Science.gov

Sample records for hot atom chemistry

  1. Hot atom chemistry and radiopharmaceuticals

    SciTech Connect

    Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J.

    2012-12-19

    The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

  2. Hot atom chemistry and radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J.

    2012-12-01

    The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

  3. Hot hydrogen atoms reactions of interest in molecular evolution and interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Becker, R. S.; Hong, K.; Hong, J. H.

    1974-01-01

    Hot hydrogen atoms which are photochemically generated initiate reactions among mixtures of methane, ethane, water and ammonia, to produce ethanol, organic amines, organic acids, and amino acids. Both ethanol and ethyl amine can also act as substrates for formation of amino acids. The one carbon substrate methane is sufficient as a carbon source to produce amino acids. Typical quantum yields for formation of amino acids are approximately 0.00002 to 0.00004. In one experiment, 6 protein amino acids were identified and 8 nonprotein amino acids verified utilizing gas chromatography-mass spectroscopy. We propose that hot atoms, especially hydrogen, initiate reactions in the thermodynamic nonequilibrium environment of interstellar space as well as in the atmospheres of planets.

  4. Hot hydrogen in prebiological and interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1975-01-01

    Two articles discuss the recent experimental work of Hong et al. on the production of amino acids and gas-phase organic compounds from the ultraviolet irradiation of simple gases, with hot hydrogen atoms used as the principal energy conversion agent. The reaction possibilities involving frozen ices are mentioned in both articles, as well as the significance of three-body collisions in this situation.

  5. Exploring Equilibrium Chemistry for Hot Exoplanets

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, Joseph; Mandell, Avi; Hébrard, Eric; Venot, Olivia; Cubillos, Patricio; Challener, Ryan

    2015-11-01

    It has been established that equilibrium chemistry is usually achieved deep in the atmosphere of hot Jovians where timescales are short (Line and Young 2013). Thus, equilibrium chemistry has been used as a starting point (setting initial conditions) for evaluating disequilibrium processes. We explore parameters of setting these initial conditions including departures from solar metallicity, the number of species allowed in a system, the types of species allowed in a system, and different thermodynamic libraries in an attempt to create a standard for evaluating equilibrium chemistry. NASA's open source code Chemical Equilibrium and Applications (CEA) is used to calculate model planet abundances by varying the metallicity, in the pressure regime of 0.1 to 1 bar. These results are compared to a variety of exoplanets (Teq between 600 and 2100K) qualitatively by color maps of the dayside with different temperature redistributions. Additionally, CEA (with an updated thermodynamic library) is validated with the thermochemical model presented in Venot et al. (2012) for HD 209458b and HD 189733b. This same analysis has then been extended to the cooler planet HD 97658b. Spectra are generated from both models’ abundances using the open source code transit (https://github.com/exosports/transit) using the opacities of 15 molecules. We make the updated CEA thermodyanamic library and supporting Python scripts to do the CEA analyses available open source. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G.

  6. Semiempirical hot atom theory. I - Initialization and application

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.; Chang, S.; Scattergood, T.

    1981-01-01

    A semiempirical approach to the modeling of the kinetics of reaction systems containing both hot and nonhot atoms is proposed. The approach is based on the probabilistic kinetic theory of hot-atom reactions formulated by Wolfgang (1963), with transmission probabilities estimated for a rectangular potential barrier for hot-atom and nonhot-atom reactions. A computational scheme for determining product concentrations following hot and nonhot reactions in a system containing photolytically produced hot atoms is then applied to the DBr + CH4 and HBr + CD4 hot hydrogen atom systems studied by Martin and Willard (1964), and good agreement is obtained between theoretical and experimental results.

  7. Cold Light from Hot Atoms and Molecules

    SciTech Connect

    Lister, Graeme; Curry, John J.

    2011-05-11

    The introduction of rare earth atoms and molecules into lighting discharges led to great advances in efficacy of these lamps. Atoms such as Dy, Ho and Ce provide excellent radiation sources for lighting applications, with rich visible spectra, such that a suitable combination of these elements can provide high quality white light. Rare earth molecules have also proved important in enhancing the radiation spectrum from phosphors in fluorescent lamps. This paper reviews some of the current aspects of lighting research, particularly rare earth chemistry and radiation, and the associated fundamental atomic and molecular data.

  8. High Temperature Chemistry at NASA: Hot Topics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  9. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.

    PubMed

    Park, Jeong Young; Kim, Sun Mi; Lee, Hyosun; Nedrygailov, Ievgen I

    2015-08-18

    Energy dissipation at surfaces and interfaces is mediated by excitation of elementary processes, including phonons and electronic excitation, once external energy is deposited to the surface during exothermic chemical processes. Nonadiabatic electronic excitation in exothermic catalytic reactions results in the flow of energetic electrons with an energy of 1-3 eV when chemical energy is converted to electron flow on a short (femtosecond) time scale before atomic vibration adiabatically dissipates the energy (in picoseconds). These energetic electrons that are not in thermal equilibrium with the metal atoms are called "hot electrons". The detection of hot electron flow under atomic or molecular processes and understanding its role in chemical reactions have been major topics in surface chemistry. Recent studies have demonstrated electronic excitation produced during atomic or molecular processes on surfaces, and the influence of hot electrons on atomic and molecular processes. We outline research efforts aimed at identification of the intrinsic relation between the flow of hot electrons and catalytic reactions. We show various strategies for detection and use of hot electrons generated by the energy dissipation processes in surface chemical reactions and photon absorption. A Schottky barrier localized at the metal-oxide interface of either catalytic nanodiodes or hybrid nanocatalysts allows hot electrons to irreversibly transport through the interface. We show that the chemicurrent, composed of hot electrons excited by the surface reaction of CO oxidation or hydrogen oxidation, correlates well with the turnover rate measured separately by gas chromatography. Furthermore, we show that hot electron flows generated on a gold thin film by photon absorption (or internal photoemission) can be amplified by localized surface plasmon resonance. The influence of hot charge carriers on the chemistry at the metal-oxide interface are discussed for the cases of Au, Ag, and Pt nanoparticles on oxide supports and Pt-CdSe-Pt nanodumbbells. We show that the accumulation or depletion of hot electrons on metal nanoparticles, in turn, can also influence catalytic reactions. Mechanisms suggested for hot-electron-induced chemical reactions on a photoexcited plasmonic metal are discussed. We propose that the manipulation of the flow of hot electrons by changing the electrical characteristics of metal-oxide and metal-semiconductor interfaces can give rise to the intriguing capability of tuning the catalytic activity of hybrid nanocatalysts. PMID:26181684

  10. Liquid-metal atomization for hot working preforms

    NASA Technical Reports Server (NTRS)

    Grant, N. J.; Pelloux, R. M.

    1974-01-01

    Rapid quenching of a liquid metal by atomization or splat cooling overcomes the major limitation of most solidification processes, namely, the segregation of alloying elements, impurities, and constituent phases. The cooling rates of different atomizing processes are related to the dendrite arm spacings and to the microstructure of the atomized powders. The increased solubility limits and the formation of metastable compounds in splat-cooled alloys are discussed. Consolidation of the powders by hot isostatic compaction, hot extrusion, or hot forging and rolling processes yields billets with properties equivalent to or better than those of the wrought alloys. The application of this powder processing technology to high-performance alloys is reviewed.

  11. Reaction studies of hot silicon, germanium and carbon atoms

    SciTech Connect

    Gaspar, P.P.

    1989-02-01

    Research has been continued on hot silicon, germanium and carbon atoms. The results of experiments directed toward attaining the goals of this research program are briefly presented for the period September 1, 1987 to January 31, 1989 in sections entitled: (1) The mechanism of hydrogen acquisition by high energy silicon atoms. (2) The mechanism of disilene formation in the reactions of recoiling silicon atoms with silane. (3) The contribution of ionic processes to the primary reactions of recoiling silicon atoms. (4) The role of phosphine in hydrogen acquisition by recoiling silicon atoms. (5) Mechanism of reaction of recoiling carbon atoms with aromatic molecules.

  12. Escape of Hot Oxygen Atoms from the Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Rahmati, A.; Croxell, J. A.; Cravens, T.; Pothapragada, S.; Nagy, A. F.; Ledvina, S. A.

    2013-12-01

    The main source of the production of hot oxygen atoms in the Martian atmosphere is the dissociative recombination (DR) reaction of O2+ ions with electrons. In this study, the primary production rate of hot O atoms is found for four energy channels of DR reaction. The one-dimensional energy and altitude dependent up and down flux differential equations are solved using a two-stream transport method, by taking into account the primary, secondary and cascade productions of hot O and also, the interactions with the background atmosphere. The forward and backward scattering probabilities and energy loss coefficients for 12 neutral target species are found using a Monte-Carlo simulation. The neutral target species are H, H2, He, C, N, O, CO, N2, NO, O2, Ar and CO2 for which the density profiles appropriate for Viking landers condition are used. From the up and down fluxes, the energy distribution function of hot O atoms and the escape flux at the exobase of Mars is calculated and by using the Liouville equation, the density profile of hot O is found above the exobase, extending out to several Martian radii. The results are used to study the interaction of escaping hot O atoms with the solar wind and specifically, the fluxes of energetic O+ pickup ions are determined.

  13. Modeling hot spring chemistries with applications to martian silica formation

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Crowley, J.K.; Kargel, J.S.

    2011-01-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100??C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25??C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100??C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with massive silica deposits are plausible indicators on Mars of precipitation environments and aqueous chemistry. Theoretical model calculations are in reasonable agreement with independent experimental silica concentrations, which strengthens the validity of the new CHEMCHAU model. ?? 2011 Elsevier Inc.

  14. Hot atom kinetic theory: Changes in average reaction energy

    NASA Astrophysics Data System (ADS)

    Knierim, K. D.

    1990-10-01

    Average gas phase hot atom reaction energy is determined using the two-temperature moment method of solving the Boltzmann equation. Factors which can alter the average reaction energy are discussed. A model system based on the 18F + H 2 reactive cross section is used to illustrate changes in reaction energy resulting from addition of a moderator or a competing reactant.

  15. Sounding rocket observation of a hot atomic oxygen geocorona

    NASA Technical Reports Server (NTRS)

    Cotton, Daniel M.; Gladstone, G. Randall; Chakrabarti, Supriya

    1993-01-01

    A sounding rocket measurement of the ultraviolet, atomic oxygen dayglow reveals an excess of emission compared to standard thermospheric model calculations at exospheric altitudes. We explore two explanations for this discrepancy: a breakdown of the radiative transfer model due to nonlocal thermal equilibrium (non-LTE) conditions above the exobase and a hot atomic oxygen geocorona. In particular, the effects of non-LTE on the 3P2, 1, 0 sublevel populations are modeled, and a hot O component in the upper thermosphere and lower exosphere is added to investigate the effects on the modeled emissions. For both cases, the data are reanalyzed and compared with the results using a standard LTE model. A hot O geocorona having a peak density of 10(exp 6)/cc at 550 km and a temperature of 4000 K is consistent with the data and appears to be the most reasonable explanation of the high-altitude enhanced emissions observed in the data.

  16. Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions

    SciTech Connect

    Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert; Rybak, Leonid; Levin, Liat; Amitay, Zohar; Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P.

    2013-10-28

    Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

  17. Hot organic chemistry in the inner part of protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Lahuis, Fred; Pontoppidan, Klaus; van Dishoeck, Ewine; Blake, Geoff; Boogert, Adwin; Hogerheijde, Michiel; Jrgensen, Jes; C2d Team

    Sensitive medium-resolution spectra of the class I source IRS46, obtained with the InfraRed Spectrograph on board of the Spitzer Space Telescope, reveal strong vibration-rotation absorption bands of gaseous C2H2, HCN and CO2 (see Figure 1). High excitation temperatures of ? 300 K and abundances of 10-6 - 10-5 with respect to H2 are derived, reminiscent of high temperature chemistry previously only observed toward the warm inner regions of the envelopes of evolved high mass YSOs (Lahuis & van Dishoeck 2000, Boonman et al. 2003). In spite of this high abundance, the HCN J=4-3 line is barely detected with the James Clerk Maxwell telescope, indicating a source size substantially less than 100 AU. The 850?m and 1.3mm continuum emission and the absence of scattered light in near-infrared images put stringent limits on the extent of any circumstellar envelope. A compact dense envelope is unable to explain the high excitation temperatures. A model for a nearly edge-on self-shadowed flaring disk is constructed to fit the observed SED in a manner similar to that for CRBR 2422.8-3423 (Pontoppidan et al. 2005) using the 2-D axisymmetric Monte Carlo radiative transfer code of Dullemond & Dominik (2004). Figure 2 shows the temperature and density structure of the hot inner part of the disk. The disk radius is ~60AU, the inclination is ~75? and the mass of the disk is ~0.03Msol. The disk has a puffed-up inner rim in order to reproduce the near- and mid-IR emission. To test the plausibility that the observed columns of hot gas originate from the inner disk the column and average temperature in the line of sight through the disk has been calculated up to the photosphere where the continuum at 14 ?m reaches ? = 1. A sufficiently large column density (~1022cm-2) of hot (400-900 K) dense gas is clearly seen against the hot background of the inner regions of the inner rim and against the inner rim on the far side of the star. High resolution M-band spectroscopy with Keck-NIRSPEC has shown a fraction of the hot CO gas (in absorption toward IRS46) to be blue-shifted by 15 km/s. While this could point to the presence of an outflow the relatively low velocity as well as the high column density indicate otherwise. We are exploring if dynamics within the disk can explain the shift in the lines. In summary, it is plausible that the molecular absorption bands observed here are the first direct probes of hot organic chemistry in the inner few AU of the planet forming zone of a circumstellar disk.

  18. Presentation of Atomic Structure in Turkish General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Costu, Bayram

    2009-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general chemistry textbooks published in Turkey based on the eight criteria developed in previous research. Criteria used referred to the atomic models of…

  19. Presentation of Atomic Structure in Turkish General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Costu, Bayram

    2009-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general chemistry textbooks published in Turkey based on the eight criteria developed in previous research. Criteria used referred to the atomic models of

  20. Chemistry of hot springs along the Eastern Lau Spreading Center

    NASA Astrophysics Data System (ADS)

    Mottl, Michael J.; Seewald, Jeffrey S.; Wheat, C. Geoffrey; Tivey, Margaret K.; Michael, Peter J.; Proskurowski, Giora; McCollom, Thomas M.; Reeves, Eoghan; Sharkey, Jessica; You, C.-F.; Chan, L.-H.; Pichler, Thomas

    2011-02-01

    The Eastern Lau Spreading Center (ELSC) is the southernmost part of the back-arc spreading axis in the Lau Basin, west of the Tonga trench and the active Tofua volcanic arc. Over its 397-km length it exhibits large and systematic changes in spreading rate, magmatic/tectonic processes, and proximity to the volcanic arc. In 2005, we collected 81 samples of vent water from six hydrothermal fields along the ELSC. The chemistry of these waters varies both within and between vent fields, in response to changes in substrate composition, temperature and pressure, pH, water/rock ratio, and input from magmatic gases and subducted sediment. Hot-spring temperatures range from 229° to 363 °C at the five northernmost fields, with a general decrease to the south that is reversed at the Mariner field. The southernmost field, Vai Lili, emitted water at up to 334 °C in 1989 but had a maximum venting temperature of only 121 °C in 2005, due to waning activity and admixture of bottom seawater into the subseafloor plumbing system. Chloride varies both within fields and from one field to another, from a low of 528 mmol/kg to a high of 656 mmol/kg, and may be enriched by phase separation and/or leaching of Cl from the rock. Concentrations of the soluble elements K, Rb, Cs, and B likewise increase southward as the volcanic substrate becomes more silica-rich, especially on the Valu Fa Ridge. Iodine and δ 7Li increase southward, and δ 11B decreases as B increases, apparently in response to increased input from subducted sediment as the arc is approached. Species that decrease southward as temperature falls are Si, H 2S, Li, Na/Cl, Fe, Mn, and 87Sr/ 86Sr, whereas pH, alkalinity, Ca, and Sr increase. Oxygen isotopes indicate a higher water/rock ratio in the three systems on Valu Fa Ridge, consistent with higher porosity in more felsic volcanic rocks. Vent waters at the Mariner vent field on the Valu Fa Ridge are significantly hotter, more acid and metal-rich, less saline, and richer in dissolved gases and other volatiles, including H 2S, CO 2, and F, than the other vent fields, consistent with input of magmatic gases. The large variations in geologic and geophysical parameters produced by back-arc spreading along the ELSC, which exceed those along mid-ocean ridge spreading axes, produce similar large variations in the composition of vent waters, and thus provide new insights into the processes that control the chemistry of submarine hot springs.

  1. Primordial chemistry and enzyme evolution in a hot environment.

    PubMed

    Wolfenden, Richard

    2014-08-01

    Ever since the publication of Darwin's Origin of Species, questions have been raised about whether enough time has elapsed for living organisms to have reached their present level of complexity by mutation and natural selection. More recently, it has become apparent that life originated very early in Earth's history, and there has been controversy as to whether life originated in a hot or cold environment. This review describes evidence that rising temperature accelerates slow reactions disproportionately, and to a much greater extent than has been generally recognized. Thus, the time that would have been required for primordial chemistry to become established would have been abbreviated profoundly at high temperatures. Moreover, if the catalytic effect of a primitive enzyme (like that of modern enzymes) were to reduce a reaction's heat of activation, then the rate enhancement that it produced would have increased as the surroundings cooled, quite aside from changes arising from mutation (which is itself highly sensitive to temperature). Some nonenzymatic catalysts of slow reactions, including PLP as a catalyst of amino acid decarboxylation, and the Ce(IV) ion as a catalyst of phosphate ester hydrolysis, have been shown to meet that criterion. The work reviewed here suggests that elevated temperatures collapsed the time required for early evolution on Earth, furnishing an appropriate setting for exploring the vast range of chemical possibilities and for the rapid evolution of enzymes from primitive catalysts. PMID:24623557

  2. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    DOE R&D Accomplishments Database

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  3. Atomic Chemistry in Turbulent Astrophysical Media

    NASA Astrophysics Data System (ADS)

    Scannapieco, Evan; Gray, William; Kasen, Daniel

    2015-08-01

    I will describe direct numerical simulations of turbulent astrophysical media that explicitly track the non-equillibrium evolution of atomic hydrogen, helium, carbon, nitrogen, oxygen, neon, sodium, magnesium, silicon, and iron. The simulations include collisional ionization, recombination, charge-exchange reactions, photonionization, photoheating, and species-by-species radiative cooling. For a given background shape, the medium reaches a global steady state that is purely a function of three numbers: (i) the ionization parameter, (ii) the one-dimensional turbulent velocity dispersion (sigma1D) and (iii) the product of the mean density and the turbulent driving scale. Our simulations span a large range of conditions, and we describe their application to ongoing studies of the interstellar medium in starbursting galaxies and the circumgalactic medium as probed by quasar absorption line studies. Our results are available as a series of oneline tables, that allow for future studies to account for nonequilibrium effects in turbulent media with sigma1D = 5-60 km/s, regardless of physical scale.

  4. Kinetic model for Eley-Rideal and hot atom reactions between H atoms on metal surfaces

    NASA Astrophysics Data System (ADS)

    Jackson, Bret; Sha, Xianwei; Guvenc, Ziya B.

    2002-02-01

    A simple kinetic model is used to describe the interaction of H and D atomic beams with H- and D-covered metal surfaces. The atoms incident from the gas phase can have a direct Eley-Rideal reaction with an adsorbate, reflect, penetrate into the bulk, knock an adsorbate out of its binding site, or trap to form a hot atom. These hot mobile atoms can go on to react with other adsorbates, or eventually relax and stick. A coarse-graining approach, which takes advantage of the large difference between the time scales for the kinetics experiments and the reaction dynamics, allows us to derive relatively simple kinetic equations for reaction rates and coverages. The approach is similar to a kinetic random walk model developed by Kppers and co-workers [J. Phys. Chem. 109, 4071 (1998)] except that our equations can be used to derive analytical expressions for saturation coverages, rates, and yields. The model is applied to the case of H atom reactions on a Ni(100) surface, and a detailed comparison is made with both experimental and quasiclassical studies.

  5. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.; Gupta, B. K.

    1984-01-01

    Hot corrosion life prediction methodology based on a combination of laboratory test data and field service turbine components, which show evidence of hot corrosion, were examined. Components were evaluated by optical metallography, scanning electron microscopy (SEM), and electron micropulse (EMP) examination.

  6. Pre-cometary ice composition from hot core chemistry.

    PubMed

    Tornow, Carmen; Khrt, Ekkehard; Motschmann, Uwe

    2005-10-01

    Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere. PMID:16225436

  7. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.

    1984-01-01

    Baseline burner rig hot corrosion with Udimet 700, Rene' 80; uncoated and with RT21, Codep, or NiCoCrAlY coatings were tested. Test conditions are: 900C, hourly thermal cycling, 0.5 ppm sodium as NaCl in the gas stream, velocity 0.3 Mach. The uncoated alloys exhibited substantial typical sulfidation in the range of 140 to 170 hours. The aluminide coatings show initial visual evidence of hot corrosion at about 400 hours, however, there is no such visual evidence for the NiCoCrAlY coatings. The turbine components show sulfidation. The extent of this distress appeared to be inversely related to the average length of mission which may, reflect greater percentage of operating time near ground level or greater percentage of operation time at takeoff conditions (higher temperatures). In some cases, however, the location of maximum distress did not exhibit the structural features of hot corrosion.

  8. The Relation Between Alloy Chemistry and Hot-Cracking

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Talia, J. E.

    2000-01-01

    Hot cracking is a problem in welding 2195 aluminum-lithium alloy. Weld wire additives seem to reduce the problem. This study proposes a model intended to clarify the way alloying elements affect hot-cracking. The brittle temperature range of an alloy extends wherever the tensile stress required to move the meniscus of the liquid film at the grain/dendrite boundaries is less than the bulks flow stress Sigma(sub B) of the grains: 2gamma/delta <= sigma(sub B) + P where gamma is boundary film surface tension delta= boundary film thickness P = gas pressure (Some alloys outgas.) If the above condition is not met, the grains deform under stress and the liquid film remains in place. Curves of 2gamma/delta and sigma(sub B) vs. temperature in the range just below the melting temperature determine the hot cracking susceptibility of an alloy. Both are zero at onset of solidification. sigma(sub B) rises as the thermal activation of the slip mechanism is reduced. 2gamma/delta rises as the film thickness delta which can be estimated from the Scheil equation, drops. But, given an embrittled alloy, whether the alloy actually cracks is determined by the strain imposed upon it in the embrittled condition. A critical strain is estimated, Epsilon(sub C) on the order of Epsilon(sub C) is approximately delta/l where L = grain size and where the the volume increment due to the strain, concentrated at the liquid film, is on the order of the liquid film volume. In the early 80's an empirical critical strain cracking envelope Epsilon(sub C)(T) was incorporated into a damage criterion to estimate the effect of welding parameters on the formation of microfissures in a superalloy with good results. These concepts, liquid film decoherence vs. grain bulk deformation and critical strain, form the key elements of a quantitative theory of hot-cracking applicable for assessing the effect of alloying elements on hot-cracking during welding.

  9. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.; Leese, G. E.

    1986-01-01

    Burner rig tests were conducted under the following conditions: 900 C, hourly thermal cycling, 0.5 ppm sodium as NaCl in the gas stream, and Mach 0.3 velocity. The alloys tested were Udimet 700 (U700) and Rene 80, uncoated and with RT21, Codep, or NiCoCrAlY coatings. The tests, up to 1000 hours, included specimens in the as-processed condition and after aging at 1100 C in oxidizing or inert environments for up to 600 hours. Coil-inductance changes were measured for periodic nondestructive inspection of speciments and found useful in the following course of corrosion. Typical sulfidation observed in all cases was similar to that observed in service-run turbine components. Aging at 1100 C caused severe decrease in the hot corrosion life of RT21 and Codep coatings and a significant but lesser decrease in the life of NiCoCrAlY coatings. The extent of these decreases was much greater for all three coatings on U700 than on Rene substrates. A coating hot corrosion life-predicitin model was proposed. The model requires time/temperature information for a turbine component at takeoff conditions as well as environmental contaminant information.

  10. Infusing the Chemistry Curriculum with Green Chemistry Using Real-World Examples, Web Modules, and Atom Economy in Organic Chemistry Courses

    ERIC Educational Resources Information Center

    Cann, Michael C.; Dickneider, Trudy A.

    2004-01-01

    Green chemistry is the awareness of the damaging environmental effects due to chemical research and inventions. There is emphasis on a need to include green chemistry in synthesis with atom economy in organic chemistry curriculum to ensure an environmentally conscious future generation of chemists, policy makers, health professionals and business

  11. Infusing the Chemistry Curriculum with Green Chemistry Using Real-World Examples, Web Modules, and Atom Economy in Organic Chemistry Courses

    ERIC Educational Resources Information Center

    Cann, Michael C.; Dickneider, Trudy A.

    2004-01-01

    Green chemistry is the awareness of the damaging environmental effects due to chemical research and inventions. There is emphasis on a need to include green chemistry in synthesis with atom economy in organic chemistry curriculum to ensure an environmentally conscious future generation of chemists, policy makers, health professionals and business…

  12. Relaxation of hot atoms following H2 dissociation on a Pd111 surface.

    PubMed

    Pineau, N; Busnengo, H F; Rayez, J C; Salin, A

    2005-06-01

    We study the relaxation of hot H atoms produced by dissociation of H2 molecules on the Pd111 surface. Ab initio density-functional theory calculations and the "corrugation reducing procedure" are used to determine the interaction potential for a H atom in front of a rigid surface as well as its modification under surface-atom vibrations. A slab of 80 Pd atoms is used to model the surface together with "generalized Langevin oscillators" to account for energy dissipation to the bulk. We show that the energy relaxation is fast, about 75% of the available energy being lost by the hot atoms after 0.5 ps. As a consequence, the hot atoms do not travel more than a few angstroms along the surface before being trapped into the potential well located over the hollow site. PMID:15974760

  13. Testing grain-surface chemistry in hot core regions

    NASA Astrophysics Data System (ADS)

    Bisschop, Suzanne E.; Jrgensen, Jes K.; van Dishoeck, Ewine F.

    Many complex organic molecules have been detected in star-forming regions like CH3OCH3 and CH3CH2CN. Studying their chemistry is important, since these species may eventually be incorporated into circumstellar disks and thus become part of the material from which future planetary systems are made. Two scenarios for their formation have been proposed: grain-surface formation and high-temperature gas-phase reactions (van Dishoeck & Hogerheijde 1999). In the former case, grain-surface reactions during the cold pre-stellar and protostellar phases are thought to lead to the formation of various hydrogenated molecules, which subsequently evaporate into the gas when the young star heats its surroundings. In the latter scenario, high-temperature gas-phase reactions involving evaporated molecules (primarily CH3OH) produce complex organic species (Charnley et al. 1992). The resulting molecules from these two schemes are also known as "first generation" and "second generation" species, respectively. Currently, it is very difficult to distinguish between these two scenarios since the rates of even some of the most basic surface reactions are not known. Accordingly, we have started a combined laboratory and observational program to test the scenarios. The basic scheme for grain surface chemistry has been outlined by Tielens & Hagen (1982) and Tielens & Charnley (1997). The first step is hydrogenation of the main species that accrete from the gas onto the grains, i.e., C, N, O and CO, leading to CH4, NH3, H2O, H2CO and CH3OH. These molecules can react further in the ice with C, H, N, and O creating several more complicated species. In the warm regions close to the protostars the grain mantles can evaporate, returning many of the "first generation" molecules into the gas phase. Deep JCMT searches for a set of molecules have been performed for 1 low mass and 7 high mass young stellar objects (YSOs) (e.g. Figure 1). The focus is on relatively nearby sources with narrow line widths to avoid confusion. The molecules studied are HCO, H2CO, CH3OH, CH2CO, CH3CHO, C2H5OH, HNCO and NH2CHO. HNCO, CH3OH, H2CO and C2H5OH are detected for most or all sources, whereas NH2CHO, CH2CO and HCOOH are detected for some and HCO and CH3CHO are not detected at all. For HCO the reason is likely due to its low intrinsic line strength, however CH3CHO has previously been detected by Ikeda et al. (2002). The rotational temperatures found by Ikeda et al. are only 20-30 K and thus much lower than the lowest rotational transition of 71 K that can be probed with the JCMT. Initial correlations between the abundances with respect to CO of these species have been studied, and a more detailed analysis using radiative transfer models will follow. The correlation between the abundances relative to CO are found to be strong for CH3OH, H2CO, C2H5OH, and HNCO (see for example Figure 1 for HNCO and C2H5OH), whereas no clear trends are yet found for the abundances of HCOOH, NH2CHO, and CH2CO. The strong trends found for four of these molecules indicate that they are either present in the same environment or share a common formation mechanism. The resulting branching ratios can be compared with various models. For example, pure gas-phase models by Lee et al. (1996) predict CH2CO/CH3CHO/CH3CH2OH ratios of ~1 : 10-3 : 10-5, whereas grain-surface chemistry predicts ratios much closer to unity. Our inferred branching ratios are found to be much closer to the latter values, indicating that grain-chemistry plays an important role.

  14. Applications of Atomic Force Microscopy in Biophysical Chemistry of Cells

    PubMed Central

    Deng, Zhao; Lulevich, Valentin; Liu, Fu-tong; Liu, Gang-yu

    2014-01-01

    This article addresses the question of what information and new insights atomic force microscopy (AFM) provides that are of importance and relevance to cellular biophysical chemistry research. Three enabling aspects of AFM are discussed: (a) visualization of membrane structural features with nanometer resolution, such as microvilli, ridges, porosomes, lamellapodia, and filopodia; (b) revealing structural evolution associated with cellular signaling pathways by time-dependent and high-resolution imaging of the cellular membrane in correlation with intracellular components from simultaneous optical microscopy; and (c) qualitative and quantitative measurements of single cell mechanics by acquisition of force-deformation profiles and extraction of Youngs moduli for the membrane as well as cytoskeleton. A future prospective of AFM is also presented. PMID:20405961

  15. Hydrogen atom initiated chemistry. [chemical evolution in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hong, J. H.; Becker, R. S.

    1979-01-01

    H Atoms have been created by the photolysis of H2S. These then initiated reactions in mixtures involving acetylene-ammonia-water and ethylene-ammonia-water. In the case of the acetylene system, the products consisted of two amino acids, ethylene and a group of primarily cyclic thio-compounds, but no free sulfur. In the case of the ethylene systems, seven amino acids, including an aromatic one, ethane, free sulfur, and a group of solely linear thio-compounds were produced. Total quantum yields for the production of amino acids were about 3 x 10 to the -5th and about 2 x 10 to the -4th with ethylene and acetylene respectively as carbon substrates. Consideration is given of the mechanism for the formation of some of the products and implications regarding planetary atmosphere chemistry, particularly that of Jupiter, are explored.

  16. Unraveling the complex chemistry using dimethylsilane as a precursor gas in hot wire chemical vapor deposition.

    PubMed

    Toukabri, Rim; Shi, Yujun

    2014-05-01

    The gas-phase reaction chemistry when using dimethylsilane (DMS) as a source gas in a hot-wire chemical vapor deposition (CVD) process has been studied in this work. The complex chemistry is unraveled by using a soft 10.5 eV single photon ionization technique coupled with time-of-flight mass spectrometry in combination with the isotope labelling and chemical trapping methods. It has been demonstrated that both free-radical reactions and those involving silylene/silene intermediates are important. The reaction chemistry is characterized by the formation of 1,1,2,2-tetramethyldisilane (TMDS) from dimethylsilylene insertion into the Si-H bond of DMS, trimethylsilane (TriMS) from free-radical recombination, and 1,3-dimethyl-1,3-disilacyclobutane (DMDSCB) from the self dimerization of either dimethylsilylene or 1-methylsilene. At low filament temperatures and short reaction time, silylene chemistry dominates. The free-radical reactions become more important with increasing temperature and time. The same three products have been detected when using tantalum and tungsten filaments, indicating that changing the filament material from Ta to W does not affect much the gas-phase reaction chemistry when using DMS as a source gas in a hot-wire CVD reactor. PMID:24647875

  17. A hot-atom reaction kinetic model for H abstraction from solid surfaces

    NASA Astrophysics Data System (ADS)

    Kammler, Th.; Kolovos-Vellianitis, D.; Kppers, J.

    2000-07-01

    Measurements of the abstraction reaction kinetics in the interaction of gaseous H atoms with D adsorbed on metal and semiconductor surfaces, H(g)+D(ad)/S? products, have shown that the kinetics of the HD products are at variance with the expectations drawn from the operation of Eley-Rideal mechanisms. Furthermore, in addition to HD product molecules, D 2 products were observed which are not expected in an Eley-Rideal scenario. Products and kinetics of abstraction reactions on Ni(100), Pt(111), and Cu(111) surfaces were recently explained by a random-walk model based solely on the operation of hot-atom mechanistic steps. Based on the same reaction scenario, the present work provides numerical solutions of the appropriate kinetic equations in the limit of the steady-state approximation for hot-atom species. It is shown that the HD and D 2 product kinetics derived from global kinetic rate constants are the same as those obtained from local probabilities in the random walk model. The rate constants of the hot-atom kinetics provide a background for the interpretation of measured data, which was missing up to now. Assuming that reconstruction affects the competition between hot-atom sticking and hot-atom reaction, the application of the present model at D abstraction from Cu(100) surfaces reproduces the essential characteristics of the experimentally determined kinetics.

  18. Muon transfer from hot muonic hydrogen atoms to neon

    SciTech Connect

    Jacot-Guillarmod, R. . Inst. de Physique); Bailey, J.M. ); Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A. ); Beveridge, J.L.; Marshall, G.M.; Brewer, J.H.; Forster, B.M. ); Huber, T.M. ); Kammel, P.; Zmeskal, J.

    1992-01-01

    A negative muon beam has been directed on adjacent solid layers of hydrogen and neon. Three targets differing by their deuterium concentration were investigated. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. The time structure of the muonic neon X-rays follows the exponential law with a disappearance rate corresponding to the one of [mu][sup [minus]p] atoms in each target. The rates [lambda][sub pp[mu

  19. Atomically resolved real-space imaging of hot electron dynamics.

    PubMed

    Lock, D; Rusimova, K R; Pan, T L; Palmer, R E; Sloan, P A

    2015-01-01

    The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100?fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10?nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics. PMID:26387703

  20. Atomically resolved real-space imaging of hot electron dynamics

    PubMed Central

    Lock, D.; Rusimova, K. R.; Pan, T. L.; Palmer, R. E.; Sloan, P. A.

    2015-01-01

    The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics. PMID:26387703

  1. Atomically resolved real-space imaging of hot electron dynamics

    NASA Astrophysics Data System (ADS)

    Lock, D.; Rusimova, K. R.; Pan, T. L.; Palmer, R. E.; Sloan, P. A.

    2015-09-01

    The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics.

  2. Atomic Carbon Chemistry in Photolyzed Triton-like Ices

    NASA Astrophysics Data System (ADS)

    Johnson, Paul; Hodyss, R.; Howard, H. R.; Goguen, J. D.; Kanik, I.

    2010-10-01

    We report photochemical studies of thin cryogenic ice films composed of N2, CH4 and CO in ratios similar to those on the surfaces of Neptune's largest satellite, Triton, and on Pluto. Experiments were performed using a hydrogen discharge lamp, which provides an intense source of ultraviolet light in order to elucidate the solar induced photochemistry of these icy bodies. Characterization via infrared spectroscopy showed that C2H6 and C2H2, and HCO are formed by the dissociation of CH4 into H and CH3 and the subsequent reaction of these radicals within the ice. Other radical species, such as C2, C2-, CN, and CNN are observed in the visible and UV regions of the spectrum. These species imply a rich chemistry based on reactions of atomic carbon with the N2 matrix. We discuss the implications of the formation of these radicals for the chemical evolution of Triton and Pluto. Ultimately, this work suggests that C2-, CN, HCO, and CNN may be found in significant quantities on the surfaces of Triton and Pluto and that new observations of these objects in the appropriate wavelength regions are warranted.

  3. Atomic carbon chemistry in photolyzed Triton-like ices

    NASA Astrophysics Data System (ADS)

    Hodyss, R. P.; Howard, H. R.; Johnson, P. V.; Goguen, J.; Kanik, I.

    2010-12-01

    We report photochemical studies of thin cryogenic ice films composed of N2, CH4 and CO in ratios similar to those on the surfaces of Neptunes largest satellite, Triton, and on Pluto. Experiments were performed using a hydrogen discharge lamp, which provides an intense source of ultraviolet light in order to elucidate the solar induced photochemistry of these icy bodies. Characterization via infrared spectroscopy showed that C2H6 and C2H2, and HCO are formed by the dissociation of CH4 into H and CH3 and the subsequent reaction of these radicals within the ice. Other radical species, such as C2, C2-, CN, and CNN are observed in the visible and UV regions of the spectrum. These species imply a rich chemistry based on reactions of atomic carbon with the N2 matrix. We discuss the implications of the formation of these radicals for the chemical evolution of Triton and Pluto. Ultimately, this work suggests that C2-, CN, HCO, and CNN may be found in significant quantities on the surfaces of Triton and Pluto and that new observations of these objects in the appropriate wavelength regions are warranted.

  4. Hot Atoms and Molecules Produced by Precipitating Ions in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Lewkow, N.; Kharchenko, V. A.

    2013-12-01

    Accurate parameters describing the momentum-energy transfer of precipitating ion and energetic neutral atom (ENA) fluxes, created through charge exchange collisions between solar wind ions and neutral gases in the Mars atmosphere, have been determined. For modeling the momentum and energy deposition by precipitating ion/ENA fluxes, ab initio quantum cross sections have been computed and used for atom-atom collisions for energies up to 10 keV/amu. Newly developed 'universal' cross sections, obtained via quantum scaling procedure and verified with available data of laboratory experiments, have been employed for unknown atom-molecule collisions, such as ENAs collisions with CO2, H2, or N2. Scaling methods and accurate quantum differential cross sections, obtained in our investigations, allows for realistic descriptions of energy transfer processes and production of secondary hot atoms and molecules in the Martian atmosphere. To describe ion/ENA precipitation and upward propagation of the secondary hot atoms and molecules, 3d Monte Carlo simulations have been developed using the newly constructed collision database. Formation and propagation of the upward and escape fluxes in the Mars atmosphere have been analyzed in detail with a comprehensive examination of parameters such as thermalization times, altitude dependent heating and secondary hot atom creation rates, and energy/momentum distributions in atom/molecule escape fluxes. The Monte Carlo simulations have been performed for different solar conditions and the solar wind parameters.

  5. Muon transfer from hot muonic hydrogen atoms to neon

    SciTech Connect

    Jacot-Guillarmod, R.; Bailey, J.M.; Beer, G.A.; Knowles, P.E.; Mason, G.R.; Olin, A.; Beveridge, J.L.; Marshall, G.M.; Brewer, J.H.; Forster, B.M.; Huber, T.M.; Kammel, P.; Zmeskal, J.; Kunselman, A.R.; Petitjean, C.

    1992-12-31

    A negative muon beam has been directed on adjacent solid layers of hydrogen and neon. Three targets differing by their deuterium concentration were investigated. Muonic hydrogen atoms can drift to the neon layer where the muon is immediately transferred. The time structure of the muonic neon X-rays follows the exponential law with a disappearance rate corresponding to the one of {mu}{sup {minus}p} atoms in each target. The rates {lambda}{sub pp{mu}} and {lambda}{sub pd} can be extracted.

  6. Simple microwave field imaging technique using hot atomic vapor cells

    NASA Astrophysics Data System (ADS)

    Bhi, Pascal; Treutlein, Philipp

    2012-10-01

    We demonstrate a simple technique for microwave field imaging using alkali atoms in a vapor cell. The microwave field to be measured drives Rabi oscillations on atomic hyperfine transitions, which are detected in a spatially resolved way using a laser beam and a camera. Our vapor cell geometry enables single-shot recording of two-dimensional microwave field images with 350 ?m spatial resolution. Using microfabricated vapor cell arrays, a resolution of a few micrometers seems feasible. All vector components of the microwave magnetic field can be imaged. Our apparatus is simple and compact and does not require cryogenics or ultra-high vacuum.

  7. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots

    PubMed Central

    Liu, Qian; Ren, Jing; Song, Jiangning; Li, Jinyan

    2015-01-01

    A binding hot spot is a small area at a protein-protein interface that can make significant contribution to binding free energy. This work investigates the substantial contribution made by some special co-occurring atomic contacts at a binding hot spot. A co-occurring atomic contact is a pair of atomic contacts that are close to each other with no more than three covalent-bond steps. We found that two kinds of co-occurring atomic contacts can play an important part in the accurate prediction of binding hot spot residues. One is the co-occurrence of two nearby hydrogen bonds. For example, mutations of any residue in a hydrogen bond network consisting of multiple co-occurring hydrogen bonds could disrupt the interaction considerably. The other kind of co-occurring atomic contact is the co-occurrence of a hydrophobic carbon contact and a contact between a hydrophobic carbon atom and a π ring. In fact, this co-occurrence signifies the collective effect of hydrophobic contacts. We also found that the B-factor measurements of several specific groups of amino acids are useful for the prediction of hot spots. Taking the B-factor, individual atomic contacts and the co-occurring contacts as features, we developed a new prediction method and thoroughly assessed its performance via cross-validation and independent dataset test. The results show that our method achieves higher prediction performance than well-known methods such as Robetta, FoldX and Hotpoint. We conclude that these contact descriptors, in particular the novel co-occurring atomic contacts, can be used to facilitate accurate and interpretable characterization of protein binding hot spots. PMID:26675422

  8. Atomic Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on atomic structure is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one focuses on the atomic nucleus. Level two focuses on the arrangement of extranuclear electrons, approaching atomic orbitals through both electron bombardment and spectra.…

  9. Dry soldering with hot filament produced atomic hydrogen

    DOEpatents

    Panitz, Janda K. G.; Jellison, James L.; Staley, David J.

    1995-01-01

    A system for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs.

  10. Dry soldering with hot filament produced atomic hydrogen

    DOEpatents

    Panitz, J.K.G.; Jellison, J.L.; Staley, D.J.

    1995-04-25

    A system is disclosed for chemically transforming metal surface oxides to metal that is especially, but not exclusively, suitable for preparing metal surfaces for dry soldering and solder reflow processes. The system employs one or more hot, refractory metal filaments, grids or surfaces to thermally dissociate molecular species in a low pressure of working gas such as a hydrogen-containing gas to produce reactive species in a reactive plasma that can chemically reduce metal oxides and form volatile compounds that are removed in the working gas flow. Dry soldering and solder reflow processes are especially applicable to the manufacture of printed circuit boards, semiconductor chip lead attachment and packaging multichip modules. The system can be retrofitted onto existing metal treatment ovens, furnaces, welding systems and wave soldering system designs. 1 fig.

  11. On the role of 'hot' atoms in plasma-assisted ignition.

    PubMed

    Starikovskiy, Andrey Yu

    2015-08-13

    This paper discusses the processes leading to the formation of 'hot' atoms and radicals possessing excessive translational energy in high-voltage NS pulse discharges. It is shown that the formation of such 'hot' atoms occurs efficiently both in the dissociation of molecules by direct electron impact, and in the collisional quenching of electronically excited states. Depending on the magnitude of the reduced electric field in the discharge, reactions of these 'hot' atoms increase the initial concentration of radicals in the discharge afterglow two to three times when compared with the values calculated without effects of translational non-equilibrium. The role of thermally non-equilibrium excitation has been demonstrated in the formation of the initial distribution of the chemically active components in the mixture and its influence on the kinetics of ignition initiation at low and high temperatures. It was found that in undiluted mixtures the presence of 'hot' atoms can significantly decrease an ignition threshold and accelerate a low-temperature oxidation. PMID:26170429

  12. Atoms-First Curriculum: A Comparison of Student Success in General Chemistry

    ERIC Educational Resources Information Center

    Esterling, Kevin M.; Bartels, Ludwig

    2013-01-01

    We present an evaluation of the impact of an atoms-first curriculum on student success in introductory chemistry classes and find that initially a lower fraction of students obtain passing grades in the first and second quarters of the general chemistry series. This effect is more than reversed for first-quarter students after one year of…

  13. Atoms-First Curriculum: A Comparison of Student Success in General Chemistry

    ERIC Educational Resources Information Center

    Esterling, Kevin M.; Bartels, Ludwig

    2013-01-01

    We present an evaluation of the impact of an atoms-first curriculum on student success in introductory chemistry classes and find that initially a lower fraction of students obtain passing grades in the first and second quarters of the general chemistry series. This effect is more than reversed for first-quarter students after one year of

  14. Atomic-resolution characterization of interface structure and chemistry in the STEM

    SciTech Connect

    Browning, N.D.; McGibbon, M.M.; McGibbon, A.J.; Chisholm, M.F.; Pennycook, S.J.; Ravikumar, V.; Dravid, V.P.

    1994-03-01

    Combination of Z-contrast imaging and EELS (electron energy loss spectroscopy) allows the local structure and chemistry of interfaces to be determined on the atomic scale. In this paper, these two complementary techniques are used to analyze the structure and chemistry of a nominally 25 degree [100] symmetric tilt boundary in an electroceramic SrTiO{sub 3} bicrystal.

  15. SEMILLAC: A new hybrid atomic model of hot dense plasmas

    NASA Astrophysics Data System (ADS)

    Frank, Yechiel; Louzon, Einat; Mandelbaum, Pinchas; Henis, Zohar

    2013-09-01

    SEMILLAC is a fast, yet highly accurate method to calculate ionic population distributions in plasmas at a given electron temperature and density. SEMILLAC solves rate equations for non-relativistic configurations population distributions. It considers electron collisional, radiative and autoionizing atomic processes. The code is designed to be highly versatile so it can be used for modeling a wide range of laboratory plasmas. The population distributions can be calculated for steady state or time dependent conditions, with or without the presence of a radiation field. SEMILLAC is designed to be used as a tool for population distributions calculations and spectroscopic modeling of plasmas. Our aim is to get high accuracy while keeping the code fast enough to be used for standard PC calculations. At the heart of our method, average transitions energies and rate coefficients are calculated for a restricted set of simple non-relativistic ionic configurations using the HULLAC code. We then use this basic set to calculate energies and rates coefficients of more complex, multiply excited configurations.

  16. Single-collision studies of hot atom energy transfer and chemical reaction

    SciTech Connect

    Valentini, J.J. )

    1991-01-01

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,'' Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH {yields} H{sub 2} R reactions where RH is CH{sub 4}, C{sub 2}H{sub 6}, or C{sub 3}H{sub 8}, (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants.

  17. Single-collision studies of hot atom energy transfer and chemical reaction. Final report

    SciTech Connect

    Valentini, J.J.

    1991-12-31

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project ``Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,`` Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH {yields} H{sub 2} R reactions where RH is CH{sub 4}, C{sub 2}H{sub 6}, or C{sub 3}H{sub 8}, (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants.

  18. Atomic Orbitals, Molecular Orbitals and Related Concepts: Conceptual Difficulties among Chemistry Students.

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios

    1997-01-01

    Investigates the impact an undergraduate quantum chemistry course has on students' knowledge and understanding of atomic orbitals, molecular orbitals, and related concepts. Analysis reveals that students do not have a clear understanding of these concepts and confuse the various atomic orbital representations. Includes some suggestions and

  19. Secondary Students' Mental Models of Atoms and Molecules: Implications for Teaching Chemistry.

    ERIC Educational Resources Information Center

    Harrison, Allan G.; Treagust, David F.

    1996-01-01

    Examines the reasoning behind views of atoms and molecules held by students (n=48) and investigates how mental models may assist or hamper further instruction in chemistry. Reports that students prefer models of atoms and molecules that depict them as discrete, concrete structures. Recommends that teachers develop student modeling skills and

  20. Scattering of cold-atom coherences by hot atoms: frequency shifts from background-gas collisions.

    PubMed

    Gibble, Kurt

    2013-05-01

    Frequency shifts from background-gas collisions currently contribute significantly to the inaccuracy of atomic clocks. Because nearly all collisions with room-temperature background gases that transfer momentum eject the cold atoms from the clock, the interference between the scattered and unscattered waves in the forward direction dominates these frequency shifts. We show they are ? 10 times smaller than in room-temperature clocks and that van der Waals interactions produce the cold-atom background-gas shift. General considerations allow the loss of the Ramsey fringe amplitude to bound this frequency shift. PMID:23683186

  1. Study of Photochemical Escape of Hot Atomic Carbon in Mars Upper Thermosphere and Exosphere

    NASA Astrophysics Data System (ADS)

    Lee, Yuni; Combi, M. R.; Tenishev, V.; Bougher, S. W.

    2012-10-01

    The production of energetic particles results in the formation of hot atom coronae on the Martian atmosphere. We have carried out the study of the hot carbon in Mars upper thermosphere and exosphere using our Monte Carlo calculations. The most important reactions for producing hot atomic carbon are expected to be photodissociation of CO and dissociative recombination (DR) of CO+ ion. The dominant source of the nonthermal escape of hot carbon from Mars is found to be photodissociation of CO, which is sensitive to solar activity and occurs mostly deep in the dayside thermosphere of Mars. The escape flux of hot carbon from dissociative recombination of CO+ has also been estimated using the latest available branching ratio and appropriate choice of rate coefficient. In this study, the calculated total global escapes of hot carbon from all dominant photochemical processes at different solar activities and Martian seasons are presented. To describe self-consistently the exosphere and the upper thermosphere, a combination of our 3D Direct Simulation Monte Carlo (DSMC) model [Valeille, A., Combi, M., Bougher, S., Tenishev, V., Nagy, A., 2009. J. Geophys. Res. 114, E11006. doi:10.1029/2009JE003389] and the 3D Mars Thermosphere General Circulation Model (MTGCM) [Bougher, S.W., Bell, J.M., Murphy, J.R., Lopez-Valverde, M.A., Withers, P.G., 2006. Geophys. Res. Lett. 32, doi: 10.1029/2005GL024059. L02203] is used. Profiles of density and temperature, atmospheric loss rates and return fluxes are studied using the model for the cases considered. Comparisons of DSMC model outputs will be made with those from other recent exosphere model studies.

  2. Ultra fast cooling of hot steel plate by air atomized spray with salt solution

    NASA Astrophysics Data System (ADS)

    Mohapatra, Soumya S.; Ravikumar, Satya V.; Jha, Jay M.; Singh, Akhilendra K.; Bhattacharya, Chandrima; Pal, Surjya K.; Chakraborty, Sudipto

    2014-05-01

    In the present study, the applicability of air atomized spray with the salt added water has been studied for ultra fast cooling (UFC) of a 6 mm thick AISI-304 hot steel plate. The investigation includes the effect of salt (NaCl and MgSO4) concentration and spray mass flux on the cooling rate. The initial temperature of the steel plate before the commencement of cooling is kept at 900 °C or above, which is usually observed as the "finish rolling temperature" in the hot strip mill of a steel plant. The heat transfer analysis shows that air atomized spray with the MgSO4 salt produces 1.5 times higher cooling rate than atomized spray with the pure water, whereas air atomized spray with NaCl produces only 1.2 times higher cooling rate. In transition boiling regime, the salt deposition occurs which causes enhancement in heat transfer rate by conduction. Moreover, surface tension is the governing parameter behind the vapour film instability and this length scale increases with increase in surface tension of coolant. Overall, the achieved cooling rates produced by both types of salt added air atomized spray are found to be in the UFC regime.

  3. Symmetry in chemistry from the hydrogen atom to?proteins

    PubMed Central

    Kellman, Michael?E.

    1996-01-01

    The last 2 decades have seen discoveries in highly excited states of atoms and molecules of phenomena that are qualitatively different from the planetary model of the atom, and the near-rigid model of molecules, characteristic of these systems in their low-energy states. A unified view is emerging in terms of approximate dynamical symmetry principles. Highly excited states of two-electron atoms display molecular behavior of a nonrigid linear structure undergoing collective rotation and vibration. Highly excited states of molecules described in the standard molecular model display normal mode couplings, which induce bifurcations on the route to molecular chaos. New approaches such as rigidnonrigid correlation, vibrons, and quantum groups suggest a unified view of collective electronic motion in atoms and nuclear motion in molecules. PMID:8962040

  4. Chemical Principles Revisited: Updating the Atomic Theory in General Chemistry.

    ERIC Educational Resources Information Center

    Whitman, Mark

    1984-01-01

    Presents a descriptive overview of recent achievements in atomic structure to provide instructors with the background necessary to enhance their classroom presentations. Topics considered include hadrons, quarks, leptons, forces, and the unified fields theory. (JN)

  5. Cold chemistry in high density atom-ion environments

    NASA Astrophysics Data System (ADS)

    Perez-Rios, Jesus; Krukow, Artjom; Mohamadi, Amir; Wolf, Joschka; Schenetzer, Tobias; Hecker Denschlag, Johannes; Greene, Chris H.

    2015-05-01

    A single laser cooled 138Ba+ is brought in contact with a high density atomic cloud of ultracold 87Rb atoms, as a result, different chemical reactions leads to the formation of atomic an molecular products that are detected. We show by first principles, as well as it is confirmed in the experiment, that three-body recombination is the main physical process behind the cold chemical reactions in high density atom-ion environments. In particular, it is found that the observed final products are a consequence of the three-body process followed by subsequent chemical processes, which are also studied. This work elucidates the role of the density in the chemical reactivity in ion-neutral systems. This work was supported in part by the Department of Energy, Office of Science.

  6. Two-color ghost interference with photon pairs generated in hot atoms

    SciTech Connect

    Ding Dongsheng; Zhou Zhiyuan; Shi Baosen; Zou Xubo; Guo Guangcan

    2012-09-15

    We report on an experimental observation of a two-photon ghost interference experiment. A distinguishing feature of our experiment is that the photons are generated via a non-degenerated spontaneous four-wave mixing process in a hot atomic ensemble; therefore the photon has narrow bandwidth. Besides, there is a large difference in frequency between two photons in a pair. Our works may be important to achieve more secure, large transmission capacity long-distance quantum communication.

  7. Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges

    SciTech Connect

    Seyfried, W.E. Jr.; Ding, K.; Berndt, M.E. )

    1991-12-01

    Recent advances in experimental and theoretical geochemistry have made it possible to assess both homogeneous and heterogeneous equilibria involving a wide range of aqueous species at temperatures and pressures appropriate to model hydrothermal alteration processes at mid-ocean ridges. The authors have combined selected aspects of the chemistry of hot spring fluids with constraints imposed by a geologically reasonable assemblage of minerals in the system Na{sub 2}O-K{sub 2}O-CaO-MgO-FeO-Fe{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O-HCl-H{sub 2}S to assess the effect of temperature on the composition of the aqueous phase and the activities of mineral components in plagioclase and epidote solid solutions. Assuming fO{sub 2(g)} and fS{sub 2(g)} controlled by pyrite-pyrrhotite-magnetite equilibria, a constant dissolved Ca concentration, and a dissolved Cl concentration equivalent to that of seawater, increasing temperature from 250 to 400C at 500 bars results in systematic changes in the composition of mineral phases, which in turn constrain pH and the distribution of aqueous species. The model predicts that dissolved concentrations of Fe, SiO{sub 2}, K, H{sub 2}S, and H{sub 2} increase, while Na and pH{sub (25C)} decrease with increasing temperature. That many hot springs vent fluids are characterized by variable degrees of conductive heat loss renders measured temperatures unreliable as indicators of the maximum temperature of subseafloor hydrothermal alteration processes. The implications of this are significant for hot spring fluids which reveal large Cl variations relative to seawater, since likely mechanisms to account for such variability typically require temperatures in excess of those inferred for subseafloor reaction zones by simply correcting measured temperatures for the effects of adiabatic cooling.

  8. Study of Hot Atomic Oxygen in Mars' Upper Thermosphere and Exosphere Using Different Scattering Collision Approximations

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Combi, M. R.; Tenishev, V.; Bougher, S. W.

    2011-12-01

    The production of energetic particles results in the formation of hot atom coronas on the Martian atmosphere. Being the most important reaction for the exosphere on Mars, dissociative recombination (DR) of O2+ ion is the dominant source of the production of hot atomic oxygen, which occurs mostly deep in the dayside thermosphere of Mars. As noted by Krestyanikova and Shematovitch [2005], the collision cross sections are critical parameters. The two different assumptions for scattering collision cross sections are: (1) considering total cross section and scattering collisions as elastic hard sphere encounters [Nagy et al. 1981], and (2) using the distribution of scattering angles in the center-of-mass frame. In this study, the DR of O2+ is assumed to be the only source of hot oxygen in the Martian thermosphere. The total and differential cross sections are obtained separately to calculate the hot oxygen fluxes from Martian upper atmosphere. The two different approximations for the O + O collision cross section are compared to study how they affect the calculation of hot oxygen escape fluxes. One assumes a single total cross section and hard sphere scattering. The other uses the scattering angle dependent differential scattering cross section of Kharchencko et al. [2000]. To describe self-consistently the exosphere and the upper thermosphere, a combination of our 3D Direct Simulation Monte Carlo (DSMC) model [Valeille, A., Combi, M., Bougher, S., Tenishev, V., Nagy, A., 2009. J. Geophys. Res. 114, E11006. doi:10.1029/2009JE003389] and the 3D Mars Thermosphere General Circulation Model (MTGCM) [Bougher, S., Bell, J., Murphy, J., Lopez-Valverde, M., Withers, P., 2006. Geophys. Res. Lett. 32, doi: 10.1029/2005GL024059. L02203] is used. Profiles of density and temperature, atmospheric loss rates and return fluxes as functions of the Solar Zenith Angle (SZA) are studied using the model for the cases considered. Comparisons of DSMC model outputs will be made with those from other recent exosphere model studies.

  9. Ultracold chemistry of a single Rydberg atom in a BEC

    NASA Astrophysics Data System (ADS)

    Liebisch, Tara Cubel; Schlagmueller, Michael; Westphal, Karl Magnus; Kleinbach, Kathrin; Hermann, Udo; Nguyen, Huan; Boettcher, Fabian; Loew, Robert; Hofferberth, Sebastian; Pfau, Tilman; Perez-Rios, Jesus; Greene, Chris

    2015-05-01

    A single Rydberg excitation in the high density and low temperature environment of a Bose-Einstein condensate (BEC) leads to a fascinating testbed of low-energy electron-neutral and ion-neutral scattering. For a Rydberg state with a principal quantum number of 100, there are thousands of ground-state atoms with which the Rydberg electron interacts. In a BEC the interparticle spacing is at approximately the same length scale as the Langevin impact parameter, making it possible to study the effect of ion-neutral collisions on time scales much faster than the Rydberg lifetime. Collisions between the Rydberg electron and the ground state atoms cause a mean field density shift of the Rydberg line. We present results on how this effect can be used to monitor phase transitions of the BEC and probe thin density shells of the BEC to monitor density-dependent, ultracold chemical reactions. We report on experimental findings, of Rydberg state-changing collisions on ?s timescales, due to collisions of the Rydberg ionic core with neutral ground state atoms. We compare our findings to simulations based on classical trajectory calculations for the motion of the ionic core and neutral atoms, whereas the dynamics of the electron is treated quantum mechanically.

  10. Atomic structure and chemistry of human serum albumin

    NASA Technical Reports Server (NTRS)

    He, Xiao M.; Carter, Daniel C.

    1992-01-01

    The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 A. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and ILIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.

  11. The coordination and atom transfer chemistry of titanium porphyrin complexes

    SciTech Connect

    Hays, J.A.

    1993-11-05

    Preparation, characterization, and reactivity of ({eta}{sup 2}- alkyne)(meso-tetratolylpoprphrinato)titanium(II) complexes are described, along with inetermetal oxygen atom transfer reactions involving Ti(IV) and Ti(III) porphyrin complexes. The {eta}{sup 2}- alkyne complexes are prepared by reaction of (TTP)TiCl{sub 2} with LiAlH{sub 4} in presence of alkyne. Structure of (OEP)Ti({eta}{sup 2}-Ph-C{triple_bond}C-Ph) (OEP=octaethylporphryin) was determined by XRD. The compounds undergo simple substitution to displace the alkyne and produce doubly substituted complexes. Structure of (TTP)Ti(4-picoline){sub 2} was also determined by XRD. Reaction of (TTP)Ti{double_bond}O with (OEP)Ti-Cl yields intermetal O/Cl exchange, which is a one-electron redox process mediated by O atom transfer. Also a zero-electron redox process mediated by atom transfer is observed when (TTP)TiCl{sub 2} is reacted with (OEP)Ti{double_bond}O.

  12. The role of sticking and reaction probabilities in hot-atom mediated abstraction reactions of D on metal surfaces by gaseous H atoms

    NASA Astrophysics Data System (ADS)

    Kammler, Th.; Wehner, S.; Kppers, J.

    1998-09-01

    Recent experiments on the abstraction of D adsorbed on metal surfaces with gaseous hydrogen atoms revealed a kinetics of HD formation which is not compatible with the operation of Eley-Rideal (ER) mechanisms. Furthermore, homonuclear products were observed during abstraction, which are not expected through an ER reaction scheme. It was therefore suggested that hot-atom (HA) mechanisms are more appropriate to explain the measured kinetics and products. Random walk calculations of the abstraction kinetics are presented based on a model which exclusively relies on elementary reaction steps which are HA mediated processes. Within this model, the ratio of two variables, the probabilities for hot-atom sticking at empty sites ps and hot-atom reaction with adsorbed species pr, was found to control the kinetics of HD and D2 formation. The essential features of measured kinetic data at Ni(100), Pt(111), and Cu(111) surfaces were reproduced by simple and reasonable assumptions on ps/pr.

  13. Chemical Structure and Properties: A Modified Atoms-First, One-Semester Introductory Chemistry Course

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jakubowski, Henry V.; McKenna, Anna G.; McIntee, Edward J.; Jones, T. Nicholas; Fazal, M. A.; Peterson, Alicia A.

    2015-01-01

    A one-semester, introductory chemistry course is described that develops a primarily qualitative understanding of structure-property relationships. Starting from an atoms-first approach, the course examines the properties and three-dimensional structure of metallic and ionic solids before expanding into a thorough investigation of molecules. In…

  14. Chemical Structure and Properties: A Modified Atoms-First, One-Semester Introductory Chemistry Course

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jakubowski, Henry V.; McKenna, Anna G.; McIntee, Edward J.; Jones, T. Nicholas; Fazal, M. A.; Peterson, Alicia A.

    2015-01-01

    A one-semester, introductory chemistry course is described that develops a primarily qualitative understanding of structure-property relationships. Starting from an atoms-first approach, the course examines the properties and three-dimensional structure of metallic and ionic solids before expanding into a thorough investigation of molecules. In

  15. Global Dynamics of Hot Atomic Oxygen in Mars' Upper Atmosphere and Comparison with Recent Observation

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Combi, M. R.; Tenishev, V.; Bougher, S. W.

    2012-12-01

    The production of energetic particles in Mars's upper thermosphere and exosphere results in the formation of hot atom coronae. Dissociative recombination (DR) of O2+ ion is the dominant source of the production of hot atomic oxygen and the most important reaction for the exosphere on Mars, which occurs mostly deep in the dayside thermosphere of Mars. In this investigation, we have carried out the study of the global dynamics of energetic particles in Mars' upper atmosphere using our newly developed self-consistent Monte-Carlo model. The calculated total global escapes of hot oxygen are presented for different solar activities (solar maximum and minimum) and Martian seasons (aphelion, equinox, and perihelion). To describe self-consistently the exosphere and the upper thermosphere, a combination of our 3D Direct Simulation Monte Carlo (DSMC) model [Valeille, A., Combi, M., Bougher, S., Tenishev, V., Nagy, A., 2009. J. Geophys. Res. 114, E11006. doi:10.1029/2009JE003389] and the 3D Mars Thermosphere General Circulation Model (MTGCM) [Bougher, S.W., Bell, J.M., Murphy, J.R., Lopez-Valverde, M.A., Withers, P.G., 2006. Geophys. Res. Lett. 32, doi: 10.1029/2005GL024059. L02203] is used. Profiles of density and temperature, atmospheric loss rates, and return fluxes are studied using the model for the cases considered. Progress in updating the model physics is also described. Along with comparisons of our DSMC model outputs with those from other recent exosphere model studies, we present a comparison of our model results with the derived neutral oxygen density from atomic oxygen emission at 1304 that was detected by Alice instrument on board European Space Agency's Rosetta spacecraft [Feldman, P., Steffl, A., Parker, J, A'Hearn, M., Bertaux, J., Stern, S., Weaver, H., Slater, D., Versteeg, M., Throop, H., Cunningham, N., Feaga, L., 2011. Icarus. 214, 2, 394-399, doi:10.1016/j.icarus.2011.06.013].

  16. Revealing the planar chemistry of two-dimensional heterostructures at the atomic level

    NASA Astrophysics Data System (ADS)

    Chou, Harry; Ismach, Ariel; Ghosh, Rudresh; Ruoff, Rodney S.; Dolocan, Andrei

    2015-06-01

    Two-dimensional (2D) atomic crystals and their heterostructures are an intense area of study owing to their unique properties that result from structural planar confinement. Intrinsically, the performance of a planar vertical device is linked to the quality of its 2D components and their interfaces, therefore requiring characterization tools that can reveal both its planar chemistry and morphology. Here, we propose a characterization methodology combining (micro-) Raman spectroscopy, atomic force microscopy and time-of-flight secondary ion mass spectrometry to provide structural information, morphology and planar chemical composition at virtually the atomic level, aimed specifically at studying 2D vertical heterostructures. As an example system, a graphene-on-h-BN heterostructure is analysed to reveal, with an unprecedented level of detail, the subtle chemistry and interactions within its layer structure that can be assigned to specific fabrication steps. Such detailed chemical information is of crucial importance for the complete integration of 2D heterostructures into functional devices.

  17. Generating Molecular Rovibrational Coherence by Two-Photon Femtosecond Photoassociation of Thermally Hot Atoms

    SciTech Connect

    Rybak, Leonid; Levin, Liat; Amitay, Zohar; Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michal; Moszynski, Robert; Koch, Christiane P.

    2011-12-30

    The formation of diatomic molecules with rotational and vibrational coherence is demonstrated experimentally in free-to-bound two-photon femtosecond photoassociation of hot atoms. In a thermal gas at a temperature of 1000 K, pairs of magnesium atoms, colliding in their electronic ground state, are excited into coherent superpositions of bound rovibrational levels in an electronically excited state. The rovibrational coherence is probed by a time-delayed third photon, resulting in quantum beats in the UV fluorescence. A comprehensive theoretical model based on ab initio calculations rationalizes the generation of coherence by Franck-Condon filtering of collision energies and partial waves, quantifying it in terms of an increase in quantum purity of the thermal ensemble. Our results open the way to coherent control of a binary reaction.

  18. Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films

    SciTech Connect

    Yuan, Guangjie Shimizu, Hideharu; Momose, Takeshi; Shimogaki, Yukihiro

    2014-01-15

    High-purity Ni films were deposited using hot-wire-assisted atomic layer deposition (HW-ALD) at deposition temperatures of 175, 250, and 350 °C. Negligible amount of nitrogen or carbon contamination was detected, even though the authors used NH{sub 2} radical as the reducing agent and nickelocene as the precursor. NH{sub 2} radicals were generated by the thermal decomposition of NH{sub 3} with the assist of HW and used to reduce the adsorbed metal growth precursors. To understand and improve the deposition process, the kinetics of HW-ALD were analyzed using a Langmuir-type model. Unlike remote-plasma-enhanced atomic layer deposition, HW-ALD does not lead to plasma-induced damage. This is a significant advantage, because the authors can supply sufficient NH{sub 2} radicals to deposit high-purity metallic films by adjusting the distance between the hot wire and the substrate. NH{sub 2} radicals have a short lifetime, and it was important to use a short distance between the radical generation site and substrate. Furthermore, the impurity content of the nickel films was independent of the deposition temperature, which is evidence of the temperature-independent nature of the NH{sub 2} radical flux and the reactivity of the NH{sub 2} radicals.

  19. Hot electrons and radial transport in Saturn's inner magetosphere: Modeling the effects on ion chemistry

    NASA Astrophysics Data System (ADS)

    Fleshman, Bobby L.

    The E-ring of Saturn, located just beyond the main rings at four Saturn radii, was known to be made mostly of water and its by-products before the Cassini spacecraft arrived at Saturn in 2005. Since then, Cassini has observed water geysers on the tiny moon of Enceladus ejecting ? 100 kg of water per second into orbit around Saturn, which most agree is the chief contributor to neutrals in the E-ring. Following several key reactions, many of these neutrals go on to populate large, tenuous structures, known as neutral clouds, extending 10s of Saturn radii. The other side of the story are the ions, which are largely created by the ionization of same neutrals sourced from Enceladus. A key distinction between the neutrals and ions is that ions are carried along by Saturn's magnetic field, and revolve around Saturn at the rotation rate of the planet, while neutrals generally have much slower Keplerian speeds. It is the study of the chemical interaction of these separate, but related populations that is the subject of this thesis. We have developed a series of models to study how the coupling of these systems affect details of the other, such as composition. The first step (Chapter 2) was the development of a water-group physical chemistry model, which includes suprathermal electrons and the effect of radial ion transport. With this "one-box" model, we are able to reproduce observed water and hydrogen ion densities in Enceladus's orbit, but only when the hot electron density is ? 0.5% of the total plasma density. Radial transport is found to be slow, requiring 26 days to remove ions from the orbit of Enceladus. Moving toward the development of a radial model of ion chemistry, in Chapter 4 we present a model of Saturn's neutral clouds, which are made of material outgassing from Enceladus. The effects of dissociation and charge exchange are considered, where the details of the latter prove to be of great consequence on neutral cloud morphology. The oxygen cloud is found to the most extended, followed by H2O, and finally OH. The above efforts are combined in Chapter 5, where a neutral cloud model is used to construct a radial model of ion chemistry. It is shown that neutral H2O requires more spreading than yet modeled in order to recover observed water and hydrogen ion abundances near Enceladus. The relative abundance of water-group ion species presented will be useful for analyses of CAPS-IMS data, while loss rates derived from the model can be used to improve neutral cloud models. The case is made that ion chemistry models and neutral cloud models must be developed alongside one another in order to improve understanding of these interrelated populations at Saturn.

  20. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    SciTech Connect

    Koontz, S.L.; Leger, L.J.; Wu, C.; Cross, J.B.; Jurgensen, C.W.

    1994-05-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen `spin-off` or `dual use` technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  1. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  2. Chemistry of the heaviest elements--one atom at a time

    SciTech Connect

    Hoffman, Darleane C.; Lee, Diana M.

    2000-01-01

    In keeping with the goal of the Viewpoint series of the Journal of Chemical Education, this article gives a 75-year perspective of the chemistry of the heaviest elements, including a 50-year retrospective view of past developments, a summary of current research achievements and applications, and some predictions about exciting, new developments that might be envisioned within the next 25 years. A historical perspective of the importance of chemical separations in the discoveries of the transuranium elements from neptunium (Z=93) through mendelevium (Z=101) is given. The development of techniques for studying the chemical properties of mendelevium and still heavier elements on the basis of measuring the radioactive decay of a single atom (''atom-at-a-time'' chemistry) and combining the results of many separate experiments is reviewed. The influence of relativistic effects (expected to increase as Z{sup 2}) on chemical properties is discussed. The results from recent atom-at-a-time studies of the chemistry of the heaviest elements through seaborgium (Z=106) are summarized and show that their properties cannot be readily predicted based on simple extrapolation from the properties of their lighter homologues in the periodic table. The prospects for extending chemical studies to still heavier elements than seaborgium are considered and appear promising.

  3. Probing hot spots on protein-protein interfaces with all-atom free-energy simulation

    NASA Astrophysics Data System (ADS)

    Meliciani, Irene; Klenin, Konstantin; Strunk, Timo; Schmitz, Katja; Wenzel, Wolfgang

    2009-07-01

    Modulation of protein-protein interactions by competitive small-molecule binding emerges as a promising avenue for drug discovery. Hot spots, i.e., amino acids with important contributions to the overall interaction energy, provide useful targets within these interfaces. To avoid time-consuming mutagenesis experiments, computational alanine screening has been developed for the prediction of hot spots based on existing structural information. Here we use the all-atom free-energy force field PFF02 to identify important amino acid residues in the complexes of the chemokine interleukin-8 (CXCL8) and an N-terminal peptide of its cognate receptor CXCR1, and of ERBIN, a molecular marker of the basolateral membrane in epithelial cells, in complex with the ERBIN-binding domain of tyrosin kinase ERBB2. The results of our analysis agree with available experimental functional assays, indicating that this approach is suitable for computational alanine screening and may help to identify competitive peptides as starting points for the development of inhibitors of protein-protein interactions for pharmaceutically relevant targets.

  4. How in Spite of the Rhetoric, History of Chemistry Has Been Ignored in Presenting Atomic Structure in Textbooks.

    ERIC Educational Resources Information Center

    Rodriguez, Maria A.; Niaz, Mansoor

    2002-01-01

    Reports on a study designed to: (a) show how the importance of the history of chemistry has been recognized in the classroom; (b) demonstrate how criteria based on history and philosophy of science can be used to evaluate the presentation of atomic structure in general chemistry textbooks; and (c) compare new (1970-1992) and old textbooks

  5. How in Spite of the Rhetoric, History of Chemistry Has Been Ignored in Presenting Atomic Structure in Textbooks.

    ERIC Educational Resources Information Center

    Rodriguez, Maria A.; Niaz, Mansoor

    2002-01-01

    Reports on a study designed to: (a) show how the importance of the history of chemistry has been recognized in the classroom; (b) demonstrate how criteria based on history and philosophy of science can be used to evaluate the presentation of atomic structure in general chemistry textbooks; and (c) compare new (1970-1992) and old textbooks…

  6. Rotationally resolved hot atom collisional excitation of CO2(0001) by time-resolved diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Neill, James A.; Wang, Chen Xi; Ye Cai, Ji; Flynn, George W.; Weston, Ralph E., Jr.

    1986-10-01

    A tunable infrared diode laser was used to study the nascent rotationa distribution of CO2 molecules produced directly in the 0001 excited state as a result of collisions with hot hydrogen atoms formed in the UV photolysis of H2S.(AIP)

  7. Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?

    PubMed

    Niaz, Mansoor; Cardellini, Liberato

    2011-12-01

    Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses. PMID:24061142

  8. Revealing the planar chemistry of two-dimensional heterostructures at the atomic level

    PubMed Central

    Chou, Harry; Ismach, Ariel; Ghosh, Rudresh; Ruoff, Rodney S.; Dolocan, Andrei

    2015-01-01

    Two-dimensional (2D) atomic crystals and their heterostructures are an intense area of study owing to their unique properties that result from structural planar confinement. Intrinsically, the performance of a planar vertical device is linked to the quality of its 2D components and their interfaces, therefore requiring characterization tools that can reveal both its planar chemistry and morphology. Here, we propose a characterization methodology combining (micro-) Raman spectroscopy, atomic force microscopy and time-of-flight secondary ion mass spectrometry to provide structural information, morphology and planar chemical composition at virtually the atomic level, aimed specifically at studying 2D vertical heterostructures. As an example system, a graphene-on-h-BN heterostructure is analysed to reveal, with an unprecedented level of detail, the subtle chemistry and interactions within its layer structure that can be assigned to specific fabrication steps. Such detailed chemical information is of crucial importance for the complete integration of 2D heterostructures into functional devices. PMID:26099196

  9. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 7, Safety operation procedure for hot cell

    SciTech Connect

    Not Available

    1993-08-01

    This volume contains the interim change notice for the safety operation procedure for hot cell. It covers the master-slave manipulators, dry waste removal, cell transfers, hoists, cask handling, liquid waste system, and physical characterization of fluids.

  10. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  11. Demystifying Introductory Chemistry. Part 4: An Approach to Reaction Thermodynamics through Enthalpies, Entropies, and Free Energies of Atomization.

    ERIC Educational Resources Information Center

    Spencer, James N.; And Others

    1996-01-01

    Presents an alternative approach to teaching reaction thermodynamics in introductory chemistry courses using calculations of enthalpies, entropies, and free energies of atomization. Uses a consistent concept, that of decomposition of a compound to its gaseous atoms, to discuss not only thermodynamic parameters but also equilibrium and

  12. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform

  13. Demystifying Introductory Chemistry. Part 4: An Approach to Reaction Thermodynamics through Enthalpies, Entropies, and Free Energies of Atomization.

    ERIC Educational Resources Information Center

    Spencer, James N.; And Others

    1996-01-01

    Presents an alternative approach to teaching reaction thermodynamics in introductory chemistry courses using calculations of enthalpies, entropies, and free energies of atomization. Uses a consistent concept, that of decomposition of a compound to its gaseous atoms, to discuss not only thermodynamic parameters but also equilibrium and…

  14. Undergraduate chemistry students' conceptions of atomic structure, molecular structure and chemical bonding

    NASA Astrophysics Data System (ADS)

    Campbell, Erin Roberts

    The process of chemical education should facilitate students' construction of meaningful conceptual structures about the concepts and processes of chemistry. It is evident, however, that students at all levels possess concepts that are inconsistent with currently accepted scientific views. The purpose of this study was to examine undergraduate chemistry students' conceptions of atomic structure, chemical bonding and molecular structure. A diagnostic instrument to evaluate students' conceptions of atomic and molecular structure was developed by the researcher. The instrument incorporated multiple-choice items and reasoned explanations based upon relevant literature and a categorical summarization of student responses (Treagust, 1988, 1995). A covalent bonding and molecular structure diagnostic instrument developed by Peterson and Treagust (1989) was also employed. The ex post facto portion of the study examined the conceptual understanding of undergraduate chemistry students using descriptive statistics to summarize the results obtained from the diagnostic instruments. In addition to the descriptive portion of the study, a total score for each student was calculated based on the combination of correct and incorrect choices made for each item. A comparison of scores obtained on the diagnostic instruments by the upper and lower classes of undergraduate students was made using a t-Test. This study also examined an axiomatic assumption that an understanding of atomic structure is important in understanding bonding and molecular structure. A Pearson Correlation Coefficient, ṟ, was calculated to provide a measure of the strength of this association. Additionally, this study gathered information regarding expectations of undergraduate chemistry students' understanding held by the chemical community. Two questionnaires were developed with items based upon the propositional knowledge statements used in the development of the diagnostic instruments. Subgroups of items from the questionnaires were formed from the combination of items found to measure different aspects of a specific topic area using a reliability analysis. Average scores for the subgroups were compared to results obtained by students on the diagnostic instrument targeting the same topic area. There were no significant differences of the scores on both of the diagnostic instruments between the levels of undergraduate chemistry students. There were, however, significant differences on certain items of the diagnostic instruments between upper and lower class students. Additionally, misconceptions were identified within all levels of these undergraduate students that corresponded to previous results reported in the literature. A significant relationship was found to exist between the scores obtained on the two diagnostic instruments, as well as strong correlations between specific items and the total scores of the instruments. Response to the expectations questionnaires revealed no differences between the chemical industry and chemical academia, but did provide information concerning the chemical community's expectations of undergraduate chemistry students. Results indicate that undergraduate students majoring in chemistry have conceptions that are inconsistent with currently accepted scientific views. The findings also support the hypothesis that an understanding of the general structure of the atom and the roles played by electrons in molecular bonding and structure is important to an understanding of chemical properties and behavior.

  15. Breakdown into nanoscale of graphene oxide: Confined hot spot atomic reduction and fragmentation

    PubMed Central

    Gonçalves, Gil; Vila, Mercedes; Bdikin, Igor; de Andrés, Alicia; Emami, Nazanin; Ferreira, Rute A. S.; Carlos, Luís D.; Grácio, José; Marques, Paula A. A. P.

    2014-01-01

    Nano-graphene oxide (nano-GO) is a new class of carbon based materials being proposed for biomedical applications due to its small size, intrinsic optical properties, large specific surface area, and easy to functionalize. To fully exploit nano-GO properties, a reproducible method for its production is of utmost importance. Herein we report, the study of the sequential fracture of GO sheets onto nano-GO with controllable lateral width, by a simple, and reproducible method based on a mechanism that we describe as a confined hot spot atomic fragmentation/reduction of GO promoted by ultrasonication. The chemical and structural changes on GO structure during the breakage were monitored by XPS, FTIR, Raman and HRTEM. We found that GO sheets starts breaking from the defects region and in a second phase through the disruption of carbon bonds while still maintaining crystalline carbon domains. The breaking of GO is accompanied by its own reduction, essentially by the elimination of carboxylic and carbonyl functional groups. Photoluminescence and photothermal studies using this nano-GO are also presented highlighting the potential of this nanomaterial as a unique imaging/therapy platform. PMID:25339424

  16. Highly ionized atoms in cooling gas. [in model for cooling of hot Galactic corona

    NASA Technical Reports Server (NTRS)

    Edgar, Richard J.; Chevalier, Roger A.

    1986-01-01

    The ionization of low density gas cooling from a high temperature was calculated. The evolution during the cooling is assumed to be isochoric, isobaric, or a combination of these cases. The calculations are used to predict the column densities and ultraviolet line luminosities of highly ionized atoms in cooling gas. In a model for cooling of a hot galactic corona, it is shown that the observed value of N(N V) can be produced in the cooling gas, while the predicted value of N(Si IV) falls short of the observed value by a factor of about 5. The same model predicts fluxes of ultraviolet emission lines that are a factor of 10 lower than the claimed detections of Feldman, Bruna, and Henry. Predictions are made for ultraviolet lines in cooling flows in early-type galaxies and clusters of galaxies. It is shown that the column densities of interest vary over a fairly narrow range, while the emission line luminosities are simply proportional to the mass inflow rate.

  17. Mass spectrometry of atomic and molecular anions from a hot-cathode plasma

    NASA Astrophysics Data System (ADS)

    Mitchell, Stephen E.; Farley, John W.

    1999-10-01

    Atomic and molecular anions are produced in a hot-cathode discharge, anions are extracted through an aperture in the anode, and negative ion mass spectrometry is employed as a plasma diagnostic. The mass spectrometer samples the volume density of anions in the discharge near the anode. The discharge has a typical pressure of 0.1 Torr, a typical electron emission current of 5 mA, and a bombarding voltage of 75-150 V. The 2-keV beam of anions is mass-filtered by a Wien filter and detected in a Faraday cup. Typical mass-selected ion currents range from pA to tens of nA. The mass spectrometer has a section which allows interrogation of the mass-selected ion beam by a coaxial laser beam for laser photodetachment studies. Our laboratory can handle toxic and explosive source gases, e.g., hydrogen azide (HN_3) or diazomethane (CH_2N_2). Chloride (Cl^-) is readily detected: indeed, trace amounts of ^35Cl^- and ^37Cl^- are almost always present, and serve as convenient calibrating ions in the mass spectrum. Supported by DOE EPSCoR

  18. Hot-atom versus Eley-Rideal dynamics in hydrogen recombination on Ni(100). I. The single-adsorbate case.

    PubMed

    Martinazzo, R; Assoni, S; Marinoni, G; Tantardini, G F

    2004-05-01

    We compare the efficiency of the Eley-Rideal (ER) reaction with the formation of hot-atom (HA) species in the simplest case, i.e., the scattering of a projectile off a single adsorbate, considering the Hydrogen and Hydrogen-on-Ni(100) system. We use classical mechanics and the accurate embedded diatomics-in-molecules potential to study the collision system over a wide range of collision energies (0.10-1.50 eV), both with a rigid and a nonrigid Ni substrate and for impact on the occupied and neighboring empty cells. In the rigid model metastable and truly bound hot-atoms occur and we find that the cross section for the formation of bound hot-atoms is considerably higher than that for the ER reaction over the whole range of collision energies examined. Metastable hot-atoms form because of the inefficient energy transfer to the adsorbate and have lifetimes of the order 0.1-0.7 ps, depending on the collision energy. When considering the effects of lattice vibrations we find, on average, a consistent energy transfer to the substrate, say 0.1-0.2 eV, which forced us to devise a two-step dynamical model to get rid of the problems associated with the use of periodic boundary conditions. Results for long-lived HA formation due to scattering on the occupied cell at a surface temperature of 120 K agree well with those of the rigid model, suggesting that in the above process the substrate plays only a secondary role and further calculations at surface temperatures of 50 and 300 K are in line with these findings. However, considerably high cross sections for formation of long-lived hot-atoms result also from scattering off the neighboring cells where the energy transfer to the lattice cannot be neglected. Metastable hot-atoms are reduced in number and have usually lifetimes shorter than those of the rigid-model, say less than 0.3 ps. In addition, ER cross sections are only slightly affected by the lattice motion and show a little temperature dependence. Finally, we find also that absorption and reflection strongly depend on the correct consideration of lattice vibrations and the occurrence of trapping. PMID:15267808

  19. Building chemistry one atom at a time: An investigation of the effects of two curricula in students' understanding of covalent bonding and atomic size

    NASA Astrophysics Data System (ADS)

    Bull, Barbara Jeanne

    Chemists have to rely on models to aid in the explanation of phenomena they experience. Instruction of atomic theory has been used as the introduction and primary model for many concepts in chemistry. Therefore, it is important for students to have a robust understanding of the different atomic models, their relationships and their limitations. Previous research has shown that students have alternative conceptions concerning their interpretation of atomic models, but there is less exploration into how students apply their understanding of atomic structure to other chemical concepts. Therefore, this research concentrated on the development of three Model Eliciting Activities to investigate the most fundamental topic of the atom and how students applied their atomic model to covalent bonding and atomic size. Along with the investigation into students' use of their atomic models, a comparison was included between a traditional chemistry curriculum using an Atoms First approach and Chemistry, Life, the Universe and Everything (CLUE), a NSF-funded general chemistry curriculum. Treatment and Control groups were employed to determine the effectiveness of the curricula in conveying the relationship between atoms, covalent bonds and atomic size. The CLUE students developed a Cloud representation on the Atomic Model Eliciting Activity and maintained this depiction through the Covalent Bonding Model Eliciting Activity. The traditional students more often illustrated the atom using a Bohr representation and continued to apply the same model to their portrayal of covalent bonding. During the analysis of the Atomic Size Model Eliciting Activity, students had difficulty fully supporting their explanation of the atomic size trend. Utilizing the beSocratic platform, an activity was designed to aid students' construction of explanations using Toulmin's Argumentation Pattern. In order to study the effectiveness of the activity, the students were asked questions relating to a four-week long investigation into the identity of an inorganic salt during their laboratory class. Students who completed the activity exhibited an improvement in their explanation of the identity of their salt's cation. After completing the activity, another question was posed about the identity of their anion. Both groups saw a decrease in the percentage of students who included reasoning in their answer; however, the activity group maintained a significantly higher percentage of responses with a reasoning than the control group.

  20. Chemistry of the organic-rich hot core G327.3-0.6

    NASA Technical Reports Server (NTRS)

    Gibb, E.; Nummelin, A.; Irvine, W. M.; Whittet, D. C.; Bergman, P.; Ferris, J. P. (Principal Investigator)

    2000-01-01

    We present gas-phase abundances of species found in the organic-rich hot core G327.3-0.6. The data were taken with the Swedish-ESO Submillimetre Telescope (SEST). The 1-3 mm spectrum of this source is dominated by emission features of nitrile species and saturated organics, with abundances greater than those found in many other hot cores, including Sgr B2 and OMC-1. Population diagram analysis indicates that many species (CH3CN, C2H3CN, C2H5CN, CH3OH, etc.) have hot components that originate in a compact (2") region. Gas-phase chemical models cannot reproduce the high abundances of these molecules found in hot cores, and we suggest that they originate from processing and evaporation of icy grain mantle material. In addition, we report the first detection of vibrationally excited ethyl cyanide and the first detection of methyl mercaptan (CH3SH) outside the Galactic center.

  1. Infusing the Chemistry Curriculum with Green Chemistry Using Real-World Examples, Web Modules, and Atom Economy in Organic Chemistry Courses

    NASA Astrophysics Data System (ADS)

    Cann, Michael C.; Dickneider, Trudy A.

    2004-07-01

    Green chemistry principles and practices have been infused in the chemistry curriculum at the University of Scranton, including courses in general, organic, and inorganic chemistry, biochemistry, environmental, polymer, industrial, and advanced organic chemistry, and chemical toxicology. Web-based green chemistry teaching modules have been developed for each of these courses. We describe the principles underlying green chemistry and methods of introducing these concepts into the curriculum with an example of incorporating green chemistry into the undergraduate lecture and laboratory organic sequence. See Featured Molecules .

  2. Dynamics and Escape of H2 and OH Molecules Induced by Hot Oxygen Atoms in the Upper Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Gacesa, M.; Kharchenko, V. A.

    2014-12-01

    Collisions of hot oxygen atoms with background atmospheric gases constitute an important mechanism of escape of light atomic and molecular species to space, as well as contribute to deviation from thermal equilibrium in the upper martian atmosphere. In this study, we used newly available quantum-mechanical cross sections1 to carry out a state-to-state analysis of one such process: a reactive collision of hot oxygen atoms with thermal molecular hydrogen gas. Dissociative recombination of O2+ molecular ions and secondary collisions of energetic neutral atoms (ENAs) produced in charge-exchange between solar wind ions and atmospheric gases2 were considered as the sources of hot oxygen atoms. The resulting kinetic energy distributions of the product OH and H2 molecules were constructed and corresponding escape rates for several solar wind conditions were calculated. The produced molecules favor higher excited rotational and vibrational quantum states that significantly differ from thermal distributions, offering a chance for detection. In the final part of this study, we analyzed the influence of increased production of energetic oxygen atoms on the molecular production rates and escape due to the encounter of Mars with Comet C/2013 A1 (Siding Spring). The results of this study are directly applicable to ongoing efforts to better understand the evolution of Mars' atmosphere and the MAVEN mission. 1 M. Gacesa and V. Kharchenko, Geophys. Res. Lett., 39, L10203 (2012); M. Gacesa and V. Kharchenko, arXiv:1407.3325 (2014). 2 N. Lewkow and V. Kharchenko, Astroph. J., 790, 98 (2014).

  3. Environmentally protected hot-stage atomic force microscope for studying thermo-mechanical deformation in microelectronic devices

    NASA Astrophysics Data System (ADS)

    Park, C.; Shultz, T. E.; Dutta, I.

    2004-11-01

    A commercial atomic force microscope (AFM) was equipped with a hot stage for conducting thermal cycling experiments up to 398 K, as well as a vacuum and purge system to provide a protective environment during heating. Two different hot-stage configurations, one for studying features in the plane of a microelectronic device, and the other for studying features on its cross section, were developed. It is shown that the AFM retains its calibration with no significant introduction of errors at temperatures up to 398 K. Two applications of in situ hot-stage atomic force microscopy, related to microelectronic devices, have been demonstrated. First, the in-plane coefficient of thermal expansion of a low dielectric constant (low-k) thin film dielectric material used in back-end interconnect structures was measured. Second, the equipment was used to conduct in situ studies of deformation of Cu thin film interconnect lines at the back end of silicon chips, under thermo-mechanical loads simulating those imposed on chip-level interconnect structures by a microelectronic package. The design of a bimetallic thermo-mechanical loading stage, which was used for the latter experiments in conjunction with the hot stage, is also discussed.

  4. The chemistry of sodium chloride involvement in processes related to hot corrosion

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1979-01-01

    Sodium chloride is one of the primary contaminants that enter gas turbine engines and contribute, either directly or indirectly, to the hot corrosion degradation of hot-gas-path components. The paper surveys the results of laboratory experiments along with thermodynamic and mass transport calculations, intended for elucidating the behavior of sodium chloride in combustion environments. It is shown that besides being a source of sodium for the formation of corrosive liquid Na2SO4, the NaCl itself contributes in other indirect ways to the material degradation associated with the high-temperature environmental attack. In addition, the experimental results lend credence to the conceptual scheme presented schematically (behavior of NaCl in a turbine engine combustion gas environment) and resolve conflicting aspects of relevant NaCl misconceptions.

  5. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.

    PubMed

    Shi, Yujun

    2015-02-17

    CONSPECTUS: Hot wire chemical vapor deposition (HWCVD), also referred to as catalytic CVD (Cat-CVD), has been used to produce Si-containing thin films, nanomaterials, and functional polymer coatings that have found wide applications in microelectronic and photovoltaic devices, in automobiles, and in biotechnology. The success of HWCVD is largely due to its various advantages, including high deposition rate, low substrate temperatures, lack of plasma-induced damage, and large-area uniformity. Film growth in HWCVD is induced by reactive species generated from primary decomposition on the metal wire or from secondary reactions in the gas phase. In order to achieve a rational and efficient optimization of the process, it is essential to identify the reactive species and to understand the chemical kinetics that govern the production of these precursor species for film growth. In this Account, we report recent progress in unraveling the complex gas-phase reaction chemistry in the HWCVD growth of silicon carbide thin films using organosilicon compounds as single-source precursors. We have demonstrated that laser ionization mass spectrometry is a powerful diagnostic tool for studying the gas-phase reaction chemistry when combined with the methods of isotope labeling and chemical trapping. The four methyl-substituted silane molecules, belonging to open-chain alkylsilanes, dissociatively adsorb on W and Ta filaments to produce methyl radical and H2 molecule. Under the typical deposition pressures, with increasing number of methyl substitution, the dominant chemistry occurring in the gas phase switches from silylene/silene reactions to free-radical short chain reactions. This change in dominant reaction intermediates from silylene/silene to methyl radicals explains the observation from thin film deposition that silicon carbide films become more C-rich with a decreasing number of Si-H bonds in the four precursor molecules. In the case of cyclic monosilacyclobutanes, we have shown that ring-opening reactions play a vital role in characterizing the reaction chemistry. On the other hand, exocyclic Si-H(CH3) bond cleavages are more important in the less-puckered disilacyclobutane molecules. Metal filaments are essential in HWCVD since they serve as catalysts to decompose precursor gases to reactive species, which initiate gas-phase reaction chemistry and thin film growth. We discuss the structural changes in metal filaments when exposed to various precursor gases. Depending on the nature of the radical intermediates formed from the hot-wire decomposition and subsequent gas-phase reactions, metal silicides and carbides can be formed. Overall, study of the gas-phase reaction chemistry in HWCVD provides important knowledge of the chemical species produced prior to their deposition on a substrate surface. This helps in identifying the major contributor to alloy formation on the filament itself and the film growth, and consequently, in determining the properties of the deposited films. An integrated knowledge of the gas-phase reaction chemistry, filament alloy formation, and thin film deposition is required for an efficient deposition of high-quality thin films and nanomaterials. PMID:25586211

  6. Atom Specific Ultrafast Surface Chemistry using a Soft X-ray Laser

    NASA Astrophysics Data System (ADS)

    Nilsson, Anders

    2014-03-01

    Catalysis is central for many chemical energy transformations that occur at interfaces. One of the dreams is to follow catalytic reactions in real time from reactants over various intermediates to products. The prospective for the study of chemical reactions on surfaces using X-ray free-electron lasers (Linac Coherent Light Source, or LCLS, at SLAC National Accelerator Laboratory) will be presented. We induced the hot electron and phonon mediated excitation of adsorbates on Ru(0001) with synchronized excitation by a femtosecond optical laser pulse. We have followed the ultrafast evolution of the bond distortions, weakening and breaking, using x-ray absorption spectroscopy and x ray emission spectroscopy resonantly tuned to the oxygen core level with ultrashort x-ray pulses delivered from LCLS. We can directly follow the time evolution of the molecular orbitals in an atom-specific way on a subpicosecond timescale. Three examples will be shown CO desorption, Oxygen activation and CO oxidation on Ru(0001).

  7. The calculation of aquifer chemistry in hot-water geothermal systems

    USGS Publications Warehouse

    Truesdell, Alfred H.; Singers, Wendy

    1974-01-01

    The temperature and chemical conditions (pH, gas pressure, and ion activities) in a geothermal aquifer supplying a producing bore can be calculated from the enthalpy of the total fluid (liquid + vapor) produced and chemical analyses of water and steam separated and collected at known pressures. Alternatively, if a single water phase exists in the aquifer, the complete analysis (including gases) of a sample collected from the aquifer by a downhole sampler is sufficient to determine the aquifer chemistry without a measured value of the enthalpy. The assumptions made are that the fluid is produced from a single aquifer and is homogeneous in enthalpy and chemical composition. These calculations of aquifer chemistry involving large amounts of ancillary information and many iterations require computer methods. A computer program in PL-1 to perform these calculations is available from the National Technical Information Service as document PB-219 376.

  8. Hot chemistry in the diffuse medium: spectral signature in the H2 rotational lines

    NASA Astrophysics Data System (ADS)

    Verstraete, L.; Falgarone, E.; Pineau des Forets, G.; Flower, D.; Puget, J. L.

    1999-03-01

    Most of the diffuse interstellar medium is cold, but it must harbor pockets of hot gas to explain the large observed abundances of molecules like CH+ and HCO+. Because they dissipate locally large amounts of kinetic energy, MHD shocks and coherent vortices in turbulence can drive endothermic chemical reactions or reactions with large activation barriers. We predict the spectroscopic signatures in the H2 rotational lines of MHD shocks and vortices and compare them to those observed with the ISO-SWS along a line of sight through the Galaxy which samples 20 magnitudes of mostly diffuse gas.

  9. Atomic Scale Structure-Chemistry Relationships at Oxide Catalyst Surfaces and Interfaces

    NASA Astrophysics Data System (ADS)

    McBriarty, Martin E.

    Oxide catalysts are integral to chemical production, fuel refining, and the removal of environmental pollutants. However, the atomic-scale phenomena which lead to the useful reactive properties of catalyst materials are not sufficiently understood. In this work, the tools of surface and interface science and electronic structure theory are applied to investigate the structure and chemical properties of catalytically active particles and ultrathin films supported on oxide single crystals. These studies focus on structure-property relationships in vanadium oxide, tungsten oxide, and mixed V-W oxides on the surfaces of alpha-Al2O3 and alpha-Fe2O 3 (0001)-oriented single crystal substrates, two materials with nearly identical crystal structures but drastically different chemical properties. In situ synchrotron X-ray standing wave (XSW) measurements are sensitive to changes in the atomic-scale geometry of single crystal model catalyst surfaces through chemical reaction cycles, while X-ray photoelectron spectroscopy (XPS) reveals corresponding chemical changes. Experimental results agree with theoretical calculations of surface structures, allowing for detailed electronic structure investigations and predictions of surface chemical phenomena. The surface configurations and oxidation states of V and W are found to depend on the coverage of each, and reversible structural shifts accompany chemical state changes through reduction-oxidation cycles. Substrate-dependent effects suggest how the choice of oxide support material may affect catalytic behavior. Additionally, the structure and chemistry of W deposited on alpha-Fe 2O3 nanopowders is studied using X-ray absorption fine structure (XAFS) measurements in an attempt to bridge single crystal surface studies with real catalysts. These investigations of catalytically active material surfaces can inform the rational design of new catalysts for more efficient and sustainable chemistry.

  10. Thermal chemistry of the Cu-KI5 atomic layer deposition precursor on a copper surface

    SciTech Connect

    Ma, Qiang; Zaera, Francisco

    2015-01-01

    The thermal chemistry of a Cu(I) ketoiminate complex, Cu-KI5, resulting from the modification of the known Air Products CupraSelect{sup ®} copper CVD precursor Cu(hfac)(tmvs) designed to tether the two ligands via an isopropoxide linker, was studied under ultrahigh vacuum on a Cu(110) single-crystal surface by using a combination of temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy. Adsorption at low temperatures was determined to take place via the displacement of the vinyl ligand by the surface. Molecular desorption was seen at 210 K, and the evolution of Cu(II)-KI5{sub 2} was established to take place at 280 K, presumably from a disproportionation reaction that also leads to the deposition of Cu(0). Other sets of desorption products were seen at 150, 250, and 430 K, all containing copper atoms and small organic moieties with molecular masses below 100 amu. The latter TPD peak in particular indicates significant fragmentation of the ligands, likely at the C–N bond that holds the vinylsilane-isopropoxide moiety tethered to the ketoimine fragment, and possibly also at the union between the vinylsilane and the alkoxide linker. The 430 K temperature measured for this chemistry may set an upper limit for clean Cu film deposition, but since reactivity on the surface was also found to be inhibited at higher surface coverages, it may be delayed to higher temperatures under atomic layer deposition conditions.

  11. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new chemistry expermiments are described. Broad areas covered include atomic structure, solubility, gaseous diffusion, endothermic reactions, alcohols, equilibrium, atomic volumes, and some improvised apparatus. (PS)

  12. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    ERIC Educational Resources Information Center

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  13. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    ERIC Educational Resources Information Center

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  14. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    ERIC Educational Resources Information Center

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six

  15. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    ERIC Educational Resources Information Center

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition

  16. Getting Physical with Your Chemistry: Mechanically Investigating Local Structure and Properties of Surfaces with the Atomic Force Microscope

    ERIC Educational Resources Information Center

    Heinz, William F.; Hoh, Jan H.

    2005-01-01

    Atomic force microscope (AFM) investigates mechanically the chemical properties of individual molecules, surfaces, and materials using suitably designed probes. The current state of the art of AFM in terms of imaging, force measurement, and sample manipulation and its application to physical chemistry is discussed.

  17. Microelectrode Studies of Interstitial Water Chemistry and Photosynthetic Activity in a Hot Spring Microbial Mat

    PubMed Central

    Revsbech, Niels P.; Ward, David M.

    1984-01-01

    Microelectrodes were used to measure oxygen, pH, and oxygenic photosynthetic activity in a hot spring microbial mat (Octopus Spring, Yellowstone National Park), where the cyanobacterium Synechococcus lividus and the filamentous bacterium Chloroflexus aurantiacus are the only known phototrophs. The data showed very high biological activities in the topmost layers of the microbial mat, resulting in extreme values for oxygen and pH. At a 1-mm depth at a 55C site, oxygen and pH reached 900 ?M and 9.4, respectively, just after solar noon, whereas anoxic conditions with a pH of 7.2 were measured before sunrise. Although diurnal changes between these extremes occurred over hours during a diurnal cycle, microbial activity was great enough to give the same response in 1 to 2 min after artificial shading. Oxygenic photosynthesis was confined to a 0.5- to 1.1-mm layer at sites with temperatures at or above about 50C, with maximum activities in the 55 to 60C region. The data suggest that S. lividus is the dominant primary producer of the mat. PMID:16346607

  18. Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat

    SciTech Connect

    Revsbech, N.P.; Ward, D.M.

    1984-08-01

    Microelectrodes were used to measure oxygen, pH, and oxygenic photosynthetic activity in a hot spring microbial mat (Octopus Spring, Yellowstone National Park), where the cyanobacterium Synechoccus lividus and the filamentous bacteria Chloroflexus aurantiacus are the only known phototrophs. The data showed very high biological activities in the topmost layers of the microbial mat, resulting in extreme values for oxygen and pH. At a 1-mm depth at a 55 C site, oxygen and pH reached 900 micro M and 9.4, respectively, just after solar noon, whereas anoxic conditions with pH of 7.2 were measured before sunrise. Although diurnal changes between these extremes occurred over hours during a diurnal cycle microbial activity was great enough to give the same response in 1 to 2 mm after artificial shading. Oxygenic photosynthesis was confined to a 0.5- to 1.1-mm layer at sites with temperatures at or above about 50 C, with maximum activities in the 55 to 60 C region. The data suggest that S. lividus is the dominant primary producer of the mat. 30 references, 5 figures.

  19. The chemistry of sodium chloride involvement in processes related to hot corrosion. [in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1979-01-01

    Thermodynamic and mass transport calculations, and laboratory experiments elucidating the behavior of sodium chloride in combustion environments, in the deposition process, and in reactions with certain oxides on the surfaces of superalloys are summarized. It was found that some of the ingested salt is separated out of the air stream by the compressor. However, sodium chloride does pass from the compressor to the combustor where numerous chemical reactions take place. Here some of the salt is vaporized to yield gaseous sodium chloride molecules. Hydrogen and oxygen atoms present in the combustion products react with some sodium chloride to yield other gaseous species such as sodium, and a fraction of the salt remains as particulates. Both the gas phase and condensed sodium chloride can lead to sodium sulfate formation by various routes, all of which involve reaction with sulfur oxides and oxygen. In addition to contributing to the formation of sodium sulfate, the sodium chloride can contribute to corrosion directly.

  20. Ion-atom charge-transfer reactions and a hot intercloud medium. [in interstellar space

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    An investigation is conducted concerning the ionization equilibrium of carbon in a hot intercloud medium (ICM), taking into account various charge-transfer reactions. Attention is given to problems related to observations of carbon along the lines of sight to several unreddened stars. It is pointed out that the observed underabundance of C III and overabundance of C I can be consistent with the presence of a hot, partially ionized ICM, provided that two of the charge-transfer reactions considered are rapid at thermal energies.

  1. Emanation of 54Mn and 57Co impurity hot atoms from metal iron upon annealing the radiation damage

    NASA Astrophysics Data System (ADS)

    Alekseev, I.

    2015-01-01

    Irradiation of metallic iron with intense (10 ??) beams of deuterons (Ed - 9.0/8.2 MeV; fluence, 1.01022 m-2) is accompanied by the formation of a metastable ?-phase in the bulk of metal. Short annealing at low temperature (at (8735) K for 10 min) of irradiated samples leads to a degradation of the ?-phase of iron, to a reversion of the irradiated metal into the low-temperature state of ?-Fe, which is typical at room temperature, and is followed by a higher emanation of 54Mn atoms into the gaseous phase (almost by two orders of magnitude higher as compared to the vapor pressure values under this temperature). The results that are principally coincident with the ones given above (accelerated transport and subsequent excessive emanation of the "hot" atoms into the gaseous phase) have been obtained for 57Co as well.

  2. Chemistry and Mineralogy of Rock Surface Coatings from Terrestrial Hot and Dry Deserts

    NASA Astrophysics Data System (ADS)

    Garvie, L. A.

    2001-12-01

    Coatings form on rocks in terrestrial hot and dry deserts that are chemically, mineralogically, and texturally distinct from the underlying rock. They are composed of mixtures of aeolian-derived particles, primarily clays, cemented by authigenic Mn-Fe-bearing materials. The coatings are characteristically laminated at the nanometer to micron scale, with Mn-Fe oxide-rich layers alternating with silicate-rich layers. The junction between the coating and the rock is generally sharp. The laminated coatings form on all rock types, even quartz, although its thickness is usually greatest on Fe-rich rocks. Manganese-rich coatings of 5 microns thickness or less impart a black color to the rock. High resolution TEM (HRTEM) images of the coatings show a predominance of thin clay-like flakes and aggregates of tissue-like particles, with lesser amounts of rounded crystalline grains. Most clay particles exhibit 001 spacings of 10, 12 , and intermediate spacings, typical of mica, smectite, and mixed-layer mica-smectite minerals. Many of the Mn-bearing particles have lattice spacings between 5.5 and 7 , visible at the edges of folded flakes. These spacings are consistent with a phyllomanganate-like structure, similar to birnessite. The lower values measured in the TEM are consistent with collapse of the layers in the vacuum of the TEM. Also present are occasional elongated Mn-rich particles with a ca. 10 spacing consistent with todorokite. Four distinct Mn-rich materials were recognized: (a) Discrete, elongated Ca-Ba-rich Mn-oxides. (b) Tissue-like aggregates with minor Fe and Ba. (c) Fluffy Mn-Fe-rich coatings on clays. (d) An anhedral Mn-Fe spinel-like mineral. Nanometer-sized C aggregates were occasionally encountered in the coatings. These particles contain variable, minor amounts of K, N, and O, as revealed by electron energy-loss spectroscopy (EELS). Their small sizes and the occurrence of K in some of the particles is consistent with C derived from biomass burning. The Rutherford Backscattering spectroscopy (RBS) spectra exhibited an intense C peak from the surface of the varnish. Occasional C-rich particles are present, which are of possible fungal or bacterial origin.

  3. Effect of ball-milling surfactants on the interface chemistry in hot-compacted SmCo5 magnets

    SciTech Connect

    Li, WF; Sepehri-Amin, H; Zheng, LY; Cui, BZ; Gabay, AM; Hono, K; Huang, WJ; Ni, C; Hadjipanayis, GC

    2012-11-01

    Anisotropic SmCo5 nanoflakes prepared by high-energy ball-milling with surfactants have great potential in applications for high-performance nanocomposite magnets. For such "nanocomposite" applications, the surface structure and chemistry of nanoflakes are crucial for achieving high coercivity. In this study, hot-pressed samples from anisotropic SmCo5 nanoflakes, ball-milled with different surfactants, oleic acid (OA) and oleylamine (OY), were investigated. Interface layers between the SmCo5 nanoflakes were found to consist of samarium oxides and a soft magnetic Co phase. These surface layers contribute to the degradation of hard magnetic performance, which is confirmed by scanning transmission electron microscopy-energy dispersive X-ray spectroscopy analysis of the cross-section of a single flake ball-milled with OA. Samples milled with OY show a much thinner interface layer in compacted samples, which means that the surface degradation during ball-milling with OY is much less than that with OA. The results show clearly that the choice of proper surfactant and the control of processing parameters are the key factors for improving the surface condition of the nanoflakes and the resulting hard magnetic properties. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Laboratory studies on tropospheric iodine chemistry: bridging the atomic, molecular and particle scale

    NASA Astrophysics Data System (ADS)

    Gomez Martin, J.; Saunders, R. W.; Blitz, M. A.; Mahajan, A. S.; Plane, J. M.

    2008-12-01

    High mixing ratios of the iodine oxides IO and OIO have been observed in the polar, mid-latitude and tropical marine boundary layer (MBL). The impact of the iodine chemistry on the oxidizing capacity of the MBL is well documented. Moreover, there is evidence showing that the bursts of new particles measured in coastal regions are produced by the biogenic emission of iodine containing precursors, followed by the photochemical production and condensation of iodine oxide vapours. Airborne measurements of particle growth rates show that these particles can reach significant sizes where they can contribute to the regional aerosol loading, thus suggesting a potential impact on climate on a regional or global scale. Within the frame of the INSPECT project (INorganic Secondary Particle Evolution, Chemistry and Transport) we wish to understand at a fundamental level the tendency for the iodine oxides formed from IO and OIO recombination to condense into particles. Elemental analysis of iodine oxide particles (IOP) made in the laboratory shows that they have the empirical formula I2O5. The major question is how this happens: through formation of I2O5 in the gas phase, followed by polymerization, or by condensation of various IxOy to form amorphous iodine oxides, which subsequently rearrange to I2O5. We are studying the gas phase photochemistry leading to nucleation of IOP, their growth kinetics, aspects of their heterogeneous chemistry, and their properties as ice condensation nuclei. In order to bridge the molecular and the particle scales, a wide variety of techniques are being used, including CRDS, ARAS, LIF, UV-VIS spectroscopy, PI-TOF-MS and mobility particle size scanning. The results obtained so far provide new and interesting insights to the problem. From the gas phase point of view, a unit iodine atom quantum yield from OIO photolysis has been now established across its strong visible spectral bands. This result implies a short lifetime of OIO and explains why in general it could not be observed during daytime in the field. This is also consistent with recently observed ozone depletion events possibly correlated to high concentrations of IO. On the other hand, atmospheric modelling shows that the rate of formation of condensable iodine vapours decreases when a high OIO photolysis rate is considered, although the modelled values are still consistent with the rates of particle formation observed in the MBL. On the particle scale, the role of water and sulphuric acid vapour uptake on the formation and growth of IOP has been studied by analysis of the observed changes to measured particle size distribution data. In the case of water, hygroscopic growth factors have been determined at different ambient relative humidities, while for H2SO4 the uptake coefficient onto IOP has been evaluated. The experimental data suggests the possibility of a ternary nucleation route involving iodine oxide-water-acid vapours. Currently, pulsed laser photolysis coupled to PI-TOF-MS is being used to study the transition regime between the gas and particle phase. With this technique it is possible to resolve small clusters up to 1200 amu with sufficient resolution to determine, e.g., whether I2O4 or I2O5 is the condensable unit of IOP.

  5. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    SciTech Connect

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  6. GHz Rabi Flopping to Rydberg States in Hot Atomic Vapor Cells

    SciTech Connect

    Huber, B.; Baluktsian, T.; Schlagmueller, M.; Koelle, A.; Kuebler, H.; Loew, R.; Pfau, T.

    2011-12-09

    We report on the observation of Rabi oscillations to a Rydberg state on a time scale below 1 ns in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of {approx}4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor, thus suggesting small vapor cells as a platform for room-temperature quantum devices. Furthermore, the result implies that previous coherent dynamics in single-atom Rydberg gates can be accelerated by 3 orders of magnitude.

  7. Atomic hydrogen escape rate due to charge exchange with hot plasmaspheric ions

    NASA Technical Reports Server (NTRS)

    Maher, L. J.; Tinsley, B. A.

    1977-01-01

    Data on ion and electron temperatures and concentrations to several thousand kilometers of altitude were obtained from the Atmosphere Explorer C satellite for 1974 and to 850 km from Arecibo incoherent scatter radar measurements. These data were used to normalize diffusive equilibrium profiles. From these profiles and by using the neutral atmospheric model of Jacchia (1971) and a new hydrogen model, the charge-exchange-induced neutral hydrogen escape fluxes for equatorial and middle latitudes were calculated. The data confirm earlier estimates that the charge exchange loss is more important than Jeans escape for the earth. It is also found that inside the plasmapause this charge exchange process with hot plasmapheric ions is the major production and loss process for the satellite population in the hydrogen geocorona.

  8. Reactions of Azine Anions with Nitrogen and Oxygen Atoms: Implications for Titan's Upper Atmosphere and Interstellar Chemistry.

    PubMed

    Wang, Zhe-Chen; Cole, Callie A; Demarais, Nicholas J; Snow, Theodore P; Bierbaum, Veronica M

    2015-08-26

    Azines are important in many extraterrestrial environments, from the atmosphere of Titan to the interstellar medium. They have been implicated as possible carriers of the diffuse interstellar bands in astronomy, indicating their persistence in interstellar space. Most importantly, they constitute the basic building blocks of DNA and RNA, so their chemical reactivity in these environments has significant astrobiological implications. In addition, N and O atoms are widely observed in the ISM and in the ionospheres of planets and moons. However, the chemical reactions of molecular anions with abundant interstellar and atmospheric atomic species are largely unexplored. In this paper, gas-phase reactions of deprotonated anions of benzene, pyridine, pyridazine, pyrimidine, pyrazine, and s-triazine with N and O atoms are studied both experimentally and computationally. In all cases, the major reaction channel is associative electron detachment; these reactions are particularly important since they control the balance between negative ions and free electron densities. The reactions of the azine anions with N atoms exhibit larger rate constants than reactions of corresponding chain anions. The reactions of azine anions with O atoms are even more rapid, with complex product patterns for different reactants. The mechanisms are studied theoretically by employing density functional theory; spin conversion is found to be important in determining some product distributions. The rich gas-phase chemistry observed in this work provides a better understanding of ion-atom reactions and their contributions to ionospheric chemistry as well as the chemical processing that occurs in the boundary layers between diffuse and dense interstellar clouds. PMID:26281019

  9. Photon pair production from a hot atomic ensemble in the diamond configuration

    NASA Astrophysics Data System (ADS)

    Willis, Richard Thomas

    This thesis discusses four-wave mixing (4WM) in a warm ensemble of rubidium using the diamond configuration level structure. Both classical 4WM and nonclassical photon-pair production are investigated. Quantum information science has spawned a great amount of experimental work on the interaction of light with collective modes of excitation in atomic ensembles. Plans to build quantum networks and quantum repeaters with atom ensembles take advantage of nonlinear interactions to produce and store non-classical states of light. These technologies will require photon sources that not only generate nonclassical light, but also resonant, narrow band light. Here we investigate a system which could be used as such a source. We take advantage of the 4WM interaction in a warm ensemble of Rubidium atoms. Our scheme utilizes the diamond energy level configuration which, in rubidium, allows for correlated pairs at telecommunications wavelengths. We start by examining the properties of classical 4WM in the system. We measure the resonance structure and see that it can be understood in terms of velocity class selective resonant enhancement and power splitting effects. The efficiency of the process is low and limited by linear absorption of the pumps. Our observations agree with a semi-classical Maxwell-Bloch theoretical treatment. Next we observe pair generation by spontaneous 4WM from the warm ensemble. The temporal profile of the cross-correlation function (CCF) for the photons depends on pump-laser power and detuning. This allows us to produce biphotons with controllable spectra. A simple quantum optical theoretical treatment based on linear filtering gives qualitative agreement with the data. We show that the photon pairs are polarization entangled, clearly violating Bell's Inequality. A perturbative quantum optical treatment predicts the polarization state of the pairs and agrees with our measurements. We analyze the photon statistics of the source and find the largest violation of the two beam Cauchy-Schwarz inequality from a warm atomic source yet. We cast the system as a heralded single photon source at telecommunications wavelengths and see that it is competitive with other systems in terms of spectral brightness.

  10. Competition of silene/silylene chemistry with free radical chain reactions using 1-methylsilacyclobutane in the hot-wire chemical vapor deposition process.

    PubMed

    Badran, I; Forster, T D; Roesler, R; Shi, Y J

    2012-10-18

    The gas-phase reaction chemistry of using 1-methylsilacyclobutane (MSCB) in the hot-wire chemical vapor deposition (CVD) process has been investigated by studying the decomposition of MSCB on a heated tungsten filament and subsequent gas-phase reactions in a reactor. Three pathways exist to decompose MSCB on the filament to form ethene/methylsilene, propene/methylsilylene, and methyl radicals. The activation energies for forming propene and methyl radical, respectively, are determined to be 68.7 1.3 and 46.7 2.5 kJmol(-1), which demonstrates the catalytic nature of the decomposition. The secondary gas-phase reactions in the hot-wire CVD reactor are characterized by the competition between a free radical chain reaction and the cycloaddition of silene reactive species produced either from the primary decomposition of MSCB on the filament or the isomerization of silylene species. At lower filament temperatures of 1000-1100 C and short reaction time (t ? 15 min), the free radical chain reaction is equally important as the silene chemistry. With increasing filament temperature and reaction time, silene chemistry predominates. PMID:22934960

  11. Atmospheric Chemistry of CF3CF=CH2: Reactions With Cl Atoms, OH Radicals and Ozone

    NASA Astrophysics Data System (ADS)

    Sulbaek Andersen, M. P.; Javadi, M. S.; Nielsen, O. J.; Hurley, M. D.; Wallington, T. J.; Singh, R.

    2006-12-01

    The detrimental effects of chlorine chemistry on stratospheric ozone levels are well established. Consequently, there has been a concerted international effort to find replacements for chlorofluorocarbons (CFCs) used previously as electronic equipment cleaners, heat transfer agents, refrigerants, and carrier fluids for lubricant deposition. The replacements for CFCs, hydrofluorocarbons (HFCs) and hydrofluorochlorocarbons (HCFCs), have found widespread industrial use over the past decade. Unsaturated fluorinated hydrocarbons are a new class of compounds which have been developed to replace CFCs and HFCs in air condition units. Prior to any large-scale industrial use an assessment of the atmospheric chemistry, and hence environmental impact, of these compounds is needed. To address this need the atmospheric chemistry of CF3CF=CH2 was investigated. Smog chamber/FTIR techniques were used to determine the following properties for this compound: (i) kinetics of reactions with chlorine atoms (ii) kinetics of reactions with hydroxyl radicals (iii) kinetics of reactions with ozone, (iv) atmospheric lifetimes, (v) atmospheric degradation mechanism, and (vi) global warming potentials. The results are discussed with regard to the environmental impact of CF3CF=CH2 and the atmospheric chemistry of unsaturated fluorinated hydrocarbons.

  12. Chemistry of Hot Spring Pool Waters in Calamba and Los Banos and Potential Effect on the Water Quality of Laguna De Bay

    NASA Astrophysics Data System (ADS)

    Balangue, M. I. R. D.; Pena, M. A. Z.; Siringan, F. P.; Jago-on, K. A. B.; Lloren, R. B.; Taniguchi, M.

    2014-12-01

    Since the Spanish Period (1600s), natural hot spring waters have been harnessed for balneological purposes in the municipalities of Calamba and Los Banos, Laguna, south of Metro Manila. There are at more than a hundred hot spring resorts in Brgy. Pansol, Calamba and Tadlac, Los Banos. These two areas are found at the northern flanks of Mt. Makiling facing Laguna de Bay. This study aims to provide some insights on the physical and chemical characteristics of hot spring resorts and the possible impact on the lake water quality resulting from the disposal of used water. Initial ocular survey of the resorts showed that temperature of the pool water ranges from ambient (>300C) to as high as 500C with an average pool size of 80m3. Water samples were collected from a natural hot spring and pumped well in Los Banos and another pumped well in Pansol to determine the chemistry. The field pH ranges from 6.65 to 6.87 (Pansol springs). Cation analysis revealed that the thermal waters belonged to the Na-K-Cl-HCO3 type with some trace amount of heavy metals. Methods for waste water disposal are either by direct discharge down the drain of the pool or by discharge in the public road canal. Both methods will dump the waste water directly into Laguna de Bay. Taking in consideration the large volume of waste water used especially during the peak season, the effect on the lake water quality would be significant. It is therefore imperative for the environmental authorities in Laguna to regulate and monitor the chemistry of discharges from the pool to protect both the lake water as well as groundwater quality.

  13. A new algorithm for solving non-LTE atomic populations in hot plasmas

    NASA Astrophysics Data System (ADS)

    Klapisch, Marcel; Busquet, Michel

    2004-11-01

    Most ICF plasmas are not in Local Thermodynamic Equilibrium(LTE) because of gradients of temperature and radiation losses. Therefore, rate equations have to be set and solved for the level populations of atomic ions. These can be fine structure levels, configurations, or superconfigurations, depending on the complexity of the spectra. The rate equations to be solved often involve tens of thousands of levels. We present here an algorithm which is more physical than the commonly used biconjugate gradient[1]. The populations are factorized into total ion and reduced level populations. This yields a double linearized iterative scheme. Global rates are iteratively refined, so it is possible to quickly converge on average charge Z*. Results and comparison with other methods will be shown. Work supported by the USDOE under a contract with Naval Research Laboratory, Laser Plasma Branch. [1] W. H. Press, B. P. Flannery, S. A. Teukolsky et al., Numerical Recipes in Fortran 77 , 2nd ed. (Cambridge University Press, Cambridge, UK, 1996).

  14. Surface chemistry of the atomic layer deposition of metals and group III oxides

    NASA Astrophysics Data System (ADS)

    Goldstein, David Nathan

    Atomic Layer Deposition (ALD) is a thin-film growth technique offering precise control of film thickness and the ability to coat high-aspect-ratio features such as trenches and nanopowders. Unlike other film growth techniques, ALD does not require harsh processing conditions and is not limited by line-of-sight deposition. Emerging applications for ALD materials include semiconductor devices, gas sensors, and water-diffusion barriers. The chemistry behind ALD involves understanding how the precursors interact with surfaces to deposit the desired material. All ALD precursors need to be stable on the substrate to ensure self-limiting behavior yet reactive enough to be easily removed with the second reagent. Recent precursor development has provided many volatile organometallic compounds for most of the periodic table. As the number of precursors increases, proper precursor choice becomes crucial. This is because the film properties, growth rates, and growth temperature vary widely between the precursors. Many of the above traits can be predicted with knowledge of the precursor reaction mechanisms. This thesis aims to link surface reaction mechanisms to observed growth and nucleation trends in metal and oxide ALD systems. The first portion of this thesis explores the mechanisms of two ALD oxide systems. First, I examine the mechanism of ALD alumina with ozone. Ozone is used as an oxidant in the semiconductor industry because the deposited Al 2O3 films possess better insulating properties and ozone is easier to purge from a vacuum system. FT-IR analysis reveals a complicated array of surface intermediates such as formate, carbonate, and methoxy groups that form during Al2O3 growth with ozone. Next, a new method to deposit thin films of Ga2O3 is introduced. Gallium oxide is a transparent conducting oxide that needs expensive solid precursors to be deposited by ALD. I show that trimethylgallium is a good high-temperature ALD precursor that deposits films of Ga2O 3 with low impurities and a good growth rate. The second section of this thesis focuses on two metal ALD systems. One major drawback of metal ALD systems is their inability to nucleate on many oxide surfaces. This greatly limits the applications of metal ALD for interconnects and flexible electrodes. The first emphasis is an on a new palladium ALD system using palladium (II) hexafluoroacetylaceonate (Pd(hfac)2) and formalin. FT-IR studies show that the Pd(hfac)2 dissociatively adsorbs, releasing free hfacH molecules that bind to Lewis acid sites on the alumina. The observed nucleation period of Pd is linked to surface poisoning by hfacH. In a related experiment, I use trimethylaluminum exposures to remove excess hfacH from the surface. Trimethylaluminum is able to ligand exchange an easier to remove methyl group with the surface hfacH, This treatment causes palladium to nucleate much more rapidly and deposit at lower temperatures. Finally, I examine ToRuS, a new precursor solution for Ru ALD. ToRuS, a solution of RuO4 in perfluoroethers, deposits ruthenium faster and at lower temperatures than all other Ru precursors. The mechanism for deposition and role of the perfluoroethers, however, is poorly understood. In the first study, I couple FT-IR spectroscopy with ab-initio calculations to identify the surface species formed when the perfluoroether solvent adsorbs on alumina. These surface species bind strongly to the alumina surface, creating a nonpolar, fluorinated layer. I then use these results to understand how ToRuS deposits Ru films. The fluorinated layer solvates RuO4, stabilizing it near the surface until it can be reduced by H2 gas. FT-IR and XPS analysis shows that the fluorinated layer does not leave carbonaceous impurities on the ruthenium surface or impedes metal deposition.

  15. Bonds Between Metal Atoms: A New Mode of Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Cotton, F. Albert; Chisholm, Malcolm H.

    1982-01-01

    Discusses polynuclear metal clusters (containing two or more metal atoms bonded to one another as well as to nonmetallic elements), including their formation and applications. Studies of bonds between metal atoms reveal superconductors, organic-reaction catalysts, and photosensitive complexes that may play a role in solar energy. (JN)

  16. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  17. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the

  18. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  19. Assessing Mixing Quality of a Copovidone-TPGS Hot Melt Extrusion Process with Atomic Force Microscopy and Differential Scanning Calorimetry.

    PubMed

    Lamm, Matthew S; DiNunzio, James; Khawaja, Nazia N; Crocker, Louis S; Pecora, Anthony

    2016-02-01

    Atomic force microscopy (AFM) and modulated differential scanning calorimetry (mDSC) were used to evaluate the extent of mixing of a hot melt extrusion process for producing solid dispersions of copovidone and D-?-tocopherol polyethylene glycol 1000 succinate (TPGS 1000). In addition to composition, extrusion process parameters of screw speed and thermal quench rate were varied. The data indicated that for 10% TPGS and 300rpm screw speed, the mixing was insufficient to yield a single-phase amorphous material. AFM images of the extrudate cross section for air-cooled material indicate round domains 200 to 700nm in diameter without any observed alignment resulting from the extrusion whereas domains in extrudate subjected to chilled rolls were elliptical in shape with uniform orientation. Thermal analysis indicated that the domains were predominantly semi-crystalline TPGS. For 10% TPGS and 600rpm screw speed, AFM and mDSC data were consistent with that of a single-phase amorphous material for both thermal quench rates examined. When the TPGS concentration was reduced to 5%, a single-phase amorphous material was achieved for all conditions even the slowest screw speed studied (150rpm). PMID:26283196

  20. The H + OCS hot atom reaction - CO state distributions and translational energy from time-resolved infrared absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Cartland, Harry E.

    1993-01-01

    Time-resolved infrared diode laser spectroscopy has been used to probe CO internal and translational excitation from the reaction of hot H atoms with OCS. Product distributions should be strongly biased toward the maximum 1.4 eV collision energy obtained from 278 nm pulsed photolysis of HI. Rotations and vibrations are both colder than predicted by statistical density of states theory, as evidenced by large positive surprisal parameters. The bias against rotation is stronger than that against vibration, with measurable population as high as v = 4. The average CO internal excitation is 1920/cm, accounting for only 13 percent of the available energy. Of the energy balance, time-resolved sub-Doppler line shape measurements show that more than 38 percent appears as relative translation of the separating CO and SH fragments. Studies of the relaxation kinetics indicate that some rotational energy transfer occurs on the time scale of our measurements, but the distributions do not relax sufficiently to alter our conclusions. Vibrational distributions are nascent, though vibrational relaxation of excited CO is unusually fast in the OCS bath, with rates approaching 3 percent of gas kinetic for v = 1.

  1. He-Ion and Self-Atom Induced Damage and Surface-Morphology Changes of a Hot W Target

    SciTech Connect

    Meyer, Fred W; Hijazi, Hussein Dib; Krstic, Predrag S; Dadras, Mostafa Jonny; Meyer III, Harry M; Parish, Chad M; Bannister, Mark E

    2014-01-01

    We report results of measurements on the evolution of the surface morphology of a hot tungsten surface due to impacting low-energy (80 12,000 eV) He ions and of simulations of damage caused by cumulative bombardment of 1 and 10 keV W self-atoms. The measurements were performed at the ORNL Multicharged Ion Research Facility (MIRF), while the simulations were done at the Kraken supercomputing facility of the University of Tennessee. At 1 keV, the simulations show strong defect-recombination effects that lead to a saturation of the total defect number after a few hundreds impacts, while sputtering leads to an imbalance of the vacancy and interstitial number. On the experimental side, surface morphology changes were investigated over a broad range of fluences for both virgin and pre-damaged W-targets. At the lowest accumulated fluences, small surface-grain features and near-surface He bubbles are observed. At the largest fluences, individual grain characteristics disappear in FIB/SEM scans, and the entire surface is covered by a multitude of near-surface bubbles with a broad range of sizes, and disordered whisker growth, while in top-down SEM imaging the surface is virtually indistinguishable from the nano-fuzz produced on linear plasma devices. These features are evident at progressively lower fluences as the He-ion energy is increased.

  2. He-ion and self-atom induced damage and surface-morphology changes of a hot W target

    NASA Astrophysics Data System (ADS)

    Meyer, F. W.; Hijazi, H.; Bannister, M. E.; Krstic, P. S.; Dadras, J.; Meyer, H. M., III; Parish, C. M.

    2014-04-01

    We report results of measurements on the evolution of the surface morphology of a hot tungsten surface due to impacting low-energy (80-12 000 eV) He ions and of simulations of damage caused by cumulative bombardment of 1 and 10 keV W self-atoms. The measurements were performed at the ORNL Multicharged Ion Research Facility, while the simulations were done at the Kraken supercomputing facility of the University of Tennessee. At 1 keV, the simulations show strong defect-recombination effects that lead to a saturation of the total defect number after a few hundred impacts, while sputtering leads to an imbalance of the vacancy and interstitial number. On the experimental side, surface morphology changes were investigated over a broad range of fluences, energies and temperatures for both virgin and pre-damaged W-targets. At the lowest accumulated fluences, small surface-grain features and near-surface He bubbles are observed. At the largest fluences, individual grain characteristics disappear in focused ion beam/scanning electron microscopy (FIB/SEM) scans, and the entire surface is covered by a multitude of near-surface bubbles with a broad range of sizes, and disordered whisker growth, while in top-down SEM imaging the surface is virtually indistinguishable from the nano-fuzz produced on linear plasma devices. These features are evident at progressively lower fluences as the He-ion energy is increased.

  3. Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry

    NASA Astrophysics Data System (ADS)

    Arnold, G. S.; Peplinski, D. R.

    1985-09-01

    A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented.

  4. Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces

    SciTech Connect

    Flynn, George W

    2015-02-16

    Executive Summary of Final Report for Award DE-FG02-88ER13937 Project Title: Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and its Precursors on Metal Surfaces Applicant/Institution: Columbia University Principal Investigator: George W. Flynn Objectives: The objectives of this project were to reveal the mechanisms and reaction processes that solid carbon materials undergo when combining with gases such as oxygen, water vapor and hydrocarbons. This research was focused on fundamental chemical events taking place on single carbon sheets of graphene, a two-dimensional, polycyclic carbon material that possesses remarkable chemical and electronic properties. Ultimately, this work is related to the role of these materials in mediating the formation of polycyclic aromatic hydrocarbons (PAH’s), their reactions at interfaces, and the growth of soot particles. Our intent has been to contribute to a fundamental understanding of carbon chemistry and the mechanisms that control the formation of PAH’s, which eventually lead to the growth of undesirable particulates. We expect increased understanding of these basic chemical mechanisms to spur development of techniques for more efficient combustion of fossil fuels and to lead to a concomitant reduction in the production of undesirable solid carbon material. Project Description: Our work treated specifically the surface chemistry aspects of carbon reactions by using proximal probe (atomic scale imaging) techniques to study model systems of graphene that have many features in common with soot forming reactions of importance in combustion flames. Scanning tunneling microscopy (STM) is the main probe technique that we used to study the interfacial structure and chemistry of graphene, mainly because of its ability to elucidate surface structure and dynamics with molecular or even atomic resolution. Scanning tunneling spectroscopy (STS), which measures the local density of quantum states over a single atom, provides information about the electronic structure of graphene and is particularly sensitive to the sign and magnitude of the charge transfer between graphene and any surface adsorbed species. Results: (A) Graphene on SiO2 In an effort designed to unravel aspects of the mechanisms for chemistry on graphene surfaces, STM and STS were employed to show that graphene on SiO2 is oxidized at lower temperatures than either graphite or multi-layer graphene. Two independent factors control this charge transfer: (1) the degree of graphene coupling to the substrate, and (2) exposure to oxygen and moisture. (B) Graphene on Copper In the case of graphene grown on copper surfaces, we found that the graphene grows primarily in registry with the underlying copper lattice for both Cu(111) and Cu(100). On Cu(111) the graphene has a hexagonal superstructure with a significant electronic component, whereas it has a linear superstructure on Cu(100). (C) Nitrogen Doped Graphene on Copper Using STM we have also studied the electronic structure and morphology of graphene films grown on a copper foil substrate in which N atoms substitute for carbon in the 2-D graphene lattice. The salient features of the results of this study were: (1) Nitrogen doped graphene on Cu foil exhibits a triangular structure with an “apparent” slight elevation of ~ 0.8 Å at N atom substitution sites; (2) Nitrogen doping results in ~0.4 electrons per N atom donated to the graphene lattice; (3) Typical N doping of graphene on Cu foil shows mostly single site Carbon atom displacement (~ 3N/1000C); (4) Some multi-site C atom displacement is observed (<10% of single site events). (D) Boron Doped Graphene on Copper We also used scanning tunneling microscopy and x-ray spectroscopy to characterize the atomic and electronic structure of boron-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 free carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying substrate while nitrogen does not. The local bonding differences between boron and nitrogen dopants lead to large-scale differences in dopant distribution and in the structure of the doped graphene films. The distribution of dopants was observed to be completely random in the case of boron, while nitrogen displayed strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. It is our expectation that a better understanding of carbon chemistry, especially the reactions of graphene flakes, will provide data that can ultimately be used to reduce particulate emissions from the burning of fossil fuels.

  5. Effect of Si-H bond on the gas-phase chemistry of trimethylsilane in the hot wire chemical vapor deposition process.

    PubMed

    Shi, Y J; Li, X M; Toukabri, R; Tong, L

    2011-09-22

    The effect of the Si-H bond on the gas-phase reaction chemistry of trimethylsilane in the hot-wire chemical vapor deposition (HWCVD) process has been studied by examining its decomposition on a hot tungsten filament and the secondary gas-phase reactions in a reactor using a soft laser ionization source coupled with mass spectrometry. Trimethylsilane decomposes on the hot filament via Si-H and Si-CH(3) bond cleavages. A short-chain mechanism is found to dominate in the secondary reactions in the reactor. It has been shown that the hydrogen abstractions of both Si-H and C-H occur simultaneously, with the abstraction of Si-H being favored. Tetramethylsilane and hexamethyldisilane are the two major products formed from the radical recombination reactions in the termination steps. Three methyl-substituted disilacyclobutane molecules, i.e., 1,3-dimethyl-1,3-disilacyclobutane, 1,1,3-trimethyl-1,3-disilacyclobutane, and 1,1,3,3-tetramethyl-1,3-disilacyclobutane are also produced in reactor from the cycloaddition reactions of methyl-substituted silene species. Compared to tetramethylsilane and hexamethyldisilane, a common feature with trimethylsilane is that the short-chain mechanism still dominates. However, a more active involvement of the reactive silene intermediates has been found with trimethylsilane. PMID:21834557

  6. Deep Atomic Binding (DAB) Hypothesis: A New Approach of Fission Product Chemistry

    SciTech Connect

    Ajlouni, Abdul-Wali M.S.

    2006-07-01

    Former studies assumed that, after fission process occurs, the highly ionized new born atoms (20-22 positive charge), ionize the media in which they pass through before becoming stable atoms in a manner similar to 4-MeV ?-particles. Via ordinary chemical reactions with the surroundings, each stable atom has a probability to form chemical compound. Since there are about 35 different elemental atoms created through fission processes, a large number of chemical species were suggested to be formed. But, these suggested chemical species were not found in the environment after actual releases of FP during accidents like TMI (USA, 1979), and Chernobyl (former USSR, 1986), also the models based on these suggested reactions and species could not interpret the behavior of these actual species. It is assumed here that the ionization states of the new born atoms and the long term high temperature were not dealt with in an appropriate way and they were the reasons of former models failure. Our new approach of Deep Atomic Binding (DAB) based on the following: 1-The new born atoms which are highly ionized, 10-12 electrons associated with each nucleus, having a large probability to create bonds between them to form molecules. These bonds are at the L, or M shells, and we call it DAB. 2-The molecules stay in the reactor at high temperatures for long periods, so they undergo many stages of composition and decomposition to form giant molecules. By applying DAB approach, field data from Chernobyl, TMI and nuclear detonations could be interpreted with a wide coincidence resulted. (author)

  7. Atomic-Scale Structure and Local Chemistry of CoFeB-MgO Magnetic Tunnel Junctions.

    PubMed

    Wang, Zhongchang; Saito, Mitsuhiro; McKenna, Keith P; Fukami, Shunsuke; Sato, Hideo; Ikeda, Shoji; Ohno, Hideo; Ikuhara, Yuichi

    2016-03-01

    Magnetic tunnel junctions (MTJs) constitute a promising building block for future nonvolatile memories and logic circuits. Despite their pivotal role, spatially resolving and chemically identifying each individual stacking layer remains challenging due to spatially localized features that complicate characterizations limiting understanding of the physics of MTJs. Here, we combine advanced electron microscopy, spectroscopy, and first-principles calculations to obtain a direct structural and chemical imaging of the atomically confined layers in a CoFeB-MgO MTJ, and clarify atom diffusion and interface structures in the MTJ following annealing. The combined techniques demonstrate that B diffuses out of CoFeB electrodes into Ta interstitial sites rather than MgO after annealing, and CoFe bonds atomically to MgO grains with an epitaxial orientation relationship by forming Fe(Co)-O bonds, yet without incorporation of CoFe in MgO. These findings afford a comprehensive perspective on structure and chemistry of MTJs, helping to develop high-performance spintronic devices by atomistic design. PMID:26905782

  8. Relativistic Quantum Chemistry of Heavy Ions and Hadronic Atomic Systems: Spectra and Energy Shifts

    SciTech Connect

    Glushkov, A. V.; Khetselius, O.; Gurnitskaya, E.; Loboda, A.; Sukharev, D.

    2009-03-09

    The levels energies and energy shifts are calculated for superheavy Li-like ions and some kaonic atoms on the basis of the gauge-invariant QED perturbation theory (PT) with an account of nuclear, exchange-correlation and radiative effects.

  9. Chemistry of the outer planets

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.

    1992-01-01

    Various aspects were studied of past or present chemistry in the atmospheres of the outer planets and their satellites using lab simulations. Three areas were studied: (1) organic chemistry induced by kinetically hot hydrogen atoms in the region of Jupiter's atmosphere containing the ammonia cirrus clouds; (2) the conversion of NH3 into N2 by plasmas associated with entry of meteors and other objects into the atmosphere of early Titan; and (3) the synthesis of simple hydrocarbons and HCN by lightning in mixtures containing N2, CH4, and NH3 representing the atmospheres of Titan and the outer planets. The results showed that: (1) hot H2 atoms formed from the photodissociation of NH3 in Jupiter's atmosphere could account for some of the atmospheric chemistry in the ammonia cirrus cloud region; (2) the thermalization of hot H2 atoms in atmospheres predominated by molecular H is not as rapid as predicted by elastic collision theory; (3) the net quantum loss of NH3 in the presence of a 200 fold excess of H2 is 0.02, much higher than was expected from the amount of H2 present; (4) the conversion of NH3 into N2 in plasmas associated with infalling meteors is very efficient and rapid, and could account for most of the N2 present on Titan; (5) the yields of C2H2 and HCN from lightning induced chemistry in mixtures of CH4 and N2 is consistent with quenched thermodynamic models of the discharge core; and (6) photolysis induced by the UV light emitted by the gases in the hot plasmas may account for some, if not most, of the excess production of C2H6 and the more complex hydrocarbons.

  10. Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Langereis, E.; Keijmel, J.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2008-06-01

    The surface groups created during plasma-assisted atomic layer deposition (ALD) of Al2O3 were studied by infrared spectroscopy. For temperatures in the range of 25-150C, -CH3 and -OH were unveiled as dominant surface groups after the Al(CH3)3 precursor and O2 plasma half-cycles, respectively. At lower temperatures more -OH and C-related impurities were found to be incorporated in the Al2O3 film, but the impurity level could be reduced by prolonging the plasma exposure. The results demonstrate that -OH surface groups rule the surface chemistry of the Al2O3 process and likely that of plasma-assisted ALD of metal oxides from organometallic precursors in general.

  11. The Development of Dalton's Atomic Theory as a Case Study in the History of Science: Reflections for Educators in Chemistry

    NASA Astrophysics Data System (ADS)

    Viana, Hélio Elael Bonini; Porto, Paulo Alves

    2010-01-01

    The inclusion of the history of science in science curricula—and specially, in the curricula of science teachers—is a trend that has been followed in several countries. The reasons advanced for the study of the history of science are manifold. This paper presents a case study in the history of chemistry, on the early developments of John Dalton’s atomic theory. Based on the case study, several questions that are worth discussing in educational contexts are pointed out. It is argued that the kind of history of science that was made in the first decades of the twentieth century (encyclopaedic, continuist, essentially anachronistic) is not appropriate for the development of the competences that are expected from the students of sciences in the present. Science teaching for current days will benefit from the approach that may be termed the “new historiography of science”.

  12. Comparison of hydrolytic and non-hydrolytic atomic layer deposition chemistries: Interfacial electronic properties at alumina-silicon interfaces

    NASA Astrophysics Data System (ADS)

    Marstell, Roderick J.; Strandwitz, Nicholas C.

    2015-11-01

    We report the differences in the passivation and electronic properties of aluminum oxide (Al2O3) deposited on silicon via traditional hydrolytic atomic layer deposition (ALD) and non-hydrolytic (NH) ALD chemistries. Traditional films were grown using trimethylaluminum (TMA) and water and NHALD films grown using TMA and isopropanol at 300 °C. Hydrolytically grown ALD films contain a smaller amount of fixed charge than NHALD films (oxide fixed charge Qf Traditional = -8.1 × 1011 cm-2 and Qf NHALD = -3.6 × 1012 cm-2), and a larger degree of chemical passivation than NHALD films (density of interface trap states, Dit Traditional = 5.4 × 1011 eV-1 cm-2 and Dit NHALD = 2.9 × 1012 eV-1 cm-2). Oxides grown with both chemistries were found to have a band gap of 7.1 eV. The conduction band offset was 3.21 eV for traditionally grown films and 3.38 eV for NHALD. The increased Dit for NHALD films may stem from carbon impurities in the oxide layer that are at and near the silicon surface, as evidenced by both the larger trap state time constant (τTraditional = 2.2 × 10-9 s and τNHALD = 1.7 × 10-7 s) and the larger carbon concentration. We have shown that the use of alcohol-based oxygen sources in NHALD chemistry can significantly affect the resulting interfacial electronic behavior presenting an additional parameter for understanding and controlling interfacial electronic properties at semiconductor-dielectric interfaces.

  13. Experiences and Reflections about Teaching Atomic Structure in a Jigsaw Classroom in Lower Secondary School Chemistry Lessons

    NASA Astrophysics Data System (ADS)

    Eilks, Ingo

    2005-02-01

    This article describes and discusses an example of how atomic structure can be taught in lower secondary chemistry using a modified jigsaw-classroom method. The lesson was taught in grades 9 and 10 (age range 15 17 years) chemistry in 13 learning groups with a total of 313 students in various grammar, middle, and comprehensive schools in Germany. The written evaluation of the lesson focused on determining the students’ opinions on the teaching methods that were used. Emphasis was on gathering information from the students’ viewpoint. Did the students think that these methods could make science lessons more attractive? Could these methods help to promote more active student learning, cooperative learning, or communicative and social abilities? Additional data that were derived from a cognitive test and teacher feedback are also presented. The results of the study show that teaching methods like the jigsaw classroom have potential to improve students’ attitude towards science. The results may also indicate that it is appropriate to demand that student-oriented and cooperative-learning methods be used more often in secondary level science education.

  14. Carbon atom, dimer and trimer chemistry on diamond surfaces from molecular dynamics simulations

    SciTech Connect

    Valone, S.M.

    1995-07-01

    Spectroscopic studies of various atmospheres appearing in diamond film synthesis suggest evidence for carbon atoms, dimers, or trimers. Molecular dynamics simulations with the Brenner hydrocarbon potential are being used to investigate the elementary reactions of these species on a hydrogen-terminated diamond (111) surface. In principle these types of simulations can be extended to simulations of growth morphologies, in the 1-2 monolayer regime presently.

  15. Reactions of atomic carbon with oxygenated compounds and the investigation of fullerene chemistry

    SciTech Connect

    Chang, Tsongming.

    1993-01-01

    The reaction of atomic carbon with oxygenated organics produces CO and an energetic fragment. Reactions involving deoxygenation of carbonyl compounds to carbenes, epoxides to alkenes, and ethers to a pair of radicals have been investigated. Carbon atom deoxygenation of cyclopentanone and cylcopentene oxide give the cleavage products, ethylene and allene, along with cyclopentene. The use of 2,2,5,5-d[sub 4]-cyclopentanone as the substrate reveals the direct cleavage of cyclopentanylidene carbene is occurring. A calculation of the energetics of this reaction at the MP4/6-31G[sup *]//6-31G[sup *] level suggests a nonconcerted cleavage via a biradical intermediate. Carbon atoms deoxygenate cyclohexene. Inert gas deactivated energetic cyclohexene. The deoxygenation of other oxygenated compounds by atomic carbon, such as 7-oxabicyclo[2.2.1]heptane to cyclohexane-1,4-diyl biradical, 1,2-epoxy-5-hexane to energetic 1,S-hexadiene, allyl ether to allyl radicals, and [gamma]-butyrolactone to trimethylene-1,3-diyl biradical have also been carried out. Methylketene was deoxygenated to vinylidene carbene which rearranges to propyne via a 1,2-H shift. Dimethylketene was deoxygenated to dimethylethylidene carbene which gives 2-butyne via a 1,2-methyl shift and 1,3-butadiene via a vicinal C-H bond insertion. The addition of hydrogen donors to systems in which C[sub 60] is generated results in the formation of polycyclic aromatic hydrocarbons whose carbon skeleton might represent intermediates in fullerene formation. Based on this result, the author proposed a mechanism of fullerene formation. The use of various amounts of propene as a trap showed that the yield of fullerenes decreases as the amount of the trapped product increases. Attempts to trap intermediates in fullerene formation using halides and metals have been studied. The author has attempted metal encapsulation reactions and investigated some possible chemical reactions of fullerenes.

  16. Biophysical evaluation of cells on nanotubular surfaces: the effects of atomic ordering and chemistry.

    PubMed

    Shokuhfar, Tolou; Hamlekhan, Azhang; Chang, Jen-Yung; Choi, Chang Kyoung; Sukotjo, Cortino; Friedrich, Craig

    2014-01-01

    After the implantation of a biomaterial in the body, the first interaction occurs between the cells in contact with the biomaterial surface. Therefore, evaluating the cell-substrate interface is crucial for designing a successful implant. In this study, the interaction of MC3T3 osteoblasts was studied on commercially pure and alloy (Ti6Al4V) Ti surfaces treated with amorphous and crystalline titanium dioxide nanotubes. The results indicated that the presence of nanotubes increased the density of osteoblast cells in comparison to bare surfaces (no nanotubes). More importantly, our finding shows that the chemistry of the substrate affects the cell density rather than the morphology of the cells. A novel approach based on the focused ion beam technique was used to investigate the biophysical cell-substrate interaction. The analysis revealed that portions of the cells migrated inside the crystalline nanotubes. This observation was correlated with the super hydrophilic properties of the crystalline nanotubes. PMID:25143725

  17. Biophysical evaluation of cells on nanotubular surfaces: the effects of atomic ordering and chemistry

    PubMed Central

    Shokuhfar, Tolou; Hamlekhan, Azhang; Chang, Jen-Yung; Choi, Chang Kyoung; Sukotjo, Cortino; Friedrich, Craig

    2014-01-01

    After the implantation of a biomaterial in the body, the first interaction occurs between the cells in contact with the biomaterial surface. Therefore, evaluating the cellsubstrate interface is crucial for designing a successful implant. In this study, the interaction of MC3T3 osteoblasts was studied on commercially pure and alloy (Ti6Al4V) Ti surfaces treated with amorphous and crystalline titanium dioxide nanotubes. The results indicated that the presence of nanotubes increased the density of osteoblast cells in comparison to bare surfaces (no nanotubes). More importantly, our finding shows that the chemistry of the substrate affects the cell density rather than the morphology of the cells. A novel approach based on the focused ion beam technique was used to investigate the biophysical cellsubstrate interaction. The analysis revealed that portions of the cells migrated inside the crystalline nanotubes. This observation was correlated with the super hydrophilic properties of the crystalline nanotubes. PMID:25143725

  18. Atmospheric chemistry of cyclohexanone: UV spectrum and kinetics of reaction with chlorine atoms

    SciTech Connect

    Wallington, T.J.; Iwasaki, E.; Matsumi, Y.; Kaiser, E. W.; Calvert, Jack G

    2008-05-01

    Absolute and relative rate techniques were used to study the reactivity of Cl atoms with cyclohexanone in 6 Torr of argon or 800 950 Torr of N2 at 295 2 K. The absolute rate experiments gave k(Cl + cyclohexanone) = (1.88 0.38) 10 10, whereas the relative rate experiments gave k(Cl + cyclohexanone) = (1.66 0.26) 10 10 cm3 molecule 1 s 1. Cyclohexanone has a broad UV absorption band with a maximum cross section of (4.0 0.3) 10 20 cm2 molecule 1 near 285 nm. The results are discussed with respect to the literature data.

  19. What`s new/hot/exciting: Using PC/PLC atuomatic balancing systems and advanced reagent chemistry for coal preparation

    SciTech Connect

    Zinkan, K.J.

    1995-08-01

    If we were to select one product or service which will be a hot topic over the next five years, it would be the selection and automatic addition and balancing of the proper coal recovery chemistries. Currently there are a number of automatic chemical feeding and control systems available to the preparation manager. However, no one seems completely satisfied by either the technology or the results. There are a number of areas where automation is beginning to come into use in preparation plants: polymer addition; coal chemicals addition for recovery; and finally freeze proofing of coal (where necessary). Also, in some cases, an overall plant operational system is either in place or has been evaluated with either partial or totally automatic control over various or all phase of plant operation. Since we want to limit the scope of this discussion, we are only to look at the topic involving the coal recovery process. Further, we have selected to focus on only one of our areas of expertise: automatic feeding and control of the frother(s) and new frother chemistry. The areas that will all be tied together in order to insure customers recover the highest possible quality and quantity of coal possible are discussed.

  20. Is There a Need to Discuss Atomic Orbital Overlap When Teaching Hydrogen-Halide Bond Strength and Acidity Trends in Organic Chemistry?

    ERIC Educational Resources Information Center

    Devarajan, Deepa; Gustafson, Samantha J.; Bickelhaupt, F. Matthias; Ess, Daniel H.

    2015-01-01

    Undergraduate organic chemistry textbooks and Internet websites use a variety of approaches for presenting and explaining the impact of halogen atom size on trends in bond strengths and/or acidity of hydrogen halides. In particular, several textbooks and Internet websites explain these trends by invoking decreasing orbital overlap between the…

  1. Is There a Need to Discuss Atomic Orbital Overlap When Teaching Hydrogen-Halide Bond Strength and Acidity Trends in Organic Chemistry?

    ERIC Educational Resources Information Center

    Devarajan, Deepa; Gustafson, Samantha J.; Bickelhaupt, F. Matthias; Ess, Daniel H.

    2015-01-01

    Undergraduate organic chemistry textbooks and Internet websites use a variety of approaches for presenting and explaining the impact of halogen atom size on trends in bond strengths and/or acidity of hydrogen halides. In particular, several textbooks and Internet websites explain these trends by invoking decreasing orbital overlap between the

  2. Hot Canyon

    ScienceCinema

    None

    2013-03-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  3. Hot Canyon

    SciTech Connect

    2012-01-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  4. Ion-Atom and Ion-Molecule Hybrid Systems: Ion-Neutral Chemistry at Ultralow Energies

    NASA Astrophysics Data System (ADS)

    Eberle, Pascal; Drfler, Alexander D.; von Planta, Claudio; Ravi, Krishnamurthy; Haas, Dominik; Zhang, Dong; van de Meerakker, Sebastiaan Y. T.; Willitsch, Stefan

    2015-09-01

    The study of chemical reactions between ions and neutral species at very low energies reveals precise informations about the dynamics of collisions and fine details of intermolecular interactions. Here, we report progress towards the development of next- generation experiments for the investigation of cold ion-neutral reactions. First, we present a new dynamic hybrid ion-atom trap which enables the study of collisions with a superior energy resolution accessing a regime in which quantum scattering resonances may become observable. Second, we discuss and numerically characterize the concept and properties of a hybrid trap for cold neutral molecules and molecular ions which paves the way for the study of ion-molecule reactions in the millikelvin regime.

  5. Interstellar chemistry of atomic nitrogen: low temperature kinetics of the N + OH and N + NO reactions.

    NASA Astrophysics Data System (ADS)

    Bergeat, A.; Daranlot, J.; Hickson, K. M.

    2011-05-01

    In dense interstellar clouds, where temperatures fall as low as 10 K, N-bearing species are found to stay in the gas-phase. Consequently, these molecules are used to define the prevailing physical conditions. N-bearing oxygenated species, such as nitric oxide NO are used to indirectly trace the depletion of O-bearing species such as OH and H_2O, which are not observable in these regions. Thus reactions (1) and (2) play an important role in the destruction of NO and the formation of molecular nitrogen from atomic nitrogen. They also thought to play a role in the Martian and Venusian atmospheres. However, the extrapolations of reactive rate coefficients measured at high temperatures to low temperatures are often unreliable since many exothermic neutral-neutral reactions exhibit non-Arrhenius behaviour at such low temperatures. (1) N + NO ? N_2 + O and (2) N + OH ? NO + H. We will present measurements using the CRESU technique over the range 50 - 300 K, coupling microwave discharge methods for the production of atomic nitrogen to resonance fluorescence or pulsed laser photolysis / laser induced fluorescence techniques. We have found that reaction (1) exhibits a small negative temperature dependence in the range 50 - 300 K which diverges from the expressions used in the astrochemical databases UMIST-06 and OSU-08. The only experimental investigation of reaction (2) to date at low temperature 103 - 294 K was performed by Smith et al.: the rate coefficients are seen to increase as the temperature decreases. The most recent theoretical study by Jorfi et al. [6] predicted lower rate coefficients and a maximum value at 80 K. New experimental results will be presented to elucidate the behavior of this reaction at low temperatures. In combination with the lastest published calculations, new recommendations for the temperature dependence of the two reaction rates will be given and the effect on astrochemical models of different media will be presented.

  6. Atmospheric Chemistry of t-CF3CF=CHCl: Reactions with Cl Atoms, OH Radicals and Ozone

    NASA Astrophysics Data System (ADS)

    Sulbaek Andersen, M. P.; Nielsen, O. J.; Nilsson, E. J.; Johnson, M. S.

    2008-12-01

    Recognition of the adverse environmental consequences of the release of chlorofluorocarbons (CFCs) and Halons into the atmosphere has led to an international effort to replace these compounds with environmentally acceptable alternatives. While safeguarding the stratospheric ozone layer has been at the forefront of these efforts, concerns related to global climate change are becoming an increasingly important consideration in the choice of alternative compounds because of their significant atmospheric lifetime and radiative properties. Saturated hydrofluorocarbons (HFCs), such as CH2FCF3 (HFC-134a), have become widely used CFC replacements. HFCs do not contain chlorine and therefore do no contribute to the chlorine based catalytic destruction of stratospheric ozone. The atmospheric lifetime of HFCs is determined by their reactivity towards OH radicals. Saturated HFCs such as HFC-134a display modest reactivity towards OH radicals and hence have modest global warming potentials. Trans-3,3,3-trifluoro-1-chloro-propene (t-CF3CH=CHCl), is an unsaturated hydrochlorofluorocarbon (HCFC), which has been developed as a potential replacement for CFCs and saturated HFCs. Prior to any large-scale industrial use an assessment of the atmospheric chemistry, and hence, environmental impact of t-CF3CH=CHCl), is needed. Smog chamber/FTIR techniques were used to determine the following properties for t-CF3CH=CHCl: (i) kinetics of reactions with chlorine atoms (ii) kinetics of reactions with hydroxyl radicals (iii) kinetics of reactions with ozone, (iv) atmospheric lifetimes, (v) atmospheric degradation mechanism, and (vi) global warming potentials. The atmospheric lifetime of t- CF3CH=CHCl is determined by reaction with OH radicals and is approximately 26 days. The global warming potential of t-CF3CH=CHCl is approximately 7 for a 100 year time horizon. The results are discussed with regard to the environmental impact of t-CF3CF=CHCl and the atmospheric chemistry of unsaturated hydrochlorofluorocarbons.

  7. A quantum chemistry study of the Cl atom reaction with formaldehyde.

    PubMed

    Gruber-Stadler, Margret; Mühlhäuser, Max; Sellevåg, Stig R; Nielsen, Claus J

    2008-01-10

    The elementary vapor-phase reaction between Cl atoms and HCHO has been studied by ab initio methods. Calculations at the MP2, MP3, MP4(SDTQ), CCSD, CCSD(T), and MRD-CI levels of theory show that the reaction is characterized by a low electronic barrier; excluding the effects of spin-orbit splitting in Cl, our best estimate at the MRD-CI/aug-cc-pVTZ//RHF-RCCSD(T)/aug-cc-pVTZ level of theory predicts a Born-Oppenheimer barrier height of 0.7 kJ mol-1. The energies of the lowest six electronic states as resulting from MRD-CI calculations are presented at discrete points along the reaction path, and two avoided crossings are found in the transition state region. The spin-orbit splitting in Cl is also calculated along the reaction path; it is not negligible in the transition state region and is found to increase the barrier by only 1.4 kJ mol-1 at the RCCSD(T)/aug-cc-pVTZ transition state geometry. The minimum energy path of the reaction connects an energetically weakly stabilized adduct on the flat potential surface on the reactant side and an energetically strongly stabilized postreaction adduct. The reaction rate coefficient and the kinetic isotope effects were calculated using improved canonical variational theory with small curvature tunneling (ICVT/SCT), and the results were compared to experimental data. The experimental reaction rate coefficient is reproduced within its uncertainty limits by variational transition state theory with interpolated single-point energy corrections (ISPE) at the MP4(SDTQ) level of theory and by conventional transition state theory with interpolated optimized energies (IOE) at the MRD-CI//RCCSD(T) level of theory and interpolated optimized geometries at the RCCSD(T) level of theory on an MP2/aug-cc-pVTZ potential energy surface when employing scaled vibrational frequencies. PMID:18069803

  8. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  9. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    SciTech Connect

    LOCKREM LL; OWENS JW; SEIDEL CM

    2009-03-26

    This report describes the installation, testing and acceptance of the Waste Treatment and Immobilization Plant procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste samples in a hot cell environment. The 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  10. The effects of solution chemistry on the sticking efficiencies of viable Enterococcus faecalis: An atomic force microscopy and modeling study

    NASA Astrophysics Data System (ADS)

    Cail, Tracy L.; Hochella, Michael F.

    2005-06-01

    Atomic force microscopy (AFM) and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in combination with the interaction force boundary layer (IFBL) model have been used to empirically and theoretically calculate sticking efficiencies (α) of Enterococcus faecalis cells against a silica glass surface. Sticking efficiencies were calculated in solutions of varying pH and ionic strength and related to maximum distances of transport through a hypothetical soil block using colloid filtration theory. AFM measurements show that the repulsive and attractive forces between E. faecalis cells and a glass surface are a function of ionic strength but are less sensitive to changes in solution pH. Zeta (ζ)-potential measurements of the cells and glass surfaces correlate with these trends. Calculated DLVO energy profiles predict much greater sensitivity to changing solution chemistry. Sticking efficiencies derived from AFM measurements range from 9.6 × 10 -17 to 1 in solutions of low ionic strength (IS) and from 2.6 × 10 -33 to 1 at higher IS. Corresponding α values determined from DLVO theory are essentially zero in all tested solutions. Sticking efficiencies calculated in this study are smaller than values determined from column and field studies in similar systems; however, α derived from AFM data and the IFBL model more closely represent field data than do values calculated from DLVO energy values. A comparison with different methods of calculating α suggests that reversible adhesion may be significant in column-scale transport studies.

  11. Probing the Structure and Chemistry of Perylenetetracarboxylic Dianhydride on Graphene Before and After Atomic Layer Deposition of Alumina

    PubMed Central

    Johns, James E.; Karmel, Hunter J.; Alaboson, Justice M. P.; Hersam, Mark C.

    2012-01-01

    The superlative electronic properties of graphene suggest its use as the foundation of next generation integrated circuits. However, this application requires precise control of the interface between graphene and other materials, especially the metal oxides that are commonly used as gate dielectrics. Towards that end, organic seeding layers have been empirically shown to seed ultrathin dielectric growth on graphene via atomic layer deposition (ALD), although the underlying chemical mechanisms and structural details of the molecule/dielectric interface remain unknown. Here, confocal resonance Raman spectroscopy is employed to quantify the structure and chemistry of monolayers of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on graphene before and after deposition of alumina with the ALD precursors trimethyl aluminum (TMA) and water. Photoluminescence measurements provide further insight into the details of the growth mechanism, including the transition between layer-by-layer growth and island formation. Overall, these results reveal that PTCDA is not consumed during ALD, thereby preserving a well-defined and passivating organic interface between graphene and deposited dielectric thin films. PMID:22905282

  12. New chemistry for the growth of first-row transition metal films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Klesko, Joseph Peter

    Thin films containing first-row transition metals are widely used in microelectronic, photovoltaic, catalytic, and surface-coating applications. In particular, metallic films are essential for interconnects and seed, barrier, and capping layers in integrated circuitry. Traditional vapor deposition methods for film growth include PVD, CVD, or the use of plasma. However, these techniques lack the requisite precision for film growth at the nanoscale, and thus, are increasingly inadequate for many current and future applications. By contrast, ALD is the favored approach for depositing films with absolute surface conformality and thickness control on 3D architectures and in high aspect ratio features. However, the low-temperature chemical reduction of most first-row transition metal cations to their zero-valent state is very challenging due to their negative electrochemical potentials. A lack of strongly-reducing coreagents has rendered the thermal ALD of metallic films an intractable problem for many elements. Additionally, several established ALD processes for metal films are plagued by low growth rates, impurity incorporation, poor nucleation, high surface roughness, or the need for hazardous coreagents. Finally, stoichiometric control of ternary films grown by ALD is rare, but increasingly important, with emerging applications for metal borate films in catalysis and lithium ion batteries. The research herein is focused toward the development of new ALD processes for the broader application of metal, metal oxide, and metal borate thin films to future nanoscale technologies. These processes display self-limited growth and support the facile nucleation of smooth, continuous, high-purity films. Bis(trimethylsilyl) six-membered rings are employed as strongly-reducing organic coreagents for the ALD of titanium and antimony metal films. Additionally, new processes are developed for the growth of high-purity, low-resistivity cobalt and nickel metal films by exploiting the redox non-innocent nature of a series of recently-reported 1,4-di-tert-butyl-1,3-diazabutadienyl complexes. Other metal complexes using the same ligand system are subsequently evaluated for use as ALD precursors. Finally, a novel approach is described for the stoichiometric control of first-row transition metal manganese and cobalt borate films, whereby the film composition is governed by the elements present in a single precursor. Computational techniques such as density functional theory (DFT) using nucleus-independent chemical shift (NICS) are used to determine the electronic structure and predict the relative reducing power of organic coreagents. Potential ALD precursors are analyzed by 1H and 13C NMR, IR, thermogravimetric and differential thermal analyses (TGA/DTA), melting point and solid state decomposition measurements, magnetic susceptibility measurements, preparative sublimation studies, and solution-screening reactions. Deposition parameters are optimized for successful ALD processes. The composition and surface morphology of the resultant films are studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), X-ray diffractometry (XRD), time-of-flight elastic recoil detection analysis (TOF-ERDA), ultraviolet-visible spectroscopy (UV-Vis), and four-point probe resistivity measurements.

  13. Hot oxygen coronas at terrestrial planets

    NASA Astrophysics Data System (ADS)

    Shematovich, V. I.; Johnson, R. E.

    Solar forcing via both influx of the solar wind plasma and absorption of ultraviolet radiation forms the hot oxygen coronas at the terrestrial planets (Shizgal and Arcos, 1996). These coronas were observed in the past and recent planetary space missions (Mariner, Pioneer Venus, IMAGE, Mars Express and etc.). We will dicsuss the relative role of the following energetic processes determining the creation and loss to space of hot oxygen atoms at the terrestrial planets: (i) Exothermic photochemistry: include both direct photo- and electron impact dissociation of atmospheric molecules, exothermic ion-molecular chemistry, and, in particular, dissociative recombination of molecular ions (Shematovich et al. 1994; Krestyanikova and Shematovich, 2005, 2006). (ii) Atmospheric sputtering: a fraction of the ions directly precipitating from the magnetosphere or produced in the corona and ionosphere re-impact the neutral atmosphere with enough energy to eject atmospheric neutrals (Johnson 1994; Leblanc and Johnson 2001, 2002; Shematovich et al. 2005). The flow of solar wind and local pick-up ions onto the extended exospheres of the terrestrial planets can affect the long-term evolution of their atmospheres through the formation of hot coronas and nonthermal loss to space (Johnson 1994; Shizgal and Arcos, 1996). Such coronas, in turn, alter the incoming solar plasma by mass loading the solar wind with newly created ions and by charge exchange collisions. We will discuss the current models of hot oxygen distributions and the escaping fluxes in the coronas of terrestrial planets. The manifestation of hot oxygen atoms as energetic neutral atoms (ENAs) detected in the current space missions will be also considered. The exothermic chemistry is operating continuously in the planetary upper atmosphere and therefore it should be present in the observational data. Since the oxygen atoms originating from exothermic chemistry have low energies (usually less than a few eVs), these energetic atoms can be only seen very near the planet when ENA instruments are looking in and near the ram direction. By contrast, atmospheric sputtering as a source of energetic oxygen atoms will make much more variable contributions to the ENA observations and it will also produce more energetic oxygen atoms that would be detectable farther away from the planet. Shizgal B.D. and Arkos G.G. Rev. Geophys., 34, 483, 1996. Shematovich et al. JGR, 99, 23217, 1994. Krestyanikova M.A. and Shematovich V.I. Solar System Res., 39, 22, 2005; 40, 2006. Johnson R.E. Sp. Sci. Rev., 69, 215, 1994. Leblanc F., and Johnson R.E. Planet. Space Sci., 49, 645, 2001; JGR, 10209/2000JE001473, 2002. Shematovich et al. GRL, 32, L02105, 2005.

  14. New precursors and chemistry for the growth of transition metal films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Knisley, Thomas Joseph

    The advancing complexity of advanced microelectronic devices is placing rigorous demands on currently used PVD and CVD deposition techniques. The ALD deposition method is proposed to meet the film thickness and conformality constraints needed by the semiconductor industry in future manufacturing processes. Unfortunately, there is a limited number of chemical precursors available that have high thermal stability, reactivity, and vapor pressure suitable for ALD film growth to occur. These properties collectively contribute to the lack of suitable transition metal precursors available for use in ALD. In this thesis, we report the discovery of a series of novel transition metal diazadienate precursors that promising properties deemed suitable for ALD. The volatility and thermal stability of the new transition metal diazadienyl compounds were studied by preparative sublimation and capillary tube melting point/decomposition experiments. Thermogravimetric analyses (TGA) demonstrate precursor residues of less than 4% at 500 C. In addition, sublimation data, melting points, and decomposition temperatures for all complexes are presented. The manganese diazadienyl complex has the highest decomposition temperature of the series of complexes produced (325 C). During preparative sublimations, the product recoveries of all transition metal diazadienyl complexes were greater than 92.0% with nonvolatile residues of less than 7.0%. This is an excellent indication that these complexes may be suitable candidates as metal precursors for ALD. Nickel nitride (NixN) films have been studied as an intermediate material for the formation of both nickel metal and nickel silicide using chemical vapor deposition. Herein, we describe the ALD growth of nickel nitride thin films from bis(1,4-di-tert-butyl-1,3-diazabutadiene) nickel(II) (Ni(tBu2DAD)2) and 1,1-dimethylhydrazine. An ALD window for the deposition of nickel nitride films on 500 nm thermal SiO2 substrates was observed between 225 and 240 C with a constant growth rate of 0.70 /cycle. X-Ray photoelectron spectroscopy (XPS) showed all expected ionizations with carbon concentrations below the detection limit after argon ion sputtering. Due to preferential nitrogen sputtering in XPS, Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) were performed and subsequently revealed Ni:N ratios between 2-4 for films deposited within the ALD window. AFM measurements revealed a RMS roughness value of 10.8 nm on an as-deposited film at 225C. All as-deposited films were amorphous as determined by X-ray diffraction. Copper is the primary interconnect material in microelectronics devices, due to its high conductivity and low affinity towards electromigration. With transistor gate lengths scheduled to reach 14 nm by 2014, there are severe demands upon the current film growth techniques used in device fabrication. The ALD film growth method is ideally suited for future microelectronics manufacturing, since it inherently provides highly conformal thin films, even in high aspect ratio nanoscale features, and allows sub-nanometer control over film thicknesses. In Chapter 4, we describe the atomic layer deposition of high purity, low resistivity copper metal thin films using a three precursor sequence entailing Cu(dmap)2, formic acid, and hydrazine. In this process, Cu(dmap) 2 is unreactive towards hydrazine but is transformed to copper(II) formate, which is then readily reduced to copper metal by subsequent hydrazine exposure. The present work therefore addresses a central problem with the ALD growth of metal thin films: low reactivity of metal precursors toward common reducing agents. A constant growth rate of 0.47-0.50 /cycle upon prime grade Si(100) was observed at substrate temperatures between 100 and 170 C. Compositional analyses (XPS and TOF-ERDA) revealed copper films with low levels of carbon, oxygen, nitrogen, and hydrogen. Powder X-ray diffraction spectra of all films showed polycrystalline copper. The resistivities of films grown between 100 and 140 C ranged b

  15. Measuring the influence of solution chemistry on the adhesion of au nanoparticles to mica using colloid probe atomic force microscopy.

    PubMed

    Thio, Beng Joo Reginald; Lee, Jung-Hyun; Meredith, J Carson; Keller, Arturo A

    2010-09-01

    Engineered nanoparticles are used increasingly in numerous commercial products, leading to concerns over their environmental fate and ecotoxicity. We report the adaptation of colloid probe atomic force microscopy (AFM) to quantitatively determine the adhesive behavior of gold nanoparticles (Au NPs) with mica, chosen as a model for sand, in various water chemistries. Au NP-covered polystyrene (PS) beads were prepared by a combined swelling-heteroaggregation (CSH) technique prior to attachment to tipless AFM cantilevers. Force measurements were performed over a range of solution conditions (pH, ionic strength (IS), and natural organic matter (NOM) content). Plain PS beads with no Au NPs were used as controls. In general, adhesion of Au NP-PS beads to mica were found to increase as IS increased while a rise in pH led to a decrease in adhesion. Plain PS beads were not observed to adhere to mica in any of the experimental solution conditions, and the PS force curves were unaffected by changes in the pH and electrolyte concentrations. In the presence of NOM, pull-off forces for Au NP-PS beads increased in magnitude when NaCl was added. In addition, the experimental approach force curves were not successfully described by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability. To reconcile the discrepancy between theory and experiment, an extended DLVO (xDLVO) empirical model was used to account for the contribution of non-DLVO interactions (known collectively as structural forces) between the Au NPs and mica surfaces. PMID:20806965

  16. Quantitative Determination of Density of Ground State Atomic Oxygen from Both TALIF and Emission Spectroscopy in Hot Air Plasma Generated by Microwave Resonant Cavity

    NASA Astrophysics Data System (ADS)

    Marchal, F.; Yousfi, M.; Merbahi, N.; Wattieaux, G.; Piquemal, A.

    2016-03-01

    Two experimental techniques have been used to quantify the atomic oxygen density in the case of hot air plasma generated by a microwave (MW) resonant cavity. The latter operates at a frequency of 2.45 GHz inside a cell of gas conditioning at a pressure of 600 mbar, an injected air flow of 12 L/min and an input MW power of 1 kW. The first technique is based on the standard two photon absorption laser induced fluorescence (TALIF) using xenon for calibration but applied for the first time in the present post discharge hot air plasma column having a temperature of about 4500 K near the axis of the nozzle. The second diagnostic technique is an actinometry method based on optical emission spectroscopy (OES). In this case, we compared the spectra intensities of a specific atomic oxygen line (844 nm) and the closest wavelength xenon line (823 nm). The two lines need to be collected under absolutely the same spectroscopic parameters. The xenon emission is due to the addition of a small proportion of xenon (1% Xe) of this chemically inert gas inside the air while a further small quantity of H2 (2%) is also added in the mixture in order to collect OH(A-X) and NH(A-X) spectra without noise. The latter molecular spectra are required to estimate gas and excitation temperatures. Optical emission spectroscopy measurements, at for instance the position z=12 mm on the axis plasma column that leads to a gas measured temperature equal to 3500 K, an excitation temperature of about 9500 K and an atomic oxygen density 2.09×1017±0.2×1017 cm‑3. This is in very good agreement with the TALIF measurement, which is equal to 2.0×1017 cm‑3.

  17. Atomic-scale structure and chemistry of interfaces by Z-contrast imaging and electron energy loss spectroscopy in the STEM

    SciTech Connect

    McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.; Pennycook, S.J.; Ravikumar, V.; Dravid, V.P.

    1993-12-01

    The macroscopic properties of many materials are controlled by the structure and chemistry at grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. The high-resolution Z-contrast imaging technique in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition can be interpreted intuitively. This direct image allows the electron probe to be positioned over individual atomic columns for parallel detection electron energy loss spectroscopy (EELS) at a spatial resolution approaching 0.22nm. In this paper we have combined the structural information available in the Z-contrast images with the bonding information obtained from the fine structure within the EELS edges to determine the grain boundary structure in a SrTiO{sub 3} bicrystal.

  18. The role of NaCl in flame chemistry, in the deposition process, and in its reactions with protective oxides as related to hot corrosion

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Stearns, C. A.

    1979-01-01

    Sodium chloride is believed to be the primary source of turbine engine contamination that contributes to hot corrosion. The behavior of NaCl-containing aerosols ingested with turbine intake air is very complex; some of the NaCl may vaporize during combustion while some may remain as particulates. The NaCl can lead to Na2SO4 formation by several possible routes or it can contribute to corrosion directly. Hydrogen or oxygen atom reaction with NaCl(c) was shown to result in the release of Na(g). Gaseous NaCl in flames can be partially converted to gaseous Na2SO4 by homogeneous reactions. The remaining gaseous NaCl and other Na-containing molecules can act as sodium carriers for condensate deposition of Na2SO4 on cool surfaces. A frozen boundary layer theory was developed to predict the rates of deposition. The condensed phase NaCl can be converted directly to condensed Na2SO4 by reaction with sulfur oxides and O2. Reaction of gaseous NaCl with Cr2O3 results in the vapor phase transport of chromium by the formation of complex Cr-containing gaseous molecules. Similar gaseous complexes are formed with molybdenum. The presence of gaseous NaCl was shown to affect the oxidation kinetics of Ni-Cr alloys. It also causes changes in the surface morphology of Al2O3 scales formed on Al-containing alloys.

  19. Quantitative spectroscopy of hot stars: accurate atomic data applied on a large scale as driver of recent breakthroughs

    NASA Astrophysics Data System (ADS)

    Przybilla, Norbert; Schaffenroth, Veronika; Nieva, Maria-Fernanda

    2015-08-01

    OB-type stars present hotbeds for non-LTE physics because of their strong radiation fields that drive the atmospheric plasma out of local thermodynamic equilibrium. We report on recent breakthroughs in the quantitative analysis of the optical and UV-spectra of OB-type stars that were facilitated by application of accurate and precise atomic data on a large scale. An astophysicist's dream has come true, by bringing observed and model spectra into close match over wide parts of the observed wavelength ranges. This facilitates tight observational constraints to be derived from OB-type stars for wide applications in astrophysics. However, despite the progress made, many details of the modelling may be improved further. We discuss atomic data needs in terms of laboratory measurements and also ab-initio calculations. Particular emphasis is given to quantitative spectroscopy in the near-IR, which will be in focus in the era of the upcoming extremely large telescopes.

  20. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production.

    PubMed

    Jirkovsk, Jakub S; Panas, Itai; Ahlberg, Elisabet; Halasa, Matej; Romani, Simon; Schiffrin, David J

    2011-12-01

    A novel strategy to direct the oxygen reduction reaction to preferentially produce H(2)O(2) is formulated and evaluated. The approach combines the inertness of Au nanoparticles toward oxidation, with the improved O(2) sticking probability of isolated transition metal "guest" atoms embedded in the Au "host". DFT modeling was employed to screen for the best alloy candidates. Modeling indicates that isolated alloying atoms of Pd, Pt, or Rh placed within the Au surface should enhance the H(2)O(2) production relative to pure Au. Consequently, Au(1-x)Pd(x) nanoalloys with variable Pd content supported on Vulcan XC-72 were prepared to investigate the predicted selectivity toward H(2)O(2) production for Au alloyed with Pd. It is demonstrated that increasing the Pd concentration to 8% leads to an increase of the electrocatalytic H(2)O(2) production selectivity up to nearly 95%, when the nanoparticles are placed in an environment compatible with that of a proton exchange membrane. Further increase of Pd content leads to a drop in H(2)O(2) selectivity, to below 10% for x = 0.5. It is proposed that the enhancement in H(2)O(2) selectivity is caused by the presence of individual surface Pd atoms surrounded by gold, whereas surface ensembles of contiguous Pd atoms support H(2)O formation. The results are discussed in the context of exergonic electrocatalytic H(2)O(2) synthesis in Polymer Electrolyte Fuel Cells for the simultaneous cogeneration of chemicals and electricity, the latter a credit to production costs. PMID:22023652

  1. Atmospheric chemistry of 3-pentanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOX.

    PubMed

    Hurley, M D; Wallington, T J; Bjarrum, M; Javadi, M S; Nielsen, O J

    2008-09-01

    Smog chamber/FTIR techniques were used to study the atmospheric chemistry of 3-pentanol and determine rate constants of k(Cl+3-pentanol) = (2.03 +/- 0.23) x 10 (-10) and k(OH+3-pentanol) = (1.32 +/- 0.15) x 10 (-11) cm (3) molecule (-1) s (-1) in 700 Torr of N 2/O 2 diluent at 296 +/- 2 K. The primary products of the Cl atom initiated oxidation of 3-pentanol in the absence of NO were (with molar yields) 3-pentanone (26 +/- 2%), propionaldehyde (12 +/- 2%), acetaldehyde (13 +/- 2%) and formaldehyde (2 +/- 1%). The primary products of the Cl atom initiated oxidation of 3-pentanol in the presence of NO were (with molar yields) 3-pentanone (51 +/- 4%), propionaldehyde (39 +/- 2%), acetaldehyde (44 +/- 4%) and formaldehyde (4 +/- 1%). The primary products of the OH radical initiated oxidation of 3-pentanol in the presence of NO were (with molar yields) 3-pentanone (58 +/- 3%), propionaldehyde (28 +/- 2%), and acetaldehyde (37 +/- 2%). In all cases the product yields were independent of oxygen concentration over the partial pressure range 10-700 Torr. The reactions of Cl atoms and OH radicals with 3-pentanol proceed 26 +/- 2 and 58 +/- 3%, respectively, via attack on the 3-position to give an alpha-hydroxyalkyl radical, which reacts with O 2 to give 3-pentanone. The results are discussed with respect to the literature data and atmospheric chemistry of 3-pentanol. PMID:18693707

  2. Average atom transport properties for pure and mixed species in the hot and warm dense matter regimes

    SciTech Connect

    Starrett, C. E.; Kress, J. D.; Collins, L. A.; Hanson, D. E.; Clerouin, J.; Recoules, V.

    2012-10-15

    The Kubo-Greenwood formulation for calculation of optical conductivities with an average atom model is extended to calculate thermal conductivities. The method is applied to species and conditions of interest for inertial confinement fusion. For the mixed species studied, the partial pressure mixing rule is used. Results including pressures, dc, and thermal conductivities are compared to ab initio calculations. Agreement for pressures is good, for both the pure and mixed species. For conductivities, it is found that the ad hoc renormalization method with line broadening, described in the text, gives best agreement with the ab initio results. However, some disagreement is found and the possible reasons for this are discussed.

  3. Merit of ground-state electronegativities; a reply to ``Comments on `Introduction to the chemistry of fractionally charged atoms: Electronegativity' ''

    NASA Astrophysics Data System (ADS)

    Lackner, Klaus S.; Zweig, George

    1987-09-01

    The arguments presented in the Comment by Liebman and Huheey are shown to be incorrect. The operational equivalence of Mulliken ground-state electronegativities and Pauling electronegativities is demonstrated for neutral atoms. It is shown that ground-state electronegativities and valence-state electronegativities for both neutral atoms and ions are also operationally equivalent. A single electronegativity scale based on Mulliken ground-state electronegativities may therefore be used for neutral atoms, ions, and fractionally charged atoms, as originally implied in the paper by Lackner and Zweig.

  4. Theoretical Modeling of Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.

  5. Use of a CO{sub 2} pellet non-destructive cleaning system to decontaminate radiological waste and equipment in shielded hot cells at the Bettis Atomic Power Laboratory

    SciTech Connect

    Bench, T.R.

    1997-05-01

    This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants from the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.

  6. College Chemistry Students' Understanding of Potential Energy in the Context of Atomic-Molecular Interactions

    ERIC Educational Resources Information Center

    Becker, Nicole M.; Cooper, Melanie M.

    2014-01-01

    Understanding the energy changes that occur as atoms and molecules interact forms the foundation for understanding the macroscopic energy changes that accompany chemical processes. In order to identify ways to scaffold students' understanding of the connections between atomic-molecular and macroscopic energy perspectives, we conducted a…

  7. College Chemistry Students' Understanding of Potential Energy in the Context of Atomic-Molecular Interactions

    ERIC Educational Resources Information Center

    Becker, Nicole M.; Cooper, Melanie M.

    2014-01-01

    Understanding the energy changes that occur as atoms and molecules interact forms the foundation for understanding the macroscopic energy changes that accompany chemical processes. In order to identify ways to scaffold students' understanding of the connections between atomic-molecular and macroscopic energy perspectives, we conducted a

  8. The Development of Dalton's Atomic Theory as a Case Study in the History of Science: Reflections for Educators in Chemistry

    ERIC Educational Resources Information Center

    Viana, Helio Elael Bonini; Porto, Paulo Alves

    2010-01-01

    The inclusion of the history of science in science curricula--and specially, in the curricula of science teachers--is a trend that has been followed in several countries. The reasons advanced for the study of the history of science are manifold. This paper presents a case study in the history of chemistry, on the early developments of John

  9. The Development of Dalton's Atomic Theory as a Case Study in the History of Science: Reflections for Educators in Chemistry

    ERIC Educational Resources Information Center

    Viana, Helio Elael Bonini; Porto, Paulo Alves

    2010-01-01

    The inclusion of the history of science in science curricula--and specially, in the curricula of science teachers--is a trend that has been followed in several countries. The reasons advanced for the study of the history of science are manifold. This paper presents a case study in the history of chemistry, on the early developments of John…

  10. Experiences and Reflections about Teaching Atomic Structure in a Jigsaw Classroom in Lower Secondary School Chemistry Lessons

    ERIC Educational Resources Information Center

    Eilks, Ingo

    2005-01-01

    The study investigates the students opinions on learning in a jigsaw classroom and enquiring on what they think about jigsaw classroom having the potential to make chemistry learning more attractive and whether it can help them to improve their communicative and social skills. The study was carried out using a lesson design for teaching an…

  11. Nobody Can See Atoms: Science Camps Highlighting Approaches for Making Chemistry Accessible to Blind and Visually Impaired Students

    ERIC Educational Resources Information Center

    Wedler, Henry B.; Boyes, Lee; Davis, Rebecca L.; Flynn, Dan; Franz, Annaliese; Hamann, Christian S.; Harrison, Jason G.; Lodewyk, Michael W.; Milinkevich, Kristin A.; Shaw, Jared T.; Tantillo, Dean J.; Wang, Selina C.

    2014-01-01

    Curricula for three chemistry camp experiences for blind and visually impaired (BVI) individuals that incorporated single- and multiday activities and experiments accessible to BVI students are described. Feedback on the camps from students, mentors, and instructors indicates that these events allowed BVI students, who in many cases have been

  12. Nobody Can See Atoms: Science Camps Highlighting Approaches for Making Chemistry Accessible to Blind and Visually Impaired Students

    ERIC Educational Resources Information Center

    Wedler, Henry B.; Boyes, Lee; Davis, Rebecca L.; Flynn, Dan; Franz, Annaliese; Hamann, Christian S.; Harrison, Jason G.; Lodewyk, Michael W.; Milinkevich, Kristin A.; Shaw, Jared T.; Tantillo, Dean J.; Wang, Selina C.

    2014-01-01

    Curricula for three chemistry camp experiences for blind and visually impaired (BVI) individuals that incorporated single- and multiday activities and experiments accessible to BVI students are described. Feedback on the camps from students, mentors, and instructors indicates that these events allowed BVI students, who in many cases have been…

  13. Experiences and Reflections about Teaching Atomic Structure in a Jigsaw Classroom in Lower Secondary School Chemistry Lessons

    ERIC Educational Resources Information Center

    Eilks, Ingo

    2005-01-01

    The study investigates the students opinions on learning in a jigsaw classroom and enquiring on what they think about jigsaw classroom having the potential to make chemistry learning more attractive and whether it can help them to improve their communicative and social skills. The study was carried out using a lesson design for teaching an

  14. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGESBeta

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore » results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  15. Confectionary Chemistry.

    ERIC Educational Resources Information Center

    Levine, Elise Hilf

    1996-01-01

    Presents activities and demonstrations that enable teachers to use various types of confections as tactile experiences to spark chemistry students' interest and generate enthusiasm for learning. Presents uses of candy in teaching about atomic structure, spontaneous nuclear decay, chemical formulas, fractoluminescence, the effect of a molecular

  16. Three-photon resonance ionization of atomic Mn in a hot-cavity laser ion source using Ti:sapphire lasers

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gottwald, T.; Mattolat, C.; Wendt, K.

    2015-06-01

    Three-photon resonance ionization of atomic manganese (Mn) in a hot-cavity ion source using Ti:sapphire lasers has been demonstrated. Three-step ionization schemes employing different intermediate levels and Rydberg or autoionizing (AI) states in the final ionization step are established. Strong AI resonances were observed via the 3d54s5s f 6S5/2 level at 49 415.35 cm-1, while Rydberg transitions were reached from the 3d54s4d e 6D9/2,7/2,5/2 levels at around 47 210 cm-1. Analyses of the strong Rydberg transitions associated with the 3d54s4d e 6D7/2 lower level indicate that they belong to the dipole-allowed 4d → nf 6F°9/2,7/2,5/2 series converging to the 3d54s 7S3 ground state of Mn II. From this series, an ionization potential of 59 959.56 ± 0.01 cm-1 is obtained for Mn. At high ion source temperatures the semi-forbidden 4d → nf 8F°9/2,7/2,5/2 series was also observed. The overall ionization efficiency for Mn has been measured to be about 0.9% when using the strong AI transition in the third excitation step and 0.3% when employing an intense Rydberg transition. Experimental data indicate that the ionization efficiency was limited by the interaction of Mn atoms with ion source materials at high temperatures.

  17. Atmospheric chemistry of n-butanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NO(x).

    PubMed

    Hurley, M D; Wallington, T J; Laursen, L; Javadi, M S; Nielsen, O J; Yamanaka, T; Kawasaki, M

    2009-06-25

    Smog chamber/FTIR techniques were used to determine rate constants of k(Cl+n-butanol) = (2.21 +/- 0.38) x 10(-10) and k(OH+n-butanol) = (8.86 +/- 0.85) x 10(-12) cm(3) molecule(-1) s(-1) in 700 Torr of N(2)/O(2) diluent at 296 +/- 2K. The sole primary product identified from the Cl atom initiated oxidation of n-butanol in the absence of NO was butyraldehyde (38 +/- 2%, molar yield). The primary products of the Cl atom initiated oxidation of n-butanol in the presence of NO were (molar yield) butyraldehyde (38 +/- 2%), propionaldehyde (23 +/- 3%), acetaldehyde (12 +/- 4%), and formaldehyde (33 +/- 3%). The substantially lower yields of propionaldehyde, acetaldehyde, and formaldehyde as primary products in experiments conducted in the absence of NO suggests that chemical activation is important in the atmospheric chemistry of CH(3)CH(2)CH(O)CH(2)OH and CH(3)CH(O)CH(2)CH(2)OH alkoxy radicals. The primary products of the OH radical initiated oxidation of n-butanol in the presence of NO were (molar yields) butyraldehyde (44 +/- 4%), propionaldehyde (19 +/- 2%), and acetaldehyde (12 +/- 3%). In all cases, the product yields were independent of oxygen concentration over the partial pressure range of 10-600 Torr. The yields of propionaldehyde, acetaldehyde, and formaldehyde quoted above were not corrected for secondary formation via oxidation of higher aldehydes and should be treated as upper limits. The reactions of Cl atoms and OH radicals with n-butanol proceed 38 +/- 2 and 44 +/- 4%, respectively, via attack on the alpha-position to give an alpha-hydroxy alkyl radical which reacts with O(2) to give butyraldehyde. The results are discussed with respect to the atmospheric chemistry of n-butanol. PMID:19462959

  18. Atom probe study of the carbon distribution in a hardened martensitic hot-work tool steel X38CrMoV5-1.

    PubMed

    Lerchbacher, Christoph; Zinner, Silvia; Leitner, Harald

    2012-07-01

    The microstructure of the hardened common hot-work tool steel X38CrMoV5-1 has been characterized by atom probe tomography with the focus on the carbon distribution. Samples quenched with technically relevant cooling parameters ? from 0.1 (30 K/s) to 12 (0.25 K/s) have been investigated. The parameter ? is an industrially commonly used exponential cooling parameter, representing the cooling time from 800 to 500 C in seconds divided with hundred. In all samples pronounced carbon segregation to dislocations and cluster formation could be observed after quenching. Carbon enriched interlath films with peak carbon levels of 6-10 at.%, which have been identified to be retained austenite by TEM, show a thickness increase with increasing ?. Therefore, the fraction of total carbon staying in the austenite grows. This carbon is not available for the tempering induced precipitation of secondary carbides in the bulk. Through all samples no segregation of any substitutional elements takes place. Charpy impact testing and fracture surface analysis of the hardened samples reveal the cooling rate induced microstructural distinctions. PMID:22391101

  19. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope aud Water Chemistry Characterizations

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41º32'N, 120º5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4 2-, respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth estimated by both dissolved SiO2 and Na-K-Ca geothermometers are in the range of 125.0 to 135.4 oC, and higher than the values measured at orifices (77.3 to 90.0 oC). CO2 and homologs of straight chain alkanes (C1-C5) were identified in gas samples. Carbon isotope values of alkanes increase with carbon numbers. The 13C fractionation between CO2 and dissolved inorganic carbon suggests they are out of carbon isotope equilibrium. The hypothesis regarding the formation of carbon-bearing compounds in SVHS may involve two processes: 1) Under high heat flow conditions which are caused by regional faulting and crustal extension, original high molecular weight organic compounds (kerogens) in clay-rich rocks decomposed to generate methane and other alkane homologs. 2) The SVHS area is associated with outflow structures, and distant from the heat source. Anaerobic oxidation of methane (AOM) with sulfate at shallow depth (< 90 oC) is suggested as being responsible for the generation of CO2 in SVHS.

  20. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope and Water Chemistry Characterizations

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, in some cases with high concentrations, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to expand our knowledge of subsurface (bio)chemical processes that generate organic compounds in hydrothermal systems, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for recognition of their origins, there are several secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other evidence, including water chemistry and rock compositions, are necessary to identify volatile compounds of different sources. Surprise Valley Hot Springs (SVHS, 41 deg 32'N, 120 deg 5'W), located in a typical basin and range province valley in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows in late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, conductivity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO4(2-), respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth estimated by both dissolved SiO2 and Na-K-Ca geothermometers are in the range of 125.0 to 135.4 C, and higher than the values measured at orifices (77.3 to 90.0 C). CO2 and homologs of straight chain alkanes (C1-C5) were identified in gas samples. Carbon isotope values of alkanes increase with carbon numbers. The C-13 fractionation between CO2 and dissolved inorganic carbon suggests they are out of carbon isotope equilibrium. The hypothesis regarding the formation of carbon-bearing compounds in SVHS may involve two processes: 1) Under high heat flow conditions which are caused by regional faulting and crustal extension, original high molecular weight organic compounds (kerogens) in clay-rich rocks decomposed to generate methane and other alkane homologs. 2) The SVHS area is associated with outflow structures, and distant from the heat source. Anaerobic oxidation of methane (AOM) with sulfate at shallow depth (< 90 C) is suggested as being responsible for the generation of CO2 in SVHS.

  1. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope and Water Chemistry Characterizations

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Socki, R.; Niles, P. B.; Romanek, C. S.; Datta, S.; Darnell, M.; Bissada, A. K.

    2013-12-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to understand subsurface (bio)chemical processes that generate organic compounds, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for identification of their origins, there are secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other lines of evidence, including water chemistry and rock compositions, are necessary to identify origins of volatile compounds. Surprise Valley Hot Springs (SVHS, 4132'N, 1205'W), located in a typical basin and range province in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows during late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO42-, respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth estimated by both dissolved SiO2 and Na-K-Ca geothermometers are in the range of 125.0 to 135.4 C, and higher than the values measured at orifices (77.3 to 90.0 C). CO2 and homologs of straight chain alkanes (C1-C5) were identified in gas samples. Carbon isotope values of alkanes increase with carbon numbers. The 13C fractionation between CO2 and dissolved inorganic carbon suggests they are out of carbon isotope equilibrium. The hypothesis regarding the formation of carbon-bearing compounds in SVHS may involve two processes: 1) Under high heat flow conditions caused by regional faulting and crustal extension, original high molecular weight organic compounds (kerogens) in clay-rich rocks decomposed to generate methane and other alkanes. 2) The SVHS area is associated with outflow structures, and distant from the heat source. Anaerobic oxidation of methane with sulfate at shallow depth (< 90 C) is suggested as being responsible for the generation of CO2 in SVHS.

  2. Kinetics of Fast Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili A.; Dalgarno, A.; Mellott, Mary (Technical Monitor)

    2002-01-01

    This report summarizes our investigations performed under NASA Grant NAG5-8058. The three-year research supported by the Geospace Sciences SR&T program (Ionospheric, Thermospheric, and Mesospheric Physics) has been designed to investigate fluxes of energetic oxygen and nitrogen atoms in the terrestrial thermosphere. Fast atoms are produced due to absorption of the solar radiation and due to coupling between the ionosphere and the neutral thermospheric gas. We have investigated the impact of hot oxygen and nitrogen atoms on the thermal balance, chemistry and radiation properties of the terrestrial thermosphere. Our calculations have been focused on the accurate quantitative description of the thermalization of O and N energetic atoms in collisions with atom and molecules of the ambient neutral gas. Upward fluxes of oxygen and nitrogen atoms, the rate of atmospheric heating by hot oxygen atoms, and the energy input into translational and rotational-vibrational degrees of atmospheric molecules have been evaluated. Altitude profiles of hot oxygen and nitrogen atoms have been analyzed and compared with available observational data. Energetic oxygen atoms in the terrestrial atmosphere have been investigated for decades, but insufficient information on the kinetics of fast atmospheric atoms has been a main obstacle for the interpretation of observational data and modeling of the hot geocorona. The recent development of accurate computational methods of the collisional kinetics is seen as an important step in the quantitative description of hot atoms in the thermosphere. Modeling of relaxation processes in the terrestrial atmosphere has incorporated data of recent observations, and theoretical predictions have been tested by new laboratory measurements.

  3. Chemistry on Stamps.

    ERIC Educational Resources Information Center

    Schreck, James O.

    1986-01-01

    Suggests how postage stamps can be incorporated into chemistry teaching. Categories considered include emergence of chemistry as a science, metric system, atoms (and molecules and ions), stoichiometry, energy relationships in chemical systems, chemical bonding, nuclear chemistry, biochemistry, geochemistry, matter (gases, liquids, and solids),

  4. Chemistry on Stamps.

    ERIC Educational Resources Information Center

    Schreck, James O.

    1986-01-01

    Suggests how postage stamps can be incorporated into chemistry teaching. Categories considered include emergence of chemistry as a science, metric system, atoms (and molecules and ions), stoichiometry, energy relationships in chemical systems, chemical bonding, nuclear chemistry, biochemistry, geochemistry, matter (gases, liquids, and solids),…

  5. Learning about Atoms, Molecules, and Chemical Bonds: A Case Study of Multiple-Model Use in Grade 11 Chemistry.

    ERIC Educational Resources Information Center

    Harrison, Allan G.; Treagust, David F.

    2000-01-01

    Reports in detail on a year-long case study of multiple-model use at grade 11. Suggests that students who socially negotiated the shared and unshared attributes of common analogical models for atoms, molecules, and chemical bonds used these models more consistently in their explanations. (Author/CCM)

  6. How Many Atomic Layers of Zinc Are in a Galvanized Iron Coating? An Experiment for General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Yang, Shui-Ping

    2007-01-01

    This article describes an experiment using a novel gasometric assembly to determine the thickness and number of atomic layers of zinc coating on galvanized iron substrates. Students solved this problem through three stages. In the first stage, students were encouraged to find a suitable acidic concentration through the guided-inquiry approach. In…

  7. How Many Atomic Layers of Zinc Are in a Galvanized Iron Coating? An Experiment for General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Yang, Shui-Ping

    2007-01-01

    This article describes an experiment using a novel gasometric assembly to determine the thickness and number of atomic layers of zinc coating on galvanized iron substrates. Students solved this problem through three stages. In the first stage, students were encouraged to find a suitable acidic concentration through the guided-inquiry approach. In

  8. Zen Hot Dog Molecules

    ERIC Educational Resources Information Center

    Ryan, Dennis

    2009-01-01

    Substituted cycloalkanes with one branch illustrating each topic in an instructional unit can serve as summaries or reviews in courses of organic chemistry. The hungry Zen master told the hot dog vendor to make him one with everything. You can do the same for your students.

  9. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. These results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.

  10. Spatial atomic layer deposition: Performance of low temperature H{sub 2}O and O{sub 3} oxidant chemistry for flexible electronics encapsulation

    SciTech Connect

    Maydannik, Philipp S. Plyushch, Alexander; Sillanpää, Mika; Cameron, David C.

    2015-05-15

    Water and oxygen were compared as oxidizing agents for the Al{sub 2}O{sub 3} atomic layer deposition process using spatial atomic layer deposition reactor. The influence of the precursor dose on the deposition rate and refractive index, which was used as a proxy for film density, was measured as a function of residence time, defined as the time which the moving substrate spent within one precursor gas zone. The effect of temperature on the growth characteristics was also measured. The water-based process gave faster deposition rates and higher refractive indices but the ozone process allowed deposition to take place at lower temperatures while still maintaining good film quality. In general, processes based on both oxidation chemistries were able to produce excellent moisture barrier films with water vapor transmission rate levels of 10{sup −4} g/m{sup 2} day measured at 38 °C and 90% of relative humidity on polyethylene naphthalate substrates. However, the best result of <5 × 10{sup −5} was obtained at 100 °C process temperature with water as precursor.

  11. Chemistry at corners and edges: Generation and adsorption of H atoms on the surface of MgO nanocubes

    SciTech Connect

    Sterrer, Martin; Berger, Thomas; Diwald, Oliver; Knoezinger, Erich; Sushko, Peter V.; Shluger, Alexander L.

    2005-08-08

    We used UV light to generate site-selective O{sup -} hole centers at three-coordinated corner oxygen sites on MgO nanocubes. These highly reactive O{sup -} radicals split H{sub 2} homolytically and, in the course of this reaction, become hydroxylated and produce hydrogen atoms. The hydrogen atoms adsorb predominantly at cube edges and dissociate into surface-trapped electrons and protons. We propose that the experimentally observed (H{sup +})(e{sup -}) centers are formed adjacent to the hydroxyl groups generated in the homolytic splitting process and can be defined as (H{sup +}){sub 3C}{center_dot}{center_dot}{center_dot}(e{sup -})(H{sup +}){sub NC} centers where 3C and NC refer to the coordination numbers of the corresponding hydroxylated oxygen sites. Our ab initio embedded cluster calculations reveal that the electronic properties of (H{sup +}){sub 3C}{center_dot}{center_dot}{center_dot}(e{sup -})(H{sup +}){sub 4C} centers situated along MgO nanocube edges are consistent with both the electron-paramagnetic-resonance signal parameters and the reported optical-absorption properties. The transformation of corner O{sup -} centers into the (H{sup +}){sub 3C}{center_dot}{center_dot}{center_dot}(e{sup -})(H{sup +}){sub NC}-type centers prevents their recombination with electronic surface centers and, hence, significantly alters the electronic structure of MgO nanocubes by introducing shallow electron traps.

  12. Atomic scale studies of the chemistry of the Cu/MgO l brace 111 r brace heterophase interface

    SciTech Connect

    Jang, H.; Seidman, D.N. ); Merkle, K.L. )

    1992-01-01

    The Cu/MgO (111) heterophase interface is studied using a combination of transmission electron microscopy, high resolution electron microscopy and atom-probe field-ion microscopy techniques. Wire and foil specimens of a Cu-2.8 at.% Mg alloy were internally oxidized to produce MgO precipitates at a number density of 5{center dot}10{sup 15}Cm{sup {minus}3} with a mean diameter of {approx}200 {Angstrom}. The MgO precipitates have a semicoherent interface with the Cu matrix and they exhibit a cube-on-cube orientation relationship. The octahedral-shaped MgO precipitates were analyzed using APFIM by dissecting along a <111> direction on an atomic scale. In this manner an MgO precipitate, with a (111) plane perpendicular to the axis of the APFIM, is uncovered after the Cu matrix has been mass analyzed. It was found that the terminating (222) plane of an MgO precipitate is pure oxygen, and the second (222) plane is pure Mg.

  13. Acid-base and nucleophilic chemistry of atomic oxygen on the Au(110) surface: Reactions with formic acid and formaldehyde

    NASA Astrophysics Data System (ADS)

    Outka, Duane A.; Madix, R. J.

    1987-01-01

    The adsorption of formic acid and formaldehyde on clean and oxidized Au(110) surfaces was investigated with temperature programmed reaction spectroscopy. Each molecule molecularly adsorbed on the clean Au(110) surface with monolayer binding energies of 13 and 10 kcal mol -1, respectively. Formic acid reacted with oxygen adatoms below 210 K in a typical Brnsted acid-base reaction to form water and adsorbed formate (HCOO). The formate decomposed at 340 K to evolve water, carbon dioxide, and formic acid with an activation energy of 20 kcal mol -1. Formaldehyde also reacted with oxygen adatoms in a nucleophilic reaction below 210 K to form water, hydrogen, and formate groups. These reactions are directly analogous to reactions of atomic oxygen adsorbed on the other group IB metals, copper and silver and demonstrate that oxygen adatoms on all of the group IB metals exhibit Brnsted basicity and nucleophilicity.

  14. Ethylene oxide and acetaldehyde in hot cores

    NASA Astrophysics Data System (ADS)

    Occhiogrosso, A.; Vasyunin, A.; Herbst, E.; Viti, S.; Ward, M. D.; Price, S. D.; Brown, W. A.

    2014-04-01

    Context. Ethylene oxide (c-C2H4O), and its isomer acetaldehyde (CH3CHO), are important complex organic molecules because of their potential role in the formation of amino acids. The discovery of ethylene oxide in hot cores suggests the presence of ring-shaped molecules with more than 3 carbon atoms such as furan (c-C4H4O), to which ribose, the sugar found in DNA, is closely related. Aims: Despite the fact that acetaldehyde is ubiquitous in the interstellar medium, ethylene oxide has not yet been detected in cold sources. We aim to understand the chemistry of the formation and loss of ethylene oxide in hot and cold interstellar objects (i) by including in a revised gas-grain network some recent experimental results on grain surfaces and (ii) by comparison with the chemical behaviour of its isomer, acetaldehyde. Methods: We introduce a complete chemical network for ethylene oxide using a revised gas-grain chemical model. We test the code for the case of a hot core. The model allows us to predict the gaseous and solid ethylene oxide abundances during a cooling-down phase prior to star formation and during the subsequent warm-up phase. We can therefore predict at what temperatures ethylene oxide forms on grain surfaces and at what temperature it starts to desorb into the gas phase. Results: The model reproduces the observed gaseous abundances of ethylene oxide and acetaldehyde towards high-mass star-forming regions. In addition, our results show that ethylene oxide may be present in outer and cooler regions of hot cores where its isomer has already been detected. Our new results are compared with previous results, which focused on the formation of ethylene oxide only. Conclusions: Despite their different chemical structures, the chemistry of ethylene oxide is coupled to that of acetaldehyde, suggesting that acetaldehyde may be used as a tracer for ethylene oxide towards cold cores.

  15. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts: A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect

    Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale; Rahul P. Nabar; Calvin H. Bartholomew; Hu Zou; Brian Critchfield

    2006-03-03

    Efforts during this second year focused on four areas: (1) continued searching and summarizing of published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) investigation of CO adsorption/desorption and temperature programmed hydrogenation (TPH) of carbonaceous species after FTS on unsupported iron and alumina-supported iron catalysts; (3) activity tests of alumina-supported iron catalysts in a fixed bed reactor; (4) sequential design of experiments, for the collection of rate data in a Berty CSTR reactor, and nonlinear-regression analysis to obtain kinetic parameters. Literature sources describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts were compiled in a review. Temperature-programmed desorption/reaction methods (the latter using mass-spectrometry detection and also thermogravimetric analyzer (TGA)) were utilized to study CO adsorption/-desorption on supported and unsupported iron catalysts. Molecular and dissociative adsorptions of CO occur on iron catalysts at 25-150 C. The amounts adsorbed and bond strengths of adsorption are influenced by supports and promoters. That CO adsorbs dissociatively on polycrystalline Fe at temperatures well below those of FT reaction indicates that CO dissociation is facile and unlikely to be the rate-limiting step during FTS. Carbonaceous species formed after FT reaction for only 5 minutes at 200 C were initially hydrogenated under mild, isothermal condition (200 C and 1 atm), followed by TPH to 800 C. During the mild, isothermal hydrogenation, only about 0.1-0.2 mL of atomic carbon is apparently removed, while during TPH to 800 C multilayer equivalents of atomic, polymeric, carbidic, and graphitic carbons are removed. Rates of CO conversion on alumina-supported iron catalysts at 220-260 C and 20 atm are correlated well by a Langmuir-Hinshelwood expression, derived assuming carbon hydrogenation to CH and OH recombination to water to be rate-determining steps. In the coming year, studies will focus on quantitative determination of the rates of kinetically-relevant elementary steps on Fe catalysts with/without K and Pt promoters and at various levels of Al{sub 2}O{sub 3} support, providing a database for understanding (1) effects of promoter and support on elementary kinetic parameters and (2) for validation of computational models that incorporate effects of surface structure and promoters. Kinetic parameters will be incorporated into a microkinetics model, enabling prediction of rate without invoking assumptions, e.g. of a rate-determining step or a most-abundant surface intermediate. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on two model surfaces: (1) Fe(110) with 1/4 ML subsurface carbon, and (2) Fe(110) with 1/4 ML Pt adatoms. Reaction networks for FTS on these systems were characterized in full detail by evaluating the thermodynamics and kinetics of each elementary step. We discovered that subsurface C stabilizes all the reactive intermediates, in contrast to Pt, which destabilizes most of them. A comparative study of the reactivities of the modified-Fe surfaces against pure Fe is expected to yield a more comprehensive understanding of promotion mechanisms for FTS on Fe.

  16. Laser applications in chemistry

    SciTech Connect

    Kompa, K.L.; Wanner, J.

    1984-01-01

    This book presents information on laser and related light sources, laser applications to analytical chemistry, spectroscopic and dynamical studies, and approaches to laser synthesis. Topics on these subjects include: laser sources for chemical experiments, high power optically pumped mid-infrared molecular gas lasers, analytical chemistry methods based on absorption of laser light, laser excited fluorescence methods in analytical chemistry, nonlinear spectroscopic techniques and their applications to analytical chemistry, and VUV laser spectroscopy of atomic and molecular hydrogen. Laser spectroscopy of molecular ions is discussed along with photodissociation dynamics experiments with NO/sub 2/, multiphoton selective ionization and fragmentation of polyatomic molecules, and laser initiated free radical chemistry.

  17. A Coupled Chemistry-emission Model for Atomic Oxygen Green and Red-doublet Emissions in the Comet C/1996 B2 Hyakutake

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Raghuram, Susarla

    2012-03-01

    The green (5577 Å) and red-doublet (6300, 6364 Å) lines are prompt emissions of metastable oxygen atoms in the 1 S and 1 D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H2O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O(1 S) and O(1 D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H2O to the green (red) line emission is 30%-70% (60%-90%), while CO2 and CO are the next potential sources contributing 25%-50% (<5%). The ratio of the photoproduction rate of O(1 S) to O(1 D) would be around 0.03 (±0.01) if H2O is the main source of oxygen lines, whereas it is ~0.6 if the parent is CO2. Our calculations suggest that the yield of O(1 S) production in the photodissociation of H2O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  18. A COUPLED CHEMISTRY-EMISSION MODEL FOR ATOMIC OXYGEN GREEN AND RED-DOUBLET EMISSIONS IN THE COMET C/1996 B2 HYAKUTAKE

    SciTech Connect

    Bhardwaj, Anil; Raghuram, Susarla E-mail: anil_bhardwaj@vssc.gov.in

    2012-03-20

    The green (5577 Angstrom-Sign ) and red-doublet (6300, 6364 Angstrom-Sign ) lines are prompt emissions of metastable oxygen atoms in the {sup 1}S and {sup 1}D states, respectively, that have been observed in several comets. The value of the intensity ratio of green to red-doublet (G/R ratio) of 0.1 has been used as a benchmark to identify the parent molecule of oxygen lines as H{sub 2}O. A coupled chemistry-emission model is developed to study the production and loss mechanisms of the O({sup 1}S) and O({sup 1}D) atoms and the generation of red and green lines in the coma of C/1996 B2 Hyakutake. The G/R ratio depends not only on photochemistry, but also on the projected area observed for cometary coma, which is a function of the dimension of the slit used and the geocentric distance of the comet. Calculations show that the contribution of photodissociation of H{sub 2}O to the green (red) line emission is 30%-70% (60%-90%), while CO{sub 2} and CO are the next potential sources contributing 25%-50% (<5%). The ratio of the photoproduction rate of O({sup 1} S) to O({sup 1} D) would be around 0.03 ({+-}0.01) if H{sub 2}O is the main source of oxygen lines, whereas it is {approx}0.6 if the parent is CO{sub 2}. Our calculations suggest that the yield of O({sup 1} S) production in the photodissociation of H{sub 2}O cannot be larger than 1%. The model-calculated radial brightness profiles of the red and green lines and G/R ratios are in good agreement with the observations made on the comet Hyakutake in 1996 March.

  19. Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

    PubMed Central

    Darwich, Samer; Rao, Akshata; Gnecco, Enrico; Jayaraman, Shrisudersan; Haidara, Hamidou

    2011-01-01

    Summary One key component in the assembly of nanoparticles is their precise positioning to enable the creation of new complex nano-objects. Controlling the nanoscale interactions is crucial for the prediction and understanding of the behaviour of nanoparticles (NPs) during their assembly. In the present work, we have manipulated bare and functionalized gold nanoparticles on flat and patterned silicon and silicon coated substrates with dynamic atomic force microscopy (AFM). Under ambient conditions, the particles adhere to silicon until a critical drive amplitude is reached by oscillations of the probing tip. Beyond that threshold, the particles start to follow different directions, depending on their geometry, size and adhesion to the substrate. Higher and respectively, lower mobility was observed when the gold particles were coated with methyl (–CH3) and hydroxyl (–OH) terminated thiol groups. This major result suggests that the adhesion of the particles to the substrate is strongly reduced by the presence of hydrophobic interfaces. The influence of critical parameters on the manipulation was investigated and discussed viz. the shape, size and grafting of the NPs, as well as the surface chemistry and the patterning of the substrate, and finally the operating conditions (temperature, humidity and scan velocity). Whereas the operating conditions and substrate structure are shown to have a strong effect on the mobility of the particles, we did not find any differences when manipulating ordered vs random distributed particles. PMID:21977418

  20. How Iron-Containing Proteins Control Dioxygen Chemistry: A Detailed Atomic Level Description Via Accurate Quantum Chemical and Mixed Quantum Mechanics/Molecular Mechanics Calculations.

    SciTech Connect

    Friesner, Richard A.; Baik, Mu-Hyun; Gherman, Benjamin F.; Guallar, Victor; Wirstam, Maria E.; Murphy, Robert B.; Lippard, Stephen J.

    2003-03-01

    Over the past several years, rapid advances in computational hardware, quantum chemical methods, and mixed quantum mechanics/molecular mechanics (QM/MM) techniques have made it possible to model accurately the interaction of ligands with metal-containing proteins at an atomic level of detail. In this paper, we describe the application of our computational methodology, based on density functional (DFT) quantum chemical methods, to two diiron-containing proteins that interact with dioxygen: methane monooxygenase (MMO) and hemerythrin (Hr). Although the active sites are structurally related, the biological function differs substantially. MMO is an enzyme found in methanotrophic bacteria and hydroxylates aliphatic C-H bonds, whereas Hr is a carrier protein for dioxygen used by a number of marine invertebrates. Quantitative descriptions of the structures and energetics of key intermediates and transition states involved in the reaction with dioxygen are provided, allowing their mechanisms to be compared and contrasted in detail. An in-depth understanding of how the chemical identity of the first ligand coordination shell, structural features, electrostatic and van der Waals interactions of more distant shells control ligand binding and reactive chemistry is provided, affording a systematic analysis of how iron-containing proteins process dioxygen. Extensive contact with experiment is made in both systems, and a remarkable degree of accuracy and robustness of the calculations is obtained from both a qualitative and quantitative perspective.

  1. Atomic-Scale Design of Iron Fischer-Tropsch Catalysts; A Combined Computational Chemistry, Experimental, and Microkinetic Modeling Approach

    SciTech Connect

    Manos Mavrikakis; James Dumesic; Rahul Nabar; Calvin Bartholonew; Hu Zou; Uchenna Paul

    2008-09-29

    This work focuses on (1) searching/summarizing published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) preparation and characterization of unsupported iron catalysts with/without potassium/platinum promoters; (3) measurement of H{sub 2} and CO adsorption/dissociation kinetics on iron catalysts using transient methods; (3) analysis of the transient rate data to calculate kinetic parameters of early elementary steps in FTS; (4) construction of a microkinetic model of FTS on iron, and (5) validation of the model from collection of steady-state rate data for FTS on iron catalysts. Three unsupported iron catalysts and three alumina-supported iron catalysts were prepared by non-aqueous-evaporative deposition (NED) or aqueous impregnation (AI) and characterized by chemisorption, BET, temperature-programmed reduction (TPR), extent-of-reduction, XRD, and TEM methods. These catalysts, covering a wide range of dispersions and metal loadings, are well-reduced and relatively thermally stable up to 500-600 C in H{sub 2} and thus ideal for kinetic and mechanistic studies. Kinetic parameters for CO adsorption, CO dissociation, and surface carbon hydrogenation on these catalysts were determined from temperature-programmed desorption (TPD) of CO and temperature programmed surface hydrogenation (TPSR), temperature-programmed hydrogenation (TPH), and isothermal, transient hydrogenation (ITH). A microkinetic model was constructed for the early steps in FTS on polycrystalline iron from the kinetic parameters of elementary steps determined experimentally in this work and from literature values. Steady-state rate data were collected in a Berty reactor and used for validation of the microkinetic model. These rate data were fitted to 'smart' Langmuir-Hinshelwood rate expressions derived from a sequence of elementary steps and using a combination of fitted steady-state parameters and parameters specified from the transient measurements. The results provide a platform for further development of microkinetic models of FTS on Fe and a basis for more precise modeling of FTS activity of Fe catalysts. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on various realistic models of industrial, Fe-based FTS catalysts. Close-packed, most stable Fe(110) facet was analyzed and subsequently carbide formation was found to be facile leading to the choice of the FeC(110) model representing a Fe facet with a sub-surface C atom. The Pt adatom (Fe{sup Pt}(110)) was found to be the most stable model for our studies into Pt promotion and finally the role of steps was elucidated by recourse to the defected Fe(211) facet. Binding Energies(BEs), preferred adsorption sites and geometries for all FTS relevant stable species and intermediates were evaluated on each model catalyst facet. A mechanistic model (comprising of 32 elementary steps involving 19 species) was constructed and each elementary step therein was fully characterized with respect to its thermochemistry and kinetics. Kinetic calculations involved evaluation of the Minimum Energy Pathways (MEPs) and activation energies (barriers) for each step. Vibrational frequencies were evaluated for the preferred adsorption configuration of each species with the aim of evaluating entropy-changes, pre exponential factors and serving as a useful connection with experimental surface science techniques. Comparative analysis among these four facets revealed important trends in their relative behavior and roles in FTS catalysis. Overall the First Principles Calculations afforded us a new insight into FTS catalysis on Fe and modified-Fe catalysts.

  2. A Hot Core Laboratory

    NASA Astrophysics Data System (ADS)

    van Broekhuizen, Fleur A.; Fraser, Helen J.; Schutte, Willem A.; de Kuijper, Ewie; van Dishoeck, Ewine F.

    The newly-built Cryogenic Photoproduct Analysis Device (CRYOPAD) will simulate Hot Core chemistry in the laboratory. Hot Cores (HC's) represent the most chemically rich areas of the insterstellar medium. They are characterised as warm (100-200K), dense (n_H_2 = 10cm-3) regions, that are in most cases associated with high mass star formation. Internal heating and ultraviolet radiation that may be present inside HC's cause processing and evaporation of ice mantles around infalling grains. This initiates a rich chemistry among the gaseous molecules that leads to the formation of a wide range of complex organics. Gas-phase chemistry models are however not always able to explain the observed molecular abundances. Therefore surface chemistry and solid state chemistry probably contribute to the production of complex organics as well. CRYOPAD is an experimental setup that is specifically designed to study the solid state chemistry of interstellar ice analogs by radiative and thermal processing. Ultra High Vacuum conditions (8x10-11mbar) will minimize contamination of the sample, which is essential for the analysis of trace products of the processing. The gas analysis is performed in situ by a Quadrupole Mass Spectrometer. Additionally CRYOPAD has the option of looking at the surface chemistry by Reflective Absorption Infrared Spectrometry in the 4000-400 cm-1 region. The research will focus on the production of small volatile complex organics such as simple esters and ethers like methyl formate and dimethyl ether. The results will be used to interpret the observational data of HC's in further detail and to perform a directed search for molecules in space with only weak observable features. Furthermore the laboratory data will be used to refine chemical models of HC's. Thus we hope to gain a better understanding of the physical and chemical processes associated with high mass star formation.

  3. Chemistry and Philosophy

    ERIC Educational Resources Information Center

    Theobald, D. W.

    1970-01-01

    In the second article of a series, the author discusses some of the interactions between chemistry and philosophy. Evaluates chemistry's role within the scientific enterprise. Traces the rise and fall of the logical atom and argues for a new way of looking at science as an educational instrument. (RR)

  4. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  5. Chemistry: Experiments, Demonstrations and Other Activities Suggested for Chemistry.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This publication is a handbook used in conjunction with the course of study in chemistry developed through the New York State Education Department and The University of the State of New York. It contains experiments, demonstrations, and other activities for a chemistry course. Areas covered include the science of chemistry, the atomic structure of…

  6. Interstellar chemistry

    PubMed Central

    Klemperer, William

    2006-01-01

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature. PMID:16894148

  7. Oxygen-Induced Restructuring of Rutile TiO(2)(110): Formation Mechanism, Atomic Models, and Influence on Surface Chemistry

    SciTech Connect

    Li, Min; Hebenstreit, Wilhelm; Diebold, Ulrike; Henderson, Michael A.; Jennison, Dwight R.

    1999-07-07

    The rutile TiO{sub 2} (110) (1x1) surface is considered the prototypical ''well-defined'' system in the surface science of metal oxides. Its popularity results partly from two experimental advantages: bulk-reduced single crystals do not exhibit charging, and stoichiometric surfaces--as judged by electron spectroscopes--can be prepared reproducibly by sputtering and annealing in oxygen. We present results that show that this commonly-applied preparation procedure may result in a surface structure that is by far more complex than generally anticipated. Flat, (1x1) terminated surfaces are obtained by sputtering and annealing in ultrahigh vacuum. When re-annealed in oxygen at moderate temperatures (470 K to 660 K), irregular networks of partially-connected, pseudohexagonal rosettes (6.5 x 6 {angstrom} wide), one-unit cell wide strands, and small ({approximately} tens of {angstrom}) (1x1) islands appear. This new surface phase is formed through reaction of oxygen gas with interstitial Ti from the reduced bulk. Because it consists of an incomplete, kinetically-limited (1x1) layer, this phenomenon has been termed restructuring. We report a combined experimental and theoretical study that systematically explores this restructuring process. The influence of several parameters (annealing time, temperature, pressure, sample history, gas) on the surface morphology is investigated using STM. The surface coverage of the added phase as well as the kinetics of the restructuring process are quantified by LEIS and SSIMS measurements in combination with annealing in {sup 18}O-enriched gas. Atomic models of the essential structural elements are presented and are shown to be stable with first-principles density functional calculations. The effect of oxygen-induced restructuring on surface chemistry and its importance for TiO{sub 2} and other bulk-reduced oxide materials is briefly discussed.

  8. Astronomical Chemistry

    NASA Astrophysics Data System (ADS)

    Klemperer, William

    2011-05-01

    The discovery of polar polyatomic molecules in higher-density regions of the interstellar medium by means of their rotational emission detected by radioastronomy has changed our conception of the universe from essentially atomic to highly molecular. We discuss models for molecule formation, emphasizing the general lack of thermodynamic equilibrium. Detailed chemical kinetics is needed to understand molecule formation as well as destruction. Ion molecule reactions appear to be an important class for the generally low temperatures of the interstellar medium. The need for the intrinsically high-quality factor of rotational transitions to definitively pin down molecular emitters has been well established by radioastronomy. The observation of abundant molecular ions both positive and, as recently observed, negative provides benchmarks for chemical kinetic schemes. Of considerable importance in guiding our understanding of astronomical chemistry is the fact that the larger molecules (with more than five atoms) are all organic.

  9. Ab initio molecular dynamics with simultaneous electron and phonon excitations: Application to the relaxation of hot atoms and molecules on metal surfaces

    NASA Astrophysics Data System (ADS)

    Novko, D.; Blanco-Rey, M.; Juaristi, J. I.; Alducin, M.

    2015-11-01

    The relaxation dynamics of hot H, N, and N2 on Pd(100), Ag(111), and Fe(110), respectively, is studied by means of ab initio molecular dynamics with electronic friction. This method is adapted here to account for the electron density changes caused by lattice vibrations, thus treating on an equal footing both electron-hole (e -h ) pair and phonon excitations. We find that even if the latter increasingly dominate the heavier is the hot species, the contribution of e -h pairs is by no means negligible in these cases because it gains relevance at the last stage of the relaxation process. The quantitative details of energy dissipation depend on the interplay of the potential energy surface, electronic structure, and kinetic factors.

  10. Computational chemistry

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  11. Partial Characterization of a Novel Amphibian Hemoglobin as a Model for Graduate Student Investigation on Peptide Chemistry, Mass Spectrometry, and Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Bemquerer, Marcelo P.; Macedo, Jessica K. A.; Ribeiro, Ana Carolina J.; Carvalho, Andrea C.; Silva, Debora O. C.; Braz, Juliana M.; Medeiros, Kelliane A.; Sallet, Lunalva A. P.; Campos, Pollyanna F.; Prates, Maura V.; Silva, Luciano P.

    2012-01-01

    Graduate students in chemistry, and in biological and biomedical fields must learn the fundamentals and practices of peptide and protein chemistry as early as possible. A project-oriented approach was conducted by first-year M.Sc and Ph.D students in biological sciences. A blind glass slide containing a cellular smear and an aqueous cellular…

  12. Partial Characterization of a Novel Amphibian Hemoglobin as a Model for Graduate Student Investigation on Peptide Chemistry, Mass Spectrometry, and Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Bemquerer, Marcelo P.; Macedo, Jessica K. A.; Ribeiro, Ana Carolina J.; Carvalho, Andrea C.; Silva, Debora O. C.; Braz, Juliana M.; Medeiros, Kelliane A.; Sallet, Lunalva A. P.; Campos, Pollyanna F.; Prates, Maura V.; Silva, Luciano P.

    2012-01-01

    Graduate students in chemistry, and in biological and biomedical fields must learn the fundamentals and practices of peptide and protein chemistry as early as possible. A project-oriented approach was conducted by first-year M.Sc and Ph.D students in biological sciences. A blind glass slide containing a cellular smear and an aqueous cellular

  13. Materials News: Interfacial chemistry and atomic arrangement of ZrO{sub 2} − La{sub 2/3}Sr{sub 1/3}MnO{sub 3} pillar-matrix structures

    SciTech Connect

    Zhou, Dan Sigle, Wilfried; Wang, Yi; Kelsch, Marion; Aken, Peter A. van; Okunishi, Eiji; Habermeier, Hanns-Ulrich

    2014-12-01

    We studied ZrO{sub 2} − La{sub 2/3}Sr{sub 1/3}MnO{sub 3} pillar–matrix thin films which were found to show anomalous magnetic and electron transport properties. With the application of an aberration-corrected transmission electron microscope, interfacial chemistry, and atomic-arrangement of the system, especially of the pillar–matrix interface were revealed at atomic resolution. Minor amounts of Zr were found to occupy Mn positions within the matrix. The Zr concentration reaches a minimum near the pillar–matrix interface accompanied by oxygen vacancies. La and Mn diffusion into the pillar was revealed at atomic resolution and a concomitant change of the Mn valence state was observed.

  14. Retained Austenite Decomposition and Carbide Formation During Tempering a Hot-Work Tool Steel X38CrMoV5-1 Studied by Dilatometry and Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Lerchbacher, Christoph; Zinner, Silvia; Leitner, Harald

    2012-12-01

    The microstructural development of a hot-work tool steel X38CrMoV5-1 during continuous heating to tempering temperature has been investigated with the focus on the decomposition of retained austenite (Stage II) and carbide formation (Stages III and IV). Investigations have been carried out after heating to 673.15 K, 773.15 K, 883.15 K (400 C, 500 C, 610 C) and after a dwell time of 600 seconds at 883.15 K (610 C). Dilatometry and atom probe tomography were used to identify tempering reactions. A distinctive reaction takes place between 723.15 K and 823.15 K (450 C and 550 C) which is determined to be the formation of M3C from transition carbides. Stage II could be evidenced with the atom probe results and indirectly with dilatometry, indicating the formation of new martensite during cooling. Retained austenite decomposition starts with the precipitation of alloy carbides formed from nanometric interlath retained austenite films which are laminary arranged and cause a reduction of the carbon content within the retained austenite. Preceding enrichment of substitutes at the matrix/carbide interface in the early stages of Cr7C3 alloy carbide formation could be visualised on the basis of coarse M3C carbides within the matrix. Atom probe tomography has been found to be very useful to complement dilatational experiments in order to characterise and identify microstructural changes.

  15. Atmospheric chemistry of (CF3)2C=CH2: OH radicals, Cl atoms and O3 rate coefficients, oxidation end-products and IR spectra.

    PubMed

    Papadimitriou, Vassileios C; Spitieri, Christina S; Papagiannakopoulos, Panos; Cazaunau, Mathieu; Lendar, Maria; Daële, Véronique; Mellouki, Abdelwahid

    2015-10-14

    The rate coefficients for the gas phase reactions of OH radicals, k1, Cl atoms, k2, and O3, k3, with 3,3,3-trifluoro-2(trifluoromethyl)-1-propene ((CF3)2C=CH2, hexafluoroisobutylene, HFIB) were determined at room temperature and atmospheric pressure employing the relative rate method and using two atmospheric simulation chambers and a static photochemical reactor. OH and Cl rate coefficients obtained by both techniques were indistinguishable, within experimental precision, and the average values were k1 = (7.82 ± 0.55) × 10(-13) cm(3) molecule(-1) s(-1) and k2 = (3.45 ± 0.24) × 10(-11) cm(3) molecule(-1) s(-1), respectively. The quoted uncertainties are at 95% level of confidence and include the estimated systematic uncertainties. An upper limit for the O3 rate coefficient was determined to be k3 < 9.0 × 10(-22) cm(3) molecule(-1) s(-1). In global warming potential (GWP) calculations, radiative efficiency (RE) was determined from the measured IR absorption cross-sections and treating HFIB both as long (LLC) and short (SLC) lived compounds, including estimated lifetime dependent factors in the SLC case. The HFIB lifetime was estimated from kinetic measurements considering merely the OH reaction, τOH = 14.8 days and including both OH and Cl chemistry, τeff = 10.3 days. Therefore, GWP(HFIB,OH) and GWP(HFIB,eff) were estimated to be 4.1 (LLC) and 0.6 (SLC), as well as 2.8 (LLC) and 0.3 (SLC) for a hundred year time horizon. Moreover, the estimated photochemical ozone creation potential (ε(POCP)) of HFIB was calculated to be 4.60. Finally, HCHO and (CF3)2C(O) were identified as final oxidation products in both OH- and Cl-initiated oxidation, while HC(O)Cl was additionally observed in the Cl-initiated oxidation. PMID:26372403

  16. Shape-selective catalysts for Fischer-Tropsch chemistry : atomic layer deposition of active catalytic metals. Activity report : January 1, 2005 - September 30, 2005.

    SciTech Connect

    Cronauer, D. C.

    2011-04-15

    Argonne National Laboratory is carrying out a research program to create, prepare, and evaluate catalysts to promote Fischer-Tropsch (FT) chemistry - specifically, the reaction of hydrogen with carbon monoxide to form long-chain hydrocarbons. In addition to needing high activity, it is desirable that the catalysts have high selectivity and stability with respect to both mechanical strength and aging properties. The broad goal is to produce diesel fraction components and avoiding excess yields of both light hydrocarbons and heavy waxes. Originally the goal was to prepare shape-selective catalysts that would limit the formation of long-chain products and yet retain the active metal sites in a protected 'cage.' Such catalysts were prepared with silica-containing fractal cages. The activity was essentially the same as that of catalysts without the cages. We are currently awaiting follow-up experiments to determine the attrition strength of these catalysts. A second experimental stage was undertaken to prepare and evaluate active FT catalysts formed by atomic-layer deposition [ALD] of active components on supported membranes and particulate supports. The concept was that of depositing active metals (i.e. ruthenium, iron or cobalt) upon membranes with well defined flow channels of small diameter and length such that the catalytic activity and product molecular weight distribution could be controlled. In order to rapidly evaluate the catalytic membranes, the ALD coating processes were performed in an 'exploratory mode' in which ALD procedures from the literature appropriate for coating flat surfaces were applied to the high surface area membranes. Consequently, the Fe and Ru loadings in the membranes were likely to be smaller than those expected for complete monolayer coverage. In addition, there was likely to be significant variation in the Fe and Ru loading among the membranes due to difficulties in nucleating these materials on the aluminum oxide surfaces. The first series of experiments using coated membranes demonstrated that the technology needed further improvement. Specifically, observed catalytic FT activity was low. This low activity appeared to be due to: (1) low available surface area, (2) atomic deposition techniques that needed improvements, and (3) insufficient preconditioning of the catalyst surface prior to FT testing. Therefore, experimentation was expanded to the use of particulate silica supports having defined channels and reasonably high surface area. This later experimentation will be discussed in the next progress report. Subsequently, we plan to evaluate membranes after the ALD techniques are improved with a careful study to control and quantify the Fe and Ru loadings. The preconditioning of these surfaces will also be further developed. (A number of improvements have been made with particulate supports; they will be discussed in the subsequent report.) In support of the above, there was an opportunity to undertake a short study of cobalt/promoter/support interaction using the Advanced Photon Source (APS) of Argonne. Five catalysts and a reference cobalt oxide were characterized during a temperature programmed EXAFS/XANES experimental study with the combined effort of Argonne and the Center for Applied Energy Research (CAER) of the University of Kentucky. This project was completed, and it resulted in an extensive understanding of the preconditioning step of reducing Co-containing FT catalysts. A copy of the resulting manuscript has been submitted and accepted for publication. A similar project was undertaken with iron-containing FT catalysts; the data is currently being studied.

  17. European TV Brings Chemistry into the Home

    ERIC Educational Resources Information Center

    O'Sullivan, Dermot A.

    1975-01-01

    Describes television programs broadcast in the Netherlands and West Germany which explain what chemistry is all about. Both programs, planned under the direction of trained chemists, comprise 13 half-hour presentations and include segments on energy, polymers, chemical processes, the chemistry of life, atomic and molecular chemistry, and chemistry

  18. The Place of Macromolecules in Freshman Chemistry

    ERIC Educational Resources Information Center

    Wunderlich, Bernhard

    1973-01-01

    Discusses the inclusion of knowledge on macromolecules into a freshman chemistry course which emphasizes topics in organic chemistry, polymer science and biochemistry, atoms, chemical thermodynamics, and inorganic chemistry. Indicates that the program is the only way to keep chemistry education up to date. (CC)

  19. Search for methylamine in high mass hot cores

    NASA Astrophysics Data System (ADS)

    Ligterink, N. F. W.; Tenenbaum, E. D.; van Dishoeck, E. F.

    2015-04-01

    Aims: We aim to detect methylamine, CH3NH2, in a variety of hot cores and use it as a test for the importance of photon-induced chemistry in ice mantles and mobility of radicals. Specifically, CH3NH2 cannot be formed from atom addition to CO whereas other NH2-containing molecules such as formamide, NH2CHO, can. Methods: Submillimeter spectra of several massive hot core regions were taken with the James Clerk Maxwell Telescope (JCMT). Abundances are determined with the rotational diagram method where possible. Results: Methylamine is not detected, giving upper limit column densities between 1.9-6.4 × 1016 cm-2 for source sizes corresponding to the 100 K envelope radius. Combined with previously obtained JCMT data analysed in the same way, abundance ratios of CH3NH2, NH2CHO and CH3CN with respect to each other and to CH3OH are determined. These ratios are compared with Sagittarius B2 observations, where all species are detected, and to hot core models. Conclusions: The observed ratios suggest that both methylamine and formamide are overproduced by up to an order of magnitude in hot core models. Acetonitrile is however underproduced. The proposed chemical schemes leading to these molecules are discussed and reactions that need further laboratory studies are identified. The upper limits obtained in this paper can be used to guide future observations, especially with ALMA. Appendices are available in electronic form at http://www.aanda.org

  20. Hot microelectrodes.

    PubMed

    Baranski, Andrzej S

    2002-03-15

    Heat generation at disk microelectrodes by a high-amplitude (few volt) and high-frequency (0.1-2 GHz) alternating voltage is described. This method allows changing electrode temperature very rapidly and maintaining it well above the boiling point of solution for a very long time without any indication of boiling. The size of the hot zone in solution is determined by the radius of the electrode. There is no obvious limit in regard to the electrode size, so theoretically, by this method, it should be possible to create hot spots that are much smaller than those created with laser beams. That could lead to potential applications in medicine and biology. The heat-generating waveform does not electrically interfere with normal electroanalytical measurements. The noise level at hot microelectrodes is only slightly higher, as compared to normal microelectodes, but diffusion-controlled currents at hot microelectrodes may be up to 7 times higher, and an enhancement of kinetically controlled currents may be even larger. Hot microelectrodes can be used for end-column detection in capillary electrophoresis and for in-line or in vivo analyses. Temperature gradients at hot microelectrodes may exceed 1.5 x 10(5) K/cm, which makes them useful in studies of Soret diffusion and thermoelectric phenomena. PMID:11922296

  1. Titan's corona: The contribution of exothermic chemistry

    NASA Astrophysics Data System (ADS)

    De La Haye, V.; Waite, J. H.; Cravens, T. E.; Nagy, A. F.; Johnson, R. E.; Lebonnois, S.; Robertson, I. P.

    2007-11-01

    The contribution of exothermic ion and neutral chemistry to Titan's corona is studied. The production rates for fast neutrals N 2, CH 4, H, H 2, 3CH 2, CH 3, C 2H 4, C 2H 5, C 2H 6, N( 4S), NH, and HCN are determined using a coupled ion and neutral model of Titan's upper atmosphere. After production, the formation of the suprathermal particles is modeled using a two-stream simulation, as they travel simultaneously through a thermal mixture of N 2, CH 4, and H 2. The resulting suprathermal fluxes, hot density profiles, and energy distributions are compared to the N 2 and CH 4 INMS exospheric data presented in [De La Haye, V., Waite Jr., J.H., Johnson, R.E., Yelle, R.V., Cravens, T.E., Luhmann, J.G., Kasprzak, W.T., Gell, D.A., Magee, B., Leblanc, F., Michael, M., Jurac, S., Robertson, I.P., 2007. J. Geophys. Res., doi:10.1029/2006JA012222, in press], and are found insufficient for producing the suprathermal populations measured. Global losses of nitrogen atoms and carbon atoms in all forms due to exothermic chemistry are estimated to be 8.3×10 Ns and 7.2×10 Cs.

  2. Art in Chemistry: Chemistry in Art. Second Edition

    ERIC Educational Resources Information Center

    Greenberg, Barbara R.; Patterson, Dianne

    2008-01-01

    This textbook integrates chemistry and art with hands-on activities and fascinating demonstrations that enable students to see and understand how the science of chemistry is involved in the creation of art. It investigates such topics as color integrated with electromagnetic radiation, atoms, and ions; paints integrated with classes of matter,

  3. Art in Chemistry: Chemistry in Art. Second Edition

    ERIC Educational Resources Information Center

    Greenberg, Barbara R.; Patterson, Dianne

    2008-01-01

    This textbook integrates chemistry and art with hands-on activities and fascinating demonstrations that enable students to see and understand how the science of chemistry is involved in the creation of art. It investigates such topics as color integrated with electromagnetic radiation, atoms, and ions; paints integrated with classes of matter,…

  4. Hot Tickets

    ERIC Educational Resources Information Center

    Fox, Bette-Lee; Hoffert, Barbara; Kuzyk, Raya; McCormack, Heather; Williams, Wilda

    2008-01-01

    This article describes the highlights of this year's BookExpo America (BEA) held at the Los Angeles Convention Center. The attendees at BEA had not minded that the air was recycled, the lighting was fluorescent, and the food was bad. The first hot book sighting came courtesy of Anne Rice. Michelle Moran, author of newly published novel, "The…

  5. Hot Tickets

    ERIC Educational Resources Information Center

    Fox, Bette-Lee; Hoffert, Barbara; Kuzyk, Raya; McCormack, Heather; Williams, Wilda

    2008-01-01

    This article describes the highlights of this year's BookExpo America (BEA) held at the Los Angeles Convention Center. The attendees at BEA had not minded that the air was recycled, the lighting was fluorescent, and the food was bad. The first hot book sighting came courtesy of Anne Rice. Michelle Moran, author of newly published novel, "The

  6. The Great Ideas of Chemistry.

    ERIC Educational Resources Information Center

    Gillespie, Ronald J.

    1997-01-01

    Presents a list of six concepts that form the basis of modern chemistry and that should be included in introductory chemistry courses. Discusses atoms, molecules, and ions; the chemical bond; molecular shape and geometry; kinetic theory; the chemical reaction; and energy and entropy. (JRH)

  7. When Atoms Want

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use

  8. When Atoms Want

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  9. Surface-morphology changes and damage in hot tungsten by impact of 80 eV - 12 keV He-ions and keV-energy self-atoms

    NASA Astrophysics Data System (ADS)

    Meyer, F. W.; Krstic, P. S.; Hijazi, H.; Bannister, M. E.; Dadras, J.; Parish, C. M.; Meyer, H. M., Iii

    2014-04-01

    We report results of measurements on the evolution of the surface morphology of a hot tungsten surface due to impacting low-energy (80 - 12,000 eV) He ions, performed at the ORNL Multicharged Ion Research Facility (MIRF). Surface-morphology changes were investigated over a broad range of fluences, energies and temperatures for both virgin and pre-damaged W-targets. At low fluences, ordered coral-like and ridge-like surface structures are observed, with great grain-to-grain variability. At the largest fluences, individual grain characteristics disappear in FIB/SEM scans, and the entire surface is covered by a multitude of near-surface bubbles with a broad range of sizes, and disordered whisker growth, while in top-down SEM imaging the surface is virtually indistinguishable from the nanofuzz produced on linear plasma devices. These features are evident at progressively lower fluences as the He-ion energy is increased. In addition, simulations were carried out of damage caused by cumulative bombardment of 1 keV W self-atoms, using LAMMPS at the Kraken supercomputing facility of the University of Tennessee. The simulations show strong defect-recombination effects that lead to a saturation of the total defect number after a few hundred impacts, while sputtering and implantation lead to an imbalance of the vacancy and interstitial numbers.

  10. Locally enhanced surface plasmons and modulated "hot-spots" in nanoporous gold patterns on atomically thin MoS2 with a comparison to SiO2 substrate

    NASA Astrophysics Data System (ADS)

    Yan, Aiming; Hua, Yi; Dravid, Vinayak P.

    2016-02-01

    Plasmonic phenomena in metals have garnered significant scientific and technological interest in the past decade. Despite many promising applications based on plasmonics, one remaining challenge is to control the surface geometry or morphology of the metallic structures, which can significantly affect the plasmonic properties of nanostructures. Here, we report the morphological modulation of gold (Au) nanopatterns on atomically thin layered molybdenum disulfide (MoS2), compared to Au nanopatterns grown on SiO2/Si substrate. We have used electron energy loss spectroscopy in a scanning transmission electron microscope to probe the locally enhanced surface plasmons in nanoporous Au patterns grown on SiO2/Si substrate as well as on single- and few-layer MoS2 flakes. Thin flakes of MoS2 as substrates significantly influence the morphology of Au patterns, which locally alters the plasmonic behavior. Features such as nanoscale pores exhibit plasmon localization with strong near fields, akin to "hot spots." Boundary element method simulations demonstrate that the dipolar and breathing modes can be excited at different positions of the nanopatterns.

  11. Matrix-isolation studies on the radiation-induced chemistry in H₂O/CO₂ systems: reactions of oxygen atoms and formation of HOCO radical.

    PubMed

    Ryazantsev, Sergey V; Feldman, Vladimir I

    2015-03-19

    The radiation-induced transformations occurring upon X-ray irradiation of solid CO2/H2O/Ng systems (Ng = Ar, Kr, Xe) at 8-10 K and subsequent annealing up to 45 K were studied by Fourier transform infrared spectroscopy. The infrared (IR) spectra of deposited matrices revealed the presence of isolated monomers, dimers, and intermolecular H2O···CO2 complexes. Irradiation resulted in effective decomposition of matrix-isolated carbon dioxide and water yielding CO molecules and OH radicals, respectively. Annealing of the irradiated samples led to formation of O3, HO2, and a number of xenon hydrides of HXeY type (in the case of xenon matrices). The formation of these species was used for monitoring of the postirradiation thermally induced chemical reactions involving O and H atoms generated by radiolysis. It was shown that the radiolysis of CO2 in noble-gas matrices produced high yields of stabilized oxygen atoms. In all cases, the temperatures at which O atoms become mobile and react are lower than those of H atoms. Dynamics and reactivity of oxygen atoms was found to be independent of the precursor nature. In addition, the formation of HOCO radicals was observed in all the noble-gas matrices at remarkably low temperatures. The IR spectra of HOCO and DOCO were first characterized in krypton and xenon matrices. It was concluded that the formation of HOCO was mainly due to the radiation-induced evolution of the weakly bound H2O···CO2 complexes. This result indicates the significance of weak intermolecular interactions in the radiation-induced chemical processes in inert low-temperature media. PMID:25469518

  12. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    SciTech Connect

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  13. The atomic structure and chemistry of Fe-rich steps on antiphase boundaries in Ti-doped Bi{sub 0.9}Nd{sub 0.15}FeO{sub 3}

    SciTech Connect

    MacLaren, Ian Craven, Alan J.; Schaffer, Bernhard; Wang, LiQiu; Ramasse, Quentin M.; Kalantari, Kambiz; Reaney, Ian M.

    2014-06-01

    Stepped antiphase boundaries are frequently observed in Ti-doped Bi{sub 0.85}Nd{sub 0.15}FeO{sub 3}, related to the novel planar antiphase boundaries reported recently. The atomic structure and chemistry of these steps are determined by a combination of high angle annular dark field and bright field scanning transmission electron microscopy imaging, together with electron energy loss spectroscopy. The core of these steps is found to consist of 4 edge-sharing FeO{sub 6} octahedra. The structure is confirmed by image simulations using a frozen phonon multislice approach. The steps are also found to be negatively charged and, like the planar boundaries studied previously, result in polarisation of the surrounding perovskite matrix.

  14. Colour Chemistry

    ERIC Educational Resources Information Center

    Griffiths, J.; Rattee, I. D.

    1973-01-01

    Discusses the course offerings in pure color chemistry at two universities and the three main aspects of study: dyestuff chemistry, color measurement, and color application. Indicates that there exists a constant challenge to ingenuity in the subject discipline. (CC)

  15. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel

  16. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  17. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…

  18. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  19. ENVIRONMENTAL CHEMISTRY

    EPA Science Inventory

    Environmental chemistry is applied to estimating the exposure of ecosystems and humans to various chemical environmental stressors. Among the stressors of concern are mercury, pesticides, and arsenic. Advanced analytical chemistry techniques are used to measure these stressors ...

  20. Surface chemistry of copper metal and copper oxide atomic layer deposition from copper(ii) acetylacetonate: a combined first-principles and reactive molecular dynamics study.

    PubMed

    Hu, Xiao; Schuster, Jörg; Schulz, Stefan E; Gessner, Thomas

    2015-10-28

    Atomistic mechanisms for the atomic layer deposition using the Cu(acac)2 (acac = acetylacetonate) precursor are studied using first-principles calculations and reactive molecular dynamics simulations. The results show that Cu(acac)2 chemisorbs on the hollow site of the Cu(110) surface and decomposes easily into a Cu atom and the acac-ligands. A sequential dissociation and reduction of the Cu precursor [Cu(acac)2 → Cu(acac) → Cu] are observed. Further decomposition of the acac-ligand is unfavorable on the Cu surface. Thus additional adsorption of the precursors may be blocked by adsorbed ligands. Molecular hydrogen is found to be nonreactive towards Cu(acac)2 on Cu(110), whereas individual H atoms easily lead to bond breaking in the Cu precursor upon impact, and thus release the surface ligands into the gas-phase. On the other hand, water reacts with Cu(acac)2 on a Cu2O substrate through a ligand-exchange reaction, which produces gaseous H(acac) and surface OH species. Combustion reactions with the main by-products CO2 and H2O are observed during the reaction between Cu(acac)2 and ozone on the CuO surface. The reactivity of different co-reactants toward Cu(acac)2 follows the order H > O3 > H2O. PMID:26399423

  1. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and

  2. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  3. Chemistry of Transactinides

    NASA Astrophysics Data System (ADS)

    Kratz, J. V.

    In this chapter, the chemical properties of the man-made transactinide elements rutherfordium, Rf (element 104), dubnium, Db (element 105), seaborgium, Sg (element 106), bohrium, Bh (element 107), hassium, Hs (element 108), and copernicium, Cn (element 112) are reviewed, and prospects for chemical characterizations of even heavier elements are discussed. The experimental methods to perform rapid chemical separations on the time scale of seconds are presented and comments are given on the special situation with the transactinides where chemistry has to be studied with single atoms. It follows a description of theoretical predictions and selected experimental results on the chemistry of elements 104 through 108, and element 112.

  4. Forensic Chemistry

    NASA Astrophysics Data System (ADS)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  5. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  6. Hot Meetings

    NASA Technical Reports Server (NTRS)

    Chiu, Mary

    2002-01-01

    A colleague walked by my office one time as I was conducting a meeting. There were about five or six members of my team present. The colleague, a man who had been with our institution (The Johns Hopkins Applied Physics Lab, a.k.a. APL) for many years, could not help eavesdropping. He said later it sounded like we we re having a raucous argument, and he wondered whether he should stand by the door in case things got out of hand and someone threw a punch. Our Advanced Composition Explorer (ACE) team was a hot group, to invoke the language that is fashionable today, although we never thought of ourselves in those terms. It was just our modus operandi. The tenor of the discussion got loud and volatile at times, but I prefer to think of it as animated, robust, or just plain collaborative. Mary Chiu and her "hot" team from the Johns Hopkins Applied Physics Laboratory built the Advanced Composition Explorer spacecraft for NASA. Instruments on the spacecraft continue to collect data that inform us about what's happening on our most important star, the Sun.

  7. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    ERIC Educational Resources Information Center

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  8. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    ERIC Educational Resources Information Center

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,

  9. Oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives by nitrous oxide via selective oxygen atom transfer reactions: insights from quantum chemistry calculations.

    PubMed

    Xie, Hujun; Liu, Chengcheng; Yuan, Ying; Zhou, Tao; Fan, Ting; Lei, Qunfang; Fang, Wenjun

    2016-01-01

    The mechanisms for the oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives (Cp* = ?(5)-C5Me5) by nitrous oxide via selective oxygen atom transfer reactions have been systematically studied by means of density functional theory (DFT) calculations. On the basis of the calculations, we investigated the original mechanism proposed by Hillhouse and co-workers for the activation of N2O. The calculations showed that the complex with an initial O-coordination of N2O to the coordinatively unsaturated Hf center is not a local minimum. Then we proposed a new reaction mechanism to investigate how N2O is activated and why N2O selectively oxidize phenyl and hydride ligands of . Frontier molecular orbital theory analysis indicates that N2O is activated by nucleophilic attack by the phenyl or hydride ligand. Present calculations provide new insights into the activation of N2O involving the direct oxygen atom transfer from nitrous oxide to metal-ligand bonds instead of the generally observed oxygen abstraction reaction to generate metal-oxo species. PMID:26660046

  10. Atomic scale studies of the chemistry of the Cu/MgO {l_brace}111{r_brace} heterophase interface

    SciTech Connect

    Jang, H.; Seidman, D.N.; Merkle, K.L.

    1992-08-01

    The Cu/MgO [111] heterophase interface is studied using a combination of transmission electron microscopy, high resolution electron microscopy and atom-probe field-ion microscopy techniques. Wire and foil specimens of a Cu-2.8 at.% Mg alloy were internally oxidized to produce MgO precipitates at a number density of 5{center_dot}10{sup 15}Cm{sup {minus}3} with a mean diameter of {approx}200 {Angstrom}. The MgO precipitates have a semicoherent interface with the Cu matrix and they exhibit a cube-on-cube orientation relationship. The octahedral-shaped MgO precipitates were analyzed using APFIM by dissecting along a <111> direction on an atomic scale. In this manner an MgO precipitate, with a [111] plane perpendicular to the axis of the APFIM, is uncovered after the Cu matrix has been mass analyzed. It was found that the terminating [222] plane of an MgO precipitate is pure oxygen, and the second [222] plane is pure Mg.

  11. Ion-neutral chemistry at ultralow energies:Dynamics of reactive collisions between laser-cooled Ca+ or Ba+ ions and Rb atoms in an ion-atom hybrid trap

    NASA Astrophysics Data System (ADS)

    Dulieu, O.; Hall, F. H. J.; Eberle, P.; Hegi, G.; Raoult, M.; Aymar, M.; Willitsch, S.

    2013-05-01

    Cold chemical reactions between laser-cooled Ca+ or Ba+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the collision energy range Ecoll /kB = 20 mK-20 K. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes including the radiative formation of CaRb+ and BaRb+ molecular ions has been analyzed using accurate potential energy curves and quantum-scattering calculations for the radiative channels. It is shown that the energy dependence of the reaction rates is governed by long-range interactions, while its magnitude is determined by short-range non-adiabatic and radiative couplings. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral collisions. This work was supported by the Swiss National Science Foundation and the COST Action ''Ion Traps for Tomorrow's Applications''.

  12. The radiative association of P and O atoms

    NASA Astrophysics Data System (ADS)

    Andreazza, C. M.; de Almeida, A. A.; Borin, A. C.

    2016-04-01

    The formation of PO from the radiative association of phosphorus and oxygen atoms has been estimated by accurate quantum chemistry calculations. The radiative association of P and O atoms along the B2Σ+ potential energy curve is the most efficient way of producing PO in the X2Π ground state. For temperatures ranging between 300 and 14 000 K, the rate coefficients are found to vary from 1.61 × 10-24 to 1.99 × 10-18 cm3s-1, respectively. These values indicate that only a very small amount of PO molecules can be formed by radiative association in dense and hot gas close to the photosphere of evolved oxygen-rich stars and other hostile environments.

  13. Technetium chemistry

    SciTech Connect

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-04-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  14. Hot tub folliculitis

    MedlinePLUS

    Hot tub folliculitis is an infection of the skin around the lower part of the hair shaft (hair follicles). It occurs ... Hot tub folliculitis is caused by bacteria that survives in hot tubs, especially tubs made of wood.

  15. Electromagnetic, atomic structure and chemistry changes induced by Ca-doping of low-angle YBa2Cu3O7-delta grain boundaries.

    PubMed

    Song, Xueyan; Daniels, George; Feldmann, D Matt; Gurevich, Alex; Larbalestier, David

    2005-06-01

    Practical high-temperature superconductors must be textured to minimize the reduction of the critical current density J(gb) at misoriented grain boundaries. Partial substitution of Ca for Y in YBa(2)Cu(3)O(7-delta) has shown significant improvement in J(gb) but the mechanisms are still not well understood. Here we report atomic-scale, structural and analytical electron microscopy combined with transport measurements on 7 degrees [001]-tilt Y(0.7)Ca(0.3)Ba(2)Cu(3)O(7-delta) and YBa(2)Cu(3)O(7-delta) grain boundaries, where the dislocation cores are well separated. We show that the enhanced carrier density, higher J(gb) and weaker superconductivity depression at the Ca-doped boundary result from a strong, non-monotonic Ca segregation and structural rearrangements on a scale of approximately 1 nm near the dislocation cores. We propose a model of the formation of Ca(2+) solute atmospheres in the strain and electric fields of the grain boundary and show that Ca doping expands the dislocation cores yet enhances J(gb) by improving the screening and local hole concentration. PMID:15908959

  16. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines laboratory procedures, demonstrations, teaching suggestions, and content information related to chemistry. Topics include polarizing power; calorimetry and momentum; microcomputers in school chemistry; a constant-volume dispenser for liquids, floating magnets, and crystal lattices; preparation of chromium; and solvent polarity and…

  17. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines laboratory procedures, demonstrations, teaching suggestions, and content information related to chemistry. Topics include polarizing power; calorimetry and momentum; microcomputers in school chemistry; a constant-volume dispenser for liquids, floating magnets, and crystal lattices; preparation of chromium; and solvent polarity and

  18. Atmospheric chemistry of cis-CF3CHdbnd CHCl (HCFO-1233zd(Z)): Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3

    NASA Astrophysics Data System (ADS)

    Andersen, Lene Løffler; Østerstrøm, Freja From; Sulbaek Andersen, Mads P.; Nielsen, Ole John; Wallington, Timothy J.

    2015-10-01

    FTIR smog chamber techniques were used to measure the rate coefficients k(Cl + cis-CF3CHdbnd CHCl) = (6.26 ± 0.84) × 10-11, k(OH + cis-CF3CHdbnd CHCl) = (8.45 ± 1.52) × 10-13, and k(O3 + cis-CF3CHdbnd CHCl) = (1.53 ± 0.12) × 10-21 cm3 molecule-1 s-1. The atmospheric lifetime of cis-CF3CHdbnd CHCl is determined by reaction with OH radicals and is estimated to be 14 days. The infrared spectrum of cis-CF3CHdbnd CHCl was recorded and the integrated absorption over the range 600-2000 cm-1 was measured to be (1.48 ± 0.07) × 10-16 cm molecule-1. Accounting for non-uniform horizontal and vertical mixing leads to a GWP100 value of essentially zero. Correction to account for unwanted Cl atom chemistry in our previous relative rate study of the kinetics of the reaction of OH with trans-CF3CHdbnd CHCl gives k(OH + trans-CF3CHdbnd CHCl) = (3.61 ± 0.37) × 10-13 cm3 molecule-1 s-1.

  19. Atmospheric chemistry of isoflurane, desflurane, and sevoflurane: kinetics and mechanisms of reactions with chlorine atoms and OH radicals and global warming potentials.

    PubMed

    Sulbaek Andersen, Mads P; Nielsen, Ole J; Karpichev, Boris; Wallington, Timothy J; Sander, Stanley P

    2012-06-21

    The smog chamber/Fourier-transform infrared spectroscopy (FTIR) technique was used to measure the rate coefficients k(Cl + CF(3)CHClOCHF(2), isoflurane) = (4.5 0.8) 10(-15), k(Cl + CF(3)CHFOCHF(2), desflurane) = (1.0 0.3) 10(-15), k(Cl + (CF(3))(2)CHOCH(2)F, sevoflurane) = (1.1 0.1) 10(-13), and k(OH + (CF(3))(2)CHOCH(2)F) = (3.5 0.7) 10(-14) cm(3) molecule(-1) in 700 Torr of N(2)/air diluent at 295 2 K. An upper limit of 6 10(-17) cm(3) molecule(-1) was established for k(Cl + (CF(3))(2)CHOC(O)F). The laser photolysis/laser-induced fluorescence (LP/LIF) technique was employed to determine hydroxyl radical rate coefficients as a function of temperature (241-298 K): k(OH + CF(3)CHFOCHF(2)) = (7.05 1.80) 10(-13) exp[-(1551 72)/T] cm(3) molecule(-1); k(296 1 K) = (3.73 0.08) 10(-15) cm(3) molecule(-1), and k(OH + (CF(3))(2)CHOCH(2)F) = (9.98 3.24) 10(-13) exp[-(969 82)/T] cm(3) molecule(-1); k(298 1 K) = (3.94 0.30) 10(-14) cm(3) molecule(-1). The rate coefficient of k(OH + CF(3)CHClOCHF(2), 296 1 K) = (1.45 0.16) 10(-14) cm(3) molecule(-1) was also determined. Chlorine atoms react with CF(3)CHFOCHF(2) via H-abstraction to give CF(3)CFOCHF(2) and CF(3)CHFOCF(2) radicals in yields of approximately 83% and 17%. The major atmospheric fate of the CF(3)C(O)FOCHF(2) alkoxy radical is decomposition via elimination of CF(3) to give FC(O)OCHF(2) and is unaffected by the method used to generate the CF(3)C(O)FOCHF(2) radicals. CF(3)CHFOCF(2) radicals add O(2) and are converted by subsequent reactions into CF(3)CHFOCF(2)O alkoxy radicals, which decompose to give COF(2) and CF(3)CHFO radicals. In 700 Torr of air 82% of CF(3)CHFO radicals undergo C-C scission to yield HC(O)F and CF(3) radicals with the remaining 18% reacting with O(2) to give CF(3)C(O)F. Atmospheric oxidation of (CF(3))(2)CHOCH(2)F gives (CF(3))(2)CHOC(O)F in a molar yield of 93 6% with CF(3)C(O)CF(3) and HCOF as minor products. The IR spectra of (CF(3))(2)CHOC(O)F and FC(O)OCHF(2) are reported for the first time. The atmospheric lifetimes of CF(3)CHClOCHF(2), CF(3)CHFOCHF(2), and (CF(3))(2)CHOCH(2)F (sevoflurane) are estimated at 3.2, 14, and 1.1 years, respectively. The 100 year time horizon global warming potentials of isoflurane, desflurane, and sevoflurane are 510, 2540, and 130, respectively. The atmospheric degradation products of these anesthetics are not of environmental concern. PMID:22146013

  20. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, Alfred E.; Huggins, Patrick J.

    1987-01-01

    The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves.

  1. Atoms in Astronomy.

    ERIC Educational Resources Information Center

    Blanchard, Paul A.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. A Basic Topics section discusses atomic structure, emphasizing states of matter at high temperature and spectroscopic analysis of light from the stars. A section…

  2. Bonds Between Atoms.

    ERIC Educational Resources Information Center

    Holden, Alan

    The field of inquiry into how atoms are bonded together to form molecules and solids crosses the borderlines between physics and chemistry encompassing methods characteristic of both sciences. At one extreme, the inquiry is pursued with care and rigor into the simplest cases; at the other extreme, suggestions derived from the more careful inquiry

  3. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  4. Catalytic Chemistry.

    ERIC Educational Resources Information Center

    Borer, Londa; And Others

    1996-01-01

    Describes an approach for making chemistry relevant to everyday life. Involves the study of kinetics using the decomposition of hydrogen peroxide by vegetable juices. Allows students to design and carry out experiments and then draw conclusions from their results. (JRH)

  5. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes 13 activities, experiments and demonstrations, including the preparation of iron (III) chloride, simple alpha-helix model, investigating camping gas, redox reactions of some organic compounds, a liquid crystal thermometer, and the oxidation number concept in organic chemistry. (JN)

  6. Precolumbian Chemistry.

    ERIC Educational Resources Information Center

    Robinson, Janet Bond

    1995-01-01

    Describes the content and development of a curriculum that provides an approach to descriptive chemistry and the history of technology through consideration of the pottery, metallurgy, pigments, dyes, agriculture, and medicine of pre-Columbian people. (DDR)

  7. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Several ideas are proposed for chemistry teachers to try in their classrooms. Subjects included are polymerization of acrylate, polymerization of styrene, conductivity, pollution, preparation of chlorine, redox equations, chemiluminescence, and molecular sieves. (PS)

  8. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in chemistry instruction, including among others, a rapid method to determine available chlorine in bleach, simple flame testing apparatus, and a simple apparatus demonstrating the technique of flash photolysis. (SK)

  9. Chemistry in 1876: The Way It Was

    ERIC Educational Resources Information Center

    Bernheim, Robert A.

    1976-01-01

    Provides a brief history of chemistry up to the founding of the American Chemical Society in 1876. Includes developments in the understanding of matter, phlogiston theory, atomic theory, and chemical reactions. (MLH)

  10. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  11. Stratospheric chemistry

    SciTech Connect

    Brune, W.H. )

    1991-01-01

    Advances in stratospheric chemistry made by investigators in the United States from 1987 to 1990 are reviewed. Subject areas under consideration include photochemistry of the polar stratosphere, photochemistry of the global stratosphere, and assessments of inadvertent modification of the stratosphere by anthropogenic activity. Particular attention is given to early observations and theories, gas phase chemistry, Antarctic observations, Arctic observations, odd-oxygen, odd-hydrogen, odd-nitrogen, halogens, aerosols, modeling of stratospheric ozone, and reactive nitrogen effects.

  12. Justus Liebig and animal chemistry.

    PubMed

    Rosenfeld, Louis

    2003-10-01

    Justus Liebig was one of the individuals making chemistry almost a German monopoly in the 19th century. At Giessen he established the first organic chemistry laboratory and offered a systematic course for training new chemists. His comprehensive survey of plant nutrition changed the nature of scientific agriculture. In a study of animal chemistry, Liebig treated physiologic processes as chemical reactions and inferred the transformations from the chemical properties of the elements and compounds in laboratory reactions. He constructed hypothetical chemical equations derived from the formulae of the participating compounds. Liebig generalized that all organic nitrogenous constituents of the body are derived from plant protein and demonstrated how the application of quantitative methods of organic chemistry can be applied to the investigation of the animal organism. Liebig's theories were attractive, but his method of converting one substance to another by moving atoms around on paper was speculative because of the lack of knowledge as to how the elements were arranged. His dynamic personality helped win widespread acceptance by many, but others were antagonized by his wishful thinking and speculative excesses. Liebig's views on catalysis and fermentation brought him into a controversy with Louis Pasteur. Liebig's Animal Chemistry stimulated an interest in clinical chemistry because it introduced a quantitative method into physiological chemistry. However, the isolated pieces of test results on blood and urine were unconnected and did not fit anywhere. Physicians found that chemistry was not helpful at the bedside and they lost interest in its application. PMID:14500604

  13. Basic Chemistry for the Cement Industry.

    ERIC Educational Resources Information Center

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement

  14. Nuclear Chemistry, Science (Experimental): 5316.62.

    ERIC Educational Resources Information Center

    Williams, Russell R.

    This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…

  15. Energy of Atoms and Molecules, Science (Experimental): 5316.05.

    ERIC Educational Resources Information Center

    Buffaloe, Jacquelin F.

    This third unit in chemistry is considered for any chemistry student and particularly the college-bound student. An understanding of the material included should enable the student to understand better the concepts in the Dynamic Nature of Atoms and Molecules which are essential for Organic Chemistry, the Chemistry of Carbon and Its Compounds and

  16. Surface chemistry of a Cu(I) beta-diketonate precursor and the atomic layer deposition of Cu{sub 2}O on SiO{sub 2} studied by x-ray photoelectron spectroscopy

    SciTech Connect

    Dhakal, Dileep; Waechtler, Thomas; Schulz, Stefan E.; Gessner, Thomas; Lang, Heinrich; Mothes, Robert; Tuchscherer, André

    2014-07-01

    The surface chemistry of the bis(tri-n-butylphosphane) copper(I) acetylacetonate, [({sup n}Bu{sub 3}P){sub 2}Cu(acac)] and the thermal atomic layer deposition (ALD) of Cu{sub 2}O using this Cu precursor as reactant and wet oxygen as coreactant on SiO{sub 2} substrates are studied by in-situ x-ray photoelectron spectroscopy (XPS). The Cu precursor was evaporated and exposed to the substrates kept at temperatures between 22 °C and 300 °C. The measured phosphorus and carbon concentration on the substrates indicated that most of the [{sup n}Bu{sub 3}P] ligands were released either in the gas phase or during adsorption. No disproportionation was observed for the Cu precursor in the temperature range between 22 °C and 145 °C. However, disproportionation of the Cu precursor was observed at 200 °C, since C/Cu concentration ratio decreased and substantial amounts of metallic Cu were present on the substrate. The amount of metallic Cu increased, when the substrate was kept at 300 °C, indicating stronger disproportionation of the Cu precursor. Hence, the upper limit for the ALD of Cu{sub 2}O from this precursor lies in the temperature range between 145 °C and 200 °C, as the precursor must not alter its chemical and physical state after chemisorption on the substrate. Five hundred ALD cycles with the probed Cu precursor and wet O{sub 2} as coreactant were carried out on SiO{sub 2} at 145 °C. After ALD, in-situ XPS analysis confirmed the presence of Cu{sub 2}O on the substrate. Ex-situ spectroscopic ellipsometry indicated an average film thickness of 2.5 nm of Cu{sub 2}O deposited with a growth per cycle of 0.05 Å/cycle. Scanning electron microscopy and atomic force microscopy (AFM) investigations depicted a homogeneous, fine, and granular morphology of the Cu{sub 2}O ALD film on SiO{sub 2}. AFM investigations suggest that the deposited Cu{sub 2}O film is continuous on the SiO{sub 2} substrate.

  17. Atmospheric Chemistry in Extrasolar Giant Planets or The Cosmic Shoreline

    NASA Astrophysics Data System (ADS)

    Zahnle, Kevin

    2011-09-01

    Title: Atmospheric Chemistry in Extrasolar Giant Planets. Metallicity and C/O ratio are potential observables in spectra of EGPs. Both address the mode of planetary formation. Metallicity reveals itself best in molecules composed of more than one metal atom, such as CO2. C/O ratio is more complicated. There are parallels between the chemistry generated by 1994s SL9 impacts on Jupiter and the chemistry of EGPs. In both, a hot gas quenches by cooling and rarefaction. In SL9, the impact-heated gas exploded, expanded, and cooled. In EGPs, quenching is a consequence of vertical mixing. Products of SL9 included S2, CS2, HCN, C2H4, CO, CO2, and carbonaceous hazes. All of these might be expected in EGPs. Close-in planets differ from SL9 in the photochemical consequences of stellar UV. Primary photolysis of H2S, NH3, and H2O creates free radicals that react with H2 to make atomic H. Abundant H attacks CH4 and promotes formation of C2H2 and HCN, which readily polymerize to make hazes. It is likely that such a haze is observed in HD 189733b. Title: Cosmic Shoreline. Volatile escape is the classic existential problem of planetary atmospheres. The problem has gained new currency now that we can begin to study escape, or the cumulative effects of escape, from extrasolar planets seen in transit. Already some intriguing patterns have emerged. In particular, transiting EGPs appear to fit a pattern seen in our own Solar System. The data show that atmospheres are found where escape velocity is high and (i) solar heating is low or (ii) impact velocities are low. In either case, the boundary between planets with and without atmospheres --- the cosmic shoreline, as it were --- is a simple power law that extends from Pluto to Jupiters and beyond.

  18. Atmospheric chemistry of CF3CH2CH2OH: kinetics, mechanisms and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOX.

    PubMed

    Hurley, Michael D; Misner, Jessica A; Ball, James C; Wallington, Timothy J; Ellis, D A; Martin, J W; Mabury, S A; Sulbaek Andersen, M P

    2005-11-01

    Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF(3)CH(2)C(O)H and CF(3)CH(2)CH(2)OH in 700 Torr of N(2) or air diluent at 296 +/- 2 K. The rate constants determined were k(Cl+CF(3)CH(2)C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF(3)CH(2)C(O)H) = (2.57 +/- 0.44) x 10(-12), k(Cl+CF(3)CH(2)CH(2)OH) = (1.59 +/- 0.20) x 10(-11), and k(OH+CF(3)CH(2)CH(2)OH) = (6.91 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1). Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the absence of NO show the sole primary product to be CF(3)CH(2)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the presence of NO show the primary products to be CF(3)CH(2)C(O)H (81%), HC(O)OH (10%), and CF(3)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)C(O)H in the absence of NO show the primary products to be CF(3)C(O)H (76%), CF(3)CH(2)C(O)OH (14%), and CF(3)CH(2)C(O)OOH (< or =10%). As part of this work, an upper limit of k(O(3)+CF(3)CH(2)CH(2)OH) < 2 x 10(-21) cm(3) molecule(-1) s(-1) was established. Results are discussed with respect to the atmospheric chemistry of fluorinated alcohols. PMID:16833295

  19. Radiation Chemistry

    NASA Astrophysics Data System (ADS)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  20. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    SciTech Connect

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  1. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  2. Polymer Chemistry

    NASA Technical Reports Server (NTRS)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  3. Magnetohydrodynamic Simulations of Hot Jupiter Thermospheres

    NASA Astrophysics Data System (ADS)

    Christie, Duncan; Arras, Phil; Li, Zhi-Yun

    2015-01-01

    The majority of models of atmospheric escape from hot Jupiters have focused on one-dimensional, spherically-symmetric models. We present the results from 2-dimensional axisymmetric simulations of hot Jupiters including tidal gravity and magnetic fields as well as photo-ionization and photoelectric heating due to multiple atomic species. Escape is suppressed in polar and equatorial regions by tidal gravity and magnetic fields, respectively, reducing mass-loss estimates achieved through 1-dimensional models. For sufficiently large magnetic field strengths, an equatorial magnetic dead zone creates a static reservoir of hot gas extending to multiple planetary radii and exhibiting temperatures hotter than found within the escaping gas. The possibility of observing this reservoir of gas is discussed, as well as the influence of heavy atoms on the result.

  4. Molecular formation along the atmospheric mass loss of HD 209458b and similar Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Pinotti, R.; Boechat-Roberty, H. M.

    2016-02-01

    The chemistry along the mass loss of Hot Jupiters is generally considered to be simple, consisting mainly of atoms, prevented from forming more complex species by the intense radiation field from their host stars. In order to probe the region where the temperature is low (T<2000 K), we developed a 1D chemical and photochemical reaction model of the atmospheric mass loss of HD 209458b, involving 56 species, including carbon chain and oxygen-bearing ones, interacting through 566 reactions. The simulation results indicate that simple molecules like OH+, H2O+ and H3O+ are formed inside the region, considering that residual H2 survives in the exosphere, a possibility indicated by recent observational work. The molecules are formed and destroyed within a radial distance of less than 107 km, but the estimated integrated column density of OH+, a potential tracer of H2, is high enough to allow detection, which, once achieved, would indicate a revision of chemical models of the upper atmosphere of Hot Jupiters. For low density Hot Jupiters receiving less intense XUV radiation from their host stars than HD 209458b, molecular species could conceivably be formed with a higher total column density.

  5. Have a Chemistry Field Day in Your Area.

    ERIC Educational Resources Information Center

    Mattson, Bruce M.; And Others

    1989-01-01

    Describes a full day of chemistry fun and competition for high school chemistry students. Notes teams have five students from each high school. Lists five competitive events for each team: titration, qualitative analysis, balancing equations, general chemistry quiz, and quantitative analysis with atomic absorption spectroscopy. (MVL)

  6. Atmospheric Pseudohalogen Chemistry

    NASA Technical Reports Server (NTRS)

    Lary, David John

    2004-01-01

    Hydrogen cyanide is not usually considered in atmospheric chemical models. The paper presents three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. Firstly, HCN is a product and marker of biomass burning. Secondly, it is also likely that lightning is producing HCN, and as HCN is sparingly soluble it could be a useful long-lived "smoking gun" marker of lightning activity. Thirdly, the chemical decomposition of HCN leads to the production of small amounts of the cyanide (CN) and NCO radicals. The NCO radical can be photolyzed in the visible portion of the spectrum yielding nitrogen atoms (N). The production of nitrogen atoms is significant as it leads to the titration of total nitrogen from the atmosphere via N+N->N2, where N2 is molecular nitrogen.

  7. Hot oxygen corona of Mars

    SciTech Connect

    Ip, W.H.

    1988-10-01

    Electron dissociative recombination of O2(+) ions in the Venus ionosphere, which may be an important source of suprathermal atomic oxygen, is presently considered as a factor in the Mars exosphere; due to the weaker surface gravitational attraction of Mars, a hot oxygen corona thus formed would be denser than that of Venus at altitudes greater than 2000 km despite Mars' lower ionospheric content. If such an extended oxygen corona does exist on Mars, its collisional interaction with Phobos would lead to the formation of an oxygen gas torus whose average number density is of the order of only 1-2/cu cm along the Phobos orbit. 51 references.

  8. Hot Flow Anomalies at Venus

    NASA Technical Reports Server (NTRS)

    Collinson, G. A.; Sibeck, David Gary; Boardsen, Scott A.; Moore, Tom; Barabash, S.; Masters, A.; Shane, N.; Slavin, J.A.; Coates, A.J.; Zhang, T. L.; Sarantos, M.

    2012-01-01

    We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system.

  9. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  10. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes some laboratory apparatus, chemistry experiments and demonstrations, such as a Kofler block melting point apparatus, chromatographic investigation of the phosphoric acid, x-ray diffraction, the fountain experiment, endothermic sherbet, the measurement of viscosity, ionization energies and electronic configurations. (GA)

  11. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…

  12. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes several chemistry projects, including solubility, formula for magnesium oxide, dissociation of dinitrogen tetroxide, use of 1-chloro-2, 4-dinitrobenzene, migration of ions, heats of neutralizations, use of pocket calculators, sonic cleaning, oxidation states of manganese, and cell potentials. Includes an extract from Chemical Age on…

  13. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and

  14. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…

  15. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;

  16. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the kinetics of the hydrogen peroxide-iodide ion reaction, simulation of fluidization catalysis, the use of Newman projection diagrams to represent steric relationships in organic chemistry, the use of synthetic substrates for proteolytic enzyme reactions, and two simple clock reactions"--hydrolysis of halogenoalkanes and…

  17. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Presents 12 chemistry notes for British secondary school teachers. Some of these notes are: (1) a simple device for testing pH-meters; (2) portable fume cupboard safety screen; and (3) Mass spectroscopy-analysis of a mass peak. (HM)

  18. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes several chemistry projects, including solubility, formula for magnesium oxide, dissociation of dinitrogen tetroxide, use of 1-chloro-2, 4-dinitrobenzene, migration of ions, heats of neutralizations, use of pocket calculators, sonic cleaning, oxidation states of manganese, and cell potentials. Includes an extract from Chemical Age on

  19. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical

  20. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, experiments, demonstrations, teaching suggestions, and information on a variety of chemistry topics including, for example, inert gases, light-induced reactions, calculators, identification of substituted acetophenones, the elements, analysis of copper minerals, extraction of metallic strontium, equilibrium, halogens, and

  1. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles on the alkylation of aniline, the preparation and properties of perbromate, using scrap copper in chemistry instruction, a safe method of burning hydrogen, and the use of an ion-charge model as an alternative to the mole concept in secondary school instruction. (AL)

  2. Complex Chemistry on Interstellar Grains

    NASA Astrophysics Data System (ADS)

    Widicus Weaver, Susanna L.; Kelley, Matthew J.; Blake, Geoffrey A.

    Early interstellar chemical models considered complex molecule formation on grains [Allen & Robinson (1977)], but current models assume that simple molecules form on grains and subsequent gas phase ion-molecule reactions produce the more complex species [Ruffle & Herbst (2001), Charnley (2001)]. It has been shown, however, that gas phase ion-molecule reactions are insufficient for the production of such complex organic species as ethanol (CH3CH2OH) and methyl formate (CH3OCHO) [Horn et al. (2004)]. Organics such as acetaldehyde (CH3CHO), ethanol, methyl formate, acetic acid (CH3COOH), and glycolaldehyde (CH2OHCHO) have also been detected in high abundance in regions of grain mantle disruption or evaporation, indicating that these species are formed on grain surfaces [see Chengalur & Kanekar (2003), Bottinelli et al. (2004), Hollis et al. (2001)]. The mechanisms for complex molecule production on grains are clearly much more important, and much more complex, than has been recognized. Recent observational studies of these types of species have offered insight into the mechanisms for their possible grain surface synthesis. The relative hot core abundances of the 2C structural isomers methyl formate, acetic acid, and glycolaldehyde (52:2:1, respectively [Hollis et al. (2001)]) indicate that if they form on grains it is not from kinetically-controlled single-atom addition reactions. Likewise, the 3C aldose sugar, glyceraldehyde (CH2OHCHOHCHO), was not detected in Sgr B2(N-LMH) [Hollis et al. (2004)] while the 3C ketose sugar, dihydroxyacetone (CO(CH2OH)2) was detected in this source [Widicus Weaver & Blake (2005)]. Chemical pathways favoring the more stable carbonates over acids and aldehydes are required to explain these results. Interestingly, all of these species can be formed from reactions involving the abundant grain mantle constituents CO, HCOOH, and CH3OH and their radical precursors. A model has been developed to investigate this type of chemical network, and the preliminary results of this model will be presented. The reactions incorporated into this model include photolysis of grain surface species, radical-radical combination reactions between photolysis products, aldehyde proton abstraction reactions, and radical recombination reactions between the photolysis products and aldehyde radicals. H addition reactions dominate the grain surface chemistry at low temperature, forming simple species such as water, methanol, and formaldehyde. Photolysis of simple grain mantle constituents leads to the production of surface radicals that can efficiently compete with H addition reactions at warmer temperatures, and so periodic thermal processing of grain mantles will lead to the buildup of more complex species such as formic acid, methyl formate, formamide, acetaldehyde, and glycolaldehyde. Aldehyde proton abstraction reactions can efficiently compete with single-atom addition reactions at both low and high temperatures, and so the mobile radicals can then react with the resultant aldehyde radicals to form more complex species. Simpler species will be favored at low temperature, but these radicals may also be stored in the grain mantle at low temperature and undergo more complex reactions upon grain mantle heating in hot core regions.

  3. Computer Modeling Of Atomization

    NASA Technical Reports Server (NTRS)

    Giridharan, M.; Ibrahim, E.; Przekwas, A.; Cheuch, S.; Krishnan, A.; Yang, H.; Lee, J.

    1994-01-01

    Improved mathematical models based on fundamental principles of conservation of mass, energy, and momentum developed for use in computer simulation of atomization of jets of liquid fuel in rocket engines. Models also used to study atomization in terrestrial applications; prove especially useful in designing improved industrial sprays - humidifier water sprays, chemical process sprays, and sprays of molten metal. Because present improved mathematical models based on first principles, they are minimally dependent on empirical correlations and better able to represent hot-flow conditions that prevail in rocket engines and are too severe to be accessible for detailed experimentation.

  4. Really Hot Stars

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Spectacular VLT Photos Unveil Mysterious Nebulae Summary Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Lige (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme. PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99-2 in the LMC. PR Photo 09c/03: Nebula near the hot binary star BAT99-49 in the LMC. PR Photo 09d/03: The N44C Nebula in the LMC. Four unique images of highly excited nebulae in the Magellanic Clouds ESO PR Photo 09a/03 ESO PR Photo 09a/03 [Preview - JPEG: 400 x 472 pix - 74k [Normal - JPEG: 800 x 943 pix - 720k] [Full-Res - JPEG: 1200 x 1414 pix - 1.2M] ESO PR Photo 09b/03 ESO PR Photo 09b/03 [Preview - JPEG: 400 x 466 pix - 70k [Normal - JPEG: 800 x 931 pix - 928k] [Full-Res - JPEG: 1200 x 1397 pix - 1.8M] ESO PR Photo 09c/03 ESO PR Photo 09c/03 [Preview - JPEG: 400 x 469 pix - 74k [Normal - JPEG: 800 x 937 pix - 1.1M] [Full-Res - JPEG: 1200 x 1405 pix - 2.2M] ESO PR Photo 09d/03 ESO PR Photo 09d/03 [Preview - JPEG: 400 x 473 pix - 28k [Normal - JPEG: 800 x 945 pix - 368k] [Full-Res - JPEG: 1200 x 1418 pix - 600k] Captions: PR Photo 09a/03 is a reproduction of a "near-true" three-colour composite image of the highly excited nebula around the hot double star AB7 in the Small Magellanic Cloud (SMC), obtained in January 2002 with the FORS1 multi-mode instrument at the 8.2-m VLT MELIPAL telescope at the Paranal Observatory (Chile). It is based on three exposures through narrow-band optical (interference) filters that isolate the light from specific atoms and ions. In this rendering, the blue colour represents the light from singly ionized Helium (He II; wavelength 468.6 nm; exposure time 30 min), green corresponds to doubly ionized oxygen ([O III]; 495.7 + 500.7 nm; 5 min) and red to hydrogen atoms (H; H-alpha line at 656.2 nm; 5 min). Of these three ions, He II is the tracer of high excitation, i.e. the bluest areas of the nebula are the hottest. The sky field measures 400 x 400 arcsec2; the original pixel size on the 2k x 2k CCD is 0.23 arcsec. North is up and east to the left. Before combination, the CCD frames were flat-fielded and cleaned of cosmic-rays. Moreover, the stars in the blue (He II) image were removed in order to provide a clearer view of the surrounding nebular emission. The reproduced brightness is proportional to the square-root of the actual intensity; this increases the "dynamical range" of the image, i.e. it shows better areas of very different brightness. PR Photo 09b/03 is a similar reproduction of the sky area with the nebula near the Wolf-Rayet (WR) star BAT99-2 in the LMC. The filters are the same, but the exposure times were 60, 5 and 5 min for the blue, green and red exposures, respectively. PR Photo 09c/03 shows, in the same way, the nebula around the hot double star BAT99-49 in the LMC. The filters are the same, but the exposure times were 45, 5 and 5 min for the blue, green and red exposures, respectively. Finally, PR Photo 09d/03 shows the N44C nebula in the LMC, photographed through the same optical filters with exposure times of 20, 5 and 5 min for the blue, green and red exposures, respectively. The sky field measures 208 x 208 arcsec2. The above collection of impressive VLT colour photos is unique. They show some of the highest excitation nebulae in the Magellanic Clouds (MCs), two satellite galaxies of our own Milky Way. They may be enjoyed for their beauty alone. However, each of them also carries a message about the depicted objects, their properties and evolutionary state. In fact, they represent the spectacular and visible result of a dedicated research programme begun by an international team of astronomers from Belgium and the United States of America [1], and aimed at unravelling the secrets of unsually hot nebulae. What makes them shine? From where come the enormous energies needed to make these nebulae glow in the light of ionized helium atoms? Emission nebulae Nebulae are huge clouds of gas and dust, the cosmic material from which stars and planets form, cf. the Appendix. Many of them emit their own light, and are then called emission nebulae. Astronomers distinguish between Planetary Nebulae (PNe), Supernova Remnants (SNRs) and "normal" emission nebulae or "HII regions" (pronounced "Eitch-two"). PNe result from the death of comparatively light stars, similar to our Sun, while SNRs originate from the explosive death of heavier stars. The collision between the surrounding interstellar matter and that ejected by the dying star, accompanied by the intense radiation from the hot stellar remnant (white dwarf, neutron star) excites the gas and makes it shine brightly. But the radiation of young hot stars embedded in an interstellar cloud is also able to heat the surrounding gas, resulting in the apparition of another type of emission nebula, that shines mostly in the light of ionized hydrogen (H) atoms. Such nebulae are therefore often referred to as "HII regions". The well-known Orion Nebula is an outstanding example of that type of nebula, cf. ESO PR Photos 03a-c/01. Highly excited nebulae The hotter the central object of an emission nebula, whether a white dwarf, a neutron star or just a young star, the hotter and more excited will be the surrounding nebula. The word "excitation" refers to the degree of ionization of the nebular gas. The more energetic the impinging particles and radiation, the more electrons will be lost and higher is the degree of excitation. Only in the most excited nebulae is there enough ultraviolet energy to completely ionize the helium atoms. When these ions subsequently capture an electron, this process gives rise to the characteristic radiation of single ionized helium (HeII). A particularly useful way to trace the very highest excitation areas is thus to map the distribution of HeII by means of imaging or spectroscopic observations that are sensitive to the radiation from these helium ions, for example at a particular wavelength in blue light (468.6 nm). It is common to detect the presence of HeII in Planetary Nebulae around extremely hot white dwarf stars, but not in "normal" HII regions. However, a few otherwise seemingly normal HII regions reveal the characteristics of high excitation. One of them is located in our own Milky Way galaxy, another has been found in the nearby galaxy IC 1613, and five others are situated in the Magellanic Clouds. Astronomers have also detected the presence of HeII ions in a number of remote galaxies undergoing a phase of intense star formation ("starburst galaxies") and in the vicinity of ultraluminous X-ray sources in very distant galaxies. What is going on in those remote objects in the early Universe? Do we see the action of young and very hot stars or is something unknown going on? What can the existence of those hot nebulae in young galaxies tell about the evolution of our own Milky Way? Searching for the energy source We would like to know, but those distant nebulae are unfortunately too faint to be studied in any reasonable detail, even by means of the largest available telescopes. The only way forward is therefore to look closer at the nearest ones in the hope that they will provide clues about the processes leading to the observed high excitation and thus help to better understand their cousins in those distant galaxies. There appears to be three possible answers to the basic question about the nature of the energetic sources that heat these strange emission nebulae: * very fast particles: if there is in the area a fast-moving gas (more than 100 km/s), the shock created by the impact of this material is able to heat the ambient interstellar medium sufficiently to produce a HeII nebula. * ultraviolet emission from massive stars: according to the most recent model calculations, even the most massive O-type stars do not emit enough ultraviolet light to ionize a sufficient number of helium atoms in the surrounding nebula to produce a detectable HeII nebula. However, some of the hottest stars of the so-called Wolf-Rayet (W-R) type (that are the evolved descendants of O-stars) may produce enough high energy emission to completely ionize the helium atoms in their surroundings. * intense X-ray emission: close binary stars in which one component is a "compact" object (a white dwarf, a neutron star, or a black hole) and the other an "ordinary" star can produce an intense X-ray emission. This happens because the compact object is so dense and massive that it siphons off matter from its companion star - astronomers refer to this as an accretion process, sometimes also called "stellar cannibalism". When the "stolen" matter approaches the compact object, it gradually heats up and may reach temperatures of millions of degrees. It then emits X-rays. At the same time, ultraviolet radiation is also emitted, which may produce high excitation regions in the surrounding nebula. This scenario can also explain the association of HeII nebulae with ultraluminous X-ray sources in other galaxies. VLT observations of highly excited nebulae in the MCs Observations of a number of highly excited nebulae in the Magellanic Clouds were carried out by a team composed of Belgian and American astronomers [1] in January 2002, by means of the FORS1 multi-mode instrument at the 8.2-m VLT MELIPAL telescope. Detailed images were obtained through various special optical filters - they bring into light the complex structure of these nebulae and reveal for the first time the exact morphology of the high excitation zones. Some of exposures have been combined to produce the colour photos shown in PR Photos 09a-d/03. Here, the blue colour traces the exceptional HeII emission, whilst the red and green correspond to the more common nebular emissions from atomic hydrogen and doubly-ionized oxygen, respectively. All four nebulae shown were found to be associated with very hot stars. They carry rather prosaic names: BAT99-2 and BAT99-49, AB7 and N44C Star #2 [2]. The first three of these objects contain some of the highly evolved massive stars, of the so-called Wolf-Rayet (WR) type, while the fourth is an mid-age massive star, of type O. Massive stars, with masses more than 20 times that of the Sun, are very bright (100,000 to 10 million times brighter than the Sun), very blue and very hot, with surface temperatures of a few tens of thousands of degrees. Another property of these exceptional stars is their very strong stellar winds: they continuously eject energetic particles - like the "solar wind" from the Sun - but some 10 to 1000 million times more intensely than our star! These powerful winds exert an enormous pressure on the surrounding interstellar material and forcefully shape those clouds into "bubbles". These photos have now provided the astronomers with sufficient information to understand exactly what is going on in three of those unusual nebulae - while one case still remains ambiguous. The nebulae around BAT99-2, BAT99-49 and AB7 BAT99-2 (cf. PR Photo 09b/03) is one of the hottest WR-stars known in the Large Magellanic Cloud (LMC). Before this star reached this phase of its short life, the strong stellar wind from its progenitor O-type star swept the interstellar medium and created a "bubble", much like a snowplough pushes aside the snow on a road. Part of this "bubble" can still be seen as a large half-ring to the south of the star. When the star did become a WR, the increasingly intense stellar wind impacted on the material previously ejected from the star. This created a new bubble, now visible as a small arc-like structure to the north-west of the star. We are appparently witnessing an ongoing merger of these two bubbles. With its strong ultraviolet (UV) radiation, BAT99-2 is strongly heating its immediate surroundings, in particular the above mentioned arc-like feature that, due to the resulting high excitation, is seen as a violet-pink region in the colour image. The entire field is very complex - the presence of a supernova remnant (SNR) is revealed by a few faint red filaments rather close to the high excitation nebula, to the north-west of the arc-like structure. AB7 (PR Photo 09a/03) and BAT99-49 (PR Photo 09c/03) are both binary stars, consisting of one WR-star and a companion O-type star. Like in the case of BAT99-2, the strong UV-radiation from their WR-star has created HeII nebulae around them, well visible in the photos by their blue colour. AB7 is particularly remarkable: the associated huge nebula and HeII region indicate that this star is one of the, if not THE, hottest WR-star known so far, with a surface temperature in excess of 120,000 degrees! Just outside this nebula, a small network of green filaments is visible - they are the remains of another supernova explosion. The new VLT images, complemented with VLT spectra, demonstrate that these stars are indeed the source of the observed ionization. These very first maps of the HeII emission unveil the as yet undiscovered complex structure of those highly excited nebulae. Moreover, the new observations provide the first accurate determination of the true ionizing power of these exceptional stars. They allow a direct measurement of the otherwise unobservable intensity of the far-UV emission of WR stars. The new observations have clearly identified the ultraviolet emission of very massive stars as the energy source in these three nebulae. Using the latest theoretical models to interpret these unique data, the Belgian astronomers and their American collaborator were also able to show that all of these stars are hotter than 90,000 degrees! The N44C nebula The fourth photo, PR Photo 09d/03, shows the very peculiar nebula N44C in the LMC. There is a beautiful (blue) HeII nebula near the two central stars. It is very different from the larger, "normal" HII region that is delimited by the light from atomic hydrogen (red) and doubly-ionized oxygen (green): this hot central region of N44C rather appears to "enshroud" the stars like a veil. There is a mystery, though. With a temperature of "only" a few tens of thousand degrees, even the hottest of the two stars, an O-type star (the upper one), cannot possibly be responsible for this inner high excitation nebula [3]. Moreover, no fast motions have so far been detected in the vicinity. Some astronomers have suggested that N44C is a "fossil X-ray nebula". What does that mean ? It may well be that this O-type star is not alone, but actually possesses a compact companion. The X-ray emission from such a binary may not be constant. During their orbital motion, the two stars can move away from each other, and the larger separation may cause the X-ray emission to stop (because of the cessation of accretion of matter onto the compact object). In this case, the observed high excitation nebula could still persist for a short period of time as a "fossil" of the previous X-ray ionized nebula. Later, that part of the nebula would then gradually disappear. However, to the astonishment of the astronomers, the present VLT observations show little or no variation in the HeII emission. Thus the above described "fossil X-ray nebula" explanation does not appear to be completely adequate and the cause of the high excitation in N44C remains a challenge to astronomers. "You can't win them all", says Yal Naz. "We were able to fully understand three nebulae, but we must now look more closely at N44C. I would not be surprised, if we will be able to solve this riddle by means of additional VLT observations." More information The information contained in this press release is based on two research articles to be published in the European research journal "Astronomy & Astrophysics", one of which is available at the preprint website at the Institut d'Astrophysique et de Gophysique de Lige (Belgium). Notes [1]: The team consists of Yal Naz, Grgor Rauw, Jean Manfroid and Jean-Marie Vreux (Lige Institute, Belgium), and You-Hua Chu (University of Illinois, USA). [2]: The names of these stars refer to the research papers in which they were first decribed. BAT99-2 and BAT99-49 are nos. 2 and 49 in the list published by Breysacher, Azzopardi and Testor (A&AS, 137, 117, 1999), AB7 is star no. 7 in the list by Azzopardi and Breysacher (A&A, 75, 120, 1979) and N44C Star #2 is included in a paper by Stasinska, Testor and Heydari-Malayeri (A&A, 170, L4, 1986). [3]: Consequently, contrary to what was possible in the other three nebulae, the observed extent of that nebula does not allow measuring the temperature of the hot O-type star. Contact Yal Naz Institut d'Astrophysique et de Gophysique Lige, Belgium Phone: +32 4 366 97 20 email: naze@astro.ulg.ac.be Appendix: Different types of nebulae   Nebulae are huge clouds of gas and dust, the cosmic material from which stars and planets form. Most of them belong to five main categories, each representing a different physical state. Two of these do not shine by their own light, but three others do. Dark nebulae and reflection nebulae If the gas does not emit visible light by itself, astronomers talk about dark nebulae or reflection nebulae. The former block the light from objects behind them, and they are therefore seen as dark regions in the sky - famous examples are the Barnard 68 "globule" (cf. ESO ESO PR 01/01 and ESO PR Photos 29a-c/99) and the "Horsehead Nebula" (ESO PR Photos 02a-b/02). Contrarily, reflection nebulae appear as bright areas in the sky because their dust particles reflect the light emitted by nearby stars. A good example is the nebulae surrounding some of the brightest stars in the "Pleiades" stellar cluster or in the southern Chamaeleon I area, cf. ESO PR Photo 17c/99. Emission nebulae Other nebulae emit visible light of their own. Astronomers distinguish between Planetary Nebulae (PNs), Supernova Remnants (SNRs) and "normal" emission nebulae or "HII regions" (pronounced "Eitch-two"). When stars die, they eject copious amounts of matter into neighbouring space. These ejecta collide with and heat the surrounding interstellar matter. This is sometimes accompanied by intense radiation from the hot stellar remnant at the centre. These processes excite the interstellar gas (and the ejecta) so that they shine brightly. In the case of lighter stars like the Sun, the remnant object is a hot "white dwarf", a star barely larger than the Earth and the surrounding nebula is called a "Planetary Nebula (PN)". This historical term refers to the planet-like appearance of such a nebula in a small telescope. A fine example is the "Dumbbell Nebula", photographed by the VLT in 1998, cf. ESO PR Photos 38a-b/98. On the other hand, heavier stars explode violently - such dramatic events are seen as supernovae - and leave behind a exceedingly hot and dense, rotating "neutron star" of diameter 10-20 km (or, in the case of the heaviest stars, presumably a "black hole") as well as a surrounding nebula, the supernova remnant (SNR). A famous example is the "Crab Nebula" from the supernova that exploded in the year 1054, cf. ESO PR Photos 40f-i/99. Finally, the radiation of young hot stars embedded in an interstellar cloud is also able to heat the surrounding gas, resulting in the apparition of an emission nebula, that shines mostly in the light of ionized hydrogen (H) atoms. Such nebulae are therefore often referred to as "HII regions". The well-known Orion Nebula is an outstanding example of that type of nebula, cf. ESO PR Photos 03a-c/01.

  5. Chemistry in one dimension.

    PubMed

    Loos, Pierre-François; Ball, Caleb J; Gill, Peter M W

    2015-02-01

    We report benchmark results for one-dimensional (1D) atomic and molecular systems interacting via the Coulomb operator |x|(-1). Using various wavefunction-type approaches, such as Hartree-Fock theory, second- and third-order Møller-Plesset perturbation theory and explicitly correlated calculations, we study the ground state of atoms with up to ten electrons as well as small diatomic and triatomic molecules containing up to two electrons. A detailed analysis of the 1D helium-like ions is given and the expression of the high-density correlation energy is reported. We report the total energies, ionization energies, electron affinities and other physical properties of the many-electron 1D atoms and, using these results, we construct the 1D analog of Mendeleev's periodic table. We find that the 1D periodic table contains only two groups: the alkali metals and the noble gases. We also calculate the dissociation curves of several 1D diatomics and study the chemical bond in H2(+), HeH(2+), He2(3+), H2, HeH(+) and He2(2+). We find that, unlike their 3D counterparts, 1D molecules are primarily bound by one-electron bonds. Finally, we study the chemistry of H3(+) and we discuss the stability of the 1D polymer resulting from an infinite chain of hydrogen atoms. PMID:25518906

  6. Probing plasmonic hot spots on single gold nanowires using combined near-field techniques

    NASA Astrophysics Data System (ADS)

    Hsia, Patrick; Douillard, Ludovic; Charra, Fabrice; Marguet, Sylvie; Kostcheev, Sergei; Bachelot, Renaud J. B.; Fiorini-Debuisschert, Cline

    2015-08-01

    The plasmonic properties of individual gold nanowires (NW) have been investigated using both two-photon luminescence (2PL) coupled to atomic force microscopy (AFM) and photoemission electron microscopy (PEEM) associated to low-energy electron microscopy (LEEM) measurements. Using these complementary near-field characterization techniques, comparative studies between wires made either by colloidal chemistry (CC) or by e-beam lithography (EBL) have been undertaken towards a better understanding of the role of the wires crystallinity regarding its optical properties. Considering comparable excitation conditions, we show that wires made by colloidal synthesis exhibits quite similar field enhancement effects ("hot spots") as EBL NW, however their 2PL emission spectrum clearly reveals their crystalline properties.

  7. Using Computational Chemistry Activities to Promote Learning and Retention in a Secondary School General Chemistry Setting

    ERIC Educational Resources Information Center

    Ochterski, Joseph W.

    2014-01-01

    This article describes the results of using state-of-the-art, research-quality software as a learning tool in a general chemistry secondary school classroom setting. I present three activities designed to introduce fundamental chemical concepts regarding molecular shape and atomic orbitals to students with little background in chemistry, such as…

  8. Using Computational Chemistry Activities to Promote Learning and Retention in a Secondary School General Chemistry Setting

    ERIC Educational Resources Information Center

    Ochterski, Joseph W.

    2014-01-01

    This article describes the results of using state-of-the-art, research-quality software as a learning tool in a general chemistry secondary school classroom setting. I present three activities designed to introduce fundamental chemical concepts regarding molecular shape and atomic orbitals to students with little background in chemistry, such as

  9. Interstellar Grain Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Chemistry on grain surfaces plays an Important role in the formation of interstellar Ices, It can also influence the composition of the gas phase through outgassing near luminous, newly formed stars. This paper reviews the chemical processes taking place on Interstellar grain surfaces with the emphasis on those transforming CO into other hydrocarbons. At low, molecular cloud temperatures (approximately equal to 10K), physisorption processes dominate interstellar grain surface chemistry and GO is largely hydrogenated through reactions with atomic H and oxidized through reactions with atomic O. The former will lead to the formation of H2CO and CH3OH ices, while the latter results in CO2 ice. The observational evidence for these ices in molecular clouds will be discussed. Very close to protostars, the gas and grain temperatures are much higher (approximately equal to 500K) and chemisorption processes, including catalytic surface reactions, becomes important. This will be illustrated based upon our studies of the Fischer-Tropsch Synthesis of CH4 from CO on metallic surfaces. Likely, this process has played an important role in the early solar nebula. Observational consequences will be pointed out.

  10. Atmospheric chemistry of the Z and E isomers of CF3CF=CHF; kinetics, mechanisms, and products of gas-phase reactions with Cl atoms, OH radicals, and O3.

    PubMed

    Hurley, M D; Ball, J C; Wallington, T J

    2007-10-01

    Smog chamber/FTIR techniques were used to study the atmospheric chemistry of the Z and E isomers of CF3CF=CHF, which we refer to as CF3CF=CHF(Z) and CF3CF=CHF(E). The rate constants k(Cl + CF3CF=CHF(Z)) = (4.36 +/- 0.48) x 10-11, k(OH + CF3CF=CHF(Z)) = (1.22 +/- 0.14) x 10-12, and k(O3 + CF3CF=CHF(Z)) = (1.45 +/- 0.15) x 10-21 cm3 molecule-1 s-1 were determined for the Z isomer of CF3CF=CHF in 700 Torr air diluent at 296 +/- 2 K. The rate constants k(Cl + CF3CF=CHF(E)) = (5.00 +/- 0.56) x 10-11, k(OH + CF3CF=CHF(E)) = (2.15 +/- 0.23) x 10-12, and k(O3 + CF3CF=CHF(E)) = (1.98 +/- 0.15) x 10-20 cm3 molecule-1 s-1 were determined for the E isomer of CF3CF=CHF in 700 Torr air diluent at 296 +/- 2 K. Both the Cl-atom and OH-radical-initiated atmospheric oxidation of CF3CF=CHF give CF3C(O)F and HC(O)F in molar yields indistinguishable from 100% for both the Z and E isomer. CF3CF=CHF(Z) has an atmospheric lifetime of approximately 18 days and a global warming potential (100 year time horizon) of approximately 6. CF3CF=CHF(E) has an atmospheric lifetime of approximately 10 days and a global warming potential (100 year time horizon) of approximately 3. CF3CF=CHF has a negligible global warming potential and will not make any significant contribution to radiative forcing of climate change. PMID:17850124

  11. AtomDB: Atomic data for X-ray astronomy

    NASA Astrophysics Data System (ADS)

    Foster, Adam R.; Ji, Li; Yamaguchi, Hiroya; Smith, Randall K.; Brickhouse, Nancy S.

    2013-07-01

    This paper outlines some of the progress in the AtomDB project, which aims to model X-ray emission from hot, collisionally ionized plasmas. We define data formats for ionization, recombination, photo-ionization and autoionization. We discuss the inclusion of the XSTAR database in AtomDB, in particular using the photoionization data, and the progress in preparing a full non-equilibrium ionization model for use by modelers and observers.

  12. Hot carbon corona in Mars' upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at equinox

    NASA Astrophysics Data System (ADS)

    Lee, Yuni; Combi, Michael R.; Tenishev, Valeriy; Bougher, Stephen W.

    2014-05-01

    Two important source reactions for hot atomic carbon on Mars are photodissociation of CO and dissociative recombination of CO+; both reactions are highly sensitive to solar activity and occur mostly deep in the dayside thermosphere. The production of energetic particles results in the formation of hot coronae that are made up of neutral atoms including hot carbon. Some of these atoms are on ballistic trajectories and return to the thermosphere, and others escape. Understanding the physics in this region requires modeling that captures the complicated dynamics of hot atoms in 3-D. This study evaluates the carbon atom inventory by investigating the production and distribution of energetic carbon atoms using the full 3-D atmospheric input. The methodology and details of the hot atomic carbon model calculation are given, and the calculated total global escape of hot carbon from the assumed dominant photochemical processes at a fixed condition, equinox (Ls = 180), and low solar activity (F10.7 = 70 at Earth) are presented. To investigate the dynamics of these energetic neutral atoms, we have coupled a self-consistent 3-D global kinetic model, the Adaptive Mesh Particle Simulator, with a 3-D thermosphere/ionosphere model, the Mars Thermosphere General Circulation Model to provide a self-consistent global description of the hot carbon corona in the upper thermosphere and exosphere. The spatial distributions of density and temperature and atmospheric loss are simulated for the case considered.

  13. Teaching the Shapes of the Hydrogenlike and Hybrid Atomic Orbitals.

    ERIC Educational Resources Information Center

    Allendoerfer, Robert D.

    1990-01-01

    Discussed is the treatment of the concept of atomic orbitals in college chemistry textbooks; specifically the nodal surfaces of hybrid orbitals. Presented is a method of illustrating and introducing hydrogen-like atomic orbitals using computer graphics. (CW)

  14. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents laboratory procedures, classroom materials/activities, and demonstrations, including: vapor pressure of liquid mixtures and Raoult's law; preparation/analysis of transition metal complexes of ethylammonium chloride; atomic structure display using a ZX81 (includes complete program listing); "pop-up" models of molecules and ions; reactions…

  15. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents laboratory procedures, classroom materials/activities, and demonstrations, including: vapor pressure of liquid mixtures and Raoult's law; preparation/analysis of transition metal complexes of ethylammonium chloride; atomic structure display using a ZX81 (includes complete program listing); "pop-up" models of molecules and ions; reactions

  16. (Pesticide chemistry)

    SciTech Connect

    Barnthouse, L.W.

    1990-09-04

    This report summarizes a trip by L. W. Barnthouse of the Environmental Sciences Division (ESD), Oak Ridge National Laboratory (ORNL), to Hamburg, Federal Republic of Germany (FRG), where he participated in the 7th International Congress of Pesticide Chemistry. He chaired a workshop on experimental systems for determining effects of pesticides on nontarget organisms and gave an oral presentation at a symposium on pesticide risk assessment. Before returning to the United States, Dr. Barnthouse visited the Netherlands Institute for Sea Research in Texel, the Netherlands.

  17. Reviews Book: Sustainable Energy—Without the Hot Air Equipment: Doppler Effect Unit Book: The Physics of Rugby Book: Plastic Fantastic: How the Biggest Fraud in Physics Shook the Scientific World Equipment: Brunel Eyecam Equipment: 200x Digital Microscope Book: The Atom and the Apple: Twelve Tales from Contemporary Physics Book: Physics 2 for OCR Web Watch

    NASA Astrophysics Data System (ADS)

    2009-09-01

    WE RECOMMEND Sustainable Energy—Without the Hot Air This excellent book makes sense of energy facts and figures Doppler Effect Unit Another simple, effective piece of kit from SEP Plastic Fantastic: How the Biggest Fraud in Physics Shook the Scientific World Intriguing and unique write-up of an intellectual fraud case Brunel Eyecam An affordable digital eyepiece for your microscope 200x Digital Microscope An adjustable digital flexcam for classroom use The Atom and the Apple: Twelve Tales from Contemporary Physics A fascinating round-up of the recent history of physics WORTH A LOOK The Physics of Rugby Book uses sport analogy and context to teach physics concepts Physics 2 for OCR Essential textbook for the course but otherwise pointless WEB WATCH Some free teaching materials are better than those you'd pay for

  18. The nature of hot electrons generated by exothermic catalytic reactions

    NASA Astrophysics Data System (ADS)

    Nedrygailov, Ievgen I.; Park, Jeong Young

    2016-02-01

    We review recent progress in studies of the nature of hot electrons generated in metal nanoparticles and thin films on oxide supports and their role in heterogeneous catalysis. We show that the creation of hot electrons and their transport across the metal-oxide interface is an inherent component of energy dissipation accompanying catalytic and photocatalytic surface reactions. The intensity of hot electron flow is well correlated with turnover rates of corresponding reactions. We also show that controlling the flow of hot electrons crossing the interface can lead to the control of chemical reaction rates. Finally, we discuss perspectives of hot-electron-mediated surface chemistry that promise the capability to drive catalytic reactions with enhanced efficiency and selectivity through electron-mediated, non-thermal processes.

  19. Hot Spot at Yellowstone

    ERIC Educational Resources Information Center

    Dress, Abby

    2005-01-01

    Within this huge national park (over two million acres spread across Wyoming, Montana, and Idaho) are steaming geysers, hot springs, bubbling mudpots, and fumaroles, or steam vents. Drives on the main roads of Yellowstone take tourists through the major hot attractions, which also include Norris Geyser Basin, Upper and Lower Geyser Basin, West

  20. Hot Spot at Yellowstone

    ERIC Educational Resources Information Center

    Dress, Abby

    2005-01-01

    Within this huge national park (over two million acres spread across Wyoming, Montana, and Idaho) are steaming geysers, hot springs, bubbling mudpots, and fumaroles, or steam vents. Drives on the main roads of Yellowstone take tourists through the major hot attractions, which also include Norris Geyser Basin, Upper and Lower Geyser Basin, West…

  1. The Earth's Hot Spots.

    ERIC Educational Resources Information Center

    Vink, Gregory E.; And Others

    1985-01-01

    Hot spots are isolated areas of geologic activity where volcanic eruptions, earthquakes, and upwelling currents occur far from plate boundaries. These mantle plumes are relatively stable and crustal plates drift over them. The nature and location of hot spots (with particular attention to the Hawaiian Islands and Iceland) are discussed. (DH)

  2. New sources for the hot oxygen geocorona

    NASA Technical Reports Server (NTRS)

    Richards, P. G.; Hickey, M. P.; Torr, D. G.

    1994-01-01

    This paper investigates new sources of thermospheric non thermal (hot) oxygen due to exothermic reactions involving numerous minor (ion and neutral) and metastable species. Numerical calculations are performed for low altitude, daytime, winter conditions, with moderately high solar activity and low magnetic activity. Under these conditions we find that the quenching of metastable species are a significant source of hot oxygen, with kinetic energy production rates a factor of ten higher than those due to previously considered O2(+) and NO(+) dissociative recombination reactions. Some of the most significant new sources of hot oxygen are reactions involving quenching of O(+)((sup 2)D), O((sup 1)D), N((sup 2)D), O(+)((sup 2)P) and vibrationally excited N2 by atomic oxygen.

  3. 6. HOT AIR PORTION OF DAMPERS. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HOT AIR PORTION OF DAMPERS. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  4. Stratospheric chemistry

    NASA Technical Reports Server (NTRS)

    Cox, R. A.; Demore, W. B.; Ferguson, E. E.; Lesclaux, R.; Ravishankara, A. R.; Sander, S. P.; Sze, N. D.; Zellner, R.

    1985-01-01

    Recent improvements in the data base for the currently identified reactions describing the chemistry of the major families of trace gas species, HO(x), NO(x), ClO(x), and hydrocarbons are assessed. The important coupling reactions between the families are introduced progressively. Chemical aspects such as heterogeneous reactions and reactions of sodium species, the importance of which are not yet completely established, are discussed. Recent attempts to reconcile some of the more unexpected kinetic behavior which has emerged from the extensive experimental studies of key reactions with current reaction rate theory are also examined. The uncertainties in the current kinetic and photochemical data base is given. The prospects for improvement of data for known reactions of atmospheric importance as well as for the identification of gaps in the chemical description of the atmosphere.

  5. Combustion chemistry

    SciTech Connect

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  6. Ion composition and chemistry

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.

    Measurements from the Vega and Giotto probes are used to study the composition and chemistry of Comet Halley. The missing parent molecules of the C+ and S+ ions which are very abundant in the outer coma of Comet Halley at a radial distance of 100,000 km are examined. Consideration is given to the atomic ions, C+, S+, He+, and Na+, the molecular ions, NH4(+), H2CN(+), and HCS(+), formaldehyde polymers and polycylic aromatic hydrogen carbons. It is suggested that the deficiency of N2 and NH3(+) and the abundance of CO and CO2 with a significant amount of H2CO cloud result from the condensation of volatile ices in the solar nebula.

  7. Atom-by-atom assembly

    NASA Astrophysics Data System (ADS)

    Hla, Saw Wai

    2014-05-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to see individual atoms by means of imaging, but is also a tool that is used to touch and take the atoms, or to hear their movements. Therefore, the STM can be considered as the eyes, hands and ears of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed.

  8. Microscale Effects from Global Hot Plasma Imagery

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Fok, M.-C.; Perez, J. D.; Keady, J. P.

    1995-01-01

    We have used a three-dimensional model of recovery phase storm hot plasmas to explore the signatures of pitch angle distributions (PADS) in global fast atom imagery of the magnetosphere. The model computes mass, energy, and position-dependent PADs based on drift effects, charge exchange losses, and Coulomb drag. The hot plasma PAD strongly influences both the storm current system carried by the hot plasma and its time evolution. In turn, the PAD is strongly influenced by plasma waves through pitch angle diffusion, a microscale effect. We report the first simulated neutral atom images that account for anisotropic PADs within the hot plasma. They exhibit spatial distribution features that correspond directly to the PADs along the lines of sight. We investigate the use of image brightness distributions along tangent-shell field lines to infer equatorial PADS. In tangent-shell regions with minimal spatial gradients, reasonably accurate PADs are inferred from simulated images. They demonstrate the importance of modeling PADs for image inversion and show that comparisons of models with real storm plasma images will reveal the global effects of these microscale processes.

  9. Chemistry of the actinide elements. Second edition

    SciTech Connect

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1987-01-01

    This is an exhaustive, updated discourse on the chemistry of Actinides, Volume 1 contains a systematic coverage of the elements Ac, Th, Pa, U, Np, and Pu, which constitutes Part 1 of the work. The characterization of each element is discussed in terms of its nuclear properties, occurrence, preparation, atomic and metallic properties, chemistry of specific compounds, and solution chemistry. The first part of Volume 2 follows the same format as Volume 1 but is confined to the elements Am, Cm, Bk, Cf, and Es, plus a more condensed coverage of the Transeinsteinium elements (Fm, Md, No, Lw, and 104-109). Part 2 of this volume is devoted to a discussion of the actinide elements in general, with a specific focus on electronic spectra, thermodynamic and magnetic properties, the metallic state, structural chemistry, solution kinetics, organometallic chemistry for /sigma/- and /pi/-bonded compounds, and some concluding remarks on the superheavy elements.

  10. Lower-Secondary Introductory Chemistry Course: A Novel Approach Based on Science-Education Theories, with Emphasis on the Macroscopic Approach, and the Delayed Meaningful Teaching of the Concepts of Molecule and Atom

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Kolioulis, Dimitrios; Pappa, Eleni

    2010-01-01

    We present a programme for a novel introductory lower-secondary chemistry course (seventh or eighth grade) that aims at the application of theories of science education, and in particular of conceptual/meaningful learning and of teaching methodology that encourages active and inquiry forms of learning The approach is rigorous with careful use of…

  11. Lower-Secondary Introductory Chemistry Course: A Novel Approach Based on Science-Education Theories, with Emphasis on the Macroscopic Approach, and the Delayed Meaningful Teaching of the Concepts of Molecule and Atom

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Kolioulis, Dimitrios; Pappa, Eleni

    2010-01-01

    We present a programme for a novel introductory lower-secondary chemistry course (seventh or eighth grade) that aims at the application of theories of science education, and in particular of conceptual/meaningful learning and of teaching methodology that encourages active and inquiry forms of learning The approach is rigorous with careful use of

  12. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  13. Intermediate-energy nuclear chemistry workshop

    SciTech Connect

    Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

    1981-05-01

    This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

  14. Chemistry Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Philip Morris research center scientists use a computer program called CECTRP, for Chemical Equilibrium Composition and Transport Properties, to gain insight into the behavior of atoms as they progress along the reaction pathway. Use of the program lets the scientist accurately predict the behavior of a given molecule or group of molecules. Computer generated data must be checked by laboratory experiment, but the use of CECTRP saves the researchers hundreds of hours of laboratory time since experiments must run only to validate the computer's prediction. Philip Morris estimates that had CECTRP not been available, at least two man years would have been required to develop a program to perform similar free energy calculations.

  15. Hot fusion or cold fusion, best route to the SHEs?

    NASA Astrophysics Data System (ADS)

    Loveland, Walter

    2010-02-01

    Elements 102-113 have been synthesized using cold fusion reactions (Pb or Bi target nuclei, massive projectiles., E*=13 MeV, high survival probabilities,significant fusion hindrance). The production cross sections decrease with increasing ZCN with a cross section of 27 fb being measured for element 113. Synthesis of elements 102-108 by hot fusion reactions (actinide target nuclei, intermediate mass projectiles, E*=30-50 MeV, low survival probability, small fusion hindrance) shows decreasing production cross sections for Z=102 to Z=108 and then the cross sections level out at a few pb out to Z=118. Upper limit cross sections for the production of Z=120 nuclei in hot fusion reactions are ˜ 0.1 pb. How should one go forward to make nuclei with Z > 120 or with large neutron numbers, N ˜ 184? The cross section for the production of an evaporation residue, σEVR, is σEVR=σCNWsur where σCN is the complete fusion cross section and Wsur is the survival probability of the completely fused system. The complete fusion cross section can be written as σCN=∑J=0^J σcapture (Ec.m.,J)PCN( Ec.m.,J) where σcapture(Ec.m.,J) is the capture cross section and PCN is the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than reseparating (quasifission). I have used this formalism to make estimates of the best reactions to make new heavy nuclei using stable and radioactive beams. I conclude that stable beams offer the best opportunities to make new chemical elements and that radioactive beams offer new opportunities to make nuclei to study the atomic physics and chemistry of the heaviest elements. The radioactive beam reactions involve the light neutron-rich projectiles interacting in hot fusion reactions. If time permits I will also discuss recent experiments to make heavy nuclei using multi-nucleon transfer reactions. )

  16. Hot-field tectonics

    NASA Astrophysics Data System (ADS)

    Zonenshain, L. P.; Kuzmin, M. I.; Bocharova, N. Yu.

    1991-12-01

    Intraplate, hot spot related volcanic occurrences do not have a random distribution on the Earth's surface. They are concentrated in two large regions (up to 10,000 km in diameter), the Pacific and the African, and two smaller areas (2000-3000 km in diameter), the Central Asian and the Tasmanian. These regions are considered as manifestations of hot fields in the mantle, whereas the regions lying in between are expressions of cold fields in the mantle. Large-scale anomalies coincide with the hot fields: topographic swells, geoid highs, uplifts of the "asthenospheric table", inferred heated regions in the lowermost mantle according to seismic tomographic images, geochemical anomalies showing the origin of volcanics from undepleted mantle sources. Hot fields are relatively stable features, having remained in the same position on the Earth's surface during the last 120 Ma, although they have other configurations and other positions in the Late Paleozoic and Early Mesozoic. Available data show that two main hot fields (Pacific and African) are possibly moving one with respect to the other, converging along the Eastern Pacific subduction system and diverging along that of the Western Pacific. If so, well-known differences between these subduction systems can also be connected with related displacement of the hot fields. Hot fields are assumed to correspond to upwelling branches of mantle and rather deep mantle convection, and cold fields to downwelling branches. Thus, hot fields can be regarded as expressions of deeper tectonics, comparative to the plate tectonics, which is operating in the upper layers of the Earth. We call it hot-field tectonics. Plate tectonics is responsible for the opening and closure of oceans and for the formation of orogenic belts, whereas hot-field tectonics accounts for a larger cyclicity of the Earth's evolution and for amalgamation and break up of Pangea-type supercontinents. Hot-field tectonics seems to be the only process to have existed on all of the terrestrial planets. We speculate that hot-field tectonics governs the global geodynamics of the Earth.

  17. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  18. Preliminary geothermal investigations at Manley Hot Springs, Alaska

    SciTech Connect

    East, J.

    1982-04-01

    Manley Hot Springs is one of several hot springs which form a belt extending from the Seward Peninsula to east-central Alaska. All of the hot springs are low-temperature, water-dominated geothermal systems, having formed as the result of circulation of meteoric water along deepseated fractures near or within granitic intrusives. Shallow, thermally disturbed ground at Manley Hot Springs constitutes an area of 1.2 km by 0.6 km along the lower slopes of Bean Ridge on the north side of the Tanana Valley. This area includes 32 springs and seeps and one warm (29.1/sup 0/C) well. The hottest springs range in temperature from 61/sup 0/ to 47/sup 0/C and are presently utilized for space heating and irrigation. This study was designed to characterize the geothermal system present at Manley Hot Springs and delineate likely sites for geothermal drilling. Several surveys were conducted over a grid system which included shallow ground temperature, helium soil gas, mercury soil and resistivity surveys. In addition, a reconnaissance ground temperature survey and water chemistry sampling program was undertaken. The preliminary results, including some preliminary water chemistry, show that shallow hydrothermal activity can be delineated by many of the surveys. Three localities are targeted as likely geothermal well sites, and a model is proposed for the geothermal system at Manley Hot Springs.

  19. Evidence from a hot atom experiment for the silylsilylene-to-disilene rearrangement: SiH/sub 3/SiH:. -->. SiH/sub 2/=SiH/sub 2/

    SciTech Connect

    Gaspar, P.P.; Boo, B.H.; Svoboda, D.L.

    1987-09-10

    Adducts of disilene (SiH/sub 2/=SiH/sub 2/) and silylsilylene (SiH/sub 3/SiH:) to butadiene have been found, in addition to the previously reported products from the reactions of recoiling silicon atoms in gaseous mixtures of phosphine (PH/sub 3/), butadiene (C-H/sub 2/=CH-CH=CH/sub 2/), and silane (SiH/sub 4/). The change in yields when neon moderator is present - the yield of the silylsilylene adduct increases while that of the disilene adduct decreases - is in accord with the formation of disilene via a silylsilylene intermediate. This is strong evidence for the rearrangement of silylsilylene to disilene: SiH/sub 3/SiH: ..-->.. SiH/sub 2/=SiH/sub 2/.

  20. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and, in addition, of the pressure, temperature, and velocity. A near term goal of the experimental program should be to confirm the nonlinear effects of sulfur speciation, and if present, to provide an explanation for them. It is also desirable to examine if the particulate matter retains any sulfur. The recommendation is to examine the effects on SOx production of variations in fuel-bound sulfur and aromatic content (which may affect the amount of particulates formed). These experiments should help us to understand if there is a coupling between particulate formation and SO, concentration. Similarly, any coupling with NOx can be examined either by introducing NOx into the combustion air or by using fuel-bound nitrogen. Also of immediate urgency is the need to establish and validate a detailed mechanism for sulfur oxidation/aerosol formation, whose chemistry is concluded to be homogeneous, because there is not enough surface area for heterogeneous effects. It is envisaged that this work will involve both experimental and theoretical programs. The experimental work will require, in addition to the measurements described above, fundamental studies in devices such as flow reactors and shock tubes. Complementing this effort should be modeling and theoretical activities. One impediment to the successful modeling of sulfur oxidation is the lack of reliable data for thermodynamic and transport properties for several species, such as aqueous nitric acid, sulfur oxides, and sulfuric acid. Quantum mechanical calculations are recommended as a convenient means of deriving values for these properties. Such calculations would also help establish rate constants for several important reactions for which experimental measurements are inherently fraught with uncertainty. Efforts to implement sufficiently detailed chemistry into computational fluid dynamic codes should be continued. Zero- and one-dimensional flow models are also useful vehicles for elucidating the minimal set of species and reactions that must be included in two- and three-dimensional modeling studies.

  1. Index to the Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This index was prepared for the set of 51 booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school students and their teachers. In addition to the index, a complete list of the series is provided in which the booklets are grouped into the categories of physics, chemistry, biology, nuclear

  2. Hot Springs Creek

    USGS Multimedia Gallery

    USGS scientist Jennifer Lewicki measures the discharge along a tributary to Hot Springs Creek, Akutan Island, Alaska. Steam (upper left) rises from 3 high-temperature springs that discharge into the tributary....

  3. Chemistry and biology in the new age.

    PubMed

    Hall, Nina

    2002-10-01

    Ahmed Zewail won the 1999 Nobel Prize in chemistry for his visionary work in probing the motions of atoms at the femtosecond level. This pioneering research, a decade earlier, opened up a new frontier of scientific knowledge. Zewail and his multidisciplinary team at Caltech are now pushing further into the realm of molecular complexity, with the ultimate aim of exploring the global dynamics of biological systems at atomic resolution. This requires a new method of 'watching' reactions--ultrafast electron diffraction. PMID:12397974

  4. HOTOILINGSPREADSHEET. Hot Oiling Spreadsheet

    SciTech Connect

    Mansure, A.J.

    1993-03-10

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  5. Hot Oiling Spreadsheet

    SciTech Connect

    Mansure, A. J.

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  6. Hot ammonia in Orion

    SciTech Connect

    Morris, M.; Palmer, P.; Zuckerman, B.

    1980-04-01

    Ten inversion lines from nonmetastable rotational levels of NH/sub 3/ have been detected in the Kleinmann-Low (KL) nebula in Orion. Six of these lines were previoulsy undetected. The emission arises from levels which have energies up to 1150 K above the ground state, indicating that the NH/sub 3/ is immersed in a hot, dense medium. Three well-defined kinematical components within KL are evident in emission from NH/sub 3/ and other molecules. The emission from hot NH/sub 3/ is dominated by the component having V/sub LSR/=5.2 km s/sup -1/ and ..delta..V =10--12 km s/sup -1/. A non-LTE analysis of NH/sub 3/ emission from this ''hot core'' component reveals that the minimum particle density in this source is approx.5 x 10 cm/sup -3/, and that the kinetic temperature is > or approx. =220 K. The diameter of the hot core source is probably within a factor of 2 to 6'' (5 x 10/sup 16/ cm). The hot core is undoubtedly associated with one of the compact infrared sources in KL, and we suggest on the basis of position and velocity coincidences that it is IRc2. The hot core appears to contain about one Jeans mass at the inferred temperature and density. We therefore suggest that this object is a very young protostar which is still in the throes of its initial collapse.

  7. Development and Formative Evaluation of Computer Simulated College Chemistry Experiments.

    ERIC Educational Resources Information Center

    Cavin, Claudia S.; Cavin, E. D.

    1978-01-01

    This article describes the design, preparation, and initial evaluation of a set of computer-simulated chemistry experiments. The experiments entailed the use of an atomic emission spectroscope and a single-beam visible absorption spectrophometer. (Author/IRT)

  8. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  9. Cavity enhanced atomic magnetometry

    PubMed Central

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  10. Atom interferometers and atom holography

    SciTech Connect

    Shimizu, Fujio; Mitake, Satoru; Fujita, Jun-ichi; Morinaga, Makoto; Kishimoto, Tetsuo

    1999-06-11

    Various techniques of atom manipulation with a binary hologram are discussed and demonstrated experimentally. An atomic beam of metastable neon in the 1s{sub 3} state and a SiN thin film with holes that expresses the transmission function of the hologram are used to demonstrate this technique. The gray-scale holography of atoms is demonstrated for the first time. Other possibilities of holographic manipulation of atoms are also discussed.

  11. Elementary and brief introduction of hadronic chemistry

    NASA Astrophysics Data System (ADS)

    Tangde, Vijay M.

    2013-10-01

    The discipline, today known as Quantum Chemistry for atomic and subatomic level interactions has no doubt made a significant historical contributions to the society. Despite of its significant achievements, quantum chemistry is also known for its widespread denial of insufficiencies it inherits. An Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustained research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures without any quantitative scientific contents. Professor R M Santilli first formulated the iso-, geno- and hyper-mathematics [1-4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli's mathematics[3-5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6-8]. In the present discussion, we have briefly reviewed the conceptual foundations of Hadronic Chemistry that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary and its application in development of a new chemical species called Magnecules.

  12. Probing cis-trans isomerization in the S1 state of C2H2 via H-atom action and hot band-pumped IR-UV double resonance spectroscopies.

    PubMed

    Changala, P Bryan; Baraban, Joshua H; Merer, Anthony J; Field, Robert W

    2015-08-28

    We report novel experimental strategies that should prove instrumental in extending the vibrational and rotational assignments of the S1 state of acetylene, C2H2, in the region of the cis-trans isomerization barrier. At present, the assignments are essentially complete up to ?500 cm(-1) below the barrier. Two difficulties arise when the assignments are continued to higher energies. One is that predissociation into C2H + H sets in roughly 1100 cm(-1) below the barrier; the resulting quenching of laser-induced fluorescence (LIF) reduces its value for recording spectra in this region. The other difficulty is that tunneling through the barrier causes a staggering in the K-rotational structure of isomerizing vibrational levels. The assignment of these levels requires data for K values up to at least 3. Given the rotational selection rule K' - ?('') = 1, such data must be obtained via excited vibrational levels of the ground state with ?('') > 0. In this paper, high resolution H-atom resonance-enhanced multiphoton ionization spectra are demonstrated to contain predissociated bands which are almost invisible in LIF spectra, while preliminary data using a hyperthermal pulsed nozzle show that ?('') = 2 states can be selectively populated in a jet, giving access to K' = 3 states in IR-UV double resonance. PMID:26328846

  13. Probing cis-trans isomerization in the S1 state of C2H2 via H-atom action and hot band-pumped IR-UV double resonance spectroscopies

    NASA Astrophysics Data System (ADS)

    Changala, P. Bryan; Baraban, Joshua H.; Merer, Anthony J.; Field, Robert W.

    2015-08-01

    We report novel experimental strategies that should prove instrumental in extending the vibrational and rotational assignments of the S1 state of acetylene, C2H2, in the region of the cis-trans isomerization barrier. At present, the assignments are essentially complete up to ˜500 cm-1 below the barrier. Two difficulties arise when the assignments are continued to higher energies. One is that predissociation into C2H + H sets in roughly 1100 cm-1 below the barrier; the resulting quenching of laser-induced fluorescence (LIF) reduces its value for recording spectra in this region. The other difficulty is that tunneling through the barrier causes a staggering in the K-rotational structure of isomerizing vibrational levels. The assignment of these levels requires data for K values up to at least 3. Given the rotational selection rule K' - ℓ'' = ± 1, such data must be obtained via excited vibrational levels of the ground state with ℓ'' > 0. In this paper, high resolution H-atom resonance-enhanced multiphoton ionization spectra are demonstrated to contain predissociated bands which are almost invisible in LIF spectra, while preliminary data using a hyperthermal pulsed nozzle show that ℓ'' = 2 states can be selectively populated in a jet, giving access to K' = 3 states in IR-UV double resonance.

  14. Provocative Opinion: Can Chemistry be Learned Without Understanding?

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1974-01-01

    Voices the opinion that clearer and more useful explanations of common chemistry are needed to facilitate understanding. Presents examples from the realms of atomic structure, periodic table, history of chemistry, valence, electronegativity, electrode potentials, covalent bonds, polar covalence, bond energy, and causes of chemical change. (GS)

  15. Using Games To Teach Chemistry: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Russell, Jeanne V.

    1999-01-01

    Lists 67 published or marketed chemistry games organized under the following categories: (1) general knowledge; (2) elements and atomic structure; (3) nomenclature, formulas, and equation writing; (4) chemical reactions; (5) solutions and solubilities; (6) organic chemistry, and (8) miscellaneous subjects. Includes a brief description of each

  16. Using Games To Teach Chemistry: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Russell, Jeanne V.

    1999-01-01

    Lists 67 published or marketed chemistry games organized under the following categories: (1) general knowledge; (2) elements and atomic structure; (3) nomenclature, formulas, and equation writing; (4) chemical reactions; (5) solutions and solubilities; (6) organic chemistry, and (8) miscellaneous subjects. Includes a brief description of each…

  17. Hot off the press.

    PubMed

    Hill, Robert A; Sutherland, Andrew

    2016-04-30

    A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as guajavadimer A 7 from leaves of Psidium guajava. PMID:26940244

  18. Hot off the press.

    PubMed

    Hill, Robert A; Sutherland, Andrew

    2015-12-19

    A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as salviaprione from Salvia prionitis. PMID:26503836

  19. Hot off the press.

    PubMed

    Hill, Robert A; Sutherland, Andrew

    2016-02-01

    A personal selection of 33 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as pseudellone A from Pseudallescheria ellipsoidea. PMID:26736062

  20. Study on effects of powder and flake chemistry and morphology on the properties of Al-Cu-Mg-X-X-X powder metallurgy advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, P. J.; Lederich, R. J.; Oneal, J. E.; Pao, P. S.

    1985-01-01

    The effects of alloy chemistry and particulate morphology on consolidation behavior and consolidated product properties in rapid solidification processed, powder-metallurgical Al-3Li-1.5Cu-1Mg-0.5Co-0.2Zr and Al-4.4Cu-1.5Mg-Fe-Ni-0.2Zr extrusions and forgings were studied. Microstructures and mechanical properties of both alloys are largely unaffected by particulate production method (vacuum atomization, ultrasonic atomization, or twin-roller quenching) and by particulate solidification rates between 1000 and 100,000 K/s. Consolidation processing by canning, cold compaction, degassing, and hot extrusion is sufficient to yield mechanical properties in the non-Li-containing alloy extrusions which are similar to those of 7075-Al, but ductilities and fracture toughnesses are inferior owing to poor interparticle bonding caused by lack of a vacuum-hot-pressing step during consolidation. Mechanical properties of extrusions are superior to those of forgings owing to the stronger textures produced by the more severe hot working during extrusion. The effects on mechanical properties of dispersoid size and volume fraction, substructural refinement, solid solution strengthening by Mg, and precipitate size and distribution are elucidated for both alloy types.

  1. Industrial Chemistry and School Chemistry: Making Chemistry Studies More Relevant

    ERIC Educational Resources Information Center

    Hofstein, Avi; Kesner, Miri

    2006-01-01

    In this paper, we present the development and implementation over the period of more than 15 years of learning materials focusing on industrial chemistry as the main theme. The work was conducted in the Department of Science Teaching at the Weizmann Institute of Science, Israel. The project's general goal was to teach chemistry concepts in the…

  2. The hot list strategy.

    SciTech Connect

    Wos, L.; Pieper, G. W.; Mathematics and Computer Science

    1999-01-01

    Experimentation strongly suggests that, for attacking deep questions and hard problems with the assistance of an automated reasoning program, the more effective paradigms rely on the retention of deduced information. A significant obstacle ordinarily presented by such a paradigm is the deduction and retention of one or more needed conclusions whose complexity sharply delays their consideration. To mitigate the severity of the cited obstacle, I formulated and feature in this article the hot list strategy. The hot list strategy asks the researcher to choose, usually from among the input statements characterizing the problem under study, one or more statements that are conjectured to play a key role for assignment completion. The chosen statements--conjectured to merit revisiting, again and again--are placed in an input list of statements, called the hot list. When an automated reasoning program has decided to retain a new conclusion C--before any other statement is chosen to initiate conclusion drawing--the presence of a nonempty hot list (with an appropriate assignment of the input parameter known as heat) causes each inference rule in use to be applied to C together with the appropriate number of members of the hot list. Members of the hot list are used to complete applications of inference rules and not to initiate applications. The use of the hot list strategy thus enables an automated reasoning program to briefly consider a newly retained conclusion whose complexity would otherwise prevent its use for perhaps many CPU-hours. To give evidence of the value of the strategy, I focus on four contexts: (1) dramatically reducing the CPU time required to reach a desired goal, (2) finding a proof of a theorem that had previously resisted all but the more inventive automated attempts, (3) discovering a proof that is more elegant than previously known, and (4) answering a question that had steadfastly eluded researchers relying on an automated reasoning program. I also discuss a related strategy, the dynamic hot list strategy (formulated by my colleague W. McCune), that enables the program during a run to augment the contents of the hot list. In the Appendix, I give useful input files and interesting proofs. Because of frequent requests to do so, I include challenge problems to consider, commentary on my approach to experimentation and research, and suggestions to guide one in the use of McCunes automated reasoning program OTTER.

  3. Atomic and quantum physics

    SciTech Connect

    Haken, H.; Wolf, H.C.

    1987-01-01

    Atomic physics and the underlying quantum theory are the point of departure for many modern areas of physics, astrophysics, chemistry, biology, and even electrical engineering. This textbook provides a careful introduction to the results of methods of empirical atomic physics. A chapter on the quantum theory of the chemical bond provides an introduction to molecular physics. The authors also discuss laser physics and nonlinear spectroscopy, incorporating latest experimental results, and showing their relevance to basic research. Additional items included in the second edition are solutions to the exercises, derivations of the relativistic Klein-Gordon and Dirac equations, a detailed theoretical derivation of the Lamb shift, a discussion of new developments in the spectroscopy of inner shells, and new applications of NMR spectroscopy.

  4. Exploring Conceptual Frameworks of Models of Atomic Structures and Periodic Variations, Chemical Bonding, and Molecular Shape and Polarity: A Comparison of Undergraduate General Chemistry Students with High and Low Levels of Content Knowledge

    ERIC Educational Resources Information Center

    Wang, Chia-Yu; Barrow, Lloyd H.

    2013-01-01

    The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling…

  5. Exploring Conceptual Frameworks of Models of Atomic Structures and Periodic Variations, Chemical Bonding, and Molecular Shape and Polarity: A Comparison of Undergraduate General Chemistry Students with High and Low Levels of Content Knowledge

    ERIC Educational Resources Information Center

    Wang, Chia-Yu; Barrow, Lloyd H.

    2013-01-01

    The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling

  6. HotRegion: a database of predicted hot spot clusters.

    PubMed

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion. PMID:22080558

  7. High energy halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1979-February 14, 1980

    SciTech Connect

    Rack, E.P.

    1980-02-01

    The program consists of six interrelated areas: (1) Reactions of iodine with alkenes and alkynes activated by radiative neutron capture and isomeric transition in low pressure gaseous systems employing additives and rare gas moderators, high pressure, and liquid systems. Special attention was given to the reactivity of excited complex formation and structural effects of electrophilic iodine attack on various pi-bond systems. (2) The gas-to-condensed phase transition in halogen high energy chemistry. Current interest involves the study of caging effects of an ice lattice on recombination reactions involving neutron-irradiated frozen aqueous solutions of halogenated organic and biochemical solutes in order to learn more about kinetic energy effects, halogen size, solute molecule size, steric effects and hydrogen bonding within an ice lattice cage. (3) Systematics of halogen hot atom reactions. The reactions of /sup 80m/Br, /sup 80/Br, /sup 82m/Br + /sup 82/Br, /sup 82/Br, /sup 82/Br, /sup 128/I, /sup 130/I, and /sup 130m/I + /sup 130/I activated by radiative neutron capture or isomeric transition in hydrocarbons and halo-substituted alkanes in low pressure and high pressure gaseous systems employing additives and rare gas moderators are currently being studied. (4) Mathematical and computer simulation studies of caging events within an ice lattice are being investigated. (5) At Brookhaven National Laboratory, cyclotron-produced chlorine and fluorine hot atoms substitution reactions with molecules possessing a single chiral center are under investigation to determine the role of hot atom kinetic energy, halogen atom, enantioner structure, steric effects and phase on the extent of substitution by retention of configuration or by Walden inversion. (6) The applications of high energy techniques and concepts to neutron activation analysis for trace element determinations in biological systems was continued.

  8. IR Hot Wave

    SciTech Connect

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  9. Implications of SWAS Observations for Interstellar Chemistry and Star Formation

    NASA Technical Reports Server (NTRS)

    Bergin, Edwin A.; Melnick, Gary J.; Stauffer, John R.; Ashby, Matthew L. N.; Chin, Gordon; Erickson, Neal R.; Goldsmith, Paul F.; Harwit, Martin; Howe, John E.; Kleiner, Steven C.

    2000-01-01

    A long standing prediction of steady state gas-phase chemical theory is that H2O and O2 are important reservoirs of elemental oxygen and major coolants of the interstellar medium. Analysis of SWAS observations has set sensitive upper limits on the abundance Of O2 and has provided H2O abundances toward a variety of star forming regions. Based on these results, we show that gaseous H2O and O2 are not dominant carriers of elemental oxygen in molecular clouds. Instead the available oxygen is presumably frozen on dust grains in the form of molecular ices, with a significant portion potentially remaining in atomic form, along with CO, in the gas phase. H2O and O2 are also not significant coolants for quiescent molecular gas. In the case of H2O, a number of known chemical processes can locally elevate its abundance in regions with enhanced temperatures, such as warm regions surrounding young stars or in hot shocked gas. Thus, water can be a locally important coolant. The new information provided by SWAS, when combined with recent results from the Infrared Space Observatory, also provide several hard observational constraints for theoretical models of the chemistry in molecular clouds and we discuss various models that satisfy these conditions.

  10. Hot Carbon Corona in Mars Upper Thermosphere and Exosphere

    NASA Astrophysics Data System (ADS)

    Lee, Yuni; Combi, M.; Tenishev, V.; Bougher, S.

    2013-10-01

    The production of energetic particles results in the formation of the hot corona, where the most of the escape of neutral atoms occur, in the Martian upper atmosphere. In order to investigate the dynamics of these energetic neutral atoms, we have carried out a study that provides a self-consistent global description of the hot corona in the upper thermosphere and exosphere by employing a self-consistent global kinetic model coupled with a thermosphere/ionosphere model. In this work, we evaluate the carbon atom inventory by studying the production and distribution of energetic carbon atoms. The most important source reactions for hot atomic carbon are expected to be photodissociation of CO and dissociative recombination of CO+, which are highly sensitive to solar activity and occur mostly deep in the dayside of the thermosphere. The latest available branching ratios is adopted, and appropriate choices of the rate coefficient and the photodissociation frequencies are made. In this study, we simulate the variations of the hot carbon corona over the solar cycle and seasons. The spatial distributions and profiles of density and temperature, atmospheric loss rates are discussed for the cases considered. The total global escape of hot carbon from all dominant photochemical processes is computed and compared with those from other previous models. To describe self-consistently the upper thermosphere and exosphere, a combination of our 3D Direct Simulation Monte Carlo (DSMC) model [Valeille, A., Combi, M., Bougher, S., Tenishev, V., Nagy, A., 2009. J. Geophys. Res. 114, E11006. doi:10.1029/2009JE003389] and the 3D Mars Thermosphere General Circulation Model (MTGCM) [Bougher, S. W., Bell, J. M., Murphy, J. R., Lopez-Valverde, M. A., Withers, P. G., 2006. Geophys. Res. Lett. 32, doi: 10.1029/2005GL024059. L02203] is used. Finally, our computed global total escape rate of hot carbon ranges ~ (5.2 - 57.1) 1023 s-1 for the aphelion solar low to perihelion solar high case.

  11. Dispersants displace hot oiling

    SciTech Connect

    Wash, R.

    1984-02-01

    Laboratory experiments and field testing of dispersants in producing wells have resulted in development of 2 inexpensive paraffin dispersant packages with a broad application range, potential for significant savings over hot oiling, and that can be applied effectively by both continuous and batch treating techniques. The 2 dispersants are soluble in the carrier solvent (one soluble in oil, one in water); are able to readily disperse the wax during a hot flask test conducted in a laboratory; and leave the producing interval water wet. Field data on the 2 dispersants are tabulated, demonstrating their efficacy.

  12. Hot Oil Removes Wax

    NASA Technical Reports Server (NTRS)

    Herzstock, James J.

    1991-01-01

    Mineral oil heated to temperature of 250 degrees F (121 degrees C) found effective in removing wax from workpieces after fabrication. Depending upon size and shape of part to be cleaned of wax, part immersed in tank of hot oil, and/or interior of part flushed with hot oil. Pump, fittings, and ancillary tooling built easily for this purpose. After cleaning, innocuous oil residue washed off part by alkaline aqueous degreasing process. Serves as relatively safe alternative to carcinogenic and environmentally hazardous solvent perchloroethylene.

  13. Hot piston ring tests

    SciTech Connect

    Allen, D.J.; Tomazic, W.A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used for these tests. Unlike the conventional rings at the bottom of the piston, these rings operated in a high temperature environment (700/sup 0/C). Because of this, we called them ''hot-rings.'' It was necessary that they be made of a high temperature alloy (Stellite 6B) and that a high temperature solid lubricant coating (NASA Lewis-developed PS-200) be applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with the hot-rings in place and without them to pro-side a baseline for comparison. Although budget and schedule restrictions severely limited the testing, the minimum data to assess the potential of both the hot-rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency with the hot-rings over the baseline configuration. This increase was over and above the friction loss introduced by the hot-rings. Seal leakage measurements showed a significant reduction in leakage with the hot-rings in place. In addition, cylinder wall temperature measurements indicated less cylinder heating in the appendix gap area - between the lower piston rings and the hot-ring. Approximately 22.4 hours of ring-on-coating operation were recorded. After the initial break-in period, wear on both the rings and the coating was low. The PS-200 coating seems to offer significant potential for long-term operation at high temperatures. Both the hot-ring and the PS-200 low friction coating show promise and should be pursued further.

  14. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  15. Advancing manufacturing through computational chemistry

    SciTech Connect

    Noid, D.W.; Sumpter, B.G.; Tuzun, R.E.

    1995-12-31

    The capabilities of nanotechnology and computational chemistry are reaching a point of convergence. New computer hardware and novel computational methods have created opportunities to test proposed nanometer-scale devices, investigate molecular manufacturing and model and predict properties of new materials. Experimental methods are also beginning to provide new capabilities that make the possibility of manufacturing various devices with atomic precision tangible. In this paper, we will discuss some of the novel computational methods we have used in molecular dynamics simulations of polymer processes, neural network predictions of new materials, and simulations of proposed nano-bearings and fluid dynamics in nano- sized devices.

  16. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  17. Is There an Irreducible Chemistry Core? A Shot from a Canonical Cannon.

    ERIC Educational Resources Information Center

    Schwartz, A. Truman

    1999-01-01

    Argues for including several key ideas in every introductory general chemistry course, including the phenomena of chemistry, the organization and classification of matter, atomic structure, molecular bonding and molecular structure, the language of chemistry, the mole, chemical reactions and reactivity, chemical kinetics, chemical equilibrium, and…

  18. Chemistry Teacher Candidates' Acceptance and Opinions about Virtual Reality Technology for Molecular Geometry

    ERIC Educational Resources Information Center

    Saritas, M. T.

    2015-01-01

    The meaningful knowledge creation about molecular geometry has always been the challenge of chemistry learning. In particular, microscopic world of chemistry science (example, atoms, molecules, structures) used in traditional two dimensional way of chemistry teaching can lead to such problem as students create misconceptions. In recent years,…

  19. Is There an Irreducible Chemistry Core? A Shot from a Canonical Cannon.

    ERIC Educational Resources Information Center

    Schwartz, A. Truman

    1999-01-01

    Argues for including several key ideas in every introductory general chemistry course, including the phenomena of chemistry, the organization and classification of matter, atomic structure, molecular bonding and molecular structure, the language of chemistry, the mole, chemical reactions and reactivity, chemical kinetics, chemical equilibrium, and

  20. HPAM: Hirshfeld partitioned atomic multipoles

    NASA Astrophysics Data System (ADS)

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2012-02-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l=0 (atomic charges) to l=4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l are shown to exactly reproduce ab initio molecular multipole moments of rank L for L⩽l. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only ( l=0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. Program summaryProgram title: HPAM Catalogue identifier: AEKP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v2 No. of lines in distributed program, including test data, etc.: 500 809 No. of bytes in distributed program, including test data, etc.: 13 424 494 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Linux RAM: Typically, a few hundred megabytes Classification: 16.13 External routines: The program requires 'formatted checkpoint' files obtained from the Gaussian 03 or Gaussian 09 quantum chemistry program. Nature of problem: An ab initio molecular charge density ρ(r) is partitioned into Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge densities ρ(r) on a grid. Atomic charges q and multipoles Qlma are calculated from the partitioned atomic charge densities ρ(r) by numerical integration. Solution method: Molecular and isolated atomic grids are generated for the molecule of interest. The ab initio density matrix P and basis functions χ(r) are read in from 'formatted checkpoint' files obtained from the Gaussian 03 or 09 quantum chemistry programs. The ab initio density is evaluated for the molecule and the isolated atoms/atomic ions on grids and used to construct Hirshfeld (HD) and Hirshfeld-I (HD-I) partitioned atomic charges densities ρ(r), which are used to calculate atomic charges q and atomic multipoles Qlma by integration. Restrictions: The ab initio density matrix can be calculated at the HF, DFT, MP2, or CCSD levels with ab initio Gaussian basis sets that include up to s, p, d, f, g functions for either closed shell or open shell molecules. Running time: The running time varies with the size of the molecule, the size of the ab initio basis set, and the coarseness of the desired grid. The run time can range from a minute or less for water to ˜15 minutes for neopentane.

  1. What's Hot? What's Not?

    ERIC Educational Resources Information Center

    Buczynski, Sandy

    2006-01-01

    When Goldilocks finds three bowls of porridge at different temperatures in the three bears' house, she accurately assesses the situation and comes up with one of the most recognizable lines in children's literature," This porridge is too hot; this porridge is too cold; aahh, this porridge is just right!" Goldilocks' famous line is a perfect

  2. Hot spring burns.

    PubMed

    Baruchin, A M

    1996-03-01

    This case report describes a woman who, while visiting a hot spring, received partial- and full-thickness immersion scald burns of both ankles and heels. The prevention of such accidents is most important; efforts should be made to educate guides and tourists about the potential hazards inherent in these resorts. PMID:8634128

  3. UVIS Hot Pixel Anneal

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia

    2010-09-01

    The on-orbit radiation environment of WFC3 continually generates new hot pixels. This proposal performs the procedure required for repairing those hot pixels in the UVIS CCDs. During an anneal, the two-stage thermo-electric cooler {TEC} is turned off and the four-stage TEC is used as a heater to bring the UVIS CCDs up to 20C. As a result of the CCD warmup, a majority of the hot pixels are fixed. UVIS bias and dark frames are taken before and after each anneal, to allow an assessment of the procedure's effectiveness, provide a check of readnoise, bias, global dark current, and hot pixel levels, as well as support hysteresis {bowtie} monitoring and CDBS reference file generation. One IR dark is taken after each anneal, to provide a check of the IR detector. Finally, the first two anneals of the cycle will be preceded and followed by internal flats to allow a measure of pixel-to-pixel temporal changes.

  4. Photovoltaics: Capturing hot electrons

    NASA Astrophysics Data System (ADS)

    Kamat, Prashant V.

    2010-10-01

    The efficiency of photovoltaic materials is compromised by their inability to capture all the energy absorbed when excited by high-energy photons. Such absorption creates 'hot' electrons, and now their transfer from excited lead selenide nanocrystals to an electron acceptor provides a necessary initial step towards tapping their 'lost' energy.

  5. Hot off the Press

    ERIC Educational Resources Information Center

    Brisco, Nicole D.

    2007-01-01

    In the past, the newspaper was one of the world's most used sources of information. Recently, however, its use has declined due to the popularity of cable television and the Internet. Yet the idea of reading the morning paper with a hot cup of coffee holds many warm memories for children who watched their parents in this daily ritual. In this

  6. What's Hot? What's Not?

    ERIC Educational Resources Information Center

    Buczynski, Sandy

    2006-01-01

    When Goldilocks finds three bowls of porridge at different temperatures in the three bears' house, she accurately assesses the situation and comes up with one of the most recognizable lines in children's literature," This porridge is too hot; this porridge is too cold; aahh, this porridge is just right!" Goldilocks' famous line is a perfect…

  7. Hot piston ring tests

    NASA Astrophysics Data System (ADS)

    Allen, David J.; Tomazic, William A.

    1987-12-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  8. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  9. Hot off the Press

    ERIC Educational Resources Information Center

    Brisco, Nicole D.

    2007-01-01

    In the past, the newspaper was one of the world's most used sources of information. Recently, however, its use has declined due to the popularity of cable television and the Internet. Yet the idea of reading the morning paper with a hot cup of coffee holds many warm memories for children who watched their parents in this daily ritual. In this…

  10. HOT GAS CLEANUP PROCESS

    EPA Science Inventory

    The report gives results of a study to identify and classify 22 hot gas cleanup (HGC) processes for desulfurizing reducing gases at above 430 C according to absorbent type into groups employing solid, molten salt, and molten metal absorbents. It describes each process in terms of...

  11. Crevice chemistry estimation from bulk water chemistry

    SciTech Connect

    Shoda, Y.; Arioka, K.; Hattori, T.; Ohta, H.; Okamoto, S.; Takamatsu, H.; Kadokami, E.; Takami, K.; Kamio, R.

    1996-12-31

    Since the first PWR plant in Japan started commercial operation in 1970, 22 plants are running in Japan as of the end of 1994. The main purpose of secondary water chemistry control is to minimize the corrosion possibility of the secondary system equipment, especially steam generators (SG). To achieve this objective, much effort has been concentrated on improving secondary water chemistry control. As a result of this effort, the recent secondary water chemistry in Japanese plants is well maintained in every stage of operation. However, to ensure and improve the reliability of SG, it is necessary to control crevice environments, which are located at tube/tube support plate intersections and under the sludge pile on the tube sheet. According to recent crevice monitoring examination results, the concentration behavior impurities in SG bulk water at the crevice is different for each species, and SG bulk water and crevice chemical compositions are not always equal. From these results, to control the crevice chemistry, improving bulk water chemistry control methods and a new type of molar ratio control index is needed. This paper introduces a brief summary of a recent crevice chemistry evaluation technique and bulk water chemistry control method, which is employed for crevice chemistry control, based on crevice monitoring examination results.

  12. Using Games To Teach Chemistry: An Annotated Bibliography

    NASA Astrophysics Data System (ADS)

    Russell, Jeanne V.

    1999-04-01

    A list of published or marketed games based on a chemistry motif is presented. Each game is listed according to its level, subject matter, and title. A bibliographic notation and a short description are given for each game. For Introductory/High School/General Chemistry, 45 games are listed under the subjects General Knowledge; Elements & Atomic Structure (not Symbols); Nomenclature, Formulas, & Equation Writing; Chemical Reactions: Solutions & Solubilities; and Other Subjects. Seventeen games are listed under Organic Chemistry and 4 games under Other Chemistry Games. Computer games designed for outdated computers (PDP-11, TRS-80, and Apple II) are not included.

  13. Chemistry of fast electrons

    PubMed Central

    Maximoff, Sergey N.; Head-Gordon, Martin P.

    2009-01-01

    A chemicurrent is a flux of fast (kinetic energy ? 0.5?1.3 eV) metal electrons caused by moderately exothermic (1?3 eV) chemical reactions over high work function (4?6 eV) metal surfaces. In this report, the relation between chemicurrent and surface chemistry is elucidated with a combination of top-down phenomenology and bottom-up atomic-scale modeling. Examination of catalytic CO oxidation, an example which exhibits a chemicurrent, reveals 3 constituents of this relation: The localization of some conduction electrons to the surface via a reduction reaction, 0.5 O2 + ?e? ? O?? (Red); the delocalization of some surface electrons into a conduction band in an oxidation reaction, O?? + CO ? CO2?? ? CO2 + ?e? (Ox); and relaxation without charge transfer (Rel). Juxtaposition of Red, Ox, and Rel produces a daunting variety of metal electronic excitations, but only those that originate from CO2 reactive desorption are long-range and fast enough to dominate the chemicurrent. The chemicurrent yield depends on the universality class of the desorption process and the distribution of the desorption thresholds. This analysis implies a power-law relation with exponent 2.66 between the chemicurrent and the heat of adsorption, which is consistent with experimental findings for a range of systems. This picture also applies to other oxidation-reduction reactions over high work function metal surfaces. PMID:19561296

  14. The Dawn of Chemistry

    NASA Astrophysics Data System (ADS)

    Galli, Daniele; Palla, Francesco

    2013-08-01

    Within the precise cosmological framework provided by the ?-cold dark matter model and standard Big Bang nucleosynthesis, the chemical evolution of the pregalactic gas can now be followed with accuracy limited only by the uncertainties on the reaction rates. Starting during the recombination era, the formation of the first molecules and molecular ions containing hydrogen, deuterium, helium, and lithium was severely hindered by the low density of the expanding Universe, the intensity of the cosmic radiation field, and the absence of solid catalyzers. Molecular hydrogen and deuterated hydrogen, the most abundant species formed in the gas phase prior to structure formation, played a fundamental role in the cooling of the gas clouds that gave birth to the first stellar generation, contributing to determine the scale of fragmentation. Primordial molecules also interacted with the photons of the cosmic background via resonant scattering, absorption, and emission. In this review, we examine the current status of the chemistry of the early Universe and discuss the most relevant reactions for which uncertainties still exist from theory or laboratory experiments. The prospects for detecting spectral distortions or spatial anisotropies due to the first atoms and molecules are also addressed.

  15. Cometary MHD and chemistry

    NASA Technical Reports Server (NTRS)

    Wegmann, R.; Schmidt, H. U.; Huebner, W. F.; Boice, D. C.

    1987-01-01

    An MHD and chemical comet-coma model was developed, applying the computer program of Huebner (1985) for the detailed chemical evolution of a spherically expanding coma and the program of Schmidt and Wegman (1982) and Wegman (1987) for the MHD flow of plasma and magnetic field in a comet to the Giotto-mission data on the ion abundances measured by the HIS ion mass spectrometer. The physics and chemistry of the coma are modeled in great detail, including photoprocesses, gas-phase chemical kinetics, energy balance with a separate electron temperature, multifluid hydrodynamics with a transition to free molecular flow, fast-streaming atomic and molecular hydrogen, counter and cross streaming of the ionized species relative to the neutral species in the coma-solar wind interaction region with momentum exchange by elastic collisions, mass-loading through ion pick-up, and Lorentz forces of the advected magnetic field. The results, both inside and outside of the contact surface, are discussed and compared with the relevant HIS ion mass spectra.

  16. Computational chemistry research

    NASA Technical Reports Server (NTRS)

    Levin, Eugene

    1987-01-01

    Task 41 is composed of two parts: (1) analysis and design studies related to the Numerical Aerodynamic Simulation (NAS) Extended Operating Configuration (EOC) and (2) computational chemistry. During the first half of 1987, Dr. Levin served as a member of an advanced system planning team to establish the requirements, goals, and principal technical characteristics of the NAS EOC. A paper entitled 'Scaling of Data Communications for an Advanced Supercomputer Network' is included. The high temperature transport properties (such as viscosity, thermal conductivity, etc.) of the major constituents of air (oxygen and nitrogen) were correctly determined. The results of prior ab initio computer solutions of the Schroedinger equation were combined with the best available experimental data to obtain complete interaction potentials for both neutral and ion-atom collision partners. These potentials were then used in a computer program to evaluate the collision cross-sections from which the transport properties could be determined. A paper entitled 'High Temperature Transport Properties of Air' is included.

  17. Environmental chemistry: Volume A

    SciTech Connect

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  18. Chemistry for Potters.

    ERIC Educational Resources Information Center

    Denio, Allen A.

    1980-01-01

    Relates pottery making to chemistry by providing chemical information about clay, its origin, composition, properties, and changes that occur during firing; also describes glaze compositions, examples of redox chemistry, salt glazing, crystalline glazes, and problems in toxicity. (CS)

  19. Organometallic Chemistry of Molybdenum.

    ERIC Educational Resources Information Center

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  20. Special Report: Brain Chemistry.

    ERIC Educational Resources Information Center

    Krassner, Michael B.

    1983-01-01

    Chemical actions in the brain result in cognitive, emotional, neuroendocrine, neuromuscular, and/or neurocirculatory effects. Developments in understanding brain chemistry are discussed, considering among others, neurotransmitter chemistry, neuropeptides, drugs and the brain, antidepressants, and actions of minor tranquilizers. (JN)

  1. Exploring Chemical Equilibrium in Hot Jovians

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, Joseph; Mandell, Avi; Hébrard, Eric; Venot, Olivia; Cubillos, Patricio; Blecic, Jasmina; Challener, Ryan

    2016-01-01

    It has been established that equilibrium chemistry is usually achieved deep in the atmosphere of hot Jovians where timescales are short (Line and Yung 2013). Thus, equilibrium chemistry has been used as a starting point (setting initial conditions) for evaluating disequilibrium processes. We explore parameters of setting these initial conditions including departures from solar metallicity, the number of species allowed in a system, the types of species allowed in a system, and different thermodynamic libraries in an attempt to create a standard for evaluating equilibrium chemistry. NASA's open source code Chemical Equilibrium and Applications (CEA) is used to calculate model planet abundances by varying the metallicity, in the pressure regime 0.1 to 1 bar. These results are compared to a variety of exoplanets(Teq between 600 and 2100K) qualitatively by color maps of the dayside with different temperature redistributions. Additionally, CEA (with an up-dated thermodynamic library) is compared with the thermochemical model presented in Venotet al. (2012) for HD 209458b and HD 189733b. This same analysis is then applied to the cooler planet HD 97658b. Spectra are generated and we compare both models' outputs using the open source codetransit (https://github.com/exosports/transit) using the opacities of 15 molecules. We make the updated CEA thermodyanamic library and supporting Python scripts to do the CEA analyses available open source. Thiswork was supported by NASA Planetary Atmospheres grant NNX12AI69G.

  2. Chemistry with Inexpensive Materials: Spray Bottles and Plastic Bags.

    ERIC Educational Resources Information Center

    Zoltewicz, Susan

    1993-01-01

    Presents eight chemistry activities that are interesting and involve simple, easily available materials. Topics include mystery writing, valentine hearts, flame tests, evaporation race, buoyancy versus mass, determination of relative masses of gases, mole sample container, and cold and hot packs. (DDR)

  3. Hot Tub Rash (Pseudomonas Folliculitis)

    MedlinePLUS

    ... rash and rashes clinical tools newsletter | contact Share | Hot Tub Rash ( Pseudomonas Folliculitis) Information for adults A ... the skin and small pus-filled lesions. Overview Hot tub rash ( Pseudomonas folliculitis) is an infection of ...

  4. History of Chemistry.

    ERIC Educational Resources Information Center

    Servos, John W.

    1985-01-01

    Discusses the development of chemistry in the United States by considering: (1) chemistry as an evolving body of ideas/techniques, and as a set of conceptual resources affecting and affected by the development of other sciences; and (2) chemistry related to the history of American social and economic institutions and practices. (JN)

  5. Chemistry of atmospheres

    SciTech Connect

    Wayne, R.P.

    1985-01-01

    The subjects covered in this textbook include stratospheric ozone and anthropogenic threats to its concentration, chemistry of the troposphere including air pollution, acid rain, and increasing concentrations of several trace gases, ionospheric chemistry and the chemistry of excited metastable chemical species, air glow radiation, planetary atmospheres, climatic change, and the climatic impact of trace gases.

  6. Green Chemistry and Education.

    ERIC Educational Resources Information Center

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  7. Mechanisms in Photographic Chemistry

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1974-01-01

    Reviews current research interests in photographic chemistry, involving two proposed models for spectral sensitization of crystal defects and impurities in the photolysis reactivity and the mechanisms of development and complexation. Establishment of photographic chemistry in a chemistry curriculum is recommended. (CC)

  8. A chronicler of chemistry

    NASA Astrophysics Data System (ADS)

    2012-04-01

    Thomas Hager, author of popular science books that revisit some of the most significant developments in chemistry over the past century, talks to Nature Chemistry about the challenges of writing for a general audience, and how his dislike of chemistry was turned around by a fellow Oregonian of considerable repute.

  9. Teaching School Chemistry.

    ERIC Educational Resources Information Center

    Waddington, D. J., Ed.

    This eight-chapter book is intended for use by chemistry teachers, curriculum developers, teacher educators, and other key personnel working in the field of chemical education. The chapters are: (1) "The Changing Face of Chemistry" (J. A. Campbell); (2) "Curriculum Innovation in School Chemistry" (R. B. Ingel and A. M. Ranaweera); (3) "Some

  10. Refurbishment of an Analytical Laboratory Hot Cell Facility

    SciTech Connect

    Rosenberg, K.E.; Henslee, S.P.; Michelbacher, J.A.; Coleman, R.M.

    1996-08-01

    An Analytical Laboratory Hot Cell (ALHC) Facility at Argonne National Laboratory-West (ANL-W) was in service for nearly thirty years. In order to comply with DOE regulations governing such facilities and meet ANL-W programmatic requirements, a major refurbishment effort was undertaken. To place the facility in compliance with current regulations, all penetrations within the facility were sealed, the ventilation system was redesigned, upgraded and replaced, the master-slave manipulators were replaced, the hot cell windows were removed, refurbished, and reinstalled, all hot cell utilities were replaced, a lead-shielded glovebox housing an Inductive Coupled Plasma - Atomic Emission Spectrometer (ICP-AES) System was interfaced with the hot cells, and a new CO{sub 2} fire suppression system and other ALHC support equipment were installed.

  11. Atomic layer etching of germanium

    NASA Astrophysics Data System (ADS)

    Ikeda, Keiji; Imai, Shigeru; Matsumura, Masakiyo

    1997-03-01

    Atomic layer etching of Ge has been investigated experimentally based on the surface chemistry that Cl can adsorb on the clean Ge surface at room temperature and desorb thermally as GeCl 2 at high temperatures. The ideal etching rate of one monolayer per cycle has been achieved. The critical Cl 2 dosage for the saturated etching rate was about 7.210 6 L. Increase of the surface roughness after etching of 100 cycles was about 3.5 monolayers.

  12. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  13. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  14. Exercising Safely in Hot Weather

    MedlinePLUS

    ... grouchy, acting strangely, staggering, or being unresponsive l Dry, flushed skin and a strong rapid pulse or a slow weak pulse l Not sweating even if it is hot Quick Tip For more hot weather tips, see the AgePage Hyperthermia: Too Hot for ...

  15. Atomic oxygen testing with thermal atom systems - A critical evaluation

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Albyn, Keith; Leger, Lubert J.

    1991-01-01

    The use of thermal atom (kinetic energy near 0.04 eV) test methods as a materials selection and screening technique for LEO spacecraft is critically evaluated in this paper. The physics and chemistry of the thermal atom environments are shown to produce specific mass loss rates (mg/sq cm per min) and reaction efficiencies (Re) radically different from those produced in the LEO environment. A response surface study shows that specific mass loss rates change rapidly with plasma-asher parameters and seldom agree with flight data. FEP Teflon is shown to react by a different mechanism than Kapton, polyethylene, or graphite. The Re (Re = volume of material removed/oxygen atom) of Kapton, polyethylene, Mylar, Tedlar, FEP Teflon, and graphite measured in a flowing afterglow apparatus are 0.001 to 0.0001 those measured with high-energy atoms (kinetic energy 1.5 eV or greater) in beam systems or in LEO. The effect of sample temperature and atom impact energy on Re is discussed. A simple kinetic model describing the reaction of atomic oxygen with polymer surfaces is developed. Guidelines and recommendations for thermal atom testing and interpretation of test results are presented.

  16. Computational chemistry and aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.; Jaffe, R. L.; Arnold, J. O.

    1985-01-01

    An analysis of the radiative heating phenomena encountered during a typical aeroassisted orbital transfer vehicle (AOTV) trajectory was made to determine the potential impact of computational chemistry on AOTV design technology. Both equilibrium and nonequilibrium radiation mechanisms were considered. This analysis showed that computational chemistry can be used to predict (1) radiative intensity factors and spectroscopic data; (2) the excitation rates of both atoms and molecules; (3) high-temperature reaction rate constants for metathesis and charge exchange reactions; (4) particle ionization and neutralization rates and cross sections; and (5) spectral line widths.

  17. Hot Spring Metagenomics

    PubMed Central

    Lpez-Lpez, Olalla; Cerdn, Mara Esperanza; Gonzlez-Siso, Mara Isabel

    2013-01-01

    Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S rRNA genes arose. Thereafter, the possibility of cloning and sequencing the total environmental DNA, defined as metagenome, and the study of the genes rescued in the metagenomic libraries and assemblies made it possible to gain a more comprehensive understanding of microbial communitiestheir diversity, structure, the interactions existing between their components, and the factors shaping the nature of these communities. In the last decade, hot springs have been a source of thermophilic enzymes of industrial interest, encouraging further study of the poorly understood diversity of microbial life in these habitats. PMID:25369743

  18. Hot chocolate effect

    SciTech Connect

    Crawford, F.S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  19. THE HOT CHOCOLATE EFFECT

    SciTech Connect

    Crawford, Frank S.

    1980-12-01

    The "hot chocolate effect" was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the ten percent accuracy of the experiments.

  20. Hot Billet Surface Qualifier

    SciTech Connect

    Tzyy-Shuh Chang

    2007-04-30

    OG Technologies, Inc. (OGT), developed a prototype of a Hot Billet Surface Qualifier (“Qualifier”) based on OGT’s patented HotEye™ technology and other proprietary imaging and computing technologies. The Qualifier demonstrated its ability of imaging the cast billets in line with high definition pictures, pictures capable of supporting the detection of surface anomalies on the billets. The detection will add the ability to simplify the subsequent process and to correct the surface quality issues in a much more timely and efficient manner. This is challenging due to the continuous casting environment, in which corrosive water, temperature, vibration, humidity, EMI and other unbearable factors exist. Each installation has the potential of 249,000 MMBTU in energy savings per year. This represents a cost reduction, reduced emissions, reduced water usage and reduced mill scale.

  1. The hot chocolate effect

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  2. Chemistry as a Second Language: Helping Students Master Core Concepts and Succeed in Chemistry

    ERIC Educational Resources Information Center

    Hanes, Cara

    2004-01-01

    Chemistry is a unique language in and of itself that can be difficult for students to understand. For instance, a white powder can be translated down to the atomic level in a chemical equation, thus creating a chemical word that needs to be decoded. In this article, the author shares an approach to a basic curriculum that makes chemistry…

  3. New Trends in Chemistry Teaching. Volume V. The Teaching of Basic Sciences: Chemistry.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This collection of articles, originally published in national and international journals, is fifth in a series devoted to trends in teaching chemistry. The volume is divided into nine sections, each with an introduction explaining why papers have been selected and outlining their particular interest. Section I provides a list of atomic masses,

  4. Atmospheric mass loss from Hot Jupiters: chemical reactions and a new hypothesis for the origin of water in habitable planets

    NASA Astrophysics Data System (ADS)

    Pinotti, Rafael; Boechat-Roberty, Heloisa M.

    2015-08-01

    The chemistry along the mass loss of Hot Jupiters is generally considered to be simple, consisting mainly of atoms, prevented from forming more complex species by the intense radiation field from their host stars. However, the results of our chemical reaction simulations, involving 56 species and 566 reactions, indicate that many simple molecules, including H2O+ and OH+, are formed along the mass loss of HD 209458 b and analogs, in a region farther away from the planet, where the temperature is lower (T < 2000 K). Our simulations included benzene formation reactions; the results indicate that carbon chain species are not formed in the mass loss of HD 209458 b. We also formulate a new hypothesis for the origin of water on the surface of habitable planets in general: chemical interaction of their primordial atmospheres with hydrogen and oxygen ions from the atmospheric mass loss of primordial, low density Hot Jupiters. This mechanism could have possibly operated in the Solar System and accounted for the formation of the oceans of the Earth.

  5. Hot tub (Pseudomonas) folliculitis.

    PubMed

    Fowler, J F; Stege, G C

    1990-02-01

    Folliculitis caused by Pseudomonas aeruginosa is a rare, adverse effect of the therapeutic or recreational use of hot tubs, whirlpools, and occasionally swimming pools. The condition is characterized by painful, papulopustular skin lesions often accompanied by low-grade fever, malaise, and other systemic symptoms. Prompt recognition and treatment may shorten the duration of the disease and, more importantly, prevent further cases by identifying the source of exposure. PMID:2307901

  6. Session: Hot Dry Rock

    SciTech Connect

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  7. Hot refueling hazards.

    PubMed

    Hammer, D L

    1989-03-01

    Hot refueling in the special operations community has several potential hazards which can accompany the operation. The MC-130 Panel Operator's (PO) position is located in the exhaust of the number 3 engine, subjecting him to fumes, heat, and exhaust blast. The hypothesis was that time constraints should be implemented to the work load due to heat and carbon monoxide exposure. The hypothesis was confirmed for heat exposure but not for significant carbon monoxide exposure. PMID:2496343

  8. The ''hot'' patella

    SciTech Connect

    Kipper, M.S.; Alazraki, N.P.; Feiglin, D.H.

    1982-01-01

    Increased patellar uptake on bone scans is seen quite commonly but the possible or probable etiologies of this finding have not been previously well described. A review of 100 consecutive bone scans showed that the incidence of bilateral ''hot'' patellae is 15%. Identified etiologies include osteoarthritic degenerative disease (35%), fracture, possible metastatic disease, bursitis, Paget's disease, and osteomyelitis. The value of careful history, physical examination, and radiographs is stressed.

  9. Atomic Weights No Longer Constants of Nature

    SciTech Connect

    Coplen, T.B.; Holden, N.

    2011-03-01

    Many of us grew up being taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis has changed the way we view atomic weights and why they are no longer constants of nature.

  10. Atomic weights: no longer constants of nature

    USGS Publications Warehouse

    Coplen, Tyler B.; Holden, Norman E.

    2011-01-01

    Many of us were taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis have changed the way we view atomic weights and why they are no longer constants of nature

  11. Jupiter's Hot, Mushy Moon

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    2003-01-01

    Jupiter's moon Io is the most volcanically active body in the Solar System. Observations by instruments on the Galileo spacecraft and on telescopes atop Mauna Kea in Hawai'i indicate that lava flows on Io are surprisingly hot, over 1200 oC and possibly as much as 1300 oC; a few areas might have lava flows as hot as 1500 oC. Such high temperatures imply that the lava flows are composed of rock that formed by a very large amount of melting of Io's mantle. This has led Laszlo Keszthelyi and Alfred S. McEwen of the University of Arizona and me to reawaken an old hypothesis that suggests that the interior of Io is a partially-molten mush of crystals and magma. The idea, which had fallen out of favor for a decade or two, explains high-temperature hot spots, mountains, calderas, and volcanic plains on Io. If correct, Io gives us an opportunity to study processes that operate in huge, global magma systems, which scientists believe were important during the early history of the Moon and Earth, and possibly other planetary bodies as well. Though far from proven, the idea that Io has a ocean of mushy magma beneath its crust can be tested with measurements by future spacecraft.

  12. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  13. On the Burn Topology of Hot-Spot Initiated Reactions

    NASA Astrophysics Data System (ADS)

    Hill, Larry; Zimmermann, Bjorn

    2009-06-01

    The bulk rate of heterogeneous reaction of an energetic material depends on both the decomposition chemistry and the physical microstructure. Simple thermal decomposition models and most detonation reactive burn models express the reaction rate as the product of two functions. One expresses the sensitivity of the rate to the thermodynamic state; the other expresses the effect of reactant depletion. For a homogeneous reaction, the depletion function structure depends on the reaction pathways (overall reaction order, autocatalysis, etc.). For a heterogeneous reaction, the depletion function also depends on the reaction topology (e.g., how reaction spreads from nucleation sites to consume the material). We numerically generate depletion functions for simultaneously initiated, randomly oriented hot spots, and compare the result to the analytic solution for regularly spaced hot spots. The effect of randomization is substantial. We also compare the depletion function for ideal randomly located hot spots to those employed by various reactive burn models that are calibrated to detonation experiments.

  14. Estimates of Cl atom concentrations and hydrocarbon kinetic reactivity in surface air at Appledore Island, Maine (USA), during International Consortium for Atmospheric Research on Transport and Transformation/Chemistry of Halogens at the Isles of Shoals

    NASA Astrophysics Data System (ADS)

    Pszenny, Alexander A. P.; Fischer, Emily V.; Russo, Rachel S.; Sive, Barkley C.; Varner, Ruth K.

    2007-05-01

    Average hydroxyl radical (OH) to chlorine atom (Cl) ratios ranging from 45 to 119 were determined from variability-lifetime relationships for selected nonmethane hydrocarbons (NMHC) in surface air from six different transport sectors arriving at Appledore Island, Maine, during July 2004. Multiplying these ratios by an assumed average OH concentration of 2.5 106 cm-3 yielded estimates of Cl concentrations of 2.2 to 5.6 104 cm-3. Summed reaction rates of methane and more than 30 abundant NMHCs with OH and Cl suggest that Cl reactions increased the kinetic reactivity of hydrocarbons by 16% to 30% over that due to OH alone in air associated with the various transport sectors. Isoprene and other abundant biogenic alkenes were the most important hydrocarbon contributors after methane to overall kinetic reactivity.

  15. Hot Tub Rash (Pseudomonas Dermatitis/Folliculitis)

    MedlinePLUS

    ... How Do I Protect Myself and My Family? "Hot Tub Rash" ( Pseudomonas Dermatitis / Folliculitis) Below are answers ... hot tub rash and healthy swimming. What is Hot Tub Rash? Hot tub rash, or dermatitis, is ...

  16. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  17. Atomic structure and spectral perturbations in hot dense plasmas

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoe; Grumberg, Jeanne; Leboucher-Dalimier, Elisabeth; Malnoult, Philippe; Arranz, Jean-Pierre; Brisard, Monique; Reggadi, Abdelkader; Poquerusse, Alain

    1991-05-01

    Interaction mechanisms between the quantic structures of multicharged ions and dense plasmas are studied. The theoretical research aims at better understanding the microscopic aspects of equilibrium equations in ultradense plasmas and at developing optical diagnostic methods for such plasmas. It is concluded that the facilities allow such research to be performed.

  18. Interstellar Chemistry Special Feature: Interferometric observations of large biologically interesting interstellar and cometary molecules

    NASA Astrophysics Data System (ADS)

    Snyder, Lewis E.

    2006-08-01

    Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have substantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled "biomolecules." Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated interstellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to understanding hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from observations with the next generation of sensitive, high-resolution arrays. biomolecules | comets | chemistry

  19. PREFACE: Hot Quarks 2004

    NASA Astrophysics Data System (ADS)

    Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs

    2005-04-01

    Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or his research and we spent an entire week talking physics and having fun from breakfast in the morning until late at night. A symbolic award was instituted for the best presentation at the workshop, dedicated to the memory of Klaus Kinder-Geiger, a sharp and brilliant young theorist who perished in the crash of Swissair Flight 111 on 2 September 1998 off the coast of Nova Scotia. It went to Denesh Molnar from Ohio State University for his outstanding talk on parton coalescence. The organizers wish to extend their gratitude to all participants for the high quality presentations making Hot Quarks 2004 a notable event. We are also very grateful for the superb hospitality of the staff of the Snakedance Inn, in particular Mitch Daniels who worked sheer miracles. Given the success of the first Hot Quarks workshop we decided to organize a second one, possibly even turning Hot Quarks into a series. The next meeting will be held in the late spring of 2006, probably in Italy. We hope it will be as memorable as the first one! Last but not least, we wish to thank all the generous sponsors of the conference: Brookhaven National Laboratory, European Organization for Nuclear Research (CERN), Gesellschaft fA~ 1/4 r Schwerionenforschung (GSI), Institute of Physics Publishing, Los Alamos National Laboratory, National Science Foundation, and Vanderbilt University. We are grateful for their support and are particularly happy that this support came from institutions both in the US and in Europe and from all the main experimental facilities that pursue a prominent heavy-ion program. Their support was essential for the success of a workshop targeting young scientists.

  20. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  1. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  2. Reversible Bergman cyclization by atomic manipulation

    NASA Astrophysics Data System (ADS)

    Schuler, Bruno; Fatayer, Shadi; Mohn, Fabian; Moll, Nikolaj; Pavliček, Niko; Meyer, Gerhard; Peña, Diego; Gross, Leo

    2016-03-01

    The Bergman cyclization is one of the most fascinating rearrangements in chemistry, with important implications in organic synthesis and pharmacology. Here we demonstrate a reversible Bergman cyclization for the first time. We induced the on-surface transformation of an individual aromatic diradical into a highly strained ten-membered diyne using atomic manipulation and verified the products by non-contact atomic force microscopy with atomic resolution. The diyne and diradical were stabilized by using an ultrathin NaCl film as the substrate, and the diyne could be transformed back into the diradical. Importantly, the diradical and the diyne exhibit different reactivity, electronic, magnetic and optical properties associated with the changes in the bond topology, and spin multiplicity. With this reversible, triggered Bergman cyclization we demonstrated switching on demand between the two reactive intermediates by means of selective C–C bond formation or cleavage, which opens up the field of radical chemistry for on-surface reactions by atomic manipulation.

  3. 113. ARAI Hot cell (ARA626) Building wall sections and details ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. ARA-I Hot cell (ARA-626) Building wall sections and details of radio chemistry lab. Shows high-bay roof over hot cells and isolation rooms below grade storage pit for fuel elements. Norman Engineering Company: 961-area/SF-626-A-4. Date: January 1959. Ineel index code no. 068-0626-00-613-102724. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  4. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2010-01-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton?s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  5. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newtons constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  6. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  7. Atoms, Molecules, and Kinetic Theory, Science (Experimental): 5317.63.

    ERIC Educational Resources Information Center

    Buffaloe, Jacquelin F.

    This course of instruction in advanced chemistry is intended for the student ready for first-year college chemistry. Presented is an in-depth review with theory and mathematics being stressed in the study of concepts involving atomic structure, bonding, states of matter, molar relationships in equations, and properties of solutions. It is

  8. Atomic photoionization

    NASA Astrophysics Data System (ADS)

    Samson, J. A. R.

    After a brief historical review, this work discusses in detail the experimental techniques available for the investigation of photoionization processes, presents results on typical atoms, and examines some of the problems yet unsolved; in general, the discussion is concerned primarily with the photoionization of atoms in the spectral range from ionization threshold to about 100 A. The examination of experimental techniques treats such topics as light sources, monochromators and spectrographs, absorption and photoionization cells, branching-ratio studies, and electron-impact 'photoionization'. Photoionization measurements are discussed with reference to total and partial photoionization cross sections.

  9. Surface chemistry of LiNi0.5Mn1.5O4 particles coated by Al2O3 using atomic layer deposition for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jin Wook; Kim, Dong Hyeon; Oh, Dae Yang; Lee, Hyeyoun; Kim, Ji Hyun; Lee, Jae Hyun; Jung, Yoon Seok

    2015-01-01

    The effects of depositing ultrathin (<1 nm) Al2O3 coatings on LiNi0.5Mn1.5O4 (LNMO) particles using atomic layer deposition (ALD) are presented. Promising electrochemical performance of the Al2O3 ALD coated LNMO at 30 C is demonstrated in not only significantly improved coulombic efficiency, cycle retention, and rate capability, but also in dramatically suppressed self-discharge and dissolution of transition metals. Combined analyses by electrochemical impedance spectroscopy, ex-situ X-ray photoelectron spectroscopy, and ex-situ time-of-flight secondary ion mass spectrometry reveal that the solid electrolyte interphase layer on the Al2O3 ALD coated LNMO is much thinner and contains fewer organic species than the one on the bare LNMO. This difference originates from the suppression of the side reaction at high voltage by the Al2O3 ALD protective coating. Also, fluorination of Al2O3 ALD layer upon repeated charge-discharge cycling is confirmed, and this can account for the capacity increases during the initial charge-discharge cycles. Finally, it is also demonstrated that a full LNMO/Li4Ti5O12 battery incorporating the Al2O3 ALD coated LNMO outperforms the one incorporating only bare LNMO.

  10. Hot oiling spreadsheet

    SciTech Connect

    Mansure, A.J.

    1996-09-01

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that was distributed as a compiled, public-domain-software spreadsheet. That spreadsheet has evolved into an interactive from on the World Wide Web and has been adapted into a Windows{trademark} program by Petrolite, St. Louis MO. The development of such a tools was facilitated by expressing downhole temperatures in terms of analytic formulas. Considerable algebraic work is required to develop such formulas. Also, the data describing hot oiling is customarily a mixture of practical units that must be converted to a consistent set of units. To facilitate the algebraic manipulations and to assure unit conversions are correct, during development parallel calculations were made using the spreadsheet and a symbolic mathematics program. Derivation of the formulas considered falling film flow in the annulus and started from the transient differential equations so that the effects of the heat capacity of the tubing and casing could be included. While this approach to developing a software product does not have the power and sophistication of a finite element or difference code, it produces a user friendly product that implements the equations solved with a minimum potential for bugs. This allows emphasis in development of the product to be placed on the physics.

  11. Atoms in astronomy

    NASA Technical Reports Server (NTRS)

    Blanchard, P. A.

    1976-01-01

    Aspects of electromagnetic radiation and atomic physics needed for an understanding of astronomical applications are explored. Although intended primarily for teachers, this brochure is written so that it can be distributed to students if desired. The first section, Basic Topics, is suitable for a ninth-grade general science class; the style is simple and repetitive, and no mathematics or physics background is required. The second section, Intermediate and Advanced Topics, requires a knowledge of the material in the first section and assumes a generally higher level of achievement and motivation on the part of the student. These latter topics might fit well into junior-level physics, chemistry, or earth-science courses. Also included are a glossary, a list of references and teaching aids, class exercises, and a question and answer section.

  12. Hot cell examination table

    DOEpatents

    Gaal, Peter S.; Ebejer, Lino P.; Kareis, James H.; Schlegel, Gary L.

    1991-01-01

    A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.

  13. Hot air drum evaporator

    DOEpatents

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  14. Hot Talk, Cold Science

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.

    One of the hottest topics in climate science is understanding and evaluating the impacts of possible global warming caused by anthropogenic emissions of greenhouse gases. In Hot Talk, Cold Science, S. Fred Singer does not accept global warming. Singer says in his preface, The purpose of this book is to demonstrate that the evidence [for global warming] is neither settled, nor compelling, nor even convincing. On the contrary, scientists continue to discover new mechanisms for climate change and to put forth new theories to try to account for the fact that global temperature is not rising, even though greenhouse theory says it should.

  15. MSFC hot air collectors

    NASA Technical Reports Server (NTRS)

    Anthony, K.

    1978-01-01

    A description of the hot air collector is given that includes a history of development, a history of the materials development, and a program summary. The major portion of the solar energy system cost is the collector. Since the collector is the heart of the system and the most costly subsystem, reducing the cost of producing collectors in large quantities is a major goal. This solar collector is designed to heat air and/or water cheaply and efficiently through the use of solar energy.

  16. Deuterium chemistry in the Orion Bar PDR. ``Warm'' chemistry starring CH{2}D^+

    NASA Astrophysics Data System (ADS)

    Parise, B.; Leurini, S.; Schilke, P.; Roueff, E.; Thorwirth, S.; Lis, D. C.

    2009-12-01

    Context: High levels of deuterium fractionation in gas-phase molecules are usually associated with cold regions, such as prestellar cores. Significant fractionation ratios are also observed in hot environments such as hot cores or hot corinos, where they are believed to be produced by the evaporation of the icy mantles surrounding dust grains, and are thus remnants of a previous cold (either gas-phase or grain surface) chemistry. The recent detection of DCN towards the Orion Bar, in a clump at a characteristic temperature of 70 K, has shown that high deuterium fractionation can also be detected in PDRs. The Orion Bar clumps thus appear to be a good environment for the observational study of deuterium fractionation in luke warm gas, allowing us to validate chemistry models for a different temperature range, where dominating fractionation processes are predicted to differ from those in cold gas (<20 K). Aims: We aimed to study observationally in detail the chemistry at work in the Orion Bar PDR, to understand whether DCN is either produced by ice mantle evaporation or is the result of warm gas-phase chemistry, involving the CH2D+ precursor ion (which survives higher temperatures than the usual H2D+ precursor). Methods: Using the APEX and the IRAM 30 m telescopes, we targeted selected deuterated species towards two clumps in the Orion Bar. Results: We confirmed the detection of DCN and detected two new deuterated molecules (DCO+ and HDCO) towards one clump in the Orion Bar PDR. Significant deuterium fractionations are found for HCN and H2CO, but we measured a low fractionation in HCO^+. We also provide upper limits to other molecules relevant to deuterium chemistry. Conclusions: We argue that grain evaporation in the clumps is unlikely to be a dominant process, and we find that the observed deuterium fractionation ratios are consistent with predictions of pure gas-phase chemistry models at warm temperatures (T ~ 50 K). We show evidence that warm deuterium chemistry driven by CH2D+ is at work in the clumps. Based on observations with the IRAM 30 m telescope at Pico Veleta (Spain) and the Atacama Pathfinder EXperiment (APEX) telescope. IRAM is funded by the INSU/CNRS (France), the MPG (Germany) and the IGN (Spain). APEX is a collaboration between the Max-Planck-Institut fr Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.

  17. Feshbach resonance cooling of trapped atom pairs

    SciTech Connect

    Dunn, Josh W.; Borca, Bogdan; Greene, Chris H.; Blume, D.; Granger, B.E.

    2005-03-01

    Spectroscopic studies of few-body systems at ultracold temperatures provide valuable information that often cannot be extracted in a hot environment. Considering a pair of atoms, we propose a cooling mechanism that makes use of a scattering Feshbach resonance. Application of a series of time-dependent magnetic field ramps results in either zero, one, or two atoms remaining trapped. If two atoms remain in the trap after the field ramps are completed, then they have been cooled. Application of the proposed cooling mechanism to optical traps or lattices is considered.

  18. A model of hollow cathode plasma chemistry

    NASA Technical Reports Server (NTRS)

    Katz, I.; Anderson, J. R.; Polk, J. E.; Brophy, J. R.

    2002-01-01

    We have developed a new model of hollow cathode plasma chemistry based on the observation that xenon ion mobility is diffusion limited due to resonant charge exchange reactions. The model shows that vapor phase barium atoms are ionized almost immediately and electric fields accelerate the ions upstream from the emission zone. We have also applied the model to the orifice region, where the resultant ion generation profile correlates with previously reported orifice erosion.

  19. Atomic force microscopy and x-ray photoelectron spectroscopy investigations of the morphology and chemistry of a PdCl{sub 2}/SnCl{sub 2} electroless plating catalysis system adsorbed onto shape memory alloy particles

    SciTech Connect

    Silvain, J.F.; Fouassier, O.; Lescaux, S.

    2004-11-01

    A study of the different stages of the electroless deposition of copper on micronic NiTi shape memory alloy particles activated by one-step and two-step methods has been conducted from both a chemical and a morphological point of view. The combination of x-ray photoelectron spectroscopy (XPS) measurements and atomic force microscopy (AFM) imaging has allowed detection of the distribution of the formed compounds and depth quantification and estimation of the surface topographic parameters. For the two-step method, at the sensitization of the early stages, it is observed by AFM that Sn is absorbed in form of clusters that tend to completely cover the surface and form a continuous film. XPS analysis have shown that Sn and Pd are first absorbed in form of oxide (SnO{sub 2} and PdO) and hydroxide [Sn(OH){sub 4}]. After the entire sensitization step, the NiTi substrate is covered with Sn-based compounds. After the sensitization and the activation steps the powder roughness increases. Behavior of the Sn and Pd growth for the one-step method does not follow the behavior found for the two-step method. Indeed, XPS analysis shows a three-dimensional (3D) growth of Pd clusters on top of a mixture of metallic tin, oxide (SnO) and hydroxide [Sn(OH){sub 2}]. These Pd clusters are covered with a thin layer of Pd-oxide contamination induced by the electroless process. The mean roughness for the one-step and two-step processes are equivalent. After copper deposition, the decrease of mean roughness is attributed to a filling of surface valleys, observed after the Sn-Pd coating step.

  20. Radiations from hot nuclei

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1993-01-01

    The investigation indicates that nuclei with excitation energy of a few hundred MeV to BeV are more likely to radiate hot nuclear clusters than neutrons. These daughter clusters could, furthermore, de-excite emitting other hot nuclei, and the chain continues until these nuclei cool off sufficiently to evaporate primarily neutrons. A few GeV excited nuclei could radiate elementary particles preferentially over neutrons. Impact of space radiation with materials (for example, spacecraft) produces highly excited nuclei which cool down emitting electromagnetic and particle radiations. At a few MeV excitation energy, neutron emission becomes more dominant than gamma-ray emission and one often attributes the cooling to take place by successive neutron decay. However, a recent experiment studying the cooling process of 396 MeV excited Hg-190 casts some doubt on this thinking, and the purpose of this investigation is to explore the possibility of other types of nuclear emission which might out-compete with neutron evaporation.

  1. Exploring Hot Neptune Atmospheres

    NASA Astrophysics Data System (ADS)

    Fortney, Jonathan; Marley, Mark; Saumon, Didier

    2008-03-01

    The first transiting 'hot Neptune'' GJ 436b inhabits an entirely new region of phase space for extrasolar planetary atmospheres. This relatively cool, low-mass object should be the first transiting extrasolar planet to sport a methane-rich atmosphere. Like Uranus and Neptune it may also have an atmosphere highly enriched in heavy elements. Our experience with the complex atmospheres of the known hot-Jupiters has demonstrated that insights are best gained through the combination of Spitzer observations and atmospheric modeling . However, no models have investigated the atmospheres of Neptune-class exoplanets, which may well be super metal-enriched, and span a wider range in stellar insolation and atmospheric composition than we have previously encountered. GJ 436b the coldest transiting planet, is in entirely new irradiation and mass regimes and is also the target of a barrage of planned Spitzer observations. Here we propose a new generation of atmospheric modeling to understand Spitzer observations of this new planet and others like it.

  2. Hot, Dry and Cloudy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Hot, Dry and Cloudy

    This artist's concept shows a cloudy Jupiter-like planet that orbits very close to its fiery hot star. NASA's Spitzer Space Telescope was recently used to capture spectra, or molecular fingerprints, of two 'hot Jupiter' worlds like the one depicted here. This is the first time a spectrum has ever been obtained for an exoplanet, or a planet beyond our solar system.

    The ground-breaking observations were made with Spitzer's spectrograph, which pries apart infrared light into its basic wavelengths, revealing the 'fingerprints' of molecules imprinted inside. Spitzer studied two planets, HD 209458b and HD 189733b, both of which were found, surprisingly, to have no water in the tops of their atmospheres. The results suggest that the hot planets are socked in with dry, high clouds, which are obscuring water that lies underneath. In addition, HD209458b showed hints of silicates, suggesting that the high clouds on that planet contain very fine sand-like particles.

    Capturing the spectra from the two hot-Jupiter planets was no easy feat. The planets cannot be distinguished from their stars and instead appear to telescopes as single blurs of light. One way to get around this is through what is known as the secondary eclipse technique. In this method, changes in the total light from a so-called transiting planet system are measured as a planet is eclipsed by its star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone.

    This technique, first used by Spitzer in 2005 to directly detect the light from an exoplanet, currently only works at infrared wavelengths, where the differences in brightness between the planet and star are less, and the planet's light is easier to pick out. For example, if the experiment had been done in visible light, the total light from the system would appear to be unchanged, even as the planet disappeared from view.

    To capture spectra of the planets, Spitzer observed their secondary eclipses with its spectrograph. It took a spectrum of a star together with its planet, then, as the planet disappeared from view, a spectrum of just the star. By subtracting the spectrum of the star from the spectrum of the star and planet together, astronomers were able to determine the spectrum of the planet itself.

    Neither of the parent stars for HD 209458b or HD 189733b can be seen with the naked eye. HD 209458b is located about 153 light-years away in the constellation Pegasus, while HD 189733b is about 62 light-years away in the constellation Vulpecula. Both planets zip around their stars in very tight orbits; HD 209458b circles once every 3.5 days, while HD 189733b orbits once every 2.2 days.

    Of the approximately 200 known exoplanets, there are 12 besides HD 209458b and HD 189733b whose orbits are inclined in such a way that, from our point of view, they pass in front of their stars. At least three of these transiting exoplanets are bright enough to follow in the footsteps of HD 209458b and HD 189733 and reveal their infrared spectra to Spitzer. Astronomers hope to use Spitzer's spectrograph in the future to study HD 209458b and HD 189733b again in much greater detail, and to examine some of the other candidates for the first time.

  3. Sulfur Donor Atom Effects on Copper(I)/O2 Chemistry with Thioanisole Containing Tetradentate N3S Ligand Leading to ?-1,2-Peroxo-Dicopper(II) species

    PubMed Central

    Lee, Yunho; Lee, Dong-Heon; Park, Ga Young; Lucas, Heather R.; Sarjeant, Amy A. Narducci; Kieber-Emmons, Matthew T.; Vance, Michael A.; Milligan, Ashley E.; Solomon, Edward I.; Karlin, Kenneth D.

    2010-01-01

    To better understand the effect of thioether coordination in copper-O2 chemistry, the tetradentate N3S ligand LASM (2-(methylthio)-N,N-bis((pyridin-2-yl)methyl)benzenamine) and related alkylether ligand LEOE (2-ethoxy-N,N-bis((pyridin-2-yl)methyl)ethanamine) have been studied. The corresponding copper(I) complexes, [(LASM)CuI]+ (1a) and [(LEOE)CuI]+ (3a) were studies as were the related compound [(LESE)CuI]+ (2a, LESE = (2-ethylthio-N,N-bis((pyridin-2-yl)methyl)ethanamine). The X-ray structure of 1a and its solution conductivity reveal a monomeric molecular structure possessing thioether coordination which persists in solution. In contrast, the C-O stretching frequencies of the derivative Cu(I)-CO complexes reveal that for these complexes, the modulated ligand arms, whether arylthioether, alkylthioether or ether, are not coordinated to the cuprous ion. Electrochemical data for 1a and 2a in CH3CN and DMF show the thioanisole moiety to be a poor electron donor compared to alkylthioether (1a is ~ 200 mV more positive than 2a). The structures of [(LASM)CuII(CH3OH)]2+ (1c) and [(LESE)CuII(CH3OH)]2+ (2c) have also been obtained and indicate nearly identical copper coordination environments. Oxygenation of 1a at reduced temperature gives a characteristic deep blue colored intermediate [{(LASM)CuII}2(O22?)]2+ (1bP) with absorption features at 442 (1,500 M?1cm?1), 530 (8,600 M?1cm?1) and 605 nm (10,400 M?1cm?1); these values compare well to the LMCT transitions previously reported for [{(LESE)CuII}2(O22?)]2+ (2bP). Resonance Raman data for [{(LASM)CuII}2(O22?)]2+ (1bP) support the formation of ?-1,2-peroxo species (?(O-O) = 828 cm?1 (?(18O2) = 48), ?sym(Cu-O) = 547 cm?1 (?(18O2) = 23) and ?asym(Cu-O) = 497 cm?1 (?(18O2) = 22) and suggest the LASM ligand is a poorer electron donor to copper than is LESE. In contrast, the oxygenation of [(LEOE)CuI]+ (3a), possessing an ether donor as an analogue of the thioether in LESE, led to the formation of a bis(?-oxo) species [{(LEOE)CuIII}2(O2?)2]2+ (3bO; 380 nm, ? ~ 10,000 M?1cm?1). This result provides further support for the sulfur influence in 1bP and 2bP, in particular coordination of the sulfur to the Cu. Thermal decomposition of 1bP is accompanied by ligand sulfoxidation. The structure of [{(LEOE)CuII(Cl)}2]+ (3c) generated from the reductive dehalogenation of organic chlorides suggests that the ether moiety is weakly bound to the cupric ion. A detailed discussion of the spectroscopic and structural characteristics of 1bP, 2bP and 3bO is presented. PMID:20822156

  4. Sulfur donor atom effects on copper(I)/O(2) chemistry with thioanisole containing tetradentate N(3)S ligand leading to ?-1,2-peroxo-dicopper(II) species.

    PubMed

    Lee, Yunho; Lee, Dong-Heon; Park, Ga Young; Lucas, Heather R; Narducci Sarjeant, Amy A; Kieber-Emmons, Matthew T; Vance, Michael A; Milligan, Ashley E; Solomon, Edward I; Karlin, Kenneth D

    2010-10-01

    To better understand the effect of thioether coordination in copper-O(2) chemistry, the tetradentate N(3)S ligand L(ASM) (2-(methylthio)-N,N-bis((pyridin-2-yl)methyl)benzenamine) and related alkylether ligand L(EOE) (2-ethoxy-N,N-bis((pyridin-2-yl)methyl)ethanamine) have been studied. The corresponding copper(I) complexes, [(L(ASM))Cu(I)](+) (1a) and [(L(EOE))Cu(I)](+) (3a), were studied as were the related compound [(L(ESE))Cu(I)](+) (2a, L(ESE) = (2-ethylthio-N,N-bis((pyridin-2-yl)methyl)ethanamine). The X-ray structure of 1a and its solution conductivity reveal a monomeric molecular structure possessing thioether coordination which persists in solution. In contrast, the C-O stretching frequencies of the derivative Cu(I)-CO complexes reveal that for these complexes, the modulated ligand arms, whether arylthioether, alkylthioether, or ether, are not coordinated to the cuprous ion. Electrochemical data for 1a and 2a in CH(3)CN and N,N-dimethylformamide (DMF) show the thioanisole moiety to be a poor electron donor compared to alkylthioether (1a is ?200 mV more positive than 2a). The structures of [(L(ASM))Cu(II)(CH(3)OH)](2+) (1c) and [(L(ESE))Cu(II)(CH(3)OH)](2+) (2c) have also been obtained and indicate nearly identical copper coordination environments. Oxygenation of 1a at reduced temperature gives a characteristic deep blue intermediate [{(L(ASM))Cu(II)}(2)(O(2)(2-))](2+) (1b(P)) with absorption features at 442 (1,500 M(-1) cm(-1)), 530 (8,600 M(-1) cm(-1)), and 605 nm (10,400 M(-1) cm(-1)); these values compare well to the ligand-to-metal charge-transfer (LMCT) transitions previously reported for [{(L(ESE))Cu(II)}(2)(O(2)(2-))](2+) (2b(P)). Resonance Raman data for [{(L(ASM))Cu(II)}(2)(O(2)(2-))](2+) (1b(P)) support the formation of ?-1,2-peroxo species ?(O-O) = 828 cm(-1)(?((18)O(2)) = 48), ?(sym)(Cu-O) = 547 cm(-1) (?((18)O(2)) = 23), and ?(asym)(Cu-O) = 497 cm(-1) (?((18)O(2)) = 22) and suggest the L(ASM) ligand is a poorer electron donor to copper than is L(ESE). In contrast, the oxygenation of [(L(EOE))Cu(I)](+) (3a), possessing an ether donor as an analogue of the thioether in L(ESE), led to the formation of a bis(?-oxo) species [{(L(EOE))Cu(III)}(2)(O(2-))(2)](2+) (3b(O); 380 nm, ? ? 10,000 M(-1) cm(-1)). This result provides further support for the sulfur influence in 1b(P) and 2b(P), in particular coordination of the sulfur to the Cu. Thermal decomposition of 1b(P) is accompanied by ligand sulfoxidation. The structure of [{(L(EOE))Cu(II)(Cl)}(2)](+) (3c) generated from the reductive dehalogenation of organic chlorides suggests that the ether moiety is weakly bound to the cupric ion. A detailed discussion of the spectroscopic and structural characteristics of 1b(P), 2b(P), and 3b(O) is presented. PMID:20822156

  5. DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b

    SciTech Connect

    Moses, Julianne I.; Visscher, C.; Fortney, J. J.; Showman, A. P.; Lewis, N. K.; Griffith, C. A.; Klippenstein, S. J.; Shabram, M.; Friedson, A. J.; Marley, M. S.; Freedman, R. S.

    2011-08-10

    We have developed a one-dimensional photochemical and thermochemical kinetics and diffusion model to study the effects of disequilibrium chemistry on the atmospheric composition of 'hot-Jupiter' exoplanets. Here we investigate the coupled chemistry of neutral carbon, hydrogen, oxygen, and nitrogen species on HD 189733b and HD 209458b and we compare the model results with existing transit and eclipse observations. We find that the vertical profiles of molecular constituents are significantly affected by transport-induced quenching and photochemistry, particularly on the cooler HD 189733b; however, the warmer stratospheric temperatures on HD 209458b help maintain thermochemical equilibrium and reduce the effects of disequilibrium chemistry. For both planets, the methane and ammonia mole fractions are found to be enhanced over their equilibrium values at pressures of a few bar to less than an mbar due to transport-induced quenching, but CH{sub 4} and NH{sub 3} are photochemically removed at higher altitudes. Disequilibrium chemistry also enhances atomic species, unsaturated hydrocarbons (particularly C{sub 2}H{sub 2}), some nitriles (particularly HCN), and radicals like OH, CH{sub 3}, and NH{sub 2}. In contrast, CO, H{sub 2}O, N{sub 2}, and CO{sub 2} more closely follow their equilibrium profiles, except at pressures {approx}<1 {mu}bar, where CO, H{sub 2}O, and N{sub 2} are photochemically destroyed and CO{sub 2} is produced before its eventual high-altitude destruction. The enhanced abundances of CH{sub 4}, NH{sub 3}, and HCN are expected to affect the spectral signatures and thermal profiles of HD 189733b and other relatively cool, transiting exoplanets. We examine the sensitivity of our results to the assumed temperature structure and eddy diffusion coefficients and discuss further observational consequences of these models.

  6. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.

    2011-08-09

    In a simplified process to produce precursor powders for oxide dispersion-strengthened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  7. Microstructure Evolution of Gas Atomized Iron Based ODS Alloys

    SciTech Connect

    Rieken, J.R.; Anderson, I.E.; Kramer, M.J.; Anderegg, J.W.; Shechtman, D.

    2009-12-01

    In a simplified process to produce precursor powders for oxide dispersion-strength- ened (ODS) alloys, gas-atomization reaction synthesis (GARS) was used to induce a surface oxide layer on molten droplets of three differing erritic stainless steel alloys during break-up and rapid solidification. The chemistry of the surface oxide was identified using auger electron spectroscopy (AES) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The precursor iron-base powders were consolidated at 850 C and 1,300 C using hot isostatic pressing (HIPing). Consolidation at the lower temperature resulted in a fully dense microstructure, while preventing substantial prior particle-boundary-oxide dissociation. Microstructural analysis of the alloys consolidated at the higher temperature confirmed a significant reduction in prior-particle-boundary-oxide volume fraction, in comparison with the lower-temperature-consolidated sample. This provided evidence that a high-temperature internal oxygen-exchange reaction occurred between the metastable prior particle-boundary-oxide phase (chromium oxide) and the yttrium contained within each prior particle. This internal oxygen-exchange reaction is shown to result in the formation of yttrium-enriched oxide dispersoids throughout the alloy microstructure. The evolving microstructure was characterized using transmission electron microscopy (TEM) and high-energy X-ray diffraction (HE-XRD).

  8. New physics and chemistry in high electrostatic fields

    NASA Astrophysics Data System (ADS)

    Karahka, M. L.; Kreuzer, H. J.

    2016-01-01

    Fields of the order of volts per meter exist along micron-sized tips. They are of the magnitude of fields inside atoms and molecules and can affect their electronic structure. This leads to a continuous periodic table resulting in new field-induced chemistry. We will present a tutorial treatment of this new physics and chemistry explaining such surprising phenomena like covalent bonding of helium to metal surfaces, metallization of semiconductors and insulators, and more.

  9. The Separate and Collective Effects of Personalization, Personification, and Gender on Learning with Multimedia Chemistry Instructional Materials

    ERIC Educational Resources Information Center

    Halkyard, Shannon

    2012-01-01

    Chemistry is a difficult subject to learn and teach for students in general. Additionally, female students are under-represented in chemistry and the physical sciences. Within chemistry, atomic and electronic structure is a key concept and several recommendations in the literature describe how this topic can be taught better. These recommendations…

  10. The Separate and Collective Effects of Personalization, Personification, and Gender on Learning with Multimedia Chemistry Instructional Materials

    ERIC Educational Resources Information Center

    Halkyard, Shannon

    2012-01-01

    Chemistry is a difficult subject to learn and teach for students in general. Additionally, female students are under-represented in chemistry and the physical sciences. Within chemistry, atomic and electronic structure is a key concept and several recommendations in the literature describe how this topic can be taught better. These recommendations

  11. Atomic arias

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February – with essentially the same cast – at the English National Opera in London.

  12. Atomic physics

    SciTech Connect

    Livingston, A.E.; Kukla, K.; Cheng, S.

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  13. Silicon chemistry in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Langer, William D.; Glassgold, A. E.

    1990-01-01

    A new model of interstellar silicon chemistry is presented that explains the lack of SiO detections in cold clouds and contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine-structure levels of the silicon atom. As part of the explanation of the lack of SiO detections at low temperatures and densities, the model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundance of oxygen bearing molecules and the depletion of interstellar silicon.

  14. Synthetic chemistry with nitrous oxide.

    PubMed

    Severin, Kay

    2015-10-01

    This review article summarizes efforts to use nitrous oxide (N2O, 'laughing gas') as a reagent in synthetic chemistry. The focus will be on reactions which are carried out in homogeneous solution under (relatively) mild conditions. First, the utilization of N2O as an oxidant is discussed. Due to the low intrinsic reactivity of N2O, selective oxidation reactions of highly reactive compounds are possible. Furthermore, it is shown that transition metal complexes can be used to catalyze oxidation reactions, in some cases with high turnover numbers. In the final part of this overview, the utilization of N2O as a building block for more complex molecules is discussed. It is shown that N2O can be used as an N-atom donor for the synthesis of interesting organic molecules such as triazenes and azo dyes. PMID:26104268

  15. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of

  16. WATER CHEMISTRY ASSESSMENT METHODS

    EPA Science Inventory

    This section summarizes and evaluates the surfce water column chemistry assessment methods for USEPA/EMAP-SW, USGS-NAQA, USEPA-RBP, Oho EPA, and MDNR-MBSS. The basic objective of surface water column chemistry assessment is to characterize surface water quality by measuring a sui...

  17. Movies in Chemistry Education

    ERIC Educational Resources Information Center

    Pekdag, Bulent; Le Marechal, Jean-Francois

    2010-01-01

    This article reviews numerous studies on chemistry movies. Movies, or moving pictures, are important elements of multimedia and signify a privileged or motivating means of presenting knowledge. Studies on chemistry movies show that the first movie productions in this field were devoted to university lectures or documentaries. Shorter movies were

  18. Chemistry Basic Learning Objectives.

    ERIC Educational Resources Information Center

    Rouse, John P.

    1981-01-01

    Presents a list of objectives drawn from results of a questionnaire sent to secondary and college chemistry teachers to indicate which ideas or concepts should be required of every student completing a secondary level chemistry course. Reviews rationale for the study and lists statements used in the questionnaire. (SK)

  19. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  20. Infrared Lasers in Chemistry.

    ERIC Educational Resources Information Center

    John, Phillip

    1982-01-01

    Selected infrared laser chemistry topics are discussed including carbon dioxide lasers, infrared quanta and molecules, laser-induced chemistry, structural isomerization (laser purification, sensitized reactions, and dielectric breakdown), and fundamental principles of laser isotope separation, focusing on uranium isotope separation. (JN)