microgynes in a controlled laboratory experiment. Nests headed only by macrogynes (controls), only by microgynes, and naturally and artificially mixed nests were kept under identical conditions. We found reduction in worker numbers of both naturally and artificially mixed macrogyne/microgyne nests compared with controls, and strong reduction but also surprising variation in fitness of nests headed only by microgynes. Microgyne nests produced workers, males and microgynes. Microgynes did not themselves reproduce in artificially mixed nests, but reproduced most in naturally mixed nests that had lost their macrogyne queen. This, together with higher mortality of field-collected macrogyne queens from naturally infested colonies and greater estimated relative age of macrogyne queens in naturally infected nests, suggests that they preferentially exploit older host colonies. We conclude that M. rubra microgynes are intraspecific social parasites specialized on exploiting old host colonies. PMID:25226873

  12. vol. 168, no. 5 the american naturalist november 2006 Host-Parasite Coevolution and Selection on Sex

    E-print Network

    Otto, Sarah

    vol. 168, no. 5 the american naturalist november 2006 Host-Parasite Coevolution and Selection and that sex allows hosts to change genotypes rapidly so that they can remain a step ahead of their relentless, these models do not address more subtle changes in the mode of reproduction. For example, rather than

  13. Host-parasite relationship between colonial terns and bacteria is modified by a mutualism with a plant with antibacterial defenses.

    PubMed

    Møller, Anders Pape; Flensted-Jensen, Einar; Mardal, Willy; Soler, J J

    2013-09-01

    Predator-prey and host-parasite interactions and mutualisms are common and may have profound effects on ecosystems. Here we analyze the parasitic and mutualistic associations between three groups of organisms: the plant Artemisia maritima, bacteria, and a colonial seabird (the sandwich tern Sterna sandvicensis) that breeds in dense colonies covered in feces produced by both adults and chicks. A disproportionately large fraction of colonies of the sandwich tern in Denmark were located in patches covered by A. maritima. This association was specific for the densely colonial sandwich tern, but was not present for four other sympatric species of terns that breed in much less dense colonies. A. maritima reduced the abundance of pathogenic Staphylococcus on chicken eggshells in a field experiment. Recruitment by sandwich terns breeding in patches of A. maritima was 18 % higher than for sandwich terns breeding in the absence of A. maritima. A. maritima benefitted from the association with sandwich terns due to the supply of nutrients from feces and uneaten food lost by young. These findings are consistent with sandwich terns exploiting the association with A. maritima and its antimicrobial properties to improve their reproductive success, while sandwich terns and A. maritima are involved in a mutualistic interaction. PMID:23404068

  14. Cell wall composition profiling of parasitic giant dodder (Cuscuta reflexa) and its hosts: a priori differences and induced changes.

    PubMed

    Johnsen, Hanne R; Striberny, Bernd; Olsen, Stian; Vidal-Melgosa, Silvia; Fangel, Jonatan U; Willats, William G T; Rose, Jocelyn K C; Krause, Kirsten

    2015-08-01

    Host plant penetration is the gateway to survival for holoparasitic Cuscuta and requires host cell wall degradation. Compositional differences of cell walls may explain why some hosts are amenable to such degradation while others can resist infection. Antibody-based techniques for comprehensive profiling of cell wall epitopes and cell wall-modifying enzymes were applied to several susceptible hosts and a resistant host of Cuscuta reflexa and to the parasite itself. Infected tissue of Pelargonium zonale contained high concentrations of de-esterified homogalacturonans in the cell walls, particularly adjacent to the parasite's haustoria. High pectinolytic activity in haustorial extracts and high expression levels of pectate lyase genes suggest that the parasite contributes directly to wall remodeling. Mannan and xylan concentrations were low in P. zonale and in five susceptible tomato introgression lines, but high in the resistant Solanum lycopersicum cv M82, and in C. reflexa itself. Knowledge of the composition of resistant host cell walls and the parasite's own cell walls is useful in developing strategies to prevent infection by parasitic plants. PMID:25808919

  15. Parasitic nematodes modulate the expression of IL-17-associated genes through host type 2 immunity-dependent inhibition of segmented filamentous bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immune modulation by helminth (worm) parasites could protect the host against autoimmune diseases. We report that the parasitic nematode Nippostrongylus brasiliensis induces changes in the expression of antimicrobial peptides that are associated with marked microbial composition shifts, including re...

  16. Host-pathogen interaction during bacterial vaccination.

    PubMed

    Barnett, Timothy C; Lim, Jin Yan; Soderholm, Amelia T; Rivera-Hernandez, Tania; West, Nicholas P; Walker, Mark J

    2015-10-01

    Vaccines have been developed and deployed against several important bacterial pathogens of humans, including Neisseria meningitidis, Bordetella pertussis, Streptococcus pneumoniae and Mycobacterium tuberculosis. These vaccines are generally considered a successful public health measure and are effective at controlling disease symptoms and/or burden. However, a troubling consequence of recent vaccination programs has been the selection of vaccine escape mutants, whereby the pathogen displays a different repertoire of immune targets than those represented in the vaccine formulation. To address these issues of antigenic variation and bacterial evolution, continued and sustained efforts in epidemiological surveillance, vaccine development/formulation research, and understanding of the host-pathogen interaction are required. PMID:25966310

  17. Sphingolipids in parasitic protozoa

    PubMed Central

    Zhang, Kai; Bangs, James D.; Beverley, Stephen M.

    2009-01-01

    The surface of most protozoan parasites relies heavily upon lipid-anchored molecules, to form protective barriers and play critical functions required for infectivity. Sphingolipids (SLs) play important roles through their abundance and involvement in membrane microdomain formation, as well as serving as the lipid anchor for many of these molecules, and in some but possibly not all species, as important signaling molecules. Interactions of parasite sphingolipid metabolism with that of the host may potentially contribute to parasite survival and/or host defense. In this chapter we summarize current knowledge of SL structure, synthesis and function in several of the major parasitic protozoan groups. PMID:20919659

  18. Citrus tristeza virus-host interactions

    PubMed Central

    Dawson, W. O.; Garnsey, S. M.; Tatineni, S.; Folimonova, S. Y.; Harper, S. J.; Gowda, S.

    2013-01-01

    Citrus tristeza virus (CTV) is a phloem-limited virus whose natural host range is restricted to citrus and related species. Although the virus has killed millions of trees, almost destroying whole industries, and continually limits production in many citrus growing areas, most isolates are mild or symptomless in most of their host range. There is little understanding of how the virus causes severe disease in some citrus and none in others. Movement and distribution of CTV differs considerably from that of well-studied viruses of herbaceous plants where movement occurs largely through adjacent cells. In contrast, CTV systemically infects plants mainly by long-distance movement with only limited cell-to-cell movement. The virus is transported through sieve elements and occasionally enters an adjacent companion or phloem parenchyma cell where virus replication occurs. In some plants this is followed by cell-to-cell movement into only a small cluster of adjacent cells, while in others there is no cell-to-cell movement. Different proportions of cells adjacent to sieve elements become infected in different plant species. This appears to be related to how well viral gene products interact with specific hosts. CTV has three genes (p33, p18, and p13) that are not necessary for infection of most of its hosts, but are needed in different combinations for infection of certain citrus species. These genes apparently were acquired by the virus to extend its host range. Some specific viral gene products have been implicated in symptom induction. Remarkably, the deletion of these genes from the virus genome can induce large increases in stem pitting (SP) symptoms. The p23 gene, which is a suppressor of RNA silencing and a regulator of viral RNA synthesis, has been shown to be the cause of seedling yellows (SY) symptoms in sour orange. Most isolates of CTV in nature are populations of different strains of CTV. The next frontier of CTV biology is the understanding how the virus variants in those mixtures interact with each other and cause diseases. PMID:23717303

  19. Citrus tristeza virus-host interactions.

    PubMed

    Dawson, W O; Garnsey, S M; Tatineni, S; Folimonova, S Y; Harper, S J; Gowda, S

    2013-01-01

    Citrus tristeza virus (CTV) is a phloem-limited virus whose natural host range is restricted to citrus and related species. Although the virus has killed millions of trees, almost destroying whole industries, and continually limits production in many citrus growing areas, most isolates are mild or symptomless in most of their host range. There is little understanding of how the virus causes severe disease in some citrus and none in others. Movement and distribution of CTV differs considerably from that of well-studied viruses of herbaceous plants where movement occurs largely through adjacent cells. In contrast, CTV systemically infects plants mainly by long-distance movement with only limited cell-to-cell movement. The virus is transported through sieve elements and occasionally enters an adjacent companion or phloem parenchyma cell where virus replication occurs. In some plants this is followed by cell-to-cell movement into only a small cluster of adjacent cells, while in others there is no cell-to-cell movement. Different proportions of cells adjacent to sieve elements become infected in different plant species. This appears to be related to how well viral gene products interact with specific hosts. CTV has three genes (p33, p18, and p13) that are not necessary for infection of most of its hosts, but are needed in different combinations for infection of certain citrus species. These genes apparently were acquired by the virus to extend its host range. Some specific viral gene products have been implicated in symptom induction. Remarkably, the deletion of these genes from the virus genome can induce large increases in stem pitting (SP) symptoms. The p23 gene, which is a suppressor of RNA silencing and a regulator of viral RNA synthesis, has been shown to be the cause of seedling yellows (SY) symptoms in sour orange. Most isolates of CTV in nature are populations of different strains of CTV. The next frontier of CTV biology is the understanding how the virus variants in those mixtures interact with each other and cause diseases. PMID:23717303

  20. Host-pathogen interaction in invasive Salmonellosis.

    PubMed

    de Jong, Hanna K; Parry, Chris M; van der Poll, Tom; Wiersinga, W Joost

    2012-01-01

    Salmonella enterica infections result in diverse clinical manifestations. Typhoid fever, caused by S. enterica serovar Typhi (S. Typhi) and S. Paratyphi A, is a bacteremic illness but whose clinical features differ from other Gram-negative bacteremias. Non-typhoidal Salmonella (NTS) serovars cause self-limiting diarrhea with occasional secondary bacteremia. Primary NTS bacteremia can occur in the immunocompromised host and infants in sub-Saharan Africa. Recent studies on host-pathogen interactions in Salmonellosis using genome sequencing, murine models, and patient studies have provided new insights. The full genome sequences of numerous S. enterica serovars have been determined. The S. Typhi genome, compared to that of S. Typhimurium, harbors many inactivated or disrupted genes. This can partly explain the different immune responses both serovars induce upon entering their host. Similar genome degradation is also observed in the ST313 S. Typhimurium strain implicated in invasive infection in sub-Saharan Africa. Virulence factors, most notably, type III secretion systems, Vi antigen, lipopolysaccharide and other surface polysaccharides, flagella, and various factors essential for the intracellular life cycle of S. enterica have been characterized. Genes for these factors are commonly carried on Salmonella Pathogenicity Islands (SPIs). Plasmids also carry putative virulence-associated genes as well as those responsible for antimicrobial resistance. The interaction of Salmonella pathogen-associated molecular patterns (PAMPs) with Toll-like receptors (TLRs) and NOD-like receptors (NLRs) leads to inflammasome formation, activation, and recruitment of neutrophils and macrophages and the production of pro-inflammatory cytokines, most notably interleukin (IL)-6, IL-1?, tumor necrosis factor (TNF)-?, and interferon-gamma (IFN)-?. The gut microbiome may be an important modulator of this immune response. S. Typhimurium usually causes a local intestinal immune response, whereas S. Typhi, by preventing neutrophil attraction resulting from activation of TLRs, evades the local response and causes systemic infection. Potential new therapeutic strategies may lead from an increased understanding of infection pathogenesis. PMID:23055923

  1. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Siano, R.; Alves-de-Souza, C.; Foulon, E.; Bendif, El M.; Simon, N.; Guillou, L.; Not, F.

    2010-10-01

    Sequences affiliated to Syndiniales (Marine alveolate, MALV) regularly dominate 18S rDNA genetic libraries of nearly all marine ecosystems investigated so far. Among them, Amoebophryidae (MALV group II) is composed of numerous and genetically distant environmental sequences, where Amoebophrya is the only known and formally described genus. Amoebophrya species include virulent pathogens for a wide range of dinoflagellate species. Beside their regular occurrence in marine ecosystems, their quantitative distribution and the environmental factors triggering host infection have barely been studied in open oligotrophic waters. In order to understand the functional role of these parasites in natural environments, we studied the distribution and contribution to the eukaryotic community of the small free-living stage of Amoebophryidae (the dinospores) along a transect in the Mediterranean Sea, as well as their host diversity at three oligotrophic stations. Dinospores were more abundant at a coastal station (max. 1.5 × 103 cells ml-1) than in oligotrophic waters (max. 51 ± 16.3 cells ml-1), where they represented 10.3 to 34.9% of the total eukaryotic community at 40 and 30 m depth, respectively and 21.2% on average along the water column. Positive correlation was found between dinospore occurrence and higher concentration of NO3 + NO2 at the coastal station. At selected stations, out of 38 different dinoflagellates taxa identified, 15 were infected, among which a majority were not recognized as Amoebophryidae host so far. Prevalences (percentage of infected cells) generally varied between 2% and 10%, with a notable exception for Blepharocysta paulsenii for which 25% of cells were infected at the station C. The present study shows that dinospores are able to thrive, infects and most probably exert a control on host populations both in coastal and ultra-oligotrophic open waters. Our results emphasize the role of parasitism in microbial food web dynamics and ultimately on biogeochemical cycles.

  2. Experimental Shifts in Intraclutch Egg Color Variation Do Not Affect Egg Rejection in a Host of a Non-Egg-Mimetic Avian Brood Parasite

    PubMed Central

    Croston, Rebecca; Hauber, Mark E.

    2015-01-01

    Avian brood parasites lay their eggs in the nests of other birds, and impose the costs associated with rearing parasitic young onto these hosts. Many hosts of brood parasites defend against parasitism by removing foreign eggs from the nest. In systems where parasitic eggs mimic host eggs in coloration and patterning, extensive intraclutch variation in egg appearances may impair the host’s ability to recognize and reject parasitic eggs, but experimental investigation of this effect has produced conflicting results. The cognitive mechanism by which hosts recognize parasitic eggs may vary across brood parasite hosts, and this may explain variation in experimental outcome across studies investigating egg rejection in hosts of egg-mimicking brood parasites. In contrast, for hosts of non-egg-mimetic parasites, intraclutch egg color variation is not predicted to co-vary with foreign egg rejection, irrespective of cognitive mechanism. Here we tested for effects of intraclutch egg color variation in a host of nonmimetic brood parasite by manipulating egg color in American robins (Turdus migratorius), hosts of brown-headed cowbirds (Molothrus ater). We recorded robins’ behavioral responses to simulated cowbird parasitism in nests where color variation was artificially enhanced or reduced. We also quantified egg color variation within and between unmanipulated robin clutches as perceived by robins themselves using spectrophotometric measures and avian visual modeling. In unmanipulated nests, egg color varied more between than within robin clutches. As predicted, however, manipulation of color variation did not affect rejection rates. Overall, our results best support the scenario wherein egg rejection is the outcome of selective pressure by a nonmimetic brood parasite, because robins are efficient rejecters of foreign eggs, irrespective of the color variation within their own clutch. PMID:25831051

  3. Interactions between parasitic infections and reproductive efficiency in sheep.

    PubMed

    Fthenakis, G C; Mavrogianni, V S; Gallidis, E; Papadopoulos, E

    2015-02-28

    This review article summarises the many reports in the literature, confirming that, in sheep, parasitic infections can adversely affect reproductive efficiency; examples, which refer to all parts of the reproductive cycle of sheep, are as follows: trichostrongylosis in ewe-lambs (which can lead to delayed attainment of puberty), myiosis of the prepuce (which can cause impediment of mating), chorioptic mange or trypanosomosis in rams (which can lead to testicular degeneration or azoospermia, respectively), trypanosomosis or sarcoptic mange in pre-conceptual ewes (which can lead to poor conception rates or reduced number of ovulations, respectively), toxoplasmosis or neosporosis in pregnant ewes (which are causes of abortion), trichostrongylosis or trematode infections in lactating ewes (which can cause reduction of milk yield and can be a risk factor for mastitis, respectively), cryptosporidiosis in newborn lambs (which can be a cause of deaths), coccidiosis in growing pre-weaned lambs (which can cause suboptimal growth rate). In other cases, the reproductive status of the animal can influence the parasitic infection; examples are as follows: the increase in faecal parasitic output during the peri-parturient period (as a consequence of the peri-parturient relaxation of immunity), the heavier trichostrongylid infections of twin lambs compared to lambs from single parities (as a consequence of developmental origin issues in twin lambs). All the above examples support the idea of presence of interactions between parasitic infections and reproductive efficiency in sheep. PMID:25577675

  4. Posthodiplostomum cuticola (Digenea: Diplostomatidae) in intermediate fish hosts: factors contributing to the parasite infection and prey selection by the definitive bird host.

    PubMed

    Ondracková, M; Simková, A; Gelnar, M; Jurajda, P

    2004-12-01

    Infection parameters of Posthodiplostomum cuticola, a digenean parasite with a complex life-cycle, were investigated in fish (the second intermediate host) from 6 floodplain water bodies over 2 years. A broad range of factors related to abiotic characteristics of localities, density of the first intermediate (planorbid snails) and definitive (wading birds) hosts and fish community structure were tested for their effects on P. cuticola infection in juvenile and adult fish. Characters of the littoral zone and flood duration were found to be important factors for the presence of the first intermediate and definitive hosts. Visitation time of definitive bird hosts was also related to adult fish host density. Localities with P. cuticola infected fish were visited by a higher number of bird species. Infection of P. cuticola in fish and similarities in infection among fish host assemblages were correlated with fish host density and fish species composition. Parasite infection in both adult and juvenile fishes was associated with the slope of the bank and the bottom type, in particular in juvenile fish assemblages with snail host density. We conclude that habitat characteristics, snail host density and fish community structure contribute significantly to P. cuticola infection in fish hosts. PMID:15648699

  5. Helminth parasite species richness in rodents from Southeast Asia: role of host species and habitat.

    PubMed

    Palmeirim, Marta; Bordes, Frédéric; Chaisiri, Kittipong; Siribat, Praphaiphat; Ribas, Alexis; Morand, Serge

    2014-10-01

    Southeast Asia is a biodiversity hotspot that harbours many species of rodents, including some that live in close contact with humans. They host helminth parasites, some of which are of zoonotic importance. It is therefore important to understand the factors that influence the richness of the helminths parasitizing rodents. The specific objectives of this study were to evaluate rodent species as a factor determining helminth richness in rodent assemblages, to identify the major rodent helminth reservoir species and to explore the influence of habitat on helminth richness. We estimated helminth species richness using a large dataset of 18 rodent species (1,651 individuals) originating from Southeast Asia and screened for helminth parasites. The use of an unbiased estimator shows that the helminth species richness varies substantially among rodent species and across habitats. We confirmed this pattern by investigating the number of helminth species per individual rodent in all rodent species, and specifically in the two mitochondrial lineages Rattus tanezumi and R. tanezumi R3, which were captured in all habitats. PMID:25082015

  6. Conditional Degradation of Plasmodium Calcineurin Reveals Functions in Parasite Colonization of both Host and Vector

    PubMed Central

    Philip, Nisha; Waters, Andrew P.

    2015-01-01

    Summary Functional analysis of essential genes in the malarial parasite, Plasmodium, is hindered by lack of efficient strategies for conditional protein regulation. We report the development of a rapid, specific, and inducible chemical-genetic tool in the rodent malaria parasite, P. berghei, in which endogenous proteins engineered to contain the auxin-inducible degron (AID) are selectively degraded upon adding auxin. Application of AID to the calcium-regulated protein phosphatase, calcineurin, revealed functions in host and vector stages of parasite development. Whereas depletion of calcineurin in late-stage schizonts demonstrated its critical role in erythrocyte attachment and invasion in vivo, stage-specific depletion uncovered roles in gamete development, fertilization, and ookinete-to-oocyst and sporozoite-to-liver stage transitions. Furthermore, AID technology facilitated concurrent generation and phenotyping of transgenic lines, allowing multiple lines to be assessed simultaneously with significant reductions in animal use. This study highlights the broad applicability of AID for functional analysis of proteins across the Plasmodium life cycle. PMID:26118994

  7. Conditional Degradation of Plasmodium Calcineurin Reveals Functions in Parasite Colonization of both Host and Vector.

    PubMed

    Philip, Nisha; Waters, Andrew P

    2015-07-01

    Functional analysis of essential genes in the malarial parasite, Plasmodium, is hindered by lack of efficient strategies for conditional protein regulation. We report the development of a rapid, specific, and inducible chemical-genetic tool in the rodent malaria parasite, P. berghei, in which endogenous proteins engineered to contain the auxin-inducible degron (AID) are selectively degraded upon adding auxin. Application of AID to the calcium-regulated protein phosphatase, calcineurin, revealed functions in host and vector stages of parasite development. Whereas depletion of calcineurin in late-stage schizonts demonstrated its critical role in erythrocyte attachment and invasion in vivo, stage-specific depletion uncovered roles in gamete development, fertilization, and ookinete-to-oocyst and sporozoite-to-liver stage transitions. Furthermore, AID technology facilitated concurrent generation and phenotyping of transgenic lines, allowing multiple lines to be assessed simultaneously with significant reductions in animal use. This study highlights the broad applicability of AID for functional analysis of proteins across the Plasmodium life cycle. PMID:26118994

  8. Non-Specific Manipulation of Gammarid Behaviour by P. minutus Parasite Enhances Their Predation by Definitive Bird Hosts

    PubMed Central

    Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent

    2014-01-01

    Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a “collateral damage”, manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments. PMID:25000519

  9. Non-specific manipulation of gammarid behaviour by P. minutus parasite enhances their predation by definitive bird hosts.

    PubMed

    Jacquin, Lisa; Mori, Quentin; Pause, Mickaël; Steffen, Mélanie; Medoc, Vincent

    2014-01-01

    Trophically-transmitted parasites often change the phenotype of their intermediate hosts in ways that increase their vulnerability to definitive hosts, hence favouring transmission. As a "collateral damage", manipulated hosts can also become easy prey for non-host predators that are dead ends for the parasite, and which are supposed to play no role in transmission strategies. Interestingly, infection with the acanthocephalan parasite Polymorphus minutus has been shown to reduce the vulnerability of its gammarid intermediate hosts to non-host predators, whose presence triggered the behavioural alterations expected to favour trophic transmission to bird definitive hosts. Whilst the behavioural response of infected gammarids to the presence of definitive hosts remains to be investigated, this suggests that trophic transmission might be promoted by non-host predation risk. We conducted microcosm experiments to test whether the behaviour of P. minutus-infected gammarids was specific to the type of predator (i.e. mallard as definitive host and fish as non-host), and mesocosm experiments to test whether trophic transmission to bird hosts was influenced by non-host predation risk. Based on the behaviours we investigated (predator avoidance, activity, geotaxis, conspecific attraction), we found no evidence for a specific fine-tuned response in infected gammarids, which behaved similarly whatever the type of predator (mallard or fish). During predation tests, fish predation risk did not influence the differential predation of mallards that over-consumed infected gammarids compared to uninfected individuals. Overall, our results bring support for a less sophisticated scenario of manipulation than previously expected, combining chronic behavioural alterations with phasic behavioural alterations triggered by the chemical and physical cues coming from any type of predator. Given the wide dispersal range of waterbirds (the definitive hosts of P. minutus), such a manipulation whose efficiency does not depend on the biotic context is likely to facilitate its trophic transmission in a wide range of aquatic environments. PMID:25000519

  10. Telomere dynamics in parasitic great spotted cuckoos and their magpie hosts.

    PubMed

    Soler, J J; Ruiz Castellano, C; Martínez-de la Puente, J; Tomás, G; Ruiz-Rodríguez, M; Figuerola, J

    2015-09-01

    Although little is known on the impact of environment on telomere length dynamics, it has been suggested to be affected by stress, lifestyle and/or life-history strategies of animals. We here compared telomere dynamics in erythrocytes of hatchlings and fledglings of the brood parasite great spotted cuckoos (Clamator glandarius) and of magpies (Pica pica), their main host in Europe. In magpie chicks, telomere length decreased from hatching to fledging, whereas no significant change in telomere length of great spotted cuckoo chicks was found. Moreover, we found interspecific differences in the association between laying date and telomere shortening. Interspecific differences in telomere shortening were interpreted as a consequence of differences in lifestyle and life-history characteristics of magpies and great spotted cuckoos. In comparison with magpies, cuckoos experience reduced sibling competition and higher access to resources and, consequently, lower stressful environmental conditions during the nestling phase. These characteristics also explain the associations between telomere attrition and environmental conditions (i.e. laying date) for magpies and the absence of association for great spotted cuckoos. These results therefore fit expectations on telomere dynamics derived from interspecific differences in lifestyle and life history of brood parasites and their bird hosts. PMID:26109322

  11. Cellulose Binding Protein from the Parasitic Nematode Heterodera schachtii Interacts with Arabidopsis Pectin

    E-print Network

    Hussey, Richard S.

    Cellulose Binding Protein from the Parasitic Nematode Heterodera schachtii Interacts State University, Raleigh, North Carolina 27695 Plant­parasitic cyst nematodes secrete a complex of cell interacts with PME3 thereby activating and potentially targeting this enzyme to aid cyst nematode parasitism

  12. Interaction of Plasmodium vivax Tryptophan-rich Antigen PvTRAg38 with Band 3 on Human Erythrocyte Surface Facilitates Parasite Growth.

    PubMed

    Alam, Mohd Shoeb; Choudhary, Vandana; Zeeshan, Mohammad; Tyagi, Rupesh K; Rathore, Sumit; Sharma, Yagya D

    2015-08-14

    Plasmodium tryptophan-rich proteins are involved in host-parasite interaction and thus potential drug/vaccine targets. Recently, we have described several P. vivax tryptophan-rich antigens (PvTRAgs), including merozoite expressed PvTRAg38, from this noncultivable human malaria parasite. PvTRAg38 is highly immunogenic in humans and binds to host erythrocytes, and this binding is inhibited by the patient sera. This binding is also affected if host erythrocytes were pretreated with chymotrypsin. Here, Band 3 has been identified as the chymotrypsin-sensitive erythrocyte receptor for this parasite protein. Interaction of PvTRAg38 with Band 3 has been mapped to its three different ectodomains (loops 1, 3, and 6) exposed at the surface of the erythrocyte. The binding region of PvTRAg38 to Band3 has been mapped to its sequence, KWVQWKNDKIRSWLSSEW, present at amino acid positions 197-214. The recombinant PvTRAg38 was able to inhibit the parasite growth in in vitro Plasmodium falciparum culture probably by competing with the ligand(s) of this heterologous parasite for the erythrocyte Band 3 receptor. In conclusion, the host-parasite interaction at the molecular level is much more complicated than known so far and should be considered during the development of anti-malarial therapeutics. PMID:26149684

  13. Host Plant Associations and Parasitism of South Ecuadorian Eois Species (Lepidoptera: Geometridae) Feeding on Peperomia (Piperaceae)

    PubMed Central

    Seifert, Carlo L.; Bodner, Florian; Brehm, Gunnar; Fiedler, Konrad

    2015-01-01

    The very species-rich tropical moth genus Eois Hübner (Lepidoptera: Geometridae) is a promising model group for studying host plant specialization and adaptive radiation. While most Eois species are assumed to be specialized herbivores on Piper L. species, records on other plant taxa such as Peperomia Ruiz & Pavón (Piperaceae) are still relatively scarce. Moreover, little is known about life history traits of most species, and only a few caterpillars have been described so far. We collected caterpillars associated with Peperomia (Piperaceae) host plants from June 2012 to January 2013 in three elevational bands of montane and elfin rainforests on the eastern slopes of the Andes in southern Ecuador. Caterpillars were systematically searched and reared to the adult stage. We were able to delimitate ten species of Eois on Peperomia by comparison of larval and adult morphology and by using 658 bp fragments of the mitochondrial COI gene (barcode sequences). Three of these species, Eois albosignata (Dognin), Eois bolana (Dognin), and Eois chasca (Dognin), are validly described whereas the other seven taxa represent interim morphospecies, recognized unequivocally by their DNA barcodes, and their larval and adult morphology. We provide information about their host plants, degree of parasitism, and describe the larval stages in their last instar. Additionally, caterpillars and moths are illustrated in color plates. This is the first comparative study dealing with Eois moths whose caterpillars feed on Peperomia hosts. PMID:26286230

  14. Host Plant Associations and Parasitism of South Ecuadorian Eois Species (Lepidoptera: Geometridae) Feeding on Peperomia (Piperaceae).

    PubMed

    Seifert, Carlo L; Bodner, Florian; Brehm, Gunnar; Fiedler, Konrad

    2015-01-01

    The very species-rich tropical moth genus Eois Hübner (Lepidoptera: Geometridae) is a promising model group for studying host plant specialization and adaptive radiation. While most Eois species are assumed to be specialized herbivores on Piper L. species, records on other plant taxa such as Peperomia Ruiz & Pavón (Piperaceae) are still relatively scarce. Moreover, little is known about life history traits of most species, and only a few caterpillars have been described so far. We collected caterpillars associated with Peperomia (Piperaceae) host plants from June 2012 to January 2013 in three elevational bands of montane and elfin rainforests on the eastern slopes of the Andes in southern Ecuador. Caterpillars were systematically searched and reared to the adult stage. We were able to delimitate ten species of Eois on Peperomia by comparison of larval and adult morphology and by using 658 bp fragments of the mitochondrial COI gene (barcode sequences). Three of these species, Eois albosignata (Dognin), Eois bolana (Dognin), and Eois chasca (Dognin), are validly described whereas the other seven taxa represent interim morphospecies, recognized unequivocally by their DNA barcodes, and their larval and adult morphology. We provide information about their host plants, degree of parasitism, and describe the larval stages in their last instar. Additionally, caterpillars and moths are illustrated in color plates. This is the first comparative study dealing with Eois moths whose caterpillars feed on Peperomia hosts. PMID:26286230

  15. Fungal symbiosis from mutualism to parasitism: Who controls the outcome, host or invader?

    USGS Publications Warehouse

    Redman, R.S.; Dunigan, D.D.; Rodriguez, R.J.

    2001-01-01

    Plant symbiotic fungi are generally thought to express a single lifestyle that might increase (mutualism), decrease (parasitism), or have no influence (commensalism) on host fitness. However, data are presented here demonstrating that plant pathogenic Colletotrichum species are able to asymptomatically colonize plants and express nonpathogenic lifestyles. Experiments were conducted in growth chambers and plant colonization was assessed by emergence of fungi from surface sterilized plant tissues. Expression of symbiotic lifestyles was assessed by monitoring the ability of fungi to confer disease resistance, drought tolerance and growth enhancement. Several pathogenic Colletotrichum species expressed either mutualistic or commensal lifestyles in plants not known to be hosts. Mutualists conferred disease resistance, drought tolerance, and/or growth enhancement to host plants. Lifestyle-altered mutants expressing nonpathogenic lifestyles had greater host ranges than the parental wildtype isolate. Successive colonization studies indicated that the ability of a symbiont to colonize a plant was dependent on previous colonization events and the lifestyles expressed by the initial colonizing fungus. The results indicate that the outcome of symbiosis is controlled by the plant's physiology. ?? New Phytologist.

  16. Subversion Mechanisms by Which Leishmania Parasites Can Escape the Host Immune Response: a Signaling Point of View

    PubMed Central

    Olivier, Martin; Gregory, David J.; Forget, Geneviève

    2005-01-01

    The obligate intracellular parasite Leishmania must survive the antimicrobial activities of its host cell, the macrophage, and prevent activation of an effective immune response. In order to do this, it has developed numerous highly successful strategies for manipulating activities, including antigen presentation, nitric oxide and oxygen radical generation, and cytokine production. This is generally the result of interactions between Leishmania cell surface molecules, particularly gp63 and LPG, and less well identified macrophage surface receptors, causing the distortion of specific intracellular signaling cascades. We describe some of the signaling pathways and intermediates that are repressed in infected cells, including JAK/STAT, Ca2+-dependent protein kinase C (PKC) isoforms, and mitogen-activated protein kinases (especially ERK1/2), and proteasome-mediated transcription factor degradation. We also discuss protein tyrosine phosphatases (particularly SHP-1), intracellular Ca2+, Ca2+-independent PKC, ceramide, and the suppressors of cytokine signaling family of repressors, which are all reported to be activated following infection, and the role of parasite-secreted cysteine proteases. PMID:15831826

  17. Experimental shifts in intraclutch egg color variation do not affect egg rejection in a host of a non-egg-mimetic avian brood parasite.

    PubMed

    Croston, Rebecca; Hauber, Mark E

    2015-01-01

    Avian brood parasites lay their eggs in the nests of other birds, and impose the costs associated with rearing parasitic young onto these hosts. Many hosts of brood parasites defend against parasitism by removing foreign eggs from the nest. In systems where parasitic eggs mimic host eggs in coloration and patterning, extensive intraclutch variation in egg appearances may impair the host's ability to recognize and reject parasitic eggs, but experimental investigation of this effect has produced conflicting results. The cognitive mechanism by which hosts recognize parasitic eggs may vary across brood parasite hosts, and this may explain variation in experimental outcome across studies investigating egg rejection in hosts of egg-mimicking brood parasites. In contrast, for hosts of non-egg-mimetic parasites, intraclutch egg color variation is not predicted to co-vary with foreign egg rejection, irrespective of cognitive mechanism. Here we tested for effects of intraclutch egg color variation in a host of nonmimetic brood parasite by manipulating egg color in American robins (Turdus migratorius), hosts of brown-headed cowbirds (Molothrus ater). We recorded robins' behavioral responses to simulated cowbird parasitism in nests where color variation was artificially enhanced or reduced. We also quantified egg color variation within and between unmanipulated robin clutches as perceived by robins themselves using spectrophotometric measures and avian visual modeling. In unmanipulated nests, egg color varied more between than within robin clutches. As predicted, however, manipulation of color variation did not affect rejection rates. Overall, our results best support the scenario wherein egg rejection is the outcome of selective pressure by a nonmimetic brood parasite, because robins are efficient rejecters of foreign eggs, irrespective of the color variation within their own clutch. PMID:25831051

  18. Parasite Virulence 14Parasite Virulence

    E-print Network

    Schall, Joseph J.

    Parasite Virulence 14Parasite Virulence Jos J. Schall Department of Biology, University of Vermont, Burlington, VT 05405, USA The Problem Some parasites exact a terrible price from their hosts, causing severe pathology and reducing the host's fitness, whereas other parasites are essentially benign. Several kinds

  19. Nitrosative stress during infection-induced inflammation in fish: lessons from a host-parasite infection model.

    PubMed

    Wiegertjes, Geert F; Forlenza, Maria

    2010-01-01

    The inflammatory response should be considered a protective immune reaction of the host aimed at the removal of pathogens, sometimes irrespective of negative side-effects. In this review we discuss the differential contribution of macrophages and neutrophilic granulocytes to nitrosative stress in vivo and discuss how the timing and concentration of nitric oxide (NO·) are important factors determining the degree of nitrosative stress during parasite-induced inflammation. Infections of common carp (Cyprinus carpio) with the extracellular protozoan parasite Trypanoplasma borreli provide an excellent example of how adaptation and homeostasis are essential elements of the host-pathogen relationship. On the one hand, host-derived NO· interferes with clearance of IgM from the parasite surface and thus can be considered a protective immune reaction of the host. On the other hand, it is essential that the host limits the risks associated with the production of NO·, preventing suppressive effects on lymphocyte proliferation. We review, for both host and parasite, the role of oxygen and nitrogen radicals in the induction of nitrosative stress and the importance of antioxidant compounds for protection against these radicals. Finally, mediators of inflammation such as cytokines, chemokines or alarmins that are involved in the inflammatory response will be discussed in the context of the carp-T. borreli infection model. PMID:21184662

  20. Comparative reproductive biology of the social parasite Acromyrmex ameliae de Souza, Soares & Della Lucia and of its host Acromyrmex subterraneus subterraneus Forel (Hymenoptera: Formicidae).

    PubMed

    Soares, Ilka M F; Della Lucia, Terezinha M C; Pereira, Alice S; Serrão, José E; Ribeiro, Myriam M R; De Souza, Danival J

    2010-01-01

    Social parasites exhibit several characteristics that allow them to exploit their host species efficiently. The smaller size of parasite species is a trait commonly found in ants. In this work, we investigated several aspects of the reproductive biology of Acromyrmex ameliae De Souza, Soares & Della Lucia, a recently discovered parasite of Acromyrmex subterraneus subterraneus Forel. Sexuals of A. ameliae are substantially smaller than those from host species. Parasite queens laid significantly less worker eggs than host queens and inhibit sexual production of the host. The sex ratio of parasite species is highly female biased. Interestingly, we have observed parasite coupling on the laboratory, inside the nests and in the ground, opening the possibility to use controlled mating to study genetic approaches of parasitism in the ants. PMID:21120378

  1. The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies.

    PubMed

    Bächtold, Alexandra; Alves-Silva, Estevão; Kaminski, Lucas A; Del-Claro, Kleber

    2014-11-01

    Ovipositing adult females of myrmecophilous lycaenids are expected to select plants based on ant presence in order to maximize the survivorship of immature stages. Usually, larvae feed ants with honey-like solutions and, in turn, ants ward off parasitoids. Nonetheless, a rarely investigated approach is whether ant partners can also extend their protective behavior towards lycaenids eggs. Here, we investigated the ant-related oviposition pattern of Allosmaitia strophius and Rekoa marius; then, we compared egg parasitism according to the presence of ants. Lycaenid oviposition and egg parasitism (in percent) were experimentally compared in ant-present and ant-excluded treatments. The study plant, Heteropterys byrsonimifolia, is an extrafloral nectaried shrub which supports several ant species. We sampled 280 eggs, of which 39.65 % belonged to A. strophius and 60.35 % to R. marius. Both lycaenids eggs were significantly more abundant on branches with ants, especially those with Camponotus crassus and Camponotus blandus, two ant species known to attend to lycaenids. A. strophius and R. marius parasitism was 4.5- and 2.4-fold higher, respectively, in ant-present treatments, but the results were not statistically significant. Our study shows that ant-mediated host plant selection in lycaenids might be much more widespread than previously thought, and not restricted to obligate myrmecophilous species. Tending ants may be inefficient bodyguards of lycaenid eggs, because unlike larvae which release sugared liquids, eggs do not offer obvious rewards to ants. Ants can ward off parasitoids of larvae, as observed elsewhere, but our findings show that positive ant-lycaenid interactions are conditional and depend on immature ontogeny. PMID:25200736

  2. Polydnaviral Ankyrin Proteins Aid Parasitic Wasp Survival by Coordinate and Selective Inhibition of Hematopoietic and Immune NF-kappa B Signaling in Insect Hosts

    PubMed Central

    Gueguen, Gwenaelle; Kalamarz, Marta E.; Ramroop, Johnny; Uribe, Jeffrey; Govind, Shubha

    2013-01-01

    Polydnaviruses are mutualists of their parasitoid wasps and express genes in immune cells of their Lepidopteran hosts. Polydnaviral genomes carry multiple copies of viral ankyrins or vankyrins. Vankyrin proteins are homologous to I?B proteins, but lack sequences for regulated degradation. We tested if Ichnoviral Vankyrins differentially impede Toll-NF-?B-dependent hematopoietic and immune signaling in a heterologous in vivo Drosophila, system. We first show that hematopoiesis and the cellular encapsulation response against parasitoid wasps are tightly-linked via NF-?B signaling. The niche, which neighbors the larval hematopoietic progenitors, responds to parasite infection. Drosophila NF-?B proteins are expressed in the niche, and non cell-autonomously influence fate choice in basal and parasite-activated hematopoiesis. These effects are blocked by the Vankyrin I2-vank-3, but not by P-vank-1, as is the expression of a NF-?B target transgene. I2-vank-3 and P-vank-1 differentially obstruct cellular and humoral inflammation. Additionally, their maternal expression weakens ventral embryonic patterning. We propose that selective perturbation of NF-?B-I?B interactions in natural hosts of parasitic wasps negatively impacts the outcome of hematopoietic and immune signaling and this immune deficit contributes to parasite survival and species success in nature. PMID:24009508

  3. Host-to-host variation of ecological interactions in polymicrobial infections.

    PubMed

    Mukherjee, Sayak; Weimer, Kristin E; Seok, Sang-Cheol; Ray, Will C; Jayaprakash, C; Vieland, Veronica J; Swords, W Edward; Das, Jayajit

    2014-01-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species. PMID:25473880

  4. Host-to-host variation of ecological interactions in polymicrobial infections

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sayak; Weimer, Kristin E.; Seok, Sang-Cheol; Ray, Will C.; Jayaprakash, C.; Vieland, Veronica J.; Swords, W. Edward; Das, Jayajit

    2015-02-01

    Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts. Here, we analyze mechanisms underlying host-to-host variations of bacterial infection kinetics, using the well characterized experimental infection model of polymicrobial otitis media (OM) in chinchillas, in combination with population dynamic models and a maximum entropy (MaxEnt) based inference scheme. We find that the nature of the interactions between bacterial species critically regulates host-to-host variations in these interactions. Surprisingly, seemingly unrelated phenomena, such as the efficiency of individual bacterial species in utilizing nutrients for growth, and the microbe-specific host immune response, can become interdependent in a host population. The latter finding suggests a potential mechanism that could lead to selection of specific strains of bacterial species during the coevolution of the host immune response and the bacterial species.

  5. The Interplay of Host Microbiota and Parasitic Protozoans at Mucosal Interfaces: Implications for the Outcomes of Infections and Diseases

    PubMed Central

    Pinheiro, Jully; Simoes-Barbosa, Augusto

    2015-01-01

    Infections by parasitic protozoans are largely neglected, despite threatening millions of people, particularly in developing countries. With descriptions of the microbiota in humans, a new frontier of investigation is developing to decipher the complexity of host–parasite–microbiota relationships, instead of the classic reductionist approach, which considers host–parasite in isolation. Here, we review with specific examples the potential roles that the resident microbiota can play at mucosal interfaces in the transmission of parasitic protozoans and in the progress of infection and disease. Although the mechanisms underlying these relationships remain poorly understood, some examples provide compelling evidence that specific components of the microbiota can potentially alter the outcomes of parasitic infections and diseases in humans. Most findings suggest a protective role of the microbiota, which might lead to exploratory research comprising microbiota-based interventions to prevent and treat protozoal infections in the future. However, these infections are often accompanied by an unbalanced microbiota and, in some specific cases, apparently, these bacteria may contribute synergistically to disease progression. Taken together, these findings provide a different perspective on the ecological nature of protozoal infections. This review focuses attention on the importance of considering polymicrobial associations, i.e., parasitic protozoans and the host microbiota, for understanding these human infections in their natural microbial context. PMID:26658061

  6. The Interplay of Host Microbiota and Parasitic Protozoans at Mucosal Interfaces: Implications for the Outcomes of Infections and Diseases.

    PubMed

    Bär, Ann-Katrein; Phukan, Niha; Pinheiro, Jully; Simoes-Barbosa, Augusto

    2015-12-01

    Infections by parasitic protozoans are largely neglected, despite threatening millions of people, particularly in developing countries. With descriptions of the microbiota in humans, a new frontier of investigation is developing to decipher the complexity of host-parasite-microbiota relationships, instead of the classic reductionist approach, which considers host-parasite in isolation. Here, we review with specific examples the potential roles that the resident microbiota can play at mucosal interfaces in the transmission of parasitic protozoans and in the progress of infection and disease. Although the mechanisms underlying these relationships remain poorly understood, some examples provide compelling evidence that specific components of the microbiota can potentially alter the outcomes of parasitic infections and diseases in humans. Most findings suggest a protective role of the microbiota, which might lead to exploratory research comprising microbiota-based interventions to prevent and treat protozoal infections in the future. However, these infections are often accompanied by an unbalanced microbiota and, in some specific cases, apparently, these bacteria may contribute synergistically to disease progression. Taken together, these findings provide a different perspective on the ecological nature of protozoal infections. This review focuses attention on the importance of considering polymicrobial associations, i.e., parasitic protozoans and the host microbiota, for understanding these human infections in their natural microbial context. PMID:26658061

  7. How Many Parasites Species a Frog Might Have? Determinants of Parasite Diversity in South American Anurans

    PubMed Central

    Campião, Karla Magalhães; Ribas, Augusto Cesar de Aquino; Morais, Drausio Honorio; da Silva, Reinaldo José; Tavares, Luiz Eduardo Roland

    2015-01-01

    There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR). We also test whether parasite diversity is related to hosts’ phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts’ phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts’ clade diversification suggests it is strongly influenced by ecological and contemporary constrains. PMID:26473593

  8. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Siano, R.; Alves-de-Souza, C.; Foulon, E.; Bendif, El M.; Simon, N.; Guillou, L.; Not, F.

    2011-02-01

    Sequences affiliated to Syndiniales (Marine alveolate, MALV) regularly dominate 18S rDNA genetic libraries of nearly all marine ecosystems investigated so far. Among them, Amoebophryidae (MALV group II) is composed of numerous and genetically distant environmental sequences, where Amoebophrya is the only known and formally described genus. Amoebophrya species include virulent pathogens for a wide range of dinoflagellate species. Beside their regular occurrence in marine ecosystems, their quantitative distribution and the environmental factors triggering host infection have barely been studied in open oligotrophic waters. In order to understand the functional role of these parasites in natural environments, we studied the distribution and contribution to the eukaryotic community of the small free-living stage of Amoebophryidae (the dinospores) along a transect in the Mediterranean Sea, as well as their host diversity at three oligotrophic stations. Dinospores were more abundant at a coastal station (max. 1.5 × 103 cells ml-1) than in oligotrophic waters (max. 51 ± 16.3 cells ml-1), where they represented 10.3 to 34.9% of the total eukaryotic community at 40 and 30 m depth, respectively and 21.2% on average along the water column. Positive correlation was found between dinospore occurrence and higher concentration of NO3 + NO2 at the coastal station. At selected stations, out of 38 different dinoflagellates taxa identified, 15 were infected, among which a majority were not recognized as Amoebophryidae host so far. Prevalences (percentage of infected cells) generally varied between 1% and 10%, with a notable exception for Blepharocysta paulsenii for which 25% of cells were infected at the most oligotrophic station. The present study shows that dinospores are able to thrive and infect dinoflagellates both in coastal and ultra-oligotrophic open waters. Our results emphasize the role of parasitism in microbial food web dynamics and ultimately on biogeochemical cycles.

  9. A Trichomonas vaginalis Rhomboid Protease and Its Substrate Modulate Parasite Attachment and Cytolysis of Host Cells

    PubMed Central

    Riestra, Angelica M.; Gandhi, Shiv; Sweredoski, Michael J.; Moradian, Annie; Hess, Sonja; Urban, Sinisa; Johnson, Patricia J.

    2015-01-01

    Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis. PMID:26684303

  10. Pathogenesis of influenza: virus-host interactions.

    PubMed

    Godlee, Alexandra; Almond, Mark H; Dong, Tao

    2011-08-01

    Since their inception in March 1972, Keystone Symposia on Molecular and Cellular Biology have brought together scientists from across the globe to discuss key biological topics. Now in its 40th year, it is a completely independent, nonprofit organization devoted solely to providing outstanding scientific conferences in all areas of the biological and biomedical sciences. Towards the end of May 2011, over 200 virologists and immunologists came to Hong Kong, an appropriate setting given the emergence of H5N1, to discuss influenza virus and host interactions. The meeting, expertly organized by Siamon Gordon (University of Oxford, Oxofrd, UK), Malik Peiris (University of Hong Kong, Hong Kong, China) and Kanta Subbarao (NIAID, NIH, MD, USA), took place in the aftermath of the first pandemic in 40 years and provided great insight into both pandemic H1N1 and H5N1. This article focuses on some of the recurring themes that were discussed during the week. PMID:21819324

  11. Speed of adaptation and genomic footprints of host-parasite coevolution under arms race and trench warfare dynamics.

    PubMed

    Tellier, Aurélien; Moreno-Gámez, Stefany; Stephan, Wolfgang

    2014-08-01

    Coevolution between hosts and their parasites is expected to follow a range of possible dynamics, the two extreme cases being called trench warfare (or Red Queen) and arms races. Long-term stable polymorphism at the host and parasite coevolving loci is characteristic of trench warfare, and is expected to promote molecular signatures of balancing selection, while the recurrent allele fixation in arms races should generate selective sweeps. We compare these two scenarios using a finite size haploid gene-for-gene model that includes both mutation and genetic drift. We first show that trench warfare do not necessarily display larger numbers of coevolutionary cycles per unit of time than arms races. We subsequently perform coalescent simulations under these dynamics to generate sequences at both host and parasite loci. Genomic footprints of recurrent selective sweeps are often found, whereas trench warfare yield signatures of balancing selection only in parasite sequences, and only in a limited parameter space. Our results suggest that deterministic models of coevolution with infinite population sizes do not predict reliably the observed genomic signatures, and it may be best to study parasite rather than host populations to find genomic signatures of coevolution, such as selective sweeps or balancing selection. PMID:24749791

  12. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana

    PubMed Central

    Beaurepaire, Alexis L.; Dinh, Tam Q.; Cervancia, Cleofas; Moritz, Robin F. A.

    2015-01-01

    The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation. PMID:26248192

  13. True versus False Parasite Interactions: A Robust Method to Take Risk Factors into Account and Its Application to Feline Viruses

    PubMed Central

    Hellard, Eléonore; Pontier, Dominique; Sauvage, Frank; Poulet, Hervé; Fouchet, David

    2012-01-01

    Background Multiple infections are common in natural host populations and interspecific parasite interactions are therefore likely within a host individual. As they may seriously impact the circulation of certain parasites and the emergence and management of infectious diseases, their study is essential. In the field, detecting parasite interactions is rendered difficult by the fact that a large number of co-infected individuals may also be observed when two parasites share common risk factors. To correct for these “false interactions”, methods accounting for parasite risk factors must be used. Methodology/Principal Findings In the present paper we propose such a method for presence-absence data (i.e., serology). Our method enables the calculation of the expected frequencies of single and double infected individuals under the independence hypothesis, before comparing them to the observed ones using the chi-square statistic. The method is termed “the corrected chi-square.” Its robustness was compared to a pre-existing method based on logistic regression and the corrected chi-square proved to be much more robust for small sample sizes. Since the logistic regression approach is easier to implement, we propose as a rule of thumb to use the latter when the ratio between the sample size and the number of parameters is above ten. Applied to serological data for four viruses infecting cats, the approach revealed pairwise interactions between the Feline Herpesvirus, Parvovirus and Calicivirus, whereas the infection by FIV, the feline equivalent of HIV, did not modify the risk of infection by any of these viruses. Conclusions/Significance This work therefore points out possible interactions that can be further investigated in experimental conditions and, by providing a user-friendly R program and a tutorial example, offers new opportunities for animal and human epidemiologists to detect interactions of interest in the field, a crucial step in the challenge of multiple infections. PMID:22235312

  14. Ecological Entomology (2009), 34, 763771 DOI: 10.1111/j.1365-2311.2009.01131.x Parasitism and constitutive defence costs to host

    E-print Network

    Rohani, Pej

    2009-01-01

    , following parasitism by the koinobiont parasitoid, Venturia canescens, and measured the cost of resistance than 20% of all insect species (Strand & Pech, 1995). Parasitism involves the laying of parasitoid eggs negative effects of parasitism (e.g. the reallocation of host resources towards parasitoid growth

  15. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism, and susceptibility to herbivory: consequences for fungi and host plants

    PubMed Central

    Gehring, Catherine A.; Mueller, Rebecca C.; Haskins, Kristin E.; Rubow, Tine K.; Whitham, Thomas G.

    2014-01-01

    Plants and mycorrhizal fungi influence each other’s abundance, diversity, and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of plant parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis), and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors, and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future. PMID:25009537

  16. Effector bottleneck: microbial reprogramming of parasitized host cell transcription by epigenetic remodeling of chromatin structure

    PubMed Central

    Sinclair, Sara H.; Rennoll-Bankert, Kristen E.; Dumler, J. S.

    2014-01-01

    Obligate intracellular pathogenic bacteria evolved to manipulate their host cells with a limited range of proteins constrained by their compact genomes. The harsh environment of a phagocytic defense cell is one that challenges the majority of commensal and pathogenic bacteria; yet, these are the obligatory vertebrate homes for important pathogenic species in the Anaplasmataceae family. Survival requires that the parasite fundamentally alter the native functions of the cell to allow its entry, intracellular replication, and transmission to a hematophagous arthropod. The small genomic repertoires encode several eukaryotic-like proteins, including ankyrin A (AnkA) of Anaplasma phagocytophilum and Ank200 and tandem-repeat containing proteins of Ehrlichia chaffeensis that localize to the host cell nucleus and directly bind DNA. As a model, A. phagocytophilum AnkA appears to directly alter host cell gene expression by recruiting chromatin modifying enzymes such as histone deacetylases and methyltransferases or by acting directly on transcription in cis. While cis binding could feasibly alter limited ranges of genes and cellular functions, the complex and dramatic alterations in transcription observed with infection are difficult to explain on the basis of individually targeted genes. We hypothesize that nucleomodulins can act broadly, even genome-wide, to affect entire chromosomal neighborhoods and topologically associating chromatin domains by recruiting chromatin remodeling complexes or by altering the folding patterns of chromatin that bring distant regulatory regions together to coordinate control of transcriptional reprogramming. This review focuses on the A. phagocytophilum nucleomodulin AnkA, how it impacts host cell transcriptional responses, and current investigations that seek to determine how these multifunctional eukaryotic-like proteins facilitate epigenetic alterations and cellular reprogramming at the chromosomal level. PMID:25177343

  17. Effector bottleneck: microbial reprogramming of parasitized host cell transcription by epigenetic remodeling of chromatin structure.

    PubMed

    Sinclair, Sara H; Rennoll-Bankert, Kristen E; Dumler, J S

    2014-01-01

    Obligate intracellular pathogenic bacteria evolved to manipulate their host cells with a limited range of proteins constrained by their compact genomes. The harsh environment of a phagocytic defense cell is one that challenges the majority of commensal and pathogenic bacteria; yet, these are the obligatory vertebrate homes for important pathogenic species in the Anaplasmataceae family. Survival requires that the parasite fundamentally alter the native functions of the cell to allow its entry, intracellular replication, and transmission to a hematophagous arthropod. The small genomic repertoires encode several eukaryotic-like proteins, including ankyrin A (AnkA) of Anaplasma phagocytophilum and Ank200 and tandem-repeat containing proteins of Ehrlichia chaffeensis that localize to the host cell nucleus and directly bind DNA. As a model, A. phagocytophilum AnkA appears to directly alter host cell gene expression by recruiting chromatin modifying enzymes such as histone deacetylases and methyltransferases or by acting directly on transcription in cis. While cis binding could feasibly alter limited ranges of genes and cellular functions, the complex and dramatic alterations in transcription observed with infection are difficult to explain on the basis of individually targeted genes. We hypothesize that nucleomodulins can act broadly, even genome-wide, to affect entire chromosomal neighborhoods and topologically associating chromatin domains by recruiting chromatin remodeling complexes or by altering the folding patterns of chromatin that bring distant regulatory regions together to coordinate control of transcriptional reprogramming. This review focuses on the A. phagocytophilum nucleomodulin AnkA, how it impacts host cell transcriptional responses, and current investigations that seek to determine how these multifunctional eukaryotic-like proteins facilitate epigenetic alterations and cellular reprogramming at the chromosomal level. PMID:25177343

  18. Quantitation of Malaria Parasite-Erythrocyte Cell-Cell Interactions Using Optical Tweezers

    E-print Network

    Cicuta, Pietro

    Article Quantitation of Malaria Parasite-Erythrocyte Cell-Cell Interactions Using Optical Tweezers falciparum merozoites is an essential step for parasite survival and hence the pathogenesis of malaria are caused by the malaria parasite Plasmodium falciparum. All the symptoms of the disease are caused

  19. A parasitic interaction in RHIC at 24 GeV April 27, 2005

    E-print Network

    Sen, Tanaji

    A parasitic interaction in RHIC at 24 GeV T. Sen April 27, 2005 In this experiment at RHIC, 1 proton bunch will be injected in each ring. At one parasitic inter- action, the separation will be varied over some range while at the diametrically opposite parasitic the beam separation will be kept

  20. Insights From Natural Host-Parasite Interactions: The Drosophila Model

    PubMed Central

    Keebaugh, Erin S.; Schlenke, Todd A.

    2013-01-01

    Immune responses against opportunistic pathogens have been extensively studied in Drosophila, leading to a detailed map of the genetics behind innate immunity networks including the Toll, Imd, Jak-Stat, and JNK pathways. However, immune mechanisms of other organisms, particularly plants, have primarily been investigated using natural pathogens. It was the use of natural pathogens in plant research that revealed the plant R/Avr system, a specialized immune response derived from antagonistic coevolution between plant immune proteins and their natural pathogens’ virulence proteins. Thus, we recommend that researchers begin to use natural Drosophila pathogens to identify novel immune mechanisms that may have arisen through antagonistic coevolution with common natural pathogens. In this review, we address the benefits of using natural pathogens in research, describe the known natural pathogens of Drosophila, and discuss exciting prospects for future research on select natural pathogens of Drosophila. PMID:23764256

  1. PERIPHERAL CD4 CELLS RAPIDLY ACCUMULATE AT THE HOST: PARASITE INTERFACE AN INFLAMMATORY TH2 MEMORY RESPONSE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Memory peripheral Th2 immune responses resulting in host protection are not well studied due to the lack of suitable models and the difficulty of assessing Th2 cytokine expression at sites of inflammation. We have examined the localized immune response elicited by parasitic larvae of an intestinal ...

  2. The anther smut disease on Gypsophila repens: a case of parasite sub-optimal performance following a recent host shift?

    E-print Network

    López-Villavicencio, Manuela

    The anther smut disease on Gypsophila repens: a case of parasite sub-optimal performance following, VA, USA Introduction Studies of host shifts and inter-species disease transmis- sion are important to understanding the emergence of new diseases in humans or crops (Antonovics et al., 2002). Indeed, nearly 75

  3. Does nesting habitat predict hatch synchrony between brood parasitic brown-headed cowbirds Molothrus ater and two host

    E-print Network

    Johnson, Matthew

    earlier and grow faster than young of the many host species of this generalist obligate brood parasite, the best statistical models for predicting hatching synchrony in yellow warbler nests included nesting-hatching young are less able to acquire food compared to earlier-hatching young and often experience higher

  4. vol. 164, supplement the american naturalist november 2004 Host Sex and Local Adaptation by Parasites in a

    E-print Network

    reproduction persists in populations where asexual reproduction is known to occur. The observation is curious because reproductively isolated asexuals have an * Corresponding author; e-mail: clively@indiana.edu. Am that asexual host popula- tions were more resistant to allopatric sources of parasites than were (mostly

  5. Linear Dispersal of the Filth Fly Parasitoid Spalangia cameroni (Hymenoptera: Pteromalidae) and Parasitism of Hosts at Increasing Distances

    PubMed Central

    Machtinger, Erika T.; Geden, Christopher J.; Leppla, Norman C.

    2015-01-01

    Release of parasitic wasps (Hymenoptera: Pteromalidae) as biological control agents for house flies and stable flies in livestock confinements has had variable success. In part, this may reflect a lack of knowledge regarding the optimal distance to be used between parasitoid release stations. In the current study, we assessed the effect of linear distance on host parasitism by the wasp Spalangia cameroni Perkins. In open fields at distances ranging from 1 m to 60 m from a central point, house fly puparia were placed in a mixture of pine shavings soiled with equine manure, urine, and alfalfa hay. Releases of S. cameroni then were made using a 5:1 host: parasitoid ratio. Host pupae were parasitized at all distances, with the highest rate of total parasitism (68.9%) recorded ? 5 m from the release site. Analyses of results using non-linear and linear models suggest that S. cameroni should be released in close proximity to host development areas. Additionally, releases may not be suitable in pasture situations where long-distance flight is required for control. However, further testing is needed to examine the effect of density-dependent dispersal and diffusion of S. cameroni. PMID:26061882

  6. Host cytoplasmic processing bodies assembled by Trypanosoma cruzi during infection exert anti-parasitic activity.

    PubMed

    Seto, Eri; Onizuka, Yoko; Nakajima-Shimada, Junko

    2015-12-01

    Processing bodies (PBs) are cytoplasmic granules containing mRNAs and proteins involved in translation and degradation of mRNAs. PBs are constitutively present in cells and are induced to accumulate when external stressors including microbial infection are applied to cells, followed by a rapid translational arrest. We have examined the impact of Trypanosoma cruzi (T. cruzi, Tc) infection on host cytoplasmic PB assembly. Within 24h post-infection, we found the average number of PB foci per cell increased by more than 2-fold. Protein levels of PB components were unaltered during infection. These results indicated that Tc infection caused accumulation of PBs by changing the localization pattern of PB protein components. To elucidate the role of the accumulated PBs on Tc infection, we knocked down PBs using a siRNA specific for PB components EDC4 and Lsm14A, which are involved in mRNA decapping and translational repression, respectively. We observed that the inhibition of PB accumulation significantly enhanced the infectivity and growth of intracellular amastigotes. Depletion of PBs did not affect nitric oxide (NO) production during Tc infection, indicating that the growth promotion was not caused by modulation of NO-mediated killing of Tc. Our results suggest that the accumulated PBs partially contribute to anti-parasitic responses by manipulating the host's mRNA metabolism. PMID:26232634

  7. Host Suitability of the Olive Cultivars Arbequina and Picual for Plant-Parasitic Nematodes

    PubMed Central

    Nico, A. I.; Jiménez-Díaz, R. M.; Castillo, P.

    2003-01-01

    Host suitability of olive cultivars Arbequina and Picual to several plant-parasitic nematodes was studied under controlled conditions. Arbequina and Picual were not suitable hosts for the root-lesion nematodes Pratylenchus fallax, P. thornei, and Zygotylenchus guevarai. However, the ring nematode Mesocriconema xenoplax and the spiral nematodes Helicotylenchus digonicus and H. pseudorobustus reproduced on both olive cultivars. The potential of Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica, as well as P. vulnus and P. penetrans to damage olive cultivars, was also assessed. Picual planting stocks infected by root-knot nematodes showed a distinct yellowing affecting the uppermost leaves, followed by a partial defoliation. Symptoms were more severe on M. arenaria and M. javanica-infected plants than on M. incognita-infected plants. Inoculation of plants with 15,000 eggs + second-stage juveniles/pot of these Meloidogyne spp. suppressed the main height of shoot and number of nodes of Arbequina, but not Picual. Infection by each of the two lesion nematodes (5,000 nematodes/pot) or by each of the three Meloidogyne spp. suppressed (P < 0.05) the main stem diameter of both cultivars. On Arbequina, the reproduction rate of Meloidogyne spp. was higher (P < 0.05) than that of Pratylenchus spp.; on Picual, Pratylenchus spp. reproduction was higher (P < 0.05) than that of Meloidogyne spp. PMID:19265971

  8. Population Dynamics and Parasite Load of a Foraminifer on Its Antarctic Scallop Host with Their Carbonate Biomass Contributions

    PubMed Central

    Pérez-Huerta, Alberto; Bowser, Samuel S.

    2015-01-01

    We studied the population dynamics and parasite load of the foraminifer Cibicides antarcticus on its host the Antarctic scallop Adamussium colbecki from three localities differing by sea ice cover within western McMurdo Sound, Ross Sea, Antarctica: Explorers Cove, Bay of Sails and Herbertson Glacier. We also estimated CaCO3 biomass and annual production for both species. Cibicides populations varied by locality, valve type, and depth. Explorers Cove with multiannual sea ice had larger populations than the two annual sea ice localities, likely related to differences in nutrients. Populations were higher on Adamussium top valves, a surface that is elevated above the sediment. Depth did not affect Cibicides distributions except at Bay of Sails. Cibicides parasite load (the number of complete boreholes in Adamussium valves) varied by locality between 2% and 50%. For most localities the parasite load was < 20%, contrary to a previous report that ~50% of Cibicides were parasitic. The highest and lowest parasite load occurred at annual sea ice localities, suggesting that sea ice condition is not important. Rather, the number of adults that are parasitic could account for these differences. Cibicides bioerosion traces were categorized into four ontogenetic stages, ranging from newly attached recruits to parasitic adults. These traces provide an excellent proxy for population structure, revealing that Explorers Cove had a younger population than Bay of Sails. Both species are important producers of CaCO3. Cibicides CaCO3 biomass averaged 47-73 kg ha-1 and Adamussium averaged 4987-6806 kg ha-1 by locality. Annual production rates were much higher. Moreover, Cibicides represents 1.0-2.3% of the total host-parasite CaCO3 biomass. Despite living in the coldest waters on Earth, these species can contribute a substantial amount of CaCO3 to the Ross Sea and need to be incorporated into food webs, ecosystem models, and carbonate budgets for Antarctica. PMID:26186724

  9. A Physical and Regulatory Map of Host-Influenza Interactions

    E-print Network

    A Physical and Regulatory Map of Host-Influenza Interactions Reveals Pathways in H1N1 Infection and pathways. Here, we present a systematic strategy to elucidate the dynamic interactions between H1N1 model of influenza-host interac- tions for the H1N1 strain A/PR/8/34 (``PR8''). Our experimental

  10. Epigenetics of Host–Pathogen Interactions: The Road Ahead and the Road Behind

    PubMed Central

    Gómez-Díaz, Elena; Jordà, Mireia; Peinado, Miguel Angel; Rivero, Ana

    2012-01-01

    A growing body of evidence points towards epigenetic mechanisms being responsible for a wide range of biological phenomena, from the plasticity of plant growth and development to the nutritional control of caste determination in honeybees and the etiology of human disease (e.g., cancer). With the (partial) elucidation of the molecular basis of epigenetic variation and the heritability of certain of these changes, the field of evolutionary epigenetics is flourishing. Despite this, the role of epigenetics in shaping host–pathogen interactions has received comparatively little attention. Yet there is plenty of evidence supporting the implication of epigenetic mechanisms in the modulation of the biological interaction between hosts and pathogens. The phenotypic plasticity of many key parasite life-history traits appears to be under epigenetic control. Moreover, pathogen-induced effects in host phenotype may have transgenerational consequences, and the bases of these changes and their heritability probably have an epigenetic component. The significance of epigenetic modifications may, however, go beyond providing a mechanistic basis for host and pathogen plasticity. Epigenetic epidemiology has recently emerged as a promising area for future research on infectious diseases. In addition, the incorporation of epigenetic inheritance and epigenetic plasticity mechanisms to evolutionary models and empirical studies of host–pathogen interactions will provide new insights into the evolution and coevolution of these associations. Here, we review the evidence available for the role epigenetics on host–pathogen interactions, and the utility and versatility of the epigenetic technologies available that can be cross-applied to host–pathogen studies. We conclude with recommendations and directions for future research on the burgeoning field of epigenetics as applied to host–pathogen interactions. PMID:23209403

  11. Table 1: Examples of direct and indirect effects of parasites in biological invasions. Host(s)Parasite(s) system Direct effect of parasite on

    E-print Network

    Holt, Robert D.

    Parasite mediated competition H: Invasive grey squirrel Sciurus carolinensis and native red squirrel, S species Parasite spills-over into red squirrels causing high mortality. Theoretical models predict Mehidiabadi, Kawazoe & Gilbert 2004 H: Native European pines and introduced eastern white pine, Pinus strobes

  12. RNA trafficking in parasitic plant systems

    PubMed Central

    LeBlanc, Megan; Kim, Gunjune; Westwood, James H.

    2012-01-01

    RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs, and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host–parasite connections and the potential significance of host RNAs for the parasite. Additional research on host–parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking. PMID:22936942

  13. Host-microbe interactions in the developing zebrafish

    PubMed Central

    Kanther, Michelle; Rawls, John F.

    2010-01-01

    Summary of recent advances The amenability of the zebrafish to in vivo imaging and genetic analysis has fueled expanded use of this vertebrate model to investigate the molecular and cellular foundations of host-microbe relationships. Study of microbial encounters in zebrafish hosts has concentrated on developing embryonic and larval stages, when the advantages of the zebrafish model are maximized. A comprehensive understanding of these host-microbe interactions requires appreciation of the developmental context into which a microbe is introduced, as well as the effects of that microbial challenge on host ontogeny. In this review, we discuss how in vivo imaging and genetic analysis in zebrafish has advanced our knowledge of host-microbe interactions in the context of a developing vertebrate host. We focus on recent insights into immune cell ontogeny and function, commensal microbial relationships in the intestine, and microbial pathogenesis in zebrafish hosts. PMID:20153622

  14. Parasites as predators: unifying natural enemy ecology

    E-print Network

    Rohr, Jason

    Parasites as predators: unifying natural enemy ecology Thomas R. Raffel, Lynn B. Martin and Jason R Parasitism and predation have long been considered analogous interactions. Yet by and large, ecologists continue to study parasite­host and predator­prey ecology separately. Here we discuss strengths

  15. HOST ADAPTION AND HOST-PARASITE CO-EVOLUTION IN CRYPTOSPORIDIUM: IMPLICATIONS FOR TAXONOMY AND PUBLIC AND PUBLIC HEALTH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To assess the genetic diversity and evolution of Cryptosporidium parasites, the small subunit (SSU) rRNA, actin, and 70 kDa heat shock protein (HSP70) genes of 15 new Cryptosporidium parasites were sequenced. Sequence data were analyzed and compared with data previously obtained from other Cryptospo...

  16. Shifts in stable-isotope signatures confirm parasitic relationship of freshwater mussel glochidia attached to host fish

    USGS Publications Warehouse

    Fritts, Mark W.; Fritts, Andrea K.; Carleton, Scott A.; Bringolf, Robert B.

    2013-01-01

    The parasitic nature of the association between glochidia of unionoidean bivalves and their host fish (i.e. the role of fish hosts in providing nutritional resources to the developing glochidia) is still uncertain. While previous work has provided descriptions of development of glochidia on fish hosts, earlier studies have not explicitly documented the flow of nutrition from the host fish to the juvenile mussel. Therefore, our objective was to use stable isotope analysis to quantitatively document nutrient flow between fish and glochidia. Glochidia were collected from nine adult Lampsilis cardium and used to inoculate Micropterus salmoides(n = 27; three fish per maternal mussel) that produced juvenile mussels for the experiment. Adult mussel tissue samples, glochidia, transformed juvenile mussels and fish gill tissues were analysed for ?15N and ?13C isotope ratios. We used a linear mixing model to estimate the fraction of juvenile mussel tissue derived from the host fish's tissue during attachment. Our analyses indicate a distinct shift in both C and N isotopic ratios from the glochidial stage to the juvenile stage during mussel attachment and development. Linear mixing model analysis indicated that 57.4% of the ?15N in juvenile tissues were obtained from the host fish. This work provides novel evidence that larval unionoideans are true parasites that derive nutrition from host fish during their metamorphosis into the juvenile stage.

  17. Paracoccidioides-host Interaction: An Overview on Recent Advances in the Paracoccidioidomycosis

    PubMed Central

    de Oliveira, Haroldo C.; Assato, Patrícia A.; Marcos, Caroline M.; Scorzoni, Liliana; de Paula E Silva, Ana C. A.; Da Silva, Julhiany De Fátima; Singulani, Junya de Lacorte; Alarcon, Kaila M.; Fusco-Almeida, Ana M.; Mendes-Giannini, Maria J. S.

    2015-01-01

    Paracoccidioides brasiliensis and P. lutzii are etiologic agents of paracoccidioidomycosis (PCM), an important endemic mycosis in Latin America. During its evolution, these fungi have developed characteristics and mechanisms that allow their growth in adverse conditions within their host through which they efficiently cause disease. This process is multi-factorial and involves host–pathogen interactions (adaptation, adhesion, and invasion), as well as fungal virulence and host immune response. In this review, we demonstrated the glycoproteins and polysaccharides network, which composes the cell wall of Paracoccidioides spp. These are important for the change of conidia or mycelial (26°C) to parasitic yeast (37°C). The morphological switch, a mechanism for the pathogen to adapt and thrive inside the host, is obligatory for the establishment of the infection and seems to be related to pathogenicity. For these fungi, one of the most important steps during the interaction with the host is the adhesion. Cell surface proteins called adhesins, responsible for the first contact with host cells, contribute to host colonization and invasion by mediating this process. These fungi also present the capacity to form biofilm and through which they may evade the host’s immune system. During infection, Paracoccidioides spp. can interact with different host cell types and has the ability to modulate the host’s adaptive and/or innate immune response. In addition, it participates and interferes in the coagulation system and phenomena like cytoskeletal rearrangement and apoptosis. In recent years, Paracoccidioides spp. have had their endemic areas expanding in correlation with the expansion of agriculture. In response, several studies were developed to understand the infection using in vitro and in vivo systems, including alternative non-mammal models. Moreover, new advances were made in treating these infections using both well-established and new antifungal agents. These included natural and/or derivate synthetic substances as well as vaccines, peptides, and anti-adhesins sera. Because of all the advances in the PCM study, this review has the objective to summarize all of the recent discoveries on Paracoccidioides-host interaction, with particular emphasis on fungi surface proteins (molecules that play a fundamental role in the adhesion and/or dissemination of the fungi to host-cells), as well as advances in the treatment of PCM with new and well-established antifungal agents and approaches. PMID:26635779

  18. Radiation of the Red Algal Parasite Congracilaria babae onto a Secondary Host Species, Hydropuntia sp. (Gracilariaceae, Rhodophyta)

    PubMed Central

    Ng, Poh-Kheng; Lim, Phaik-Eem; Phang, Siew-Moi

    2014-01-01

    Congracilaria babae was first reported as a red alga parasitic on the thallus of Gracilaria salicornia based on Japanese materials. It was circumscribed to have deep spermatangial cavities, coloration similar to its host and the absence of rhizoids. We observed a parasitic red alga with morphological and anatomical features suggestive of C. babae on a Hydropuntia species collected from Sabah, East Malaysia. We addressed the taxonomic affinities of the parasite growing on Hydropuntia sp. based on the DNA sequence of molecular markers from the nuclear, mitochondrial and plastid genomes (nuclear ITS region, mitochondrial cox1 gene and plastid rbcL gene). Phylogenetic analyses based on all genetic markers also implied the monophyly of the parasite from Hydropuntia sp. and C. babae, suggesting their conspecificity. The parasite from Hydropuntia sp. has a DNA signature characteristic to C. babae in having plastid rbcL gene sequence identical to G. salicornia. C. babae is likely to have evolved directly from G. salicornia and subsequently radiated onto a secondary host Hydropuntia sp. We also recommend the transfer of C. babae to the genus Gracilaria and propose a new combination, G. babae, based on the anatomical observations and molecular data. PMID:24820330

  19. Host protective roles of type 2 immunity: parasite killing and tissue repair, flip sides of the same coin.

    PubMed

    Allen, Judith E; Sutherland, Tara E

    2014-08-01

    Metazoan parasites typically induce a type 2 immune response, characterized by T helper 2 (Th2) cells that produce the cytokines IL-4, IL-5 and IL-13 among others. The type 2 response is host protective, reducing the number of parasites either through direct killing in the tissues, or expulsion from the intestine. Type 2 immunity also protects the host against damage mediated by these large extracellular parasites as they migrate through the body. At the center of both the innate and adaptive type 2 immune response, is the IL-4R? that mediates many of the key effector functions. Here we highlight the striking overlap between the molecules, cells and pathways that mediate both parasite control and tissue repair. We have proposed that adaptive Th2 immunity evolved out of our innate repair pathways to mediate both accelerated repair and parasite control in the face of continual assault from multicellular pathogens. Type 2 cytokines are involved in many aspects of mammalian physiology independent of helminth infection. Therefore understanding the evolutionary relationship between helminth killing and tissue repair should provide new insight into immune mechanisms of tissue protection in the face of physical injury. PMID:25028340

  20. Factors affecting patterns of Amblyomma triste (Acari: Ixodidae) parasitism in a rodent host.

    PubMed

    Colombo, Valeria C; Nava, Santiago; Antoniazzi, Leandro R; Monje, Lucas D; Racca, Andrea L; Guglielmone, Alberto A; Beldomenico, Pablo M

    2015-07-30

    Here we offer a multivariable analysis that explores associations of different factors (i.e., environmental, host parameters, presence of other ectoparasites) with the interaction of Amblyomma triste immature stages and one of its main hosts in Argentina, the rodent Akodon azarae. Monthly and for two years, we captured and sampled rodents at 16 points located at 4 different sites in the Parana River Delta region. The analyses were conducted with Generalized Linear Mixed Models with a negative binomial response (counts of larvae or nymphs). The independent variables assessed were: (a) environmental: trapping year, season, presence of cattle; type of vegetation (natural grassland or implanted forest); rodent abundance; (b) host parameters: body length; sex; body condition; blood cell counts; natural antibody titres; and (c) co-infestation with other ectoparasites: other stage of A. triste; Ixodes loricatus; lice; mites; and fleas. Two-way interaction terms deemed a priori as relevant were also included in the analysis. Larvae were affected by all environmental variables assessed and by the presence of other ectoparasites (lice, fleas and other tick species). Host factors significantly associated with larval count were sex and levels of natural antibodies. Nymphs were associated with season, presence of cattle, body condition, body length and with burdens of I. loricatus. In most cases, the direction and magnitude of the associations were context-dependent (many interaction terms were significant). The findings of greater significance and implications of our study are two. Firstly, as burdens of A. triste larvae and nymphs were greater where cattle were present, and larval tick burdens were higher in implanted forests, silvopastoral practices developing in the region may affect the population dynamics of A. triste, and consequently the eco-epidemiology of Rickettsia parkeri. Secondly, strong associations and numerous interactions with other ectoparasites suggest that co-infestations may be more important for tick dynamics than has so far been appreciated. PMID:26104965

  1. Independent host switching events by digenean parasites of cetaceans inferred from ribosomal DNA.

    PubMed

    Fraija-Fernández, Natalia; Olson, Peter D; Crespo, Enrique A; Raga, Juan A; Aznar, Francisco J; Fernández, Mercedes

    2015-02-01

    Cetaceans harbour a unique fauna of digeneans whose origin and relationships have sparked considerable debate during recent decades. Disparity in the species reported indicates that they do not share close affinities, but their unusual morphology has made their taxonomic identities and phylogenetic positions uncertain. Here we use sequence data to investigate the phylogenetic relationships of the main species of flukes infecting cetaceans. We sequenced the 18S, 28S and internal transcribed spacer 2 rDNA of digenean species representing all known families reported from cetaceans: Braunina cordiformis (Brauninidae), Ogmogaster antarcticus (Notocotylidae), Pholeter gastrophilus (Heterophyidae), and Campula oblonga, Nasitrema sp. and Oschmarinella rochebruni (Brachycladiidae). The phylogenetic position of the taxa was estimated by Bayesian inference and maximum likelihood incorporating published sequences of 177 species of Digenea. Further Bayesian and maximum likelihood analyses were performed with sequences of 14 Heterophyidae and Opisthorchiidae taxa, incorporating new sequences of P. gastrophilus. Species nominally assigned to the Brachycladiidae formed a clade that was embedded among species of the Acanthocolpidae, thus making the latter family paraphyletic. Braunina cordiformis formed a sister lineage to the Strigeidae and Diplostomidae, whereas O. antarcticus was placed within the Notocotylidae, in agreement with the previous taxonomy of this genus. Similarly, P. gastrophilus was placed within the Heterophyidae as originally described. Our results suggest a paraphyletic relationship between the Heterophyidae and Opisthorchiidae, mirroring the uncertain taxonomic placement of P. gastrophilus, which has been assigned to both families in the past. The digenean families involved are parasites of fish-eating birds and mammals (i.e. Strigeidae, Diplostomidae and Heterophyidae), parasites of marine fish (i.e. Acanthocolpidae) and other herbivorous aquatic birds and mammals (i.e. Notocotylidae). The phylogenetic positions of these taxa indicate that the digenean fauna of cetaceans may have been acquired through independent host-capture events, with two clades showing subsequent diversification exclusively among marine mammals. PMID:25444860

  2. Metabolic integration during the host associations of multicellular animal endoparasites.

    PubMed

    Thompson, S N

    1985-01-01

    The nature of metabolic interaction during parasitic infection was discussed and the concept of metabolic integration outlined. The subjective nature of the integrative argument was noted. The parasite-host relationships of larval trematodes of the genus Schistosoma with their intermediate molluscan hosts, the nematode Trichnella spiralis and cestode Hymenolepis diminuta, with their definitive hosts, as well as the hymenopterous insect parasite, Hyposoter exiguae, with its insect host, Trichoplusia ni, were examined. The significance of the immune system in the establishment of the parasite-host association and the means by which parasites evade host defense were discussed. The involvement of microorganisms or "hyperparasites" during the host associations of multicellular parasites was described. The importance of evolutionary considerations in assessing the nature of metabolic interaction and its significance to the success of the parasite-host relationship was emphasized. The use of teleological assessment and anthropomorphic description was discussed. PMID:3893873

  3. Fundamental Roles of the Golgi-Associated Toxoplasma Aspartyl Protease, ASP5, at the Host-Parasite Interface

    PubMed Central

    Hammoudi, Pierre-Mehdi; Jacot, Damien; Mueller, Christina; Di Cristina, Manlio; Dogga, Sunil Kumar; Marq, Jean-Baptiste; Romano, Julia; Tosetti, Nicolò; Dubrot, Juan; Emre, Yalin; Lunghi, Matteo; Coppens, Isabelle; Yamamoto, Masahiro; Sojka, Daniel; Pino, Paco; Soldati-Favre, Dominique

    2015-01-01

    Toxoplasma gondii possesses sets of dense granule proteins (GRAs) that either assemble at, or cross the parasitophorous vacuole membrane (PVM) and exhibit motifs resembling the HT/PEXEL previously identified in a repertoire of exported Plasmodium proteins. Within Plasmodium spp., cleavage of the HT/PEXEL motif by the endoplasmic reticulum-resident protease Plasmepsin V precedes trafficking to and export across the PVM of proteins involved in pathogenicity and host cell remodelling. Here, we have functionally characterized the T. gondii aspartyl protease 5 (ASP5), a Golgi-resident protease that is phylogenetically related to Plasmepsin V. We show that deletion of ASP5 causes a significant loss in parasite fitness in vitro and an altered virulence in vivo. Furthermore, we reveal that ASP5 is necessary for the cleavage of GRA16, GRA19 and GRA20 at the PEXEL-like motif. In the absence of ASP5, the intravacuolar nanotubular network disappears and several GRAs fail to localize to the PVM, while GRA16 and GRA24, both known to be targeted to the host cell nucleus, are retained within the vacuolar space. Additionally, hypermigration of dendritic cells and bradyzoite cyst wall formation are impaired, critically impacting on parasite dissemination and persistence. Overall, the absence of ASP5 dramatically compromises the parasite’s ability to modulate host signalling pathways and immune responses. PMID:26473595

  4. When should a trophically and vertically transmitted parasite manipulate its intermediate host? The case of Toxoplasma gondii

    PubMed Central

    Lélu, Maud; Langlais, Michel; Poulle, Marie-Lazarine; Gilot-Fromont, Emmanuelle; Gandon, Sylvain

    2013-01-01

    Parasites with complex life cycles are expected to manipulate the behaviour of their intermediate hosts (IHs), which increase their predation rate and facilitate the transmission to definitive hosts (DHs). This ability, however, is a double-edged sword when the parasite can also be transmitted vertically in the IH. In this situation, as the manipulation of the IH behaviour increases the IH death rate, it conflicts with vertical transmission, which requires healthy and reproducing IHs. The protozoan Toxoplasma gondii, a widespread pathogen, combines both trophic and vertical transmission strategies. Is parasite manipulation of host behaviour still adaptive in this situation? We model the evolution of the IH manipulation by T. gondii to study the conflict between these two routes of transmission under different epidemiological situations. Model outputs show that manipulation is particularly advantageous for virulent strains and in epidemic situations, and that different levels of manipulation may evolve depending on the sex of the IH and the transmission routes considered. These results may help to understand the variability of strain characteristics encountered for T. gondii and may extend to other trophically transmitted parasites. PMID:23825211

  5. Transfection of Trypanosoma cruzi with Host CD40 Ligand Results in Improved Control of Parasite Infection

    PubMed Central

    Chamekh, Mustapha; Vercruysse, Vincent; Habib, Mohammed; Lorent, Maxime; Goldman, Michel; Allaoui, Abdelmounaïm; Vray, Bernard

    2005-01-01

    We have previously shown that infection by Trypanosoma cruzi, a parasitic protozoan, is reduced by injection of CD40 ligand (CD40L)-transfected 3T3 fibroblasts (D. Chaussabel, F. Jacobs, J. de Jonge, M. de Veerman, Y. Carlier, K. Thielemans, M. Goldman, and B. Vray, Infect. Immun. 67:1929-1934, 1999). This prompted us to transfect T. cruzi with the murine CD40L gene and to study the consequences of this transfection on the course of infection. For this, epimastigotes (Y strain) were electroporated with the pTEX vector alone or the pTEX-CD40L construct, and transfected cells were selected for their resistance to Geneticin G418. Then strain Y-, pTEX-, and pTEX-CD40L-transfected epimastigotes were transformed by metacyclogenesis into mammalian infective forms called Y, YpTEX, and YpTEX-CD40L trypomastigotes. Transfection of the CD40L gene and expression of the CD40L protein were assessed by reverse transcription-PCR and Western blot analysis. The three strains of parasites were infective in vitro for mouse peritoneal macrophages. When organisms were inoculated into mice, a very low level of parasitemia and no mortality were seen with the YpTEX-CD40L strain compared to the Y and YpTEX strains. Furthermore, the proliferative capacity and the secretion of gamma interferon were both preserved in spleen cells (SCs) from YpTEX-CD40L-infected mice but not with SCs from Y- and YpTEX-infected mice. These results suggest that the CD40L produced by transfected T. cruzi is involved in the modulation of an antiparasite immune response. Moreover, mice surviving YpTEX-CD40L infection resisted a challenge infection with the wild-type strain. Taken together, our data demonstrate the feasibility of generating a T. cruzi strain expressing a bioactive host costimulatory molecule that counteracts the immunodeficiency induced by the parasite during infection and enhances protective immunity against a challenge infection. PMID:16177330

  6. Transfection of Trypanosoma cruzi with host CD40 ligand results in improved control of parasite infection.

    PubMed

    Chamekh, Mustapha; Vercruysse, Vincent; Habib, Mohammed; Lorent, Maxime; Goldman, Michel; Allaoui, Abdelmounaïm; Vray, Bernard

    2005-10-01

    We have previously shown that infection by Trypanosoma cruzi, a parasitic protozoan, is reduced by injection of CD40 ligand (CD40L)-transfected 3T3 fibroblasts (D. Chaussabel, F. Jacobs, J. de Jonge, M. de Veerman, Y. Carlier, K. Thielemans, M. Goldman, and B. Vray, Infect. Immun. 67:1929-1934, 1999). This prompted us to transfect T. cruzi with the murine CD40L gene and to study the consequences of this transfe