Science.gov

Sample records for hot electron transistor

  1. A graphene-based hot electron transistor.

    PubMed

    Vaziri, Sam; Lupina, Grzegorz; Henkel, Christoph; Smith, Anderson D; Ostling, Mikael; Dabrowski, Jarek; Lippert, Gunther; Mehr, Wolfgang; Lemme, Max C

    2013-04-10

    We experimentally demonstrate DC functionality of graphene-based hot electron transistors, which we call graphene base transistors (GBT). The fabrication scheme is potentially compatible with silicon technology and can be carried out at the wafer scale with standard silicon technology. The state of the GBTs can be switched by a potential applied to the transistor base, which is made of graphene. Transfer characteristics of the GBTs show ON/OFF current ratios exceeding 10(4). PMID:23488893

  2. Transport Properties of III-N Hot Electron Transistors

    NASA Astrophysics Data System (ADS)

    Suntrup, Donald J., III

    Unipolar hot electron transistors (HETs) represent a tantalizing alternative to established bipolar transistor technologies. During device operation electrons are injected over a large emitter barrier into the base where they travel along the device axis with very high velocity. Upon arrival at the collector barrier, high-energy electrons pass over the barrier and contribute to collector current while low-energy electrons are quantum mechanically reflected back into the base. Designing the base with thickness equal to or less than the hot electron mean free path serves to minimize scattering events and thus enable quasi-ballistic operation. Large current gain is achieved by increasing the ratio of transmitted to reflected electrons. Although III-N HETs have undergone substantial development in recent years, there remain ample opportunities to improve key device metrics. In order to engineer improved device performance, a deeper understanding of the operative transport physics is needed. Fortunately, the HET provides fertile ground for studying several prominent electron transport phenomena. In this thesis we present results from several studies that use the III-N HET as both emitter and analyzer of hot electron momentum states. The first provides a measurement of the hot electron mean free path and the momentum relaxation rate in GaN; the second relies on a new technique called electron injection spectroscopy to investigate the effects of barrier height inhomogeneity in the emitter. To supplement our analysis we develop a comprehensive theory of coherent electron transport that allows us to model the transfer characteristics of complex heterojunctions. Such a model provides a theoretical touchstone with which to compare our experimental results. While these studies are of potential interest in their own right, we interpret the results with an eye toward improving next-generation device performance.

  3. Structure and Process of Infrared Hot Electron Transistor Arrays

    PubMed Central

    Fu, Richard

    2012-01-01

    An infrared hot-electron transistor (IHET) 5 × 8 array with a common base configuration that allows two-terminal readout integration was investigated and fabricated for the first time. The IHET structure provides a maximum factor of six in improvement in the photocurrent to dark current ratio compared to the basic quantum well infrared photodetector (QWIP), and hence it improved the array S/N ratio by the same factor. The study also showed for the first time that there is no electrical cross-talk among individual detectors, even though they share the same emitter and base contacts. Thus, the IHET structure is compatible with existing electronic readout circuits for photoconductors in producing sensitive focal plane arrays. PMID:22778655

  4. On noise sources in hot electron-degraded bipolar junction transistors

    NASA Astrophysics Data System (ADS)

    Llinares, P.; Ghibaudo, G.; Chroboczek, J. A.

    1997-09-01

    The effects of electrical stress on static characteristics and power spectral density, SIb, of base current, Ib, fluctuations at low frequencies, f<1 kHz, have been studied in quasiself-aligned bipolar n-p-n junction. In as-fabricated devices SIb∝1/AE, where AE is the transistor emitter area, whereas in strongly degraded transistors Sib∝1/PE, where PE is the transistor perimeter. The latter demonstrates directly that hot carrier-induced noise sources are generated at the periphery of the transistors, in agreement with former work on hot electron-induced aging of bipolar junction transistors.

  5. Design of III-Nitride Hot Electron Transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Geetak

    III-Nitride based devices have made great progress over the past few decades in electronics and photonics applications. As the technology and theoretical understanding of the III-N system matures, the limitations on further development are based on very basic electronic properties of the material, one of which is electron scattering (or ballistic electron effects). This thesis explores the design space of III-N based ballistic electron transistors using novel design, growth and process techniques. The hot electron transistor (HET) is a unipolar vertical device that operates on the principle of injecting electrons over a high-energy barrier (φBE) called the emitter into an n-doped region called base and finally collecting the high energy electrons (hot electrons) over another barrier (φBC) called the collector barrier. The injected electrons traverse the base in a quasi-ballistic manner. Electrons that get scattered in the base contribute to base current. High gain in the HET is thus achieved by enabling ballistic transport of electrons in the base. In addition, low leakage across the collector barrier (I BCleak) and low base resistance (RB) are needed to achieve high performance. Because of device attributes such as vertical structure, ballistic transport and low-resistance n-type base, the HET has the potential of operating at very high frequencies. Electrical measurements of a HET structure can be used to understand high-energy electron physics and extract information like mean free path in semiconductors. The III-Nitride material system is particularly suited for HETs as it offers a wide range of DeltaEcs and polarization charges which can be engineered to obtain barriers which can inject hot-electrons and have low leakage at room temperature. In addition, polarization charges in the III-N system can be engineered to obtain a high-density and high-mobility 2DEG in the base, which can be used to reduce base resistance and allow vertical scaling. With these

  6. Dual-mode operation of 2D material-base hot electron transistors

    PubMed Central

    Lan, Yann-Wen; Torres, Jr., Carlos M.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  7. Dual-mode operation of 2D material-base hot electron transistors.

    PubMed

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  8. High-Current Gain Two-Dimensional MoS₂-Base Hot-Electron Transistors.

    PubMed

    Torres, Carlos M; Lan, Yann-Wen; Zeng, Caifu; Chen, Jyun-Hong; Kou, Xufeng; Navabi, Aryan; Tang, Jianshi; Montazeri, Mohammad; Adleman, James R; Lerner, Mitchell B; Zhong, Yuan-Liang; Li, Lain-Jong; Chen, Chii-Dong; Wang, Kang L

    2015-12-01

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. PMID:26524388

  9. Negative differential resistance in GaN tunneling hot electron transistors

    SciTech Connect

    Yang, Zhichao; Nath, Digbijoy; Rajan, Siddharth

    2014-11-17

    Room temperature negative differential resistance is demonstrated in a unipolar GaN-based tunneling hot electron transistor. Such a device employs tunnel-injected electrons to vary the electron energy and change the fraction of reflected electrons, and shows repeatable negative differential resistance with a peak to valley current ratio of 7.2. The device was stable when biased in the negative resistance regime and tunable by changing collector bias. Good repeatability and double-sweep characteristics at room temperature show the potential of such device for high frequency oscillators based on quasi-ballistic transport.

  10. Superconductor-Base Hot-Electron Transistor. II. Fabrication and Electrical Measurement

    NASA Astrophysics Data System (ADS)

    Sakai, Hiroyuki; Kurita, Yoshiyuki; Tonouchi, Masayoshi; Kobayashi, Takeshi

    1986-06-01

    Superconductor-base hot-electron transistors (Super-HETs) comprising n+-GaAs/Nb(or NbN)/α-InSb/Au multiplelayers were fabricated and electrical measurements were made at liquid-helium temperature. The observed hot-electron transport efficiency was as high as 80% for a device with a 200Å thick Nb base, close to the theoretical 90%. A device with a 600Å NbN base exhibited an efficiency of 60%. The sputtered InSb film served as a suitable collector barrier with a lower barrier height and an extremely reduced quantum mechanical reflection for incident hot-electrons. However, the space-charge limited current was still limited to the lower value, probably due to residual defects.

  11. Ballistic Hot Electron Transport in Heteroepitaxial SrRuO3 Metal-Base Transistors

    NASA Astrophysics Data System (ADS)

    Kim, Brian; Hikita, Yasuyuki; Yajima, Takeaki; Bell, Christopher; Hwang, Harold

    Perovskite oxide heterostructures is a rapidly emerging field significant for interface-induced electronic and magnetic reconstructions, resulting in novel phases distinct from those found in the bulk counterparts. Notably, utilizing device structures is an effective way to probe these interface-induced phases. One of the most prevalent device structures that has been adopted so far is a three-terminal field-effect geometry, used to probe in-plane electronic transport properties. However, the out-of-plane three-terminal device geometry, though less studied due to its complexity, is also useful in many aspects. In the metal-base transistor (MBT), for instance, ballistic transport of hot electrons injected across a Schottky diode emitter can be used to probe hot electron properties of the metal-base, providing information on inelastic scattering mechanisms, electron confinement effects, and intervalley transfer. One promising model system for the metal-base is SrRuO3 (SRO), characterized by intermediate electron correlations with unusual transport properties. Here we present an all-perovskite oxide heteroepitaxial MBT using SRO as a metal-base layer. Successful MBT operation for various metal-base layer thicknesses was achieved, from which the hot electron attenuation length of SRO was deduced. These results form a foundation on which to examine the properties of hot electrons in strongly correlated systems using the out-of-plane three-terminal device geometry.

  12. Electroluminescence of hot electrons in AlGaN/GaN high-electron-mobility transistors under radio frequency operation

    SciTech Connect

    Brazzini, Tommaso Sun, Huarui; Uren, Michael J.; Kuball, Martin; Casbon, Michael A.; Lees, Jonathan; Tasker, Paul J.; Jung, Helmut; Blanck, Hervé

    2015-05-25

    Hot electrons in AlGaN/GaN high electron mobility transistors are studied during radio frequency (RF) and DC operation by means of electroluminescence (EL) microscopy and spectroscopy. The measured EL intensity is decreased under RF operation compared to DC at the same average current, indicating a lower hot electron density. This is explained by averaging the DC EL intensity over the measured load line used in RF measurements, giving reasonable agreement. In addition, the hot electron temperature is lower by up to 15% under RF compared to DC, again at least partially explainable by the weighted averaging along the specific load line. However, peak electron temperature under RF occurs at high V{sub DS} and low I{sub DS} where EL is insignificant suggesting that any wear-out differences between RF and DC stress of the devices will depend on the balance between hot-carrier and field driven degradation mechanisms.

  13. Resonant plasmonic terahertz detection in vertical graphene-base hot-electron transistors

    SciTech Connect

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Mitin, V.; Shur, M. S.

    2015-11-28

    We analyze dynamic properties of vertical graphene-base hot-electron transistors (GB-HETs) and consider their operation as detectors of terahertz (THz) radiation using the developed device model. The GB-HET model accounts for the tunneling electron injection from the emitter, electron propagation across the barrier layers with the partial capture into the GB, and the self-consistent oscillations of the electric potential and the hole density in the GB (plasma oscillations), as well as the quantum capacitance and the electron transit-time effects. Using the proposed device model, we calculate the responsivity of GB-HETs operating as THz detectors as a function of the signal frequency, applied bias voltages, and the structural parameters. The inclusion of the plasmonic effect leads to the possibility of the GB-HET operation at the frequencies significantly exceeding those limited by the characteristic RC-time. It is found that the responsivity of GB-HETs with a sufficiently perfect GB exhibits sharp resonant maxima in the THz range of frequencies associated with the excitation of plasma oscillations. The positions of these maxima are controlled by the applied bias voltages. The GB-HETs can compete with and even surpass other plasmonic THz detectors.

  14. Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors.

    PubMed

    Vaziri, S; Belete, M; Dentoni Litta, E; Smith, A D; Lupina, G; Lemme, M C; Östling, M

    2015-08-14

    Vertical graphene-based device concepts that rely on quantum mechanical tunneling are intensely being discussed in the literature for applications in electronics and optoelectronics. In this work, the carrier transport mechanisms in semiconductor-insulator-graphene (SIG) capacitors are investigated with respect to their suitability as electron emitters in vertical graphene base transistors (GBTs). Several dielectric materials as tunnel barriers are compared, including dielectric double layers. Using bilayer dielectrics, we experimentally demonstrate significant improvements in the electron injection current by promoting Fowler-Nordheim tunneling (FNT) and step tunneling (ST) while suppressing defect mediated carrier transport. High injected tunneling current densities approaching 10(3) A cm(-2) (limited by series resistance), and excellent current-voltage nonlinearity and asymmetry are achieved using a 1 nm thick high quality dielectric, thulium silicate (TmSiO), as the first insulator layer, and titanium dioxide (TiO2) as a high electron affinity second layer insulator. We also confirm the feasibility and effectiveness of our approach in a full GBT structure which shows dramatic improvement in the collector on-state current density with respect to the previously reported GBTs. The device design and the fabrication scheme have been selected with future CMOS process compatibility in mind. This work proposes a bilayer tunnel barrier approach as a promising candidate to be used in high performance vertical graphene-based tunneling devices. PMID:26176739

  15. Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors

    NASA Astrophysics Data System (ADS)

    Vaziri, S.; Belete, M.; Dentoni Litta, E.; Smith, A. D.; Lupina, G.; Lemme, M. C.; Östling, M.

    2015-07-01

    Vertical graphene-based device concepts that rely on quantum mechanical tunneling are intensely being discussed in the literature for applications in electronics and optoelectronics. In this work, the carrier transport mechanisms in semiconductor-insulator-graphene (SIG) capacitors are investigated with respect to their suitability as electron emitters in vertical graphene base transistors (GBTs). Several dielectric materials as tunnel barriers are compared, including dielectric double layers. Using bilayer dielectrics, we experimentally demonstrate significant improvements in the electron injection current by promoting Fowler-Nordheim tunneling (FNT) and step tunneling (ST) while suppressing defect mediated carrier transport. High injected tunneling current densities approaching 103 A cm-2 (limited by series resistance), and excellent current-voltage nonlinearity and asymmetry are achieved using a 1 nm thick high quality dielectric, thulium silicate (TmSiO), as the first insulator layer, and titanium dioxide (TiO2) as a high electron affinity second layer insulator. We also confirm the feasibility and effectiveness of our approach in a full GBT structure which shows dramatic improvement in the collector on-state current density with respect to the previously reported GBTs. The device design and the fabrication scheme have been selected with future CMOS process compatibility in mind. This work proposes a bilayer tunnel barrier approach as a promising candidate to be used in high performance vertical graphene-based tunneling devices.

  16. Current gain above 10 in sub-10 nm base III-Nitride tunneling hot electron transistors with GaN/AlN emitter

    NASA Astrophysics Data System (ADS)

    Yang, Zhichao; Zhang, Yuewei; Krishnamoorthy, Sriram; Nath, Digbijoy N.; Khurgin, Jacob B.; Rajan, Siddharth

    2016-05-01

    We report on a tunneling hot electron transistor amplifier with common-emitter current gain greater than 10 at a collector current density in excess of 40 kA/cm2. The use of a wide-bandgap GaN/AlN (111 nm/2.5 nm) emitter was found to greatly improve injection efficiency of the emitter and reduce cold electron leakage. With an ultra-thin (8 nm) base, 93% of the injected hot electrons were collected, enabling a common-emitter current gain up to 14.5. This work improves understanding of the quasi-ballistic hot electron transport and may impact the development of high speed devices based on unipolar hot electron transport.

  17. Current gain in sub-10 nm base GaN tunneling hot electron transistors with AlN emitter barrier

    SciTech Connect

    Yang, Zhichao Zhang, Yuewei; Nath, Digbijoy N.; Rajan, Siddharth; Khurgin, Jacob B.

    2015-01-19

    We report on Gallium Nitride-based tunneling hot electron transistor amplifier with common-emitter current gain greater than 1. Small signal current gain up to 5 and dc current gain of 1.3 were attained in common-emitter configuration with collector current density in excess of 50 kA/cm{sup 2}. The use of a combination of 1 nm GaN/3 nm AlN layers as an emitter tunneling barrier was found to improve the energy collimation of the injected electrons. These results represent demonstration of unipolar vertical transistors in the III-nitride system that can potentially lead to higher frequency and power microwave devices.

  18. Impact ionization in the base of a hot-electron AlSb/InAs bipolar transistor

    NASA Technical Reports Server (NTRS)

    Vengurlekar, Arvind S.; Capasso, Federico; Chiu, T. Heng

    1990-01-01

    The operation of a new AlSb/InAs heterojunction bipolar transistor is studied. The electrons are injected into a p-InAs base across the AlSb/InAs heterojunction. The conduction-band discontinuity at this heterojunction is sufficiently large so that energy of the electrons injected into InAs exceeds the threshold for generating electron-hole pairs by impact ionization. The observed incremental common base current at zero collector-base bias decreases and becomes negative as the emitter current is increased, thus providing direct evidence for impact ionization entirely by band-edge discontinuities.

  19. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    SciTech Connect

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-10-06

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO{sub 2} interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  20. Ensemble Monte Carlo particle investigation of hot electron induced source-drain burnout characteristics of GaAs field-effect transistors

    NASA Astrophysics Data System (ADS)

    Moglestue, C.; Buot, F. A.; Anderson, W. T.

    1995-08-01

    The lattice heating rate has been calculated for GaAs field-effect transistors of different source-drain channel design by means of the ensemble Monte Carlo particle model. Transport of carriers in the substrate and the presence of free surface charges are also included in our simulation. The actual heat generation was obtained by accounting for the energy exchanged with the lattice of the semiconductor during phonon scattering. It was found that the maximum heating rate takes place below the surface near the drain end of the gate. The results correlate well with a previous hydrodynamic energy transport estimate of the electronic energy density, but shifted slightly more towards the drain. These results further emphasize the adverse effects of hot electrons on the Ohmic contacts.

  1. Single-Electron Transistors

    NASA Astrophysics Data System (ADS)

    Fulton, T. A.

    2000-03-01

    Subsequent to the early work, the basic all-metal single-electron transistor (SET) and its semiconductor counterparts have become widely studied, both for their own behavior and for applications. For many people, the SET is an everyday research tool whose inner workings, even though they depend on charge quantization and the energy-time uncertainty principle, can readily be understood (given electron tunneling) by simple arguments based on elementary circuit models. Our own further studies, in various collaborations, were first concerned with finding and studying interactions between charging effects and Josephson tunneling in SET circuits, which had been the original motivation. Later, looking into applications for SETs, we demonstrated a crude but recognizable form of single-electron memory. Significant digital-circuit applications of SETs still seem remote, alas, but some analog applications are promising. Recently, in an ongoing collaboration, we have fabricated an SET on the tip of a tapered glass fiber for use as a scanning probe. With it, we have mapped the electric fields over a two-dimensional electron gas having a density, n, that varies with position. In the quantum Hall regime, step-like changes in surface potential are seen along lines where n corresponds to an integer filling factor ("edge-state regions"). Currently, we are investigating certain sub-micrometer structures, which sometimes form small networks, that appear in these regions. This structure seems to involve localization of individual electrons. note

  2. Hot-electron mean free path of ErAs thin films grown on GaAs determined by metal-base transistor ballistic electron emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Russell, K. J.; Narayanamurti, V.; Appelbaum, Ian; Hanson, M. P.; Gossard, A. C.

    2006-11-01

    We present an experimental investigation of the hot-electron mean free path in ErAs thin films grown on GaAs. Using an Al/Al2O3/Al tunnel junction as a hot-electron source for ballistic electron emission spectroscopy, we investigate ErAs films of thicknesses ˜100-˜300Å . Our results indicate a mean free path of order 100Å for electrons 1-2eV above the Fermi level at 80K .

  3. The role of ultrathin AlN barrier in the reduction in the hot electron and self-heating effects for GaN-based double-heterojunction high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, L.; Hu, W. D.; Chen, X. S.; Lu, W.

    2010-09-01

    We propose an AlN/GaN/InGaN/GaN double-heterojunction high electron mobility transistor (DH-HEMT) structure with a 4 nm thin AlN barrier layer. The performance of the DH-HEMT device is investigated by using two-dimensional numerical simulation. The conduction band profile is obtained by using the Poisson's equation and Fermi-Dirac statistics in combination with the polarization charges. Due to large conduction-band offset of the AlN/GaN interface and strong polarization of AlN, the minor channel at GaN/InGaN interface can be eliminated. Further, the hot electron and self-heating effects on the transport properties of this DH-HEMT are investigated by using hydrodynamic model. In comparison with the AlGaN barrier DH-HEMT and conventional HEMT, this kind of DH-HEMT can effectively reduce the hot electron effect under high voltage. The reason is that the maximum field strength is far below the critical value for the existence of the hot electron effect in the AlGaN barrier DH-HEMTs and conventional HEMTs with the same voltage 6 V. The simulation results also show that the ultrathin AlN barrier layer can significantly reduce thermal impedance, and then lower the self-heating effect. Furthermore, the passivation layer has significant role in the self-heating effect of the ultrathin barrier DH-HEMTs.

  4. Enhanced thermal radiation in terahertz and far-infrared regime by hot phonon excitation in a field effect transistor

    SciTech Connect

    Chung, Pei-Kang; Yen, Shun-Tung

    2014-11-14

    We demonstrate the hot phonon effect on thermal radiation in the terahertz and far-infrared regime. A pseudomorphic high electron mobility transistor is used for efficiently exciting hot phonons. Boosting the hot phonon population can enhance the efficiency of thermal radiation. The transistor can yield at least a radiation power of 13 μW and a power conversion efficiency higher than a resistor by more than 20%.

  5. Velocity Saturation of Hot Carriers in Two-Dimensional Transistors

    NASA Astrophysics Data System (ADS)

    Bird, Jonathan

    Two-dimensional (2D) materials, including graphene and transition-metal dichalcogenides, have emerged in recent years as possible ``channel-replacement'' materials for use in future generations of post-CMOS devices. Realizing the full potential of these materials requires strategies to maximize their current-carrying capacity, while minimizing Joule losses to its environment. A major source of dissipation for hot carriers in any semiconductor is spontaneous optical-phonon emission, resulting in saturation of the drift velocity. In this presentation, I discuss the results of studies of velocity saturation in both graphene and molybdenum-disulphide transistors, emphasizing how this phenomenon impacts resulting transistor operation. While in graphene the large intrinsic optical-phonon energies promise high saturation velocities, experiments to date have revealed a significant degradation of the drift velocity that arises from the loss of energy from hot carriers to the underlying substrate. I discuss here how this problem can be overcome by implementing a strategy of nanosecond electrical pulsing [H. Ramamoorthy et al., Nano Lett., under review], as a means to drive graphene's hot carriers much faster than substrate heating can occur. In this way we achieve saturation velocities that approach the Fermi velocity near the Dirac point, and which exceed those reported for suspended graphene and for devices fabricated on boron nitride substrates. Corresponding current densities reach those found in carbon nanotubes, and in graphene-on-diamond transistors. In this sense we are able to ``free'' graphene from the influence of its substrate, revealing a pathway to achieve the superior electrical performance promised by this material. Velocity saturation is also found to be important for the operation of monolayer molybdenum-disulphide transistors, where it limits the drain current observed in saturation [G. He et al., Nano Lett. 15, 5052 (2015)]. The implications of these

  6. Fully overheated single-electron transistor.

    PubMed

    Laakso, M A; Heikkilä, T T; Nazarov, Yuli V

    2010-05-14

    We consider the fully overheated single-electron transistor, where the heat balance is determined entirely by electron transfers. We find three distinct transport regimes corresponding to cotunneling, single-electron tunneling, and a competition between the two. We find an anomalous sensitivity to temperature fluctuations at the crossover between the two latter regimes that manifests in an exceptionally large Fano factor of current noise. PMID:20866990

  7. Imaging dissipation and hot spots in carbon nanotube network transistors

    NASA Astrophysics Data System (ADS)

    Estrada, David; Pop, Eric

    2011-02-01

    We use infrared thermometry of carbon nanotube network (CNN) transistors and find the formation of distinct hot spots during operation. However, the average CNN temperature at breakdown is significantly lower than expected from the breakdown of individual nanotubes, suggesting extremely high regions of power dissipation at the CNN junctions. Statistical analysis and comparison with a thermal model allow the estimate of an upper limit for the average tube-tube junction thermal resistance, ˜4.4×1011 K/W (thermal conductance of ˜2.27 pW/K). These results indicate that nanotube junctions have a much greater impact on CNN transport, dissipation, and reliability than extrinsic factors such as low substrate thermal conductivity.

  8. Parametric resonance in nanoelectromechanical single electron transistors.

    PubMed

    Midtvedt, Daniel; Tarakanov, Yury; Kinaret, Jari

    2011-04-13

    We show that the coupling between single-electron charging and mechanical motion in a nanoelectromechanical single-electron transistor can be utilized in a novel parametric actuation scheme. This scheme, which relies on a periodic modulation of the mechanical resonance frequency through an alternating source-drain voltage, leads to a parametric instability and emergence of mechanical vibrations in a limited range of modulation amplitudes. Remarkably, the frequency range where instability occurs and the maximum oscillation amplitude, depend weakly on the damping in the system. We also show that a weak parametric modulation increases the effective quality factor and amplifies the system's response to the conventional actuation that exploits an AC gate signal. PMID:21375279

  9. Silicon Hot-Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Hsieh, Wen-Ting; Mitchell, Robert R.; Isenberg, Hal D.; Stahle, Carl M.; Cao, Nga T.; Schneider, Gideon; Travers, Douglas E.; Moseley, S. Harvey; Wollack, Edward J.

    2004-01-01

    We discuss a new type of direct detector, a silicon hot-electron bolometer, for measurements in the far-infrared and submillimeter spectral ranges. High performance bolometers can be made using the electron-phonon conductance in heavily doped silicon to provide thermal isolation from the cryogenic bath. Noise performance is expected to be near thermodynamic limits, allowing background limited performance for many far infrared and submillimeter photometric and spectroscopic applications.

  10. Two-dimensional materials and their prospects in transistor electronics.

    PubMed

    Schwierz, F; Pezoldt, J; Granzner, R

    2015-05-14

    During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided. PMID:25898786

  11. Impact ionization in N-polar AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Killat, N. E-mail: Martin.Kuball@bristol.ac.uk; Uren, M. J.; Kuball, M. E-mail: Martin.Kuball@bristol.ac.uk; Keller, S.; Kolluri, S.; Mishra, U. K.

    2014-08-11

    The existence of impact ionization as one of the open questions for GaN device reliability was studied in N-polar AlGaN/GaN high electron mobility transistors. Electroluminescence (EL) imaging and spectroscopy from underneath the device gate contact revealed the presence of hot electrons in excess of the GaN bandgap energy even at moderate on-state bias conditions, enabling impact ionization with hole currents up to several hundreds of pA/mm. The detection of high energy luminescence from hot electrons demonstrates that EL analysis is a highly sensitive tool to study degradation mechanisms in GaN devices.

  12. Examination of hot-carrier stress induced degradation on fin field-effect transistor

    SciTech Connect

    Yang, Yi-Lin Yen, Tzu-Sung; Ku, Chao-Chen; Wu, Tai-Hsuan; Wang, Tzuo-Li; Li, Chien-Yi; Wu, Bing-Tze; Zhang, Wenqi; Hong, Jia-Jian; Wong, Jie-Chen; Yeh, Wen-Kuan; Lin, Shih-Hung

    2014-02-24

    Degradation in fin field-effect transistor devices was investigated in detail under various hot-carrier stress conditions. The threshold voltage (V{sub TH}) shift, substrate current (I{sub B}), and subthreshold swing were extracted to determine the degradation of a device. The power-law time exponent of the V{sub TH} shift was largest at V{sub G} = 0.3 V{sub D}, indicating that the V{sub TH} shift was dominated by interface state generation. Although the strongest impact ionization occurred at V{sub G} = V{sub D}, the V{sub TH} shift was mainly caused by electron trapping resulting from a large gate leakage current.

  13. Hot Electron Effects in Semiconductors.

    NASA Astrophysics Data System (ADS)

    Moore, James Scott

    The high-field transport of electrons has been calculated for two semiconductor configurations: quasi -two-dimensional and bulk. All calculations are performed by solving the Boltzmann equation, assuming a displaced Maxwellian distribution function. In the case of quasi-two-dimensional semiconductors, this treatment is applied to a <100> inversion layer in silicon. Under a high electric field, energy levels become grouped into subbands, so that motion of carriers perpendicular to the surface becomes quantized; thus, the energy, momentum and population transfer relaxation rates appropriate to the individual levels must be considered in the calculations, along with their relation to velocity overshoot. Previous work was performed under the assumption that intervalley scattering is a local phenomenon, i.e., a function only of electron temperature of the initial valley. In the present work, this assumption has been relaxed, and the intervalley coupling of electron temperature is taken into account. dc and transient response characteristics for both uncoupled and coupled models are performed, and the results are compared. Due to the recent interest in GaAs/Al(,x)Ga(,1 -x)As superlattices, there exists a need for a theory of hot electron transport in these structures. Since GaAs is a polar semiconductor, a theory must first be derived for polar III-V compounds under inversion, the result then being easily extended to superlattices. In this work, such theory is derived but, due to the alignment of the subbands, the simultaneous balance equations cannot be solved numerically with the approach undertaken here (solution of the Boltzmann equation). A theory of transport in bulk III-V compounds is modified by some simplifying approximations to make the theory numerically tractable, this theory then being applied to model bulk III-V compounds (in particular dc and transient response characteristics), along with their ternary and quaternary alloys. These results are found to

  14. Calculating drain delay in high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Coffie, R.

    2015-12-01

    An expression for the signal delay (drain delay) associated with electrons traveling through the gate-drain depletion region has been obtained for nonuniform electron velocity. Due to the presence of the gate metal, the signal delay through the gate-drain depletion region was shown to be larger than the signal delay in the base-collector depletion region of a bipolar transistor when equal depletion lengths and velocity profiles were assumed. Drain delay is also shown to be larger in transistors with field plates (independent of field plate connection) compared to transistors without field plates when equal depletion lengths and velocity profiles were assumed. For the case of constant velocity, two expressions for the proportionality constant relating drain delay and electron transit time across the depletion were obtained.

  15. Hot electron production and heating by hot electrons in fast ignitor research

    SciTech Connect

    Key, M.H.; Estabrook, K.; Hammel, B.

    1997-12-01

    In an experimental study of the physics of fast ignition the characteristics of the hot electron source at laser intensities up to 10(to the 20th power) Wcm{sup -2} and the heating produced at depth by hot electrons have been measured. Efficient generation of hot electrons but less than the anticipated heating have been observed.

  16. Ion acceleration by hot electrons in microclusters

    SciTech Connect

    Breizman, Boris N.; Arefiev, Alexey V.

    2007-07-15

    A self-consistent analytical description is presented for collisionless expansion of a fully ionized cluster with a two-component electron distribution. The problem is solved for an initial 'water-bag' distribution of hot electrons with no angular momentum, which reflects the mechanism of electron heating. This distribution evolves in time due to adiabatic cooling of hot electrons. The solution involves a cold core of the cluster, a thin double layer at the cluster edge, and a quasineutral flow with a rarefaction wave. The presented analysis predicts a substantial number of accelerated ions with energies greater than the cutoff energy of the initial distribution of the hot electrons.

  17. A compact model for multi-island single electron transistors.

    PubMed

    Chi, Yaqing; Zhong, Haiqin; Zhang, Chao; Fang, Liang

    2011-12-01

    Multi-island single electron transistor is an important kind of the single electron transistor, which is convenient to realize the controllable room temperature operation. A novel semi-empirical compact model for the Multi-island single electron transistor is proposed. The new approach combines the orthodox theory of the single electron tunneling through single coulomb island and a novel empirical analysis procedure for the chain of multi coulomb islands to solve the current of the whole multi-island single electron transistor. The tunneling rates are calculated based on the orthodox theory for the single electron tunneling. The tunneling currents representing the first splitted peaks in the coulomb oscillation curves are calculated according to the assumption that the currents through all the coulomb islands are equal to each other at the stable states, while the currents representing the other splitted peaks are constructed and merged together according to the empirical analysis. The model is verified by the traditional SET simulator SIMON and shows much faster calculation speed than SIMON. Therefore, the novel compact model is suitable for the large scale MISET circuit simulation. PMID:22409069

  18. Multiplexing of Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  19. Degradation and annealing effects caused by oxygen in AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Jiang, R.; Shen, X.; Chen, J.; Duan, G. X.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Kaun, S. W.; Kyle, E. C. H.; Speck, J. S.; Pantelides, S. T.

    2016-07-01

    Hot-carrier degradation and room-temperature annealing effects are investigated in unpassivated ammonia-rich AlGaN/GaN high electron mobility transistors. Devices exhibit a fast recovery when annealed after hot carrier stress with all pins grounded. The recovered peak transconductance can exceed the original value, an effect that is not observed in control passivated samples. Density functional theory calculations suggest that dehydrogenation of pre-existing ON-H defects in AlGaN plays a significant role in the observed hot carrier degradation, and the resulting bare ON can naturally account for the "super-recovery" in the peak transconductance.

  20. Hot electron spin transport in C60 fullerene

    NASA Astrophysics Data System (ADS)

    Hueso, Luis Eduardo; Gobbi, Marco; Bedoya-Pinto, Amilcar; Golmar, Federico; Llopis, Roger; Casanova, Felix

    2012-02-01

    Carbon-based molecular materials are interesting for spin transport application mainly due to their small sources of spin relaxation [1]. However, spin coherence lengths reported in many molecular films do not exceed a few tens of nanometers [2]. In this work we will present results showing how hot spin-polarized electrons injected well above the Fermi level in C60 fullerene films travel coherently for hundreds of nanometers. We fabricated hot-electron vertical transistors, in which the current created across an Al/Al2O3 junction is polarized by a metallic Co/Cu/Py spin valve trilayer and subsequently injected in the molecular thin film. This geometry allows us to determine the energy level alignment at each interface between different materials. Moreover, the collector magnetocurrent excess 85%, even for C60 films thicknesses of 300 nm. We believe these results show the importance of hot spin-polarized electron injection and propagation in molecular materials. [1] V. Dediu, L.E. Hueso, I. Bergenti, C. Taliani, Nature Mater. 8, 707 (2009) [2] M. Gobbi, F. Golmar, R. Llopis, F. Casanova, L.E. Hueso, Adv. Mater. 23, 1609 (2011)

  1. Reconfigurable Boolean logic using magnetic single-electron transistors.

    PubMed

    Gonzalez-Zalba, M Fernando; Ciccarelli, Chiara; Zarbo, Liviu P; Irvine, Andrew C; Campion, Richard C; Gallagher, Bryan L; Jungwirth, Tomas; Ferguson, Andrew J; Wunderlich, Joerg

    2015-01-01

    We propose a novel hybrid single-electron device for reprogrammable low-power logic operations, the magnetic single-electron transistor (MSET). The device consists of an aluminium single-electron transistor with a GaMnAs magnetic back-gate. Changing between different logic gate functions is realized by reorienting the magnetic moments of the magnetic layer, which induces a voltage shift on the Coulomb blockade oscillations of the MSET. We show that we can arbitrarily reprogram the function of the device from an n-type SET for in-plane magnetization of the GaMnAs layer to p-type SET for out-of-plane magnetization orientation. Moreover, we demonstrate a set of reprogrammable Boolean gates and its logical complement at the single device level. Finally, we propose two sets of reconfigurable binary gates using combinations of two MSETs in a pull-down network. PMID:25923789

  2. A plasmonic terahertz detector with a monolithic hot electron bolometer.

    PubMed

    Dyer, G C; Crossno, J D; Aizin, G R; Shaner, E A; Wanke, M C; Reno, J L; Allen, S J

    2009-05-13

    A plasmonic terahertz detector that integrates a voltage-controlled planar barrier into a grating gated GaAs/AlGaAs high electron mobility transistor has been fabricated and experimentally characterized. The plasmonic response at fixed grating gate voltage has a full width at half-maximum of 40 GHz at ∼405 GHz. Substantially increased responsivity is achieved by introducing an independently biased narrow gate that produces a lateral potential barrier electrically in series with the resonant grating gated region. DC electrical characterization in conjunction with bias-dependent terahertz responsivity and time constant measurements indicate that a hot electron bolometric effect is the dominant response mechanism at 20 K. PMID:21825498

  3. Hot electron plasmon-protected solar cell.

    PubMed

    Kong, J; Rose, A H; Yang, C; Wu, X; Merlo, J M; Burns, M J; Naughton, M J; Kempa, K

    2015-09-21

    A solar cell based on a hot electron plasmon protection effect is proposed and made plausible by simulations, non-local modeling of the response, and quantum mechanical calculations. In this cell, a thin-film, plasmonic metamaterial structure acts as both an efficient photon absorber in the visible frequency range and a plasmonic resonator in the IR range, the latter of which absorbs and protects against phonon emission the free energy of the hot electrons in an adjacent semiconductor junction. We show that in this structure, electron-plasmon scattering is much more efficient than electron-phonon scattering in cooling-off hot electrons, and the plasmon-stored energy is recoverable as an additional cell voltage. The proposed structure could become a prototype of a new generation of high efficiency solar cells. PMID:26406739

  4. Metamaterial perfect absorber based hot electron photodetection.

    PubMed

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  5. Superconducting Quantum Interference Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Enrico, Emanuele; Giazotto, Francesco

    2016-06-01

    We propose the concept of a quantized single-electron source based on the interplay between Coulomb blockade and magnetic flux-controllable superconducting proximity effect. We show that flux dependence of the induced energy gap in the density of states of a nanosized metallic wire can be exploited as an efficient tunable energy barrier which enables charge-pumping configurations with enhanced functionalities. This control parameter strongly affects the charging landscape of a normal metal island with non-negligible Coulombic energy. Under a suitable evolution of a time-dependent magnetic flux the structure behaves like a turnstile for single electrons in a fully electrostatic regime.

  6. Molecular interfaces for plasmonic hot electron photovoltaics

    NASA Astrophysics Data System (ADS)

    Pelayo García de Arquer, F.; Mihi, Agustín; Konstantatos, Gerasimos

    2015-01-01

    The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices.The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. Electronic supplementary information (ESI) available: Contact-potential differentiometry measurements, FTIR characterization, performance statistics and gold devices. See DOI: 10.1039/c4nr06356b

  7. Electronic transport in benzodifuran single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Xiang, An; Li, Hui; Chen, Songjie; Liu, Shi-Xia; Decurtins, Silvio; Bai, Meilin; Hou, Shimin; Liao, Jianhui

    2015-04-01

    Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices.Benzodifuran (BDF) single-molecule transistors have been fabricated in electromigration break junctions for electronic measurements. The inelastic electron tunneling spectrum validates that the BDF molecule is the pathway of charge transport. The gating effect is analyzed in the framework of a single-level tunneling model combined with transition voltage spectroscopy (TVS). The analysis reveals that the highest occupied molecular orbital (HOMO) of the thiol-terminated BDF molecule dominates the charge transport through Au-BDF-Au junctions. Moreover, the energy shift of the HOMO caused by the gate voltage is the main reason for conductance modulation. In contrast, the electronic coupling between the BDF molecule and the gold electrodes, which significantly affects the low-bias junction conductance, is only influenced slightly by the applied gate voltage. These findings will help in the design of future molecular electronic devices. Electronic supplementary information (ESI) available: The fabrication procedure for BDF single

  8. Molecular interfaces for plasmonic hot electron photovoltaics.

    PubMed

    Pelayo García de Arquer, F; Mihi, Agustín; Konstantatos, Gerasimos

    2015-02-14

    The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. PMID:25578026

  9. Intrinsic magnetic refrigeration of a single electron transistor

    NASA Astrophysics Data System (ADS)

    Ciccarelli, C.; Campion, R. P.; Gallagher, B. L.; Ferguson, A. J.

    2016-02-01

    In this work, we show that aluminium doped with low concentrations of magnetic impurities can be used to fabricate quantum devices with intrinsic cooling capabilities. We fabricate single electron transistors made of aluminium doped with 2% Mn by using a standard multi angle evaporation technique and show that the quantity of metal used to fabricate the devices generates enough cooling power to achieve a drop of 160 mK in the electron temperature at the base temperature of our cryostat (300 mK). The cooling mechanism is based on the magneto-caloric effect from the diluted Mn moments.

  10. Hot electron dynamics in graphene

    SciTech Connect

    Ling, Meng-Chieh

    2011-01-01

    Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively isolated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during the recent years. It draws so much attentions not only because of its potential application in future electronic devices but also because of its fundamental properties: its quasiparticles are governed by the two-dimensional Dirac equation, and exhibit a variety of phenomena such as the anomalous integer quantum Hall effect (IQHE) [Novoselov et al. (2005)] measured experimentally, a minimal conductivity at vanishing carrier concentration [Neto et al. (2009)], Kondo effect with magnetic element doping [Hentschel and Guinea (2007)], Klein tunneling in p-n junctions [Cheianov and Fal’ko (2006), Beenakker (2008)], Zitterbewegung [Katsnelson (2006)], and Schwinger pair production [Schwinger (1951); Dora and Moessner (2010)]. Although both electron-phonon coupling and photoconductivity in graphene also draws great attention [Yan et al. (2007); Satou et al. (2008); Hwang and Sarma (2008); Vasko and Ryzhii (2008); Mishchenko (2009)], the nonequilibrium behavior based on the combination of electronphonon coupling and Schwinger pair production is an intrinsic graphene property that has not been investigated. Our motivation for studying clean graphene at low temperature is based on the following effect: for a fixed electric field, below a sufficiently low temperature linear eletric transport breaks down and nonlinear transport dominates. The criteria of the strength of this field [Fritz et al. (2008)] is eE = T2/~vF (1.1) For T >√eE~vF the system is in linear transport regime while for T <√eE~vF the system is in nonlinear transport regime. From the scaling’s point of view, at the nonlinear transport regime

  11. Plasmonically enhanced hot electron based photovoltaic device.

    PubMed

    Atar, Fatih B; Battal, Enes; Aygun, Levent E; Daglar, Bihter; Bayindir, Mehmet; Okyay, Ali K

    2013-03-25

    Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths. PMID:23546103

  12. Single Shot Measurement of a Silicon Single Electron Transistor

    NASA Astrophysics Data System (ADS)

    Ferrus, T.; Hasko, D. G.; Morrissey, Q. R.; Burge, S. R.; Freeman, E. J.; French, M. J.; Lam, A.; Creswell, L.; Collier, R. J.; Williams, D. A.; Briggs, G. A. D.

    2009-06-01

    We describe measurements on a silicon single electron transistor (SET) carried out using a custom cryogenic CMOS measurement circuit (LTCMOS) in close proximity to the device. Quantum mechanical states in the SET were mapped by continuous microwave spectroscopy. The real time evolution of a particularly long lived quantum mechanical state was observed in a single shot measurement, made possible by the much faster measurement rate (50kHz bandwidth). This technique is intended to be applied to the measurement of coherent states in a charge qubit device made of a silicon double dot.

  13. Radio frequency analog electronics based on carbon nanotube transistors.

    PubMed

    Kocabas, Coskun; Kim, Hoon-Sik; Banks, Tony; Rogers, John A; Pesetski, Aaron A; Baumgardner, James E; Krishnaswamy, S V; Zhang, Hong

    2008-02-01

    The potential to exploit single-walled carbon nanotubes (SWNTs) in advanced electronics represents a continuing, major source of interest in these materials. However, scalable integration of SWNTs into circuits is challenging because of difficulties in controlling the geometries, spatial positions, and electronic properties of individual tubes. We have implemented solutions to some of these challenges to yield radio frequency (RF) SWNT analog electronic devices, such as narrow band amplifiers operating in the VHF frequency band with power gains as high as 14 dB. As a demonstration, we fabricated nanotube transistor radios, in which SWNT devices provide all of the key functions, including resonant antennas, fixed RF amplifiers, RF mixers, and audio amplifiers. These results represent important first steps to practical implementation of SWNTs in high-speed analog circuits. Comparison studies indicate certain performance advantages over silicon and capabilities that complement those in existing compound semiconductor technologies. PMID:18227509

  14. Radio frequency analog electronics based on carbon nanotube transistors

    PubMed Central

    Kocabas, Coskun; Kim, Hoon-sik; Banks, Tony; Rogers, John A.; Pesetski, Aaron A.; Baumgardner, James E.; Krishnaswamy, S. V.; Zhang, Hong

    2008-01-01

    The potential to exploit single-walled carbon nanotubes (SWNTs) in advanced electronics represents a continuing, major source of interest in these materials. However, scalable integration of SWNTs into circuits is challenging because of difficulties in controlling the geometries, spatial positions, and electronic properties of individual tubes. We have implemented solutions to some of these challenges to yield radio frequency (RF) SWNT analog electronic devices, such as narrow band amplifiers operating in the VHF frequency band with power gains as high as 14 dB. As a demonstration, we fabricated nanotube transistor radios, in which SWNT devices provide all of the key functions, including resonant antennas, fixed RF amplifiers, RF mixers, and audio amplifiers. These results represent important first steps to practical implementation of SWNTs in high-speed analog circuits. Comparison studies indicate certain performance advantages over silicon and capabilities that complement those in existing compound semiconductor technologies. PMID:18227509

  15. Single electron transistor with P-type sidewall spacer gates.

    PubMed

    Lee, Jung Han; Li, Dong Hua; Lee, Joung-Eob; Kang, Kwon-Chil; Kim, Kyungwan; Park, Byung-Gook

    2011-07-01

    A single-electron transistor (SET) is one of the promising solutions to overcome the scaling limit of the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET). Up to now, various kinds of SETs are being proposed and SETs with a dual gate (DG) structure using an electrical potential barrier have been demonstrated for room temperature operation. To operate DG-SETs, however, extra bias of side gates is necessary. It causes new problems that the electrode for side gates and the extra bias for electrical barrier increase the complexity in circuit design and operation power consumption, respectively. For the reason, a new mechanism using work function (WF) difference is applied to operate a SET at room temperature by three electrodes. Its structure consists of an undoped active region, a control gate, n-doped source/drain electrodes, and metal/silicide or p-type silicon side gates, and a SET with metal/silicide gates or p-type silicon gates forms tunnel barriers induced by work function between an undoped channel and grounded side gates. Via simulation, the effectiveness of the new mechanism is confirmed through various silicide materials that have different WF values. Furthermore, by considering the realistic conditions of the fabrication process, SET with p-type sidewall spacer gates was designed, and its brief fabrication process was introduced. The characteristics of its electrical barrier and the controllability of its control gate were also confirmed via simulation. Finally, a single-hole transistor with n-type sidewall spacer gates was designed. PMID:22121580

  16. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    SciTech Connect

    Kim, Suhyun; Kim, Joong Jung; Jung, Younheum; Lee, Kyungwoo; Byun, Gwangsun; Hwang, KyoungHwan; Lee, Sunyoung; Lee, Kyupil

    2013-09-15

    Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  17. Electronic Model of a Ferroelectric Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  18. Highly flexible electronics from scalable vertical thin film transistors.

    PubMed

    Liu, Yuan; Zhou, Hailong; Cheng, Rui; Yu, Woojong; Huang, Yu; Duan, Xiangfeng

    2014-03-12

    Flexible thin-film transistors (TFTs) are of central importance for diverse electronic and particularly macroelectronic applications. The current TFTs using organic or inorganic thin film semiconductors are usually limited by either poor electrical performance or insufficient mechanical flexibility. Here, we report a new design of highly flexible vertical TFTs (VTFTs) with superior electrical performance and mechanical robustness. By using the graphene as a work-function tunable contact for amorphous indium gallium zinc oxide (IGZO) thin film, the vertical current flow across the graphene-IGZO junction can be effectively modulated by an external gate potential to enable VTFTs with a highest on-off ratio exceeding 10(5). The unique vertical transistor architecture can readily enable ultrashort channel devices with very high delivering current and exceptional mechanical flexibility. With large area graphene and IGZO thin film available, our strategy is intrinsically scalable for large scale integration of VTFT arrays and logic circuits, opening up a new pathway to highly flexible macroelectronics. PMID:24502192

  19. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  20. Exploiting plasmon-induced hot electrons in molecular electronic devices.

    PubMed

    Conklin, David; Nanayakkara, Sanjini; Park, Tae-Hong; Lagadec, Marie F; Stecher, Joshua T; Chen, Xi; Therien, Michael J; Bonnell, Dawn A

    2013-05-28

    Plasmonic nanostructures can induce a number of interesting responses in devices. Here we show that hot electrons can be extracted from plasmonic particles and directed into a molecular electronic device, which represents a new mechanism of transfer from light to electronic transport. To isolate this phenomenon from alternative and sometimes simultaneous mechanisms of plasmon-exciton interactions, we designed a family of hybrid nanostructure devices consisting of Au nanoparticles and optoelectronically functional porphyin molecules that enable precise control of electronic and optical properties. Temperature- and wavelength-dependent transport measurements are analyzed in the context of optical absorption spectra of the molecules, the Au particle arrays, and the devices. Enhanced photocurrent associated with exciton generation in the molecule is distinguished from enhancements due to plasmon interactions. Mechanisms of plasmon-induced current are examined, and it is found that hot electron generation can be distinguished from other possibilities. PMID:23550717

  1. Ambipolar Organic Tri-Gate Transistor for Low-Power Complementary Electronics.

    PubMed

    Torricelli, Fabrizio; Ghittorelli, Matteo; Smits, Edsger C P; Roelofs, Christian W S; Janssen, René A J; Gelinck, Gerwin H; Kovács-Vajna, Zsolt M; Cantatore, Eugenio

    2016-01-13

    Ambipolar transistors typically suffer from large off-current inherently due to ambipolar conduction. Using a tri-gate transistor it is shown that it is possible to electrostatically switch ambipolar polymer transistors from ambipolar to unipolar mode. In unipolar mode, symmetric characteristics with an on/off current ratio of larger than 10(5) are obtained. This enables easy integration into low-power complementary logic and volatile electronic memories. PMID:26573767

  2. Superconducting cuprate heterostructures for hot electron bolometers

    NASA Astrophysics Data System (ADS)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  3. Superconducting cuprate heterostructures for hot electron bolometers

    SciTech Connect

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-25

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La{sub 2−x}Sr{sub x}CuO{sub 4} layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV∼γI{sup 3}, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g{sub e−ph}≈1 W/K cm{sup 2} at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  4. All-electric spin control in interference single electron transistors.

    PubMed

    Donarini, Andrea; Begemann, Georg; Grifoni, Milena

    2009-08-01

    Single particle interference lies at the heart of quantum mechanics. The archetypal double-slit experiment(1) has been repeated with electrons in vacuum(2,3) up to the more massive C(60) molecules.(4) Mesoscopic rings threaded by a magnetic flux provide the solid-state analogues.(5,6) Intramolecular interference has been recently discussed in molecular junctions.(7-11) Here we propose to exploit interference to achieve all-electrical control of a single electron spin in quantum dots, a highly desirable property for spintronics(12-14) and spin-qubit applications.(15-19) The device consists of an interference single electron transistor,(10,11) where destructive interference between orbitally degenerate electronic states produces current blocking at specific bias voltages. We show that in the presence of parallel polarized ferromagnetic leads the interplay between interference and the exchange interaction on the system generates an effective energy renormalization yielding different blocking biases for majority and minority spins. Hence, by tuning the bias voltage full control over the spin of the trapped electron is achieved. PMID:19719108

  5. Electron and hole transport in ambipolar, thin film pentacene transistors

    SciTech Connect

    Saudari, Sangameshwar R.; Kagan, Cherie R.

    2015-01-21

    Solution-processed, ambipolar, thin-film pentacene field-effect transistors were employed to study both electron and hole transport simultaneously in a single, organic solid-state device. Electron and hole mobilities were extracted from the respective unipolar saturation regimes and show thermally activated behavior and gate voltage dependence. We fit the gate voltage dependent saturation mobility to a power law to extract the characteristic Meyer-Neldel (MN) energy, a measure of the width of the exponential distribution of localized states extending into the energy gap of the organic semiconductor. The MN energy is ∼78 and ∼28 meV for electrons and holes, respectively, which reflects a greater density of localized tail states for electrons than holes. This is consistent with the lower measured electron than hole mobility. For holes, the well-behaved linear regime allows for four-point probe measurement of the contact resistance independent mobility and separate characterization of the width of the localized density of states, yielding a consistent MN energy of 28 meV.

  6. Radio Frequency Single Electron Transistors on Si/SiGe

    NASA Astrophysics Data System (ADS)

    Yuan, Mingyun; Yang, Zhen; Rimberg, A. J.; Eriksson, M. A.; Savage, D. E.

    2011-03-01

    Superconducting single electron transistors (S-SETs) are ideal for charge state readout due to their high sensitivity and low back-action. Upon successful formation of quantum dots(QDs) on Si/SiGe, aluminum S-SETs are added in the vicinity of the QDs. Coupling of the S-SET to the QD is confirmed by using the S-SET to perform sensing of the QD charge state at 0.3 K. We have formed a matching network for an SET with an off-chip inductor. The reflection coefficient of the radio frequency(RF) signal is shown to be modulated by the SET resistance. Efforts to develop an on-chip matching network and perform charge sensing with the RF-SETs are in progress. Recent experimental results will be discussed. This research was supported by the NSA, LPS and ARO.

  7. Fabrication and single-electron-transfer operation of a triple-dot single-electron transistor

    SciTech Connect

    Jo, Mingyu Uchida, Takafumi; Tsurumaki-Fukuchi, Atsushi; Arita, Masashi; Takahashi, Yasuo; Fujiwara, Akira; Nishiguchi, Katsuhiko; Ono, Yukinori; Inokawa, Hiroshi

    2015-12-07

    A triple-dot single-electron transistor was fabricated on silicon-on-insulator wafer using pattern-dependent oxidation. A specially designed one-dimensional silicon wire having small constrictions at both ends was converted to a triple-dot single-electron transistor by means of pattern-dependent oxidation. The fabrication of the center dot involved quantum size effects and stress-induced band gap reduction, whereas that of the two side dots involved thickness modulation because of the complex edge structure of two-dimensional silicon. Single-electron turnstile operation was confirmed at 8 K when a 100-mV, 1-MHz square wave was applied. Monte Carlo simulations indicated that such a device with inhomogeneous tunnel and gate capacitances can exhibit single-electron transfer.

  8. Towards parallel fabrication of single electron transistors using carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Islam, Muhammad R.; Joung, Daeha; Khondaker, Saiful I.

    2015-05-01

    Single electron transistors (SETs) are considered to be promising building blocks for post CMOS era electronic devices, however, a major bottleneck for practical realization of SET based devices is a lack of a parallel fabrication approach. Here, we have demonstrated a technique for the scalable fabrication of SETs using single-walled carbon nanotubes (SWNTs). The approach is based on the integration of solution processed individual SWNTs via dielectrophoresis (DEP) at the selected position of the circuit with a 100 nm channel length, where the metal-SWNT Schottky contact works as a tunnel barrier. Measurements carried out at a low temperature (4.2 K) show that the majority of the devices with a contact resistance (RT) > 100 kΩ display SET behavior. For the devices with 100 kΩ < RT < 1 MΩ, periodic, well-defined Coulomb diamonds with a charging energy of ~14 meV, corresponding to the transport through a single quantum dot (QD) was observed. For devices with high RT (>1 MΩ) multiple QD behavior was observed. From the transport study of 50 SWNT devices, a total of 38 devices show SET behavior giving a yield of 76%. The results presented here are a significant step forward for the practical realization of SET based devices.Single electron transistors (SETs) are considered to be promising building blocks for post CMOS era electronic devices, however, a major bottleneck for practical realization of SET based devices is a lack of a parallel fabrication approach. Here, we have demonstrated a technique for the scalable fabrication of SETs using single-walled carbon nanotubes (SWNTs). The approach is based on the integration of solution processed individual SWNTs via dielectrophoresis (DEP) at the selected position of the circuit with a 100 nm channel length, where the metal-SWNT Schottky contact works as a tunnel barrier. Measurements carried out at a low temperature (4.2 K) show that the majority of the devices with a contact resistance (RT) > 100 kΩ display SET

  9. Theory of hot electron photoemission from graphene

    NASA Astrophysics Data System (ADS)

    Ang, Lay Kee; Liang, Shijun

    Motivated by the development of Schottky-type photodetectors, some theories have been proposed to describe how the hot carriers generated by the incident photon are transported over the Schottky barrier through the internal photoelectric effect. One of them is Fowler's law proposed as early as 1931, which studied the temperature dependence of photoelectric curves of clean metals. This law is very successful in accounting for mechanism of detecting photons of energy lower than the band gap of semiconductor based on conventional metal/semiconductor Schottky diode. With the goal of achieving better performance, graphene/silicon contact-based- graphene/WSe2 heterostructure-based photodetectors have been fabricated to demonstrate superior photodetection efficiency. However, the theory of how hot electrons is photo-excited from graphene into semiconductor remains unknown. In the current work, we first examine the photoemission process from suspended graphene and it is found that traditional Einstein photoelectric effect may break down for suspended graphene due to the unique linear band structure. Furthermore, we find that the same conclusion applies for 3D graphene analog (e.g. 3D topological Dirac semi-metal). These findings are very useful to further improve the performance of graphene-based photodetector, hot-carrier solar cell and other kinds of sensor.

  10. Graphene vertical hot-electron terahertz detectors

    SciTech Connect

    Ryzhii, V.; Satou, A.; Otsuji, T.; Ryzhii, M.; Mitin, V.; Shur, M. S.

    2014-09-21

    We propose and analyze the concept of the vertical hot-electron terahertz (THz) graphene-layer detectors (GLDs) based on the double-GL and multiple-GL structures with the barrier layers made of materials with a moderate conduction band off-set (such as tungsten disulfide and related materials). The operation of these detectors is enabled by the thermionic emissions from the GLs enhanced by the electrons heated by incoming THz radiation. Hence, these detectors are the hot-electron bolometric detectors. The electron heating is primarily associated with the intraband absorption (the Drude absorption). In the frame of the developed model, we calculate the responsivity and detectivity as functions of the photon energy, GL doping, and the applied voltage for the GLDs with different number of GLs. The detectors based on the cascade multiple-GL structures can exhibit a substantial photoelectric gain resulting in the elevated responsivity and detectivity. The advantages of the THz detectors under consideration are associated with their high sensitivity to the normal incident radiation and efficient operation at room temperature at the low end of the THz frequency range. Such GLDs with a metal grating, supporting the excitation of plasma oscillations in the GL-structures by the incident THz radiation, can exhibit a strong resonant response at the frequencies of several THz (in the range, where the operation of the conventional detectors based on A{sub 3}B{sub 5} materials, in particular, THz quantum-well detectors, is hindered due to a strong optical phonon radiation absorption in such materials). We also evaluate the characteristics of GLDs in the mid- and far-infrared ranges where the electron heating is due to the interband absorption in GLs.

  11. Ab initio studies of phoshorene island single electron transistor.

    PubMed

    Ray, S J; Venkata Kamalakar, M; Chowdhury, R

    2016-05-18

    Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications. PMID:27093536

  12. Ab initio studies of phosphorene island single electron transistor

    NASA Astrophysics Data System (ADS)

    Ray, S. J.; Venkata Kamalakar, M.; Chowdhury, R.

    2016-05-01

    Phosphorene is a newly unveiled two-dimensional crystal with immense potential for nanoelectronic and optoelectronic applications. Its unique electronic structure and two dimensionality also present opportunities for single electron devices. Here we report the behaviour of a single electron transistor (SET) made of a phosphorene island, explored for the first time using ab initio calculations. We find that the band gap and the charging energy decrease monotonically with increasing layer numbers due to weak quantum confinement. When compared to two other novel 2D crystals such as graphene and MoS2, our investigation reveals larger adsorption energies of gas molecules on phosphorene, which indicates better a sensing ability. The calculated charge stability diagrams show distinct changes in the presence of an individual molecule which can be applied to detect the presence of different molecules with sensitivity at a single molecular level. The higher charging energies of the molecules within the SET display operational viability at room temperature, which is promising for possible ultra sensitive detection applications.

  13. Probing Spin Accumulation induced Magnetocapacitance in a Single Electron Transistor

    PubMed Central

    Lee, Teik-Hui; Chen, Chii-Dong

    2015-01-01

    The interplay between spin and charge in solids is currently among the most discussed topics in condensed matter physics. Such interplay gives rise to magneto-electric coupling, which in the case of solids was named magneto-electric effect, as predicted by Curie on the basis of symmetry considerations. This effect enables the manipulation of magnetization using electrical field or, conversely, the manipulation of electrical polarization by magnetic field. The latter is known as the magnetocapacitance effect. Here, we show that non-equilibrium spin accumulation can induce tunnel magnetocapacitance through the formation of a tiny charge dipole. This dipole can effectively give rise to an additional serial capacitance, which represents an extra charging energy that the tunneling electrons would encounter. In the sequential tunneling regime, this extra energy can be understood as the energy required for a single spin to flip. A ferromagnetic single-electron-transistor with tunable magnetic configuration is utilized to demonstrate the proposed mechanism. It is found that the extra threshold energy is experienced only by electrons entering the islands, bringing about asymmetry in the measured Coulomb diamond. This asymmetry is an unambiguous evidence of spin accumulation induced tunnel magnetocapacitance, and the measured magnetocapacitance value is as high as 40%. PMID:26348794

  14. Free electron gas primary thermometer: The bipolar junction transistor

    SciTech Connect

    Mimila-Arroyo, J.

    2013-11-04

    The temperature of a bipolar transistor is extracted probing its carrier energy distribution through its collector current, obtained under appropriate polarization conditions, following a rigorous mathematical method. The obtained temperature is independent of the transistor physical properties as current gain, structure (Homo-junction or hetero-junction), and geometrical parameters, resulting to be a primary thermometer. This proposition has been tested using off the shelf silicon transistors at thermal equilibrium with water at its triple point, the transistor temperature values obtained involve an uncertainty of a few milli-Kelvin. This proposition has been successfully tested in the temperature range of 77–450 K.

  15. THz Hot-Electron Photon Counter

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Sergeev, Andrei V.

    2004-01-01

    We present a concept for the hot-electron transition-edge sensor capable of counting THz photons. The main need for such a sensor is a spectroscopy on future space telescopes where a background limited NEP approx. 10(exp -20) W/H(exp 1/2) is expected at around 1 THz. Under these conditions, the rate of photon arrival is very low and any currently imaginable detector with sufficient sensitivity will operate in the photon counting mode. The Hot-Electron Photon Counter based on a submicron-size Ti bridge has a very low heat capacity which provides a high enough energy resolution (approx.140 GHz) at 0.3 K. With the sensor time constant of a few microseconds, the dynamic range would be approx. 30 dB. The sensor couples to radiation via a planar antenna and is read by a SQUID amplifier or by a 1-bit RSFQ ADC. A compact array of the antenna-coupled counters can be fabricated on a silicon wafer without membranes.

  16. Towards parallel fabrication of single electron transistors using carbon nanotubes.

    PubMed

    Islam, Muhammad R; Joung, Daeha; Khondaker, Saiful I

    2015-06-01

    Single electron transistors (SETs) are considered to be promising building blocks for post CMOS era electronic devices, however, a major bottleneck for practical realization of SET based devices is a lack of a parallel fabrication approach. Here, we have demonstrated a technique for the scalable fabrication of SETs using single-walled carbon nanotubes (SWNTs). The approach is based on the integration of solution processed individual SWNTs via dielectrophoresis (DEP) at the selected position of the circuit with a 100 nm channel length, where the metal-SWNT Schottky contact works as a tunnel barrier. Measurements carried out at a low temperature (4.2 K) show that the majority of the devices with a contact resistance (RT) > 100 kΩ display SET behavior. For the devices with 100 kΩ < RT < 1 MΩ, periodic, well-defined Coulomb diamonds with a charging energy of ∼14 meV, corresponding to the transport through a single quantum dot (QD) was observed. For devices with high RT (>1 MΩ) multiple QD behavior was observed. From the transport study of 50 SWNT devices, a total of 38 devices show SET behavior giving a yield of 76%. The results presented here are a significant step forward for the practical realization of SET based devices. PMID:25962565

  17. Ultimate response time of high electron mobility transistors

    SciTech Connect

    Rudin, Sergey; Rupper, Greg; Shur, Michael

    2015-05-07

    We present theoretical studies of the response time of the two-dimensional gated electron gas to femtosecond pulses. Our hydrodynamic simulations show that the device response to a short pulse or a step-function signal is either smooth or oscillating time-decay at low and high mobility, μ, values, respectively. At small gate voltage swings, U{sub 0} = U{sub g} − U{sub th}, where U{sub g} is the gate voltage and U{sub th} is the threshold voltage, such that μU{sub 0}/L < v{sub s}, where L is the channel length and v{sub s} is the effective electron saturation velocity, the decay time in the low mobility samples is on the order of L{sup 2}/(μU{sub 0}), in agreement with the analytical drift model. However, the decay is preceded by a delay time on the order of L/s, where s is the plasma wave velocity. This delay is the ballistic transport signature in collision-dominated devices, which becomes important during very short time periods. In the high mobility devices, the period of the decaying oscillations is on the order of the plasma wave velocity transit time. Our analysis shows that short channel field effect transistors operating in the plasmonic regime can meet the requirements for applications as terahertz detectors, mixers, delay lines, and phase shifters in ultra high-speed wireless communication circuits.

  18. Flute-interchange stability in a hot electron plasma

    SciTech Connect

    Dominguez, R.R.

    1980-01-01

    Several topics in the kinetic stability theory of flute-interchange modes in a hot electron plasma are discussed. The stability analysis of the hot-electron, curvature-driven flute-interchange mode, previously performed in a slab geometry, is extended to a cylindrical plasma. The cold electron concentration necessary for stability differs substantially from previous criteria. The inclusion of a finite temperature background plasma in the stability analysis results in an ion curvature-driven flute-interchange mode which may be stabilized by either hot-electron diamagnetic effects, hot-electron plasma density, or finite (ion) Larmor radius effects.

  19. Whistler Solitons in Plasma with Anisotropic Hot Electron Admixture

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Gallagher, D. L.

    1999-01-01

    The longitudinal and transverse modulation instability of whistler waves in plasma, with a small admixture of hot anisotropic electrons, is discussed. If the hot particles temperature anisotropy is positive, it is found that, in such plasma, longitudinal perturbations can lead to soliton formation for frequencies forbidden in cold plasma. The soliton is enriched by hot particles. The frequency region unstable to transverse modulation in cold plasma in the presence of hot electrons is divided by stable domains. For both cases the role of hot electrons is more significant for whistlers with smaller frequencies.

  20. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    SciTech Connect

    Guo, Li Qiang Ding, Jian Ning; Huang, Yu Kai; Zhu, Li Qiang

    2015-08-15

    Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO{sub 2} electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO) synaptic transistor. In such synaptic transistors, protons within the SiO{sub 2} electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF) behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  1. Three-terminal graphene single-electron transistor fabricated using feedback-controlled electroburning

    NASA Astrophysics Data System (ADS)

    Puczkarski, Paweł; Gehring, Pascal; Lau, Chit S.; Liu, Junjie; Ardavan, Arzhang; Warner, Jamie H.; Briggs, G. Andrew D.; Mol, Jan A.

    2015-09-01

    We report room-temperature Coulomb blockade in a single layer graphene three-terminal single-electron transistor fabricated using feedback-controlled electroburning. The small separation between the side gate electrode and the graphene quantum dot results in a gate coupling up to 3 times larger compared to the value found for the back gate electrode. This allows for an effective tuning between the conductive and Coulomb blocked state using a small side gate voltage of about 1 V. The technique can potentially be used in the future to fabricate all-graphene based room temperature single-electron transistors or three terminal single molecule transistors with enhanced gate coupling.

  2. Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors

    NASA Astrophysics Data System (ADS)

    Guo, Li Qiang; Zhu, Li Qiang; Ding, Jian Ning; Huang, Yu Kai

    2015-08-01

    Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO2 electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO) synaptic transistor. In such synaptic transistors, protons within the SiO2 electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF) behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.

  3. Inorganic proton conducting electrolyte coupled oxide-based dendritic transistors for synaptic electronics

    NASA Astrophysics Data System (ADS)

    Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing

    2014-04-01

    Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals.Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals. Electronic supplementary information (ESI) available: The structures and transfer characteristics of the IZO junctionless transistor working in bottom-gate mode and in-plane gate mode. See DOI: 10.1039/c3nr05882d

  4. Metal oxide semiconductor thin-film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular

  5. Cryogenic instrumentation for fast current measurement in a silicon single electron transistor

    NASA Astrophysics Data System (ADS)

    Ferrus, T.; Hasko, D. G.; Morrissey, Q. R.; Burge, S. R.; Freeman, E. J.; French, M. J.; Lam, A.; Creswell, L.; Collier, R. J.; Williams, D. A.; Briggs, G. A. D.

    2009-08-01

    We present a realization of high bandwidth instrumentation at cryogenic temperatures and for dilution refrigerator operation that possesses advantages over methods using radio frequency single electron transistor or transimpedance amplifiers. The ability for the low temperature electronics to carry out faster measurements than with room temperature electronics is investigated by the use of a phosphorous-doped single electron transistor. A single shot technique is successfully implemented and used to observe the real-time decay of a quantum state. A discussion on various measurement strategies is presented and the consequences on electron heating and noise are analyzed.

  6. Electron-hole asymmetry in the electron-phonon coupling in top-gated phosphorene transistor

    NASA Astrophysics Data System (ADS)

    Chakraborty, Biswanath; Nath Gupta, Satyendra; Singh, Anjali; Kuiri, Manabendra; Kumar, Chandan; Muthu, D. V. S.; Das, Anindya; Waghmare, U. V.; Sood, A. K.

    2016-03-01

    Using in situ Raman scattering from phosphorene channel in an electrochemically top-gated field effect transistor, we show that phonons with A g symmetry depend much more strongly on concentration of electrons than that of holes, wheras phonons with B g symmetry are insensitive to doping. With first-principles theoretical analysis, we show that the observed electon-hole asymmetry arises from the radically different constitution of its conduction and valence bands involving π and σ bonding states respectively, whose symmetry permits coupling with only the phonons that preserve the lattice symmetry. Thus, Raman spectroscopy is a non-invasive tool for measuring electron concentration in phosphorene-based nanoelectronic devices.

  7. The nature of hot electrons generated by exothermic catalytic reactions

    NASA Astrophysics Data System (ADS)

    Nedrygailov, Ievgen I.; Park, Jeong Young

    2016-02-01

    We review recent progress in studies of the nature of hot electrons generated in metal nanoparticles and thin films on oxide supports and their role in heterogeneous catalysis. We show that the creation of hot electrons and their transport across the metal-oxide interface is an inherent component of energy dissipation accompanying catalytic and photocatalytic surface reactions. The intensity of hot electron flow is well correlated with turnover rates of corresponding reactions. We also show that controlling the flow of hot electrons crossing the interface can lead to the control of chemical reaction rates. Finally, we discuss perspectives of hot-electron-mediated surface chemistry that promise the capability to drive catalytic reactions with enhanced efficiency and selectivity through electron-mediated, non-thermal processes.

  8. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    NASA Astrophysics Data System (ADS)

    Liu, Hsi-Wen; Chang, Ting-Chang; Tsai, Jyun-Yu; Chen, Ching-En; Liu, Kuan-Ju; Lu, Ying-Hsin; Lin, Chien-Yu; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han

    2016-04-01

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  9. An investigation into the feasibility of myoglobin-based single-electron transistors

    PubMed Central

    Li, Debin; Gannett, Peter M.; Lederman, David

    2016-01-01

    Myoglobin single-electron transistors were investigated using nanometer-gap platinum electrodes fabricated by electromigration at cryogenic temperatures. Apomyoglobin (myoglobin without heme group) was used as a reference. The results suggest single electron transport is mediated by resonant tunneling with the electronic and vibrational levels of the heme group in a single protein. They also represent a proof-of-principle that proteins with redox centers across nanometer-gap electrodes can be utilized to fabricate single-electron transistors. The protein orientation and conformation may significantly affect the conductance of these devices. Future improvements in device reproducibility and yield will require control of these factors. PMID:22972432

  10. Ab initio study of hot electrons in GaAs.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G

    2015-04-28

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287

  11. Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride

    SciTech Connect

    Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth

    2015-12-28

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.

  12. Low Field Electronic Behavior and Contact Impedance of Organic Single Crystal Transistors

    NASA Astrophysics Data System (ADS)

    Bittle, Emily; Basham, James; Jackson, Thomas; Jurchescu, Oana; Gundlach, David

    2015-03-01

    Organic electronic devices are attractive for a range of existing and emerging electronic applications. Most technological demonstrations of organic transistors rely on their large signal response for pixel control or logic. However, considerable application space requires analog circuits, e.g. distributed signal conditioning in sensor arrays. Charge transport and trapping mechanisms differ significantly in organic as compared to inorganic transistors, and as a result commonly used analogies to inorganic band transport theory can break down in response to small signal stimulus and at high frequencies required in some analog circuit applications. Therefore, a detailed investigation of organic transistor behavior at small signals is needed and is critical to developing design models for analog circuit applications. In this study, we look at the small signal AC impedance of small molecule, single crystal transistors to investigate ``ideal'' low field, high frequency electronic behavior. Using a transmission line model to fit the transistor channel coupled with a parallel resistor-capacitor model of the contact impedance, we are able to observe the behavior of the transistor channel and contacts separately at low field and high frequency. We determine the low field mobility of the device independent of contact resistance and show that rapidly changing contact resistance dominates the current flow at low gate voltage in DC current-voltage measurements.

  13. Role of interface band structure on hot electron transport

    NASA Astrophysics Data System (ADS)

    Garramone, John J.

    Knowledge of electron transport through materials and interfaces is fundamentally and technologically important. For example, metal interconnects within integrated circuits suffer increasingly from electromigration and signal delay due to an increase in resistance from grain boundary and sidewall scattering since their dimensions are becoming shorter than the electron mean free path. Additionally, all semiconductor based devices require the transport of electrons through materials and interfaces where scattering and parallel momentum conservation are important. In this thesis, the inelastic and elastic scattering of hot electrons are studied in nanometer thick copper, silver and gold films deposited on silicon substrates. Hot electrons are electron with energy greater than kBT above the Fermi level (EF). This work was performed utilizing ballistic electron emission microscopy (BEEM) which is a three terminal scanning tunneling microscopy (STM) technique that measures the percentage of hot electrons transmitted across a Schottky barrier interface. Hot electron attenuation lengths of the metals were extracted by measuring the BEEM current as a function of metal overlayer thickness for both hot electron and hot hole injection at 80 K and under ultra high vacuum. The inelastic and elastic scattering lengths were extracted by fitting the energetic dependence of the measured attenuation lengths to a Fermi liquid based model. A sharp increase in the attenuation length is observed at low injection energies, just above the Schottky barrier height, only for metals on Si(001) substrates. In contrast, the attenuation length measured on Si(111) substrates shows a sharp decrease. These results indicate that interface band structure and parallel momentum conservation have significant impact upon the transport of hot electrons across non epitaxial metal-semiconductor interfaces. In addition, they help to separate effects upon hot electron transport that are inherent to the metal

  14. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics

    PubMed Central

    Cheng, Rui; Jiang, Shan; Chen, Yu; Liu, Yuan; Weiss, Nathan; Cheng, Hung-Chieh; Wu, Hao; Huang, Yu; Duan, Xiangfeng

    2014-01-01

    Two-dimensional layered materials, such as molybdenum disulfide, are emerging as an exciting material system for future electronics due to their unique electronic properties and atomically thin geometry. Here we report a systematic investigation of MoS2 transistors with optimized contact and device geometry, to achieve self-aligned devices with performance including an intrinsic gain over 30, an intrinsic cut-off frequency fT up to 42 GHz and a maximum oscillation frequency fMAX up to 50 GHz, exceeding the reported values for MoS2 transistors to date (fT ~ 0.9 GHz, fMAX ~ 1 GHz). Our results show that logic inverters or radio frequency amplifiers can be formed by integrating multiple MoS2 transistors on quartz or flexible substrates with voltage gain in the gigahertz regime. This study demonstrates the potential of two-dimensional layered semiconductors for high-speed flexible electronics. PMID:25295573

  15. Mechanical and Electronic Properties of Thin-Film Transistors on Plastic, and Their Integration in Flexible Electronic Applications.

    PubMed

    Heremans, Paul; Tripathi, Ashutosh K; de Jamblinne de Meux, Albert; Smits, Edsger C P; Hou, Bo; Pourtois, Geoffrey; Gelinck, Gerwin H

    2016-06-01

    The increasing interest in flexible electronics and flexible displays raises questions regarding the inherent mechanical properties of the electronic materials used. Here, the mechanical behavior of thin-film transistors used in active-matrix displays is considered. The change of electrical performance of thin-film semiconductor materials under mechanical stress is studied, including amorphous oxide semiconductors. This study comprises an experimental part, in which transistor structures are characterized under different mechanical loads, as well as a theoretical part, in which the changes in energy band structures in the presence of stress and strain are investigated. The performance of amorphous oxide semiconductors are compared to reported results on organic semiconductors and covalent semiconductors, i.e., amorphous silicon and polysilicon. In order to compare the semiconductor materials, it is required to include the influence of the other transistor layers on the strain profile. The bending limits are investigated, and shown to be due to failures in the gate dielectric and/or the contacts. Design rules are proposed to minimize strain in transistor stacks and in transistor arrays. Finally, an overview of the present and future applications of flexible thin-film transistors is given, and the suitability of the different material classes for those applications is assessed. PMID:26707947

  16. Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications

    NASA Astrophysics Data System (ADS)

    Shurakov, A.; Lobanov, Y.; Goltsman, G.

    2016-01-01

    The discovery of hot-electron phenomena in a thin superconducting film in the last century was followed by numerous experimental studies of its appearance in different materials aiming for a better understanding of the phenomena and consequent implementation of terahertz detection systems for practical applications. In contrast to the competitors such as superconductor-insulator-superconductor tunnel junctions and Schottky diodes, the hot electron bolometer (HEB) did not demonstrate any frequency limitation of the detection mechanism. The latter, in conjunction with a decent performance, rapidly made the HEB mixer the most attractive candidate for heterodyne observations at frequencies above 1 THz. The successful operation of practical instruments (the Heinrich Hertz Telescope, the Receiver Lab Telescope, APEX, SOFIA, Hershel) ensures the importance of the HEB technology despite the lack of rigorous theoretical routine for predicting the performance. In this review, we provide a summary of experimental and theoretical studies devoted to understanding the HEB physics, and an overview of various fabrication routes and materials.

  17. Charge trapping induced drain-induced-barrier-lowering in HfO2/TiN p-channel metal-oxide-semiconductor-field-effect-transistors under hot carrier stress

    NASA Astrophysics Data System (ADS)

    Lo, Wen-Hung; Chang, Ting-Chang; Tsai, Jyun-Yu; Dai, Chih-Hao; Chen, Ching-En; Ho, Szu-Han; Chen, Hua-Mao; Cheng, Osbert; Huang, Cheng-Tung

    2012-04-01

    This letter studies the channel hot carrier stress (CHCS) behaviors on high dielectric constant insulator and metal gate HfO2/TiN p-channel metal-oxide-semiconductor field effect transistors. It can be found that the degradation is associated with electron trapping, resulting in Gm decrease and positive Vth shift. However, Vth under saturation region shows an insignificant degradation during stress. To compare that, the CHC-induced electron trapping induced DIBL is proposed to demonstrate the different behavior of Vth between linear and saturation region. The devices with different channel length are used to evidence the trapping-induced DIBL behavior.

  18. Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor

    NASA Astrophysics Data System (ADS)

    Curry, M. J.; England, T. D.; Bishop, N. C.; Ten-Eyck, G.; Wendt, J. R.; Pluym, T.; Lilly, M. P.; Carr, S. M.; Carroll, M. S.

    2015-05-01

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10-100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.

  19. Cryogenic Preamplification of a Single-Electron-Transistor using a Silicon-Germanium Heterojunction-Bipolar-Transistor

    DOE PAGESBeta

    Curry, Matthew J.; England, Troy Daniel; Bishop, Nathaniel; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael; Carr, Stephen M; Carroll, Malcolm S.

    2015-05-21

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. Furthermore, the transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to withoutmore » the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. We found that the circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.« less

  20. Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor

    SciTech Connect

    Curry, M. J.; England, T. D.; Bishop, N. C.; Ten-Eyck, G.; Wendt, J. R.; Pluym, T.; Lilly, M. P.; Carroll, M. S.; Carr, S. M.

    2015-05-18

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.

  1. Cryogenic Preamplification of a Single-Electron-Transistor using a Silicon-Germanium Heterojunction-Bipolar-Transistor

    SciTech Connect

    Curry, Matthew J.; England, Troy Daniel; Bishop, Nathaniel; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael; Carr, Stephen M; Carroll, Malcolm S.

    2015-05-21

    We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. Furthermore, the transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. We found that the circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.

  2. Embedding plasmonic nanostructure diodes enhances hot electron emission.

    PubMed

    Knight, Mark W; Wang, Yumin; Urban, Alexander S; Sobhani, Ali; Zheng, Bob Y; Nordlander, Peter; Halas, Naomi J

    2013-04-10

    When plasmonic nanostructures serve as the metallic counterpart of a metal-semiconductor Schottky interface, hot electrons due to plasmon decay are emitted across the Schottky barrier, generating measurable photocurrents in the semiconductor. When the plasmonic nanostructure is atop the semiconductor, only a small percentage of hot electrons are excited with a wavevector permitting transport across the Schottky barrier. Here we show that embedding plasmonic structures into the semiconductor substantially increases hot electron emission. Responsivities increase by 25× over planar diodes for embedding depths as small as 5 nm. The vertical Schottky barriers created by this geometry make the plasmon-induced hot electron process the dominant contributor to photocurrent in plasmonic nanostructure-diode-based devices. PMID:23452192

  3. Cooling of hot electrons in amorphous silicon

    SciTech Connect

    Vanderhaghen, R.; Hulin, D.; Cuzeau, S.; White, J.O.

    1997-07-01

    Measurements of the cooling rate of hot carriers in amorphous silicon are made with a two-pump, one-probe technique. The experiment is simulated with a rate-equation model describing the energy transfer between a population of hot carriers and the lattice. An energy transfer rate proportional to the temperature difference is found to be consistent with the experimental data while an energy transfer independent of the temperature difference is not. This contrasts with the situation in crystalline silicon. The measured cooling rates are sufficient to explain the difficulty in observing avalanche effects in amorphous silicon.

  4. Density-dependent electron transport and precise modeling of GaN high electron mobility transistors

    SciTech Connect

    Bajaj, Sanyam Shoron, Omor F.; Park, Pil Sung; Krishnamoorthy, Sriram; Akyol, Fatih; Hung, Ting-Hsiang; Reza, Shahed; Chumbes, Eduardo M.; Khurgin, Jacob; Rajan, Siddharth

    2015-10-12

    We report on the direct measurement of two-dimensional sheet charge density dependence of electron transport in AlGaN/GaN high electron mobility transistors (HEMTs). Pulsed IV measurements established increasing electron velocities with decreasing sheet charge densities, resulting in saturation velocity of 1.9 × 10{sup 7 }cm/s at a low sheet charge density of 7.8 × 10{sup 11 }cm{sup −2}. An optical phonon emission-based electron velocity model for GaN is also presented. It accommodates stimulated longitudinal optical (LO) phonon emission which clamps the electron velocity with strong electron-phonon interaction and long LO phonon lifetime in GaN. A comparison with the measured density-dependent saturation velocity shows that it captures the dependence rather well. Finally, the experimental result is applied in TCAD-based device simulator to predict DC and small signal characteristics of a reported GaN HEMT. Good agreement between the simulated and reported experimental results validated the measurement presented in this report and established accurate modeling of GaN HEMTs.

  5. Three-terminal graphene single-electron transistor fabricated using feedback-controlled electroburning

    SciTech Connect

    Puczkarski, Paweł; Gehring, Pascal Lau, Chit S.; Liu, Junjie; Warner, Jamie H.; Briggs, G. Andrew D.; Mol, Jan A.; Ardavan, Arzhang

    2015-09-28

    We report room-temperature Coulomb blockade in a single layer graphene three-terminal single-electron transistor fabricated using feedback-controlled electroburning. The small separation between the side gate electrode and the graphene quantum dot results in a gate coupling up to 3 times larger compared to the value found for the back gate electrode. This allows for an effective tuning between the conductive and Coulomb blocked state using a small side gate voltage of about 1 V. The technique can potentially be used in the future to fabricate all-graphene based room temperature single-electron transistors or three terminal single molecule transistors with enhanced gate coupling.

  6. Ablation driven by hot electrons in shock ignition

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.; Zhao, Y. T.

    2016-03-01

    An analytical model for the ablation driven by hot electrons is developed. The hot electrons are assumed to carry on the totality of the absorbed laser energy. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front. To achieve this goal for high laser intensities a short enough laser wavelength is required. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloud are found in terms of the laser and target parameters.

  7. New Observations on Hot-Carrier Degradation in 0.1 μm Silicon-on-Insulator n-Type Metal Oxide Semiconductor Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Yeh, Wen-Kuan; Wang, Wen-Han; Fang, Yean-Kuen; Yang, Fu-Liang

    2002-05-01

    This work investigates the hot-carrier effect (HCE) in partially depleted 0.1 μm SOI nMOSFETs. Hot-carrier degradation was investigated with respect to body-contact nMOSFET (BC-SOI) and floating-body nMOSFET without body contact (FB-SOI). It was found that hot-carrier-induced degradation exerts different influences on the drive capacities as well as subthreshold characteristics of FB-SOI and BC-SOI nMOSFETs. In FB-SOI nMOSFET, the floating body effect (FBE) and parasitic bipolar transistor effect (PBT) affect hot-carrier-induced degradation of device characteristics.

  8. Hot tail runaway electron generation in tokamak disruptions

    SciTech Connect

    Smith, H. M.; Verwichte, E.

    2008-07-15

    Hot tail runaway electron generation is caused by incomplete thermalization of the electron velocity distribution during rapid plasma cooling. It is an important runaway electron mechanism in tokamak disruptions if the thermal quench phase is sufficiently fast. Analytical estimates of the density of produced runaway electrons are derived for cases of exponential-like temperature decay with a cooling rate lower than the collision frequency. Numerical simulations, aided by the analytical results, are used to compare the strength of the hot tail runaway generation with the Dreicer mechanism for different disruption parameters (cooling rate, post-thermal quench temperature, and electron density) assuming that no losses of runaway electrons occur. It is seen that the hot tail runaway production is going to be the dominant of these two primary runaway mechanisms in ITER [R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 (2002)].

  9. Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    SciTech Connect

    MacLeod, S. J.; See, A. M.; Keane, Z. K.; Scriven, P.; Micolich, A. P.; Hamilton, A. R.; Aagesen, M.; Lindelof, P. E.

    2014-01-06

    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However, these devices require a large top-gate, which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here, we demonstrate that rf reflectometry is possible in an undoped SET.

  10. Gate induced superconductivity in layered material based electronic double layer field effect transistors

    NASA Astrophysics Data System (ADS)

    Ye, J. T.; Inoue, S.; Kobayashi, K.; Kasahara, Y.; Yuan, H. T.; Shimotani, H.; Iwasa, Y.

    2010-12-01

    Applying the principle of field effect transistor to layered materials provides new opportunities to manipulate their electronic properties for interesting sciences and applications. Novel gate dielectrics like electronic double layer (EDL) formed by ionic liquids are demonstrated to achieve an electrostatic surface charge accumulation on the order of 1014 cm-2. To realize electric field-induced superconductivity, we chose a layered compound: ZrNCl, which is known to be superconducting by introducing electrons through intercalation of alkali metals into the van der Waals gaps. A ZrNCl-based EDL transistor was micro fabricated on a thin ZrNCl single crystal made by mechanical micro-cleavage. Accumulating charges using EDL gate dielectrics onto the channel surface of ZrNCl shows effective field effect modulation of its electronic properties. Sheet resistance of ZrNCl EDL transistor is reduced by applying a gate voltage from 0 to 4.5 V. Temperature dependence of sheet resistance showed clear evidence of metal-insulator transition upon gating, observed at a gate voltage higher than 3.5 V. Furthermore, gate-induced superconductivity took place after metal-insulator transition when the transistor is cooled down to about 15 K.

  11. Wavelength Division Multiplexing Scheme for Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We describe work on a wavelength division multiplexing scheme for radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. Using discrete components, we made a two-channel demonstration of this concept and successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  12. Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors

    SciTech Connect

    Li, Z. Q.; Podzorov, V.; Sai, N.; Martin, Michael C.; Gershenson, M. E.; Di Ventra, M.; Basov, D. N.

    2007-03-01

    We report on an infrared spectroscopy study of mobile holes in the accumulation layer of organic field-effect transistors based on rubrene single crystals. Our data indicate that both transport and infrared properties of these transistors at room temperature are governed by light quasiparticles in molecular orbital bands with the effective masses m[small star, filled]comparable to free electron mass. Furthermore, the m[small star, filled]values inferred from our experiments are in agreement with those determined from band structure calculations. These findings reveal no evidence for prominent polaronic effects, which is at variance with the common beliefs of polaron formation in molecular solids.

  13. Theoretical analysis of hot electron dynamics in nanorods.

    PubMed

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Bao, Qiaoliang; Agrawal, Govind P

    2015-01-01

    Localised surface plasmons create a non-equilibrium high-energy electron gas in nanostructures that can be injected into other media in energy harvesting applications. Here, we derive the rate of this localised-surface-plasmon mediated generation of hot electrons in nanorods and the rate of injecting them into other media by considering quantum mechanical motion of the electron gas. Specifically, we use the single-electron wave function of a particle in a cylindrical potential well and the electric field enhancement factor of an elongated ellipsoid to derive the energy distribution of electrons after plasmon excitation. We compare the performance of nanorods with equivolume nanoparticles of other shapes such as nanospheres and nanopallets and report that nanorods exhibit significantly better performance over a broad spectrum. We present a comprehensive theoretical analysis of how different parameters contribute to efficiency of hot-electron harvesting in nanorods and reveal that increasing the aspect ratio can increase the hot-electron generation and injection, but the volume shows an inverse dependency when efficiency per unit volume is considered. Further, the electron thermalisation time shows much less influence on the injection rate. Our derivations and results provide the much needed theoretical insight for optimization of hot-electron harvesting process in highly adaptable metallic nanorods. PMID:26202823

  14. Theoretical analysis of hot electron dynamics in nanorods

    PubMed Central

    Kumarasinghe, Chathurangi S.; Premaratne, Malin; Agrawal, Govind P.

    2015-01-01

    Localised surface plasmons create a non-equilibrium high-energy electron gas in nanostructures that can be injected into other media in energy harvesting applications. Here, we derive the rate of this localised-surface-plasmon mediated generation of hot electrons in nanorods and the rate of injecting them into other media by considering quantum mechanical motion of the electron gas. Specifically, we use the single-electron wave function of a particle in a cylindrical potential well and the electric field enhancement factor of an elongated ellipsoid to derive the energy distribution of electrons after plasmon excitation. We compare the performance of nanorods with equivolume nanoparticles of other shapes such as nanospheres and nanopallets and report that nanorods exhibit significantly better performance over a broad spectrum. We present a comprehensive theoretical analysis of how different parameters contribute to efficiency of hot-electron harvesting in nanorods and reveal that increasing the aspect ratio can increase the hot-electron generation and injection, but the volume shows an inverse dependency when efficiency per unit volume is considered. Further, the electron thermalisation time shows much less influence on the injection rate. Our derivations and results provide the much needed theoretical insight for optimization of hot-electron harvesting process in highly adaptable metallic nanorods. PMID:26202823

  15. Reliable determination of the Cu/n-Si Schottky barrier height by using in-device hot-electron spectroscopy

    SciTech Connect

    Parui, Subir E-mail: l.hueso@nanogune.eu; Atxabal, Ainhoa; Ribeiro, Mário; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E. E-mail: l.hueso@nanogune.eu

    2015-11-02

    We show the operation of a Cu/Al{sub 2}O{sub 3}/Cu/n-Si hot-electron transistor for the straightforward determination of a metal/semiconductor energy barrier height even at temperatures below carrier-freeze out in the semiconductor. The hot-electron spectroscopy measurements return a fairly temperature independent value for the Cu/n-Si barrier of 0.66 ± 0.04 eV at temperatures below 180 K, in substantial accordance with mainstream methods based on complex fittings of either current-voltage (I-V) and capacitance-voltage (C-V) measurements. The Cu/n-Si hot-electron transistors exhibit an OFF current of ∼2 × 10{sup −13} A, an ON/OFF ratio of ∼10{sup 5}, and an equivalent subthreshold swing of ∼96 mV/dec at low temperatures, which are suitable values for potential high frequency devices.

  16. Correlation of hot-carrier stress and ionization induced degradation in bipolar transistors

    SciTech Connect

    Pease, R.L.; Kosier, S.L.; Schrimpf, R.D.; Combs, W.E.; DeLaus, M.; Fleetwood, D.M.

    1994-03-01

    The correlation of hot carrier stress and ionization induced gain degradation in npn BJTs was studied to determine if hot-carrier stress could be used as a hardness assurance tool for total dose. The correlation was measured at the wafer level and for several hardening variations for a single process technology. Additional experiments are planned and will be presented in the full paper. Based on a detailed physical analysis of the mechanisms for hot-carrier stress and ionization no correlation was expected. The results demonstrated the lack of correlation and indicate that hot-carrier stress degradation is not a predictor of total dose response.

  17. Experimental study of hot electrons in LECR2M plasma

    SciTech Connect

    Zhao, H. Y.; Zhao, H. W.; Ma, X. W.; Wang, H.; Zhang, X. Z.; Sun, L. T.; Ma, B. H.; Li, X. X.; Sha, S.; Zhu, Y. H.; Lu, W.; Shang, Y.

    2008-02-15

    In order to investigate the hot electron component in electron cyclotron resonance (ECR) plasmas, the volume bremsstrahlung spectra in the x-ray photon energy range were measured with a high-purity germanium detector on Lanzhou ECR Ion Source No. 2 Modified (LECR2M). A collimation system similar to Bernhardi's was used to focus at the central part of the plasma. The ion source was operated under various source conditions with argon; sometimes oxygen was added to enhance high charge state ion beam intensities. The spectral temperature of hot electrons T{sub spe} was derived from the measured bremsstrahlung spectra. The evolution of the deduced temperature of hot electrons T{sub spe} with the ion source parameters, such as the rf frequency, power, and the magnetic confinement configuration, was investigated.

  18. Ponderomotive Acceleration of Hot Electrons in Tenuous Plasmas

    SciTech Connect

    V. I. Geyko; Fraiman, G. M.; Dodin, I. Y.; Fisch, N. J.

    2009-02-01

    The oscillation-center Hamiltonian is derived for a relativistic electron injected with an arbitrary momentum in a linearly polarized laser pulse propagating in tenuous plasma, assuming that the pulse length is smaller than the plasma wavelength. For hot electrons generated at collisions with ions under intense laser drive, multiple regimes of ponderomotive acceleration are identified and the laser dispersion is shown to affect the process at plasma densities down to 1017 cm-3. Assuming a/Υg << 1, which prevents net acceleration of the cold plasma, it is also shown that the normalized energy Υ of hot electrons accelerated from the initial energy Υo < , Γ does not exceed Γ ~ aΥg, where a is the normalized laser field, and Υg is the group velocity Lorentz factor. Yet Υ ~ Γ is attained within a wide range of initial conditions; hence a cutoff in the hot electron distribution is predicted.

  19. Transformation of the plasmon spectrum in a grating-gate transistor structure with spatially modulated two-dimensional electron channel

    SciTech Connect

    Fateev, D. V. Popov, V. V.; Shur, M. S.

    2010-11-15

    We present the theory of plasmon excitation in a grating-gate transistor structure with spatially modulated 2D electron channel. The plasmon spectrum varies depending on the electron density modulation in the transistor channel. We report on the frequency ranges of plasmon mode excitation in the gated and ungated regions of the channel and on the interaction of these different types of plasmon modes. We show that a constructive influence of the ungated regions of the electron channel considerably increases the intensity of the gated plasmon resonances and reduces the plasmon-resonance linewidth in the grating-gated transistor structure.

  20. Effect of Electron-Beam Irradiation on Organic Semiconductor and Its Application for Transistor-Based Dosimeters.

    PubMed

    Kim, Jae Joon; Ha, Jun Mok; Lee, Hyeok Moo; Raza, Hamid Saeed; Park, Ji Won; Cho, Sung Oh

    2016-08-01

    The effects of electron-beam irradiation on the organic semiconductor rubrene and its application as a dosimeter was investigated. Through the measurements of photoluminescence and the ultraviolet photoelectron spectroscopy, we found that electron-beam irradiation induces n-doping of rubrene. Additionally, we fabricated rubrene thin-film transistors with pristine and irradiated rubrene, and discovered that the decrease in transistor properties originated from the irradiation of rubrene and that the threshold voltages are shifted to the opposite directions as the irradiated layers. Finally, a highly sensitive and air-stable electron dosimeter was fabricated based on a rubrene transistor. PMID:27399874

  1. High frequency conductivity of hot electrons in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac-dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons' source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  2. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks.

  3. Electron acoustic wave driven vortices with non-Maxwellian hot electrons in magnetoplasmas

    SciTech Connect

    Haque, Q.; Mirza, Arshad M.; Zakir, U.

    2014-07-15

    Linear dispersion characteristics of the Electron Acoustic Wave (EAW) and the corresponding vortex structures are investigated in a magnetoplasma in the presence of non-Maxwellian hot electrons. In this regard, kappa and Cairns distributed hot electrons are considered. It is noticed that the nonthermal distributions affect the phase velocity of the EAW. Further, it is found that the phase velocity of EAW increases for Cairns and decreases for kappa distributed hot electrons. Nonlinear solutions in the form of dipolar vortices are also obtained for both stationary and non-stationary ions in the presence of kappa distributed hot electrons and dynamic cold electrons. It is found that the amplitude of the nonlinear vortex structures also reduces with kappa factor like the electron acoustic solitons.

  4. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.

    PubMed

    Park, Jeong Young; Kim, Sun Mi; Lee, Hyosun; Nedrygailov, Ievgen I

    2015-08-18

    Energy dissipation at surfaces and interfaces is mediated by excitation of elementary processes, including phonons and electronic excitation, once external energy is deposited to the surface during exothermic chemical processes. Nonadiabatic electronic excitation in exothermic catalytic reactions results in the flow of energetic electrons with an energy of 1-3 eV when chemical energy is converted to electron flow on a short (femtosecond) time scale before atomic vibration adiabatically dissipates the energy (in picoseconds). These energetic electrons that are not in thermal equilibrium with the metal atoms are called "hot electrons". The detection of hot electron flow under atomic or molecular processes and understanding its role in chemical reactions have been major topics in surface chemistry. Recent studies have demonstrated electronic excitation produced during atomic or molecular processes on surfaces, and the influence of hot electrons on atomic and molecular processes. We outline research efforts aimed at identification of the intrinsic relation between the flow of hot electrons and catalytic reactions. We show various strategies for detection and use of hot electrons generated by the energy dissipation processes in surface chemical reactions and photon absorption. A Schottky barrier localized at the metal-oxide interface of either catalytic nanodiodes or hybrid nanocatalysts allows hot electrons to irreversibly transport through the interface. We show that the chemicurrent, composed of hot electrons excited by the surface reaction of CO oxidation or hydrogen oxidation, correlates well with the turnover rate measured separately by gas chromatography. Furthermore, we show that hot electron flows generated on a gold thin film by photon absorption (or internal photoemission) can be amplified by localized surface plasmon resonance. The influence of hot charge carriers on the chemistry at the metal-oxide interface are discussed for the cases of Au, Ag, and Pt

  5. Fabrication of Tunnel Junctions For Direct Detector Arrays With Single-Electron Transistor Readout Using Electron-Beam Lithography

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Rhee, K. W.; Teufel, J.; Schoelkopf, R. J.

    2002-01-01

    This paper will describe the fabrication of small aluminum tunnel junctions for applications in astronomy. Antenna-coupled superconducting tunnel junctions with integrated single-electron transistor readout have the potential for photon-counting sensitivity at sub-millimeter wavelengths. The junctions for the detector and single-electron transistor can be made with electron-beam lithography and a standard self-aligned double-angle deposition process. However, high yield and uniformity of the junctions is required for large-format detector arrays. This paper will describe how measurement and modification of the sensitivity ratio in the resist bilayer was used to greatly improve the reliability of forming devices with uniform, sub-micron size, low-leakage junctions.

  6. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics.

    PubMed

    Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J; Janes, David B

    2007-06-01

    The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including 'see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In(2)O(3) and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with approximately 82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption. PMID:18654311

  7. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics

    NASA Astrophysics Data System (ADS)

    Ju, Sanghyun; Facchetti, Antonio; Xuan, Yi; Liu, Jun; Ishikawa, Fumiaki; Ye, Peide; Zhou, Chongwu; Marks, Tobin J.; Janes, David B.

    2007-06-01

    The development of optically transparent and mechanically flexible electronic circuitry is an essential step in the effort to develop next-generation display technologies, including `see-through' and conformable products. Nanowire transistors (NWTs) are of particular interest for future display devices because of their high carrier mobilities compared with bulk or thin-film transistors made from the same materials, the prospect of processing at low temperatures compatible with plastic substrates, as well as their optical transparency and inherent mechanical flexibility. Here we report fully transparent In2O3 and ZnO NWTs fabricated on both glass and flexible plastic substrates, exhibiting high-performance n-type transistor characteristics with ~82% optical transparency. These NWTs should be attractive as pixel-switching and driving transistors in active-matrix organic light-emitting diode (AMOLED) displays. The transparency of the entire pixel area should significantly enhance aperture ratio efficiency in active-matrix arrays and thus substantially decrease power consumption.

  8. Trap Profiling Based on Frequency Varied Charge Pumping Method for Hot Carrier Stressed Thin Gate Oxide Metal Oxide Semiconductors Field Effect Transistors.

    PubMed

    Choi, Pyungho; Kim, Hyunjin; Kim, Sangsub; Kim, Soonkon; Javadi, Reza; Park, Hyoungsun; Choi, Byoungdeog

    2016-05-01

    In this study, pulse frequency and reverse bias voltage is modified in charge pumping and advanced technique is presented to extract oxide trap profile in hot carrier stressed thin gate oxide metal oxide semiconductor field effect transistors (MOSFETs). Carrier trapping-detrapping in a gate oxide was analyzed after hot carrier stress and the relationship between trapping depth and frequency was investigated. Hot carrier induced interface traps appears in whole channel area but induced border traps mainly appears in above pinch-off region near drain and gradually decreases toward center of the channel. Thus, hot carrier stress causes interface trap generation in whole channel area while most border trap generation occurs in the drain region under the gate. Ultimately, modified charge pumping method was performed to get trap density distribution of hot carrier stressed MOSFET devices, and the trapping-detrapping mechanism is also analyzed. PMID:27483833

  9. Terahertz oscillations of hot electrons in graphene

    NASA Astrophysics Data System (ADS)

    Sekwao, Samwel Kedmon

    Once a uniform electric field is turned on in graphene, carriers accelerate ballistically until they are scattered by optic phonons and the process repeats itself. In this dissertation, I will show that the oscillatory nature of the motion of the carrier distribution function manifests in damped oscillations of carrier drift velocity and average energy. In appropriate fields, the frequency of such oscillations can be in the terahertz (THz) range. The randomizing nature of optical phonon scattering on graphene's linear band structure further limits terahertz observation to a range of sample lengths. I will also show that when an ac field is superimposed onto the appropriate dc field, hot carriers in graphene undergo an anomalous parametric resonance. Such resonance occurs at about half the frequency oF = 2pieF/hoOP , where 2pi/oF is the time taken for carriers to accelerate ballistically to the optic phonon energy ho OP in a dc field F. For weak elastic scattering, the phase difference between the current and the ac field has a nonzero minimum at resonance. Dephasing increases with ac frequency for stronger elastic scattering. The overall effect could also be seen in long-range spatially periodic potentials under steady state conditions. This dissertation also shows that the soft parametric resonance (SPR) at o = etaoF is temperature independent, and the resonance factor eta ˜ 0.56 is weakly dependent on the dc field Fo. This ensures tunability of resonant frequencies in the terahertz range by varying Fo. A small signal analysis (SSA) of the time-dependent Boltzmann transport equation (BTE) reveals a second resonance peak at eta ˜ 1. This peak is prevalent at temperatures T ≤ 77 K, and appears as a weak shoulder at T = 300 K. Finally, this dissertation shows that in graphene, the motion of carriers under the influence of temporarily and spatially modulated scattering is characterized by sharp resonances. Such resonances occur when the period of the ac field

  10. Electron Scattering in Hot/Warm Plasmas

    SciTech Connect

    Rozsnyai, B F

    2008-01-18

    Electrical and thermal conductivities are presented for aluminum, iron and copper plasmas at various temperatures, and for gold between 15000 and 30000 Kelvin. The calculations are based on the continuum wave functions computed in the potential of the temperature and density dependent self-consistent 'average atom' (AA) model of the plasma. The cross sections are calculated by using the phase shifts of the continuum electron wave functions and also in the Born approximation. We show the combined effect of the thermal and radiative transport on the effective Rosseland mean opacities at temperatures from 1 to 1000 eV. Comparisons with low temperature experimental data are also presented.

  11. Performance of AlGaN/GaN high electron mobility transistors at nanoscale gate lengths.

    PubMed

    Johnson, J W; Ren, F; Pearton, S J; Baca, A G; Han, J; Dabiran, A M; Chow, P P

    2002-01-01

    The DC and RF performance of AlGaN/GaN high electron mobility transistors with nanoscale gate lengths is presented. The layer structures were grown by either metal organic chemical vapor deposition or rf plasma-assisted molecular beam epitaxy. Excellent scaling properties were observed as a function of both gate length and width and confirm that these devices are well suited to both high speed switching and power microwave applications. PMID:12908259

  12. Atomically resolved real-space imaging of hot electron dynamics

    PubMed Central

    Lock, D.; Rusimova, K. R.; Pan, T. L.; Palmer, R. E.; Sloan, P. A.

    2015-01-01

    The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics. PMID:26387703

  13. Atomically resolved real-space imaging of hot electron dynamics.

    PubMed

    Lock, D; Rusimova, K R; Pan, T L; Palmer, R E; Sloan, P A

    2015-01-01

    The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics. PMID:26387703

  14. Atomically resolved real-space imaging of hot electron dynamics

    NASA Astrophysics Data System (ADS)

    Lock, D.; Rusimova, K. R.; Pan, T. L.; Palmer, R. E.; Sloan, P. A.

    2015-09-01

    The dynamics of hot electrons are central to understanding the properties of many electronic devices. But their ultra-short lifetime, typically 100 fs or less, and correspondingly short transport length-scale in the nanometre range constrain real-space investigations. Here we report variable temperature and voltage measurements of the nonlocal manipulation of adsorbed molecules on the Si(111)-7 × 7 surface in the scanning tunnelling microscope. The range of the nonlocal effect increases with temperature and, at constant temperature, is invariant over a wide range of electron energies. The measurements probe, in real space, the underlying hot electron dynamics on the 10 nm scale and are well described by a two-dimensional diffusive model with a single decay channel, consistent with 2-photon photo-emission (2PPE) measurements of the real time dynamics.

  15. Low-voltage protonic/electronic hybrid indium zinc oxide synaptic transistors on paper substrates

    NASA Astrophysics Data System (ADS)

    Wu, Guodong; Wan, Changjin; Zhou, Jumei; Zhu, Liqiang; Wan, Qing

    2014-03-01

    Low-voltage (1.5 V) indium zinc oxide (IZO)-based electric-double-layer (EDL) thin-film transistors (TFTs) gated by nanogranular proton conducting SiO2 electrolyte films are fabricated on paper substrates. Both enhancement-mode and depletion-mode operation are obtained by tuning the thickness of the IZO channel layer. Furthermore, such flexible IZO protonic/electronic hybrid EDL TFTs can be used as artificial synapses, and synaptic stimulation response and short-term synaptic plasticity function are demonstrated. The protonic/electronic hybrid EDL TFTs on paper substrates proposed here are promising for low-power flexible paper electronics, artificial synapses and bioelectronics.

  16. Energy level control: toward an efficient hot electron transport

    PubMed Central

    Jin, Xiao; Li, Qinghua; Li, Yue; Chen, Zihan; Wei, Tai-Huei; He, Xingdao; Sun, Weifu

    2014-01-01

    Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the ‘excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells. PMID:25099864

  17. Effects of hot electron inertia on electron-acoustic solitons and double layers

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.

    2015-07-15

    The propagation of arbitrary amplitude electron-acoustic solitons and double layers is investigated in a plasma containing cold positive ions, cool adiabatic and hot isothermal electrons, with the retention of full inertial effects for all species. For analytical tractability, the resulting Sagdeev pseudopotential is expressed in terms of the hot electron density, rather than the electrostatic potential. The existence domains for Mach numbers and hot electron densities clearly show that both rarefactive and compressive solitons can exist. Soliton limitations come from the cool electron sonic point, followed by the hot electron sonic point, until a range of rarefactive double layers occurs. Increasing the relative cool electron density further yields a switch to compressive double layers, which ends when the model assumptions break down. These qualitative results are but little influenced by variations in compositional parameters. A comparison with a Boltzmann distribution for the hot electrons shows that only the cool electron sonic point limit remains, giving higher maximum Mach numbers but similar densities, and a restricted range in relative hot electron density before the model assumptions are exceeded. The Boltzmann distribution can reproduce neither the double layer solutions nor the switch in rarefactive/compressive character or negative/positive polarity.

  18. Dependence of magnetic field and electronic transport of Mn4 Single-molecule magnet in a Single-Electron Transistor

    NASA Astrophysics Data System (ADS)

    Rodriguez, Alvar; Singh, Simranjeet; Haque, Firoze; Del Barco, Enrique; Nguyen, Tu; Christou, George

    2012-02-01

    Dependence of magnetic field and electronic transport of Mn4 Single-molecule magnet in a Single-Electron Transistor A. Rodriguez, S. Singh, F. Haque and E. del Barco Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816 USA T. Nguyen and G. Christou Department of Chemistry, University of Florida, Gainesville, Florida 32611 USA Abstract We have performed single-electron transport measurements on a series of Mn-based low-nuclearity single-molecule magnets (SMM) observing Coulomb blockade. SMMs with well isolated and low ground spin states, i.e. S = 9/2 (Mn4) and S = 6 (Mn3) were chosen for these studies, such that the ground spin multiplet does not mix with levels of other excited spin states for the magnetic fields (H = 0-8 T) employed in the experiments. Different functionalization groups were employed to change the mechanical, geometrical and transport characteristics of the molecules when deposited from liquid solution on the transistors. Electromigration-broken three-terminal single-electron transistors were used. Results obtained at temperatures down to 240 mK and in the presence of high magnetic fields will be shown.

  19. Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael

    A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs

  20. Terahertz signal detection in a short gate length field-effect transistor with a two-dimensional electron gas

    SciTech Connect

    Vostokov, N. V. Shashkin, V. I.

    2015-11-28

    We consider the problem of non-resonant detection of terahertz signals in a short gate length field-effect transistor having a two-dimensional electron channel with zero external bias between the source and the drain. The channel resistance, gate-channel capacitance, and quadratic nonlinearity parameter of the transistor during detection as a function of the gate bias voltage are studied. Characteristics of detection of the transistor connected in an antenna with real impedance are analyzed. The consideration is based on both a simple one-dimensional model of the transistor and allowance for the two-dimensional distribution of the electric field in the transistor structure. The results given by the different models are discussed.

  1. Cylindrical and spherical electron acoustic solitary waves with nonextensive hot electrons

    SciTech Connect

    Pakzad, Hamid Reza

    2011-08-15

    Nonlinear propagation of cylindrical and spherical electron-acoustic solitons in an unmagnetized plasma consisting cold electron fluid, hot electrons obeying a nonextensive distribution and stationary ions, are investigated. For this purpose, the standard reductive perturbation method is employed to derive the cylindrical/spherical Korteweg-de-Vries equation, which governs the dynamics of electron-acoustic solitons. The effects of nonplanar geometry and nonextensive hot electrons on the behavior of cylindrical and spherical electron acoustic solitons are also studied by numerical simulations.

  2. Back-action-induced excitation of electrons in a silicon quantum dot with a single-electron transistor charge sensor

    SciTech Connect

    Horibe, Kosuke; Oda, Shunri; Kodera, Tetsuo

    2015-02-02

    Back-action in the readout of quantum bits is an area that requires a great deal of attention in electron spin based-quantum bit architecture. We report here back-action measurements in a silicon device with quantum dots and a single-electron transistor (SET) charge sensor. We observe the back-action-induced excitation of electrons from the ground state to an excited state in a quantum dot. Our measurements and theoretical fitting to the data reveal conditions under which both suitable SET charge sensor sensitivity for qubit readout and low back-action-induced transition rates (less than 1 kHz) can be achieved.

  3. Measurement of the hot electron attenuation length of copper

    NASA Astrophysics Data System (ADS)

    Garramone, J. J.; Abel, J. R.; Sitnitsky, I. L.; Zhao, L.; Appelbaum, I.; LaBella, V. P.

    2010-02-01

    Ballistic electron emission microscopy is utilized to investigate the hot-electron scattering properties of Cu through Cu/Si(001) Schottky diodes. A Schottky barrier height of 0.64±0.02 eV and a hot-electron attenuation length of 33.4±2.9 nm are measured at a tip bias of 1.0 eV and a temperature of 80 K. The dependence of the attenuation length with tip bias is fit to a Fermi liquid model that allows extraction of the inelastic and elastic scattering components. This modeling indicates that elastic scattering due to defects, grain boundaries, and interfaces is the dominant scattering mechanism in this energy range.

  4. Optimization of Plasmon Decay Through Scattering and Hot Electron Transfer

    NASA Astrophysics Data System (ADS)

    DeJarnette, Drew

    Light incident on metal nanoparticles induce localized surface oscillations of conductive electrons, called plasmons, which is a means to control and manipulate light. Excited plasmons decay as either thermal energy as absorbed phonons or electromagnetic energy as scattered photons. An additional decay pathway for plasmons can exist for gold nanoparticles situated on graphene. Excited plasmons can decay directly to the graphene as through hot electron transfer. This dissertation begins by computational analysis of plasmon resonance energy and bandwidth as a function of particle size, shape, and dielectric environment in addition to diffractive coupled in lattices creating a Fano resonance. With this knowledge, plasmon resonance was probed with incident electrons using electron energy loss spectroscopy in a transmission electron microscope. Nanoparticles were fabricated using electron beam lithography on 50 nanometer thick silicon nitride with some particles fabricated with a graphene layer between the silicon nitride and metal structure. Plasmon resonance was compared between ellipses on and off graphene to characterize hot electron transfer as a means of plasmon decay. It was observed that the presence of graphene caused plasmon energy to decrease by as much as 9.8% and bandwidth to increase by 25%. Assuming the increased bandwidth was solely from electron transfer as an additional plasmon decay route, a 20% efficiency of plasmon decay to graphene was calculated for the particular ellipses analyzed.

  5. Measurement of the hot electron mean free path and the momentum relaxation rate in GaN

    SciTech Connect

    Suntrup, Donald J.; Gupta, Geetak; Li, Haoran; Keller, Stacia; Mishra, Umesh K.

    2014-12-29

    We present a method for measuring the mean free path and extracting the momentum relaxation time of hot electrons in GaN using the hot electron transistor (HET). In this device, electrons are injected over a high energy emitter barrier into the base where they experience quasi-ballistic transport well above the conduction band edge. After traversing the base, high energy electrons either surmount the base-collector barrier and become collector current or reflect off the barrier and become base current. We fabricate HETs with various base thicknesses and measure the common emitter transfer ratio (α) for each device. The mean free path is extracted by fitting α to a decaying exponential as a function of base width and the relaxation time is computed using a suitable injection velocity. For devices with an injection energy of ∼1 eV, we measure a hot electron mean free path of 14 nm and calculate a momentum relaxation time of 16 fs. These values are in agreement with theoretical calculations where longitudinal optical phonon scattering is the dominant momentum relaxation mechanism.

  6. GaN high electron mobility transistors for sub-millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Seup Lee, Dong; Liu, Zhihong; Palacios, Tomás

    2014-10-01

    This paper reviews different technologies recently developed to push the performance of GaN-based high electron mobility transistors (HEMTs) into sub-mm wave frequencies. To understand the impact and need of each technology, a device delay model based on small-signal equivalent circuit parameters is introduced, which divides the total device delay into intrinsic, extrinsic, and parasitic components. Then, several technologies to improve the speed of GaN HEMTs are discussed according to their contribution on each delay component. Finally, the key limiting factors for the high speed operation of these transistors under high drain or gate bias range are studied and novel approaches to solve these problems are presented.

  7. Vibrational mode mediated electron transport in molecular transistors

    NASA Astrophysics Data System (ADS)

    Santamore, Deborah; Lambert, Neill; Nori, Franco

    2013-03-01

    We investigate the steady-state electronic transport through a suspended dimer molecule coupled to leads. When strongly coupled to a vibrational mode, the electron transport is enhanced at the phonon resonant frequency and higher-order resonances. The temperature and bias determines the nature of the phonon-assisted resonances, with clear absorption and emission peaks. The strong coupling also induces a Frank-Condon-like blockade, suppressing the current between the resonances. We compare an analytical polaron transformation method to two exact numerical methods: the Hierarchy equations of motion and an exact diagonalization in the Fock basis. In the steady-state, our two numerical results are an exact match and qualitatively reflect the main features of the polaron treatment. Our results also indicate the possibility of compensating the current decrease due to the thermal environment.

  8. Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films.

    PubMed

    Haug, Tobias; Klemm, Philippe; Bange, Sebastian; Lupton, John M

    2015-08-01

    Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales. PMID:26296132

  9. Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films

    NASA Astrophysics Data System (ADS)

    Haug, Tobias; Klemm, Philippe; Bange, Sebastian; Lupton, John M.

    2015-08-01

    Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales.

  10. A Hot-electron Direct Detector for Radioastronomy

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; McGrath, William R.; LeDuc, Henry G.; Gershenson, Michael E.

    1999-01-01

    A hot-electron transition-edge superconducting bolometer with adjustable thermal relaxation speed is proposed. The bolometer contacts are made from a superconductor with high critical temperature which blocks the thermal diffusion of hot carriers into the contacts. Thus electron-phonon interaction is the only mechanism for heat removal. The speed of thermal relaxation for hot electrons in a nanometer-size superconducting bolometer with T(sub c) = 100-300 mK is controlled by the elastic electron mean free path l. The relaxation rate behaves as T(sup 4)l at subkelvin temperatures and can be reduced by a factor of 10-100 by decreasing 1. Then an antenna- or wave guide-coupled bolometer with a time constant approx. = 10(exp -3) to 10(exp -4) s will exhibit photon-noise limited performance at millimeter and submillimeter wavelengths. The bolometer will have a figure-of-merit NEPtau = 10(exp -22) - 10(exp -21) W/Hz at 100 mK which is 10(exp 3) to 10(exp 4) times better (ie: smaller) than that of a state-of-the-art bolometer. A tremendous increase in speed and sensitivity will have a significant impact for observational mapping applications.

  11. Ponderomotive acceleration of hot electrons in tenuous plasmas.

    PubMed

    Geyko, V I; Fraiman, G M; Dodin, I Y; Fisch, N J

    2009-09-01

    The oscillation-center Hamiltonian is derived for a relativistic electron injected with an arbitrary momentum in a linearly polarized laser pulse propagating in tenuous plasma, assuming that the pulse length is smaller than the plasma wavelength. For hot electrons generated by collisions with ions under an intense laser drive, multiple regimes of ponderomotive acceleration are identified, and the laser dispersion is shown to affect the process at plasma densities down to 10(17) cm-3. We consider the regime when the cold plasma is not accelerated, requiring a/gammag<1, where a is the laser parameter, proportional to the field amplitude, and gammag is the group-velocity Lorentz factor. In this case, the Lorentz factor gamma of hot electrons does not exceed Gamma [triple bond] alpha gammag after acceleration, assuming its initial value also satisfies gamma0 hot-electron distribution is predicted. PMID:19905227

  12. Hot electron pump: a plasmonic rectifying antenna (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Yanik, Ahmet A.; Hossain, Golam I.

    2015-09-01

    Plasmonic nanostructures have been widely explored to improve absorption efficiency of conventional solar cells, either by employing them as a light scatterer, or as a source of local field enhancement. Unavoidable ohmic loss associated with the plasmonic metal nanostructures in visible spectrum, limits the efficiency improvement of photovoltaic devices by employing this local photon density of states (LDOS) engineering approach. Instead of using plasmonic structures as efficiency improving layer, recently, there has been a growing interest in exploring plasmoinc nanoparticle as the active medium for photovoltaic device. By extracting hot electrons that are created in metallic nanoparticles in a non-radiative Landau decay of surface plasmons, many novel plasmonic photovoltaic devices have been proposed. Moreover, these hot electrons in metal nanoparticles promises high efficiency with a spectral response that is not limited by the band gap of the semiconductors (active material of conventional solar cell). In this work, we will show a novel photovoltaic configuration of plasmonic nanoparticle that acts as an antenna by capturing free space ultrahigh frequency electromagnetic wave and rectify them through an ultrafast hot electron pump and eventually inject DC current in the contact of the device. We will introduce a bottom-up quantum mechanical approach model to explain fundamental physical processes involved in this hot electron pump rectifying antenna and it's ultrafast dynamics. Our model is based on non-equilibrium Green's function formalism, a robust theoretical framework to investigate transport and design nanoscale electronic devices. We will demonstrate some fundamental limitations that go the very foundations of quantum mechanics.

  13. A Heteroepitaxial Perovskite Metal-Base Transistor

    SciTech Connect

    Yajima, T.; Hikita, Y.; Hwang, H.Y.; /Tokyo U. /JST, PRESTO /SLAC

    2011-08-11

    'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.

  14. Apoptotic self-organized electronic device using thin-film transistors for artificial neural networks with unsupervised learning functions

    NASA Astrophysics Data System (ADS)

    Kimura, Mutsumi; Miyatani, Tomoaki; Fujita, Yusuke; Kasakawa, Tomohiro

    2015-03-01

    Artificial neural networks are promising systems for information processing with many advantages, such as self-teaching and parallel distributed computing. However, conventional networks consist of extremely intricate circuits to guarantee accurate behaviors of the neurons and synapses. We demonstrate an apoptotic self-organized electronic device using thin-film transistors for artificial neural networks with unsupervised learning functions. First, we formed a “neuron” from only eight transistors and reduced a “synapse” to only one transistor by employing the characteristic degradations of the synapse transistors to adjust the synaptic connection strength. Second, we classified the synapses into two types, “concordant” and “discordant” synapses, and composed a local interconnective network optimized for integrated electronic circuits. Finally, we confirmed that the device is feasible and can learn multiple logical operations, including AND, OR, and XOR.

  15. Modeling of high composition AlGaN channel high electron mobility transistors with large threshold voltage

    SciTech Connect

    Bajaj, Sanyam Hung, Ting-Hsiang; Akyol, Fatih; Nath, Digbijoy; Rajan, Siddharth

    2014-12-29

    We report on the potential of high electron mobility transistors (HEMTs) consisting of high composition AlGaN channel and barrier layers for power switching applications. Detailed two-dimensional (2D) simulations show that threshold voltages in excess of 3 V can be achieved through the use of AlGaN channel layers. We also calculate the 2D electron gas mobility in AlGaN channel HEMTs and evaluate their power figures of merit as a function of device operating temperature and Al mole fraction in the channel. Our models show that power switching transistors with AlGaN channels would have comparable on-resistance to GaN-channel based transistors for the same operation voltage. The modeling in this paper shows the potential of high composition AlGaN as a channel material for future high threshold enhancement mode transistors.

  16. Simulations of Electron Transport in Laser Hot Spots

    SciTech Connect

    S. Brunner; E. Valeo

    2001-08-30

    Simulations of electron transport are carried out by solving the Fokker-Planck equation in the diffusive approximation. The system of a single laser hot spot, with open boundary conditions, is systematically studied by performing a scan over a wide range of the two relevant parameters: (1) Ratio of the stopping length over the width of the hot spot. (2) Relative importance of the heating through inverse Bremsstrahlung compared to the thermalization through self-collisions. As for uniform illumination [J.P. Matte et al., Plasma Phys. Controlled Fusion 30 (1988) 1665], the bulk of the velocity distribution functions (VDFs) present a super-Gaussian dependence. However, as a result of spatial transport, the tails are observed to be well represented by a Maxwellian. A similar dependence of the distributions is also found for multiple hot spot systems. For its relevance with respect to stimulated Raman scattering, the linear Landau damping of the electron plasma wave is estimated for such VD Fs. Finally, the nonlinear Fokker-Planck simulations of the single laser hot spot system are also compared to the results obtained with the linear non-local hydrodynamic approach [A.V. Brantov et al., Phys. Plasmas 5 (1998) 2742], thus providing a quantitative limit to the latter method: The hydrodynamic approach presents more than 10% inaccuracy in the presence of temperature variations of the order delta T/T greater than or equal to 1%, and similar levels of deformation of the Gaussian shape of the Maxwellian background.

  17. Electric field driven plasmon dispersion in AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Tan, Ren-Bing; Qin, Hua; Zhang, Xiao-Yu; Xu, Wen

    2013-11-01

    We present a theoretical study on the electric field driven plasmon dispersion of the two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistors (HEMTs). By introducing a drifted Fermi—Dirac distribution, we calculate the transport properties of the 2DEG in the AlGaN/GaN interface by employing the balance-equation approach based on the Boltzmann equation. Then, the nonequilibrium Fermi—Dirac function is obtained by applying the calculated electron drift velocity and electron temperature. Under random phase approximation (RPA), the electric field driven plasmon dispersion is investigated. The calculated results indicate that the plasmon frequency is dominated by both the electric field E and the angle between wavevector q and electric field E. Importantly, the plasmon frequency could be tuned by the applied source—drain bias voltage besides the gate voltage (change of the electron density).

  18. Hot-electron energy deposition around unsupported laser targets

    SciTech Connect

    Eidmann, K.; Maaswinkel, A.; Sigel, R.; Witkowski, S.; Amiranoff, F.; Fabbro, R.; Hares, J.D.; Kilkenny, J.D.

    1983-09-01

    Free-falling spheres, released by a simple mechanism, are used as laser targets. Hot-electron energy transport upon one-sided irradiation with 300-ps iodine laser pulses (6 x 10/sup 15/ W cm/sup -2/) is studied by various methods, including x-ray pinhole photography and time-resolved shadowgraphy. Spatial energy deposition is consistent with hot-electron spreading in the presence of self-generated magnetic fields, as suggested by recent experiments and simulations. The insensitivity of the results to the presence of a supporting stalk is attributed to inductive decoupling of the target. Free-falling targets open the possibility of highly symmetric implosion experiments.

  19. Observation of 8600 K electron temperature in AlGaN/GaN high electron mobility transistors on Si substrate

    NASA Astrophysics Data System (ADS)

    Narita, Tomotaka; Fujimoto, Yuichi; Wakejima, Akio; Egawa, Takashi

    2016-03-01

    The electron temperature (T e) in AlGaN/GaN high electron mobility transistors (HEMTs) on Si was studied by spectroscopic measurements of its electroluminescence (EL). The EL spectrum has been followed by the Maxwell-Boltzmann distribution and no signal at equivalent energy as a band-gap of GaN has been observed. These experimental results imply that the EL is dominated by an intra-band transition. The highest T e of 8600 K in AlGaN/GaN HEMTs was extracted at the drain voltage of 60 V. The experimental results are in agreement with results previously predicted by a Monte Carlo simulation.

  20. Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electronics

    SciTech Connect

    Dong, Q.; Liang, Y. X.; Ferry, D.; Cavanna, A.; Gennser, U.; Couraud, L.; Jin, Y.

    2014-07-07

    We report on the results obtained from specially designed high electron mobility transistors at 4.2 K: the gate leakage current can be limited lower than 1 aA, and the equivalent input noise-voltage and noise-current at 1 Hz can reach 6.3 nV/Hz{sup 1∕2} and 20 aA/Hz{sup 1∕2}, respectively. These results open the way to realize high performance low-frequency readout electronics under very low-temperature conditions.

  1. Ultra-low noise high electron mobility transistors for high-impedance and low-frequency deep cryogenic readout electronics

    NASA Astrophysics Data System (ADS)

    Dong, Q.; Liang, Y. X.; Ferry, D.; Cavanna, A.; Gennser, U.; Couraud, L.; Jin, Y.

    2014-07-01

    We report on the results obtained from specially designed high electron mobility transistors at 4.2 K: the gate leakage current can be limited lower than 1 aA, and the equivalent input noise-voltage and noise-current at 1 Hz can reach 6.3 nV/Hz1/2 and 20 aA/Hz1/2, respectively. These results open the way to realize high performance low-frequency readout electronics under very low-temperature conditions.

  2. Dual-gated bilayer graphene hot-electron bolometer.

    PubMed

    Yan, Jun; Kim, M-H; Elle, J A; Sushkov, A B; Jenkins, G S; Milchberg, H M; Fuhrer, M S; Drew, H D

    2012-07-01

    Graphene is an attractive material for use in optical detectors because it absorbs light from mid-infrared to ultraviolet wavelengths with nearly equal strength. Graphene is particularly well suited for bolometers-devices that detect temperature-induced changes in electrical conductivity caused by the absorption of light-because its small electron heat capacity and weak electron-phonon coupling lead to large light-induced changes in electron temperature. Here, we demonstrate a hot-electron bolometer made of bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The bolometer exhibits a noise-equivalent power (33 fW Hz(-1/2) at 5 K) that is several times lower, and intrinsic speed (>1 GHz at 10 K) three to five orders of magnitude higher than commercial silicon bolometers and superconducting transition-edge sensors at similar temperatures. PMID:22659611

  3. Coulomb blockade in monolayer MoS2 single electron transistor

    NASA Astrophysics Data System (ADS)

    Lee, Kyunghoon; Kulkarni, Girish; Zhong, Zhaohui

    2016-03-01

    Substantial effort has been dedicated to understand the intrinsic electronic properties of molybdenum disulfide (MoS2). However, electron transport study on monolayer MoS2 has been challenging to date, especially at low temperatures due to large metal/semiconductor junction barriers. Herein, we report the fabrication and characterization of the monolayer MoS2 single-electron transistor. High performance devices are obtained through the use of low work function metal (zinc) contact and a rapid thermal annealing step. Coulomb blockade is observed at low temperatures and is attributed to single-electron tunneling via two tunnel junction barriers. The nature of Coulomb blockade is also investigated by temperature-dependent conductance oscillation measurement. Our results hold promise for the study of novel quantum transport phenomena in 2D semiconducting atomic layer crystals.Substantial effort has been dedicated to understand the intrinsic electronic properties of molybdenum disulfide (MoS2). However, electron transport study on monolayer MoS2 has been challenging to date, especially at low temperatures due to large metal/semiconductor junction barriers. Herein, we report the fabrication and characterization of the monolayer MoS2 single-electron transistor. High performance devices are obtained through the use of low work function metal (zinc) contact and a rapid thermal annealing step. Coulomb blockade is observed at low temperatures and is attributed to single-electron tunneling via two tunnel junction barriers. The nature of Coulomb blockade is also investigated by temperature-dependent conductance oscillation measurement. Our results hold promise for the study of novel quantum transport phenomena in 2D semiconducting atomic layer crystals. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08954a

  4. Coulomb blockade in monolayer MoS2 single electron transistor.

    PubMed

    Lee, Kyunghoon; Kulkarni, Girish; Zhong, Zhaohui

    2016-03-31

    Substantial effort has been dedicated to understand the intrinsic electronic properties of molybdenum disulfide (MoS2). However, electron transport study on monolayer MoS2 has been challenging to date, especially at low temperatures due to large metal/semiconductor junction barriers. Herein, we report the fabrication and characterization of the monolayer MoS2 single-electron transistor. High performance devices are obtained through the use of low work function metal (zinc) contact and a rapid thermal annealing step. Coulomb blockade is observed at low temperatures and is attributed to single-electron tunneling via two tunnel junction barriers. The nature of Coulomb blockade is also investigated by temperature-dependent conductance oscillation measurement. Our results hold promise for the study of novel quantum transport phenomena in 2D semiconducting atomic layer crystals. PMID:27001412

  5. High performance organic transistors: Percolating arrays of nanotubes functionalized with an electron deficient olefin

    NASA Astrophysics Data System (ADS)

    Kanungo, Mandakini; Malliaras, George G.; Blanchet, Graciela B.

    2010-08-01

    Precise control over the electronic properties of carbon nanotubes is key to their application in plastic electronics. In the present work, we have functionalized carbon nanotubes with an electron withdrawing nonfluorinated olefins via a 2-2 cycloaddition reaction. Our results suggest that the formation of cyclobutanelike four-member ring at the functionalization site is a fairly general approach, independent of specifics of the addend, to converting the grown mixture of metal and semiconductor tubes into high mobility semiconducting tubes without tedious separation requirements. Thin film transistors fabricated from such functionalized tubes exhibit mobilities of ˜30 cm2/V s and on/off ratios in excess of 106. This simple functionalization represents a low cost path to high performance semiconducting inks for printable electronics.

  6. Preferential electron-cyclotron heating of hot electrons and formation of overdense plasmas

    NASA Astrophysics Data System (ADS)

    Quon, B. H.; Dandl, R. A.

    1989-10-01

    Three electron-cyclotron-heating techniques, which preferentially couple microwave power to different energy segments of the electron distribution function, have been experimentally investigated in the AMPHED facility [C. Bodeldijk, Special Supplement, Nucl. Fusion 26, 184 (1986)]. Whistler waves launched from the high-field mirror throat are strongly absorbed in a single pass across the resonant interaction layer, producing highly overdense cold background plasma but no relativistic hot particles. On the other hand, ordinary waves launched from the system side wall are only weakly damped, giving rise to local cylindrical cavity modes and preferential coupling to hot electrons in the 100 keV region. Low levels (≤5%) of upper-off-resonance heating power were shown to be most effective for preferential hot-electron plasma formation, with ˜100% of the injected power being absorbed by the energetic electrons.

  7. Highly sensitive hot electron bolometer based on disordered graphene.

    PubMed

    Han, Qi; Gao, Teng; Zhang, Rui; Chen, Yi; Chen, Jianhui; Liu, Gerui; Zhang, Yanfeng; Liu, Zhongfan; Wu, Xiaosong; Yu, Dapeng

    2013-01-01

    A bolometer is a device that makes an electrical resistive response to the electromagnetic radiation resulted from a raise of temperature due to heating. The combination of the extremely weak electron-phonon interactions along with its small electron heat capacity makes graphene an ideal material for applications in ultra-fast and sensitive hot electron bolometer. However, a major issue is that the resistance of pristine graphene weakly depends on the electronic temperature. We propose using disordered graphene to obtain a strongly temperature dependent resistance. The measured electrical responsivity of the disordered graphene bolometer reaches 6 × 10(6) V/W at 1.5 K, corresponding to an optical responsivity of 1.6 × 10(5) V/W. The deduced electrical noise equivalent power is 1.2 fW/√Hz, corresponding to the optical noise equivalent power of 44 fW/√Hz. The minimal device structure and no requirement for high mobility graphene make a step forward towards the applications of graphene hot electron bolometers. PMID:24346418

  8. Highly sensitive hot electron bolometer based on disordered graphene

    PubMed Central

    Han, Qi; Gao, Teng; Zhang, Rui; Chen, Yi; Chen, Jianhui; Liu, Gerui; Zhang, Yanfeng; Liu, Zhongfan; Wu, Xiaosong; Yu, Dapeng

    2013-01-01

    A bolometer is a device that makes an electrical resistive response to the electromagnetic radiation resulted from a raise of temperature due to heating. The combination of the extremely weak electron-phonon interactions along with its small electron heat capacity makes graphene an ideal material for applications in ultra-fast and sensitive hot electron bolometer. However, a major issue is that the resistance of pristine graphene weakly depends on the electronic temperature. We propose using disordered graphene to obtain a strongly temperature dependent resistance. The measured electrical responsivity of the disordered graphene bolometer reaches 6 × 106 V/W at 1.5 K, corresponding to an optical responsivity of 1.6 × 105 V/W. The deduced electrical noise equivalent power is 1.2 , corresponding to the optical noise equivalent power of 44 . The minimal device structure and no requirement for high mobility graphene make a step forward towards the applications of graphene hot electron bolometers. PMID:24346418

  9. Multiscale modeling and computation of nano-electronic transistors and transmembrane proton channels

    NASA Astrophysics Data System (ADS)

    Chen, Duan

    The miniaturization of nano-scale electronic transistors, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. In biology, proton dynamics and transport across membrane proteins are of paramount importance to the normal function of living cells. Similar physical characteristics are behind the two subjects, and model simulations share common mathematical interests/challenges. In this thesis work, multiscale and multiphysical models are proposed to study the mechanisms of nanotransistors and proton transport in transmembrane at the atomic level. For nano-electronic transistors, we introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential. This framework enables us to put microscopic and macroscopic descriptions on an equal footing at nano-scale. Additionally, this model includes layered structures and random doping effect of nano-transistors. For transmembrane proton channels, we describe proton dynamics quantum mechanically via a density functional approach while implicitly treat numerous solvent molecules as a dielectric continuum. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered in atomic details. We formulate a total free energy functional to include kinetic and potential energies of protons, as well as electrostatic energy of all other ions on an equal footing. For both nano-transistors and proton channels systems, the variational principle is employed to derive nonlinear governing equations. The Poisson-Kohn-Sham equations are derived for nano-transistors while the generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained for proton channels. Related numerical

  10. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    SciTech Connect

    Shervin, Shahab; Asadirad, Mojtaba; Kim, Seung-Hwan; Ravipati, Srikanth; Lee, Keon-Hwa; Bulashevich, Kirill; Ryou, Jae-Hyun

    2015-11-09

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strain in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.

  11. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    NASA Astrophysics Data System (ADS)

    Shervin, Shahab; Kim, Seung-Hwan; Asadirad, Mojtaba; Ravipati, Srikanth; Lee, Keon-Hwa; Bulashevich, Kirill; Ryou, Jae-Hyun

    2015-11-01

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strain in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.

  12. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics.

    PubMed

    Wei, Jian; Olaya, David; Karasik, Boris S; Pereverzev, Sergey V; Sergeev, Andrei V; Gershenson, Michael E

    2008-08-01

    The submillimetre or terahertz region of the electromagnetic spectrum contains approximately half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang. This radiation is strongly absorbed in the Earth's atmosphere, so space-based terahertz telescopes are crucial for exploring the evolution of the Universe. Thermal emission from the primary mirrors in these telescopes can be reduced below the level of the cosmic background by active cooling, which expands the range of faint objects that can be observed. However, it will also be necessary to develop bolometers-devices for measuring the energy of electromagnetic radiation-with sensitivities that are at least two orders of magnitude better than the present state of the art. To achieve this sensitivity without sacrificing operating speed, two conditions are required. First, the bolometer should be exceptionally well thermally isolated from the environment; second, its heat capacity should be sufficiently small. Here we demonstrate that these goals can be achieved by building a superconducting hot-electron nanobolometer. Its design eliminates the energy exchange between hot electrons and the leads by blocking electron outdiffusion and photon emission. The thermal conductance between hot electrons and the thermal bath, controlled by electron-phonon interactions, becomes very small at low temperatures ( approximately 1 x 10-16 W K-1 at 40 mK). These devices, with a heat capacity of approximately 1 x 10-19 J K-1, are sufficiently sensitive to detect single terahertz photons in submillimetre astronomy and other applications based on quantum calorimetry and photon counting. PMID:18685638

  13. Modelling hot electron generation in short pulse target heating experiments

    NASA Astrophysics Data System (ADS)

    Sircombe, N. J.; Hughes, S. J.

    2013-11-01

    Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC) code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.

  14. Cryogenic, low-noise high electron mobility transistor amplifiers for the Deep Space Network

    NASA Astrophysics Data System (ADS)

    Bautista, J. J.

    1993-11-01

    The rapid advances recently achieved by cryogenically cooled high electron mobility transistor (HEMT) low-noise amplifiers (LNA's) in the 1- to 10-GHz range are making them extremely competitive with maser amplifiers. In order to address future spacecraft navigation, telemetry, radar, and radio science needs, the Deep Space Network is investing both maser and HEMT amplifiers for its Ka-band (32-GHz) downlink capability. This article describes the current state cryogenic HEMT LNA development at Ka-band for the DSN. Noise performance results at S-band (2.3 GHz) and X-band (8.5 GHz) for HEMT's and masers are included for completeness.

  15. Room temperature operational single electron transistor fabricated by focused ion beam deposition

    NASA Astrophysics Data System (ADS)

    Karre, P. Santosh Kumar; Bergstrom, Paul L.; Mallick, Govind; Karna, Shashi P.

    2007-07-01

    We present the fabrication and room temperature operation of single electron transistors using 8nm tungsten islands deposited by focused ion beam deposition technique. The tunnel junctions are fabricated using oxidation of tungsten in peracetic acid. Clear Coulomb oscillations, showing charging and discharging of the nanoislands, are seen at room temperature. The device consists of an array of tunnel junctions; the tunnel resistance of individual tunnel junction of the device is calculated to be as high as 25.13GΩ. The effective capacitance of the array of tunnel junctions was found to be 0.499aF, giving a charging energy of 160.6meV.

  16. Cryogenic, low-noise high electron mobility transistor amplifiers for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.

    1993-01-01

    The rapid advances recently achieved by cryogenically cooled high electron mobility transistor (HEMT) low-noise amplifiers (LNA's) in the 1- to 10-GHz range are making them extremely competitive with maser amplifiers. In order to address future spacecraft navigation, telemetry, radar, and radio science needs, the Deep Space Network is investing both maser and HEMT amplifiers for its Ka-band (32-GHz) downlink capability. This article describes the current state cryogenic HEMT LNA development at Ka-band for the DSN. Noise performance results at S-band (2.3 GHz) and X-band (8.5 GHz) for HEMT's and masers are included for completeness.

  17. Ballistic electron transport calculation of strained germanium-tin fin field-effect transistors

    SciTech Connect

    Lan, H.-S.; Liu, C. W.

    2014-05-12

    The dependence of ballistic electron current on Sn content, sidewall orientations, fin width, and uniaxial stress is theoretically studied for the GeSn fin field-effect transistors. Alloying Sn increases the direct Γ valley occupancy and enhances the injection velocity at virtual source node. (112{sup ¯}) sidewall gives the highest current enhancement due to the rapidly increasing Γ valley occupancy. The non-parabolicity of the Γ valley affects the occupancy significantly. However, uniaxial tensile stress and the shrinkage of fin width reduce the Γ valley occupancy, and the currents are enhanced by increasing occupancy of specific indirect L valleys with high injection velocity.

  18. Josephson-Majorana cycle in topological single-electron hybrid transistors

    NASA Astrophysics Data System (ADS)

    Didier, Nicolas; Gibertini, Marco; Moghaddam, Ali G.; König, Jürgen; Fazio, Rosario

    2013-07-01

    Charge transport through a small topological superconducting island in contact with a normal and a superconducting electrode occurs through a cycle that involves coherent oscillations of Cooper pairs and tunneling in/out the normal electrode through a Majorana bound state, the Josephson-Majorana cycle. We illustrate this mechanism by studying the current-voltage characteristics of a superconductor-topological superconductor-normal metal single-electron transistor. At low bias and temperature the Josephson-Majorana cycle is the dominant mechanism for transport. We discuss a three-terminal configuration where the nonlocal character of the Majorana bound states is emergent.

  19. Field-emission-induced electromigration method for the integration of single-electron transistors

    NASA Astrophysics Data System (ADS)

    Ueno, Shunsuke; Tomoda, Yusuke; Kume, Watari; Hanada, Michinobu; Takiya, Kazutoshi; Shirakashi, Jun-ichi

    2012-01-01

    We report a simple and easy method for the integration of planar-type single-electron transistors (SETs). This method is based on electromigration induced by a field emission current, which is so-called “activation”. The integration of two SETs was achieved by performing the activation to the series-connected initial nanogaps. In both simultaneously activated devices, current-voltage (ID-VD) curves displayed Coulomb blockade properties, and Coulomb blockade voltage was also obviously modulated by the gate voltage at 16 K. Moreover, the charging energy of both SETs was well controlled by the preset current in the activation.

  20. Electronic transport mechanisms in scaled gate-all-around silicon nanowire transistor arrays

    SciTech Connect

    Clément, N. E-mail: guilhem.larrieu@laas.fr; Han, X. L.; Larrieu, G. E-mail: guilhem.larrieu@laas.fr

    2013-12-23

    Low-frequency noise is used to study the electronic transport in arrays of 14 nm gate length vertical silicon nanowire devices. We demonstrate that, even at such scaling, the electrostatic control of the gate-all-around is sufficient in the sub-threshold voltage region to confine charges in the heart of the wire, and the extremely low noise level is comparable to that of high quality epitaxial layers. Although contact noise can already be a source of poor transistor operation above threshold voltage for few nanowires, nanowire parallelization drastically reduces its impact.

  1. The operation cutoff frequency of high electron mobility transistor measured by terahertz method

    SciTech Connect

    Zhu, Y. M. Zhuang, S. L.

    2014-07-07

    Commonly, the cutoff frequency of high electron mobility transistor (HEMT) can be measured by vector network analyzer (VNA), which can only measure the sample exactly in low frequency region. In this paper, we propose a method to evaluate the cutoff frequency of HEMT by terahertz (THz) technique. One example shows the cutoff frequency of our HEMT is measured at ∼95.30 GHz, which is reasonable agreement with that estimated by VNA. It is proved THz technology a potential candidate for the substitution of VNA for the measurement of high-speed devices even up to several THz.

  2. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Ji Heon; Kim, Tae Ho; Lee, Hyunjea; Park, Young Ran; Choi, Woong; Lee, Cheol Jin

    2016-06-01

    We investigated the dependence of electron mobility on the thickness of MoS2 nanosheets by fabricating bottom-gate single and few-layer MoS2 thin-film transistors with SiO2 gate dielectrics and Au electrodes. All the fabricated MoS2 transistors showed on/off-current ratio of ˜107 and saturated output characteristics without high-k capping layers. As the MoS2 thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS2 transistors increased from ˜10 to ˜18 cm2V-1s-1. The increased subthreshold swing of the fabricated transistors with MoS2 thickness suggests that the increase of MoS2 mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS2 layer on its thickness.

  3. Electron and hole photoemission detection for band offset determination of tunnel field-effect transistor heterojunctions

    SciTech Connect

    Li, Wei; Zhang, Qin; Kirillov, Oleg A.; Levin, Igor; Richter, Curt A.; Gundlach, David J.; Nguyen, N. V. E-mail: liangxl@pku.edu.cn; Bijesh, R.; Datta, S.; Liang, Yiran; Peng, Lian-Mao; Liang, Xuelei E-mail: liangxl@pku.edu.cn

    2014-11-24

    We report experimental methods to ascertain a complete energy band alignment of a broken-gap tunnel field-effect transistor based on an InAs/GaSb hetero-junction. By using graphene as an optically transparent electrode, both the electron and hole barrier heights at the InAs/GaSb interface can be quantified. For a Al{sub 2}O{sub 3}/InAs/GaSb layer structure, the barrier height from the top of the InAs and GaSb valence bands to the bottom of the Al{sub 2}O{sub 3} conduction band is inferred from electron emission whereas hole emissions reveal the barrier height from the top of the Al{sub 2}O{sub 3} valence band to the bottom of the InAs and GaSb conduction bands. Subsequently, the offset parameter at the broken gap InAs/GaSb interface is extracted and thus can be used to facilitate the development of predicted models of electron quantum tunneling efficiency and transistor performance.

  4. Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport

    SciTech Connect

    Fukuhara, M.; Kawarada, H.

    2015-02-28

    The realization of room-temperature macroscopic field effect transistors (FETs) will lead to new epoch-making possibilities for electronic applications. The I{sub d}-V{sub g} characteristics of the millimeter-sized aluminum-oxide amorphous alloy (Ni{sub 0.36}Nb{sub 0.24}Zr{sub 0.40}){sub 90}H{sub 10} FETs were measured at a gate-drain bias voltage of 0–60 μV in nonmagnetic conditions and under a magnetic fields at room temperature. Application of dc voltages to the gate electrode resulted in the transistor exhibiting one-electron Coulomb oscillation with a period of 0.28 mV, Fabry-Perot interference with a period of 2.35 μV under nonmagnetic conditions, and a Fano effect with a period of 0.26 mV for Vg and 0.2 T under a magnetic field. The realization of a low-energy controllable device made from millimeter-sized Ni-Nb-Zr-H amorphous alloy throws new light on cluster electronics.

  5. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect

    Li, Baikui; Tang, Xi; Chen, Kevin J.; Wang, Jiannong

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  6. Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Liu-Hong, Ma; Wei-Hua, Han; Hao, Wang; Qi-feng, Lyu; Wang, Zhang; Xiang, Yang; Fu-Hua, Yang

    2016-06-01

    Silicon junctionless nanowire transistor (JNT) is fabricated by femtosecond laser direct writing on a heavily n-doped SOI substrate. The performances of the transistor, i.e., current drive, threshold voltage, subthreshold swing (SS), and electron mobility are evaluated. The device shows good gate control ability and low-temperature instability in a temperature range from 10 K to 300 K. The drain currents increasing by steps with the gate voltage are clearly observed from 10 K to 50 K, which is attributed to the electron transport through one-dimensional (1D) subbands formed in the nanowire. Besides, the device exhibits a better low-field electron mobility of 290 cm2·V‑1·s‑1, implying that the silicon nanowires fabricated by femtosecond laser have good electrical properties. This approach provides a potential application for nanoscale device patterning. Project supported by the National Natural Science Foundation of China (Grant Nos. 61376096, 61327813, and 61404126) and the National Basic Research Program of China (Grant No. 2010CB934104).

  7. Effect of hot implantation on ON-current enhancement utilizing isoelectronic trap in Si-based tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Mizubayashi, Wataru; Morita, Yukinori; Migita, Shinji; Fukuda, Koichi; Miyata, Noriyuki; Yasuda, Tetsuji; Masahara, Meishoku; Ota, Hiroyuki

    2015-03-01

    A tunneling-current enhancement technology for Si-based tunnel field-effect transistors (TFETs) utilizing an Al-N isoelectronic trap (IET) has been proposed recently. In this study, we investigate hot implantation as a doping technique for Al-N isoelectronic impurity. Hot implantation reduces the damage induced by Al and N implantation processes, resulting in performance improvement of IET-assisted TFETs, e.g., a 12-fold enhancement in the driving current at an operation voltage of 0.5 V and an approximately one-third reduction in the subthreshold slope. By hot implantation, we can achieve a higher driving current in Si-based TFETs using the IET technology.

  8. Vertical electron transistor (VET) in GaAs with a heterojunction (AlGaAs-GaAs) cathode

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Maki, P. A.; Wendt, J. R.; Schaff, W.; Kohn, E.; Eastman, L. F.

    1984-02-01

    The successful fabrication of submicrometer channel length (0.75 micron) and gate length (0.15 micron) vertical electron transistors with AlGaAs cathodes is reported. Lack of electron velocity enhancement has been proposed to be due to high operating channel temperatures, and low temperature measurements were hindered by carrier freeze-out.

  9. Tuning the electronic properties of ZnO nanowire field effect transistors via surface functionalization.

    PubMed

    Han, Cheng; Xiang, Du; Zheng, Minrui; Lin, Jiadan; Zhong, Jianqiang; Sow, Chorng Haur; Chen, Wei

    2015-03-01

    Using in situ field effect transistor (FET) characterization combined with the molecular beam epitaxy technique, we demonstrate a significant depletion of electron charge carriers in single zinc oxide (ZnO) nanowire through the surface modification with molybdenum trioxide (MoO3) and 1, 4, 5, 8, 9, 11-hexaazatriphenylene hexacarbonitrile (HATCN) layers. The electron mobility of ZnO nanowire was found to sharply decrease after the surface modification with MoO3; in contrast, the electron mobility significantly increased after functionalization with HATCN layers. Such depletion of n-type conduction originates from the interfacial charge transfer, corroborated by in situ photoelectron spectroscopy studies. The air exposure effect on MoO(3-) and HATCN-coated ZnO nanowire devices was also investigated. PMID:25676393

  10. Tuning the electronic properties of ZnO nanowire field effect transistors via surface functionalization

    NASA Astrophysics Data System (ADS)

    Han, Cheng; Xiang, Du; Zheng, Minrui; Lin, Jiadan; Zhong, Jianqiang; Haur Sow, Chorng; Chen, Wei

    2015-03-01

    Using in situ field effect transistor (FET) characterization combined with the molecular beam epitaxy technique, we demonstrate a significant depletion of electron charge carriers in single zinc oxide (ZnO) nanowire through the surface modification with molybdenum trioxide (MoO3) and 1, 4, 5, 8, 9, 11-hexaazatriphenylene hexacarbonitrile (HATCN) layers. The electron mobility of ZnO nanowire was found to sharply decrease after the surface modification with MoO3; in contrast, the electron mobility significantly increased after functionalization with HATCN layers. Such depletion of n-type conduction originates from the interfacial charge transfer, corroborated by in situ photoelectron spectroscopy studies. The air exposure effect on MoO3- and HATCN-coated ZnO nanowire devices was also investigated.

  11. Room temperature Coulomb blockade effects in Au nanocluster/pentacene single electron transistors

    NASA Astrophysics Data System (ADS)

    Zheng, Haisheng; Asbahi, Mohamed; Mukherjee, Somik; Mathai, Cherian J.; Gangopadhyay, Keshab; Yang, Joel K. W.; Gangopadhyay, Shubhra

    2015-09-01

    Single-electron transistors incorporating single ˜1 nm gold nanocluster (AuNCs) and pentacene as a complex charge transport system have been used to study the quantum Coulomb blockade and its single electron tunnelling behaviour at room temperature (RT) (300 K). Monodisperse ultra-small (0.86 ± 0.30 nm) AuNCs were deposited by the tilted-target sputtering technique into 12 nm nanogaps fabricated by high-resolution e-beam lithography. Tunnelling resistance was modulated to ˜109 Ω by addition of a pentacene layer, allowing clear observation of quantum staircases and Coulomb oscillations with on/off current modulation ratio of ˜100 in RT current-voltage measurements. The electron addition energy and average quantized energy level spacing were found to be 282 and 80.4 meV, respectively, which are significantly larger than the thermal energy at 300 K (25.9 meV).

  12. High Electron Mobility Transistor Structures on Sapphire Substrates Using CMOS Compatible Processing Techniques

    NASA Technical Reports Server (NTRS)

    Mueller, Carl; Alterovitz, Samuel; Croke, Edward; Ponchak, George

    2004-01-01

    System-on-a-chip (SOC) processes are under intense development for high-speed, high frequency transceiver circuitry. As frequencies, data rates, and circuit complexity increases, the need for substrates that enable high-speed analog operation, low-power digital circuitry, and excellent isolation between devices becomes increasingly critical. SiGe/Si modulation doped field effect transistors (MODFETs) with high carrier mobilities are currently under development to meet the active RF device needs. However, as the substrate normally used is Si, the low-to-modest substrate resistivity causes large losses in the passive elements required for a complete high frequency circuit. These losses are projected to become increasingly troublesome as device frequencies progress to the Ku-band (12 - 18 GHz) and beyond. Sapphire is an excellent substrate for high frequency SOC designs because it supports excellent both active and passive RF device performance, as well as low-power digital operations. We are developing high electron mobility SiGe/Si transistor structures on r-plane sapphire, using either in-situ grown n-MODFET structures or ion-implanted high electron mobility transistor (HEMT) structures. Advantages of the MODFET structures include high electron mobilities at all temperatures (relative to ion-implanted HEMT structures), with mobility continuously improving to cryogenic temperatures. We have measured electron mobilities over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively in MODFET structures. The electron carrier densities were 1.6 and 1.33 x 10(exp 12)/sq cm at room and liquid helium temperature, respectively, denoting excellent carrier confinement. Using this technique, we have observed electron mobilities as high as 900 sq cm/V-sec at room temperature at a carrier density of 1.3 x 10(exp 12)/sq cm. The temperature dependence of mobility for both the MODFET and HEMT structures provides insights into the mechanisms that allow for enhanced

  13. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    NASA Astrophysics Data System (ADS)

    Deen, David A.; Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C.; Gougousi, Theodosia; Evans, Keith R.

    2014-09-01

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5-6 nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700 cm2/V s and sheet resistance of 130 Ω / □ for a 3 nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  14. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    SciTech Connect

    Deen, David A. Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C.; Gougousi, Theodosia; Evans, Keith R.

    2014-09-01

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5–6 nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700 cm{sup 2}/V s and sheet resistance of 130 Ω/□ for a 3 nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  15. Hot electron cooling by acoustic phonons in graphene.

    PubMed

    Betz, A C; Vialla, F; Brunel, D; Voisin, C; Picher, M; Cavanna, A; Madouri, A; Fève, G; Berroir, J-M; Plaçais, B; Pallecchi, E

    2012-08-01

    We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T ∝ V at low bias in agreement with the heat diffusion to the leads described by the Wiedemann-Franz law. We report on T ∝ √V behavior at high bias, which corresponds to a T(4) dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant Σ in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of Σ, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors. PMID:23006198

  16. Electron conductivity in warm and hot dense matter

    NASA Astrophysics Data System (ADS)

    Starrett, Charles; Charest, Marc; Feinblum, David; Burrill, Daniel

    2015-11-01

    The electronic conductivity of warm and hot dense matter is investigated by combining the Ziman-Evans approach with the recently developed pseudo-atom molecular dynamics (PAMD) method. PAMD gives an accurate description of the electronic and ionic structure of the plasma. The Ziman-Evans approach to conductivity, which takes the electronic and ionic structures as inputs, has been widely used but with numerous different assumptions on these inputs. Here we present a systematic study of these assumptions by comparing results to gold-standard QMD results that are thought to be accurate but are very expensive to produce. The study reveals that some assumptions yield very inaccurate results and should not be used, while others give consistently reasonable results. Finally, we show that the Thomas-Fermi version of PAMD can also be used to give accurate conductivities very rapidly, taking a few minutes per point on a single processor.

  17. Hot Electron Cooling by Acoustic Phonons in Graphene

    NASA Astrophysics Data System (ADS)

    Betz, A. C.; Vialla, F.; Brunel, D.; Voisin, C.; Picher, M.; Cavanna, A.; Madouri, A.; Fève, G.; Berroir, J.-M.; Plaçais, B.; Pallecchi, E.

    2012-08-01

    We have investigated the energy loss of hot electrons in metallic graphene by means of GHz noise thermometry at liquid helium temperature. We observe the electronic temperature T∝V at low bias in agreement with the heat diffusion to the leads described by the Wiedemann-Franz law. We report on T∝V behavior at high bias, which corresponds to a T4 dependence of the cooling power. This is the signature of a 2D acoustic phonon cooling mechanism. From a heat equation analysis of the two regimes we extract accurate values of the electron-acoustic phonon coupling constant Σ in monolayer graphene. Our measurements point to an important effect of lattice disorder in the reduction of Σ, not yet considered by theory. Moreover, our study provides a strong and firm support to the rising field of graphene bolometric detectors.

  18. High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.

    2003-01-01

    SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony, concentration was approximately 4 x 10(exp19) per cubic cm. The electron mobility was over 1,200 and 13,000 sq cm/V-sec at room temperature and 0.25 K, respectively. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per sq cm, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V(sub DS)) range, with (V(sub DS)) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.

  19. Stretchable metal oxide thin film transistors on engineered substrate for electronic skin applications.

    PubMed

    Romeo, Alessia; Lacour, Stphanie P

    2015-08-01

    Electronic skins aim at providing distributed sensing and computation in a large-area and elastic membrane. Control and addressing of high-density soft sensors will be achieved when thin film transistor matrices are also integrated in the soft carrier substrate. Here, we report on the design, manufacturing and characterization of metal oxide thin film transistors on these stretchable substrates. The TFTs are integrated onto an engineered silicone substrate with embedded strain relief to protect the devices from catastrophic cracking. The TFT stack is composed of an amorphous In-Ga-Zn-O active layer, a hybrid AlxOy/Parylene dielectric film, gold electrodes and interconnects. All layers are prepared and patterned with planar, low temperature and dry processing. We demonstrate the interconnected IGZO TFTs sustain applied tensile strain up to 20% without electrical degradation and mechanical fracture. Active devices are critical for distributed sensing. The compatibility of IGZO TFTs with soft and biocompatible substrates is an encouraging step towards wearable electronic skins. PMID:26738152

  20. AlGaN/GaN current aperture vertical electron transistors with regrown channels

    NASA Astrophysics Data System (ADS)

    Ben-Yaacov, Ilan; Seck, Yee-Kwang; Mishra, Umesh K.; DenBaars, Steven P.

    2004-02-01

    AlGaN/GaN current aperture vertical electron transistors with regrown aperture and source regions have been fabricated and tested. A 2 μm thick GaN:Si drain region followed by a 0.4 μm GaN:Mg current-blocking layer were grown by metalorganic chemical vapor deposition on a c-plane sapphire substrate. Channel apertures were etched, and a maskless regrowth was performed to grow unintentionally doped GaN inside the aperture as well as above the insulating layer, and to add an AlGaN cap layer. Cl2 reactive ion etching was used to pattern the device mesa, and source, drain, and gate metals were then deposited. Devices were achieved with a maximum source-drain current of 750 mA/mm, an extrinsic transconductance of 120 mS/mm, and a 2-terminal gate breakdown of 65 V while exhibiting almost no DC-RF dispersion for 80 μs pulsed I-V curves. The suppression of DC-RF dispersion was shown to result from the absence of the large electric fields at the surface on the drain-side edge of the gate that are present in high electron mobility transistors. Parasitic leakage currents, which were present in all devices, have been studied in detail. Three leakage paths have been identified, and methods to eliminate them are discussed.

  1. Record Low NEP in the Hot-Electron Titanium Nanobolometers

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Olaya, David; Wei, Jian; Pereverzev, Sergey; Gershenson, Michael E.; Kawamura, Jonathan H.; McGrath, William R.; Sergeev, Andrei V.

    2006-01-01

    We are developing hot-electron superconducting transition-edge sensors (TES) capable of counting THz photons and operating at T = 0.3K. We fabricated superconducting Ti nanosensors with Nb contacts with a volume of approx. 3x10(exp -3) cu microns on planar Si substrate and have measured the thermal conductance due to the weak electron-phonon coupling in the material G = 4x10(exp -14) W/K at 0.3 K. The corresponding phonon-noise NEP = 3x10(exp -19) W/Hz(sup 1/2). Detection of single optical photons (1550nm and 670nm wavelength) has been demonstrated for larger devices and yielded the thermal time constants of 30 microsec at 145 mK and of 25 microsec at 190 mK. This Hot-Electron Direct Detector (HEDD) is expected to have a sufficient energy resolution for detecting individual photons with (nu) > 1 THz where NEP approx. 3x10(exp -20) W/Hz(sup 1/2) is needed for spectroscopy in space.

  2. The Helium Field Effect Transistor (I): Storing Surface State Electrons on Helium Films

    NASA Astrophysics Data System (ADS)

    Ashari, M.; Rees, D. G.; Kono, K.; Scheer, E.; Leiderer, P.

    2012-04-01

    We present investigations of surface state electrons on liquid helium films in confined geometry, using a suitable substrate structure microfabricated on a silicon wafer, similar to a Field Effect Transistor (FET). The sample has a source and drain region, separated by a gate structure, which consists of two gold electrodes with a narrow gap (channel) through which the transport of the surface state electrons takes place. The sample is illuminated to provide a sufficient number of free carriers in the silicon substrate, such that a well-defined potential distribution is achieved. The eventual goal of these experiments is to study the electron transport through a narrow channel in the various states of the phase diagram of the 2D electron system. In the present work we focus on storing the electrons in the source area of the FET, and investigate the spatial distribution of these electrons. It is shown that under the influence of a potential gradient in the silicon substrate the electrons accumulate in front of the potential barrier of the gate. The electron distribution, governed by Coulomb repulsion and by the substrate potential, is determined experimentally. The result is found to be in good agreement with a parallel-plate capacitor model of the system, developed with the aid of a finite element calculation of the surface potential profile of the device.

  3. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  4. The Helium Field Effect Transistor (II): Gated Transport of Surface-State Electrons Through Micro-constrictions

    NASA Astrophysics Data System (ADS)

    Shaban, F.; Ashari, M.; Lorenz, T.; Rau, R.; Scheer, E.; Kono, K.; Rees, D. G.; Leiderer, P.

    2016-06-01

    We present transport measurements of surface-state electrons on liquid helium films in confined geometry. The measurements are taken using split-gate devices similar to a field effect transistor. The number of electrons passing between the source and drain areas of the device can be precisely controlled by changing the length of the voltage pulse applied to the gate electrode. We find evidence that the effective driving potential depends on electron-electron interactions, as well as the electric field applied to the substrate. Our measurements indicate that the mobility of electrons on helium films can be high and that microfabricated transistor devices allow electron manipulation on length scales close to the interelectron separation. Our experiment is an important step toward investigations of surface-state electron properties at much higher densities, for which the quantum melting of the system to a degenerate Fermi gas should be observed.

  5. Characterization of Cross-Sectioned Gallium Nitride High-Electron-Mobility Transistors with In Situ Biasing

    NASA Astrophysics Data System (ADS)

    Hilton, A. M.; Brown, J. L.; Moore, E. A.; Hoelscher, J. A.; Heller, E. R.; Dorsey, D. L.

    2015-10-01

    AlGaN/GaN high-electron-mobility transistors (HEMTs) were characterized in cross-section by Kelvin probe force microscopy (KPFM) during in situ biasing. The HEMTs used in this study were specially designed to maintain full and representative transistor functionality after cross-sectioning perpendicular to the gate width dimension to expose the active channel from source to drain. A cross-sectioning procedure was established that produces samples with high-quality surfaces and minimal degradation in initial transistor performance. A detailed description of the cross-sectioning procedure is provided. Samples were characterized by KPFM, effectively mapping the surface potential of the device in two-dimensional cross-section, including under metallization layers (i.e., gate, field plates, and ohmic contacts). Under the gate and field plate layers are where electric field, temperature, and temperature gradients are all most commonly predicted to have peak values, and where degradation and failure are most likely, and so this is where direct measurements are most critical. In this work, the surface potential of the operating device was mapped in cross-section by KPFM. Charge redistribution was observed during and after biasing, and the surface potential was seen to decay with time back to the prebias condition. This work is a first step toward directly mapping and localizing the steady-state and transient charge distribution due to point defects (traps) before, during, and after device operation, including normally inaccessible regions such as under metallization layers. Such measurements have not previously been demonstrated for GaN HEMT technology.

  6. Hot Electrons and Energy Transport in Metals at MK Temperatures.

    NASA Astrophysics Data System (ADS)

    Roukes, Michael Lee

    Using a new technique involving the generation of hot carriers, we directly measure energy loss lifetimes for electrons in impure metals at mK temperatures. At these temperatures very weak inelastic scattering processes determine energy transport out of the electron gas. A temperature difference between the electron gas and the lattice can be induced by applying an extremely small electric field (of order 1 (mu)V/cm at 25 mK). This temperature difference reflects the rate at which electrons lose energy to the surroundings. The experiment is carried out using a pair of interdigitated thin film resistors mounted on a millidegree demagnetization cryostat: we obtain electron temperature directly by observing current fluctuations. Noise generated by the resistors is measured using an ultra-sensitive two -channel dc SQUID system, providing femtoamp resolution at KHz frequencies. A dc voltage applied across one resistor imposes the bias field causing electron heating. Phonon temperature in the metal lattice is obtained by measuring noise from a second (unbiased) resistor, which is tightly coupled thermally to the first (biased). Our measurements show that electron heating follows an E('2/5) power law in the regime where electron temperature is largely determined by the electric field, E. This implies a T('-3) law for the energy loss lifetime, suggesting electron -acoustic phonon processes dominate. In the mK temperature regime the conductivity is impurity limited and remains ohmic, even as the electrons heat. Assuming a T('3) dependence and extrapolating our measured rates to higher temperatures, we find agreement with electron-phonon rates measured above 1K in clean bulk metals. This contrasts with results from weak localization experiments showing a power law differing from T('3) and much faster rates. This difference arises because weak localization experiments measure the electron phase coherence lifetime; our electron heating experiments, however, measure an energy

  7. Prostate specific antigen detection using AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Wang, H. T.; Lele, T. P.; Tseng, Y.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-09-01

    Antibody-functionalized Au-gated AlGaN /GaN high electron mobility transistors (HEMTs) were used to detect prostate specific antigen (PSA). The PSA antibody was anchored to the gate area through the formation of carboxylate succinimdyl ester bonds with immobilized thioglycolic acid. The AlGaN /GaN HEMT drain-source current showed a rapid response of less than 5s when target PSA in a buffer at clinical concentrations was added to the antibody-immobilized surface. The authors could detect a wide range of concentrations from 10pg/mlto1μg/ml. The lowest detectable concentration was two orders of magnitude lower than the cutoff value of PSA measurements for clinical detection of prostate cancer. These results clearly demonstrate the promise of portable electronic biological sensors based on AlGaN /GaN HEMTs for PSA screening.

  8. Contact boundary conditions and the Dyakonov-Shur instability in high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Crowne, Frank J.

    1997-08-01

    Dyakonov and Shur have proposed a novel device structure based on dc biasing an ordinary high electron mobility transistor (HEMT) while subjecting it to unusual ac boundary conditions at its source and drain [M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993)]. Under these conditions, the drifting two-dimensional electron gas within the HEMT channel acts as a trapped one-component plasma which exhibits damped normal-mode oscillations similar to those of an organ pipe under zero dc bias, and an unexpected instability and gain at large dc biases. In this article, the work of Dyakonov and Shur is generalized by allowing the plasma more hydrodynamic degrees of freedom. In particular, it is found that the description used by Dyakonov and Shur must be generalized to incorporate a more complicated picture of the plasma modes.

  9. In situ electrical characterization of palladium-based single electron transistors made by electromigration technique

    SciTech Connect

    Arzubiaga, L.; Llopis, R.; Golmar, F.; Casanova, F.; Hueso, L. E.

    2014-11-15

    We report the fabrication of single electron transistors (SETs) by feedback-controlled electromigration of palladium and palladium-nickel alloy nanowires. We have optimized a gradual electromigration process for obtaining devices consisting of three terminals (source, drain and gate electrodes), which are capacitively coupled to a metallic cluster of nanometric dimensions. This metal nanocluster forms into the inter-electrode channel during the electromigration process and constitutes the active element of each device, acting as a quantum dot that rules the electron flow between source and drain electrodes. The charge transport of the as-fabricated devices shows Coulomb blockade characteristics and the source to drain conductance can be modulated by electrostatic gating. We have thus achieved the fabrication and in situ measurement of palladium-based SETs inside a liquid helium cryostat chamber.

  10. Electrical NEP in Hot-Electron Titanium Superconducting Bolometers

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Pereverzev, Sergey V.; Olaya, David; Wei, Jian; Gershenson, Michael E.; Sergeev, Andrei V.

    2008-01-01

    We are presenting the current progress on the titanium (Ti) hot-electron transition-edge devices. The ultimate goal of this work is to develop a submillimeter Hot-Electron Direct Detector (HEDD) with the noise equivalent power NEP = 10(sup -1) - 10(sup -20) W/Hz(sup 1/2) for the moderate resolution spectroscopy and Cosmic Microwave Background (CMB) studies on future space telescope (e.g., SPICA, SAFIR, SPECS, CMBPol) with cryogenically cooled (approximately 4-5 K) mirrors. Recently, we have achieved the extremely low thermal conductance (approximately 20 fW/K at 300 mK and approximately 0.1 fW/K at 40 mK) due to the electron-phonon decoupling in Ti nanodevices with niobium (Nb) Andreev contacts. This thermal conductance translates into the "phonon-noise" NEP approximately equal to 3 x 10(sup -21) W/Hz(sup 1/2) at 40 mK and NEP approximately equal to 3 x 10(sup -19) W/Hz(sup 1/2) at 300 mK. These record data indicate the great potential of the hot-electron detector for meeting many application needs. Beside the extremely low phonon-noise NEP, the nanobolometers have a very low electron heat capacitance that makes them promising as detectors of single THz photons. As the next step towards the practical demonstration of the HEDD, we fabricated and tested somewhat larger than in Ref.1 devices (approximately 6 micrometers x 0.35 micrometers x 40 nm) whose critical temperature is well reproduced in the range 300-350 mK. The output electrical noise measured in these devices with a low-noise dc SQUID is dominated by the thermal energy fluctuations (ETF) aka "phonon noise". This indicates the high electrothermal loop gain that effectively suppresses the contributions of the Johnson noise and the amplifier (SQUID) noise. The electrical NEP = 6.7 x 10(sup -18) W/Hz(sup 1/2) derived from these measurements is in good agreement with the predictions based on the thermal conductance data. The very low NEP and the high speed (approximately microns) are a unique combination not

  11. Hot Electron Transport Properties of Thin Copper Films Using Ballistic Electron Emission Microscopy

    NASA Astrophysics Data System (ADS)

    Garramone, J. J.; Abel, J. R.; Sitnitsky, I. L.; Zhao, L.; Appelbaum, I.; Labella, V. P.

    2009-03-01

    Copper is widely used material for electrical interconnects within integrated circuits and recently as a base layer for hot electron spin injection and readout into silicon. Integral to both their applications is the knowledge of the electron scattering length. To the best of our knowledge, little work exists that directly measures the scattering length of electrons in copper. In this study we used ballistic electron emission microscopy (BEEM) to measure the hot electron attenuation length of copper thin films deposited on Si(001). BEEM is a three terminal scanning tunneling microcopy (STM) based technique that can measure transport and Schottky heights of metal/semiconductor systems. We find a Schottky height of 0.67 eV and an attenuation length approaching 40 nm just above the Schottky height at 77 K. We also measure a decrease in the attenuation length with increasing tip bias to determine the relative roles of inelastic and elastic scattering.

  12. Hot-Electron Photon Counters for Detecting Terahertz Photons

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; Sergeyev, Andrei

    2005-01-01

    A document proposes the development of hot-electron photon counters (HEPCs) for detecting terahertz photons in spaceborne far-infrared astronomical instruments. These would be superconducting- transition-edge devices: they would contain superconducting bridges that would have such low heat capacities that single terahertz photons would cause transient increases in their electron temperatures through the superconducting- transition range, thereby yielding measurable increases in electrical resistance. Single devices or imaging arrays of the devices would be fabricated as submicron-sized bridges made from films of disordered Ti (which has a superconducting- transition temperature of .0.35 K) between Nb contacts on bulk silicon or sapphire substrates. In operation, these devices would be cooled to a temperature of .0.3 K. The proposed devices would cost less to fabricate and operate, relative to integrating bolometers of equal sensitivity, which must be operated at a temperature of approx. = 0.1 K.

  13. Hot electron generation by aluminum oligomers in plasmonic ultraviolet photodetectors.

    PubMed

    Ahmadivand, Arash; Sinha, Raju; Vabbina, Phani Kiran; Karabiyik, Mustafa; Kaya, Serkan; Pala, Nezih

    2016-06-13

    We report on an integrated plasmonic ultraviolet (UV) photodetector composed of aluminum Fano-resonant heptamer nanoantennas deposited on a Gallium Nitride (GaN) active layer which is grown on a sapphire substrate to generate significant photocurrent via formation of hot electrons by nanoclusters upon the decay of nonequilibrium plasmons. Using the plasmon hybridization theory and finite-difference time-domain (FDTD) method, it is shown that the generation of hot carriers by metallic clusters illuminated by UV beam leads to a large photocurrent. The induced Fano resonance (FR) minimum across the UV spectrum allows for noticeable enhancement in the absorption of optical power yielding a plasmonic UV photodetector with a high responsivity. It is also shown that varying the thickness of the oxide layer (Al2O3) around the nanodisks (tox) in a heptamer assembly adjusted the generated photocurrent and responsivity. The proposed plasmonic structure opens new horizons for designing and fabricating efficient opto-electronics devices with high gain and responsivity. PMID:27410381

  14. Planar microcavity-integrated hot-electron photodetector.

    PubMed

    Zhang, Cheng; Wu, Kai; Zhan, Yaohui; Giannini, Vincenzo; Li, Xiaofeng

    2016-05-21

    Hot-electron photodetectors are attracting increasing interest due to their capability in below-bandgap photodetection without employing classic semiconductor junctions. Despite the high absorption in metallic nanostructures via plasmonic resonance, the fabrication of such devices is challenging and costly due to the use of high-dimensional sub-wavelength nanostructures. In this study, we propose a planar microcavity-integrated hot-electron photodetector (MC-HE PD), in which the TCO/semiconductor/metal (TCO: transparent conductive oxide) structure is sandwiched between two asymmetrically distributed Bragg reflectors (DBRs) and a lossless buffer layer. Finite-element simulations demonstrate that the resonant wavelength and the absorption efficiency of the device can be manipulated conveniently by tailoring the buffer layer thickness and the number of top DBR pairs. By benefitting from the largely increased electric field at the resonance frequency, the absorption in the metal can reach 92%, which is a 21-fold enhancement compared to the reference without a microcavity. Analytical probability-based electrical calculations further show that the unbiased responsivity can be up to 239 nA mW(-1), which is more than an order of magnitude larger than that of the reference. Furthermore, the MC-HE PD not only exhibits a superior photoelectron conversion ability compared to the approach with corrugated metal, but also achieves the ability to tune the near infrared multiband by employing a thicker buffer layer. PMID:27128730

  15. Planar microcavity-integrated hot-electron photodetector

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wu, Kai; Zhan, Yaohui; Giannini, Vincenzo; Li, Xiaofeng

    2016-05-01

    Hot-electron photodetectors are attracting increasing interest due to their capability in below-bandgap photodetection without employing classic semiconductor junctions. Despite the high absorption in metallic nanostructures via plasmonic resonance, the fabrication of such devices is challenging and costly due to the use of high-dimensional sub-wavelength nanostructures. In this study, we propose a planar microcavity-integrated hot-electron photodetector (MC-HE PD), in which the TCO/semiconductor/metal (TCO: transparent conductive oxide) structure is sandwiched between two asymmetrically distributed Bragg reflectors (DBRs) and a lossless buffer layer. Finite-element simulations demonstrate that the resonant wavelength and the absorption efficiency of the device can be manipulated conveniently by tailoring the buffer layer thickness and the number of top DBR pairs. By benefitting from the largely increased electric field at the resonance frequency, the absorption in the metal can reach 92%, which is a 21-fold enhancement compared to the reference without a microcavity. Analytical probability-based electrical calculations further show that the unbiased responsivity can be up to 239 nA mW-1, which is more than an order of magnitude larger than that of the reference. Furthermore, the MC-HE PD not only exhibits a superior photoelectron conversion ability compared to the approach with corrugated metal, but also achieves the ability to tune the near infrared multiband by employing a thicker buffer layer.

  16. Specific detection of mercury(II) irons using AlGaAs/InGaAs high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Chengyan; Zhang, Yang; Guan, Min; Cui, Lijie; Ding, Kai; Zhang, Bintian; Lin, Zhang; Huang, Feng; Zeng, Yiping

    2015-09-01

    As one of the most environmentally important cations, mercury(II) iron has the biological toxicity which impacts wild life ecology and human health heavily. A Hg2+ biosensor based on AlGaAs/InGaAs high electron mobility transistors with high sensitivity and short response time is demonstrated experimentally. To achieve highly specific detection of Hg2+, an one-end thiol-modified ssDNA with lots of T thymine is immobilized to the Au-coated gate area of the high electron mobility transistors by a covalent modification method. The introduction of Hg2+ to the gate of the high electron mobility transistors affects surface charges, which leads to a change in the concentration of the two-dimensional electron gas in the AlGaAs/InGaAs high electron mobility transistors. Thus, the saturation current curves can be shifted with the modification of the gate areas and varied concentrations of Hg2+. Under the bias of 100 mV, a detection limit for the Hg2+ as low as10 nM is achieved. Successful detection with minute quantity of the sample indicates that the sensor has great potential in practical screening for a wide population. In addition, the dimension of the active area of the sensor is 20×50 μm2 and that of the entire sensor chip is 1×2 mm2, which make the Hg2+ biosensor portable.

  17. High Electron Mobility SiGe/Si Transistor Structures on Sapphire Substrates

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Mueller, Carl H.; Croke, Edward T.; Ponchak, George E.

    2004-01-01

    SiGe/Si n-type modulation doped field effect structures and transistors (n-MODFETs) have been fabricated on r-plane sapphire substrates. The structures were deposited using molecular beam epitaxy, and antimony dopants were incorporated via a delta doping process. Secondary ion mass spectroscopy (SIMS) indicates that the peak antimony concentration was approximately 4 x 10(exp 19) per cubic centimeter. At these two temperatures, the electron carrier densities were 1.6 and 1.33 x 10(exp 12) per square centimeter, thus demonstrating that carrier confinement was excellent. Shubnikov-de Haas oscillations were observed at 0.25 K, thus confirming the two-dimensional nature of the carriers. Transistors, with gate lengths varying from 1 micron to 5 microns, were fabricated using these structures and dc characterization was performed at room temperature. The saturated drain current region extended over a wide source-to-drain voltage (V (sub DS)) range, with V (sub DS) knee voltages of approximately 0.5 V and increased leakage starting at voltages slightly higher than 4 V.

  18. Superconducting single electron transistor for charge sensing in Si/SiGe-based quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Zhen

    Si-based quantum devices, including Si/SiGe quantum dots (QD), are promising candidates for spin-based quantum bits (quits), which are a potential platform for quantum information processing. Meanwhile, qubit readout remains a challenging task related to semiconductor-based quantum computation. This thesis describes two readout devices for Si/SiGe QDs and the techniques for developing them from a traditional single electron transistor (SET). By embedding an SET in a tank circuit and operating it in the radio-frequency (RF) regime, a superconducting RF-SET has quick response as well as ultra high charge sensitivity and can be an excellent charge sensor for the QDs. We demonstrate such RF-SETs for QDs in a Si/SiGe heterostructure. Characterization of the SET in magnetic fields is studied for future exploration of advanced techniques such as spin detection and spin state manipulation. By replacing the tank circuit with a high-quality-factor microwave cavity, the embedded SET will be operated in the supercurrent regime as a single Cooper pair transistor (CPT) to further increase the charge sensitivity and reduce any dissipation. The operating principle and implementation of the cavity-embedded CPT (cCPT) will be introduced.

  19. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring

    NASA Astrophysics Data System (ADS)

    Schwartz, Gregor; Tee, Benjamin C.-K.; Mei, Jianguo; Appleton, Anthony L.; Kim, Do Hwan; Wang, Huiliang; Bao, Zhenan

    2013-05-01

    Flexible pressure sensors are essential parts of an electronic skin to allow future biomedical prostheses and robots to naturally interact with humans and the environment. Mobile biomonitoring in long-term medical diagnostics is another attractive application for these sensors. Here we report the fabrication of flexible pressure-sensitive organic thin film transistors with a maximum sensitivity of 8.4 kPa-1, a fast response time of <10 ms, high stability over >15,000 cycles and a low power consumption of <1 mW. The combination of a microstructured polydimethylsiloxane dielectric and the high-mobility semiconducting polyisoindigobithiophene-siloxane in a monolithic transistor design enabled us to operate the devices in the subthreshold regime, where the capacitance change upon compression of the dielectric is strongly amplified. We demonstrate that our sensors can be used for non-invasive, high fidelity, continuous radial artery pulse wave monitoring, which may lead to the use of flexible pressure sensors in mobile health monitoring and remote diagnostics in cardiovascular medicine.

  20. Research Update: Molecular electronics: The single-molecule switch and transistor

    SciTech Connect

    Sotthewes, Kai; Heimbuch, René Kumar, Avijit; Zandvliet, Harold J. W.; Geskin, Victor

    2014-01-01

    In order to design and realize single-molecule devices it is essential to have a good understanding of the properties of an individual molecule. For electronic applications, the most important property of a molecule is its conductance. Here we show how a single octanethiol molecule can be connected to macroscopic leads and how the transport properties of the molecule can be measured. Based on this knowledge we have realized two single-molecule devices: a molecular switch and a molecular transistor. The switch can be opened and closed at will by carefully adjusting the separation between the electrical contacts and the voltage drop across the contacts. This single-molecular switch operates in a broad temperature range from cryogenic temperatures all the way up to room temperature. Via mechanical gating, i.e., compressing or stretching of the octanethiol molecule, by varying the contact's interspace, we are able to systematically adjust the conductance of the electrode-octanethiol-electrode junction. This two-terminal single-molecule transistor is very robust, but the amplification factor is rather limited.

  1. Characteristics of Hot Electron Ring in a Simple Magnetic Mirror Field

    NASA Astrophysics Data System (ADS)

    Hosokawa, Minoru; Ikegami, Hideo

    1991-01-01

    Characteristics of a hot electron ring are studied in a simple magnetic mirror machine. Hot electron rings (n≈ 1010 cm-3, T≈ 100 keV) are most effectively generated under two conditions, when the magnetic field on the axis of the midplane is set near the fundamental, or the second harmonic electron cyclotron resonance to the applied microwave frequency (6.4 GHz). The density profile of the hot electrons is observed to take a so-called ring shape. The radial-cut view of the ring, however, indicates an M-shape density profile, and the density of hot electrons on the axis at the center and is about one-half of the peak ring density encircling the axis. The hot electron ring is susceptible to a few instabilities which can be artificially triggered. With the instability generated, the hot electron ring is observed to transform into a filled cylinder in a few microseconds and then disappears.

  2. Progressive failure site generation in AlGaN/GaN high electron mobility transistors under OFF-state stress: Weibull statistics and temperature dependence

    SciTech Connect

    Sun, Huarui Bajo, Miguel Montes; Uren, Michael J.; Kuball, Martin

    2015-01-26

    Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage “hot spots” at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7–0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which is consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.

  3. Effects of Hot Carriers on DC and RF Performances of Deep Submicron p-Channel Metal-Oxide-Semiconductor Field-Effect Transistors with Various Oxide Layer Thicknesses

    NASA Astrophysics Data System (ADS)

    Tang, Mao-Chyuan; Fang, Yean-Kuen; Liao, Wen-Shiang; Chen, David C.; Yeh, Chune-Sin; Chien, Shan-Chieh

    2008-04-01

    In this work, the effects of hot carriers on the DC and RF performances of 45 nm p-channel metal-oxide-semiconductor field-effect transistors (PMOSFETs) with various oxide layer thicknesses were investigated in detail by RF automatic measurements. It was found that a PMOSFET with a thinner oxide layer suffers more serious damage from hot carriers than that with a thicker oxide layer. Also, the greatest degradation occurs at the bias condition when gate stress voltage Vgstr is equal to drain stress voltage Vdstr, and it was found that the degradation of the cutoff frequency fT is dependent on transconductance gm only. This is different from conventional long-channel devices, in which the greatest degradation takes place at Vgstr = Vdstr/2 and when fT is dependent on both gm and the total gate capacitance Cgg (=Cgs+Cgd).

  4. {open_quotes}Hot{close_quotes} - Electron laser using a Bragg reflection of electrons

    SciTech Connect

    Malov, Yu.A.; Babadzhan, E.I.

    1995-12-31

    Authors of paper (1) have suggested developing FEL which uses hot ballistic electrons in a superlattices under the assumption that the superlattices is short, equivalently, one would be dealing with the motion of electrons within a single band. The single-band model is valid if the reflection coefficient of the superlattices less unit. In the present paper analyze a {open_quote}hot{close_quotes}-ballistic-electron laser under the condition that there is a Bragg reflection of electrons from the superlattices or, equivalently, under the condition that the energy of a hot electron is close to the bottom of one of the quasibands of the superlattices. In this case the interaction of the electron with the superlattices is not weak and the reflection coefficient is approximately unit. If the photon energy is greater than the width of the quasigap {open_quotes}vertical{close_quotes} transitions can occur between the edges of neighboring quasibands, corresponding to a stimulated emission. If the lower quasiband is not filled, there would be essentially no absorption. The IR gain in the area 0.1-0.4 eV is approximately 100 %. The possibility of experimentally observing the effect is discussed for realistic values of the parameters of the superlattices and of the injected electron beam.

  5. A comparison of radiation damage in transistors from cobalt-60 gamma rays and 2.2 MeV electrons

    NASA Technical Reports Server (NTRS)

    Nichols, D. K.; Price, W. E.; Gauthier, M. K.

    1982-01-01

    The total ionizing dose response of ten bipolar transistor types has been measured using Co-60 gamma rays and 2.2 MeV electrons from exposure levels of 750, 1500, and 3000 Gy(Si). Gain measurements were made for a range of collector-emitter voltages and collector currents.

  6. Protonic/electronic hybrid oxide transistor gated by chitosan and its full-swing low voltage inverter applications

    SciTech Connect

    Chao, Jin Yu; Zhu, Li Qiang Xiao, Hui; Yuan, Zhi Guo

    2015-12-21

    Modulation of charge carrier density in condensed materials based on ionic/electronic interaction has attracted much attention. Here, protonic/electronic hybrid indium-zinc-oxide (IZO) transistors gated by chitosan based electrolyte were obtained. The chitosan-based electrolyte illustrates a high proton conductivity and an extremely strong proton gating behavior. The transistor illustrates good electrical performances at a low operating voltage of ∼1.0 V such as on/off ratio of ∼3 × 10{sup 7}, subthreshold swing of ∼65 mV/dec, threshold voltage of ∼0.3 V, and mobility of ∼7 cm{sup 2}/V s. Good positive gate bias stress stabilities are obtained. Furthermore, a low voltage driven resistor-loaded inverter was built by using an IZO transistor in series with a load resistor, exhibiting a linear relationship between the voltage gain and the supplied voltage. The inverter is also used for decreasing noises of input signals. The protonic/electronic hybrid IZO transistors have potential applications in biochemical sensors and portable electronics.

  7. Protonic/electronic hybrid oxide transistor gated by chitosan and its full-swing low voltage inverter applications

    NASA Astrophysics Data System (ADS)

    Chao, Jin Yu; Zhu, Li Qiang; Xiao, Hui; Yuan, Zhi Guo

    2015-12-01

    Modulation of charge carrier density in condensed materials based on ionic/electronic interaction has attracted much attention. Here, protonic/electronic hybrid indium-zinc-oxide (IZO) transistors gated by chitosan based electrolyte were obtained. The chitosan-based electrolyte illustrates a high proton conductivity and an extremely strong proton gating behavior. The transistor illustrates good electrical performances at a low operating voltage of ˜1.0 V such as on/off ratio of ˜3 × 107, subthreshold swing of ˜65 mV/dec, threshold voltage of ˜0.3 V, and mobility of ˜7 cm2/V s. Good positive gate bias stress stabilities are obtained. Furthermore, a low voltage driven resistor-loaded inverter was built by using an IZO transistor in series with a load resistor, exhibiting a linear relationship between the voltage gain and the supplied voltage. The inverter is also used for decreasing noises of input signals. The protonic/electronic hybrid IZO transistors have potential applications in biochemical sensors and portable electronics.

  8. Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells

    DOEpatents

    Jenekhe, Samson A; Subramaniyan, Selvam; Ahmed, Eilaf; Xin, Hao; Kim, Felix Sunjoo

    2014-10-28

    The inventions disclosed, described, and/or claimed herein relate to copolymers comprising copolymers comprising electron accepting A subunits that comprise thiazolothiazole, benzobisthiazole, or benzobisoxazoles rings, and electron donating subunits that comprise certain heterocyclic groups. The copolymers are useful for manufacturing organic electronic devices, including transistors and solar cells. The invention also relates to certain synthetic precursors of the copolymers. Methods for making the copolymers and the derivative electronic devices are also described.

  9. Production of a large diameter hot-electron plasma by electron cyclotron resonance heating

    SciTech Connect

    Kawai, Y.; Sakamoto, K.

    1982-05-01

    A large diameter hot-electron plasma is produced by electron cyclotron resonance heating, using a slotted Lisitano coil as a launcher. It is found from detailed measurements of the plasma parameters that n/sub e/< or approx. =3 x 10/sup 11/ cm/sup -3/ and T/sub e/< or approx. =40 eV, with a diameter roughly-equal14 cm. High-energy tails with temperatures of more than 100 eV are observed.

  10. Production of a large diameter hot-electron plasma by electron cyclotron resonance heating

    NASA Astrophysics Data System (ADS)

    Kawai, Y.; Sakamoto, K.

    1982-05-01

    A large diameter hot-electron plasma is produced by electron cyclotron resonance heating, using a slotted Lisitano coil as a launcher. It is found from detailed measurements of the plasma parameters that ne≲3×1011 cm-3 and Te≲40 eV, with a diameter ≊14 cm. High-energy tails with temperatures of more than 100 eV are observed.

  11. Nanoscale investigation of AlGaN/GaN-on-Si high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Fontserè, A.; Pérez-Tomás, A.; Placidi, M.; Llobet, J.; Baron, N.; Chenot, S.; Cordier, Y.; Moreno, J. C.; Jennings, M. R.; Gammon, P. M.; Fisher, C. A.; Iglesias, V.; Porti, M.; Bayerl, A.; Lanza, M.; Nafría, M.

    2012-10-01

    AlGaN/GaN HEMTs are devices which are strongly influenced by surface properties such as donor states, roughness or any kind of inhomogeneity. The electron gas is only a few nanometers away from the surface and the transistor forward and reverse currents are considerably affected by any variation of surface property within the atomic scale. Consequently, we have used the technique known as conductive AFM (CAFM) to perform electrical characterization at the nanoscale. The AlGaN/GaN HEMT ohmic (drain and source) and Schottky (gate) contacts were investigated by the CAFM technique. The estimated area of these highly conductive pillars (each of them of approximately 20-50 nm radius) represents around 5% of the total contact area. Analogously, the reverse leakage of the gate Schottky contact at the nanoscale seems to correlate somehow with the topography of the narrow AlGaN barrier regions producing larger currents.

  12. Ultrawide electrical tuning of light matter interaction in a high electron mobility transistor structure

    PubMed Central

    Pal, Shovon; Nong, Hanond; Markmann, Sergej; Kukharchyk, Nadezhda; Valentin, Sascha R.; Scholz, Sven; Ludwig, Arne; Bock, Claudia; Kunze, Ulrich; Wieck, Andreas D.; Jukam, Nathan

    2015-01-01

    The interaction between intersubband resonances (ISRs) and metamaterial microcavities constitutes a strongly coupled system where new resonances form that depend on the coupling strength. Here we present experimental evidence of strong coupling between the cavity resonance of a terahertz metamaterial and the ISR in a high electron mobility transistor (HEMT) structure. The device is electrically switched from an uncoupled to a strongly coupled regime by tuning the ISR with epitaxially grown transparent gate. The asymmetric potential in the HEMT structure enables ultrawide electrical tuning of ISR, which is an order of magnitude higher as compared to an equivalent square well. For a single heterojunction with a triangular confinement, we achieve an avoided splitting of 0.52 THz, which is a significant fraction of the bare intersubband resonance at 2 THz. PMID:26578287

  13. Phonon-Assisted Resonant Tunneling of Electrons in Graphene-Boron Nitride Transistors.

    PubMed

    Vdovin, E E; Mishchenko, A; Greenaway, M T; Zhu, M J; Ghazaryan, D; Misra, A; Cao, Y; Morozov, S V; Makarovsky, O; Fromhold, T M; Patanè, A; Slotman, G J; Katsnelson, M I; Geim, A K; Novoselov, K S; Eaves, L

    2016-05-01

    We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states. PMID:27203338

  14. Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors

    SciTech Connect

    Hanyu, Yuichiro Domen, Kay; Nomura, Kenji; Hiramatsu, Hidenori; Kamiya, Toshio; Kumomi, Hideya; Hosono, Hideo

    2013-11-11

    We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300 °C exhibit good operation characteristics; while those annealed at ≥400 °C show deteriorated ones. Thermal desorption spectra (TDS) of H{sub 2}O indicate that this threshold annealing temperature corresponds to depletion of H{sub 2}O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430 °C. A plausible structural model is suggested.

  15. Josephson-Majorana cycle in topological single-electron hybrid transistors

    NASA Astrophysics Data System (ADS)

    Didier, Nicolas; Gibertini, Marco; Moghaddam, Ali G.; Koenig, Juergen; Fazio, Rosario

    2013-03-01

    Charge transport through a small topological superconducting island in contact with a normal and a superconducting electrode occurs through a cycle which involves coherent oscillations of Cooper pairs and tunneling in/out the normal electrode through a Majorana bound state, the Josephson-Majorana cycle. We illustrate this mechanism by studying the current-voltage characteristics of a superconductor - topological superconductor - normal metal single-electron transistor. At low bias and temperature the Josephson-Majorana cycle is the dominant mechanism for transport. We discuss a three-terminal configuration that constitutes a direct probe of the non-local character of the Majorana bound states. Non-local cotunneling dominates over the local contributions and the current noise is maximally correlated independently of the length of the wire. Preprint: arXiv:1202.6357 The work is supported by CIFAR, by EU through projects QNEMS, IP-SOLID, GEOMDISS, NANOCTM and by DFG.

  16. Subthreshold behavior of AlInSb/InSb high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Theodore Chandra, S.; B. Balamurugan, N.; G. Lakshmi, Priya; Manikandan, S.

    2015-07-01

    We propose a scaling theory for single gate AlInSb/InSb high electron mobility transistors (HEMTs) by solving the two-dimensional (2D) Poisson equation. In our model, the effective conductive path effect (ECPE) is taken into account to overcome the problems arising from the device scaling. The potential in the effective conducting path is developed and a simple scaling equation is derived. This equation is solved to obtain the minimum channel potential Φdeff,min and the new scaling factor α to model the subthreshold behavior of the HEMTs. The developed model minimizes the leakage current and improves the subthreshold swing degradation of the HEMTs. The results of the analytical model are verified by numerical simulation with a Sentaurus TCAD device simulator. Project supported by the Council of Scientific & Industrial Research (CSIR), Government of India under the SRF Scheme (Sanction Letter No: 08/237(0005)/2012-EMR-I).

  17. Phonon-Assisted Resonant Tunneling of Electrons in Graphene-Boron Nitride Transistors

    NASA Astrophysics Data System (ADS)

    Vdovin, E. E.; Mishchenko, A.; Greenaway, M. T.; Zhu, M. J.; Ghazaryan, D.; Misra, A.; Cao, Y.; Morozov, S. V.; Makarovsky, O.; Fromhold, T. M.; Patanè, A.; Slotman, G. J.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S.; Eaves, L.

    2016-05-01

    We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between 10 and 200 mV. We attribute them to electron tunneling assisted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states.

  18. An analytical model for bio-electronic organic field-effect transistor sensors

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Giordano, Francesco; Magliulo, Maria; Palazzo, Gerardo; Torsi, Luisa

    2013-09-01

    A model for the electrical characteristics of Functional-Bio-Interlayer Organic Field-Effect Transistors (FBI-OFETs) electronic sensors is here proposed. Specifically, the output current-voltage characteristics of a streptavidin (SA) embedding FBI-OFET are modeled by means of the analytical equations of an enhancement mode p-channel OFET modified according to an ad hoc designed equivalent circuit that is also independently simulated with pspice. An excellent agreement between the model and the experimental current-voltage output characteristics has been found upon exposure to 5 nM of biotin. A good agreement is also found with the SA OFET parameters graphically extracted from the device transfer I-V curves.

  19. Biomolecule detection based on Si single-electron transistors for practical use

    NASA Astrophysics Data System (ADS)

    Nakajima, Anri; Kudo, Takashi; Furuse, Sadaharu

    2013-07-01

    Experimental and theoretical analyses demonstrated that ultra-sensitive biomolecule detection can be achieved using a Si single-electron transistor (SET). A multi-island channel structure was used to enable room-temperature operation. Coulomb oscillation increases transconductance without increasing channel width, which increases detection sensitivity to a charged target. A biotin-modified SET biosensor was used to detect streptavidin at a dilute concentration. In addition, an antibody-functionalized SET biosensor was used for immunodetection of prostate-specific antigen, demonstrating its suitability for practical use. The feasibility of ultra-sensitive detection of biomolecules for practical use by using a SET biosensor was clearly proven through this systematic study.

  20. Comparative study on the energy efficiency of logic gates based on single-electron transistor technology

    NASA Astrophysics Data System (ADS)

    Choi, Changmin; Lee, Jieun; Park, Sungwook; Chung, In-Young; Kim, Chang-Joon; Park, Byung-Gook; Kim, Dong Myong; Kim, Dae Hwan

    2009-06-01

    The performance and the power consumption of single-electron transistor (SET) technology-based ultra-energy-efficient signal processing circuits are compared based on the SPICE model including non-ideal effects of the experimental data for the first time. In terms of ultra-energy-efficient logic circuits, the binary decision diagram (BDD) logic circuit is the most promising with a dissipated power of 0.29 nW at Vdd = 0.1 V and fin = 50 MHz among the static complementary metal-oxide-semiconductor (CMOS)-like SET logic, the dynamic SET/CMOS hybrid logic, cellular nonlinear network (CNN) and BDD. This result means that the transition of a paradigm substituting the current for the voltage as a state variable of a signal processing is strongly required in post-CMOS signal processing and ultra-energy-efficient applications.

  1. Normally-ON/OFF AlN/GaN High Electron Mobility Transistors

    SciTech Connect

    Chang, C. Y.; Lo, C. F.; Ren, F.; Pearton, S. J.; Kravchenko, Ivan I; Dabiran, A. M.; Cui, B.; Chow, P. P.

    2010-01-01

    We report on the novel normally-on/off AlN/GaN high electron mobility transistors (HEMTs) grown by plasma-assisted molecular beam epitaxy. With simple oxygen plasma exposure, the threshold voltage can be tuned from -2.76 V to +1.13 V depending on the treatment time. The gate current was reduced and gate current-voltage curve show metal-oxide semiconductor diode-like characteris-tics after oxygen plasma exposure. The extrinsic trans-conductance of HEMTs decreased with increasing oxy-gen plasma exposure time due to the thicker Al oxide formed on the gate area. The unity current gain cut-off frequency, fT, and the maximum frequency of oscillation, fmax, were 20.4 GHz and 36.5 GHz, respectively, for a enhancement-mode HEMT with the gate dimension of 0.4 100 m2.

  2. Temperature dependence of ballistic mobility in a metamorphic InGaAs/InAlAs high electron mobility transistor

    SciTech Connect

    Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang Im, Hyunsik

    2014-07-28

    We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable to the carrier's mean free path in the channel.

  3. Hot electron induced NIR detection in CdS films

    NASA Astrophysics Data System (ADS)

    Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir

    2016-03-01

    We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm2. The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications.

  4. Hot electron induced NIR detection in CdS films.

    PubMed

    Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir

    2016-01-01

    We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm(2). The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications. PMID:26965055

  5. Perpendicular hot electron transport in the spin-valve photodiode

    NASA Astrophysics Data System (ADS)

    Huang, Biqin; Appelbaum, Ian

    2006-08-01

    The spin-valve photodiode is a ferromagnetic metal multilayer/n-type semiconductor Schottky device operated by photoexciting hot electrons in the metal and causing internal photoemission (IPE) into the semiconductor. Simple IPE theory predicts that the magnitude of the spin-valve effect (modulation of the photocurrent) should monotonically increase as a metallic capping layer thickness increases. Experimentally, however, we observe a nonmonotonic behavior with cap layer thickness, where the magnetocurrent reaches an optimum value and then decreases. The disagreement between this experimental result and the previous theoretical model is discussed, leading to an alternative interpretation of transport including reflection from the air-metal interface. Calculations with this model are consistent with the observed phenomena.

  6. Hot electron induced NIR detection in CdS films

    PubMed Central

    Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir

    2016-01-01

    We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm2. The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications. PMID:26965055

  7. Hot electron dominated rapid transverse ionization growth in liquid water.

    PubMed

    Brown, Michael S; Erickson, Thomas; Frische, Kyle; Roquemore, William M

    2011-06-20

    Pump/probe optical-transmission measurements are used to monitor in space and time the ionization of a liquid column of water following impact of an 800-nm, 45-fs pump pulse. The pump pulse strikes the 53-μm-diameter column normal to its axis with intensities up to 2 × 10(15) W/cm2. After the initial photoinization and for probe delay times < 500 fs, the neutral water surrounding the beam is rapidly ionized in the transverse direction, presumably by hot electrons with initial velocities of 0.55 times the speed of light (relativistic kinetic energy of ~100 keV). Such velocities are unusual for condensed-matter excitation at the stated laser intensities. PMID:21716461

  8. Hot Electron Generation and Transport Using K(alpha) Emission

    SciTech Connect

    Akli, K U; Stephens, R B; Key, M H; Bartal, T; Beg, F N; Chawla, S; Chen, C D; Fedosejevs, R; Freeman, R R; Friesen, H; Giraldez, E; Green, J S; Hey, D S; Higginson, D P; Hund, J; Jarrott, L C; Kemp, G E; King, J A; Kryger, A; Lancaster, K; LePape, S; Link, A; Ma, T; Mackinnon, A J; MacPhee, A G; McLean, H S; Murphy, C; Norreys, P A; Ovchinnikov, V; Patel, P K; Ping, Y; Sawada, H; Schumacher, D; Theobald, W; Tsui, Y Y; Van Woerkom, L D; Wei, M S; Westover, B; Yabuuchi, T

    2009-10-15

    We have conducted experiments on both the Vulcan and Titan laser facilities to study hot electron generation and transport in the context of fast ignition. Cu wires attached to Al cones were used to investigate the effect on coupling efficiency of plasma surround and the pre-formed plasma inside the cone. We found that with thin cones 15% of laser energy is coupled to the 40{micro}m diameter wire emulating a 40{micro}m fast ignition spot. Thick cone walls, simulating plasma in fast ignition, reduce coupling by x4. An increase of prepulse level inside the cone by a factor of 50 reduces coupling by a factor of 3.

  9. Degradation of InGaAs/InP double heterojunction bipolar transistors under electron irradiation

    SciTech Connect

    Bandyopadhyay, A.; Subramanian, S.; Chandrasekhar, S.; Dentai, A.G.; Goodnick, S.M.

    1999-05-01

    The dc characteristics of InGaAs/InP double heterojunction bipolar transistors (DHBT`s) are studied under high-energy ({approximately}1 MeV) electron irradiation up to a fluence of 14.8 {times} 10{sup 15} electrons/cm{sup 2}. The devices show an increase in common-emitter current gain (h{sub fe}) at low levels of dose (<10{sup 15} electrons/cm{sup 2}) and a gradual decrease in h{sub fe} and an increase in output conductance for higher doses. The decrease in h{sub fe} is as much as {approximately}80% at low base currents ({approximately}10 {micro}A) after a cumulative dose of 14.8 {times} 10{sup 15} electrons/cm{sup 2}. The observed degradation effects in collector current-voltage (I-V) characteristics are studied quantitatively using a simple SPICE-like device model. The overall decrease in h{sub fe} is attributed to increased recombination in the emitter-base junction region caused by radiation-induced defects. The defects introduced in the collector-base junction region are believed to be responsible for the observed increase in the output conductance.

  10. Gate controlled electronic transport in monolayer MoS{sub 2} field effect transistor

    SciTech Connect

    Zhou, Y. F.; Wang, B.; Yu, Y. J.; Wei, Y. D. E-mail: jianwang@hku.hk; Xian, H. M.; Wang, J. E-mail: jianwang@hku.hk

    2015-03-14

    The electronic spin and valley transport properties of a monolayer MoS{sub 2} are investigated using the non-equilibrium Green's function formalism combined with density functional theory. Due to the presence of strong Rashba spin orbit interaction (RSOI), the electronic valence bands of monolayer MoS{sub 2} are split into spin up and spin down Zeeman-like texture near the two inequivalent vertices K and K′ of the first Brillouin zone. When the gate voltage is applied in the scattering region, an additional strong RSOI is induced which generates an effective magnetic field. As a result, electron spin precession occurs along the effective magnetic field, which is controlled by the gate voltage. This, in turn, causes the oscillation of conductance as a function of the magnitude of the gate voltage and the length of the gate region. This current modulation due to the spin precession shows the essential feature of the long sought Datta-Das field effect transistor (FET). From our results, the oscillation periods for the gate voltage and gate length are found to be approximately 2.2 V and 20.03a{sub B} (a{sub B} is Bohr radius), respectively. These observations can be understood by a simple spin precessing model and indicate that the electron behaviors in monolayer MoS{sub 2} FET are both spin and valley related and can easily be controlled by the gate.

  11. A Hot-Electron Far-Infrared Direct Detector

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.

    2000-01-01

    A new approach is proposed to improve the sensitivity of direct-detection bolometers at millimeter, submillimeter and far-infrared wavelengths. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or super-conductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature (Nb, Pb etc.) then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as T(sup 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10-100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant about 10(exp -3) to 10(exp -5) s at T approximately equals 0.1-0.3 K will exhibit photon-noise limited performance in millimeter and submillimeter range. The choice of the bolometer material is a tradeoff between a low electron heat capacity and fabrication. A state-of-the-art bolometer currently offers NEP = 10(exp -17) W(Square root of (Hz)) at 100 mK along with a approximately equals 2 msec time constant. The bolometer we propose will have a figure-of-merit, NEP(square root (r)), which is 10(exp 3) times smaller. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity. This device can significantly increase a science return and reduce the cost for future observational missions. This research was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by NASA, Office of Space Science.

  12. Lateral protonic/electronic hybrid oxide thin-film transistor gated by SiO{sub 2} nanogranular films

    SciTech Connect

    Zhu, Li Qiang Chao, Jin Yu; Xiao, Hui

    2014-12-15

    Ionic/electronic interaction offers an additional dimension in the recent advancements of condensed materials. Here, lateral gate control of conductivities of indium-zinc-oxide (IZO) films is reported. An electric-double-layer (EDL) transistor configuration was utilized with a phosphorous-doped SiO{sub 2} nanogranular film to provide a strong lateral electric field. Due to the strong lateral protonic/electronic interfacial coupling effect, the IZO EDL transistor could operate at a low-voltage of 1 V. A resistor-loaded inverter is built, showing a high voltage gain of ∼8 at a low supply voltage of 1 V. The lateral ionic/electronic coupling effects are interesting for bioelectronics and portable electronics.

  13. Lateral protonic/electronic hybrid oxide thin-film transistor gated by SiO2 nanogranular films

    NASA Astrophysics Data System (ADS)

    Zhu, Li Qiang; Chao, Jin Yu; Xiao, Hui

    2014-12-01

    Ionic/electronic interaction offers an additional dimension in the recent advancements of condensed materials. Here, lateral gate control of conductivities of indium-zinc-oxide (IZO) films is reported. An electric-double-layer (EDL) transistor configuration was utilized with a phosphorous-doped SiO2 nanogranular film to provide a strong lateral electric field. Due to the strong lateral protonic/electronic interfacial coupling effect, the IZO EDL transistor could operate at a low-voltage of 1 V. A resistor-loaded inverter is built, showing a high voltage gain of ˜8 at a low supply voltage of 1 V. The lateral ionic/electronic coupling effects are interesting for bioelectronics and portable electronics.

  14. Single shot spin readout with a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    DOE PAGESBeta

    Tracy, Lisa A.; Luhman, Dwight R.; Carr, Stephen M.; Bishop, Nathaniel C.; Ten Eyck, Gregory A.; Pluym, Tammy; Wendt, Joel R.; Lilly, Michael P.; Carroll, Malcolm S.

    2016-02-08

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ~9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ~2.7 x 103 the power dissipation of the amplifier is 13 μW, the bandwidth is ~1.3 MHz, and for frequencies above 300more » kHz the current noise referred to input is ≤ 70 fA/√Hz. Furthermore, with this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.« less

  15. Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures

    NASA Astrophysics Data System (ADS)

    Tracy, L. A.; Luhman, D. R.; Carr, S. M.; Bishop, N. C.; Ten Eyck, G. A.; Pluym, T.; Wendt, J. R.; Lilly, M. P.; Carroll, M. S.

    2016-02-01

    We use a cryogenic high-electron-mobility transistor circuit to amplify the current from a single electron transistor, allowing for demonstration of single shot readout of an electron spin on a single P donor in Si with 100 kHz bandwidth and a signal to noise ratio of ˜9. In order to reduce the impact of cable capacitance, the amplifier is located adjacent to the Si sample, at the mixing chamber stage of a dilution refrigerator. For a current gain of ˜ 2.7 × 10 3 , the power dissipation of the amplifier is 13 μW, the bandwidth is ˜ 1.3 MHz, and for frequencies above 300 kHz the current noise referred to input is ≤ 70 fA/ √{ Hz } . With this amplification scheme, we are able to observe coherent oscillations of a P donor electron spin in isotopically enriched 28Si with 96% visibility.

  16. Behavior of single-electron transistors and their use in scanning microscopy

    NASA Astrophysics Data System (ADS)

    Kenyon, Matthew Edward

    I explore the behavior of a nanoscale device known as the single-electron transistor (SET). Using e-beam lithography and conventional double-angle evaporation, I have fabricated Al/AlO x/Al single-electron transistors (SETs) and studied their behavior from 85 mK to 5 K. The total island capacitance CSigma of the devices ranged from 120 to 200 aF with typical estimated junction overlaps of about 30 nm x 30 nm. At 4.2 K, my devices displayed well-behaved I-Vg characteristics with the maximum charge-transfer function ∂I/∂Qo ranging from 4 to 130 pA/e. The electrical characteristics of these devices agreed well with the Orthodox Theory, with current modulation being observed up to a temperature T ≅ e 2/(2CSigmakb). Also, I studied random-telegraph charge fluctuations in an SET. I measured the fluctuations from 85 mK to 3 K and observed that the SET switched between two states, causing charge shifts of DeltaQo = 0.1 +/- 0.025 e on the SET's island. The transition rate out of each state was periodic in the gate voltage, varied non-monotonically with the device bias voltage, and was independent of the temperature below about 0.3 K. I discuss two effects that could contribute to the behavior of the transition rates, including heating of the defect by the island conduction electrons and inelastic scattering between the defect and the electrons flowing through the SET. I also measured the temperature dependence of the charge noise power spectral density Sq in several SETs from 85 mK to 4 K. Although individual Lorentzians were often visible, the noise spectra were dominated by excess low-frequency noise with a power-law dependence on frequency f where Sq ∝ 1/ fbeta and beta ≅ 1. Below about 0.5 K, Sq were weakly dependent on the temperature T . Above 1 K, the charge noise Sq increased with T, and at 4 K Sq ≈ 10 -4 e2/Hz at 1 Hz, about a factor of 100 greater than at 85 mK. Finally, I present the design of a scanning single-electron transistor microscope which

  17. Effect of annealing on electronic carrier transport properties of gamma-irradiated AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Yadav, Anupama; Schwarz, Casey; Shatkhin, Max; Wang, Luther; Flitsiyan, Elena; Chernyak, Leonid; Liu, Lu; Hwang, Ya; Ren, Fan; Pearton, Stephen; Department of Physics, University of Central Florida Collaboration; Department of Chemical Engineering, University of Florida Collaboration; Department of Materials Science; Engineering, University of Florida Collaboration

    2014-03-01

    AlGaN/GaN High Electron Mobility Transistors were irradiated with 60Co gamma-ray doses from 100Gy to 1000Gy, in order to analyze the effects of irradiation on the devices' transport properties. Temperature dependent Electron Beam Induced Current (EBIC) measurements, conducted on the devices before and after exposure to gamma-irradiation, allowed for the obtaining of activation energy related to radiation-induced defects due to nitrogen vacancies. Later, the devices were annealed at 200o C for 25 minutes. All the measurements were performed again to study the effect of annealing on the gamma-irradiated devices. Annealing of gamma-irradiated transistors shows that partial recovery of device performance is possible at this temperature. DC current-voltage measurements were also conducted on the transistors to assess the impact of gamma-irradiation and annealing on transfer, gate and drain characteristics.

  18. High Electron Mobility Transistors For Millimeter Wave And High Speed Digital IC Applications

    NASA Astrophysics Data System (ADS)

    Gupta, Aditya K.; Higgins, J. A.; Lee, Chien-Ping

    1988-02-01

    High Electron Mobility Transistors (HEMTs) are currently regarded as the most promising three-terminal devices for ultra-high-speed digital and monolithic millimeter-wave integrated circuits. In their most basic form, these devices consist of a GaAs-MESFET-like FET fabricated on a (A1,Ga)As/GaAs epitaxial layer. The (A1,Ga)As layer is highly doped n-type and the GaAs layer is undoped. Due to the lower electron affinity of (A1,Ga)As, free electrons diffuse out of the doped layer into undoped GaAs where they form a two-dimensional electron gas near the heterointerface. Since the electrons and ionized donors are spatially separated, ionized impurity scattering is reduced and electron transport properties at the heterointerface are comparable to pure GaAs. FETs fabricated on these hetero-junctions offer many advantages such as (i) a small gate-to-channel separation which leads to extremely high transconductances; (ii) high f due to improved electron transport properties; (iii) a small source resistance; and (ivy a small saturation voltage. The benefits improve substantially upon cooling the device. In a mere seven years, HEMT technology has evolved from simple ring oscillators to circuits of LSI complexity such as 16K SRAMs. The speed performance demonstrated by this relatively immature technology has already surpassed all other semiconductor technologies. Ring oscillator gate delays of 5.8 ps at 77K and 10.2 ps at 300K have been achieved using'0.35 μm gate length devices. In the analog domain, HEMTs are the leaders in low noise and high gain amplification. At room temperatures, devices with a noise figure of 2.4 dB at 62 GHz and fmax > 250 GHz have been demonstrated.

  19. Monte Carlo calculations for metal-semiconductor hot-electron injection via tunnel-junction emission

    NASA Astrophysics Data System (ADS)

    Appelbaum, Ian; Narayanamurti, V.

    2005-01-01

    We present a detailed description of a scheme to calculate the injection current for metal-semiconductor systems using tunnel-junction electron emission. We employ a Monte Carlo framework for integrating over initial free-electron states in a metallic emitter and use interfacial scattering at the metal-semiconductor interface as an independent parameter. These results have implications for modeling metal-base transistors and ballistic electron emission microscopy and spectroscopy.

  20. Theory and experiments of electron-hole recombination at silicon/silicon dioxide interface traps and tunneling in thin oxide MOS transistors

    NASA Astrophysics Data System (ADS)

    Cai, Jin

    2000-10-01

    Surface recombination and channel have dominated the electrical characteristics, performance and reliability of p/n junction diodes and transistors. This dissertation uses a sensitive direct-current current voltage (DCIV) method to measure base terminal currents (IB) modulated by the gate bias (VGB) and forward p/n junction bias (VPN) in a MOS transistor (MOST). Base terminal currents originate from electron-hole recombination at Si/SiO2 interface traps. Fundamental theories which relate DCIV characteristics to device and material parameters are presented. Three theory-based applications are demonstrated on both the unstressed as well as hot-carrier-stressed MOSTs: (1) determination of interface trap density and energy levels, (2) spatial profile of interface traps in the drain/base junction-space-charge region and in the channel region, and (3) determination of gate oxide thickness and impurity doping concentrations. The results show that interface trap energy levels are discrete, which is consistent with those from silicon dangling bonds; in unstressed MOS transistors interface trap density in the channel region rises sharply toward source and drain, and after channel-hot-carrier stress, interface trap density increases mostly in the junction space-charge region. As the gate oxide thins below 3 nm, the gate oxide leakage current via quantum mechanical tunneling becomes significant. A gate oxide tunneling theory which refined the traditional WKB tunneling probability is developed for modeling tunneling currents at low electric fields through a trapezoidal SiO2 barrier. Correlation with experimental data on thin oxide MOSTs reveals two new results: (1) hole tunneling dominates over electron tunneling in p+gate p-channel MOSTs, and (2) the small gate/drain overlap region passes higher tunneling currents than the channel region under depletion to flatband gate voltages. The good theory-experimental correlation enables the extraction of impurity doping concentrations

  1. A Hot-electron Direct Detector for Radioastronomy

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; LeDuc, H. G.

    2000-01-01

    A new approach is proposed to improve the sensitivity of direct-detection bolometers. The idea is to adjust a speed of the thermal relaxation of hot-electrons in a nanometer size normal metal or superconductive transition edge bolometer by controlling the elastic electron mean free path. If the bolometer contacts are made of a superconductor with high critical temperature then the thermal diffusion into the contacts is absent because of the Andreev's reflection and the electron-phonon relaxation is the only mechanism for heat removal. The relaxation rate should behave as 7(exp 4)l at subkelvin temperatures (l is the electron elastic mean free path) and can be reduced by factor of 10 - 100 by decreasing l. Then an antenna- or waveguide-coupled bolometer with a time constant approx. 10(exp -3) to 10(exp -5) S at T approx. = 0.1 - 0.3 K will exhibit photon-noise limited performance in millimeter and subn-millimeter range. The bolometer will have a figure-of-merit NEk square root of tau approx. = 10(exp -22) 10(exp -21) W/Hz at 100 mK which is 10(exp 3) times smaller than that of a state-of-the-art bolometer. This will allow for a tremendous increase in speed which will have a significant impact for observational mapping applications. Alternatively, the bolometer could operate at higher temperature with still superior sensitivity This research was performed by the Center for Space Microelectronics Technology, JPL, California Institute of Technology, under the contract for NASA.

  2. Room temperature Coulomb blockade effects in Au nanocluster/pentacene single electron transistors.

    PubMed

    Zheng, Haisheng; Asbahi, Mohamed; Mukherjee, Somik; Mathai, Cherian J; Gangopadhyay, Keshab; Yang, Joel K W; Gangopadhyay, Shubhra

    2015-09-01

    Single-electron transistors incorporating single ∼1 nm gold nanocluster (AuNCs) and pentacene as a complex charge transport system have been used to study the quantum Coulomb blockade and its single electron tunnelling behaviour at room temperature (RT) (300 K). Monodisperse ultra-small (0.86 ± 0.30 nm) AuNCs were deposited by the tilted-target sputtering technique into 12 nm nanogaps fabricated by high-resolution e-beam lithography. Tunnelling resistance was modulated to ∼10(9) Ω by addition of a pentacene layer, allowing clear observation of quantum staircases and Coulomb oscillations with on/off current modulation ratio of ∼100 in RT current-voltage measurements. The electron addition energy and average quantized energy level spacing were found to be 282 and 80.4 meV, respectively, which are significantly larger than the thermal energy at 300 K (25.9 meV). PMID:26267227

  3. Electron interference in a T-shaped quantum transistor based on Schottky-gate technology

    NASA Astrophysics Data System (ADS)

    Appenzeller, J.; Schroer, Ch.; Schäpers, Th.; Hart, A. V. D.; Förster, A.; Lengeler, B.; Lüth, H.

    1996-04-01

    We have observed quantum interference in the electronic transport in a T-shaped Al0.3Ga0.7As/GaAs heterostructure. The geometry is defined by four independent Schottky gates on top of the layer system. By changing the split-gate voltages, the dimensions of the T-shaped two-dimensional electron gas could be varied continuously. Especially, the stub length of the transistor can be controlled in order to switch between constructive and destructive interference. An additional advantage of using gates instead of etching methods to define the geometry is the smooth form of the boundary potential which implies specular boundary scattering. At low temperatures the transport in the high mobility two-dimensional electron gas (2DEG) is ballistic. Thus weak-localization effects and conductance fluctuations are suppressed, whereas the intended interference pattern is reproducible and nearly identical for different samples. We attribute the observed resistance oscillations to the change in transmissivity in the device when the geometry is altered. Other explanations are discussed as well but could be excluded by experiment.

  4. Study of surface leakage current of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Chen, YongHe; Zhang, Kai; Cao, MengYi; Zhao, ShengLei; Zhang, JinCheng; Hao, Yue; Ma, XiaoHua

    2014-04-14

    Temperature-dependent surface current measurements were performed to analyze the mechanism of surface conductance of AlGaN/GaN channel high-electron-mobility transistors by utilizing process-optimized double gate structures. Different temperatures and electric field dependence have been found in surface current measurements. At low electric field, the mechanism of surface conductance is considered to be two-dimensional variable range hopping. At elevated electric field, the Frenkel–Poole trap assisted emission governs the main surface electrons transportation. The extracted energy barrier height of electrons emitting from trapped state near Fermi energy level into a threading dislocations-related continuum state is 0.38 eV. SiN passivation reduces the surface leakage current by two order of magnitude and nearly 4 orders of magnitude at low and high electric fields, respectively. SiN also suppresses the Frenkel–Poole conductance at high temperature by improving the surface states of AlGaN/GaN. A surface treatment process has been introduced to further suppress the surface leakage current at high temperature and high field, which results in a decrease in surface current of almost 3 orders of magnitude at 476 K.

  5. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas.

    PubMed

    Buret, Mickael; Uskov, Alexander V; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V; Protsenko, Igor E; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-09-01

    Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale. PMID:26214575

  6. Final report on LDRD Project: The double electron layer tunneling transistor (DELTT)

    SciTech Connect

    Simmons, J.A.; Moon, J.S.; Blount, M.A.

    1998-06-01

    This report describes the research accomplishments achieved under the LDRD Project ``Double Electron Layer Tunneling Transistor.`` The main goal of this project was to investigate whether the recently discovered phenomenon of 2D-2D tunneling in GaAs/AlGaAs double quantum wells (DQWs), investigated in a previous LDRD, could be harnessed and implemented as the operating principle for a new type of tunneling device the authors proposed, the double electron layer tunneling transistor (DELTT). In parallel with this main thrust of the project, they also continued a modest basic research effort on DQW physics issues, with significant theoretical support. The project was a considerable success, with the main goal of demonstrating a working prototype of the DELTT having been achieved. Additional DELTT advances included demonstrating good electrical characteristics at 77 K, demonstrating both NMOS and CMOS-like bi-stable memories at 77 K using the DELTT, demonstrating digital logic gates at 77 K, and demonstrating voltage-controlled oscillators at 77 K. In order to successfully fabricate the DELTT, the authors had to develop a novel flip-chip processing scheme, the epoxy-bond-and-stop-etch (EBASE) technique. This technique was latter improved so as to be amenable to electron-beam lithography, allowing the fabrication of DELTTs with sub-micron features, which are expected to be extremely high speed. In the basic physics area they also made several advances, including a measurement of the effective mass of electrons in the hour-glass orbit of a DQW subject to in-plane magnetic fields, and both measurements and theoretical calculations of the full Landau level spectra of DQWs in both perpendicular and in-plane magnetic fields. This last result included the unambiguous demonstration of magnetic breakdown of the Fermi surface. Finally, they also investigated the concept of a far-infrared photodetector based on photon assisted tunneling in a DQW. Absorption calculations showed a

  7. Capacitively Coupled Hot-Electron Nanobolometer with SIN Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Kuzmin, Leonid S.; Fominsky, M.; Kalabukhov, A.; Golubev, D.; Tarasov, M.

    2003-02-01

    A capacitively coupled hot-electron nanobolometer (CC-HEB) is the simplest and most effective antenna-coupled bolometer. The bolometer consists of a small absorber connected to the superconducting antenna by tunnel junctions. The tunnel junctions used for high-frequency coupling also give perfect thermal isolation of hot electrons in the small volume of the absorber. The same tunnel junctions are used for temperature measurements and electron cooling. This bolometer does not suffer from the frequency limitations in the submillimeter range due to the high potential barrier of the tunnel junctions as does the microbolometer with Andreev mirrors (A-HEB), which is limited by the superconducting gap. Theoretical analyses show that the two-junction configuration more than doubles the sensitivity of the bolometer in current-biased mode compared to the single-junction configuration used for A-HEB. Another important advantage of CC-HEB is its simple two-layer technology for sample fabrication. Samples were fabricated with an absorber made of a bilayer of Cr and Al to match the impedance of the antenna. Electrodes were made of Al and tunnel junctions were formed over the Al oxide layer. The coupling capacitances of the tunnel junctions, C ≍ 20 fF, in combination with the inductance of the 10 μm absorber create a bandpass filter with a central frequency around 300 GHz. Bolometers are integrated with log-periodic and double-dipole planar antennas made of Au. The temperature response of bolometer structures was measured at temperatures down to 256 mK. In our experiment we observed dV/dT=1.3 mV/K, corresponding to responsivity S=0.2.109 V/W. For amplifier noise Vna=3nV/Hz1/2 at 1 kHz the estimated total noise equivalent power is NEP=1.5.10-17 W/Hz1/2. The intrinsic bolometer self noise Vnbol=0.5 nV/Hz1/2 corresponds to NEP=3.10-18 W/Hz1/2. For microwave evaluation of bolometer sensitivity we used a black body radiation source comprising a thin NiCr stimulator placed on the

  8. Optically thin perpendicular electron-cyclotron emission from hot electrons in TMX-U

    SciTech Connect

    James, R.A.; Lasnier, C.J.; Ellis, R.F.

    1986-08-01

    Perpendicular electron-cyclotron emission (PECE) from relativistic (T-italic/sub H-italic/--100--400 keV) hot electrons within the thermal-barrier region of Tandem Mirror Experiment-Upgrade (TMX-U) is detected at 35, 60, 94, and 98 GHz. For the operating regime of TMX-U, these signals are optically thin (tau<<1) and thus proportional to the radial hot-electron line density. A relativistic code is used to calculate the theoretical temperature dependence of the perpendicular emission coefficient, j-italic/sub perpendicular/(..omega.., T-italic/sub H-italic/), for each of the detected frequencies. This dependence has been verified experimentally by x-ray measurements of the hot electron temperature, T-italic/sub H-italic/. The observed qualitative agreement demonstrates that optically thin PECE signals can be used to determine the temporal evolution of T-italic/sub H-italic/. An inability to absolutely calibrate the present PECE waveguide system has prevented quantitative agreement.

  9. Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction

    SciTech Connect

    Yeluri, Ramya Lu, Jing; Keller, Stacia; Mishra, Umesh K.; Hurni, Christophe A.; Browne, David A.; Speck, James S.; Chowdhury, Srabanti

    2015-05-04

    The Current Aperture Vertical Electron Transistor (CAVET) combines the high conductivity of the two dimensional electron gas channel at the AlGaN/GaN heterojunction with better field distribution offered by a vertical design. In this work, CAVETs with buried, conductive p-GaN layers as the current blocking layer are reported. The p-GaN layer was regrown by metalorganic chemical vapor deposition and the subsequent channel regrowth was done by ammonia molecular beam epitaxy to maintain the p-GaN conductivity. Transistors with high ON current (10.9 kA/cm{sup 2}) and low ON-resistance (0.4 mΩ cm{sup 2}) are demonstrated. Non-planar selective area regrowth is identified as the limiting factor to transistor breakdown, using planar and non-planar n/p/n structures. Planar n/p/n structures recorded an estimated electric field of 3.1 MV/cm, while non-planar structures showed a much lower breakdown voltage. Lowering the p-GaN regrowth temperature improved breakdown in the non-planar n/p/n structure. Combining high breakdown voltage with high current will enable GaN vertical transistors with high power densities.

  10. A study of electrically active traps in AlGaN/GaN high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Cui, Sharon; Ma, T. P.; Hung, Ting-Hsiang; Nath, Digbijoy; Krishnamoorthy, Sriram; Rajan, Siddharth

    2013-10-01

    We have studied electron conduction mechanisms and the associated roles of the electrically active traps in the AlGaN layer of an AlGaN/GaN high electron mobility transistor structure. By fitting the temperature dependent I-V (Current-Voltage) curves to the Frenkel-Poole theory, we have identified two discrete trap energy levels. Multiple traces of I-V measurements and constant-current injection experiment all confirm that the main role of the traps in the AlGaN layer is to enhance the current flowing through the AlGaN barrier by trap-assisted electron conduction without causing electron trapping.

  11. Basic Equations for the Modeling of Gallium Nitride (gan) High Electron Mobility Transistors (hemts)

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2003-01-01

    Gallium nitride (GaN) is a most promising wide band-gap semiconductor for use in high-power microwave devices. It has functioned at 320 C, and higher values are well within theoretical limits. By combining four devices, 20 W has been developed at X-band. GaN High Electron Mobility Transistors (HEMTs) are unique in that the two-dimensional electron gas (2DEG) is supported not by intentional doping, but instead by polarization charge developed at the interface between the bulk GaN region and the AlGaN epitaxial layer. The polarization charge is composed of two parts: spontaneous and piezoelectric. This behavior is unlike other semiconductors, and for that reason, no commercially available modeling software exists. The theme of this document is to develop a self-consistent approach to developing the pertinent equations to be solved. A Space Act Agreement, "Effects in AlGaN/GaN HEMT Semiconductors" with Silvaco Data Systems to implement this approach into their existing software for III-V semiconductors, is in place (summer of 2002).

  12. Electron transport in endohedral metallofullerene Ce@C{sub 82} single-molecule transistors

    SciTech Connect

    Okamura, Naoya; Yoshida, Kenji; Sakata, Shuichi; Hirakawa, Kazuhiko

    2015-01-26

    We have investigated the electron transport in endohedral metallofullerene Ce@C{sub 82} single-molecule transistors (SMTs) together with that in reference C{sub 84} SMTs. The vibrational modes (bending and stretching) of the encapsulated single Ce atom in the C{sub 82} cage appear in Coulomb stability diagrams for the single-electron tunneling through Ce@C{sub 82} molecules, demonstrating the single-atom sensitivity of the transport measurements. When a bias voltage larger than 100 mV is applied across the source/drain electrodes, large hysteretic behavior is observed in the current-voltage (I-V) characteristics. At the same time, the pattern in the Coulomb stability diagram is changed. No such hysteretic behavior is observed in the I-V curves of hollow-cage C{sub 84} SMTs, even when the bias voltage exceeds 500 mV. This hysteretic change in the I-V characteristics is induced by a nanomechanical change in the configuration of the Ce@C{sub 82} molecule in the nanogap electrode due to the electric dipole that exists in Ce@C{sub 82}.

  13. Resonant tunneling assisted propagation and amplification of plasmons in high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Shubhendu; Sensale-Rodriguez, Berardi; Xing, Huili Grace; Rajan, Siddharth; Volakis, John L.

    2016-01-01

    A rigorous theoretical and computational model is developed for the plasma-wave propagation in high electron mobility transistor structures with electron injection from a resonant tunneling diode at the gate. We discuss the conditions in which low-loss and sustainable plasmon modes can be supported in such structures. The developed analytical model is used to derive the dispersion relation for these plasmon-modes. A non-linear full-wave-hydrodynamic numerical solver is also developed using a finite difference time domain algorithm. The developed analytical solutions are validated via the numerical solution. We also verify previous observations that were based on a simplified transmission line model. It is shown that at high levels of negative differential conductance, plasmon amplification is indeed possible. The proposed rigorous models can enable accurate design and optimization of practical resonant tunnel diode-based plasma-wave devices for terahertz sources, mixers, and detectors, by allowing a precise representation of their coupling when integrated with other electromagnetic structures.

  14. Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors

    PubMed Central

    Angione, Maria Daniela; Cotrone, Serafina; Magliulo, Maria; Mallardi, Antonia; Altamura, Davide; Giannini, Cinzia; Cioffi, Nicola; Sabbatini, Luigia; Fratini, Emiliano; Baglioni, Piero; Scamarcio, Gaetano; Palazzo, Gerardo; Torsi, Luisa

    2012-01-01

    Biosystems integration into an organic field-effect transistor (OFET) structure is achieved by spin coating phospholipid or protein layers between the gate dielectric and the organic semiconductor. An architecture directly interfacing supported biological layers to the OFET channel is proposed and, strikingly, both the electronic properties and the biointerlayer functionality are fully retained. The platform bench tests involved OFETs integrating phospholipids and bacteriorhodopsin exposed to 1–5% anesthetic doses that reveal drug-induced changes in the lipid membrane. This result challenges the current anesthetic action model relying on the so far provided evidence that doses much higher than clinically relevant ones (2.4%) do not alter lipid bilayers’ structure significantly. Furthermore, a streptavidin embedding OFET shows label-free biotin electronic detection at 10 parts-per-trillion concentration level, reaching state-of-the-art fluorescent assay performances. These examples show how the proposed bioelectronic platform, besides resulting in extremely performing biosensors, can open insights into biologically relevant phenomena involving membrane weak interfacial modifications. PMID:22493224

  15. Metabolic transistor strategy for controlling electron transfer chain activity in Escherichia coli

    PubMed Central

    Wu, Hui; Tuli, Leepika; Bennett, George N.; San, Ka-Yiu

    2015-01-01

    A novel strategy to finely control a large metabolic flux by using a “metabolic transistor” approach was established. In this approach a small change in the level or availability of an essential component for the process is controlled by adding a competitive reaction that affects a precursor or an intermediate in its biosynthetic pathway. The change of the basal level of the essential component, considered as a base current in a transistor, has a large effect on the flux through the major pathway. In this way, the fine-tuning of a large flux can be accomplished. The “metabolic transistor” strategy was applied to controlling electron transfer chain function by manipulation of the quinone synthesis pathway in Escherichia coli. The achievement of a theoretical yield of lactate production under aerobic conditions via this strategy upon manipulation of the biosynthetic pathway of the key participant, ubiquinone-8 (Q8), in an E. coli strain provides an in vivo, genetically tunable means to control the activity of the electron transfer chain and manipulate the production of reduced products while limiting consumption of oxygen to a defined amount. PMID:25596510

  16. Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Wang, H. T.; Ren, F.; Pearton, S. J.

    2008-08-01

    Chemical sensors can be used to analyze a wide variety of environmental and biological gases and liquids and may need to be able to selectively detect a target analyte. Different methods, including gas chromatography, chemiluminescence, selected ion flow tube, and mass spectroscopy, have been used to measure biomarkers. These methods show variable results in terms of sensitivity for some applications and may not meet the requirements for a handheld biosensor. A promising sensing technology utilizes AlGaN/GaN high electron mobility transistors (HEMTs). HEMT structures have been developed for use in microwave power amplifiers due to their high two dimensional electron gas (2DEG) mobility and saturation velocity. The conducting 2DEG channel of AlGaN/GaN HEMTs is very close to the surface and extremely sensitive to adsorption of analytes. HEMT sensors can be used for detecting gases, ions, pH values, proteins, and DNA. In this paper we review recent progress on functionalizing the surface of HEMTs for specific detection of glucose, kidney marker injury molecules, prostate cancer, and other common substances of interest in the biomedical field.

  17. Helicity sensitive terahertz radiation detection by dual-grating-gate high electron mobility transistors

    SciTech Connect

    Faltermeier, P.; Olbrich, P.; Probst, W.; Schell, L.; Ganichev, S. D.; Watanabe, T.; Boubanga-Tombet, S. A.; Otsuji, T.

    2015-08-28

    We report on the observation of a radiation helicity sensitive photocurrent excited by terahertz (THz) radiation in dual-grating-gate (DGG) InAlAs/InGaAs/InAlAs/InP high electron mobility transistors (HEMT). For a circular polarization, the current measured between source and drain contacts changes its sign with the inversion of the radiation helicity. For elliptically polarized radiation, the total current is described by superposition of the Stokes parameters with different weights. Moreover, by variation of gate voltages applied to individual gratings, the photocurrent can be defined either by the Stokes parameter defining the radiation helicity or those for linear polarization. We show that artificial non-centrosymmetric microperiodic structures with a two-dimensional electron system excited by THz radiation exhibit a dc photocurrent caused by the combined action of a spatially periodic in-plane potential and spatially modulated light. The results provide a proof of principle for the application of DGG HEMT for all-electric detection of the radiation's polarization state.

  18. Profile modification and hot electron temperature from resonant absorption at modest intensity

    SciTech Connect

    Albritton, J.R.; Langdon, A.B.

    1980-10-13

    Resonant absorption is investigated in expanding plasmas. The momentum deposition associated with the ejection of hot electrons toward low density via wavebreaking readily exceeds that of the incident laser radiation and results in significant modification of the density profile at critical. New scaling of hot electron temperature with laser and plasma parameters is presented.

  19. Simulation of AlGaN/GaN high-electron-mobility transistor gauge factor based on two-dimensional electron gas density and electron mobility

    NASA Astrophysics Data System (ADS)

    Chu, Min; Koehler, Andrew D.; Gupta, Amit; Nishida, Toshikazu; Thompson, Scott E.

    2010-11-01

    The gauge factor of AlGaN/GaN high-electron-mobility transistor was determined theoretically, considering the effect of stress on the two-dimensional electron gas (2DEG) sheet carrier density and electron mobility. Differences in the spontaneous and piezoelectric polarization between the AlGaN and GaN layers, with and without external mechanical stress, were investigated to calculate the stress-altered 2DEG density. Strain was incorporated into a sp3d5-sp3 empirical tight-binding model to obtain the change in electron effective masses under biaxial and uniaxial stress. The simulated longitudinal gauge factor (-7.9±5.2) is consistent with experimental results (-2.4±0.5) obtained from measurements eliminating parasitic charge trapping effects through continuous subbandgap optical excitation.

  20. Spin-Valve Photo-Transistor

    NASA Astrophysics Data System (ADS)

    Huang, Biqin; Altfeder, Igor; Appelbaum, Ian

    2007-03-01

    The Spin-Valve Photo-Transistor is a semiconductor-ferromagnetic metal multilayer-semiconductor transistor operated by photo- exciting hot electrons in the emitter semiconductor into a Schottky collector. We have realized this device using a vacuum- bonded float-zone Si/multilayer/n-InP structure. To distinguish the emitter interband-excited component of collector current from base/collector internal photoemission, we use a lockin spectroscopy sensitive only to the magnetocurrent. Our experimental results indicate a pathway to improve the magnetocurrent of a related device, the Spin- Valve Photo-Diode, by increasing the fraction of hot electron current that travels through both layers of the ferromagnetic spin-valve.

  1. The effect of hot electrons and surface plasmons on heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-01

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal–semiconductor, and metal–insulator–metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles.

  2. The effect of hot electrons and surface plasmons on heterogeneous catalysis.

    PubMed

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-29

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal-semiconductor, and metal-insulator-metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles. PMID:27166263

  3. Characterization of MgB2 Superconducting Hot Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Cunnane, D.; Kawamura, J. H.; Wolak, M. A.; Acharya, N.; Tan, T.; Xi, X. X.; Karasik, B. S.

    2014-01-01

    Hot-Electron Bolometer (HEB) mixers have proven to be the best tool for high-resolution spectroscopy at the Terahertz frequencies. However, the current state of the art NbN mixers suffer from a small intermediate frequency (IF) bandwidth as well as a low operating temperature. MgB2 is a promising material for HEB mixer technology in view of its high critical temperature and fast thermal relaxation allowing for a large IF bandwidth. In this work, we have fabricated and characterized thin-film (approximately 15 nanometers) MgB2-based spiral antenna-coupled HEB mixers on SiC substrate. We achieved the IF bandwidth greater than 8 gigahertz at 25 degrees Kelvin and the device noise temperature less than 4000 degrees Kelvin at 9 degrees Kelvin using a 600 gigahertz source. Using temperature dependencies of the radiation power dissipated in the device we have identified the optical loss in the integrated microantenna responsible as a cause of the limited sensitivity of the current mixer devices. From the analysis of the current-voltage (IV) characteristics, we have derived the effective thermal conductance of the mixer device and estimated the required local oscillator power in an optimized device to be approximately 1 microwatts.

  4. Multiplexing of Hot-Electron Nanobolometers Using Microwave SQUIDs

    NASA Astrophysics Data System (ADS)

    Karasik, Boris S.; Day, Peter K.; Kawamura, Jonathan H.; Bumble, Bruce; LeDuc, Henry G.

    2009-12-01

    We have obtained the first data on the multiplexed operation of titanium hot-electron bolometers (HEB). Because of their low thermal conductance and small electron heat capacity nanobolometers are particularly interesting as sensors for far-infrared spectroscopy and mid- and near-IR calorimetry. However, the short time constant of these devices (˜μs at 300-400 mK) makes time domain or audio-frequency domain multiplexing impractical. The Microwave SQUID (MSQUID) approach pursued in this work uses dc SQUIDs coupled to X-band microresonators which are, in turn, coupled to a transmission line. We used a 4-element array of Ti HEBs operated at 415 mK in a He3 dewar with an optical fiber access. The microwave signal exhibited 10-MHz wide resonances at individual MSQUD frequencies between 9 GHz and 10 GHz. The resonance depth is modulated by the current through the bolometer via a change of the SQUID flux state. The transmitted signal was amplified by a cryogenic amplifier and downconverted to baseband using an IQ mixer. A 1-dB per Ω0/2 responsivity was sufficient for keeping the system noise at the level of ˜2 pA/Hz1/2. This is more than an order of magnitude smaller than phonon noise in the HEB. The devices were able to detect single near-IR photons (1550 nm) with a time constant of 3.5 μs. Follow-on work will scale the array to larger size and will address the microwave frequency signal generation and processing using a digital transceiver.

  5. Multiplexing of Hot-Electron Nanobolometers Using Microwave SQUIDs

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Day, Peter K.; Kawamura, Jonathan H.; Bumble, Bruce; LeDuc, Henry G.

    2009-01-01

    We have obtained the first data on the multiplexed operation of titanium hot-electron bolometers (HEB). Because of their low thermal conductance and small electron heat capacity nanobolometers are particularly interesting as sensors for far-infrared spectroscopy and mid- and near-IR calorimetry. However, the short time constant of these devices (approximately microseconds at 300-400 mK) makes time domain or audio-frequency domain multiplexing impractical. The Microwave SQUID (MSQUID) approach pursued in this work uses dc SQUIDs coupled to X-band microresonators which are, in turn, coupled to a transmission line. We used a 4-element array of Ti HEBs operated at 415 mK in a He3 dewar with an optical fiber access. The microwave signal exhibited 10-MHz wide resonances at individual MSQUD frequencies between 9 GHz and 10 GHz. The resonance depth is modulated by the current through the bolometer via a change of the SQUID flux state. The transmitted signal was amplified by a cryogenic amplifier and downconverted to baseband using an IQ mixer. A 1-dB per ??/2 responsivity was sufficient for keeping the system noise at the level of 2 pA/Hz1/2. This is more than an order of magnitude smaller than phonon noise in the HEB. The devices were able to detect single near- IR photons (1550 nm) with a time constant of 3.5 ?s. Follow-on work will scale the array to larger size and will address the microwave frequency signal generation and processing using a digital transceiver.

  6. Design and simulation of a novel GaN based resonant tunneling high electron mobility transistor on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Chowdhury, Subhra; Chattaraj, Swarnabha; Biswas, Dhrubes

    2015-04-01

    For the first time, we have introduced a novel GaN based resonant tunneling high electron mobility transistor (RTHEMT) on a silicon substrate. A monolithically integrated GaN based inverted high electron mobility transistor (HEMT) and a resonant tunneling diode (RTD) are designed and simulated using the ATLAS simulator and MATLAB in this study. The 10% Al composition in the barrier layer of the GaN based RTD structure provides a peak-to-valley current ratio of 2.66 which controls the GaN based HEMT performance. Thus the results indicate an improvement in the current-voltage characteristics of the RTHEMT by controlling the gate voltage in this structure. The introduction of silicon as a substrate is a unique step taken by us for this type of RTHEMT structure.

  7. Strain characterization of fin-shaped field effect transistors with SiGe stressors using nanobeam electron diffraction

    SciTech Connect

    Kim, Sun-Wook; Byeon, Dae-Seop; Jang, Hyunchul; Koo, Sang-Mo; Ko, Dae-Hong; Lee, Hoo-Jeong

    2014-08-25

    This study undertook strain analysis on fin-shaped field effect transistor structures with epitaxial Si{sub 1−x}Ge{sub x} stressors, using nano-beam electron diffraction and finite elements method. Combining the two methods disclosed dynamic strain distribution in the source/drain and channel region of the fin structure, and the effects of dimensional factors such as the stressor thickness and fin width, offering valuable information for device design.

  8. AlGaN/GaN high-electron mobility transistor-based sensors for environmental and bio-applications

    NASA Astrophysics Data System (ADS)

    Chu, B. H.; Wang, Y. L.; Chen, K. H.; Chang, C. Y.; Lo, C. F.; Pearton, S. J.; Papadi, G.; Coleman, J. K.; Sheppard, B. J.; Dungen, C. F.; Kroll, Kevin; Denslow, Nancy; Dabiran, A.; Chow, P. P.; Johnson, J. W.; Pine, E. L.; Linthicum, K. J.; Ren, F.

    2010-04-01

    A promising sensing technology utilizing AlGaN/GaN high electron mobility transistors (HEMTs) has been developed to analyze a wide variety of environmental and biological gases and liquids. The conducting 2DEG channel of GaN/AlGaN HEMTs is very close to the surface and extremely sensitive to adsorption of analytes. Examples of detecting mercury ions, perkinsus, lactic acid, carbon dioxide, and vitellogenin are discussed in this paper.

  9. DC and small-signal physical models for the AlGaAs/GaAs high electron mobility transistor

    NASA Technical Reports Server (NTRS)

    Sarker, J. C.; Purviance, J. E.

    1991-01-01

    Analytical and numerical models are developed for the microwave small-signal performance, such as transconductance, gate-to-source capacitance, current gain cut-off frequency and the optimum cut-off frequency of the AlGaAs/GaAs High Electron Mobility Transistor (HEMT), in both normal and compressed transconductance regions. The validated I-V characteristics and the small-signal performances of four HeMT's are presented.

  10. A steep-slope transistor based on abrupt electronic phase transition

    PubMed Central

    Shukla, Nikhil; Thathachary, Arun V.; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G.; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-01-01

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep (‘sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications. PMID:26249212

  11. A steep-slope transistor based on abrupt electronic phase transition

    NASA Astrophysics Data System (ADS)

    Shukla, Nikhil; Thathachary, Arun V.; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G.; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-08-01

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep (`sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

  12. Formation of hot-electron ensembles quasiequilibrated in momentum space by ultrafast momentum scattering of highly excited hot electrons photoinjected into the Γ valley of GaAs

    NASA Astrophysics Data System (ADS)

    Tanimura, Hiroshi; Kanasaki, Jun'ichi; Tanimura, Katsumi; Sjakste, Jelena; Vast, Nathalie; Calandra, Matteo; Mauri, Francesco

    2016-04-01

    We study ultrafast scattering dynamics of hot electrons photoinjected with high excess energies in the Γ valley of the conduction band of GaAs, using time- and angle-resolved photoemission spectroscopy and ab initio calculations. At ultrafast rates of the order of 10 fs, the packets in the Γ valley are transformed into hot-electron ensembles (HEEs) quasiequilibrated in momentum space but not in energy space. The energy relaxation of the HEEs takes place as a whole on a longer time scale with rates dependent only on the excess energy, irrespective of the momenta of hot electrons. Both momentum scattering and energy relaxation are ruled by the electron-phonon interaction.

  13. Isolated Photosystem I Reaction Centers on a Functionalized Gated High Electron Mobility Transistor

    SciTech Connect

    Eliza, Sazia A.; Lee, Ida; Tulip, Fahmida S; Islam, Syed K; Mostafa, Salwa; Greenbaum, Elias; Ericson, Milton Nance

    2011-01-01

    In oxygenic plants, photons are captured with high quantum efficiency by two specialized reaction centers (RC) called Photosystem I (PS I) and Photosystem II (PS II). The captured photon triggers rapid charge separation and the photon energy is converted into an electrostatic potential across the nanometer-scale nm reaction centers. The exogenous photovoltages from a single PS I RC have been previously measured using the technique of Kelvin force probe microscopy (KFM). However, biomolecular photovoltaic applications require two-terminal devices. This paper presents for the first time, a micro-device for detection and characterization of isolated PS I RCs. The device is based on an AlGaN/GaN high electron mobility transistor (HEMT) structure. AlGaN/GaN HEMTs show high current throughputs and greater sensitivity to surface charges compared to other field-effect devices. PS I complexes immobilized on the floating gate of AlGaN/GaN HEMTs resulted in significant changes in the device characteristics under illumination. An analytical model has been developed to estimate the RCs of a major orientation on the functionalized gate surface of the HEMTs.

  14. A sensitive charge scanning probe based on silicon single electron transistor

    NASA Astrophysics Data System (ADS)

    Lina, Su; Xinxing, Li; Hua, Qin; Xiaofeng, Gu

    2016-04-01

    Single electron transistors (SETs) are known to be extremely sensitive electrometers owing to their high charge sensitivity. In this work, we report the design, fabrication, and characterization of a silicon-on-insulator-based SET scanning probe. The fabricated SET is located about 10 μm away from the probe tip. The SET with a quantum dot of about 70 nm in diameter exhibits an obvious Coulomb blockade effect measured at 4.1 K. The Coulomb blockade energy is about 18 meV, and the charge sensitivity is in the order of 10‑5‑10‑3 e/Hz1/2. This SET scanning probe can be used to map charge distribution and sense dynamic charge fluctuation in nanodevices or circuits under test, realizing high sensitivity and high spatial resolution charge detection. Project supported by the Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201152), the National Natural Science Foundation of China (No. 11403084), the Fundamental Research Funds for Central Universities (Nos. JUSRP51510, JUDCF12032), and the Graduate Student Innovation Program for Universities of Jiangsu Province (No. CXLX12_0724).

  15. Conductance of a single electron transistor with a retarded dielectric layer in the gate capacitor

    NASA Astrophysics Data System (ADS)

    Udalov, O. G.; Chtchelkatchev, N. M.; Fedorov, S. A.; Beloborodov, I. S.

    2015-11-01

    We study the conductance of a single electron transistor (SET) with a ferroelectric (or dielectric) layer placed in the gate capacitor. We assume that the ferroelectric (FE) has a retarded response with arbitrary relaxation time. We show that in the case of "fast" but still retarded response of the FE (dielectric) layer an additional contribution to the Coulomb blockade effect appears leading to the suppression of the SET conductance. We take into account fluctuations of the FE (dielectric) polarization using Monte Carlo simulations. For "fast" FE, these fluctuations partially suppress the additional Coulomb blockade effect. Using Monte Carlo simulations, we study the transition from "fast" to "slow" FE. For high temperatures, the peak value of the SET conductance is almost independent of the FE relaxation time. For temperatures close to the FE Curie temperature, the conductance peak value nonmonotonically depends on the FE relaxation time. A maximum appears when the FE relaxation time is of the order of the SET discharging time. Below the Curie point the conductance peak value decreases with increasing the FE relaxation time. The conductance shows the hysteresis behavior for any FE relaxation time at temperatures below the FE transition point. We show that conductance hysteresis is robust against FE internal fluctuations.

  16. Probing Majorana bound states via counting statistics of a single electron transistor

    NASA Astrophysics Data System (ADS)

    Li, Zeng-Zhao; Lam, Chi-Hang; You, J. Q.

    2015-06-01

    We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs.

  17. Current fluctuation of electron and hole carriers in multilayer WSe{sub 2} field effect transistors

    SciTech Connect

    Ko, Seung-Pil; Shin, Jong Mok; Jang, Ho-Kyun; Jin, Jun Eon; Kim, Gyu-Tae; Kim, Yong Jin; Kim, Young Keun; Shin, Minju

    2015-12-14

    Two-dimensional materials have outstanding scalability due to their structural and electrical properties for the logic devices. Here, we report the current fluctuation in multilayer WSe{sub 2} field effect transistors (FETs). In order to demonstrate the impact on carrier types, n-type and p-type WSe{sub 2} FETs are fabricated with different work function metals. Each device has similar electrical characteristics except for the threshold voltage. In the low frequency noise analysis, drain current power spectral density (S{sub I}) is inversely proportional to frequency, indicating typical 1/f noise behaviors. The curves of the normalized drain current power spectral density (NS{sub I}) as a function of drain current at the 10 Hz of frequency indicate that our devices follow the carrier number fluctuation with correlated mobility fluctuation model. This means that current fluctuation depends on the trapping-detrapping motion of the charge carriers near the channel interface. No significant difference is observed in the current fluctuation according to the charge carrier type, electrons and holes that occurred in the junction and channel region.

  18. Current fluctuation of electron and hole carriers in multilayer WSe2 field effect transistors

    NASA Astrophysics Data System (ADS)

    Ko, Seung-Pil; Shin, Jong Mok; Kim, Yong Jin; Jang, Ho-Kyun; Jin, Jun Eon; Shin, Minju; Kim, Young Keun; Kim, Gyu-Tae

    2015-12-01

    Two-dimensional materials have outstanding scalability due to their structural and electrical properties for the logic devices. Here, we report the current fluctuation in multilayer WSe2 field effect transistors (FETs). In order to demonstrate the impact on carrier types, n-type and p-type WSe2 FETs are fabricated with different work function metals. Each device has similar electrical characteristics except for the threshold voltage. In the low frequency noise analysis, drain current power spectral density (SI) is inversely proportional to frequency, indicating typical 1/f noise behaviors. The curves of the normalized drain current power spectral density (NSI) as a function of drain current at the 10 Hz of frequency indicate that our devices follow the carrier number fluctuation with correlated mobility fluctuation model. This means that current fluctuation depends on the trapping-detrapping motion of the charge carriers near the channel interface. No significant difference is observed in the current fluctuation according to the charge carrier type, electrons and holes that occurred in the junction and channel region.

  19. Detection of halide ions with AlGaN /GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Kang, B. S.; Ren, F.; Kang, M. C.; Lofton, C.; Tan, Weihong; Pearton, S. J.; Dabiran, A.; Osinsky, A.; Chow, P. P.

    2005-04-01

    AlGaN /GaN high electron mobility transistors (HEMTs) both with and without a Au gate are found to exhibit significant changes in channel conductance upon exposing the gate region to various halide ions. The polar nature of the halide ions leads to a change of surface charge in the gate region on the HEMT, producing a change in the surface potential at the semiconductor/liquid interface. HEMTs with a Au-gate electrode not only doubled the sensitivity of changing the channel conductance as compared to gateless HEMT, but also showed the opposite conductance behavior. When anions adsorbed on the Au, they produced a counter charge for electrovalence. These anions drag some counter ions from the bulk solution or create an image positive charge on the metal for the required neutrality. The gateless HEMTs can be used as sensors for a range of chemicals through appropriate modification with covalently bonded halide functional groups on the Au surface. This creates many possibilities to functionalize the surface for a wide range of integrated biological, chemical, and fluid monitoring sensors.

  20. AlN/GaN high electron mobility transistors on sapphire substrates for Ka band applications

    NASA Astrophysics Data System (ADS)

    Xubo, Song; Yuanjie, Lü; Guodong, Gu; Yuangang, Wang; Xin, Tan; Xingye, Zhou; Shaobo, Dun; Peng, Xu; Jiayun, Yin; Bihua, Wei; Zhihong, Feng; Shujun, Cai

    2016-04-01

    We report the DC and RF characteristics of AlN/GaN high electron mobility transistors (HEMTs) with the gate length of 100 nm on sapphire substrates. The device exhibits a maximum drain current density of 1.29 A/mm and a peak transconductance of 440 mS/mm. A current gain cutoff frequency and a maximum oscillation frequency of 119 GHz and 155 GHz have been obtained, respectively. Furthermore, the large signal load pull characteristics of the AlN/GaN HEMTs were measured at 29 GHz. An output power density of 429 mW/mm has been demonstrated at a drain bias of 10 V. To the authors' best knowledge, this is the earliest demonstration of power density at the Ka band for AlN/GaN HEMTs in the domestic, and also a high frequency of load-pull measurements for AlN/GaN HEMTs. Project supported by the National Natural Science Foundation of China (No. 61306113).

  1. Probing Majorana bound states via counting statistics of a single electron transistor

    PubMed Central

    Li, Zeng-Zhao; Lam, Chi-Hang; You, J. Q.

    2015-01-01

    We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs. PMID:26098973

  2. Probing Majorana bound states via counting statistics of a single electron transistor.

    PubMed

    Li, Zeng-Zhao; Lam, Chi-Hang; You, J Q

    2015-01-01

    We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs. PMID:26098973

  3. Isolated photosystem I reaction centers on a functionalized gated high electron mobility transistor.

    PubMed

    Eliza, Sazia A; Lee, Ida; Tulip, Fahmida S; Mostafa, Salwa; Greenbaum, Elias; Ericson, M Nance; Islam, Syed K

    2011-09-01

    In oxygenic plants, photons are captured with high quantum efficiency by two specialized reaction centers (RC) called Photosystem I (PS I) and Photosystem II (PS II). The captured photon triggers rapid charge separation and the photon energy is converted into an electrostatic potential across the nanometer-scale (~6 nm) reaction centers. The exogenous photovoltages from a single PS I RC have been previously measured using the technique of Kelvin force probe microscopy (KFM). However, biomolecular photovoltaic applications require two-terminal devices. This paper presents for the first time, a micro-device for detection and characterization of isolated PS I RCs. The device is based on an AlGaN/GaN high electron mobility transistor (HEMT) structure. AlGaN/GaN HEMTs show high current throughputs and greater sensitivity to surface charges compared to other field-effect devices. PS I complexes immobilized on the floating gate of AlGaN/GaN HEMTs resulted in significant changes in the device characteristics under illumination. An analytical model has been developed to estimate the RCs of a major orientation on the functionalized gate surface of the HEMTs. PMID:21926029

  4. Suppression of Low-Frequency Electronic Noise in Polymer Nanowire Field-Effect Transistors.

    PubMed

    Lezzi, Francesca; Ferrari, Giorgio; Pennetta, Cecilia; Pisignano, Dario

    2015-11-11

    The authors report on the reduction of low-frequency noise in semiconductor polymer nanowires with respect to thin-films made of the same organic material. Flicker noise is experimentally investigated in polymer nanowires in the range of 10-10(5) Hz by means of field-effect transistor architectures. The noise in the devices is well described by the Hooge empirical model and exhibits an average Hooge constant, which describes the current power spectral density of fluctuations, suppressed by 1-2 orders of magnitude compared to thin-film devices. To explain the Hooge constant reduction, a resistor network model is developed, in which the organic semiconducting nanostructures or films are depicted through a two-dimensional network of resistors with a square-lattice structure, accounting for the different anisotropy and degree of structural disorder of the active nanowires and films. Results from modeling agree well with experimental findings. These results support enhanced structural order through size-confinement in organic nanostructures as effective route to improve the noise performance in polymer electronic devices. PMID:26479330

  5. Localized Tail States and Electron Mobility in Amorphous ZnON Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Lee, Sungsik; Nathan, Arokia; Ye, Yan; Guo, Yuzheng; Robertson, John

    2015-08-01

    The density of localized tail states in amorphous ZnON (a-ZnON) thin film transistors (TFTs) is deduced from the measured current-voltage characteristics. The extracted values of tail state density at the conduction band minima (Ntc) and its characteristic energy (kTt) are about 2 × 1020 cm-3eV-1 and 29 meV, respectively, suggesting trap-limited conduction prevails at room temperature. Based on trap-limited conduction theory where these tail state parameters are considered, electron mobility is accurately retrieved using a self-consistent extraction method along with the scaling factor ‘1/(α + 1)’ associated with trapping events at the localized tail states. Additionally, it is found that defects, e.g. oxygen and/or nitrogen vacancies, can be ionized under illumination with hv ≫ Eg, leading to very mild persistent photoconductivity (PPC) in a-ZnON TFTs.

  6. Effect of buffer structures on AlGaN/GaN high electron mobility transistor reliability

    SciTech Connect

    Liu, L.; Xi, Y. Y.; Ren, F.; Pearton, S. J.; Laboutin, O.; Cao, Yu; Johnson, Wayne J.; Kravchenko, Ivan I

    2012-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) with three different types of buffer layers, including a GaN/AlGaN composite layer, or 1 or 2 lm GaN thick layers, were fabricated and their reliability compared. The HEMTs with the thick GaN buffer layer showed the lowest critical voltage (Vcri) during off-state drain step-stress, but this was increased by around 50% and 100% for devices with the composite AlGaN/GaN buffer layers or thinner GaN buffers, respectively. The Voff - state for HEMTs with thin GaN and composite buffers were 100 V, however, this degraded to 50 60V for devices with thick GaN buffers due to the difference in peak electric field near the gate edge. A similar trend was observed in the isolation breakdown voltage measurements, with the highest Viso achieved based on thin GaN or composite buffer designs (600 700 V), while a much smaller Viso of 200V was measured on HEMTs with the thick GaN buffer layers. These results demonstrate the strong influence of buffer structure and defect density on AlGaN/GaN HEMT performance and reliability.

  7. Analysis of plasma-modes of a gated bilayer system in high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Shubhendu; Rajan, Siddharth; Volakis, John L.

    2016-05-01

    We present rigorous analytical and computational models to study the plasma-waves in a gated-bilayer system present in a double-channel high electron mobility transistor. By analytically deriving the dispersion relations, we have identified the optical and acoustic modes in such systems. We find that the presence of the metal gate selectively modifies the optical plasmons of an ungated-bilayer, while the acoustic plasmons remain largely unchanged. Analysis shows that these modified optical plasmons could be advantageous for resonant and non-resonant plasma-wave devices. The paper further serves to verify our analytical formulae using a full-wave hydrodynamic numerical solver, based on finite difference time domain algorithm. Using the solver, we examine these modes in the gated/ungated bilayers under a plane wave excitation. We observe that, most incident power couples to the optical mode for such an excitation. Nevertheless, acoustic modes can also be excited, if the discontinuity dimensions are optimized accordingly. These observations are also explained using 2D field-plots for the first time, thus providing intuitive understanding of the plasmon excitation in the bilayers.

  8. Hot-electron surface retention in intense short-pulse laser-matter interactions

    SciTech Connect

    Mason, R.J.; Dodd, E.S.; Albright, B.J.

    2005-07-01

    Implicit hybrid plasma simulations predict that a significant fraction of the energy deposited into hot electrons can be retained near the surface of targets with steep density gradients illuminated by intense short-pulse lasers. This retention derives from the lateral transport of heated electrons randomly emitted in the presence of spontaneous magnetic fields arising near the laser spot, from geometric effects associated with a small hot-electron source, and from E fields arising in reaction to the ponderomotive force. Below the laser spot hot electrons are axially focused into a target by the B fields, and can filament in moderate Z targets by resistive Weibel-like instability, if the effective background electron temperature remains sufficiently low. Carefully engineered use of such retention in conjunction with ponderomotive density profile steepening could result in a reduced hot-electron range that aids fast ignition. Alternatively, such retention may disturb a deeper deposition needed for efficient radiography and backside fast ion generation.

  9. Electronic properties of organic thin film transistors with nanoscale tapered electrodes

    NASA Astrophysics Data System (ADS)

    Park, Jeongwon

    2008-10-01

    Organic thin-film transistors (OTFTs) have received increasing attention because of their potential applications in displays, optoelectronics, logic circuits, and sensors. Ultrathin OTFTs are of technical interest as a possible route toward reduced bias stress in standard OTFTs and enhanced sensitivity in chemical field-effect transistors (ChemFETs). ChemFETs are OTFTs whose output characteristics are sensitive to the presence of analytes via changes in the channel mobility and/or threshold voltage induced by analyte chemisorption onto the channel materials. The fundamental understanding of charge transport properties of organic thin-films is critical for the applications. OTFT has been demonstrated by many groups; however, there has been much less progress towards more reliable contact structure between organic materials and electrodes. This thesis investigates the electrical properties of metal phthalocyanine thin-film devices. In chapter 1, the basic electrical properties in OTFTs are reviewed. In chapter 2, we have investigated the microfabrication process of OTFTs to control the contact morphology and the charge transport properties of phthalocyanine thin-film devices. In chapter 3, the channel thickness dependence of the mobility was investigated in bottom-contact copper phthalocyanine (CuPc) OTFTs. The current-voltage characteristics of bottom contact CuPc OTFTs with low contact resistance fabricated by the bilayer photoresist lift-off process were analyzed to determine the mobility, threshold voltage and contact resistance. The independence of measured electronic properties from channel thickness is due to the contact resistance being negligible for all channel thicknesses. For practical applications, the aging and recovery process in CuPc OTFTs were investigated in chapter 4. An origin of the aging process on CuPc OTFTs has been investigated based on the responses of thick 1000ML CuPc OTFTs under a controlled atmosphere. The recovery process under 30

  10. Characterization and reliability of aluminum gallium nitride/gallium nitride high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Douglas, Erica Ann

    Compound semiconductor devices, particularly those based on GaN, have found significant use in military and civilian systems for both microwave and optoelectronic applications. Future uses in ultra-high power radar systems will require the use of GaN transistors operated at very high voltages, currents and temperatures. GaN-based high electron mobility transistors (HEMTs) have proven power handling capability that overshadows all other wide band gap semiconductor devices for high frequency and high-power applications. Little conclusive research has been reported in order to determine the dominating degradation mechanisms of the devices that result in failure under standard operating conditions in the field. Therefore, it is imperative that further reliability testing be carried out to determine the failure mechanisms present in GaN HEMTs in order to improve device performance, and thus further the ability for future technologies to be developed. In order to obtain a better understanding of the true reliability of AlGaN/GaN HEMTs and determine the MTTF under standard operating conditions, it is crucial to investigate the interaction effects between thermal and electrical degradation. This research spans device characterization, device reliability, and device simulation in order to obtain an all-encompassing picture of the device physics. Initially, finite element thermal simulations were performed to investigate the effect of device design on self-heating under high power operation. This was then followed by a study of reliability of HEMTs and other tests structures during high power dc operation. Test structures without Schottky contacts showed high stability as compared to HEMTs, indicating that degradation of the gate is the reason for permanent device degradation. High reverse bias of the gate has been shown to induce the inverse piezoelectric effect, resulting in a sharp increase in gate leakage current due to crack formation. The introduction of elevated

  11. Terahertz hot electron bolometer waveguide mixers for GREAT

    NASA Astrophysics Data System (ADS)

    Pütz, P.; Honingh, C. E.; Jacobs, K.; Justen, M.; Schultz, M.; Stutzki, J.

    2012-06-01

    Context. Supplementing the publications based on the first-light observations with the German REceiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. This Letter complements the GREAT instrument Letter and focuses on the mixers itself. Aims: We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on their operation in GREAT is given. Methods: Our mixer units are waveguide-based and couple to free-space radiation via a feedhorn antenna. The HEB mixers are designed, fabricated, characterized, and flight-qualified in-house. We are able to use the full intermediate frequency bandwidth of the mixers using silicon-germanium multi-octave cryogenic low-noise amplifiers with very low input return loss. Results: Superconducting HEB mixers have proven to be practical and sensitive detectors for high-resolution THz frequency spectroscopy on SOFIA. We show that our niobium-titanium-nitride (NbTiN) material HEBs on silicon nitride (SiN) membrane substrates have an intermediate frequency (IF) noise roll-off frequency above 2.8 GHz, which does not limit the current receiver IF bandwidth. Our mixer technology development efforts culminate in the first successful operation of a waveguide-based HEB mixer at 2.5 THz and deployment for radioastronomy. A significant contribution to the success of GREAT is made by technological development, thorough characterization and performance optimization of the mixer and its IF interface for receiver operation on SOFIA. In particular, the development of an optimized mixer IF interface contributes to the low passband ripple and excellent stability, which GREAT demonstrated during its initial successful astronomical observation runs.

  12. Measurement of brightness temperature of two-dimensional electron gas in channel of a high electron mobility transistor at ultralow dissipation power

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Shulga, V. M.; Turutanov, O. G.; Shnyrkov, V. I.

    2016-07-01

    A technically simple and physically clear method is suggested for direct measurement of the brightness temperature of two-dimensional electron gas (2DEG) in the channel of a high electron mobility transistor (HEMT). The usage of the method was demonstrated with the pseudomorphic HEMT as a specimen. The optimal HEMT dc regime, from the point of view of the "back action" problem, was found to belong to the unsaturated area of the static characteristics possibly corresponding to the ballistic electron transport mode. The proposed method is believed to be a convenient tool to explore the ballistic transport, electron diffusion, 2DEG properties and other electrophysical processes in heterostructures.

  13. Superconducting Hot-Electron Submillimeter-Wave Detector

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    A superconducting hot-electron bolometer has been built and tested as a prototype of high-sensitivity, rapid-response detectors of submillimeter-wavelength radiation. There are diverse potential applications for such detectors, a few examples being submillimeter spectroscopy for scientific research; detection of leaking gases; detection of explosive, chemical, and biological weapons; and medical imaging. This detector is a superconducting-transition- edge device. Like other such devices, it includes a superconducting bridge that has a low heat capacity and is maintained at a critical temperature (T(sub c)) at the lower end of its superconducting-transition temperature range. Incident photons cause transient increases in electron temperature through the superconducting-transition range, thereby yielding measurable increases in electrical resistance. In this case, T(sub c) = 6 K, which is approximately the upper limit of the operating-temperature range of silicon-based bolometers heretofore used routinely in many laboratories. However, whereas the response speed of a typical silicon- based laboratory bolometer is characterized by a frequency of the order of a kilohertz, the response speed of the present device is much higher characterized by a frequency of the order of 100 MHz. For this or any bolometer, a useful figure of merit that one seeks to minimize is (NEP)(tau exp 1/2), where NEP denotes the noise-equivalent power (NEP) and the response time. This figure of merit depends primarily on the heat capacity and, for a given heat capacity, is approximately invariant. As a consequence of this approximate invariance, in designing a device having a given heat capacity to be more sensitive (to have lower NEP), one must accept longer response time (slower response) or, conversely, in designing it to respond faster, one must accept lower sensitivity. Hence, further, in order to increase both the speed of response and the sensitivity, one must make the device very small in

  14. Propagation in compressed matter of hot electrons created by short intense lasers

    NASA Astrophysics Data System (ADS)

    Batani, D.; Bernardinello, A.; Masella, V.; Pisani, F.; Koenig, M.; Krishnan, J.; Benuzzi, A.; Ellwi, S.; Hall, T.; Norreys, P.; Djaoui, A.; Neely, D.; Rose, S.; Fews, P.; Key, M.

    1998-02-01

    We performed the first experimental study of propagation in compressed matter of hot electrons created by a short pulse intense laser. The experiment has been carried out with the VULCAN laser at Rutherford compressing plastic targets with two ns laser beams at an intensity ⩾1014W/cm2. A CPA beam with an intensity ⩾1016W/cm2 irradiated the rear side of the target and created hot electrons propagating through the compressed matter. K-α emission was used as diagnostics of hot electron penetration by putting a chloride plastic layer inside the target.

  15. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics

    SciTech Connect

    Jin, Sung Hun E-mail: jhl@snu.ac.kr Shin, Jongmin; Cho, In-Tak; Lee, Jong-Ho E-mail: jhl@snu.ac.kr; Han, Sang Youn; Lee, Dong Joon; Lee, Chi Hwan; Rogers, John A. E-mail: jhl@snu.ac.kr

    2014-07-07

    This paper presents materials, device designs, and physical/electrical characteristics of a form of nanotube electronics that is physically transient, in the sense that all constituent elements dissolve and/or disperse upon immersion into water. Studies of contact effects illustrate the ability to use water soluble metals such as magnesium for source/drain contacts in nanotube based field effect transistors. High mobilities and on/off ratios in transistors that use molybdenum, silicon nitride, and silicon oxide enable full swing characteristics for inverters at low voltages (∼5 V) and with high gains (∼30). Dissolution/disintegration tests of such systems on water soluble sheets of polyvinyl alcohol demonstrate physical transience within 30 min.

  16. Small signal modeling of high electron mobility transistors on silicon and silicon carbide substrate with consideration of substrate loss mechanism

    NASA Astrophysics Data System (ADS)

    Sahoo, A. K.; Subramani, N. K.; Nallatamby, J. C.; Sylvain, L.; Loyez, C.; Quere, R.; Medjdoub, F.

    2016-01-01

    In this paper, we present a comparative study on small-signal modeling of AlN/GaN/AlGaN double hetero-structure high electron mobility transistors (HEMTs) grown on silicon (Si) and silicon carbide (SiC) substrate. The traditional small signal equivalent circuit model is modified to take into account the transmission loss mechanism of coplanar waveguide (CPW) line which cannot be neglected at high frequencies. CPWs and HEMTs-on-AlN/GaN/AlGaN epitaxial layers are fabricated on both the Si and SiC substrates. S-parameter measurements at room temperature are performed over the frequency range from 0.5 GHz to 40 GHz. Transmission loss of CPW lines are modeled with a distributed transmission line (TL) network and an equivalent circuit model is included in the small-signal transistor model topology. Measurements and simulations are compared and found to be in good agreement.

  17. Si single electron tunneling transistor with nanoscale floating dot stacked on a Coulomb island by self-aligned process

    NASA Astrophysics Data System (ADS)

    Nakajima, Anri; Futatsugi, Toshiro; Kosemura, Kinjiro; Fukano, Tetsu; Yokoyama, Naoki

    1997-07-01

    We fabricated a Si single electron tunneling transistor which has a nanoscale floating dot gate stacked on a Coulomb island by a self-aligned process. This device exhibits drain current (Id) oscillations due to the Coulomb blockade effect and quantized threshold voltage (Vth) shifts resulting from a single electron tunneling from the channel to the floating dot gate. The high on/off current ratio of the Id oscillation combined with the quantized Vth shifts leads to the possibility of developing ultralow power consumption memory.

  18. Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Lin; Chu, B. H.; Chen, K. H.; Chang, C. Y.; Lele, T. P.; Papadi, G.; Coleman, J. K.; Sheppard, B. J.; Dungen, C. F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.; Ren, F.

    2009-06-01

    Antibody-functionalized, Au-gated AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect Perkinsus marinus. The antibody was anchored to the gate area through immobilized thioglycolic acid. The AlGaN/GaN HEMT drain-source current showed a rapid response of less than 5 s when the infected solution was added to the antibody-immobilized surface. The sensor can be recycled with a phosphate buffered saline wash. These results clearly demonstrate the promise of field-deployable electronic biological sensors based on AlGaN/GaN HEMTs for Perkinsus marinus detection.

  19. Direct strain measurement in a 65 nm node strained silicon transistor by convergent-beam electron diffraction

    SciTech Connect

    Zhang, Peng; Istratov, Andrei A.; Weber, Eicke R.; Kisielowski, Christian; He, Haifeng; Nelson, Chris; Spence, John C.H

    2006-01-01

    Using the energy-filtered convergent-beam electron diffraction !CBED" technique in a transmission electron microscope, the authors report here a direct measurement of the lattice parameters of uniaxially strained silicon as close as 25 nm below the gate in a 65 nm node p-type metal-oxide-semiconductor field-effect transistor with SiGe source and drain. It is found that the dominant strain component (0.58%) is compressive along the source-drain direction. The compressive stress is 1.1 GPa along this direction. These findings demonstrate that CBED can serve as a strain metrology technique for the development of strained silicon device technology

  20. Precision measurements with the single electron transistor: Noise and backaction in the normal and superconducting state

    NASA Astrophysics Data System (ADS)

    Turek, Benjamin Anthony

    This thesis presents measurements of noise effects introduced by the Single Electron Transistor (SET) as it measures a nanoelectronic system, the single electron box/Cooper pair box. We consider the SET as a nanoscale charge amplifier, and show that the input noise of this amplifier---its "backaction"---can have a marked or even dominant effect on the system the SET measures. We report theoretical motivation and experimental results in both the normal and superconducting states. The SET is a nanoelectronic, three-terminal, tunnel junction device, where a capacitively coupled input voltage modulates a drain-source current serving as the amplifier output. As a charge amplifier, it has been able to produce some of the fastest and most precise charge measurements currently possible. We use the SET to measure the single electron box/Cooper pair box, a nanoscale circuit where a capacitively coupled voltage modulates the tunneling of single electrons or Cooper pairs on to and off of an isolated metallic island. Two different theoretical treatments of backaction effects motivate our experiments in the normal and superconducting states. In the normal state, backaction is modeled using a master equation for the coupled box-SET system. In the superconducting state, a density matrix treatment of the SET coupled to a qubit produces predictions about superconducting SET backaction on the Cooper pair box that are understood as quantum noise acting on a coherent two-level system. Samples were measured in an RF-SET configuration in a dilution refrigerator. A charge-noise vetoing algorithm was implemented to permit extremely precise measurements of time-averaged box behavior. Detailed measurements of the SET/box system as the we vary the operating parameters of the SET confirm our understanding of SET backaction. Fast time-domain measurements in the superconducting state are discussed as an additional tool to measure the SET's effects on the Cooper pair box. Additional experiments

  1. Investigation on hot electron generation and propagation in interaction of ultrashort laser pulses with solids

    NASA Astrophysics Data System (ADS)

    Zhang, Jie

    2002-04-01

    Hot electron generation and propagation have been investigated in the interaction of ultrashort laser pulses with solid targets. The hot election generation and absorption mechanisms of ultrashort laser pulses have been studied at intensities of 5¡Á1016 7¡Á1017 Wcm-2 [1,2]. The competition between vacuum heating and resonance absorption has been found to be the main reason for a double-temperature distribution of hot electrons [3,4]. The effects of charge-separation-potential have been found to play a main role in the interaction process [5]. The effects of laser polarization on the hot electron emission have also been studied [6]. Outgoing hot electrons collimated in the polarization direction has been observed for the s-polarized laser irradiation, whereas for the p-polarized irradiation, very directional emission of outgoing hot electrons has been found close to the normal direction of the target. Dependence of the jet emission of hot electrons on the plasma scale-length has been obtained. The angular distribution has been found to be dependent on the energy of hot electrons. Particle-in-Cell (PIC) simulations have confirmed most of the observations [1,3,7]. The propagation process of hot electrons through solids have also been investigated [8]. References [1] Q.L. Dong, J. Zhang and H. Teng, Phys. Rev. E64, 026411 (2001). [2] L.M Chen, J.Zhang, et al., Phys. Plasmas 8, 2925 (2001). [3] Q.L. Dong, J. Zhang, Phys. Plasmas 8,1025 (2001). [4] H. Lin, et al., Phys. Plasmas 8,1707 (2001). [5] L.M. Chen, J. Zhang, et al., Phys. Rev. E63,036403 (2001). [6] L. M. Chen, J. Zhang, et al., Phys. Rev. Lett. 87, 225001 (2001). [7] Z.M. Sheng, et al., Phys. Rev. Lett. 85, 5340 (2000). [8] Y.T. Li, J. Zhang, et al., Phys. Rev. E64, 046407 (2001).

  2. Transport of charge carriers through the thin base of a heterobipolar transistor under the impact of radiation

    SciTech Connect

    Puzanov, A. S. Obolenskii, S. V. Kozlov, V. A.

    2015-01-15

    The transport of electrons in heterobipolar transistors with radiation defects is studied under conditions where the characteristic sizes of defect clusters and the distances between them can be comparable or can even exceed the sizes of the device base. It is shown that, under some levels of irradiation, neutron radiation can bring about a decrease in the time of flight of hot electrons through the base, which retards the degradation of the transistor parameters.

  3. Electron Transport in Graphene Nanoribbon Field-Effect Transistor under Bias and Gate Voltages: Isochemical Potential Approach.

    PubMed

    Yun, Jeonghun; Lee, Geunsik; Kim, Kwang S

    2016-07-01

    Zigzag graphene nanoribbon (zGNR) of narrow width has a moderate energy gap in its antiferromagnetic ground state. So far, first-principles electron transport calculations have been performed using nonequilibrium Green function (NEGF) method combined with density functional theory (DFT). However, the commonly practiced bottom-gate control has not been studied computationally due to the need to simulate an electron reservoir that fixes the chemical potential of electrons in the zGNR and electrodes. Here, we present the isochemical potential scheme to describe the top/back-gate effect using external potential. Then, we examine the change in electronic state under the modulation of chemical potential and the subsequent electron transport phenomena in zGNR transistor under substantial top-/back-gate and bias voltages. The gate potential can activate the device states resulting in a boosted current. This gate-controlled current-boosting could be utilized for designing novel zGNR field effect transistors (FETs). PMID:27299184

  4. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer

    DOEpatents

    Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng

    2005-02-01

    A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.

  5. Amplification of hot electron flow by the surface plasmon effect on metal-insulator-metal nanodiodes.

    PubMed

    Lee, Changhwan; Nedrygailov, Ievgen I; Lee, Young Keun; Ahn, Changui; Lee, Hyosun; Jeon, Seokwoo; Park, Jeong Young

    2015-11-01

    Au-TiO2-Ti nanodiodes with a metal-insulator-metal structure were used to probe hot electron flows generated upon photon absorption. Hot electrons, generated when light is absorbed in the Au electrode of the nanodiode, can travel across the TiO2, leading to a photocurrent. Here, we demonstrate amplification of the hot electron flow by (1) localized surface plasmon resonance on plasmonic nanostructures fabricated by annealing the Au-TiO2-Ti nanodiodes, and (2) reducing the thickness of the TiO2. We show a correlation between changes in the morphology of the Au electrodes caused by annealing and amplification of the photocurrent. Based on the exponential dependence of the photocurrent on TiO2 thickness, the transport mechanism for the hot electrons across the nanodiodes is proposed. PMID:26451470

  6. Amplification of hot electron flow by the surface plasmon effect on metal-insulator-metal nanodiodes

    NASA Astrophysics Data System (ADS)

    Lee, Changhwan; Nedrygailov, Ievgen I.; Lee, Young Keun; Ahn, Changui; Lee, Hyosun; Jeon, Seokwoo; Park, Jeong Young

    2015-11-01

    Au-TiO2-Ti nanodiodes with a metal-insulator-metal structure were used to probe hot electron flows generated upon photon absorption. Hot electrons, generated when light is absorbed in the Au electrode of the nanodiode, can travel across the TiO2, leading to a photocurrent. Here, we demonstrate amplification of the hot electron flow by (1) localized surface plasmon resonance on plasmonic nanostructures fabricated by annealing the Au-TiO2-Ti nanodiodes, and (2) reducing the thickness of the TiO2. We show a correlation between changes in the morphology of the Au electrodes caused by annealing and amplification of the photocurrent. Based on the exponential dependence of the photocurrent on TiO2 thickness, the transport mechanism for the hot electrons across the nanodiodes is proposed.

  7. Devices using ballistic transport of two dimensional electron gas in delta doped gallium arsenide high electron mobility transistor structures

    NASA Astrophysics Data System (ADS)

    Kang, Sungmu

    In this thesis, devices using the ballistic transport of two dimensional electron gas (2DEG) in GaAs High Electron Mobility Transistor(HEMT) structure is fabricated and their dc and ac properties are characterized. This study gives insight on operation and applications of modern submicron devices with ever reduced gate length comparable to electron mean free path. The ballistic transport is achieved using both temporal and spatial limits in this thesis. In temporal limit, when frequency is higher than the scattering frequency (1/(2pitau)), ballistic transport can be achieved. At room temperature, generally the scattering frequency is around 500 GHz but at cryogenic temperature (≤4K) with high mobility GaAs HEMT structure, the frequency is much lower than 2 GHz. On this temporal ballistic transport regime, effect of contact impedance and different dc mobility on device operation is characterized with the ungated 2DEG of HEMT structure. In this ballistic regime, impedance and responsivity of plasma wave detector are investigated using the gated 2DEG of HEMT at different ac boundary conditions. Plasma wave is generated at asymmetric ac boundary conditions of HEMTs, where source is short to ground and drain is open while rf power is applied to gate. The wave velocity can be tuned by gate bias voltage and induced drain to source voltage(Vds ) shows the resonant peak at odd number of fundamental frequency. Quantitative power coupling to plasma wave detector leads to experimental characterization of resonant response of plasma wave detector as a function of frequency. Because plasma wave resonance is not limited by transit time, the physics learned in this study can be directly converted to room temperature terahertz detection by simply reducing gate length(Lgate) to submicron for the terahertz application such as non destructive test, bio medical analysis, homeland security, defense and space. In same HEMT structure, the dc and rf characterization on device is also

  8. Waves in space plasmas - The mirror trapping of hot auroral electrons

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Coroniti, F. V.; Kennel, C. F.

    1980-01-01

    A brief review is given of the problem of precipitation of auroral electrons by electrostatic Bernstein waves. Since the magnetospheric loss cone is small, only moderately small intense levels of wave turbulence are required to remove any large anisotropy sources of free energy and to maintain a weakly anisotropic electron distribution on strong diffusion precipitation. The electrostatic electron cyclotron harmonic waves are nonconvectively unstable for weak loss cone anisotropies and over a large range of parameters for both the hot and cold distributions. Since the instability is nonconvective, weak wave growth can be maintained independent of the flux level of the hot electrons, i.e., the instability does not have the stably trapped flux limit imposed by convective amplification. Recent plasma numerical simulations show that the nonlinear evolution of this instability involves both the pitch angle diffusion of the hot electrons and the heating of the cold electrons.

  9. Graphene-Semiconductor Catalytic Nanodiodes for Quantitative Detection of Hot Electrons Induced by a Chemical Reaction.

    PubMed

    Lee, Hyosun; Nedrygailov, Ievgen I; Lee, Young Keun; Lee, Changhwan; Choi, Hongkyw; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young

    2016-03-01

    Direct detection of hot electrons generated by exothermic surface reactions on nanocatalysts is an effective strategy to obtain insight into electronic excitation during chemical reactions. For this purpose, we fabricated a novel catalytic nanodiode based on a Schottky junction between a single layer of graphene and an n-type TiO2 layer that enables the detection of hot electron flows produced by hydrogen oxidation on Pt nanoparticles. By making a comparative analysis of data obtained from measuring the hot electron current (chemicurrent) and turnover frequency, we demonstrate that graphene's unique electronic structure and extraordinary material properties, including its atomically thin nature and ballistic electron transport, allow improved conductivity at the interface between the catalytic Pt nanoparticles and the support. Thereby, graphene-based nanodiodes offer an effective and facile way to approach the study of chemical energy conversion mechanisms in composite catalysts with carbon-based supports. PMID:26910271

  10. Hot Electron-Based Near-Infrared Photodetection Using Bilayer MoS2.

    PubMed

    Wang, Wenyi; Klots, Andrey; Prasai, Dhiraj; Yang, Yuanmu; Bolotin, Kirill I; Valentine, Jason

    2015-11-11

    Recently, there has been much interest in the extraction of hot electrons generated from surface plasmon decay, as this process can be used to achieve additional bandwidth for both photodetectors and photovoltaics. Hot electrons are typically injected into semiconductors over a Schottky barrier between the metal and semiconductor, enabling generation of photocurrent with below bandgap photon illumination. As a two-dimensional semiconductor single and few layer molybdenum disulfide (MoS2) has been demonstrated to exhibit internal photogain and therefore becomes an attractive hot electron acceptor. Here, we investigate hot electron-based photodetection in a device consisting of bilayer MoS2 integrated with a plasmonic antenna array. We demonstrate sub-bandgap photocurrent originating from the injection of hot electrons into MoS2 as well as photoamplification that yields a photogain of 10(5). The large photogain results in a photoresponsivity of 5.2 A/W at 1070 nm, which is far above similar silicon-based hot electron photodetectors in which no photoamplification is present. This technique is expected to have potential use in future ultracompact near-infrared photodetection and optical memory devices. PMID:26426510

  11. Electron and hole polaron accumulation in low-bandgap ambipolar donor-acceptor polymer transistors imaged by infrared microscopy

    NASA Astrophysics Data System (ADS)

    Khatib, O.; Mueller, A. S.; Stinson, H. T.; Yuen, J. D.; Heeger, A. J.; Basov, D. N.

    2014-12-01

    A resurgence in the use of the donor-acceptor approach in synthesizing conjugated polymers has resulted in a family of high-mobility ambipolar systems with exceptionally narrow energy bandgaps below 1 eV. The ability to transport both electrons and holes is critical for device applications such as organic light-emitting diodes and transistors. Infrared spectroscopy offers direct access to the low-energy excitations associated with injected charge carriers. Here we use a diffraction-limited IR microscope to probe the spectroscopic signatures of electron and hole injection in the conduction channel of an organic field-effect transistor based on an ambipolar DA polymer polydiketopyrrolopyrrole-benzobisthiadiazole. We observe distinct polaronic absorptions for both electrons and holes and spatially map the carrier distribution from the source to drain electrodes for both unipolar and ambipolar biasing regimes. For ambipolar device configurations, we observe the spatial evolution of hole-induced to electron-induced polaron absorptions throughout the transport path. Our work provides a platform for combined transport and infrared studies of organic semiconductors on micron length scales relevant to functional devices.

  12. Hot Carrier Degradation in Deep Sub-Micron Nitride Spacer Lightly Doped Drain N-Channel Metal-Oxide-Semiconductor Transistors

    NASA Astrophysics Data System (ADS)

    Tsai, Jun-lin; Huang, Kai-ye; Lai, Jinn-horng; Gong, Jeng; Yang, Fu-Jei; Lin, Sun-Yun

    2002-08-01

    Spacer bottom oxide in the nitride spacer lightly doped drain (LDD) device, which is used to prevent huge interfacial states between the nitride and silicon interface, plays an important role in the hot carrier test. Because of the stress due to atomic size mismatch between the nitride spacer and silicon, trap-assisted hot electron tunneling is more significant in a nitride spacer LDD device than in the oxide spacer counterpart. A thicker bottom oxide can eliminate this effect. However, the optimal thickness of the nitride spacer bottom oxide should be varied for different poly-silicon gate structures. The hot carrier stress in a nitride spacer LDD device causes multi-stage degradation under Isub,max stress. It is dominated by electron trapping at the early stage, interfacial state (Nit) creation at the second stage, and self-limiting hot carrier degradation at the final stage. The degradation for Ig,max stress in nitride spacer LDD devices is mostly caused by electrons trapped in the nitride/oxide interface.

  13. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.

    PubMed

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-29

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation. PMID:27168177

  14. Hot-electron-based solar energy conversion with metal–semiconductor nanodiodes

    NASA Astrophysics Data System (ADS)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-01

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal–semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  15. Strongly Metallic Electron and Hole 2D Transport in an Ambipolar Si-Vacuum Field Effect Transistor

    NASA Astrophysics Data System (ADS)

    Hu, Binhui; Yazdanpanah, M. M.; Kane, B. E.; Hwang, E. H.; Das Sarma, S.

    2015-07-01

    We report experiment and theory on an ambipolar gate-controlled Si(111)-vacuum field effect transistor where we study electron and hole (low-temperature 2D) transport in the same device simply by changing the external gate voltage to tune the system from being a 2D electron system at positive gate voltage to a 2D hole system at negative gate voltage. The electron (hole) conductivity manifests strong (moderate) metallic temperature dependence with the conductivity decreasing by a factor of 8 (2) between 0.3 K and 4.2 K with the peak electron mobility (˜18 m2/V s ) being roughly 20 times larger than the peak hole mobility (in the same sample). Our theory explains the data well using random phase approximation screening of background Coulomb disorder, establishing that the observed metallicity is a direct consequence of the strong temperature dependence of the effective screened disorder.

  16. Characteristics of light-induced electron transport from P3HT to ZnO-nanowire field-effect transistors

    SciTech Connect

    Choe, Minhyeok; Hoon Lee, Byoung; Park, Woojin; Kang, Jang-Won; Jeong, Sehee; Hun Lee, Byoung; Lee, Kwanghee; Park, Seong-Ju; Cho, Kyungjune; Lee, Takhee; Hong, Woong-Ki

    2013-11-25

    We fabricated ZnO-nanowire (NW) field-effect transistors (FETs) coated with poly(3-hexylthiophene) (P3HT) and characterized the electron-transfer characteristics from the P3HT to the ZnO NWs. Under irradiation by laser light with a wavelength of 532 nm, photo-induced electrons were created in the P3HT and then transported to the ZnO NWs, constituting a source-drain current in the initially enhancement-mode P3HT-coated ZnO-NW FETs. As the intensity of the light increased, the current increased, and its threshold voltage shifted to the negative gate-bias direction. We estimated the photo-induced electron density and the electron-transfer characteristics, which will be helpful for understanding organic-inorganic hybrid optoelectronic devices.

  17. Effects of traps and polarization charges on device performance of AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Hussein, A. SH.; Ghazai, Alaa J.; Salman, Emad A.; Hassan, Z.

    2013-11-01

    This paper presents the simulated electrical characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) by using ISE TCAD software. The effects of interface traps, bulk traps and polarization charges are investigated. It was observed that the role and dynamic of traps affect the device performance which requires a precondition to calculate the DC characteristics that are in agreement with the experimental data. On the other hand, polarization charges lead to quantum confinement of the electrons in the channel and form two-dimensional electron gas. The electron quantization leads to increasing the drain current and shift in the threshold voltage. The device performance can be improved by optimizing the fixed interface charge and thus reducing the bulk traps to enhance the DC characteristics.

  18. Mixed proton and electron conduction in graphene oxide films: field effect in a transistor based on graphene oxide

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Mokrushin, A. D.; Vasiliev, V. P.; Denisov, N. N.; Denisova, K. N.

    2016-05-01

    GO films exhibited dual proton and electron conduction. Proton conduction showed the exponential dependence on relative humidity with the activation energy E a = 0.9 ± 0.05 eV. For the electron conductivity (220-273 K) induced by thermolysis and chemical means E a = 1.15 ± 0.05 eV. With increasing humidity, the electron conduction went down, which was associated with recombination phenomena. The GO films can be regarded as a first example of the mixed electron-proton conduction when sample conductivity can be regulated by external influence (humidity). Field effect is detected and studied in the transistor on the basis of the GO in different types of conduction.

  19. Proton beam shaped by "particle lens" formed by laser-driven hot electrons

    NASA Astrophysics Data System (ADS)

    Zhai, S. H.; Shen, B. F.; Wang, W. P.; Zhang, H.; He, S. K.; Lu, F.; Zhang, F. Q.; Deng, Z. G.; Dong, K. G.; Wang, S. Y.; Zhou, K. N.; Xie, N.; Wang, X. D.; Zhang, L. G.; Huang, S.; Liu, H. J.; Zhao, Z. Q.; Gu, Y. Q.; Zhang, B. H.; Xu, Z. Z.

    2016-05-01

    Two-dimensional tailoring of a proton beam is realized by a "particle lens" in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a "fountain-like" pattern when these hot electrons diffuse after propagating a distance.

  20. Induced base transistor fabricated by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chang, C.-Y.; Liu, W. C.; Jame, M. S.; Wang, Y. H.; Luryi, S.

    1986-09-01

    A novel three-terminal hot-electron device, the induced base transistor (IBT), has been fabricated by molecular beam epitaxy. Two-dimensional electron gas induced by the applied collector field in an undoped GaAs quantum well is used as the base of the IBT. The common-base current gain alpha has been achieved as high as 0.96 under a collector bias of 2.5 V and an emitter current of 3 mA.

  1. Thermal instability and the growth of the InGaAs/AlGaAs pseudomorphic high electron mobility transistor system

    SciTech Connect

    Pellegrino, Joseph G.; Qadri, Syed B.; Mahadik, Nadeemullah A.; Rao, Mulpuri V.; Tseng, Wen F.; Thurber, Robert; Gajewski, Donald; Guyer, Jonathan

    2007-03-12

    The effects of temperature overshoot during molecular beam epitaxy growth on the transport properties of conventionally and delta-doped pseudomorphic high electron mobility transistor (pHEMT) structures have been examined. A diffuse reflectance spectroscopy (DRS)-controlled versus a thermocouple (TC)-controlled, growth scheme is compared. Several advantages of the DRS-grown pHEMTs over the TC-controlled version were observed. Modest improvements in mobility, on the order of 2%-3%, were observed in addition to a 20% reduction in carrier freeze-out for the DRS-grown pHEMTs at 77 K.

  2. Transient characteristics of AlGaN/GaN high-electron-mobility transistor with bias-controllable field plate

    NASA Astrophysics Data System (ADS)

    Mase, Suguru; Egawa, Takashi; Wakejima, Akio

    2015-03-01

    The trapping and emission of carriers in the gate-to-drain region of an AlGaN/GaN high-electron-mobility transistor (HEMT) have been investigated using a bias-controllable field plate (CFP). Once an instantaneous positive CFP voltage is applied after bias stress in a transient drain current measurement, carrier trapping occurs, which can subsequently be observed as a drain current discontinuity. Numerical analysis of carrier trapping using the Shockley-Read-Hall process also provides a trapped carrier density of 5.1 × 1012 cm-2 and an energy level of 0.6 eV.

  3. Antenna-Coupled Superconducting Tunnel Junctions with Single-Electron Transistor Readout for Detection of Sub-mm Radiation

    NASA Technical Reports Server (NTRS)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Teufel, J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    Antenna-coupled superconducting tunnel junction detectors have the potential for photon-counting sensitivity at sub-mm wavelengths. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  4. Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications.

    PubMed

    Makowski, M S; Kim, S; Gaillard, M; Janes, D; Manfra, M J; Bryan, I; Sitar, Z; Arellano, C; Xie, J; Collazo, R; Ivanisevic, A

    2013-02-18

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to measure electrical characteristics of physisorbed gold nanoparticles (Au NPs) functionalized with alkanethiols with a terminal methyl, amine, or carboxyl functional group. Additional alkanethiol was physisorbed onto the NP treated devices to distinguish between the effects of the Au NPs and alkanethiols on HEMT operation. Scanning Kelvin probe microscopy and electrical measurements were used to characterize the treatment effects. The HEMTs were operated near threshold voltage due to the greatest sensitivity in this region. The Au NP/HEMT system electrically detected functional group differences on adsorbed NPs which is pertinent to biosensor applications. PMID:23509411

  5. Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications

    PubMed Central

    Makowski, M. S.; Kim, S.; Gaillard, M.; Janes, D.; Manfra, M. J.; Bryan, I.; Sitar, Z.; Arellano, C.; Xie, J.; Collazo, R.; Ivanisevic, A.

    2013-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to measure electrical characteristics of physisorbed gold nanoparticles (Au NPs) functionalized with alkanethiols with a terminal methyl, amine, or carboxyl functional group. Additional alkanethiol was physisorbed onto the NP treated devices to distinguish between the effects of the Au NPs and alkanethiols on HEMT operation. Scanning Kelvin probe microscopy and electrical measurements were used to characterize the treatment effects. The HEMTs were operated near threshold voltage due to the greatest sensitivity in this region. The Au NP/HEMT system electrically detected functional group differences on adsorbed NPs which is pertinent to biosensor applications. PMID:23509411

  6. Physisorption of functionalized gold nanoparticles on AlGaN/GaN high electron mobility transistors for sensing applications

    NASA Astrophysics Data System (ADS)

    Makowski, M. S.; Kim, S.; Gaillard, M.; Janes, D.; Manfra, M. J.; Bryan, I.; Sitar, Z.; Arellano, C.; Xie, J.; Collazo, R.; Ivanisevic, A.

    2013-02-01

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to measure electrical characteristics of physisorbed gold nanoparticles (Au NPs) functionalized with alkanethiols with a terminal methyl, amine, or carboxyl functional group. Additional alkanethiol was physisorbed onto the NP treated devices to distinguish between the effects of the Au NPs and alkanethiols on HEMT operation. Scanning Kelvin probe microscopy and electrical measurements were used to characterize the treatment effects. The HEMTs were operated near threshold voltage due to the greatest sensitivity in this region. The Au NP/HEMT system electrically detected functional group differences on adsorbed NPs which is pertinent to biosensor applications.

  7. Characteristics of a micromachined floating-gate high-electron-mobility transistor at 4.2 K

    NASA Astrophysics Data System (ADS)

    Teh, W. H.; Crook, R.; Smith, C. G.; Beere, H. E.; Ritchie, D. A.

    2005-06-01

    We use micromachined, free-standing Ni cantilevers to develop a mechanical field-effect transistor based on III-V material systems. The device consists of an electrostatically actuated microcantilever, acting as the floating gate, fabricated over a defined two-dimensional electron gas (2DEG) in a modulation-doped GaAs /AlGaAs heterostructure. The gating effects on the conductance of the 2DEG channel of the biased floating gate at different operating points are studied at 4.2K. Preliminary resonance measurements based on the 2DEG as a deflection sensor are presented.

  8. Observation of ambipolar switching in a silver nanoparticle single-electron transistor with multiple molecular floating gates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Shinohara, Shuhei; Tamada, Kaoru; Ishii, Hisao; Noguchi, Yutaka

    2016-03-01

    Ambipolar switching behavior was observed in a silver nanoparticle (AgNP)-based single-electron transistor (SET) with tetra-tert-butyl copper phthalocyanine (ttbCuPc) as a molecular floating gate. Depending on the wavelength of the incident light, the stability diagram shifted to the negative and positive directions along the gate voltage axis. These results were explained by the photoinduced charging of ttbCuPc molecules in the vicinity of AgNPs. Moreover, multiple device states were induced by the light irradiation at a wavelength of 600 nm, suggesting that multiple ttbCuPc molecules individually worked as a floating gate.

  9. Extrinsic and intrinsic causes of the electrical degradation of AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Yulong, Fang; Shaobo, Dun; Bo, Liu; Jiayun, Yin; Shujun, Cai; Zhihong, Feng

    2012-05-01

    Electrical stress experiments under different bias configurations for AlGaN/GaN high electron mobility transistors were performed and analyzed. The electric field applied was found to be the extrinsic cause for the device instability, while the traps were recognized as the main intrinsic factor. The effect of the traps on the device degradation was identified by recovery experiments and pulsed I-V measurements. The total degradation of the devices consists of two parts: recoverable degradation and unrecoverable degradation. The electric field induced traps combined with the inherent ones in the device bulk are mainly responsible for the recoverable degradation.

  10. Experimental and Simulated Results of Room Temperature Single Electron Transistor Formed by Atomic Force Microscopy Nano-Oxidation Process

    NASA Astrophysics Data System (ADS)

    Gotoh, Yoshitaka; Matsumoto, Kazuhiko; Bubanja, Vladimir; Vazquez, Francisco; Maeda, Tatsuro; Harris, James S.

    2000-04-01

    A planar-type single electron transistor (SET) was fabricated by the atomic force microscopy (AFM) nano-oxidation process. The fabricated SET showed the Coulomb oscillation characteristic with the period of about 2 V at room temperature. From the three-dimensional simulation, it is found out that the smaller the SET island size, the smaller the tunnel junction capacitance, and the tunnel junction capacitance shows a weak dependence on the tunnel junction width. Using the analytical model, the reason for this weak dependence was clarified.

  11. Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device.

    PubMed

    Uslu, F; Ingebrandt, S; Mayer, D; Böcker-Meffert, S; Odenthal, M; Offenhäusser, A

    2004-07-15

    The labelfree detection of nucleic acid sequences is one of the modern attempts to develop quick, cheap and miniaturised hand-held devices for the future genetic testing in biotechnology and medical diagnostics. We present an approach to detect the hybridisation of DNA sequences using electrolyte-oxide-semiconductor field-effect transistors (EOSFETs) with micrometer dimensions. These semiconductor devices are sensitive to electrical charge variations that occur at the surface/electrolyte interface, i.e. upon hybridisation of oligonucleotides with complementary single-stranded (ss) oligonucleotides, which are immobilised on the oxide surface of the transistor gate. This method allows direct, time-resolved and in situ detection of specific nucleic acid binding events without any labelling. We focus on the detection mechanism of our sensors by using oppositely charged polyelectrolytes (PAH and PSS) subsequently attached to the transistor structures. Our results indicate that the sensor output is charge sensitive and distance dependent from the gate surface, which pinpoints the need for very defined surface chemistry at the device surface. The hybridisation of natural 19 base-pair sequences has been successfully detected with the sensors. In combination with nano-transistors a PCR free detection system might be feasible in future. PMID:15142607

  12. Hot electron injection from graphene quantum dots to TiO₂.

    PubMed

    Williams, Kenrick J; Nelson, Cory A; Yan, Xin; Li, Liang-Shi; Zhu, Xiaoyang

    2013-02-26

    The Shockley-Queisser limit is the maximum power conversion efficiency of a conventional solar cell based on a single semiconductor junction. One approach to exceed this limit is to harvest hot electrons/holes that have achieved quasi-equilibrium in the light absorbing material with electronic temperatures higher than the phonon temperature. We argue that graphene based materials are viable candidates for hot carrier chromophores. Here we probe hot electron injection and charge recombination dynamics for graphene quantum dots (QDs, each containing 48 fused benzene rings) anchored to the TiO₂(110) surface via carboxyl linkers. We find ultrafast electron injection from photoexcited graphene QDs to the TiO₂ conduction band with time constant τ(i) < 15 fs and charge recombination dynamics characterized by a fast channel (τ(r1) = 80-130 fs) and a slow one (τ(r2) = 0.5-2 ps). The fast decay channel is attributed to the prompt recombination of the bound electron-hole pair across the interface. The slow channel depends strongly on excitation photon energy or sample temperature and can be explained by a "boomerang" mechanism, in which hot electrons are injected into bulk TiO₂, cooled down due to electron-phonon scattering, drifted back to the interface under the transient electric field, and recombine with the hole on graphene QDs. We discuss feasibilities of implementing the hot carrier solar cell using graphene nanomaterials. PMID:23347000

  13. Chemically assembled double-dot single-electron transistor analyzed by the orthodox model considering offset charge

    NASA Astrophysics Data System (ADS)

    Kano, Shinya; Maeda, Kosuke; Tanaka, Daisuke; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka

    2015-10-01

    We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge), respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.

  14. Chemically assembled double-dot single-electron transistor analyzed by the orthodox model considering offset charge

    SciTech Connect

    Kano, Shinya; Maeda, Kosuke; Majima, Yutaka; Tanaka, Daisuke; Sakamoto, Masanori; Teranishi, Toshiharu

    2015-10-07

    We present the analysis of chemically assembled double-dot single-electron transistors using orthodox model considering offset charges. First, we fabricate chemically assembled single-electron transistors (SETs) consisting of two Au nanoparticles between electroless Au-plated nanogap electrodes. Then, extraordinary stable Coulomb diamonds in the double-dot SETs are analyzed using the orthodox model, by considering offset charges on the respective quantum dots. We determine the equivalent circuit parameters from Coulomb diamonds and drain current vs. drain voltage curves of the SETs. The accuracies of the capacitances and offset charges on the quantum dots are within ±10%, and ±0.04e (where e is the elementary charge), respectively. The parameters can be explained by the geometrical structures of the SETs observed using scanning electron microscopy images. Using this approach, we are able to understand the spatial characteristics of the double quantum dots, such as the relative distance from the gate electrode and the conditions for adsorption between the nanogap electrodes.

  15. Microcantilevers and organic transistors: two promising classes of label-free biosensing devices which can be integrated in electronic circuits.

    PubMed

    Cotrone, Serafina; Cafagna, Damiana; Cometa, Stefania; De Giglio, Elvira; Magliulo, Maria; Torsi, Luisa; Sabbatini, Luigia

    2012-02-01

    Most of the success of electronic devices fabricated to actively interact with a biological environment relies on the proper choice of materials and efficient engineering of surfaces and interfaces. Organic materials have proved to be among the best candidates for this aim owing to many properties, such as the synthesis tunability, processing, softness and self-assembling ability, which allow them to form surfaces that are compatible with biological tissues. This review reports some research results obtained in the development of devices which exploit organic materials' properties in order to detect biologically significant molecules as well as to trigger/capture signals from the biological environment. Among the many investigated sensing devices, organic field-effect transistors (OFETs), organic electrochemical transistors (OECTs) and microcantilevers (MCLs) have been chosen. The main factors motivating this choice are their label-free detection approach, which is particularly important when addressing complex biological processes, as well as the possibility to integrate them in an electronic circuit. Particular attention is paid to the design and realization of biocompatible surfaces which can be employed in the recognition of pertinent molecules as well as to the research of new materials, both natural and inspired by nature, as a first approach to environmentally friendly electronics. PMID:22189629

  16. Infrared light emission from nano hot electron gas created in atomic point contacts

    NASA Astrophysics Data System (ADS)

    Malinowski, T.; Klein, H. R.; Iazykov, M.; Dumas, Ph.

    2016-06-01

    Gold atomic point contacts are prototype systems to evidence ballistic electron transport. The typical dimension of the nanojunction being smaller than the electron-phonon interaction length, even at room temperature, electrons transfer their excess energy to the lattice only far from the contact. At the contact however, favored by huge current densities, electron-electron interactions result in a nano hot electron gas acting as a source of photons. Using a home built Mechanically Controlled Break Junction, it is reported here, for the first time, that this nano hot electron gas also radiates in the infrared range (0.2 eV to 1.2 eV). Moreover, following the description introduced by Tomchuk et al. (Sov. Phys.-Solid State, 8 (1966) 2510), we show that this radiation is compatible with a black-body–like spectrum emitted from an electron gas at temperatures of several thousands of kelvins.

  17. Hot electron transport in a strongly correlated transition-metal oxide

    PubMed Central

    Rana, Kumari Gaurav; Yajima, Takeaki; Parui, Subir; Kemper, Alexander F.; Devereaux, Thomas P.; Hikita, Yasuyuki; Hwang, Harold Y.; Banerjee, Tamalika

    2013-01-01

    Oxide heterointerfaces are ideal for investigating strong correlation effects to electron transport, relevant for oxide-electronics. Using hot-electrons, we probe electron transport perpendicular to the La0.7Sr0.3MnO3 (LSMO)- Nb-doped SrTiO3 (Nb:STO) interface and find the characteristic hot-electron attenuation length in LSMO to be 1.48 ± 0.10 unit cells (u.c.) at −1.9 V, increasing to 2.02 ± 0.16 u.c. at −1.3 V at room temperature. Theoretical analysis of this energy dispersion reveals the dominance of electron-electron and polaron scattering. Direct visualization of the local electron transport shows different transmission at the terraces and at the step-edges. PMID:23429420

  18. Design and simulation of cellular nonlinear networks using single-electron tunneling transistor technology

    NASA Astrophysics Data System (ADS)

    Gerousis, Costa P.

    It is currently predicted that semiconductor device scaling will end at the 22-nm device feature size (7 nm physical channel length) according to the International Technology Roadmap for Semiconductors. The main challenge is then to develop innovative technologies that will extend the scaling beyond roadmap projection. Any new technology must be well matched with complementary metal oxide semiconductor (CMOS) technology and scaleable beyond CMOS scaling projections and must provide low-power high-speed signal processing. Nanotechnology will become an appealing option for developing devices for integrated circuits with dimensions and performances well beyond roadmap predictions. Such devices, based on the controllable transfer of charge between dots or 'islands', can take advantage of the quantum mechanical effects, such as tunneling and energy quantization, which would normally occur at the nanometer scale. An outstanding challenge is in arranging such nanodevices in new architectures that can be integrated on a single chip. In particular, locally interconnected architectures are believed to be necessary to alleviate the problems associated with increasing interconnect length and complexity in ultra-dense circuits. The goal of this work is to investigate the use of nanoelectronic structures in cellular non-linear network (CNN) architectures for potential application in future high-density and low-power CMOS-nanodevice hybrid circuits. The operation of the single-electron tunneling (SET) transistor is first reviewed, followed by a discussion of simple CNN linear architectures using a SET inverter topology as the basis for the non-linear transfer characteristics for individual cells to be used in analog processing arrays for image-processing applications. The basic SET CNN cell acts as a summing node that is capacitively coupled to the inputs and outputs of nearest neighbor cells. Monte Carlo simulation results are used to show CNN-like behavior in attempting to

  19. Monolithic integration of 1.3-μm InGaAs photodetectors and high-electron-mobility transistor (HEMT) electronic circuits on GaAs

    NASA Astrophysics Data System (ADS)

    Fink, Thomas; Hurm, Volker; Raynor, Brian; Koehler, Klaus; Benz, Willy; Ludwig, M.

    1995-04-01

    For the first time, monolithic optoelectronic receivers for a wavelength of 1.3 micrometers have been fabricated successfully on GaAs substrates using InGaAs metal-semiconductor-metal (MSM) photodiodes and AlGaAs/GaAs/AlGaAs high-electron-mobility transistors (HEMTs). Using molecular beam epitaxy (MBE), the photodetector layers were grown on top of a double (delta) -doped AlGaAs/GaAs/AlGaAs HEMT structure which allows the fabrication of enhancement and depletion field effect transistors. The photoabsorbing InGaAs layer was grown at 500 degree(s)C. To fabricate the optoelectronic receivers, first, an etch process using a combination of non-selective wet etching and selective reactive ion etching was applied to produce mesas for the photoconductors and to uncover the HEMT structure in all other areas. For the electronic circuits, our well-established HEMT process for 0.3-micrometers transistor gates was used which includes electron-beam lithography for gate definition and optical lithography for NiCr thin films resistors, capacitors, and inductors. The interdigitated MSM photodiode fingers were also fabricated using electron-beam lithography. For interconnecting the electronic circuits and the photodetectors, air bridges were employed. The entire process was performed on 2-inch wafers with more than 90% yield of functional receivers. The finished receiver--basically an MSM photodetector linked to a transimpedance amplifier--is operational at an incident wavelength of 1.3 micrometers at data rates up to 1.2 Gbit/s. The sensitivity of the detectors is 0.16 A/W at a 10 V bias.

  20. Gate-defined Single Electron Transistor in a Graphene-MoS2 van der Waals Heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip

    We report experimental demonstration of fabrication of laterally confined single electron transistor (SET) on MoS2 transition metal dichalcogenide (TMDC) semiconductor. A few atomic layers of MoS2 single crystals are encapsulated in hBN layers in order to improve mobility of 2-dimensional (2D) electron channel. Graphene layers are employed to provide Ohmic contact to the TMDC channels. The laterally confined quantum dots are formed by electrostatically depleting the near-by 2D channel employing local gate fabricated by electron lithography. Typical SET transport signatures such as gate-tunable Coulomb blockade have been observed. We have demonstrated the quantum confinement can be sensitively tuned to adjust the dot-reservoir coupling. The work paves way for more complicated device structure such as valley-spin filter and vertically coupled quantum dots in Coulomb drag devices.

  1. Single charge detection in capacitively coupled integrated single electron transistors based on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Ishibashi, Koji

    2012-09-01

    Single charge detection is demonstrated in the capacitively coupled integrated single electron transistors (SETs) in single-walled carbon nanotubes (SWCNTs) quantum dots. Two SETs are fabricated based on two different SWCNTs aligned in parallel, by taking advantage of the aligned growth of SWCNTs and subsequent transfer-printed techniques. In order to make both two SETs be capacitively coupled, a metal finger is fabricated on the top of them. The charge sensing is proved by the response of a detector current in one SWCNT-SET when the number of electrons in the other SWCNT-SET is changed by sweeping the corresponding gate voltages. In this integrated device, shifts of Coulomb oscillation peaks due to the single electron event are also observed.

  2. Band-to-band tunneling distance analysis in the heterogate electron-hole bilayer tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Padilla, J. L.; Palomares, A.; Alper, C.; Gámiz, F.; Ionescu, A. M.

    2016-01-01

    In this work, we analyze the behavior of the band-to-band tunneling distance between electron and hole subbands resulting from field-induced quantum confinement in the heterogate electron-hole bilayer tunnel field-effect transistor. We show that, analogously to the explicit formula for the tunneling distance that can be easily obtained in the semiclassical framework where the conduction and valence band edges are allowed states, an equivalent analytical expression can be derived in the presence of field-induced quantum confinement for describing the dependence of the tunneling distance on the body thickness and material properties of the channel. This explicit expression accounting for quantum confinement holds valid provided that the potential wells for electrons and holes at the top and bottom of the channel can be approximated by triangular profiles. Analytical predictions are compared to simulation results showing very accurate agreement.

  3. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    SciTech Connect

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin E-mail: chilf@suda.edu.cn Chi, Li-Feng E-mail: chilf@suda.edu.cn Wang, Sui-Dong E-mail: chilf@suda.edu.cn

    2015-03-23

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  4. Electronic transport properties of inner and outer shells in near ohmic-contacted double-walled carbon nanotube transistors

    SciTech Connect

    Zhang, Yuchun; Zhou, Liyan; Zhao, Shangqian; Wang, Wenlong; Liang, Wenjie; Wang, Enge

    2014-06-14

    We investigate electronic transport properties of field-effect transistors based on double-walled carbon nanotubes, of which inner shells are metallic and outer shells are semiconducting. When both shells are turned on, electron-phonon scattering is found to be the dominant phenomenon. On the other hand, when outer semiconducting shells are turned off, a zero-bias anomaly emerges in the dependence of differential conductance on the bias voltage, which is characterized according to the Tomonaga-Luttinger liquid model describing tunneling into one-dimensional materials. We attribute these behaviors to different contact conditions for outer and inner shells of the double-walled carbon nanotubes. A simple model combining Luttinger liquid model for inner metallic shells and electron-phonon scattering in outer semiconducting shells is given here to explain our transport data at different temperatures.

  5. Transient and persistent current induced conductivity changes in GaAs/AlGaAs high-electron-mobility transistors

    SciTech Connect

    Schulte-Braucks, Christian Valentin, Sascha R.; Ludwig, Arne; Wieck, Andreas D.

    2014-03-31

    We report the observation of a current induced change of the low temperature conductivity of two-dimensional electron gases in GaAs/AlGaAs-high-electron-mobility transistors. By applying voltage pulses on the ohmic contacts of a Hall bar-mesa-structure, both sheet-carrier-density n{sub 2D} and electron mobility μ are decreased. At temperatures below 50 K, a persistent change combined with a partial transient recovery of n{sub 2D} has been observed. The transient behaviour and the lateral spreading of the effect are studied. Moreover, a temperature dependent investigation has been done in order to get insight into the addressed defect energy levels. A model based on the phenomenology of the effect is proposed. The observed effect is not a permanent degradation as the original carrier concentration can be restored by warming up the sample to room temperature and recooling it.

  6. Early hot electrons generation and beaming in ICF gas filled hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard; Michel, Pierre; Hartemann, Fred; Milovich, Jose; Hohenberger, Matthias; Divol, Laurent; Landen, Otto; Pak, Arthur; Thomas, Cliff; Doeppner, Tilo; Bachmann, Benjamin; Meezan, Nathan; MacKinnon, Andrew; Hurricane, Omar; Callahan, Debbie; Hinkel, Denise; Edwards, John

    2015-11-01

    In laser driven hohlraum capsule implosions on the National Ignition Facility, supra-thermal hot electrons generated by laser plasma instabilities can preheat the capsule. Time resolved hot electron Bremsstrahlung spectra combined with 30 keV x-ray imaging uncover for the first time the directionality of hot electrons onto a high-Z surrogate capsule located at the hohlraum center. In the most extreme case, we observed a collimated beaming of hot electrons onto the capsule poles, reaching 50x higher localized energy deposition than for isotropic electrons. A collective SRS model where all laser beams in a cone drive a common plasma wave provides a physical interpretation for the observed beaming. Imaging data are used to distinguish between this mechanism and 2ωp instability. The amount of hot electrons generated can be controlled by the laser pulse shape and hohlraum plasma conditions. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  7. A new avenue for high efficiency solar cells: interaction of hot electrons with plasmons (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kempa, Krzysztof; Naughton, Michael J.

    2015-09-01

    Hot electrons rapidly dissipate their extra free energy, typically into heat. This is the origin of the Shockley-Queisser efficiency limit of the single junction solar cells. An even faster mechanism of electron-plasmon scattering is available in metals. We demonstrate by detailed simulations, that an ultra-thin solar cell with a composite metamaterial/plasmonic collector could yield efficiency exceeding the Shockley-Quasar limit. The composite collector has a double function: firstly, it is designed to participate in efficiently trapping light, and secondly, it is a plasmonic resonator tuned to absorb the energy of hot electrons, thus protecting them from phonon losses.

  8. Perpendicular Hot Electron Transport in the Spin Valve Photo-Diode

    NASA Astrophysics Data System (ADS)

    Huang, Biqin; Appelbaum, Ian

    2006-03-01

    The spin valve photo diode (SVPD) provides a new way to explore perpendicular hot electron transport in ferromagnetic multilayers using photoexcitation and internal photoemission. Since electrons are excited everywhere in the metallic multilayer, structure geometry is vital to optimize the magnetocurrent (MC). Initial theoretical models indicate that the MC should increase by increasing the thickness of a capping layer at the surface, but experiments demonstrate a nonmonotonic dependence resulting in an optimum capping layer thickness to maximize MC. The inconsistency between experiment and this theoretical model is also discussed, leading to a new proposal for hot electron transport in the SVPD.

  9. Collisionless microtearing modes in hot tokamaks: Effect of trapped electrons

    SciTech Connect

    Swamy, Aditya K.; Ganesh, R.; Brunner, S.; Vaclavik, J.; Villard, L.

    2015-07-15

    Collisionless microtearing modes have recently been found linearly unstable in sharp temperature gradient regions of large aspect ratio tokamaks. The magnetic drift resonance of passing electrons has been found to be sufficient to destabilise these modes above a threshold plasma β. A global gyrokinetic study, including both passing electrons as well as trapped electrons, shows that the non-adiabatic contribution of the trapped electrons provides a resonant destabilization, especially at large toroidal mode numbers, for a given aspect ratio. The global 2D mode structures show important changes to the destabilising electrostatic potential. The β threshold for the onset of the instability is found to be generally downshifted by the inclusion of trapped electrons. A scan in the aspect ratio of the tokamak configuration, from medium to large but finite values, clearly indicates a significant destabilizing contribution from trapped electrons at small aspect ratio, with a diminishing role at larger aspect ratios.

  10. Hot electron injection, vertical transport, and electrical spin detection in Silicon

    NASA Astrophysics Data System (ADS)

    Appelbaum, Ian; Huang, Biqin; Altfeder, Igor; Monsma, Douwe

    2007-03-01

    In our devices, spin-dependent hot electron transport through metallic ferromagnetic thin films is used to polarize a charge current injected into the conduction band of Si, and then to analyze the remaining polarization after vertical drift. Our measurements of a clear spin-valve signature indicate substantial electron spin polarization after transport through several microns of Si.

  11. Ultrafast Carrier Dynamics and Hot Electron Extraction in Tetrapod-Shaped CdSe Nanocrystals.

    PubMed

    Jing, Pengtao; Ji, Wenyu; Yuan, Xi; Qu, Songnan; Xie, Renguo; Ikezawa, Michio; Zhao, Jialong; Li, Haibo; Masumoto, Yasuaki

    2015-04-22

    The ultrafast carrier dynamics and hot electron extraction in tetrapod-shaped CdSe nanocrystals was studied by femtosecond transient absorption (TA) spectroscopy. The carriers relaxation process from the higher electronic states (CB2, CB3(2), and CB4) to the lowest electronic state (CB1) was demonstrated to have a time constant of 1.04 ps, resulting from the spatial electron transfer from arms to a core. The lowest electronic state in the central core exhibited a long decay time of 5.07 ns in agreement with the reported theoretical calculation. The state filling mechanism and Coulomb blockade effect in the CdSe tetrapod were clearly observed in the pump-fluence-dependent transient absorption spectra. Hot electrons were transferred from arm states into the electron acceptor molecules before relaxation into core states. PMID:25838148

  12. Qualitative structures of electron-acoustic waves in an unmagnetized plasma with q-nonextensive hot electrons

    NASA Astrophysics Data System (ADS)

    Saha, Asit; Chatterjee, Prasanta

    2015-11-01

    The qualitative structures of electron-acoustic waves are investigated in an unmagnetized plasma containing cold electron fluid, q-nonextensive hot electrons and stationary ions. Applying the phase plane analysis, we present all phase portraits of the dynamical system and corresponding solitary- and periodic-wave solutions. Considering an external periodic perturbation, we study the chaotic structure of the perturbed dynamical system. The non-extensive parameter ( q), the ratio between hot electron and cold electron number density at equilibrium ( α) and speed of the traveling wave ( v) play crucial roles for electron-acoustic solitary, periodic and chaotic structures. The results may have relevance in laboratory plasmas as well as space plasma environments.

  13. Effect of proton irradiation energy on AlGaN/GaN metal-oxide semiconductor high electron mobility transistors

    DOE PAGESBeta

    Ahn, S.; Dong, C.; Zhu, W.; Kim, B. -j.; Hwang, Ya-Hsi; Ren, F.; Pearton, S. J.; Yang, Gwangseok; Kim, J.; Patrick, Erin; et al

    2015-08-18

    The effects of proton irradiation energy on dc characteristics of AlGaN/GaN metal-oxide semiconductor high electron mobility transistors (MOSHEMTs) using Al2O3 as the gate dielectric were studied. Al2O3/AlGaN/GaN MOSHEMTs were irradiated with a fixed proton dose of 5 × 1015 cm-2 at different energies of 5, 10, or 15 MeV. More degradation of the device dc characteristics was observed for lower irradiation energy due to the larger amount of nonionizing energy loss in the active region of the MOSHEMTs under these conditions. The reductions in saturation current were 95.3%, 68.3%, and 59.8% and reductions in maximum transconductance were 88%, 54.4%, andmore » 40.7% after 5, 10, and 15 MeV proton irradiation, respectively. Both forward and reverse gate leakage current were reduced more than one order of magnitude after irradiation. The carrier removal rates for the irradiation energies employed in this study were in the range of 127–289 cm-1. These are similar to the values reported for conventional metal-gate high-electron mobility transistors under the same conditions and show that the gate dielectric does not affect the response to proton irradiation for these energies.« less

  14. Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment

    PubMed Central

    Withers, Freddie; Bointon, Thomas Hardisty; Hudson, David Christopher; Craciun, Monica Felicia; Russo, Saverio

    2014-01-01

    We present the first study of the intrinsic electrical properties of WS2 transistors fabricated with two different dielectric environments WS2 on SiO2 and WS2 on h-BN/SiO2, respectively. A comparative analysis of the electrical characteristics of multiple transistors fabricated from natural and synthetic WS2 with various thicknesses from single- up to four-layers and over a wide temperature range from 300 K down to 4.2 K shows that disorder intrinsic to WS2 is currently the limiting factor of the electrical properties of this material. These results shed light on the role played by extrinsic factors such as charge traps in the oxide dielectric thought to be the cause for the commonly observed small values of charge carrier mobility in transition metal dichalcogenides.

  15. Characterization of strain in sub-100 nm silicon transistors by convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Zhang, Peng

    As silicon devices shrink further beyond the 65 nm technology node, strain is increasingly important for the fabrication and operation of nano-devices. According to the latest International Technology Roadmap for Semiconductors, however, the detection and mapping of strain at the required nanometer spatial resolution has yet to be achieved. The project is to evaluate the convergent-beam electron diffraction (CBED) technique in a transmission electron microscope (TEM) as a nanoscale strain metrology. In this work, by using energy-filtered CBED under scanning TEM (STEM) mode, we have successfully measured strain in two types of sub-100 nm semiconductor structures: 90 nm node and 65 nm node shallow trench isolation (STI) structures, and a 65 nm node locally strained p-type metal-oxide semiconductor field-effect transistor (P-MOSFET, or PMOS) featuring SiGe source and drain (S/D). In the 90 nm STI structures, the strain is generally less than 0.1%. Nevertheless, CBED is sensitive enough to tell the strain difference in two 90 nm STI structures with different oxide trench filling conditions. In the 65 nm STI structure, the strain tensors at different positions around the oxide trench filling are measured. The experimental results are compared with finite element modeling based on isotropic elasticity theory. A large discrepancy is found between experiments and simulation, which suggests that a more sophisticated model is necessary for accurate modeling, and more importantly that CBED strain measurements can be used to check the applicability of models at nanometer scale. In the 65 nm node uniaxially strained PMOS, the lattice parameters of silicon at a distance of 25 nm to 55nm below the gate are measured. It is found that at 25 below the gate, the major stress component, 1.1 GPa, is compressive along the source-drain axis. It is also noticed that in the strained silicon area, all three diagonal components of the strain tensor are compressive. Thus the CBED strain

  16. Hot-Electron Gallium Nitride Two Dimensional Electron Gas Nano-bolometers For Advanced THz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rahul

    Two-dimensional electron gas (2DEG) in semiconductor heterostructures was identified as a promising medium for hot-electron bolometers (HEB) in the early 90s. Up until now all research based on 2DEG HEBs is done using high mobility AlGaAs/GaAs heterostructures. These systems have demonstrated very good performance, but only in the sub terahertz (THz) range. However, above ˜0.5 THz the performance of AlGaAs/GaAs detectors drastically deteriorates. It is currently understood, that detectors fabricated from standard AlGaAs/GaAs heterostructures do not allow for reasonable coupling to THz radiation while maintaining high conversion efficiency. In this work we have developed 2DEG HEBs based on disordered Gallium Nitride (GaN) semiconductor, that operate at frequencies beyond 1THz at room temperature. We observe strong free carrier absorption at THz frequencies in our disordered 2DEG film due to Drude absorption. We show the design and fabrication procedures of novel micro-bolometers having ultra-low heat capacities. In this work the mechanism of 2DEG response to THz radiation is clearly identified as bolometric effect through our direct detection measurements. With optimal doping and detector geometry, impedances of 10--100 O have been achieved, which allow integration of these devices with standard THz antennas. We also demonstrate performance of the antennas used in this work in effectively coupling THz radiation to the micro-bolometers through polarization dependence and far field measurements. Finally heterodyne mixing due to hot electrons in the 2DEG micro-bolometer has been performed at sub terahertz frequencies and a mixing bandwidth greater than 3GHz has been achieved. This indicates that the characteristic cooling time in our detectors is fast, less than 50ps. Due to the ultra-low heat capacity; these detectors can be used in a heterodyne system with a quantum cascade laser (QCL) as a local oscillator (LO) which typically provides output powers in the micro

  17. Electronic system for data acquisition to study radiation effects on operating MOSFET transistors

    SciTech Connect

    Alves de Oliveira, Juliano; Assis de Melo, Marco Antônio; Guazzelli da Silveira, Marcilei A.; Medina, Nilberto H.

    2014-11-11

    In this work we present the development of an acquisition system for characterizing transistors under X-ray radiation. The system is able to carry out the acquisition and to storage characteristic transistor curves. To test the acquisition system we have submitted polarized P channel MOS transistors under continuous 10-keV X-ray doses up to 1500 krad. The characterization system can operate in the saturation region or in the linear region in order to observe the behavior of the currents or voltages involved during the irradiation process. Initial tests consisted of placing the device under test (DUT) in front of the X-ray beam direction, while its drain current was constantly monitored through the prototype generated in this work, the data are stored continuously and system behavior was monitored during the test. In order to observe the behavior of the DUT during the radiation tests, we used an acquisition system that consists of an ultra-low consumption16-bit Texas Instruments MSP430 microprocessor. Preliminary results indicate linear behavior of the voltage as a function of the exposure time and fast recovery. These features may be favorable to use this device as a radiation dosimeter to monitor low rate X-ray.

  18. Electronic system for data acquisition to study radiation effects on operating MOSFET transistors

    NASA Astrophysics Data System (ADS)

    de Oliveira, Juliano Alves; de Melo, Marco Antônio Assis; da Silveira, Marcilei A. Guazzelli; Medina, Nilberto H.

    2014-11-01

    In this work we present the development of an acquisition system for characterizing transistors under X-ray radiation. The system is able to carry out the acquisition and to storage characteristic transistor curves. To test the acquisition system we have submitted polarized P channel MOS transistors under continuous 10-keV X-ray doses up to 1500 krad. The characterization system can operate in the saturation region or in the linear region in order to observe the behavior of the currents or voltages involved during the irradiation process. Initial tests consisted of placing the device under test (DUT) in front of the X-ray beam direction, while its drain current was constantly monitored through the prototype generated in this work, the data are stored continuously and system behavior was monitored during the test. In order to observe the behavior of the DUT during the radiation tests, we used an acquisition system that consists of an ultra-low consumption16-bit Texas Instruments MSP430 microprocessor. Preliminary results indicate linear behavior of the voltage as a function of the exposure time and fast recovery. These features may be favorable to use this device as a radiation dosimeter to monitor low rate X-ray.

  19. The ''ring killer'' experiment: Electron confinement in the ELMO Bumpy Torus without the influence of hot-electron rings

    SciTech Connect

    Hillis, D.L.; Wilgen, J.B.; Cobble, J.A.; Davis, W.A.; Hiroe, S.; Rasmussen, D.A.; Richards, R.K.; Uckan, T.; Jaeger, E.F.; Hankins, O.E.

    1986-11-01

    The ELMO Bumpy Torus (EBT) (Plasma Physics and Controlled Nuclear Fusion Research (IAEA, Vienna, 1975), Vol. II, p. 141) normally has an energetic electron ring in each of its 24 mirror sectors. The original intention of using this hot-electron population was to provide an average local minimum in the magnetic field (through its diamagnetism) to stabilize the simple interchange and flute modes, which otherwise are theoretically inherent in a closed-field-line bumpy torus. To study the confinement properties of a bumpy torus without the influence of hot-electron rings, a water-cooled stainless steel limiter in each mirror sector was extended into the plasma to the ring location; this eliminated the hot-electron ring population. These limiters were aptly named ''ring killers.'' Electron temperature, density, space potential, and plasma fluctuations have been measured during the ring killer experiment and are compared to standard EBT operation. The results of these experiments indicate that the hot-electron rings in EBT do enhance the core plasma properties of EBT and do, in fact, reduce plasma fluctuations; however, these improvements are not large in magnitude. These measurements and recent theoretical models suggest that simple interchange/flute modes are stabilized, or fluctuation levels reduced, well before that condition is obtained for average minimum-B stabilization. Several possible mechanisms for this stabilization are discussed.

  20. Electron confinement in a bumpy torus without the influence of hot-electron rings: ''Ring killer'' experiment

    SciTech Connect

    Hillis, D.L.; Wilgen, J.B.; Cobble, J.A.; Davis, W.A.; Hiroe, S.; Rasmussen, D.A.; Richards, R.K.; Uckan, T.; Jaeger, E.F.; Hankins, O.E.

    1985-09-01

    The ELMO Bumpy Torus (EBT) (Plasma Physics and Controlled Nuclear Fusion (IAEA, Vienna, 1975), Vol. II, p. 141) normally has an energetic electron ring in each of its 24 mirror sectors. The original intention of using this hot-electron population was to provide an average local minimum in the magnetic field (through its diamagnetism) to stabilize the simple interchange and flute modes, which otherwise are theoretically inherent in a closed-field-line bumpy torus. To study the confinement properties of a bumpy torus without the influence of hot-electron rings, a water-cooled stainless steel limiter in each mirror sector was extended into the plasma to the ring location; this eliminated the hot-electron ring population. These limiters were aptly named ''ring killers.'' Electron temperature, density, space potential, and plasma fluctuations have been measured during the ring killer experiment and are compared to standard EBT operation. The results of these experiments indicate that the hot-electron rings in EBT do enhance the core plasma properties of EBT and do, in fact, reduce plasma fluctuations; however, these improvements are not large in magnitude. These measurements and recent theoretical models suggest that simple interchange/flute modes are stabilized, or fluctuation levels reduced, well before that condition is obtained for average minimum-B stabilization.

  1. Hot spot formation in electron-doped PCCO nanobridges

    NASA Astrophysics Data System (ADS)

    Charpentier, S.; Arpaia, R.; Gaudet, J.; Matte, D.; Baghdadi, R.; Löfwander, T.; Golubev, D.; Fournier, P.; Bauch, T.; Lombardi, F.

    2016-08-01

    We have investigated the transport properties of optimally doped Pr2 -xCexCuO4 -δ (PCCO) nanobridges with width down to 100 nm. The critical current density of the nanobridges approaches the Ginzburg-Landau theoretical limit, which demonstrates nanostructures with properties close to the as-grown films. The current voltage characteristics are hysteretic with a sharp voltage switch, of the order of a few millivolts, that we interpret with the occurrence of a hot spot formation. The values of the retrapping current and the voltage switch obtained by modeling the heat transport in the nanobridges are very close to the experimental ones. This feature, together with the extremely short recombination times, make PCCO nanostructures attractive candidates for ultrafast single photon detectors.

  2. Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures

    SciTech Connect

    Dabiran, A. M.; Wowchak, A. M.; Osinsky, A.; Xie, J.; Hertog, B.; Cui, B.; Chow, P. P.; Look, D. C.

    2008-08-25

    Low defect AlN/GaN high electron mobility transistor (HEMT) structures, with very high values of electron mobility (>1800 cm{sup 2}/V s) and sheet charge density (>3x10{sup 13} cm{sup -2}), were grown by rf plasma-assisted molecular beam epitaxy (MBE) on sapphire and SiC, resulting in sheet resistivity values down to {approx}100 {omega}/{open_square} at room temperature. Fabricated 1.2 {mu}m gate devices showed excellent current-voltage characteristics, including a zero gate saturation current density of {approx}1.3 A/mm and a peak transconductance of {approx}260 mS/mm. Here, an all MBE growth of optimized AlN/GaN HEMT structures plus the results of thin-film characterizations and device measurements are presented.

  3. Impact of proton irradiation on dc performance of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Liu, L.; Cuervo, C.V.; Xi, Y. Y.; Ren, F.; Pearton, S. J.; Kim, H.-Y.; Kim, J.; Kravchenko, Ivan I

    2013-01-01

    The effects of proton irradiation dose on dc characteristics and the reliability of AlGaN/GaN high electron mobility transistors (HEMTs) were investigated. The HEMTs were irradiated with protons at a fixed energy of 5 MeV and doses ranging from 109 to 2 1014 cm-2. For the dc characteristics, there was only minimal degradation of saturation drain current (IDSS), transconductance (gm), electron mobility and sheet carrier concentration at doses below 2 1013 cm-2, while the reduction of these parameters were 15%, 9%, 41% and 16.6%, respectively, at a dose of 2 1014 cm-2. At this same dose condition, increases of 37% in drain breakdown voltage (VBR) and of 45% in critical voltage (Vcri) were observed. The improvement of device reliability was attributed to the modification of the depletion region due to the introduction of a higher density of defects after irradiation at a higher dose.

  4. Electron transport behaviors through donor-induced quantum dot array in heavily n-doped junctionless nanowire transistors

    SciTech Connect

    Ma, Liuhong; Han, Weihua Wang, Hao; Hong, Wenting; Lyu, Qifeng; Yang, Xiang; Yang, Fuhua

    2015-01-21

    We investigated single electron tunneling through a phosphorus donor-induced quantum dot array in heavily n-doped junctionless nanowire transistor. Seven subpeaks splitting in current oscillations are clearly observed due to the coupling of quantum dot array under the bias voltage below 1.0 mV at the temperature of 6 K. The conduction system can be well described by a two-band Hubbard model. The activation energy of phosphorus donors is tuned by the gate voltage to be 7.0 meV for the lower Hubbard band and 4.4 meV for the upper Hubbard band due to the localization effects below threshold voltage. The evolution of electron behaviors in the quantum dots is identified by adjusting the gate voltage from quantum-dot regime to one-dimensional regime.

  5. Electron transport behaviors through donor-induced quantum dot array in heavily n-doped junctionless nanowire transistors

    NASA Astrophysics Data System (ADS)

    Ma, Liuhong; Han, Weihua; Wang, Hao; Hong, Wenting; Lyu, Qifeng; Yang, Xiang; Yang, Fuhua

    2015-01-01

    We investigated single electron tunneling through a phosphorus donor-induced quantum dot array in heavily n-doped junctionless nanowire transistor. Seven subpeaks splitting in current oscillations are clearly observed due to the coupling of quantum dot array under the bias voltage below 1.0 mV at the temperature of 6 K. The conduction system can be well described by a two-band Hubbard model. The activation energy of phosphorus donors is tuned by the gate voltage to be 7.0 meV for the lower Hubbard band and 4.4 meV for the upper Hubbard band due to the localization effects below threshold voltage. The evolution of electron behaviors in the quantum dots is identified by adjusting the gate voltage from quantum-dot regime to one-dimensional regime.

  6. Correlating stress generation and sheet resistance in InAlN/GaN nanoribbon high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Jones, Eric J.; Azize, Mohamed; Smith, Matthew J.; Palacios, Tomás; Gradečak, Silvija

    2012-09-01

    We report the nanoscale characterization of the mechanical stress in InAlN/GaN nanoribbon-structured high electron mobility transistors (HEMTs) through the combined use of convergent beam electron diffraction (CBED) and elastic mechanical modeling. The splitting of higher order Laue zone lines in CBED patterns obtained along the [540] zone axis indicates the existence of a large strain gradient in the c-direction in both the planar and nanoribbon samples. Finite element models were used to confirm these observations and show that a passivating layer of Al2O3 can induce a tensile stress in the active HEMT layer whose magnitude is dependent on the oxide layer thickness, thus, providing important ramifications for device design and fabrication.

  7. Degradation of dc characteristics of InGaAs/InP single heterojunction bipolar transistors under electron irradiation

    SciTech Connect

    Bandyopadhyay, A.; Subramanian, S.; Chandrasekhar, S.; Dentai, A.G.; Goodnick, S.M.

    1999-05-01

    The effects of high-energy ({approximately}1 MeV) electron irradiation on the dc characteristics of InGaAs/InP single heterojunction bipolar transistors (SHBT`s) are investigated. The device characteristics do not show any significant change for electron doses <10{sup 15}/cm{sup 2}. For higher doses, devices show a decrease in collector current, a degradation of common-emitter current gain, an increase in collector saturation voltage and an increase in the collector output conductance. A simple SPICE-like device model is developed to describe the dc characteristics of SHBT`s. The model parameters extracted from the measured dc characteristics of the devices before and after irradiation are used to get an insight into the physical mechanisms responsible for the degradation of the devices.

  8. Observation of electron behavior in ambipolar polymer-based light-emitting transistor by optical second harmonic generation

    NASA Astrophysics Data System (ADS)

    Ohshima, Yuki; Lim, Eunju; Manaka, Takaaki; Iwamoto, Mitsumasa; Sirringhaus, Henning

    2011-07-01

    By using the optical second harmonic generation (SHG) measurement, we directly visualized the carrier behavior leading to carrier recombination and electroluminescence (EL) in ambipolar polymer-based organic light-emitting transistor (OLET) with an active layer of poly 9,9-di-n-octylfluorene-alt-benzothiadiszole (F8BT). Eliminating photoluminescence generated at 560 nm by a two-photon absorption process, the dynamical carrier motion in the F8BT-OLET was visualized by the electric field induced SHG induced at 420 nm. Diffusion-like electron transport that starts from the drain electrode was directly caught as the transits of the SHG images. Accordingly, EL was obtained at the edge of the source electrode. The electron mobility was estimated from the visualized carrier motion as 9.2×10-4cm2/Vs, which was larger than that obtained from the transfer curve of the OLET.

  9. Reversible electron-hole separation in a hot carrier solar cell

    NASA Astrophysics Data System (ADS)

    Limpert, S.; Bremner, S.; Linke, H.

    2015-09-01

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron-hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron-hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We thus focus our analysis on the internal operation of the hot-carrier solar cell itself, and in this work do not consider the photon-mediated coupling to the Sun. After deriving an expression for the voltage of a hot-carrier solar cell valid under conditions of both reversible and irreversible electrical operation, we identify separate contributions to the voltage from the thermoelectric effect and the photovoltaic effect. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. Our results help explore the fundamental limitations of hot-carrier solar cells, and provide a first step towards providing experimentalists with a guide to the optimal configuration of devices.

  10. High performance weak donor-acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability.

    PubMed

    Yuen, Jonathan D; Fan, Jian; Seifter, Jason; Lim, Bogyu; Hufschmid, Ryan; Heeger, Alan J; Wudl, Fred

    2011-12-28

    We have studied the electronic, physical, and transistor properties of a family of donor-acceptor polymers consisting of diketopyrrolopyrrole (DPP) coupled with different accepting companion units in order to determine the effects of donor-acceptor interaction. Using the electronically neutral benzene (B), the weakly accepting benzothiadiazole (BT), and the strongly accepting benzobisthiadiazole (BBT), the accepting strength of the companion unit was systematically modulated. All polymers exhibited excellent transistor performance, with mobilities above 0.1 cm(2)V(-1)s(-1), even exceeding 1 cm(2)V(-1)s(-1) for one of the BBT-containing polymers. We find that the BBT is the strongest acceptor, enabling the BBT-containing polymers to be strongly ambipolar. The BBT moiety also strengthens interchain interactions, which provides higher thermal stability and performance for transistors with BBT-containing polymers as the active layer. PMID:22043809

  11. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers

    PubMed Central

    Lee, Young Keun; Lee, Hyosun; Park, Jeong Young

    2014-01-01

    We demonstrate a tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. The tandem-structured, hot electron based photovoltaic cell is composed of two metal/semiconductor interfaces. Two types of tandem cells were fabricated using TiO2/Au/Si and TiO2/Au/TiO2, and photocurrent enhancement was detected. The double Schottky barriers lead to an additional pathway for harvesting hot electrons, which is enhanced through multiple reflections between the two barriers with different energy ranges. In addition, light absorption is improved by the band-to-band excitation of both semiconductors with different band gaps. Short-circuit current and energy conversion efficiency of the tandem-structured TiO2/Au/Si increased by 86% and 70%, respectively, compared with Au/Si metal/semiconductor nanodiodes, showing an overall solar energy conversion efficiency of 5.3%. PMID:24694838

  12. Surface-plasmon enhanced photodetection at communication band based on hot electrons

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Zhan, Yaohui; Wu, Shaolong; Deng, Jiajia; Li, Xiaofeng

    2015-08-01

    Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-step electrical simulation, the optimized device exhibits an unbiased responsivity of ˜0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.

  13. Coaxial Ag/ZnO/Ag nanowire for highly sensitive hot-electron photodetection

    SciTech Connect

    Zhan, Yaohui; Li, Xiaofeng Wu, Kai; Wu, Shaolong; Deng, Jiajia

    2015-02-23

    Single-nanowire photodetectors (SNPDs) are mostly propelled by p-n junctions, where the detection wavelength is constrained by the band-gap width. Here, we present a simple doping-free metal/semiconductor/metal SNPD, which shows strong detection tunability without such a material constraint. The proposed hot-electron SNPD exhibits superior optical and electrical advantages, i.e., optically the coaxial design leads to a strong asymmetrical photoabsorption and results in a high unidirectional photocurrent, as desired by the hot-electron collection; electrically the hot-electrons are generated in the region very close to the barrier, facilitating the electrical transport. Rigorous calculations predict an unbiased photoresponsivity of ∼200 nA/mW.

  14. HOT ELECTRON ENERGY DISTRIBUTIONS FROM ULTRA-INTENSE LASER SOLID INTERACTIONS

    SciTech Connect

    Chen, H; Wilks, S C; Kruer, W; Patel, P; Shepherd, R

    2008-10-08

    Measurements of electron energy distributions from ultra-intense (>10{sup 19} W/cm{sup 2}) laser-solid interactions using an electron spectrometer are presented. These measurements were performed on the Vulcan petawatt laser at Rutherford Appleton Laboratory and the Callisto laser at Lawrence Livermore National Laboratory. The effective hot electron temperatures (T{sub hot}) have been measured for laser intensities (I{lambda}{sup 2}) from 10{sup 18} W/cm{sup 2} {micro}m{sup 2} to 10{sup 21} W/cm{sup 2} {micro}m{sup 2} for the first time, and T{sub hot} is found to increase as (I{lambda}{sup 2}){sup 0.34} {+-} 0.4. This scaling agrees well with the empirical scaling published by Beg et al. (1997), and is explained by a simple physical model that gives good agreement with experimental results and particle-in-cell simulations.

  15. Selective MBE growth of nonalloyed ohmic contacts to 2D electron gas in high-electron-mobility transistors based on GaN/AlGaN heterojunctions

    NASA Astrophysics Data System (ADS)

    Maiboroda, I. O.; Andreev, A. A.; Perminov, P. A.; Fedorov, Yu. V.; Zanaveskin, M. L.

    2014-06-01

    Specific features of how nonalloyed ohmic contacts to the 2D conducting channel of high-electron-mobility transistors based on AlGaN/(AlN)/GaN heterostructures are fabricated via deposition of heavily doped n +-GaN through a SiO2 mask by ammonia molecular-beam epitaxy have been studied. The technique developed makes it possible to obtain specific resistances of contacts to the 2D gas as low as 0.11 Ω mm on various types of Ga-face nitride heterostructures, which are several times lower than the resistance of conventional alloyed ohmic contacts.

  16. Physical limits of silicon transistors and circuits

    NASA Astrophysics Data System (ADS)

    Keyes, Robert W.

    2005-12-01

    A discussion on transistors and electronic computing including some history introduces semiconductor devices and the motivation for miniaturization of transistors. The changing physics of field-effect transistors and ways to mitigate the deterioration in performance caused by the changes follows. The limits of transistors are tied to the requirements of the chips that carry them and the difficulties of fabricating very small structures. Some concluding remarks about transistors and limits are presented.

  17. Hot electron generation forming a steep interface in superintense laser-matter interaction

    NASA Astrophysics Data System (ADS)

    Mishra, R.; Sentoku, Y.; Kemp, A. J.

    2009-11-01

    Superintense laser light (>1020 W/cm2) is able to sweep the preplasma over short times and compress the preplasma density gradient typically generated by the prepulse of today's high-intensity, high energy laser systems. Hot electron generation at steep plasma density gradients has been studied in a previous paper [A. J. Kemp, Y. Sentoku, and M. Tabak, Phys. Rev. Lett. 101, 075004 (2008)], which identified a mode of hot electron acceleration that is characterized by the formation of low-density shelf in front of the target. In this paper, we deal with laser incidence on slab target in one-dimensional situation and follow the formation of a steep interface and hot electron acceleration up to later stages of the interaction. We find that a novel mode of absorption appears during which the coupling efficiency drops, while a large number of sub-MeV hot electrons is produced at the interface. These dc-ponderomotive electrons play a dominant role in the bulk heating of solid density targets. We propose an analytical model to describe this absorption mode, explain electron energy spectra, and identify the parameter regime where it appears.

  18. Hot-electron-transfer enhancement for the efficient energy conversion of visible light.

    PubMed

    Yu, Sungju; Kim, Yong Hwa; Lee, Su Young; Song, Hyeon Don; Yi, Jongheop

    2014-10-13

    Great strides have been made in enhancing solar energy conversion by utilizing plasmonic nanostructures in semiconductors. However, current generation with plasmonic nanostructures is still somewhat inefficient owing to the ultrafast decay of plasmon-induced hot electrons. It is now shown that the ultrafast decay of hot electrons across Au nanoparticles can be significantly reduced by strong coupling with CdS quantum dots and by a Schottky junction with perovskite SrTiO3 nanoparticles. The designed plasmonic nanostructure with three distinct components enables a hot-electron-assisted energy cascade for electron transfer, CdS→Au→SrTiO3, as demonstrated by steady-state and time-resolved photoluminescence spectroscopy. Consequently, hot-electron transfer enabled the efficient production of H2 from water as well as significant electron harvesting under irradiation with visible light of various wavelengths. These findings provide a new approach for overcoming the low efficiency that is typically associated with plasmonic nanostructures. PMID:25169852

  19. Hot electron production in laser solid interactions with a controlled pre-pulse

    SciTech Connect

    Culfa, O.; Tallents, G. J.; Wagenaars, E.; Ridgers, C. P.; Dance, R. J.; Rossall, A. K.; Woolsey, N. C.; Gray, R. J.; McKenna, P.; Brown, C. D. R.; James, S. F.; Hoarty, D. J.; Booth, N.; Robinson, A. P. L.; Lancaster, K. L.; Pikuz, S. A.; Faenov, A. Ya.; Kampfer, T.; Schulze, K. S.; Uschmann, I.

    2014-04-15

    Hot electron generation plays an important role in the fast ignition approach to inertial confinement fusion (ICF) and other applications with ultra-intense lasers. Hot electrons of temperature up to 10–20 MeV have been produced by high contrast picosecond duration laser pulses focussed to intensities of ∼10{sup 20} W cm{sup −2} with a deliberate pre-pulse on solid targets using the Vulcan Petawatt Laser facility. We present measurements of the number and temperature of hot electrons obtained using an electron spectrometer. The results are correlated to the density scale length of the plasma produced by a controlled pre-pulse measured using an optical probe diagnostic. 1D simulations predict electron temperature variations with plasma density scale length in agreement with the experiment at shorter plasma scale lengths (<7.5μm), but with the experimental temperatures (13–17 MeV) dropping below the simulation values (20–25 MeV) at longer scale lengths. The experimental results show that longer interaction plasmas produced by pre-pulses enable significantly greater number of hot electrons to be produced.

  20. Hot electron generation forming a steep interface in superintense laser-matter interaction

    SciTech Connect

    Mishra, R.; Sentoku, Y.; Kemp, A. J.

    2009-11-15

    Superintense laser light (>10{sup 20} W/cm{sup 2}) is able to sweep the preplasma over short times and compress the preplasma density gradient typically generated by the prepulse of today's high-intensity, high energy laser systems. Hot electron generation at steep plasma density gradients has been studied in a previous paper [A. J. Kemp, Y. Sentoku, and M. Tabak, Phys. Rev. Lett. 101, 075004 (2008)], which identified a mode of hot electron acceleration that is characterized by the formation of low-density shelf in front of the target. In this paper, we deal with laser incidence on slab target in one-dimensional situation and follow the formation of a steep interface and hot electron acceleration up to later stages of the interaction. We find that a novel mode of absorption appears during which the coupling efficiency drops, while a large number of sub-MeV hot electrons is produced at the interface. These dc-ponderomotive electrons play a dominant role in the bulk heating of solid density targets. We propose an analytical model to describe this absorption mode, explain electron energy spectra, and identify the parameter regime where it appears.

  1. Hot-electron energy relaxation time in Ga-doped ZnO films

    SciTech Connect

    Šermukšnis, E. Liberis, J.; Ramonas, M.; Matulionis, A.; Toporkov, M.; Liu, H. Y.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-02-14

    Hot-electron energy relaxation time is deduced for Ga-doped ZnO epitaxial layers from pulsed hot-electron noise measurements at room temperature. The relaxation time increases from ∼0.17 ps to ∼1.8 ps when the electron density increases from 1.4 × 10{sup 17 }cm{sup −3} to 1.3 × 10{sup 20 }cm{sup −3}. A local minimum is resolved near an electron density of 1.4 × 10{sup 19 }cm{sup −3}. The longest energy relaxation time (1.8 ps), observed at the highest electron density, is in good agreement with the published values obtained by optical time-resolved luminescence and absorption experiments. Monte Carlo simulations provide a qualitative interpretation of our observations if hot-phonon accumulation is taken into account. The local minimum of the electron energy relaxation time is explained by the ultrafast plasmon-assisted decay of hot phonons in the vicinity of the plasmon–LO-phonon resonance.

  2. Limit of validity of the thermionic-field-emission treatment of electron injection across emitter-base junctions in abrupt heterojunction bipolar transistors

    NASA Astrophysics Data System (ADS)

    Kumar, T.; Cahay, M.; Shi, S.; Roenker, K.; Stanchina, W. E.

    1995-06-01

    A hybrid model is developed to simulate electron transport through the emitter-base heterojunction and the base region of abrupt heterojunction bipolar transistors. The energy distribution of the injected electron flux through the emitter-base junction is calculated using a rigorous quantum-mechanical treatment of electron tunneling and thermionic emission across the spike at the emitter-base junction. The results are compared with those predicted by the conventional thermionic-field-emission model. For both models, the electron fluxes injected across the emitter-base junction are used as initial energy distributions in a regional Monte Carlo calculation to model electron transport through the base. The average base transit times are calculated using the impulse response technique as a function of the emitter-base voltage. The differences between the thermionic-field-emission model and the rigorous quantum-mechanical approaches to model electron transport through abrupt heterojunction bipolar transistors are pointed out.

  3. Effect of re-heating on the hot electron temperature

    SciTech Connect

    Estabrook, K.; Rosen, M.

    1980-06-17

    Resonant absorption is the direct conversion of the transverse laser light to longitudinal electron plasma waves (epw) at the critical density (10/sup 21/ (1.06 ..mu..m/lambda/sub 0/)/sup 2/ cm/sup -3/). The oscillating longitudinal electric field of the epw heats the electrons by accelerating them down the density gradient to a temperature of approximately 21T/sub e//sup 0/ /sup 25/ ((I(W/cm/sup 2/)/10/sup 16/)(lambda/sub 0//1.06 ..mu..m)/sup 2/)/sup 0/ /sup 4/. This section extends the previous work by studying the effects of magnetic fields and collisions (albedo) which return the heated electrons for further heating. A magnetic field increases their temperature and collisions do not.

  4. Hot electrons transverse refluxing in ultraintense laser-solid interactions.

    PubMed

    Buffechoux, S; Psikal, J; Nakatsutsumi, M; Romagnani, L; Andreev, A; Zeil, K; Amin, M; Antici, P; Burris-Mog, T; Compant-La-Fontaine, A; d'Humières, E; Fourmaux, S; Gaillard, S; Gobet, F; Hannachi, F; Kraft, S; Mancic, A; Plaisir, C; Sarri, G; Tarisien, M; Toncian, T; Schramm, U; Tampo, M; Audebert, P; Willi, O; Cowan, T E; Pépin, H; Tikhonchuk, V; Borghesi, M; Fuchs, J

    2010-07-01

    We have analyzed the coupling of ultraintense lasers (at ∼2×10{19}  W/cm{2}) with solid foils of limited transverse extent (∼10  s of μm) by monitoring the electrons and ions emitted from the target. We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time. Consequently, when transverse refluxing takes places within the acceleration time of associated ions, we observe increased maximum proton energies (up to threefold), increased laser-to-ion conversion efficiency (up to a factor 30), and reduced divergence which bodes well for a number of applications. PMID:20867457

  5. Programmable smart electron emission controller for hot filament

    NASA Astrophysics Data System (ADS)

    Flaxer, Eli

    2011-02-01

    In electron ionization source, electrons are produced through thermionic emission by heating a wire filament, accelerating the electrons by high voltage, and ionizing the analyzed molecules. In such a system, one important parameter is the filament emission current that determines the ionization rate; therefore, one needs to regulate this current. On the one hand, fast responses control is needed to keep the emission current constant, but on the other hand, we need to protect the filament from damage that occurs by large filaments current transients and overheating. To control our filament current and emission current, we developed a digital circuit based on a digital signal processing controller that has several modes of operation. We used a smart algorithm that has a fast response to a small signal and a slow response to a large signal. In addition, we have several protective measures that prevent the current from reaching unsafe values.

  6. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    SciTech Connect

    Kemp, Gregory Elijah

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  7. Oblique firehose instability in hot collisionless plasmas - interplay between protons and electrons

    NASA Astrophysics Data System (ADS)

    Maneva, Yana; Lazar, Marian; Vinas, Adolfo; Poedts, Stefaan

    2016-04-01

    We solve the linearized kinetic Vlasov-Maxwell dispersion relation for oblique wave propagation in a homogeneous highly anisotropic hot electron-proton plasma. We assume bi-Maxwellian velocity distributions for both species, charge neutrality and current conservation, and consider no differential streaming between the ions and the electrons. We calculate the growth rate of the parallel and oblique proton firehose instabilities for various angles of wave propagation and varios electron plasma properties. We study the transition from stable to unstable scales with increasing electron temperature and temperature anisotropies. We find that for highly anisotropic hot plasma both the oscillatory parallel and the aperiodic oblique proton firehose branches may easily couple to the parallel and oblique electron firehose branches. In other words our work demonstrates the interplay between the proton and electron firehose instabilities, whose scales become fully mixed in hot collisionless plasma when the protons and the electrons are simultaneously anisotropic. In the case of parallel wave propagation both left and right-hand polarized waves are simultaneously excited. As we increase the angle of propagation the electron firehose starts to dominate with excitation of large-amplitude aperiodic fluctuations over a large range of wave-numbers, starting at the protons scales and extending up to the smaller electron scales. Whereas the maximum growth rate of the parallel proton firehose branch remains always at the proton scales, the maximum growth rate for the oblique proton firehose extends down to the electron scales. The observed electron-proton scale mixing can have significant implications for the observed plasma properties and instability thresholds in hot colissionless solar wind streams.

  8. Hydrogen Oxidation-Driven Hot Electron Flow Detected by Catalytic Nanodiodes

    SciTech Connect

    Hervier, Antoine; Renzas, J. Russell; Park, Jeong Y.; Somorjai, Gabor A.

    2009-07-20

    Hydrogen oxidation on platinum is shown to be a surface catalytic chemical reaction that generates a steady state flux of hot (>1 eV) conduction electrons. These hot electrons are detected as a steady-state chemicurrent across Pt/TiO{sub 2} Schottky diodes whose Pt surface is exposed to hydrogen and oxygen. Kinetic studies establish that the chemicurrent is proportional to turnover frequency for temperatures ranging from 298 to 373 K for P{sub H2} between 1 and 8 Torr and P{sub O2} at 760 Torr. Both chemicurrent and turnover frequency exhibit a first order dependence on P{sub H2}.

  9. Target surface area effects on hot electron dynamics from high intensity laser–plasma interactions

    NASA Astrophysics Data System (ADS)

    Zulick, C.; Raymond, A.; McKelvey, A.; Chvykov, V.; Maksimchuk, A.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.

    2016-06-01

    Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron sheath field confinement on electron dynamics. X-ray emission due to energetic electrons was imaged using a {K}α imaging crystal. Electrons were observed to travel along the surface of wire targets, and were slowed mainly by the induced fields. Targets with reduced surface areas were correlated with increased hot electron densities and proton energies. Hybrid Vlasov–Fokker–Planck simulations demonstrated increased electric sheath field strength in reduced surface area targets.

  10. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    NASA Astrophysics Data System (ADS)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  11. Tuning of electron injections for n-type organic transistor based on charge-transfer compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Hasegawa, T.; Abe, Y.; Tokura, Y.; Nishimura, K.; Saito, G.

    2005-02-01

    A high mobility (˜1.0cm2/Vs) n-type organic field-effect transistor is devised in terms of the combination of semiconducting and metallic charge-transfer (CT) compounds, namely, DBTTF-TCNQ crystals as channels and TTF-TCNQ thin films as electrodes for carrier injections on top of the crystals. Comparison of the field-effect properties for devices with conventional electrode materials indicates the successful demonstration of the interface band engineering with use of the CT materials.

  12. Growth parameter optimization and interface treatment for enhanced electron mobility in heavily strained GaInAs/AlInAs high electron mobility transistor structures

    SciTech Connect

    Fedoryshyn, Yuriy; Ostinelli, Olivier; Alt, Andreas; Pallin, Angel; Bolognesi, Colombo R.

    2014-01-28

    The optimization of heavily strained Ga{sub 0.25}In{sub 0.75}As/Al{sub 0.48}In{sub 0.52}As high electron mobility transistor structures is discussed in detail. The growth parameters and the channel layer interfaces were optimized in order to maximize the mobility of the two-dimensional electron gas. Structures composed of an 11 nm thick channel layer and a 4 nm thick spacer layer exhibited electron mobilities as high as 15 100 cm{sup 2}/Vs and 70 000 cm{sup 2}/Vs at 300 and 77 K, respectively, for channels including InAs strained layers. The sheet carrier density was kept above 2.5 × 10{sup 12} cm{sup −2} throughout the entire study.

  13. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals

    NASA Astrophysics Data System (ADS)

    Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A.; Atwater, Harry A.

    2016-08-01

    Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments.

  14. Hot electron-induced reduction of small molecules on photorecycling metal surfaces

    PubMed Central

    Xie, Wei; Schlücker, Sebastian

    2015-01-01

    Noble metals are important photocatalysts due to their ability to convert light into chemical energy. Hot electrons, generated via the non-radiative decay of localized surface plasmons, can be transferred to reactants on the metal surface. Unfortunately, the number of hot electrons per molecule is limited due to charge–carrier recombination. In addition to the reduction half-reaction with hot electrons, also the corresponding oxidation counter-half-reaction must take place since otherwise the overall redox reaction cannot proceed. Here we report on the conceptual importance of promoting the oxidation counter-half-reaction in plasmon-mediated catalysis by photorecycling in order to overcome this general limitation. A six-electron photocatalytic reaction occurs even in the absence of conventional chemical reducing agents due to the photoinduced recycling of Ag atoms from hot holes in the oxidation half-reaction. This concept of multi-electron, counter-half-reaction-promoted photocatalysis provides exciting new opportunities for driving efficient light-to-energy conversion processes. PMID:26138619

  15. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums

    NASA Astrophysics Data System (ADS)

    Dewald, E. L.; Hartemann, F.; Michel, P.; Milovich, J.; Hohenberger, M.; Pak, A.; Landen, O. L.; Divol, L.; Robey, H. F.; Hurricane, O. A.; Döppner, T.; Albert, F.; Bachmann, B.; Meezan, N. B.; MacKinnon, A. J.; Callahan, D.; Edwards, M. J.

    2016-02-01

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10 × higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma.

  16. New electron beam facility for irradiated plasma facing materials testing in hot cell

    SciTech Connect

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-09-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility ({open_quotes}OHBIS{close_quotes}, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10{sup -4}Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility.

  17. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums.

    PubMed

    Dewald, E L; Hartemann, F; Michel, P; Milovich, J; Hohenberger, M; Pak, A; Landen, O L; Divol, L; Robey, H F; Hurricane, O A; Döppner, T; Albert, F; Bachmann, B; Meezan, N B; MacKinnon, A J; Callahan, D; Edwards, M J

    2016-02-19

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10× higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma. PMID:26943541

  18. Photovoltaic conversion via hot electron induced thermionic emission from quantum dots

    NASA Astrophysics Data System (ADS)

    Sergeev, Andrei; Sablon, Kimberly

    Quantum dot (QD) nanomaterials provide numerous possibilities for nanoscale engineering of photoelectron processes for specific applications, such as lighting, sensing, and energy conversion. It has been found that QDs may increase the photovoltaic conversion efficiency due to enhanced coupling with electromagnetic radiation, multiple exciton generation, and two-step light absorption. The hot electron induced thermionic emission from QDs is a novel mechanism, which may be significantly enhanced due to optimization of QD parameters. In this two-step process the photoelectrons excited from the valence band to localized quantum dot states are extracted from QDs via thermionic emission, which may be initiated by thermal phonons, hot phonons, and hot electrons. Strong interaction between the localized quantum dot electrons and hot photoelectrons excited by high energy photons substantially increases the conversion efficiency due to use of energy of sub-bandgap photons and energy of hot photoelectrons, which otherwise would be lost in relaxation processes. Here we present the theoretical model of the conversion via thermionic emission from quantum dots, results of optimization of photoelectron processes, and experimental data, which evidence in favor of this mechanism.

  19. Design analysis of a novel hot-electron microbolometer

    SciTech Connect

    Nahum, M.; Richards, P.L. ); Mears, C.A. )

    1992-08-01

    We propose a novel antenna coupled microbolometer which makes use of the weak coupling between electrons and phonons in a metal at low temperatures. The radiation is collected by a planar lithographed antenna and thermalized in a thin metal strip. Resulting temperature rise of the electrons is detected by a tunnel junction, where part of the metal strip forms the normal electrode. All components are deposited directly on a substrate so that arrays can be conveniently produced by conventional lithographic techniques. The active area of the bolometer is thermally decoupled by its small volume, by thermal resistance between electrons an phonons in the strip, and by reflection of quasiparticles at interface between strip and superconducting antenna. Design calculations based on a metal volume of 2 [times] 6[times]0.05 [mu]m[sup 3] at an operating temperature of T=100 mK give an NEP [approx] 3 [times] l0[sup [minus]19] WHz[sup [minus][1/2

  20. Design analysis of a novel hot-electron microbolometer

    SciTech Connect

    Nahum, M.; Richards, P.L.; Mears, C.A.

    1992-08-01

    We propose a novel antenna coupled microbolometer which makes use of the weak coupling between electrons and phonons in a metal at low temperatures. The radiation is collected by a planar lithographed antenna and thermalized in a thin metal strip. Resulting temperature rise of the electrons is detected by a tunnel junction, where part of the metal strip forms the normal electrode. All components are deposited directly on a substrate so that arrays can be conveniently produced by conventional lithographic techniques. The active area of the bolometer is thermally decoupled by its small volume, by thermal resistance between electrons an phonons in the strip, and by reflection of quasiparticles at interface between strip and superconducting antenna. Design calculations based on a metal volume of 2 {times} 6{times}0.05 {mu}m{sup 3} at an operating temperature of T=100 mK give an NEP {approx} 3 {times} l0{sup {minus}19} WHz{sup {minus}{1/2}}, time constant {approx} 10 {minus}s, and responsivity {approx} 10{sup 9} V/W. The calculated sensitivity is almost two orders of magnitude higher than that of the best available direct detectors of millimeter and submillimeter radiation at the same temperature.

  1. Tunable Resonant Detection of sub-THz Radiation with GaAs/AlGaAs High Electron Mobility Transistors at Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Białek, M.; Łusakowski, J.; Karpierz, K.; Grynberg, M.; Wróbel, J.; Czapkiewicz, M.; Fronc, K.; Umansky, V.

    2011-12-01

    We report on investigation of oscillations periodic in the magnetic field observed in magnetoresistence, photocur-rent and photovoltage measurements in GaAs/AlGaAs high electron mobility field-effect transistor subjected to sub-terahertz radiation. The spectra show edge magnetoplasmons and cyclotron resonances which can be a basis of tunable resonant sub-terahertz detectors.

  2. Transit-time spin field-effect transistor

    NASA Astrophysics Data System (ADS)

    Appelbaum, Ian; Monsma, Douwe J.

    2007-06-01

    The authors propose and analyze a four-terminal metal-semiconductor device that uses hot-electron transport through thin ferromagnetic films to inject and detect a charge-coupled spin current transported through the conduction band of an arbitrary semiconductor. This provides the possibility of realizing a spin field-effect transistor in Si using electrostatic transit-time control of coherent spin precession in a perpendicular magnetic field.

  3. Modeling of non-uniform heat generation in LDMOS transistors

    NASA Astrophysics Data System (ADS)

    Roig, J.; Flores, D.; Urresti, J.; Hidalgo, S.; Rebollo, J.

    2005-01-01

    This work is devoted to the heat dissipation analysis in LDMOS transistors operating at high current conditions. Hence, a new expression for the Joule heat generated by electron current is provided to simplify the LDMOS electro-thermal modeling, thus giving physical insight and predicting hot spots. The model is based on the semiconductor physics and the required input data are the device geometrical and technological parameters as well as the applied bias.

  4. Theoretical analysis of hot electron injection from metallic nanotubes into a semiconductor interface.

    PubMed

    Kumarasinghe, Chathurangi S; Premaratne, Malin; Gunapala, Sarath D; Agrawal, Govind P

    2016-07-21

    Metallic nanostructures under optical illumination can generate a non-equilibrium high-energy electron gas (also known as hot electrons) capable of being injected into neighbouring media over a potential barrier at particle boundaries. The nature of this process is highly nanoparticle shape and size dependent. Here, we have derived an analytical expression for the frequency dependent rate of injection of these energetic electrons from a metallic nanotube into a semiconductor layer in contact with its inner boundary. In our derivation, we have considered the quantum mechanical motion of the electron gas confined by the particle boundaries in determining the electron energy spectrum and wave functions. We present a comprehensive theoretical analysis of how different geometric parameters such as the outer to inner radius ratio, length and thickness of a nanotube and illumination frequency affect the hot electron injection and internal quantum efficiency of the nanotube. We reveal that longer nanotubes with thin shells and high inner to outer radius ratios show better performance at visible and infrared frequencies. Our derivations and results provide the much needed theoretical insight for optimization of thin nanotubes for different hot electron based applications. PMID:27332556

  5. Electrical detection of kidney injury molecule-1 with AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Wang, H. T.; Kang, B. S.; Ren, F.; Pearton, S. J.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.

    2007-11-26

    AlGaN/GaN high electron mobility transistors (HEMTs) were used to detect kidney injury molecule-1 (KIM-1), an important biomarker for early kidney injury detection. The gate region consisted of 5 nm gold deposited onto the AlGaN surface. The gold was conjugated to highly specific KIM-1 antibodies through a self-assembled monolayer of thioglycolic acid. The HEMT source-drain current showed a clear dependence on the KIM-1 concentration in phosphate-buffered saline solution. The limit of detection was 1 ng/ml using a 20x50 {mu}m{sup 2} gate sensing area. This approach shows potential for both preclinical and clinical kidney injury diagnosis with accurate, rapid, noninvasive, and high throughput capabilities.

  6. Equivalent ambipolar carrier injection of electrons and holes with Au electrodes in air-stable field effect transistors

    SciTech Connect

    Kanagasekaran, Thangavel E-mail: Shimotani@m.tohoku.ac.jp Ikeda, Susumu; Kumashiro, Ryotaro; Shimotani, Hidekazu E-mail: Shimotani@m.tohoku.ac.jp Shang, Hui; Tanigaki, Katsumi E-mail: Shimotani@m.tohoku.ac.jp

    2015-07-27

    Carrier injection from Au electrodes to organic thin-film active layers can be greatly improved for both electrons and holes by nano-structural surface control of organic semiconducting thin films using long-chain aliphatic molecules on a SiO{sub 2} gate insulator. In this paper, we demonstrate a stark contrast for a 2,5-bis(4-biphenylyl)bithiophene (BP2T) active semiconducting layer grown on a modified SiO{sub 2} dielectric gate insulator between two different modifications of tetratetracontane and poly(methyl methacrylate) thin films. Important evidence that the field effect transistor (FET) characteristics are independent of electrode metals with different work functions is given by the observation of a conversion of the metal-semiconductor contact from the Schottky limit to the Bardeen limit. An air-stable light emitting FET with an Au electrode is demonstrated.

  7. Influence of Boron Substitution on Conductance of Pyridine- and Pentane-Based Molecular Single Electron Transistors: First-Principles Analysis

    NASA Astrophysics Data System (ADS)

    Srivastava, Anurag; Santhibhushan, B.; Sharma, Vikash; Kaur, Kamalpreet; Shahzad Khan, Md.; Marathe, Madura; De Sarkar, Abir; Shahid Khan, Mohd.

    2016-04-01

    We have investigated the modeling of boron-substituted molecular single-electron transistor (SET), under the influence of a weak coupling regime of Coulomb blockade between source and drain metal electrodes. The SET consists of a single organic molecule (pyridine/pentane/1,2-azaborine/butylborane) placed over the dielectric, with boron (B) as a substituent. The impact of B-substitution on pyridine and pentane molecules in isolated, as well as SET, environments has been analyzed by using density functional theory-based ab initio packages Atomistix toolkit-Virtual NanoLab and Gaussian03. The performance of proposed SETs was analyzed through charging energies, total energy as a function of gate potential and charge stability diagrams. The analysis confirms that the B-substituted pentane (butylborane) and the boron-substituted pyridine (1,2-azaborine) show remarkably improved conductance in SET environment in comparison to simple pyridine and pentane molecules.

  8. Small-signal modeling with direct parameter extraction for impact ionization effect in high-electron-mobility transistors

    SciTech Connect

    Guan, He; Lv, Hongliang; Guo, Hui Zhang, Yuming

    2015-11-21

    Impact ionization affects the radio-frequency (RF) behavior of high-electron-mobility transistors (HEMTs), which have narrow-bandgap semiconductor channels, and this necessitates complex parameter extraction procedures for HEMT modeling. In this paper, an enhanced small-signal equivalent circuit model is developed to investigate the impact ionization, and an improved method is presented in detail for direct extraction of intrinsic parameters using two-step measurements in low-frequency and high-frequency regimes. The practicability of the enhanced model and the proposed direct parameter extraction method are verified by comparing the simulated S-parameters with published experimental data from an InAs/AlSb HEMT operating over a wide frequency range. The results demonstrate that the enhanced model with optimal intrinsic parameter values that were obtained by the direct extraction approach can effectively characterize the effects of impact ionization on the RF performance of HEMTs.

  9. Normally-off AlGaN/GaN high-electron-mobility transistor using digital etching technique

    NASA Astrophysics Data System (ADS)

    Yamanaka, Ryota; Kanazawa, Toru; Yagyu, Eiji; Miyamoto, Yasuyuki

    2015-06-01

    A normally-off AlGaN/GaN high-electron-mobility transistor (HEMT) with a recessed-gate structure fabricated by novel digital etching is reported. Digital etching consists of multiple cycles of oxidation and wet etching of the oxide, and has the merits of easy control of the recess depth and reduction of surface damage in comparison with conventional dry etching. However, in conventional digital etching, the oxidation process involves the possibility of undercutting. In the digital etching, a reactive ion etcher was used and recess etching without any undercut was confirmed. Normally-off operation and the improvement of transconductance were confirmed in an AlGaN/GaN HEMT fabricated by this technique.

  10. Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Xi, Xiao-Wen; Chai, Chang-Chun; Liu, Yang; Yang, Yin-Tang; Fan, Qing-Yang; Shi, Chun-Lei

    2016-08-01

    An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  11. An AlN/Al0.85Ga0.15N high electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; Douglas, Erica A.; Sanchez, Carlos A.; King, Michael P.; Coltrin, Michael E.; Fortune, Torben R.; Kaplar, Robert J.

    2016-07-01

    An AlN barrier high electron mobility transistor (HEMT) based on the AlN/Al0.85Ga0.15N heterostructure was grown, fabricated, and electrically characterized, thereby extending the range of Al composition and bandgap for AlGaN channel HEMTs. An etch and regrowth procedure was implemented for source and drain contact formation. A breakdown voltage of 810 V was achieved without a gate insulator or field plate. Excellent gate leakage characteristics enabled a high Ion/Ioff current ratio greater than 107 and an excellent subthreshold slope of 75 mV/decade. A large Schottky barrier height of 1.74 eV contributed to these results. The room temperature voltage-dependent 3-terminal off-state drain current was adequately modeled with Frenkel-Poole emission.

  12. GaN High-Electron-Mobility Transistor with WN x /Cu Gate for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Hsieh, Ting-En; Lin, Yueh-Chin; Li, Fang-Ming; Shi, Wang-Cheng; Huang, Yu-Xiang; Lan, Wei-Cheng; Chin, Ping-Chieh; Chang, Edward Yi

    2015-12-01

    A GaN high-electron-mobility transistor (HEMT) with WN x /Cu gate for high-power applications has been investigated. The direct-current (DC) characteristics of the device are comparable to those of conventional Ni/Au-gated GaN HEMTs. The results of high-voltage stress testing indicate that the device is stable after application of 200 V stress for 42 h. The WN x /Cu-gated GaN HEMT exhibited no obvious changes in the DC characteristics or Schottky barrier height before and after annealing at 250°C for 1 h. These results demonstrate that the WN x /Cu gate structure can be used in a GaN HEMT for high-power applications with good thermal stability.

  13. Novel model of a AlGaN/GaN high electron mobility transistor based on an artificial neural network

    NASA Astrophysics Data System (ADS)

    Cheng, Zhi-Qun; Hu, Sha; Liu, Jun; Zhang, Qi-Jun

    2011-03-01

    In this paper we present a novel approach to modeling AlGaN/GaN high electron mobility transistor (HEMT) with an artificial neural network (ANN). The AlGaN/GaN HEMT device structure and its fabrication process are described. The circuit-based Neuro-space mapping (neuro-SM) technique is studied in detail. The EEHEMT model is implemented according to the measurement results of the designed device, which serves as a coarse model. An ANN is proposed to model AlGaN/GaN HEMT based on the coarse model. Its optimization is performed. The simulation results from the model are compared with the measurement results. It is shown that the simulation results obtained from the ANN model of AlGaN/GaN HEMT are more accurate than those obtained from the EEHEMT model. Project supported by the National Natural Science Foundation of China (Grant No. 60776052).

  14. CMOS Integrated Single Electron Transistor Electrometry (CMOS-SET) circuit design for nanosecond quantum-bit read-out.

    SciTech Connect

    Gurrieri, Thomas M.; Lilly, Michael Patrick; Carroll, Malcolm S.; Levy, James E.

    2008-08-01

    Novel single electron transistor (SET) read-out circuit designs are described. The circuits use a silicon SET interfaced to a CMOS voltage mode or current mode comparator to obtain a digital read-out of the state of the qubit. The design assumes standard submicron (0.35 um) CMOS SOI technology using room temperature SPICE models. Implications and uncertainties related to the temperature scaling of these models to 100mK operation are discussed. Using this technology, the simulations predict a read-out operation speed of approximately Ins and a power dissipation per cell as low as 2nW for single-shot read-out, which is a significant advantage over currently used radio frequency SET (RF-SET) approaches.

  15. The effects of proton irradiation on the reliability of InAlN/GaN high electron mobility transistors

    SciTech Connect

    Liu, L.; Lo, C. F.; Xi, Y. Y.; Wang, Y.l.; Kim, H.-Y.; Kim, J.; Pearton, S. J.; Laboutin, O.; Cao, Yu; Johnson, Wayne J.; Kravchenko, Ivan I; Ren, F.

    2012-01-01

    We have investigated the effect of proton irradiation on reliability of InAlN/GaN high electron mobility transistors (HEMTs). Devices were subjected to 5-15 MeV proton irradiations with a fixed dose of 5 1015 cm-2, or to a different doses of 2 1011, 5 1013 or 2 1015 cm-2 of protons at a fixed energy of 5 MeV. During off-state electrical stressing, the typical critical voltage for un-irradiated devices was 45 to 55 V. By sharp contrast, no critical voltage was detected for proton irradiated HEMTs up to 100 V, which was instrument-limited. After electrical stressing, no degradation was observed for the drain or gate current-voltage characteristics of the proton-irradiated HEMTs. However, the drain current decreased ~12%, and the reverse bias gate leakage current increased more than two orders of magnitude for un-irradiated HEMTs as a result of electrical stressing.

  16. Electron Transport Behavior on Gate Length Scaling in Sub-50 nm GaAs Metal Semiconductor Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Han, Jaeheon

    2011-12-01

    Short channel GaAs Metal Semiconductor Field Effect Transistors (MESFETs) have been fabricated with gate length to 20 nm, in order to examine the characteristics of sub-50 nm MESFET scaling. Here the rise in the measured transconductance is mainly attributed to electron velocity overshoot. For gate lengths below 40 nm, however, the transconductance drops suddenly. The behavior of velocity overshoot and its degradation is investigated and simulated by using a transport model based on the retarded Langevin equation (RLE). This indicates the existence of a minimum acceleration length needed for the carriers to reach the overshoot velocity. The argument shows that the source resistance must be included as an internal element, or appropriate boundary condition, of relative importance in any model where the gate length is comparable to the inelastic mean free path of the carriers.

  17. Simulation method for transmission-type radio-frequency single-electron transistor (RF-SET) operation by SPICE

    NASA Astrophysics Data System (ADS)

    Yu, Yun Seop; Oh, Jung Hyun; Kim, Hee Tae; Kim, Yong Gyu; Son, Seung Hun; Choi, Bum Ho; Hwang, Sung Woo; Ahn, Doyel

    2009-02-01

    An efficient simulation method for transmission-type radio-frequency single-electron transistors (RF-SETs) is developed. By introducing equivalent circuits of propagating microwaves through RF cables, we solve the master equation for RF-SETs self-consistently by using the conventional circuit simulator SPICE together with the SET current model. By examining transmitted waves from the transmission-type RF-SET, we show that the developed method successfully reproduces the numerical reference methods (calculated self- consistently). We also show that our method provides simple and fast ways to simulate and analyze RF-SETs even under complicated circuit geometry and in high frequencies over GHz. Based on the developed simulation method, we introduce the modulation technique to estimate the charge sensitivity of the transmission-type RF-SET.

  18. Role of Fe impurity complexes in the degradation of GaN/AlGaN high-electron-mobility transistors

    SciTech Connect

    Puzyrev, Y. S.; Schrimpf, R. D.; Fleetwood, D. M.; Pantelides, S. T.

    2015-02-02

    Recent experiments show that GaN/AlGaN high-electron-mobility transistors suffer from significant current collapse, which is caused by an increase in the concentration of traps with energy levels 0.5–0.6 eV below the conduction-band edge. This increase in trap concentration is consistent with thermally activated defect diffusion, but the responsible defect complexes have not been identified. It has been suggested that the defect complex may contain iron because of the proximity of the Fe-doped GaN substrate. Here, we report first-principles density-functional calculations of substitutional iron complexes, investigate their properties, and show that the Fe{sub Ga}-V{sub N} complex has properties that account for the observed degradation.

  19. Reduced thermal resistance in AlGaN/GaN multi-mesa-channel high electron mobility transistors

    SciTech Connect

    Asubar, Joel T. Yatabe, Zenji; Hashizume, Tamotsu

    2014-08-04

    Dramatic reduction of thermal resistance was achieved in AlGaN/GaN Multi-Mesa-Channel (MMC) high electron mobility transistors (HEMTs) on sapphire substrates. Compared with the conventional planar device, the MMC HEMT exhibits much less negative slope of the I{sub D}-V{sub DS} curves at high V{sub DS} regime, indicating less self-heating. Using a method proposed by Menozzi and co-workers, we obtained a thermal resistance of 4.8 K-mm/W at ambient temperature of ∼350 K and power dissipation of ∼9 W/mm. This value compares well to 4.1 K-mm/W, which is the thermal resistance of AlGaN/GaN HEMTs on expensive single crystal diamond substrates and the lowest reported value in literature.

  20. AlGaN Channel High Electron Mobility Transistors: Device Performance and Power-Switching Figure of Merit

    NASA Astrophysics Data System (ADS)

    Raman, Ajay; Dasgupta, Sansaptak; Rajan, Siddharth; Speck, James S.; Mishra, Umesh K.

    2008-05-01

    In this paper, AlGaN channels for high electron mobility transistors (HEMTs) have been evaluated based on a power device figure of merit. AlGaN-channel HEMTs grown on SiC substrates by plasma-assisted molecular beam epitaxy (PAMBE) were fabricated. Maximum saturation current of 0.55 A/mm was obtained at VGS=1 V. Current-gain cutoff ( ft) and power-gain cutoff ( fmax) frequencies obtained from small signal measurements were ft=13.2 GHz and fmax=41 GHz. Pulsed current-voltage (I-V) measurements at 200 ns showed no dispersion in I-V curves. Large signal continuous wave (CW) measurement yielded an output power density of 4.5 W/mm with power added efficiency (PAE) of 59% at 4 GHz. This work demonstrates the potential of AlGaN channel HEMTs for high voltage switching and microwave power applications.

  1. Hot electrons injection in carbon nanotubes under the influence of quasi-static ac-field

    NASA Astrophysics Data System (ADS)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-07-01

    The theory of hot electrons injection in carbon nanotubes (CNTs) where both dc electric field (Ez), and a quasi-static ac field exist simultaneously (i.e. when the frequency ω of ac field is much less than the scattering frequency v (ω ≪ v or ωτ ≪ 1, v =τ-1) where τ is relaxation time) is studied. The investigation is done theoretically by solving semi-classical Boltzmann transport equation with and without the presence of the hot electrons source to derive the current densities. Plots of the normalized current density versus dc field (Ez) applied along the axis of the CNTs in the presence and absence of hot electrons reveal ohmic conductivity initially and finally negative differential conductivity (NDC) provided ωτ ≪ 1 (i.e. quasi- static case). With strong enough axial injection of the hot electrons, there is a switch from NDC to positive differential conductivity (PDC) about Ez ≥ 75 kV / cm and Ez ≥ 140 kV / cm for a zigzag CNT and an armchair CNT respectively. Thus, the most important tough problem for NDC region which is the space charge instabilities can be suppressed due to the switch from the NDC behaviour to the PDC behaviour predicting a potential generation of terahertz radiations whose applications are relevance in current-day technology, industry, and research.

  2. Analysis of a High-Tc Hot-Electron Superconducting Mixer for Terahertz Applications

    NASA Technical Reports Server (NTRS)

    Karasik, B. S.; McGrath, W. R.; Gaidis, M. C.

    1996-01-01

    The prospects of a YBa2Cu3O7(delta)(YBCO) hot-electron bolometer (HEB) mixer for a THz heterodyne receiver is discussed. The modeled device is a submicron bridge made from a 10 nm thick film on a high thermal conductance substrate.

  3. Intra-cavity photon-assisted tunneling collector-base voltage-mediated electron-hole spontaneous-stimulated recombination transistor laser

    NASA Astrophysics Data System (ADS)

    Feng, M.; Qiu, Junyi; Wang, C. Y.; Holonyak, N.

    2016-02-01

    Optical absorption in a p-n junction diode for a direct-gap semiconductor can be enhanced by photon-assisted tunneling in the presence of a static or dynamic electrical field. In the transistor laser, the coherent photons generated at the base quantum-well interact with the collector field and "assist" optical cavity electron tunneling from the valence band of the base to the conduction band states of the collector. In the present work, we study the cavity coherent photon intensity effect on intra-cavity photon-assisted tunneling (ICPAT) in the transistor laser and realize photon-field enhanced optical absorption. This ICPAT in a transistor laser is the unique property of voltage (field) modulation and the basis for ultrahigh speed direct laser modulation and switching.

  4. The electron distribution function downstream of the solar-wind termination shock: Where are the hot electrons?

    NASA Astrophysics Data System (ADS)

    Fahr, Hans J.; Richardson, John D.; Verscharen, Daniel

    2015-07-01

    In the majority of the literature on plasma shock waves, electrons play the role of "ghost particles", since their contribution to mass and momentum flows is negligible, and they have been treated as only taking care of the electric plasma neutrality. In some more recent papers, however, electrons play a new important role in the shock dynamics and thermodynamics, especially at the solar-wind termination shock. They react on the shock electric field in a very specific way, leading to suprathermal nonequilibrium distributions of the downstream electrons, which can be represented by a kappa distribution function. In this paper, we discuss why this anticipated hot electron population has not been seen by the plasma detectors of the Voyager spacecraft downstream of the solar-wind termination shock. We show that hot nonequilibrium electrons induce a strong negative electric charge-up of any spacecraft cruising through this downstream plasma environment. This charge reduces electron fluxes at the spacecraft detectors to nondetectable intensities. Furthermore, we show that the Debye length λDκ grows to values of about λDκ/λD ≃ 106 compared to the classical value λD in this hot-electron environment. This unusual condition allows for the propagation of a certain type of electrostatic plasma waves that, at very large wavelengths, allow us to determine the effective temperature of the suprathermal electrons directly by means of the phase velocity of these waves. At moderate wavelengths, the electron-acoustic dispersion relation leads to nonpropagating oscillations with the ion-plasma frequency ωp, instead of the traditional electron plasma frequency.

  5. Hot and Cold Electron Dynamics Following High-Intensity Laser Matter Interaction

    SciTech Connect

    Antici, P.; Fuchs, J.; Mancic, A.; Audebert, P.; Borghesi, M.; Cecchetti, C. A.; Gremillet, L.; Grismayer, T.; Mora, P.; Sentoku, Y.; D'Humieres, E.; Pipahl, A. C.; Toncian, T.; Willi, O.

    2008-09-05

    The characteristics of fast electrons laser accelerated from solids and expanding into a vacuum from the rear target surface have been measured via optical probe reflectometry. This allows access to the time- and space-resolved dynamics of the fast electron density and temperature and of the energy partition into bulk (cold) electrons. In particular, it is found that the density of the hot electrons on the target rear surface is bell shaped, and that their mean energy at the same location is radially homogeneous and decreases with the target thickness.

  6. Hot and cold electron dynamics following high-intensity laser matter interaction.

    PubMed

    Antici, P; Fuchs, J; Borghesi, M; Gremillet, L; Grismayer, T; Sentoku, Y; d'Humières, E; Cecchetti, C A; Mancić, A; Pipahl, A C; Toncian, T; Willi, O; Mora, P; Audebert, P

    2008-09-01

    The characteristics of fast electrons laser accelerated from solids and expanding into a vacuum from the rear target surface have been measured via optical probe reflectometry. This allows access to the time- and space-resolved dynamics of the fast electron density and temperature and of the energy partition into bulk (cold) electrons. In particular, it is found that the density of the hot electrons on the target rear surface is bell shaped, and that their mean energy at the same location is radially homogeneous and decreases with the target thickness. PMID:18851222

  7. Fokker-Planck simulation of runaway electron generation in disruptions with the hot-tail effect

    NASA Astrophysics Data System (ADS)

    Nuga, H.; Yagi, M.; Fukuyama, A.

    2016-06-01

    To study runaway electron generation in disruptions, we have extended the three-dimensional (two-dimensional in momentum space; one-dimensional in the radial direction) Fokker-Planck code, which describes the evolution of the relativistic momentum distribution function of electrons and the induced toroidal electric field in a self-consistent manner. A particular focus is placed on the hot-tail effect in two-dimensional momentum space. The effect appears if the drop of the background plasma temperature is sufficiently rapid compared with the electron-electron slowing down time for a few times of the pre-quench thermal velocity. It contributes to not only the enhancement of the primary runaway electron generation but also the broadening of the runaway electron distribution in the pitch angle direction. If the thermal energy loss during the major disruption is assumed to be isotropic, there are hot-tail electrons that have sufficiently large perpendicular momentum, and the runaway electron distribution becomes broader in the pitch angle direction. In addition, the pitch angle scattering also yields the broadening. Since the electric field is reduced due to the burst of runaway electron generation, the time required for accelerating electrons to the runaway region becomes longer. The longer acceleration period makes the pitch-angle scattering more effective.

  8. Aerosol jet printed p- and n-type electrolyte-gated transistors with a variety of electrode materials: exploring practical routes to printed electronics.

    PubMed

    Hong, Kihyon; Kim, Se Hyun; Mahajan, Ankit; Frisbie, C Daniel

    2014-11-12

    Printing electrically functional liquid inks is a promising approach for achieving low-cost, large-area, additive manufacturing of flexible electronic circuits. To print thin-film transistors, a basic building block of thin-film electronics, it is important to have several options for printable electrode materials that exhibit high conductivity, high stability, and low-cost. Here we report completely aerosol jet printed (AJP) p- and n-type electrolyte-gated transistors (EGTs) using a variety of different electrode materials including highly conductive metal nanoparticles (Ag), conducting polymers (polystyrenesulfonate doped poly(3,4-ethylendedioxythiophene, PEDOT:PSS), transparent conducting oxides (indium tin oxide), and carbon-based materials (reduced graphene oxide). Using these source-drain electrode materials and a PEDOT:PSS/ion gel gate stack, we demonstrated all-printed p- and n-type EGTs in combination with poly(3-hexythiophene) and ZnO semiconductors. All transistor components (including electrodes, semiconductors, and gate insulators) were printed by AJP. Both kinds of devices showed typical p- and n-type transistor characteristics, and exhibited both low-threshold voltages (<2 V) and high hole and electron mobilities. Our assessment suggests Ag electrodes may be the best option in terms of overall performance for both types of EGTs. PMID:25323010

  9. Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.

    PubMed

    Bae, Jong-Ho; Lee, Jong-Ho

    2016-05-01

    A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec. PMID:27483846

  10. Amorphous silicon pixel radiation detectors and associated thin film transistor electronics readout

    SciTech Connect

    Perez-Mendez, V.; Drewery, J.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.; Mireshghi, A.

    1994-10-01

    We describe the characteristics of thin (1 {mu}m) and thick (>30 {mu}m) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and {gamma} rays. For x-ray, {gamma} ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. Deposition techniques using helium dilution, which produce samples with low stress are described. Pixel arrays for flux exposures can be readout by transistor, single diode or two diode switches. Polysilicon charge sensitive pixel amplifiers for single event detection are described. Various applications in nuclear, particle physics, x-ray medical imaging, neutron crystallography, and radionuclide chromatography are discussed.

  11. Energy relaxation of hot electrons in lattice-matched AlInN/AlN/GaN heterostructures

    SciTech Connect

    Zhang, J.-Z.; Dyson, A.; Ridley, B. K.

    2013-12-04

    Using the dielectric continuum model, hot-electron power dissipation and energy relaxation times are calculated for a typical lattice-matched AlInN/AlN/GaN heterostructure, including effects of hot phonons and screening from the mobile electrons. The calculated power dissipation and energy relaxation times are very close to the experimental data.

  12. Hot electron plasma equilibrium and stability in the Constance B mirror experiment

    SciTech Connect

    Chen, Xing

    1988-04-01

    An experimental study of the equilibrium and macroscopic stability property of an electron cyclotron resonance heating (ECRH) generated plasma in a minimum-B mirror is presented. The Constance B mirror is a single cell quadrupole magnetic mirror in which high beta (..beta.. less than or equal to 0.3) hot electron plasmas (T/sub e/approx. =400 keV) are created with up to 4 kW of ECRH power. The plasma equilibrium profile is hollow and resembles the baseball seam geometry of the magnet which provides the confining magnetic field. This configuration coincides with the drift orbit of deeply trapped particles. The on-axis hollowness of the hot electron density profile is 50 /+-/ 10%, and the pressure profile is at least as hollow as, if not more than, the hot electron density profile. The hollow plasma equilibrium is macroscopically stable and generated in all the experimental conditions in which the machine has been operated. The hollowness of the plasma pressure profile is not limited by the marginal stability condition. Small macroscopic plasma fluctuations in the range of the hot electron curvature drift frequency sometimes occur but their growth rate is small (..omega../sub i//..omega../sub r/ less than or equal to 10/sup -2/) and saturate at very low level (deltaB//bar B/ less than or equal to 10/sup -3/). Particle drift reversal is predicted to occur for the model pressure profile which best fits the experimental data under the typical operating conditions. No strong instability is observed when the plasma is near the drift reversal parameter regime, despite a theoretical prediction of instability under such conditions. The experiment shows that the cold electron population has no stabilizing effect to the hot electrons, which disagrees with current hot electron stability theories and results of previous maximum-B experiments. A theoretical analysis using MHD theory shows that the compressibility can stabilize a plasma with a hollowness of 20--30% in the

  13. Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well

    SciTech Connect

    Huang, H. J. E-mail: hhjhuangkimo@gmail.com; Liu, B. H.; Lin, C. T.; Su, W. S.

    2015-11-15

    The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC), or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt) thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles) is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.

  14. Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well

    NASA Astrophysics Data System (ADS)

    Huang, H. J.; Liu, B.-H.; Lin, C.-T.; Su, W. S.

    2015-11-01

    The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC), or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt) thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles) is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.

  15. Single-Shot Charge Readout Using a Cryogenic Heterojunction Bipolar Transistor Preamplifier Inline with a Silicon Single Electron Transistor at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Curry, Matthew; England, Troy; Wendt, Joel; Pluym, Tammy; Lilly, Michael; Carr, Stephen; Carroll, Malcolm

    Single-shot readout is a requirement for many implementations of quantum information processing. The single-shot readout fidelity is dependent on the signal-to-noise-ratio (SNR) and bandwidth of the readout detection technique. Several different approaches are being pursued to enhance read-out including RF-reflectometry, RF-transmission, parametric amplification, and transistor-based cryogenic preamplification. The transistor-based cryogenic preamplifier is attractive in part because of the reduced experimental complexity compared with the RF techniques. Here we present single-shot charge readout using a cryogenic Heterojunction-Bipolar-Transistor (HBT) inline with a silicon SET charge-sensor at millikelvin temperatures. For the relevant range of HBT DC-biasing, the current gain is 100 to 2000 and the power dissipation is 50 nW to 5 μW, with the microfabricated SET and discrete HBT in an integrated package mounted to the mixing chamber stage of a dilution refrigerator. We experimentally demonstrate a SNR of up to 10 with a bandwidth of 1 MHz, corresponding to a single-shot time-domain charge-sensitivity of approximately 10-4 e / √Hz. This measured charge-sensitivity is comparable to the values reported using the RF techniques. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  16. Hot electron dynamics at semiconductor surfaces: Implications for quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Tisdale, William A., III

    Finding a viable supply of clean, renewable energy is one of the most daunting challenges facing the world today. Solar cells have had limited impact in meeting this challenge because of their high cost and low power conversion efficiencies. Semiconductor nanocrystals, or quantum dots, are promising materials for use in novel solar cells because they can be processed with potentially inexpensive solution-based techniques and because they are predicted to have novel optoelectronic properties that could enable the realization of ultra-efficient solar power converters. However, there is a lack of fundamental understanding regarding the behavior of highly-excited, or "hot," charge carriers near quantum-dot and semiconductor interfaces, which is of paramount importance to the rational design of high-efficiency devices. The elucidation of these ultrafast hot electron dynamics is the central aim of this Dissertation. I present a theoretical framework for treating the electronic interactions between quantum dots and bulk semiconductor surfaces and propose a novel experimental technique, time-resolved surface second harmonic generation (TR-SHG), for probing these interactions. I then describe a series of experimental investigations into hot electron dynamics in specific quantum-dot/semiconductor systems. A two-photon photoelectron spectroscopy (2PPE) study of the technologically-relevant ZnO(1010) surface reveals ultrafast (sub-30fs) cooling of hot electrons in the bulk conduction band, which is due to strong electron-phonon coupling in this highly polar material. The presence of a continuum of defect states near the conduction band edge results in Fermi-level pinning and upward (n-type) band-bending at the (1010) surface and provides an alternate route for electronic relaxation. In monolayer films of colloidal PbSe quantum dots, chemical treatment with either hydrazine or 1,2-ethanedithiol results in strong and tunable electronic coupling between neighboring quantum dots

  17. Thermal-noise suppression in nano-scale Si field-effect transistors by feedback control based on single-electron detection

    SciTech Connect

    Chida, Kensaku Nishiguchi, Katsuhiko; Yamahata, Gento; Tanaka, Hirotaka; Fujiwara, Akira

    2015-08-17

    We perform feedback (FB) control for suppressing thermal fluctuation in the number of electrons in a silicon single-electron (SE) device composed of a small transistor and capacitor. SEs enter and leave the capacitor via the transistor randomly at thermal equilibrium, which is monitored in real time using a high-charge-sensitivity detector. In order to suppress such random motion or thermal fluctuation of the electrons, SEs are injected and removed using the transistor according to the monitored change in the number of electrons in the capacitor, which is exactly the FB control. As a result, thermal fluctuation in the number of electrons in a SE device is suppressed by 60%, which corresponds to the so-called FB cooling from 300 to 110 K. Moreover, a thermodynamics analysis of this FB cooling reveals that entropy in the capacitor is reduced and the device is at non-equilibrium; i.e., the free energy of the device increases. Since this entropy reduction originates from information about the electrons' motion monitored by the detector, our results by the FB control represent one type of information-to-energy conversion.

  18. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    SciTech Connect

    Lisenkov, V. V.; Shklyaev, V. A.

    2015-11-15

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  19. Experimental observation of the hot-electron equilibrium in a minimum-B mirror plasma

    SciTech Connect

    Smatlak, D.L.; Chen, X.; Lane, B.G.; Hokin, S.A.; Post, R.S.

    1987-05-04

    Measurements of the hot-electron (T = 450 keV, n = 2 x 10/sup 11/ cm/sup -3/) equilibrium in the Constance B minimum-B magnetic mirror show that the pressure profile is peaked off the axis and is shaped like the seam on a baseball. This curve is the drift surface of the deeply trapped electrons and the location of the strongest microwave heating. The configuration is stable and decays quiescently on the hot-electron collisional time scale (1--2 s) after the microwave power is turned off. According to 1D pressure-weighted ..integral.. dl/B analysis this plasma configuration is expected to be unstable.

  20. Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation

    NASA Astrophysics Data System (ADS)

    Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'Tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.

    2000-04-01

    In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is Trx=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO ≈ 1 microwatt. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.

  1. Integrating AlGaN/GaN high electron mobility transistor with Si: A comparative study of integration schemes

    NASA Astrophysics Data System (ADS)

    Mohan, Nagaboopathy; Singh, Manikant; Soman, Rohith; Raghavan, Srinivasan

    2015-10-01

    AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 109/cm2 and <1 nm surface roughness. The 2-D electron gas channels formed at an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600-1900 cm2/V s at a carrier concentration of 0.7-0.9 × 1013/cm2. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.

  2. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    SciTech Connect

    Padilla, J. L. Alper, C.; Ionescu, A. M.; Medina-Bailón, C.; Gámiz, F.

    2015-06-29

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I{sub ON} levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures.

  3. Integrating AlGaN/GaN high electron mobility transistor with Si: A comparative study of integration schemes

    SciTech Connect

    Mohan, Nagaboopathy; Raghavan, Srinivasan; Manikant,; Soman, Rohith

    2015-10-07

    AlGaN/GaN high electron mobility transistor stacks deposited on a single growth platform are used to compare the most common transition, AlN to GaN, schemes used for integrating GaN with Si. The efficiency of these transitions based on linearly graded, step graded, interlayer, and superlattice schemes on dislocation density reduction, stress management, surface roughness, and eventually mobility of the 2D-gas are evaluated. In a 500 nm GaN probe layer deposited, all of these transitions result in total transmission electron microscopy measured dislocations densities of 1 to 3 × 10{sup 9}/cm{sup 2} and <1 nm surface roughness. The 2-D electron gas channels formed at an AlGaN-1 nm AlN/GaN interface deposited on this GaN probe layer all have mobilities of 1600–1900 cm{sup 2}/V s at a carrier concentration of 0.7–0.9 × 10{sup 13}/cm{sup 2}. Compressive stress and changes in composition in GaN rich regions of the AlN-GaN transition are the most effective at reducing dislocation density. Amongst all the transitions studied the step graded transition is the one that helps to implement this feature of GaN integration in the simplest and most consistent manner.

  4. Current status and scope of gallium nitride-based vertical transistors for high-power electronics application

    NASA Astrophysics Data System (ADS)

    Chowdhury, Srabanti; Swenson, Brian L.; Hoi Wong, Man; Mishra, Umesh K.

    2013-07-01

    Gallium nitride (GaN) is becoming the material of choice for power electronics to enable the roadmap of increasing power density by simultaneously enabling high-power conversion efficiency and reduced form factor. This is because the low switching losses of GaN enable high-frequency operation which reduces bulky passive components with negligible change in efficiency. Commercialization of GaN-on-Si materials for power electronics has led to the entry of GaN devices into the medium-power market since the performance-over-cost of even first-generation products looks very attractive compared to today's mature Si-based solutions. On the other hand, the high-power market still remains unaddressed by lateral GaN devices. The current and voltage demand for high-power conversion application makes the chip area in a lateral topology so large that it becomes difficult to manufacture. Vertical GaN devices would play a big role alongside silicon carbide (SiC) to address the high-power conversion needs. In this paper vertical GaN devices are discussed with emphasis on current aperture vertical electron transistors (CAVETs) which have shown promising performance. The fabrication-related challenges and the future possibilities enabled by the availability of good-quality, cost-competitive bulk GaN material are also evaluated for CAVETs. This work was done at Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.

  5. Hot Electron Attenuation Length Measurements of Cu and Ag using BEEM

    NASA Astrophysics Data System (ADS)

    Garramone, John; Abel, Joseph; Sitnitsky, Ilona; Zhao, Lai; Appelbaum, Ian; Labella, Vincent

    2010-03-01

    33.4˜2.9 nm 1.0 eV Understanding electron transport and scattering in nanoscale Cu and Ag structures is important for modern integrated circuit technology and futuristic applications such as spintronics and hydrogen sensing footnotetextHuang et al., Rev. Lett. 99 177209 (2007)^,footnotetextNienhaus et at., Appl. Phys. Lett. 74 4046 (1999). In this study we will report on hot electron attenuation length measurements of nanometer thick films of Cu and Ag on the Si substrate utilizing ballistic electron emission microscopy (BEEM). BEEM is a three terminal scanning tunneling microcopy (STM) based technique where electrons are injected from a STM tip into a grounded metal base of a Schottky diode. The electrons that transverse the metal overlayer and surmount the Schottky barrier are measured as the BEEM current by a backside contact to the semiconductor. The attenuation length is extracted by measuring the falloff in BEEM current as a function of metal film thickness. The hot electron attenuation length for Cu of is measured at a tip bias of and a temperature of 80 K. Results for Ag will also be presented as well as models used to extract the relative contribution of elastic and inelastic electron scattering in the metal films as a function of electron energy.

  6. Direct detection of a transport-blocking trap in a nanoscaled silicon single-electron transistor by radio-frequency reflectometry

    SciTech Connect

    Villis, B. J.; Sanquer, M.; Jehl, X.; Orlov, A. O.; Barraud, S.; Vinet, M.; Fay, P.; Snider, G.

    2014-06-09

    The continuous downscaling of transistors results in nanoscale devices which require fewer and fewer charged carriers for their operation. The ultimate charge controlled device, the single-electron transistor (SET), controls the transfer of individual electrons. It is also the most sensitive electrometer, and as a result the electron transport through it can be dramatically affected by nearby charges. Standard direct-current characterization techniques, however, are often unable to unambiguously detect and resolve the origin of the observed changes in SET behavior arising from changes in the charge state of a capacitively coupled trap. Using a radio-frequency (RF) reflectometry technique, we are able to unequivocally detect this process, in very close agreement with modeling of the trap's occupation probability.

  7. Reversible electron-hole separation in a hot carrier solar cell

    NASA Astrophysics Data System (ADS)

    Linke, Heiner

    Hot-carrier solar cells are envisioned to utilize energy filtering to extract power from photogenerated electron-hole pairs before they thermalize with the lattice, and thus potentially offer higher power conversion efficiency compared to conventional, single absorber solar cells. The efficiency of hot-carrier solar cells can be expected to strongly depend on the details of the energy filtering process, a relationship which to date has not been satisfactorily explored. Here, we establish the conditions under which electron-hole separation in hot-carrier solar cells can occur reversibly, that is, at maximum energy conversion efficiency. We find that, under specific conditions, the energy conversion efficiency of a hot-carrier solar cell can exceed the Carnot limit set by the intra-device temperature gradient alone, due to the additional contribution of the quasi-Fermi level splitting in the absorber. To achieve this, we consider a highly selective energy filter such as a quantum dot embedded into a one-dimensional conductor. We also establish that the open-circuit voltage of a hot-carrier solar cell is not limited by the band gap of the absorber, due to the additional thermoelectric contribution to the voltage. Additionally, we find that a hot-carrier solar cell can be operated in reverse as a thermally driven solid-state light emitter. In addition this theoretical analysis, I will also report on first experimental results in a nanowire-based energy filter device. Ref: S Limpert, S Bremner, and H Linke, New J. Phys 17, 095004 (2015)

  8. Highly sensitive hBN/graphene hot electron bolometers with a Johnson noise readout

    NASA Astrophysics Data System (ADS)

    Efetov, Dmitri; Gao, Yuanda; Walsh, Evan; Shiue, Ren-Jye; Grosso, Gabriele; Peng, Cheng; Hone, James; Fong, Kin Chun; Englund, Dirk

    Graphene has remarkable opto-electronic and thermo-electric properties that make it an exciting functional material for various photo-detection applications. In particular, owed to graphenes unique combination of an exceedingly low electronic heat capacity and a strongly suppressed electron-phonon thermal conductivity Gth, the electronic and phononic temperatures are highly decoupled allowing an operation principle as a hot electron bolometer (HEB). Here we demonstrate highly sensitive HEBs made of high quality hBN/graphene/hBN stacks and employ a direct electronic temperature read out scheme via Johnson noise thermometry (JNT). We perform combined pump-probe and JNT measurements to demonstrate strongly damped Ce and Gth in the ultra-low impurity σi = 109 cm-2 hBN/G/hBN stacks, which result in unprecedented photo-detection sensitivity and noise equivalent power for graphene HEBs.

  9. Vertical organic transistors

    NASA Astrophysics Data System (ADS)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-01

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  10. Femtosecond cooling of hot electrons in CdSe quantum-well platelets.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; van der Bok, Johanna C; Van Dijk-Moes, Relinde J A; Hannappel, Thomas; Eichberger, Rainer; Vanmaekelbergh, Daniel

    2015-04-01

    Semiconductor quantum wells are ubiquitous in high-performance optoelectronic devices such as solar cells and lasers. Understanding and controlling of the (hot) carrier dynamics is essential to optimize their performance. Here, we study hot electron cooling in colloidal CdSe quantum-well nanoplatelets using ultrafast two-photon photoemission spectroscopy at low excitation intensities, resulting typically in 1-5 hot electrons per platelet. We observe initial electron cooling in the femtosecond time domain that slows down with decreasing electron energy and is finished within 2 ps. The cooling is considerably faster at cryogenic temperatures than at room temperature, and at least for the systems that we studied, independent of the thickness of the platelets (here 3-5 CdSe units) and the presence of a CdS shell. The cooling rates that we observe are orders of magnitude faster than reported for similar CdSe platelets under strong excitation. Our results are understood by a classic cooling mechanism with emission of longitudinal optical phonons without a significant influence of the surface. PMID:25764379

  11. Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

    NASA Astrophysics Data System (ADS)

    Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; Larson, D. J.; Koning, J. M.; Logan, B. G.

    2015-12-01

    > . The field's main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or `hot', electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium-tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. The effect of the field on deuterium-tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.

  12. Transport of high intensity laser-generated hot electrons in cone coupled wire targets

    NASA Astrophysics Data System (ADS)

    Beg, Farhat

    2008-04-01

    In this talk, we present results from a series of experiments where cone-wire targets were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Experiments were performed on the petawatt laser at the Rutherford Appleton Laboratory. A 500J, 1ps laser (I ˜ 4 x 10^20 W/cm-2) was focused by an f/3 off-axis parabolic mirror into hollow aluminum cones joined at their tip to Cu wires of diameters from 10 to 40 μm. The three main diagnostics fielded were a copper Kalpha Bragg crystal imager, a single hit CCD camera spectrometer and a Highly Oriented Pyrolytic Graphite (HOPG) spectrometer. The resulting data were cross-calibrated to obtain the absolute Kalpha yield. Comparison of the axially diminishing absolute Cu Kα intensity with modeling shows that the penetration of the hot electrons is consistent with one dimensional ohmic potential limited transport (1/e length ˜ 100 μm). The laser coupling efficiency to electron energy within the wire is shown to be proportional to the cross sectional area of the wire, reaching 15% for 40 μm wires. We find that the hot electron temperature within the wire was <=750 keV, significantly lower than that predicted by the ponderomotive scaling. A comparison of the experimental results with 2D hybrid PIC simulations using e-PLAS code will be presented and relevance to Fast Ignition will be discussed at the meeting. *In collaboration with J.A. King, M.H. Key, K.U. Akli, R.R. Freeman, J. Green, S. P. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, T. Ma, A.J. MacKinnon, A. MacPhee, R. Mason, P.A. Norreys, P.K Patel, T. Phillips, R. Stephens, W. Theobald, R.P.J. Town, M. Wei, L. Van Woerkom, B. Zhang.

  13. Ar plasma treated ZnON transistor for future thin film electronics

    NASA Astrophysics Data System (ADS)

    Lee, Eunha; Kim, Taeho; Benayad, Anass; Kim, HeeGoo; Jeon, Sanghun; Park, Gyeong-Su

    2015-09-01

    To achieve high-mobility and high-reliability oxide thin film transistors (TFTs), ZnON has been investigated following an anion control strategy based on the substitution of oxygen with nitrogen in ZnO. However, as nitrogen possesses, compared to oxygen, a low reactivity with Zn, the chemical composition of ZnON changes easily, causing in turn a degradation of both the performance and the stability. Here, we have solved the issues of long-time stability and composition non-uniformity while maintaining a high channel mobility by adopting the argon plasma process, which can delay the reaction of oxygen with Zn-O-N; as a result, owing to the formation of very fine nano-crystalline structure in stable glassy phase without changes in the chemical composition, the material properties and stability under e-radiation have significantly improved. In particular, the channel mobility of the ZnON TFTs extracted from the pulsed I-V method was measured to be 138 cm2/V s.

  14. Ar plasma treated ZnON transistor for future thin film electronics

    SciTech Connect

    Lee, Eunha E-mail: jeonsh@korea.ac.kr; Benayad, Anass; Kim, HeeGoo; Park, Gyeong-Su; Kim, Taeho; Jeon, Sanghun E-mail: jeonsh@korea.ac.kr

    2015-09-21

    To achieve high-mobility and high-reliability oxide thin film transistors (TFTs), ZnON has been investigated following an anion control strategy based on the substitution of oxygen with nitrogen in ZnO. However, as nitrogen possesses, compared to oxygen, a low reactivity with Zn, the chemical composition of ZnON changes easily, causing in turn a degradation of both the performance and the stability. Here, we have solved the issues of long-time stability and composition non-uniformity while maintaining a high channel mobility by adopting the argon plasma process, which can delay the reaction of oxygen with Zn–O–N; as a result, owing to the formation of very fine nano-crystalline structure in stable glassy phase without changes in the chemical composition, the material properties and stability under e-radiation have significantly improved. In particular, the channel mobility of the ZnON TFTs extracted from the pulsed I−V method was measured to be 138 cm{sup 2}/V s.

  15. Reduced graphene oxide-functionalized high electron mobility transistors for novel recognition pattern label-free DNA sensors.

    PubMed

    Zhang, Xiaohui; Zhang, Yue; Liao, Qingliang; Song, Yu; Ma, Siwei

    2013-12-01

    We designed and constructed reduced graphene oxide (rGO) functionalized high electron mobility transistor (HEMT) for rapid and ultra-sensitive detection of label-free DNA in real time. The micrometer sized rGO sheets with structural defects helped absorb DNA molecules providing a facile and robust approach to functionalization. DNA was immobilized onto the surface of HEMT gate through rGO functionalization, and changed the conductivity of HEMT. The real time monitor and detection of DNA hybridization by rGO functionalized HEMT presented interesting current responses: a "two steps" signal enhancement in the presence of target DNA; and a "one step" signaling with random DNA. These two different recognition patterns made the HEMT capable of specifically detecting target DNA sequence. The working principle of the rGO functionalized HEMT can be demonstrated as the variation of the ambience charge distribution. Furthermore, the as constructed DNA sensors showed excellent sensitivity of detect limit at 0.07 fM with linear detect range from 0.1 fM to 0.1 pM. The results indicated that the HEMT functionalized with rGO paves a new avenue to design novel electronic devices for high sensitive and specific genetic material assays in biomedical applications. PMID:23828864

  16. Strain- and temperature-induced effects in AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Saran Yalamarthy, Ananth; Senesky, Debbie G.

    2016-03-01

    This paper presents a physics-based model for computing the combined effect of applied strain and temperature on the device characteristics of aluminium gallium nitride (AlGaN/GaN) high electron mobility transistors (HEMTs). More specifically, the electrical response of the HEMT is predicted under applied biaxial strain from ±1% over a wide range of temperatures (300-500 K). In addition, the interface state densities at the Schottky-AlGaN interface are introduced in the model. This physics-based model calculates the charge due to applied, thermal and lattice mismatch strain and temperature effects at the two-dimensional electron gas (2DEG) interface of the HEMT. Coupled with a model for the 2DEG mobility that includes strain and temperature effects, current-voltage characteristics for the HEMT are derived above the threshold voltage. Regimes with large strain sensitivity and temperature compensation are identified and vice-versa. The analysis from the model clarifies the large range of strain response variations observed in the experimentally measured characteristics of HEMTs in literature. Furthermore, the developed model is a useful tool for predicting the response of HEMTs used in sensing and under the influence of packaging in extreme environments, especially when temperature fluctuation and strain coupling is of concern.

  17. Graphene and thin-film semiconductor heterojunction transistors integrated on wafer scale for low-power electronics.

    PubMed

    Heo, Jinseong; Byun, Kyung-Eun; Lee, Jaeho; Chung, Hyun-Jong; Jeon, Sanghun; Park, Seongjun; Hwang, Sungwoo

    2013-01-01

    Graphene heterostructures in which graphene is combined with semiconductors or other layered 2D materials are of considerable interest, as a new class of electronic devices has been realized. Here we propose a technology platform based on graphene-thin-film-semiconductor-metal (GSM) junctions, which can be applied to large-scale and power-efficient electronics compatible with a variety of substrates. We demonstrate wafer-scale integration of vertical field-effect transistors (VFETs) based on graphene-In-Ga-Zn-O (IGZO)-metal asymmetric junctions on a transparent 150 × 150 mm(2) glass. In this system, a triangular energy barrier between the graphene and metal is designed by selecting a metal with a proper work function. We obtain a maximum current on/off ratio (Ion/Ioff) up to 10(6) with an average of 3010 over 2000 devices under ambient conditions. For low-power logic applications, an inverter that combines complementary n-type (IGZO) and p-type (Ge) devices is demonstrated to operate at a bias of only 0.5 V. PMID:24256403

  18. Rubidium carbonate modified gold electrodes for efficient electron injection in n-type organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Palai, Akshaya K.; Yang, Dongmyung; Cho, Sungwoo; Park, Seung-un; Pyo, Seungmoon

    2014-09-01

    We report on the performance enhancement of n-type organic field-effect transistors (OFETs) through the use of gold source and drain electrodes that are both modified with rubidium carbonate (Rb2CO3) reducing the electron injection barrier. Devices are fabricated using n-channel N, N‧-ditridecyl-3,4,9,10-perylenetetracarboxylicdiimide (PTCDI-C13) and a polymeric gate dielectric with various thicknesses of Rb2CO3, and the dependence of device's electrical performance on Rb2CO3 thickness is investigated. The device with 10 Å Rb2CO3 exhibits the best performance, and its mobility is five times higher than that of the device without Rb2CO3. UV-visible, x-ray and ultraviolet photoemission spectroscopy are used to investigate the interface between Rb2CO3 and PTCDI-C13, and we find that charge transfer from Rb2CO3 to PTCDI-C13 occurs, resulting in the reduction of the electron charge injection barrier from the gold electrode. The charge injection mechanism and OFET performance enhancement with Rb2CO3 are discussed in detail.

  19. Unusual impact of electron-phonon scattering in Si nanowire field-effect-transistors: A possible route for energy harvesting

    NASA Astrophysics Data System (ADS)

    Nag Chowdhury, Basudev; Chattopadhyay, Sanatan

    2016-09-01

    In the current work, the impact of electron-phonon scattering phenomena on the transport behaviour of silicon nanowire field-effect-transistors with sub-mean free path channel length has been investigated by developing a theoretical model that incorporates the responses of carrier effective mass mismatch between the channel and source/drain. For this purpose, a set of relevant quantum field equations has been solved by non-equilibrium Green's function formalism. The obtained device current for a particular set of biases is found to decrease due to phonon scattering below a certain doping level of source/drain, above which it is observed to enhance anomalously. Analyses of the quantified scattering lifetime and power dissipation at various confinement modes of the device indicates that such unusual enhancement of current is originated from the power served by phonons instead of associated decay processes. The power generation has been observed to improve by using high-k materials as gate insulator. Such results may contribute significantly to the future nano-electronic applications for energy harvesting.

  20. Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Chang-Chun, Chai; Yin-Tang, Yang; Jing, Sun; Zhi-Peng, Li

    2016-04-01

    In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AlGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (Grant No. 2015-0214.XY.K).

  1. Analysis of current instabilities of thin AlN/GaN/AlN double heterostructure high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Zervos, Ch; Adikimenakis, A.; Bairamis, A.; Kostopoulos, A.; Kayambaki, M.; Tsagaraki, K.; Konstantinidis, G.; Georgakilas, A.

    2016-06-01

    The current instabilities of high electron mobility transistors (HEMTs), based on thin double AlN/GaN/AlN heterostructures (∼0.5 μm total thickness), directly grown on sapphire substrates, have been analyzed and compared for different AlN top barrier thicknesses. The structures were capped by 1 nm GaN and non-passivated 1 μm gate-length devices were processed. Pulsed I–V measurements resulted in a maximum cold pulsed saturation current of 1.4 A mm‑1 at a gate-source voltage of +3 V for 3.7 nm AlN thickness. The measured gate and drain lag for 500 ns pulse-width varied between 6%–12% and 10%–18%, respectively. Furthermore, a small increase in the threshold voltage was observed for all the devices, possibly due to the trapping of electrons under the gate contact. The off-state breakdown voltage of V br = 70 V, for gate-drain spacing of 2 μm, was approximately double the value measured for a single AlN/GaN HEMT structure grown on a thick GaN buffer layer. The results suggest that the double AlN/GaN/AlN heterostructures may offer intrinsic advantages for the breakdown and current stability characteristics of high current HEMTs.

  2. Electronic Structure of Low-Temperature Solution-Processed Amorphous Metal Oxide Semiconductors for Thin-Film Transistor Applications

    PubMed Central

    Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning

    2015-01-01

    The electronic structure of low temperature, solution-processed indium–zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm2 V−1 s−1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels. PMID:26190964

  3. Pseudopotential-based electron quantum transport: Theoretical formulation and application to nanometer-scale silicon nanowire transistors

    NASA Astrophysics Data System (ADS)

    Fang, Jingtian; Vandenberghe, William G.; Fu, Bo; Fischetti, Massimo V.

    2016-01-01

    We present a formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials. This formalism offers explicit atomistic wavefunctions and an accurate band structure, enabling a detailed study of the characteristics of devices with a nanometer-scale channel and body. Assuming externally applied potentials that change slowly along the electron-transport direction, we invoke the envelope-wavefunction approximation to apply the open boundary conditions and to develop the transport equations. We construct the full-band open boundary conditions (self-energies of device contacts) from the complex band structure of the contacts. We solve the transport equations and present the expressions required to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gate-all-around (GAA) silicon nanowire field-effect transistor with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of ˜66 mV/decade and a drain-induced barrier-lowering of ˜2.5 mV/V. Our theoretical calculations predict that low-dimensionality channels in a 3D GAA architecture are able to meet the performance requirements of future devices in terms of SS swing and electrostatic control.

  4. On the redox origin of surface trapping in AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Gao, Feng; Chen, Di; Tuller, Harry L.; Thompson, Carl V.; Palacios, Tomás

    2014-03-28

    Water-related redox couples in ambient air are identified as an important source of the surface trapping states, dynamic on-resistance, and drain current collapse in AlGaN/GaN high electron mobility transistors (HEMTs). Through in-situ X-ray photoelectron spectroscopy (XPS), direct signature of the water-related species—hydroxyl groups (OH) was found at the AlGaN surface at room temperature. It was also found that these species, as well as the current collapse, can be thermally removed above 200 °C in vacuum conditions. An electron trapping mechanism based on the H{sub 2}O/H{sub 2} and H{sub 2}O/O{sub 2} redox couples is proposed to explain the 0.5 eV energy level commonly attributed to the surface trapping states. Finally, the role of silicon nitride passivation in successfully removing current collapse in these devices is explained by blocking the water molecules away from the AlGaN surface.

  5. Stability Diagrams of Single-Common-Gate Double-Dot Single-Electron Transistors with Arbitrary Junction and Gate Capacitances

    NASA Astrophysics Data System (ADS)

    Imai, Shigeru; Kato, Hiroki; Hiraoka, Yasuhiro

    2012-12-01

    Stability diagrams of single-common-gate double-dot single-electron transistors are drawn in the Vg-V plane using the exact formulas that represent Coulomb blockade conditions, where the gate, source, and drain voltages are Vg, -V/2, and V/2, respectively. The stability regions are arranged along the Vg axis with no overlap. If gate capacitances Cg1 and Cg2 satisfy Cg1/m1 = Cg2/m2 = C0, the stability diagram is periodic with the period of e/C0 along the Vg axis, where m1 and m2 are natural numbers prime to each other. The stability diagram is point-symmetrical with respect to the point (me/2C0, 0) for all integers m. If Vg increases at V = 0, electrons are transferred into the islands under a rule, which can be explained in terms of periodicity and symmetry. The detailed features are described for the cases of uniform gate capacitances and uniform junction capacitances.

  6. Experimental realization of a silicon spin field-effect transistor

    NASA Astrophysics Data System (ADS)

    Huang, Biqin; Monsma, Douwe J.; Appelbaum, Ian

    2007-08-01

    A longitudinal electric field is used to control the transit time (through an undoped silicon vertical channel) of spin-polarized electrons precessing in a perpendicular magnetic field. Since an applied voltage determines the final spin direction at the spin detector and hence the output collector current, this comprises a spin field-effect transistor. An improved hot-electron spin injector providing ≈115% magnetocurrent, corresponding to at least ≈37% electron current spin polarization after transport through 10μm undoped single-crystal silicon, is used for maximum current modulation.

  7. Degradation of Flash Memory Using Drain-Avalanche Hot Electron (DAHE) Self-Convergence Operation Scheme

    NASA Astrophysics Data System (ADS)

    Shen, Shih-Jye; Yang, Evans; Wong, Wei-Jer; Wang, Yen-Sen; Lin, Chrong-Jung; Liang, Mong-Song; Hsu, Charles

    1998-07-01

    In this paper, the n-channel Flash memory device degradation by utilizing the drain-avalanche hot electron (DAHE) self-convergence (S-C) scheme is demonstrated for the first time. The injected hole originated by the channel electron induced avalanche hot hole generation is believed to be responsible for this degradation. This hole injection phenomena not only result in the interface state generation but also lead to the hole trapping in the tunnel oxide. The increased interface states degrade the conduction of the channel current severely, which leads to abnormal write/erase (W/E) endurance characteristics. The trapped holes in the tunnel oxide increase the tunneling probability and cause the gate disturbance issue. From the concerns of long term reliability, the self-convergence operation by utilizing the DAHE mechanism is not a proper scheme for reliable Flash memory products.

  8. Amplification of whistler waves propagating through inhomogeneous, anisotropic, mirror-confined hot-electron plasmas

    SciTech Connect

    Guest, G.E.; Miller, R.L.

    1988-12-01

    A fully relativistic local dispersion relation for whistler waves has been solved at closely spaced points along the magnetic field lines of a 2:1 magnetic mirror in which a highly anisotropic, spatially inhomogeneous, hot-electron plasma is confined. The limiting plasma parameters for convective (spatial)= growth have been determined numerically and used to identify plasma conditions leading to maximum amplification of input microwave signals introduced in the form of whistler waves. The maximum gain has been evaluated numerically for a range of values of the hot-electron plasma within which all major stability criteria are satisfied. Very high gains (approx.40 dB) are indicated over the entire range of beta investigated.

  9. Ablation driven by hot electrons generated during the ignitor laser pulse in shock ignition

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.; Zhang, Y.; Liu, S. D.; Zhao, Y. T.

    2012-12-01

    An analytical model for the ablation driven by hot electrons is presented. The hot electrons are assumed to be generated during the high intensity laser spike used to produce the ignitor shock wave in the shock ignition driven inertial fusion concept, and to carry on the absorbed laser energy in its totality. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front and this goal can be achieved for high laser intensities provided that the laser wavelength is short enough. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloud are found in terms of the laser and target parameters. The effect of the preformed plasma assembled by the compression pulse, previous to the ignitor, is also discussed. It is found that a minimum ratio between the compression and the ignitor pulses would be necessary for the adequate matching of the corresponding scale lengths.

  10. Effect of electron density on cutoff frequency of III-N HFETs

    NASA Astrophysics Data System (ADS)

    Matulionis, Arvydas; Morkoç, Hadis

    2014-03-01

    Advances in frequency performance of heterostructure field-effect transistors (HFETs) are discussed in terms of dissipative processes. The conditions for fastest dissipation coincide reasonably well with those for fastest operation and slowest device degradation. The correlation has its genesis in dissipation of the hot-phonon heat accumulated by non-equilibrium optical phonons launched by hot electrons. The hot-phonon heat causes defect formation and additional electron scattering in a different manner as compared with the effects due to conventional heat accumulated by acoustic phonons. The desirable ultrafast conversion of hot phonons into acoustic phonons is assisted by plasmons as demonstrated through measurement of hot-phonon lifetime. Signatures of plasmons have been also resolved in hot-electron transport, transistor frequency performance, phase noise, and device reliability. The plasmon-assisted ultrafast dissipation of hot-phonon heat explains the known necessity for application a stronger negative gate bias to a channel with higher as-grown electron density.

  11. Low and moderate dose gamma-irradiation and annealing impact on electronic and electrical properties of AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Yadav, Anupama; Flitsiyan, Elena; Chernyak, Leonid; Hwang, Ya-Hsi; Hsieh, Yueh-Ling; Lei, Lei; Ren, Fan; Pearton, Stephen J.; Lubomirsky, Igor

    2015-05-01

    To understand the effects of 60Co gamma-irradiation, systematic studies were carried out on n-channel AlGaN/GaN high electron mobility transistors. Electrical testing, combined with electron beam-induced current measurements, was able to provide critical information on defects induced in the material as a result of gamma-irradiation. It was shown that at low gamma-irradiation doses, the minority carrier diffusion length in AlGaN/GaN exhibits an increase up to ∼300 Gy. The observed effect is due to longer minority carrier (hole) life time in the material's valence band as a result of an internal electron irradiation by Compton electrons. However, for larger doses of gamma irradiation (above 400 Gy), deteriorations in transport properties and device characteristics were observed. This is consistent with the higher density of deep traps in the material's forbidden gap induced by a larger dose of gamma-irradiation. Moderate annealing of device structures at 200°C for 25 min resulted in partial recovery of transport properties and device performance.

  12. Ignition conditions relaxation for central hot-spot ignition with an ion-electron non-equilibrium model

    NASA Astrophysics Data System (ADS)

    Fan, Zhengfeng; Liu, Jie; Liu, Bin; Yu, Chengxin; He, X. T.

    2016-01-01

    Fusion ignition experiments on the National Ignition Facility have demonstrated >5 keV hot spot with ρRh lower than 0.3 g/cm2 [Döppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. We present an ion-electron non-equilibrium model, in which the hot-spot ion temperature is higher than its electron temperature so that the hot-spot nuclear reactions are enhanced while energy leaks are considerably reduced. Theoretical analysis shows that the ignition region would be significantly enlarged in the hot-spot ρR-T space as compared with the commonly used equilibrium model. Simulations show that shocks could be utilized to create and maintain non-equilibrium conditions within the hot spot, and the hot-spot ρR requirement is remarkably reduced for achieving self-heating.

  13. ELECTRON HEATING AND ACCELERATION BY MAGNETIC RECONNECTION IN HOT ACCRETION FLOWS

    SciTech Connect

    Ding Jian; Yuan Feng; Liang, Edison

    2010-01-10

    Both analytical and numerical works show that magnetic reconnection must occur in hot accretion flows. This process will effectively heat and accelerate electrons. In this paper, we use the numerical hybrid simulation of magnetic reconnection plus the test-electron method to investigate the electron acceleration and heating due to magnetic reconnection in hot accretion flows. We consider fiducial values of density, temperature, and magnetic parameter beta{sub e} (defined as the ratio of the electron pressure to the magnetic pressure) of the accretion flow as n{sub 0} approx 10{sup 6} cm{sup -3}, T {sup 0}{sub e} approx 2 x 10{sup 9} K, and beta{sub e} = 1. We find that electrons are heated to a higher temperature T{sub e} = 5 x 10{sup 9} K, and a fraction eta approx 8% of electrons are accelerated into a broken power-law distribution, dN(gamma) propor to gamma{sup -p}, with p approx 1.5 and 4 below and above approx1 MeV, respectively. We also investigate the effect of varying beta and n{sub 0}. We find that when beta{sub e} is smaller or n{sub 0} is larger, i.e., the magnetic field is stronger, T{sub e} , eta, and p all become larger.

  14. Modeling Hot-Electron Measurements in Multibeam Two-Plasmon-Decay Experiments

    NASA Astrophysics Data System (ADS)

    Follett, R. K.; Edgell, D. H.; Henchen, R. J.; Hu, S. X.; Katz, J.; Michel, D. T.; Myatt, J. F.; Shaw, J. G.; Solodov, A. A.; Yaakobi, B.; Froula, D. H.

    2015-11-01

    Many-beam laser facilities introduce laser-plasma interactions where multiple beams can couple to common daughter waves. Recent theory, modeling, and experiments have suggested that multiple laser beams can drive the two-plasmon-decay (TPD) instability through common electron plasma waves. Experiments and modeling suggest that these waves lead to turbulence and the acceleration of electrons to high energies. Experiments on OMEGA used ultraviolet Thomson scattering to observe TPD-driven electron plasma waves and hard x-ray detectors to infer the corresponding hot-electron production. The experiments were modeled in 3-D using a hybrid code (LPSE) that combines a pseudospectral wave solver for calculating the bulk fluid behavior with a particle tracker for calculating nonlinear Landau damping. Detailed comparison of both the hot-electron generation and the turbulent electron plasma wave spectrum are in excellent agreement with the experimental measurements. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.

    PubMed

    Brandt, Nathaniel C; Keller, Emily L; Frontiera, Renee R

    2016-08-18

    Hot electrons generated through plasmonic excitations in metal nanostructures show great promise for efficiently driving chemical reactions with light. However, the lifetime, yield, and mechanism of action of plasmon-generated hot electrons involved in a given photocatalytic process are not well understood. Here, we develop ultrafast surface-enhanced Raman scattering (SERS) as a direct probe of plasmon-molecule interactions in the plasmon-catalyzed dimerization of 4-nitrobenzenethiol to p,p'-dimercaptoazobenzene. Ultrafast SERS probing of these molecular reporters in plasmonic hot spots reveals transient Fano resonances, which we attribute to near-field coupling of Stokes-shifted photons to hot electron-driven metal photoluminescence. Surprisingly, we find that hot spots that yield more photoluminescence are much more likely to drive the reaction, which indirectly proves that plasmon-generated hot electrons induce the photochemistry. These ultrafast SERS results provide insight into the relative reactivity of different plasmonic hot spot environments and quantify the ultrafast lifetime of hot electrons involved in plasmon-driven chemistry. PMID:27488515

  16. Threshold-Voltage Shifts in Organic Transistors Due to Self-Assembled Monolayers at the Dielectric: Evidence for Electronic Coupling and Dipolar Effects.

    PubMed

    Aghamohammadi, Mahdieh; Rödel, Reinhold; Zschieschang, Ute; Ocal, Carmen; Boschker, Hans; Weitz, R Thomas; Barrena, Esther; Klauk, Hagen

    2015-10-21

    The mechanisms behind the threshold-voltage shift in organic transistors due to functionalizing of the gate dielectric with self-assembled monolayers (SAMs) are still under debate. We address the mechanisms by which SAMs determine the threshold voltage, by analyzing whether the threshold voltage depends on the gate-dielectric capacitance. We have investigated transistors based on five oxide thicknesses and two SAMs with rather diverse chemical properties, using the benchmark organic semiconductor dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene. Unlike several previous studies, we have found that the dependence of the threshold voltage on the gate-dielectric capacitance is completely different for the two SAMs. In transistors with an alkyl SAM, the threshold voltage does not depend on the gate-dielectric capacitance and is determined mainly by the dipolar character of the SAM, whereas in transistors with a fluoroalkyl SAM the threshold voltages exhibit a linear dependence on the inverse of the gate-dielectric capacitance. Kelvin probe force microscopy measurements indicate this behavior is attributed to an electronic coupling between the fluoroalkyl SAM and the organic semiconductor. PMID:26415103

  17. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates

    SciTech Connect

    Leenheer, Andrew J.; Narang, Prineha; Atwater, Harry A.; Lewis, Nathan S.

    2014-04-07

    Collection of hot electrons generated by the efficient absorption of light in metallic nanostructures, in contact with semiconductor substrates can provide a basis for the construction of solar energy-conversion devices. Herein, we evaluate theoretically the energy-conversion efficiency of systems that rely on internal photoemission processes at metal-semiconductor Schottky-barrier diodes. In this theory, the current-voltage characteristics are given by the internal photoemission yield as well as by the thermionic dark current over a varied-energy barrier height. The Fowler model, in all cases, predicts solar energy-conversion efficiencies of <1% for such systems. However, relaxation of the assumptions regarding constraints on the escape cone and momentum conservation at the interface yields solar energy-conversion efficiencies as high as 1%–10%, under some assumed (albeit optimistic) operating conditions. Under these conditions, the energy-conversion efficiency is mainly limited by the thermionic dark current, the distribution of hot electron energies, and hot-electron momentum considerations.

  18. Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals.

    PubMed

    Chou, Jeffrey B; Li, Xin-Hao; Wang, Yu; Fenning, David P; Elfaer, Asmaa; Viegas, Jaime; Jouiad, Mustapha; Shao-Horn, Yang; Kim, Sang-Gook

    2016-09-01

    Plasmon assisted photoelectric hot electron collection in a metal-semiconductor junction can allow for sub-bandgap optical to electrical energy conversion. Here we report hot electron collection by wafer-scale Au/TiO2 metallic-semiconductor photonic crystals (MSPhC), with a broadband photoresponse below the bandgap of TiO2. Multiple absorption modes supported by the 2D nano-cavity structure of the MSPhC extend the photon-metal interaction time and fulfill a broadband light absorption. The surface plasmon absorption mode provides access to enhanced electric field oscillation and hot electron generation at the interface between Au and TiO2. A broadband sub-bandgap photoresponse centered at 590 nm was achieved due to surface plasmon absorption. Gold nanorods were deposited on the surface of MSPhC to study localized surface plasmon (LSP) mode absorption and subsequent injection to the TiO2 catalyst at different wavelengths. Applications of these results could lead to low-cost and robust photo-electrochemical applications such as more efficient solar water splitting. PMID:27607726

  19. Surface-plasmon enhanced photodetection at communication band based on hot electrons

    SciTech Connect

    Wu, Kai; Zhan, Yaohui E-mail: xfli@suda.edu.cn; Wu, Shaolong; Deng, Jiajia; Li, Xiaofeng E-mail: xfli@suda.edu.cn

    2015-08-14

    Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-step electrical simulation, the optimized device exhibits an unbiased responsivity of ∼0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.

  20. Electron - polar acoustical phonon interactions in nitride based diluted magnetic semiconductor quantum well via hot electron magnetotransport

    SciTech Connect

    Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.

    2015-05-15

    In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering.