Science.gov

Sample records for hot surface 1st

  1. Hot Billet Surface Qualifier

    SciTech Connect

    Tzyy-Shuh Chang

    2007-04-30

    OG Technologies, Inc. (OGT), developed a prototype of a Hot Billet Surface Qualifier (“Qualifier”) based on OGT’s patented HotEye™ technology and other proprietary imaging and computing technologies. The Qualifier demonstrated its ability of imaging the cast billets in line with high definition pictures, pictures capable of supporting the detection of surface anomalies on the billets. The detection will add the ability to simplify the subsequent process and to correct the surface quality issues in a much more timely and efficient manner. This is challenging due to the continuous casting environment, in which corrosive water, temperature, vibration, humidity, EMI and other unbearable factors exist. Each installation has the potential of 249,000 MMBTU in energy savings per year. This represents a cost reduction, reduced emissions, reduced water usage and reduced mill scale.

  2. 16 CFR 1505.51 - Hot surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Hot surfaces. 1505.51 Section 1505.51 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... CHILDREN Policies and Interpretations § 1505.51 Hot surfaces. (a) Test probe. Section 1505.6(g)(2)...

  3. 16 CFR 1505.51 - Hot surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Hot surfaces. 1505.51 Section 1505.51 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... CHILDREN Policies and Interpretations § 1505.51 Hot surfaces. (a) Test probe. Section 1505.6(g)(2)...

  4. 16 CFR 1505.51 - Hot surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Hot surfaces. 1505.51 Section 1505.51 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... CHILDREN Policies and Interpretations § 1505.51 Hot surfaces. (a) Test probe. Section 1505.6(g)(2)...

  5. 16 CFR 1505.51 - Hot surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Hot surfaces. 1505.51 Section 1505.51 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... CHILDREN Policies and Interpretations § 1505.51 Hot surfaces. (a) Test probe. Section 1505.6(g)(2)...

  6. The X-37 Hot Structure Control Surface Testing

    NASA Technical Reports Server (NTRS)

    Hudson, Larry D.; Stephens, Craig A.

    2006-01-01

    Thermal-structural testing of three hot structure control surface subcomponent test articles (STA) designed for the X-37 (Boeing Phantom Works, Huntington Beach, California) Orbital Vehicle (OV) has been completed. The test articles were subcomponents of the X-37 OV bodyflap and flaperon control surfaces.

  7. 16 CFR 1505.51 - Hot surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REQUIREMENTS FOR ELECTRICALLY OPERATED TOYS OR OTHER ELECTRICALLY OPERATED ARTICLES INTENDED FOR USE BY... into any opening in the toy. Unless the probe contacts a surface within 3 inches of the plane of the toy's opening, that surface is not accessible. (b) Accessibility of Type C and C-marked...

  8. Hot embossing of PTFE: Towards superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Jucius, D.; Grigaliūnas, V.; Mikolajūnas, M.; Guobienė, A.; Kopustinskas, V.; Gudonytė, A.; Narmontas, P.

    2011-01-01

    Three types of reusable stamps with features in the form of 2D arrays of pits having lateral dimensions in the range of 2-80 μm and heights of 1.5-15 μm were successfully employed for the hot embossing of PTFE at temperatures up to 50 °C above the glass transition temperature of PTFE amorphous phase. Due to the softening of PTFE at the temperatures used in this study, we were able to decrease imprint pressure significantly when comparing with the imprint conditions reported by other authors. Impact of the imprint temperature, pressure and time on the fidelity of pattern transfer as well as on water repellency was tested. The best results of embossing were achieved by applying pressure of 10 kg/cm 2 for 2 min at 170 °C. In this case, flattening of a natural PTFE roughness and pretty accurate deep replicas of the stamp patterns were observable on the whole imprinted area. Improvement in water repellency was largest for the samples imprinted by Ni stamp patterned with a 2D array of 2 μm square pits spaced by the same dimension and having a depth of 1.5 μm. Cassie-Baxter wetting regime was observed for the deepest imprints with water contact angles up to the superhydrophobic limit.

  9. Meteor 55 Exchanges between the Surface Ocean and the Lower Atmosphere in the Tropical Atlantic: Results from the 1st German SOLAS cruise

    NASA Astrophysics Data System (ADS)

    Wallace, D.; M55 Participants

    2003-04-01

    Meteor 55 (Oct 12-Nov 17, 2002: Curacao to Douala) was a single-leg expedition which completed a trans-Atlantic section from west to east along 10º together with a short, mid ocean North-South transect to the equatorial upwelling. Underway measurements of air, atmospheric particles and surface seawater were performed continuously throughout the cruise. At discrete stations along the cruise track, vertical profiles were obtained from mostly shallow (< 500 m) CTD casts, but also 10 deep stations to the bottom, for a suite of biological and chemical parameters. Shipboard incubations were also conducted to examine the response of phytoplankton to the effects of various nutrients and physical conditions. The overall objective of the cruise was to examine ways in which surface ocean biology and chemistry affect the atmosphere and how atmospheric chemistry, in particular the deposition of particles, affects surface ocean biology and chemistry. This poster will present an overview of the measurements performed during this cruise and some preliminary results.

  10. Hot Slab Surface Inspection By Laser Scanning Method

    NASA Astrophysics Data System (ADS)

    Matsubara, Toshiro; Toyota, Toshio; Fujiyama, Akihiro

    1986-10-01

    An optical flaw detector with laser as the external light source, which is called LST ( laser scanning tester ), has been developed. This equipment automatically inspects the entire surface of hot slabs. The results are used to examine the suitability of those slabs for hot charge rolling. The characteristics of LST are its high optical resolving power and the signal processing method with which two-dimensional information on the type of the flaw is processed. For the opening width of O.4mm and over, the detection ratio is nearly 100%. This equipment started commercial operation in January 1983 in Nippon Steel's Yawata Works and its application has increased the hot charge rolling ratio.

  11. Quantitative visualization of droplet hot-surface interaction

    NASA Astrophysics Data System (ADS)

    Erkan, Nejdet; Okamoto, Koji

    2013-11-01

    Up to this date liquid droplet impingement phenomenon onto hot surfaces has drawn massive attention from a broad spectrum of research fields, since its hydrodynamic and thermodynamic characteristics has profound importance for various industrial applications Although tremendous experimental and computational work exist in the literature, thermal-hydraulic mechanism of droplet impingement boiling on hot surfaces received several contradictory approaches due to the parametric sensitivity of the problem. To understand and to predict the physical mechanism, an experimental database including large amount of spatio-temporal data, which is formed by the tests performed under well-controlled BCs and high sensitive devices, is still a necessity. This study investigates the parametric variation of droplet boiling regimes due to the experimental BCs (e.g surface roughness, ambient pressure) by performing separate effect tests employing high-speed visualization system. Differences in the impingement boiling characteristics of water droplets on solid (with surface roughness) and liquid metal (without surface roughness) in film boiling regime are investigated. A unique quantitative velocity data inside the droplet at several surface temperatures including (Leidenfrost temperatures) captured by Particle Tracking Velocimetry (PTV). This data is a unique component for the validation of CFD simulations which are performed to resolve the phenomena.

  12. Surface characterization of hot-dip Galfan coatings

    SciTech Connect

    Bluni, S.T.; Marder, A.R.; Goldstein, J.I. . Materials Science Engineering Dept.)

    1994-09-01

    The surface of a hot dipped Galfan (Zn-5wt.%Al-mischmetal) coating on sheet steel was characterized with the use of various microscopy techniques. Surface depressions, or dents, were found to occur at eutectic nodule boundaries and triple points, and were typically 10--15 [mu]m deep. The surface characteristics of the Galfan coating were reproduced by the solidification of Zn-5%Al-mischmetal alloy samples on an inert substrate, implying that surface depressions are not caused by substrate interactions. Chemical analyses of both the coating and the alloy samples indicate that impurities, particularly lead, are strongly segregated to eutectic nodule boundaries and triple points. Based on these observations, a mechanism for denting and cracking in Galfan coatings is suggested.

  13. Hot-rolling nanowire transparent electrodes for surface roughness minimization

    PubMed Central

    2014-01-01

    Silver nanowire transparent electrodes are a promising alternative to transparent conductive oxides. However, their surface roughness presents a problem for their integration into devices with thin layers such as organic electronic devices. In this paper, hot rollers are used to soften plastic substrates with heat and mechanically press the nanowires into the substrate surface. By doing so, the root-mean-square surface roughness is reduced to 7 nm and the maximum peak-to-valley value is 30 nm, making the electrodes suitable for typical organic devices. This simple process requires no additional materials, which results in a higher transparency, and is compatible with roll-to-roll fabrication processes. In addition, the adhesion of the nanowires to the substrate significantly increases. PMID:24994963

  14. Hot-rolling nanowire transparent electrodes for surface roughness minimization

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh Khaligh, Hadi; Goldthorpe, Irene A.

    2014-06-01

    Silver nanowire transparent electrodes are a promising alternative to transparent conductive oxides. However, their surface roughness presents a problem for their integration into devices with thin layers such as organic electronic devices. In this paper, hot rollers are used to soften plastic substrates with heat and mechanically press the nanowires into the substrate surface. By doing so, the root-mean-square surface roughness is reduced to 7 nm and the maximum peak-to-valley value is 30 nm, making the electrodes suitable for typical organic devices. This simple process requires no additional materials, which results in a higher transparency, and is compatible with roll-to-roll fabrication processes. In addition, the adhesion of the nanowires to the substrate significantly increases.

  15. Microfabrication of polymeric surfaces with extreme wettability using hot embossing

    NASA Astrophysics Data System (ADS)

    Falah Toosi, Salma; Moradi, Sona; Ebrahimi, Marzieh; Hatzikiriakos, Savvas G.

    2016-08-01

    Hot embossing was utilized to imprint topographical metallic patterns on the surfaces of thermoplastic polymers in order to create superhydrophobic and superoleophobic polymeric surfaces. The stainless steel (SS) micro/nano structured templates were fabricated using femtosecond laser ablation. The SS laser ablated templates were employed to imprint micron/submicron periodic structures onto the surface of high density polyethylene (HDPE), polylactic acid (PLA), and medical PVC at temperatures slightly above their melting points and pressures in the range of 3-12 MPa. Results have shown that the water contact angle (CA) of imprinted polymers increased to above 160° in the case of PLA and HDPE, while their water contact angle hysteresis (CAH) were significantly below 10°. In the case of medical-PVC, imprinting produced morphologies with high CA and high CAH (petal effect) due to the adhesion forces developed at the interface between the hydrophilic plasticizer of medical-PVC (TOTM) and water droplets. It is also noted that the re-entrant superoleophobic patterns created on HDPE through imprinting closely resemble the patterns found on the surface of filefish skin that is densely angled microfiber arrays. This bioinspired surface is highly capable of repelling both polar (water) and non-polar liquids of low surface tension and meets the superoleophobicity criteria.

  16. Dynamics of microdroplets over the surface of hot water

    NASA Astrophysics Data System (ADS)

    Umeki, Takahiro; Ohata, Masahiko; Nakanishi, Hiizu; Ichikawa, Masatoshi

    2015-01-01

    When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 μm ii) they levitate above the water surface by 10 ~ 100 μm iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1 ~ 2 m/s and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet.

  17. Dynamics of microdroplets over the surface of hot water

    PubMed Central

    Umeki, Takahiro; Ohata, Masahiko; Nakanishi, Hiizu; Ichikawa, Masatoshi

    2015-01-01

    When drinking a cup of coffee under the morning sunshine, you may notice white membranes of steam floating on the surface of the hot water. They stay notably close to the surface and appear to almost stick to it. Although the membranes whiffle because of the air flow of rising steam, peculiarly fast splitting events occasionally occur. They resemble cracking to open slits approximately 1 mm wide in the membranes, and leave curious patterns. We studied this phenomenon using a microscope with a high-speed video camera and found intriguing details: i) the white membranes consist of fairly monodispersed small droplets of the order of 10 μm; ii) they levitate above the water surface by 10 ~ 100 μm; iii) the splitting events are a collective disappearance of the droplets, which propagates as a wave front of the surface wave with a speed of 1 ~ 2 m/s; and iv) these events are triggered by a surface disturbance, which results from the disappearance of a single droplet. PMID:25623086

  18. "Hard Science" for Gifted 1st Graders

    ERIC Educational Resources Information Center

    DeGennaro, April

    2006-01-01

    "Hard Science" is designed to teach 1st grade gifted students accurate and high level science concepts. It is based upon their experience of the world and attempts to build a foundation for continued love and enjoyment of science. "Hard Science" provides field experiences and opportunities for hands-on discovery working beside experts in the field…

  19. Hot water surface pasteurization for inactivating Salmonella on surfaces of mature green tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Outbreaks of salmonellosis have been associated with the consumption of tomatoes contaminated with Salmonella. Commercial washing processes for tomatoes are limited in their ability to inactivate and/or remove this human pathogen. Our objective was to develop a hot water surface pasteurization pro...

  20. Effects of surface chemistry on hot corrosion life: Overview

    NASA Technical Reports Server (NTRS)

    Merutka, J.

    1982-01-01

    This program concentrates on analyzing a limited number of hot corroded components from the field and the carrying out of a series of controlled laboratory experiments to establish the effects of oxide scale and coating chemistry on hot corrosion life. This is to be determined principally from the length of the incubation period, the investigation of the mechanisms of hot corrosion attack, and the fitting of the data generated from the test exposure experiments to an empirical life prediction model.

  1. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.; Gupta, B. K.

    1984-01-01

    Hot corrosion life prediction methodology based on a combination of laboratory test data and field service turbine components, which show evidence of hot corrosion, were examined. Components were evaluated by optical metallography, scanning electron microscopy (SEM), and electron micropulse (EMP) examination.

  2. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.

    1985-01-01

    Burner rig tests were conducted under the following conditions: 900 C, hourly thermal cycling, 0.5 ppm sodium as MaCl in the gas stream, velocity 0.3 Mach. The alloys are Udiment 700, Rene 80, uncoated and with RT21, Codep, or NiCoCrAlY coatings. These tests were completed for specimens in the as-processed condition and after aging at 1100 C in oxidizing or inert evnivronments for time up to 600 hours. Coil inductance changes used for periodic nondestructive inspection of specimens were useful in following the course of corrosion. Typical sulfidation was observed in all cases, structurally similar to that observed for service-run turbine components. Aging at cuased a severe decrease in hot corrosion life of RT21 and Codep coatings and a significant but less decrease in the life of the NiCoCrAlY coating. The extent of these decreases was much greater for all three coatings on U700 substrates than on Rene 80 substrates. Coating/substrate interdiffusion rather than by surface oxidation.

  3. Cold Water Jets on a Hot Si surface

    NASA Astrophysics Data System (ADS)

    Park, Ji Yong; Min, Chang-Ki; Cahill, David; Granick, Steve

    2010-03-01

    We are using a femtosecond pump-probe apparatus to study heat transfer when a pulsed jet of liquid water impinges on a hot Pt-coated Si surface (Leidenfrost Effect). The light source in the experiment is a 100 mW Er:fiber laser operating at a wavelength of λ=1550 nm; the total volume of the pulsed water jet is ˜0.9 mm^3. The temperature change within the Si substrate at a distance of 50 microns from the interface is measured by a novel time-resolved thermometry based on two-photon absorption. We measure the thermal conductance of the water layer within 50 nm of the interface by time-domain thermo-reflectance; changes in the thermal conductance provide a direct measurement of the contact time of the liquid. We convert the integral of the temperature excursion to the energy transferred using a Green's function solution of heat conduction in the Si substrate. Both the energy transferred and contact time show a smooth evolution from high values at 110C to low values at 210C without any clear indication of a Leidenfrost point.

  4. The effect of hot electrons and surface plasmons on heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-01

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal–semiconductor, and metal–insulator–metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles.

  5. The effect of hot electrons and surface plasmons on heterogeneous catalysis.

    PubMed

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-29

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal-semiconductor, and metal-insulator-metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles. PMID:27166263

  6. Lock No. 1 St. Lucie Canal. Sector gates, internal struts ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lock No. 1- St. Lucie Canal. Sector gates, internal struts- nose beams. - St. Lucie Canal, St. Lucie Lock No. 1, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL

  7. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.; Leese, G. E.

    1985-01-01

    This program has its primary objective: the development of hot corrosion life prediction methodology based on a combination of laboratory test data and evaluation of field service turbine components which show evidence of hot corrosion. The laboratory program comprises burner rig testing by TRW. A summary of results is given for two series of burner rig tests. The life prediction methodology parameters to be appraised in a final campaign of burner rig tests are outlined.

  8. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.

    1984-01-01

    Baseline burner rig hot corrosion with Udimet 700, Rene' 80; uncoated and with RT21, Codep, or NiCoCrAlY coatings were tested. Test conditions are: 900C, hourly thermal cycling, 0.5 ppm sodium as NaCl in the gas stream, velocity 0.3 Mach. The uncoated alloys exhibited substantial typical sulfidation in the range of 140 to 170 hours. The aluminide coatings show initial visual evidence of hot corrosion at about 400 hours, however, there is no such visual evidence for the NiCoCrAlY coatings. The turbine components show sulfidation. The extent of this distress appeared to be inversely related to the average length of mission which may, reflect greater percentage of operating time near ground level or greater percentage of operation time at takeoff conditions (higher temperatures). In some cases, however, the location of maximum distress did not exhibit the structural features of hot corrosion.

  9. Ultrafast Hot Carrier Scattering and Generation from Surface Plasmons in Noble Metals

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-03-01

    Non-equilibrium ``hot''carriers in materials are challenging to study experimentally as they thermalize at subpicosecond time and nanometer length scale. Recent experiments employed hot carriers generated by light absorption or surface plasmon annihilation in noble metals (e.g., Au and Ag) for catalysis and solar cells. The energy distribution and transport of the generated hot carriers play a key role in these experiments. We present ab initio calculations of the energy distribution of hot carriers generated by surface plasmons in noble metals, and the relaxation time and mean free path of the hot carriers along different crystal directions within 5 eV of the Fermi energy. Our calculations show the interplay of the noble metal s and d bands in determining the damping rate of the plasmon and the mean free path of the hot carriers. The trends we find as a function of surface plasmon momentum and frequency allow us to define optimal experimental conditions for hot carrier generation and extraction. Our approach combines density functional theory, GW, and electron-phonon calculations. Our work provides microscopic insight into hot carriers in noble metals, and their ultrafast dynamics in the presence of surface plasmons.

  10. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.

    PubMed

    Park, Jeong Young; Kim, Sun Mi; Lee, Hyosun; Nedrygailov, Ievgen I

    2015-08-18

    Energy dissipation at surfaces and interfaces is mediated by excitation of elementary processes, including phonons and electronic excitation, once external energy is deposited to the surface during exothermic chemical processes. Nonadiabatic electronic excitation in exothermic catalytic reactions results in the flow of energetic electrons with an energy of 1-3 eV when chemical energy is converted to electron flow on a short (femtosecond) time scale before atomic vibration adiabatically dissipates the energy (in picoseconds). These energetic electrons that are not in thermal equilibrium with the metal atoms are called "hot electrons". The detection of hot electron flow under atomic or molecular processes and understanding its role in chemical reactions have been major topics in surface chemistry. Recent studies have demonstrated electronic excitation produced during atomic or molecular processes on surfaces, and the influence of hot electrons on atomic and molecular processes. We outline research efforts aimed at identification of the intrinsic relation between the flow of hot electrons and catalytic reactions. We show various strategies for detection and use of hot electrons generated by the energy dissipation processes in surface chemical reactions and photon absorption. A Schottky barrier localized at the metal-oxide interface of either catalytic nanodiodes or hybrid nanocatalysts allows hot electrons to irreversibly transport through the interface. We show that the chemicurrent, composed of hot electrons excited by the surface reaction of CO oxidation or hydrogen oxidation, correlates well with the turnover rate measured separately by gas chromatography. Furthermore, we show that hot electron flows generated on a gold thin film by photon absorption (or internal photoemission) can be amplified by localized surface plasmon resonance. The influence of hot charge carriers on the chemistry at the metal-oxide interface are discussed for the cases of Au, Ag, and Pt

  11. Controlling surface-plasmon-polaritons launching with hot spot cylindrical waves in a metallic slit structure.

    PubMed

    Yao, Wenjie; Sun, Chengwei; Gong, Qihuang; Chen, Jianjun

    2016-09-23

    Plasmonic nanostructures, which are used to generate surface plasmon polaritons (SPPs), always involve sharp corners where the charges can accumulate. This can result in strong localized electromagnetic fields at the metallic corners, forming the hot spots. The influence of the hot spots on the propagating SPPs are investigated theoretically and experimentally in a metallic slit structure. It is found that the electromagnetic fields radiated from the hot spots, termed as the hot spot cylindrical wave (HSCW), can greatly manipulate the SPP launching in the slit structure. The physical mechanism behind the manipulation of the SPP launching with the HSCW is explicated by a semi-analytic model. By using the HSCW, unidirectional SPP launching is experimentally realized in an ultra-small metallic step-slit structure. The HSCW bridges the localized surface plasmons and the propagating surface plasmons in an integrated platform and thus may pave a new route to the design of plasmonic devices and circuits. PMID:27533591

  12. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.; Leese, G. E.

    1986-01-01

    Burner rig tests were conducted under the following conditions: 900 C, hourly thermal cycling, 0.5 ppm sodium as NaCl in the gas stream, and Mach 0.3 velocity. The alloys tested were Udimet 700 (U700) and Rene 80, uncoated and with RT21, Codep, or NiCoCrAlY coatings. The tests, up to 1000 hours, included specimens in the as-processed condition and after aging at 1100 C in oxidizing or inert environments for up to 600 hours. Coil-inductance changes were measured for periodic nondestructive inspection of speciments and found useful in the following course of corrosion. Typical sulfidation observed in all cases was similar to that observed in service-run turbine components. Aging at 1100 C caused severe decrease in the hot corrosion life of RT21 and Codep coatings and a significant but lesser decrease in the life of NiCoCrAlY coatings. The extent of these decreases was much greater for all three coatings on U700 than on Rene substrates. A coating hot corrosion life-predicitin model was proposed. The model requires time/temperature information for a turbine component at takeoff conditions as well as environmental contaminant information.

  13. Monitoring of hot water plume movements in an aquifer with borehole/surface resistivity measurements

    SciTech Connect

    Tsang, C.F.; Wilt, M.J.

    1985-05-01

    In this study a simulation of a downhole/surface resistivity experiment to map a hot water plume was performed using a three-dimensional computer code. A fixed amount of hot water was placed in an aquifer between 45 and 70 m below ground surface and resistivity measurements were made at the surface using a current electrode in the hot water body. Results indicate that the anomaly is much greater using the downhole electrode than for surface arrays and that the data may be used to roughly characterize the hot water mass and its boundaries. Several cases involving different plume boundaries were studied and results indicate that the downhole/surface measurements are not very sensitive to differences in the boundary geometry although a rough determination of the boundary position is possible. For the case where the hot water plume is moving relative to the downhole current electrode until it completely leaves the electrode behind, the anomaly size is smaller but the shape allows for good discrimination of the near-side boundary.

  14. Non-wetting droplets on hot superhydrophilic surfaces.

    PubMed

    Adera, Solomon; Raj, Rishi; Enright, Ryan; Wang, Evelyn N

    2013-01-01

    Controlling wettability by varying surface chemistry and roughness or by applying external stimuli is of interest for a wide range of applications including microfluidics, drag reduction, self-cleaning, water harvesting, anti-corrosion, anti-fogging, anti-icing and thermal management. It has been well known that droplets on textured hydrophilic, that is superhydrophilic, surfaces form thin films with near-zero contact angles. Here we report an unexpected behaviour where non-wetting droplets are formed by slightly heating superhydrophilic microstructured surfaces beyond the saturation temperature (>5 °C). Although such behaviour is generally not expected on superhydrophilic surfaces, an evaporation-induced pressure in the structured region prevents wetting. In particular, the increased thermal conductivity and decreased vapour permeability of the structured region allows this behaviour to be observed at such low temperatures. This phenomenon is distinct from the widely researched Leidenfrost and offers an expanded parametric space for fabricating surfaces with desired temperature-dependent wettability. PMID:24077386

  15. Rewetting of hot vertical rod during jet impingement surface cooling

    NASA Astrophysics Data System (ADS)

    Agrawal, Chitranjan; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun

    2016-06-01

    A stainless steel (SS-316) vertical rod of 12 mm diameter at 800 ± 10 °C initial temperature was cooled by normal impinging round water jet. The surface rewetting phenomenon was investigated for a range of jet diameter 2.5-4.8 mm and jet Reynolds number 5000-24,000 using a straight tube type nozzle. The investigation were made from the stagnation point to maximum 40 mm downstream locations, simultaneously for both upside and downside directions. The cooling performance of the vertical rod was evaluated on the basis of rewetting parameters i.e. rewetting temperature, wetting delay, rewetting velocity and the maximum surface heat flux. Two separate Correlations have been proposed for the dimensionless rewetting velocity in terms of rewetting number and the maximum surface heat flux that predicts the experimental data within an error band of ±20 and ±15 % respectively.

  16. Amplification of hot electron flow by the surface plasmon effect on metal-insulator-metal nanodiodes.

    PubMed

    Lee, Changhwan; Nedrygailov, Ievgen I; Lee, Young Keun; Ahn, Changui; Lee, Hyosun; Jeon, Seokwoo; Park, Jeong Young

    2015-11-01

    Au-TiO2-Ti nanodiodes with a metal-insulator-metal structure were used to probe hot electron flows generated upon photon absorption. Hot electrons, generated when light is absorbed in the Au electrode of the nanodiode, can travel across the TiO2, leading to a photocurrent. Here, we demonstrate amplification of the hot electron flow by (1) localized surface plasmon resonance on plasmonic nanostructures fabricated by annealing the Au-TiO2-Ti nanodiodes, and (2) reducing the thickness of the TiO2. We show a correlation between changes in the morphology of the Au electrodes caused by annealing and amplification of the photocurrent. Based on the exponential dependence of the photocurrent on TiO2 thickness, the transport mechanism for the hot electrons across the nanodiodes is proposed. PMID:26451470

  17. Amplification of hot electron flow by the surface plasmon effect on metal-insulator-metal nanodiodes

    NASA Astrophysics Data System (ADS)

    Lee, Changhwan; Nedrygailov, Ievgen I.; Lee, Young Keun; Ahn, Changui; Lee, Hyosun; Jeon, Seokwoo; Park, Jeong Young

    2015-11-01

    Au-TiO2-Ti nanodiodes with a metal-insulator-metal structure were used to probe hot electron flows generated upon photon absorption. Hot electrons, generated when light is absorbed in the Au electrode of the nanodiode, can travel across the TiO2, leading to a photocurrent. Here, we demonstrate amplification of the hot electron flow by (1) localized surface plasmon resonance on plasmonic nanostructures fabricated by annealing the Au-TiO2-Ti nanodiodes, and (2) reducing the thickness of the TiO2. We show a correlation between changes in the morphology of the Au electrodes caused by annealing and amplification of the photocurrent. Based on the exponential dependence of the photocurrent on TiO2 thickness, the transport mechanism for the hot electrons across the nanodiodes is proposed.

  18. Hot-electron surface retention in intense short-pulse laser-matter interactions

    SciTech Connect

    Mason, R.J.; Dodd, E.S.; Albright, B.J.

    2005-07-01

    Implicit hybrid plasma simulations predict that a significant fraction of the energy deposited into hot electrons can be retained near the surface of targets with steep density gradients illuminated by intense short-pulse lasers. This retention derives from the lateral transport of heated electrons randomly emitted in the presence of spontaneous magnetic fields arising near the laser spot, from geometric effects associated with a small hot-electron source, and from E fields arising in reaction to the ponderomotive force. Below the laser spot hot electrons are axially focused into a target by the B fields, and can filament in moderate Z targets by resistive Weibel-like instability, if the effective background electron temperature remains sufficiently low. Carefully engineered use of such retention in conjunction with ponderomotive density profile steepening could result in a reduced hot-electron range that aids fast ignition. Alternatively, such retention may disturb a deeper deposition needed for efficient radiography and backside fast ion generation.

  19. Denitrification 'hot spots' in soil following surface residue application

    NASA Astrophysics Data System (ADS)

    Kuntz, Marianne; Morley, Nicholas J.; Hallett, Paul D.; Watson, Christine; Baggs, Elizabeth M.

    2015-04-01

    The availability of organic C is an important driver for the production and reduction of the greenhouse gas nitrous oxide (N2O) during denitrification. Denitrification as a response to plant residue amendments to soil surfaces has been extensively researched. However, the nature of hotspot sites of N2O production and reduction within the soil profile, especially in relation to the location of applied residues, is unknown. In a laboratory experiment we investigated the relationship between denitrifier N2O surface fluxes and N2O production and reduction sites. Probes which equilibrate with the soil gas phase by diffusion were developed to quantify denitrification products and product ratios at 1-2 cm, 4.5-5.5 cm or 8-9 cm from the surface. 13C labelled barley straw was incorporated at rates of 0, 2 and 4 t ha-1 into the top 3 cm of soil and subsequently amended with 14NH415NO3. In a three week experiment the soil gas phase at the three depths was analysed for 15N-N2O, 15N-N2, 13C-CO2 and O2 concentrations. Additionally, cores were destructively sampled for mineral 15N as well as microbial C and dissolved C in the respective depths. 15N-N2O and CO2 surface fluxes peaked one day after N application, with residue application resulting in significantly higher 15N-N2O emission rates compared to the non-amended control. The timing of the 15N-N2O surface flux on day 1 was related to maximum 15N-N2O concentrations of 36.6 μg 15N L-1 within the pore space at 5 cm depth. Three days after fertilizer application 15N-N2O pore space concentrations had significantly increased to 193 μg 15N L-1 at 9 cm depth indicating denitrifier activity at greater depth. Denitrification below the soil surface could be explained by increased microbial activity, oxygen depletion with increasing depth and progressive downwards diffusion of fertilizer NO3-. However, C availability appeared to only affect denitrification in the surface layer in which the residue was incorporated. Our results provide

  20. Effect of Surface Preparation on CLAM/CLAM Hot Isostatic Pressing diffusion bonding joints

    NASA Astrophysics Data System (ADS)

    Li, C.; Huang, Q.; Zhang, P.

    2009-04-01

    Surface preparation is essential for the Hot Isostatic Pressing (HIP) diffusion bonding of RAFM steels. Hot Isostatic Pressing (HIP) diffusion bonding experiments on China Low Activation Martensitic (CLAM) steel was performed to study the effect of surface preparation. A few approaches such as hand lapping, dry-milling and grinding etc., were used to prepare the faying surfaces of the HIP joints. Different sealing techniques were used as well. The HIP parameters were 150 MPa/3 h/1150 °C. After post HIP heat treatment (PHHT), the tensile and Charpy impact tests were carried out. The results showed that hand lapping was not suitable to prepare the faying surfaces of HIP diffusion bonding specimens although the surface roughness by hand lapping was very low.

  1. Hot water surface pasteurisation of lamb carcasses: microbial effects and cost-benefit considerations.

    PubMed

    Hauge, Sigrun J; Wahlgren, Magnus; Røtterud, Ole-Johan; Nesbakken, Truls

    2011-03-15

    Although hot water pasteurisation of carcasses is accepted as a general intervention in USA, this is not the case in Europe. The aims of this study were (i) to evaluate the microbiological effects of hot water pasteurisation of lamb carcasses, both after slaughtering and dressing and following subsequent chilling and storage; (ii) to discuss hot water pasteurisation from a public health and cost-benefit perspective; (iii) to discuss the benefits of hot water pasteurisation compared with use of separate meat processing streams for high-risk carcasses; (iv) to evaluate the use of recycled hot water in a hygienic context and in relation to EU regulations; and (v) to consider the technological and sensory aspects of hot water pasteurisation of lamb carcasses. Samples were collected from 420 naturally contaminated lamb carcasses, with 50% of the carcasses (n=210) subject to hot water pasteurisation at 82 °C for 8s immediately after slaughter. Surface swab samples from 4500 cm² areas on carcasses were collected at slaughter, after chilling for 24 h, and after chilling for five days. The microbial analyses included Escherichia coli, Enterobacteriaceae, Bacillus cereus, Clostridium perfringens and aerobic plate count (APC). A resuscitation step using Tryptone Soya Agar was included in the microbiological analyses. Hot water pasteurisation significantly reduced the levels of E. coli, Enterobacteriaceae, B. cereus and APC (all P<0.001). E. coli colony forming unit (CFU) reduction was 99.5%, corresponding to a reduction of 1.85 log CFU per carcass. E. coli was isolated from 66% of control carcasses and from 26% of pasteurised carcasses. After 24h storage, the reduction in E. coli was increased to 2.02 log, and after five days E. coli could not be isolated from the pasteurised carcasses. These results suggest that surface pasteurisation could be an important and efficient procedure (critical control point) for reducing generic E. coli and thereby shiga toxin-producing E

  2. ISS Update: 1st Annual ISS R&D Conference

    NASA Video Gallery

    NASA Public Affairs Officer Kelly Humphries talks by phone on Wednesday with Julie Robinson, ISS Program Scientist, about the 1st Annual International Space Station Research and Development Confere...

  3. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    SciTech Connect

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  4. Electronic Health Records Place 1st at Indy 500

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues EHR Electronic Health Records Place 1st at Indy 500 Past ... last May's Indy 500 had thousands of personal Electronic Health Records on hand for those attending—and ...

  5. 1st HPV Test for Use with Preservative Fluid

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_159789.html 1st HPV Test for Use With Preservative Fluid Human papillomavirus ... Food and Drug Administration has approved Roche's cobas HPV Test -- the first diagnostic to be used with ...

  6. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    SciTech Connect

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  7. Target surface area effects on hot electron dynamics from high intensity laser–plasma interactions

    NASA Astrophysics Data System (ADS)

    Zulick, C.; Raymond, A.; McKelvey, A.; Chvykov, V.; Maksimchuk, A.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.

    2016-06-01

    Reduced surface area targets were studied using an ultra-high intensity femtosecond laser in order to determine the effect of electron sheath field confinement on electron dynamics. X-ray emission due to energetic electrons was imaged using a {K}α imaging crystal. Electrons were observed to travel along the surface of wire targets, and were slowed mainly by the induced fields. Targets with reduced surface areas were correlated with increased hot electron densities and proton energies. Hybrid Vlasov–Fokker–Planck simulations demonstrated increased electric sheath field strength in reduced surface area targets.

  8. Theoretical predictions for hot-carrier generation from surface plasmon decay

    PubMed Central

    Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.; Goddard III, William A.; Atwater, Harry A.

    2014-01-01

    Decay of surface plasmons to hot carriers finds a wide variety of applications in energy conversion, photocatalysis and photodetection. However, a detailed theoretical description of plasmonic hot-carrier generation in real materials has remained incomplete. Here we report predictions for the prompt distributions of excited ‘hot’ electrons and holes generated by plasmon decay, before inelastic relaxation, using a quantized plasmon model with detailed electronic structure. We find that carrier energy distributions are sensitive to the electronic band structure of the metal: gold and copper produce holes hotter than electrons by 1–2 eV, while silver and aluminium distribute energies more equitably between electrons and holes. Momentum-direction distributions for hot carriers are anisotropic, dominated by the plasmon polarization for aluminium and by the crystal orientation for noble metals. We show that in thin metallic films intraband transitions can alter the carrier distributions, producing hotter electrons in gold, but interband transitions remain dominant. PMID:25511713

  9. Surface-plasmon enhanced photodetection at communication band based on hot electrons

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Zhan, Yaohui; Wu, Shaolong; Deng, Jiajia; Li, Xiaofeng

    2015-08-01

    Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-step electrical simulation, the optimized device exhibits an unbiased responsivity of ˜0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.

  10. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots

    PubMed Central

    Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L.E.; Aizpurua, J.; Hillenbrand, R.

    2012-01-01

    Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering. PMID:22353715

  11. Hot electron-induced reduction of small molecules on photorecycling metal surfaces

    PubMed Central

    Xie, Wei; Schlücker, Sebastian

    2015-01-01

    Noble metals are important photocatalysts due to their ability to convert light into chemical energy. Hot electrons, generated via the non-radiative decay of localized surface plasmons, can be transferred to reactants on the metal surface. Unfortunately, the number of hot electrons per molecule is limited due to charge–carrier recombination. In addition to the reduction half-reaction with hot electrons, also the corresponding oxidation counter-half-reaction must take place since otherwise the overall redox reaction cannot proceed. Here we report on the conceptual importance of promoting the oxidation counter-half-reaction in plasmon-mediated catalysis by photorecycling in order to overcome this general limitation. A six-electron photocatalytic reaction occurs even in the absence of conventional chemical reducing agents due to the photoinduced recycling of Ag atoms from hot holes in the oxidation half-reaction. This concept of multi-electron, counter-half-reaction-promoted photocatalysis provides exciting new opportunities for driving efficient light-to-energy conversion processes. PMID:26138619

  12. Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals.

    PubMed

    Chou, Jeffrey B; Li, Xin-Hao; Wang, Yu; Fenning, David P; Elfaer, Asmaa; Viegas, Jaime; Jouiad, Mustapha; Shao-Horn, Yang; Kim, Sang-Gook

    2016-09-01

    Plasmon assisted photoelectric hot electron collection in a metal-semiconductor junction can allow for sub-bandgap optical to electrical energy conversion. Here we report hot electron collection by wafer-scale Au/TiO2 metallic-semiconductor photonic crystals (MSPhC), with a broadband photoresponse below the bandgap of TiO2. Multiple absorption modes supported by the 2D nano-cavity structure of the MSPhC extend the photon-metal interaction time and fulfill a broadband light absorption. The surface plasmon absorption mode provides access to enhanced electric field oscillation and hot electron generation at the interface between Au and TiO2. A broadband sub-bandgap photoresponse centered at 590 nm was achieved due to surface plasmon absorption. Gold nanorods were deposited on the surface of MSPhC to study localized surface plasmon (LSP) mode absorption and subsequent injection to the TiO2 catalyst at different wavelengths. Applications of these results could lead to low-cost and robust photo-electrochemical applications such as more efficient solar water splitting. PMID:27607726

  13. Online aptitude automatic surface quality inspection system for hot rolled strips steel

    NASA Astrophysics Data System (ADS)

    Lin, Jin; Xie, Zhi-jiang; Wang, Xue; Sun, Nan-Nan

    2005-12-01

    Defects on the surface of hot rolled steel strips are main factors to evaluate quality of steel strips, an improved image recognition algorithm are used to extract the feature of Defects on the surface of steel strips. Base on the Machine vision and Artificial Neural Networks, establish a defect recognition method to select defect on the surface of steel strips. Base on these research. A surface inspection system and advanced algorithms for image processing to hot rolled strips is developed. Preparing two different fashion to lighting, adopting line blast vidicon of CCD on the surface steel strips on-line. Opening up capacity-diagnose-system with level the surface of steel strips on line, toward the above and undersurface of steel strips with ferric oxide, injure, stamp etc of defects on the surface to analyze and estimate. Miscarriage of justice and alternate of justice rate not preponderate over 5%.Geting hold of applications on some big enterprises of steel at home. Experiment proved that this measure is feasible and effective.

  14. Preliminary examination of oil bonding at sand surfaces and its influence on hot water separation

    SciTech Connect

    Hupka, J.; Budzich, M.; Miller, J.D.

    1991-12-31

    The efficiency of water-based separation of oil from sand particles is dependent on the nature of the oil-sand association and a preliminary examination of this bonding has been completed. The degree of hydration of the sand surface at the time of contact with oil was related to the subsequent efficiency of the oil-sand separation process. Variables which influence hot water separation were correlated by multiple linear regression, and a second order experimental model was obtained. The processing temperature appeared to be the most significant variable, followed by digestion time and pH. Oil-coated sand particles which had intrinsic water left on their surface during sample preparation were easily processed in hot water separation experiments, and 64 to 90% of the oil was removed. On the other hand, only 1 to 23% separation and oil recovery was possible when a calcinated sand-oil mixture was used.

  15. Preliminary examination of oil bonding at sand surfaces and its influence on hot water separation

    SciTech Connect

    Hupka, J.; Budzich, M.; Miller, J.D.

    1991-01-01

    The efficiency of water-based separation of oil from sand particles is dependent on the nature of the oil-sand association and a preliminary examination of this bonding has been completed. The degree of hydration of the sand surface at the time of contact with oil was related to the subsequent efficiency of the oil-sand separation process. Variables which influence hot water separation were correlated by multiple linear regression, and a second order experimental model was obtained. The processing temperature appeared to be the most significant variable, followed by digestion time and pH. Oil-coated sand particles which had intrinsic water left on their surface during sample preparation were easily processed in hot water separation experiments, and 64 to 90% of the oil was removed. On the other hand, only 1 to 23% separation and oil recovery was possible when a calcinated sand-oil mixture was used.

  16. Application of multi-scale feature extraction to surface defect classification of hot-rolled steels

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Ai, Yong-hao; Wu, Xiu-yong

    2013-01-01

    Feature extraction is essential to the classification of surface defect images. The defects of hot-rolled steels distribute in different directions. Therefore, the methods of multi-scale geometric analysis (MGA) were employed to decompose the image into several directional subbands at several scales. Then, the statistical features of each subband were calculated to produce a high-dimensional feature vector, which was reduced to a lower-dimensional vector by graph embedding algorithms. Finally, support vector machine (SVM) was used for defect classification. The multi-scale feature extraction method was implemented via curvelet transform and kernel locality preserving projections (KLPP). Experiment results show that the proposed method is effective for classifying the surface defects of hot-rolled steels and the total classification rate is up to 97.33%.

  17. Dynamic Response of X-37 Hot Structure Control Surfaces Exposed to Controlled Reverberant Acoustic Excitation

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Rizzi, Stephen A.; Rice, Chad E.

    2004-01-01

    This document represents a compilation of three informal reports from reverberant acoustic tests performed on X-37 hot structure control surfaces in the NASA Langley Research Center Structural Acoustics Loads and Transmission (SALT) facility. The first test was performed on a carbon-silicone carbide flaperon subcomponent on February 24, 2004. The second test was performed on a carbon-carbon ruddervator subcomponent on May 27, 2004. The third test was performed on a carbon-carbon flaperon subcomponent on June 30, 2004.

  18. Hot melt adhesive pad surface attachment assembly concept for on-orbit operations

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; Stein, B. A.

    1984-01-01

    The use of a hot melt adhesive concept to develop a Surface Attachment Assembly (SAA) for on-orbit attachment and detachment operations for the Manned Maneuvering Unit (MMU) was investigated. The concept involved impregnation of the hot melt adhesive into a fiberglass covered pad which contained electrical heating and thermoelectric cooling devices. The polyamide hot melt adhesive selected can be repeatedly heated to its melting point in a vacuum and provide good adhesion to various surfaces, i.e., reusable surface insulation tiles, metals, and composites, when cooled. After a series of adhesive screening tests, Jet-Melt 3746 was selected from a group of commercially available thermoplastic adhesive candidates which met or exceeded many of the criteria established for the SAA system. The SAA system was designed and fabricted with the goal of proving the concept with a working model rather than attempting to optimize all facets of the system. This system evolved by investigating alternate attachment concepts, designing and fabricating electronic systems to heat and cool the adhesive, and then fabricating electronic systems to heat and cool the adhesive, and then fabricating and testing two prototype full-size units.

  19. Hot melt adhesive pad surface attachment assembly concept for on-orbit operations

    NASA Astrophysics Data System (ADS)

    Progar, D. J.; Stein, B. A.

    1984-03-01

    The use of a hot melt adhesive concept to develop a Surface Attachment Assembly (SAA) for on-orbit attachment and detachment operations for the Manned Maneuvering Unit (MMU) was investigated. The concept involved impregnation of the hot melt adhesive into a fiberglass covered pad which contained electrical heating and thermoelectric cooling devices. The polyamide hot melt adhesive selected can be repeatedly heated to its melting point in a vacuum and provide good adhesion to various surfaces, i.e., reusable surface insulation tiles, metals, and composites, when cooled. After a series of adhesive screening tests, Jet-Melt 3746 was selected from a group of commercially available thermoplastic adhesive candidates which met or exceeded many of the criteria established for the SAA system. The SAA system was designed and fabricted with the goal of proving the concept with a working model rather than attempting to optimize all facets of the system. This system evolved by investigating alternate attachment concepts, designing and fabricating electronic systems to heat and cool the adhesive, and then fabricating electronic systems to heat and cool the adhesive, and then fabricating and testing two prototype full-size units.

  20. HotPatch Web Gateway: Statistical Analysis of Unusual Patches on Protein Surfaces

    DOE Data Explorer

    Pettit, Frank K.; Bowie, James U. [DOE-Molecular Biology Institute

    HotPatch finds unusual patches on the surface of proteins, and computes just how unusual they are (patch rareness), and how likely each patch is to be of functional importance (functional confidence (FC).) The statistical analysis is done by comparing your protein's surface against the surfaces of a large set of proteins whose functional sites are known. Optionally, HotPatch can also write a script that will display the patches on the structure, when the script is loaded into some common molecular visualization programs. HotPatch generates complete statistics (functional confidence and patch rareness) on the most significant patches on your protein. For each property you choose to analyze, you'll receive an email to which will be attached a PDB-format file in which atomic B-factors (temp. factors) are replaced by patch indices; and the PDB file's Header Remarks will give statistical scores and a PDB-format file in which atomic B-factors are replaced by the raw values of the property used for patch analysis (for example, hydrophobicity instead of hydrophobic patches). [Copied with edits from http://hotpatch.mbi.ucla.edu/

  1. Hot electron dynamics at semiconductor surfaces: Implications for quantum dot photovoltaics

    NASA Astrophysics Data System (ADS)

    Tisdale, William A., III

    Finding a viable supply of clean, renewable energy is one of the most daunting challenges facing the world today. Solar cells have had limited impact in meeting this challenge because of their high cost and low power conversion efficiencies. Semiconductor nanocrystals, or quantum dots, are promising materials for use in novel solar cells because they can be processed with potentially inexpensive solution-based techniques and because they are predicted to have novel optoelectronic properties that could enable the realization of ultra-efficient solar power converters. However, there is a lack of fundamental understanding regarding the behavior of highly-excited, or "hot," charge carriers near quantum-dot and semiconductor interfaces, which is of paramount importance to the rational design of high-efficiency devices. The elucidation of these ultrafast hot electron dynamics is the central aim of this Dissertation. I present a theoretical framework for treating the electronic interactions between quantum dots and bulk semiconductor surfaces and propose a novel experimental technique, time-resolved surface second harmonic generation (TR-SHG), for probing these interactions. I then describe a series of experimental investigations into hot electron dynamics in specific quantum-dot/semiconductor systems. A two-photon photoelectron spectroscopy (2PPE) study of the technologically-relevant ZnO(1010) surface reveals ultrafast (sub-30fs) cooling of hot electrons in the bulk conduction band, which is due to strong electron-phonon coupling in this highly polar material. The presence of a continuum of defect states near the conduction band edge results in Fermi-level pinning and upward (n-type) band-bending at the (1010) surface and provides an alternate route for electronic relaxation. In monolayer films of colloidal PbSe quantum dots, chemical treatment with either hydrazine or 1,2-ethanedithiol results in strong and tunable electronic coupling between neighboring quantum dots

  2. Replication of a sinusoidal grid surface by hot embossing and UV-casting

    NASA Astrophysics Data System (ADS)

    Tsurumi, Naoya; Gao, Wei; Kimura, Akihide; Kiyono, Satoshi

    2005-12-01

    This paper describes the replication of a precision sinusoidal grid surface, which is used as the measurement reference of a surface encoder for measurement of planar motions. The profile of the grid surface is a superposition of sinusoidal waves in the X-direction and the Y-direction with spatial wavelengths of a hundred micrometers and amplitudes of a hundred nanometers. The master surface is fabricated on a diamond turning machine equipped with a fast tool servo. Two kinds of replication methods, the hot embossing and UV casting are employed for replicating the grid surface on polymer materials. The replication on a glass plate is also carried out by UV-casting. The replication systems and some experimental results are presented.

  3. Design and construction of the 1st proton CT scanner

    NASA Astrophysics Data System (ADS)

    Coutrakon, G.; Bashkirov, V.; Hurley, F.; Johnson, R.; Rykalin, V.; Sadrozinski, H.; Schulte, R.

    2013-04-01

    This paper discusses the design and operation of the 1st proton CT scanner for 3D imaging. Reduction of proton range uncertainties and improved dose accuracy in the patient for treatment planning are central goals. A central CT slice acquired by reconstruction of 134 million proton tracks through a 14 cm spherical polystyrene phantom with high and low density inserts is presented.

  4. Surface chemistry features in the hot water processing of Utah tar sand

    SciTech Connect

    Misra, M.; Aguilar, R.; Miller, J.D.

    1981-01-01

    The hot water processing of Utah tar sand involves two important steps in the process sequence, phase disengagement (digestion) and phase separation (flotation). Inasmuch as phase separation is accomplished by flotation, the hydrophobic/hydrophilic balance at the surface of the bitumen droplets was studied in conjunction with the system's solution chemistry and the results correlated with the flotation response. Contact angle measurements of solvent extracted bitumen revealed a moderate hydrophobic character; however, air bubble attachment at the surface of bitumen obtained from a hot water concentrate was difficult and required long induction times. These results suggest that the phase separation by flotation is dependent on air bubble entrapment by bitumen droplets rather than attachment due to surface hydrophobicity. In addition, identification of surface functional groups and components solubilized during hot water digestion was attempted using IR and NMR spectra. Strong absorption peaks at 1708 cm/sup -1/, and 2855 cm/sup -1/ for the solubilized components together with NMR spectra indicate the presence of dissolved paraffinic carboxylates, the amount of which increased as the digestion pH was increased. Potentiometric titration of the water soluble constituents indicated an acid dissociation constant of pK/sub a/ approx. = 5 which would be expected for such carboxylate species. This phenomenon appears to account, in part, for the polar bitumen surface and the hydrophilic character of the digested bitumen. These and other results indicate that phase disengagement during digestion and bitumen hydrophobicity may be mutually exclusive effects and reinforce the notion that flotation separation is achieved by entrapment of air bubbles in the viscous bitumen droplets. 10 figures.

  5. Long-lead predictions of eastern United States hot days from Pacific sea surface temperatures

    NASA Astrophysics Data System (ADS)

    McKinnon, K. A.; Rhines, A.; Tingley, M. P.; Huybers, P.

    2016-05-01

    Seasonal forecast models exhibit only modest skill in predicting extreme summer temperatures across the eastern US. Anomalies in sea surface temperature and monthly-resolution rainfall have, however, been correlated with hot days in the US, and seasonal persistence of these anomalies suggests potential for long-lead predictability. Here we present a clustering analysis of daily maximum summer temperatures from US weather stations between 1982-2015 and identify a region spanning most of the eastern US where hot weather events tend to occur synchronously. We then show that an evolving pattern of sea surface temperature anomalies, termed the Pacific Extreme Pattern, provides for skillful prediction of hot weather within this region as much as 50 days in advance. Skill is demonstrated using out-of-sample predictions between 1950 and 2015. Rainfall deficits over the eastern US are also associated with the occurrence of the Pacific Extreme Pattern and are demonstrated to offer complementary skill in predicting high temperatures. The Pacific Extreme Pattern appears to provide a cohesive framework for improving seasonal prediction of summer precipitation deficits and high temperature anomalies in the eastern US.

  6. Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface

    PubMed Central

    Gu, Yun-qing; Fan, Tian-xing; Mou, Jie-gang; Yu, Wei-bo; Zhao, Gang; Wang, Evan

    2016-01-01

    In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis. PMID:27022235

  7. Experiment Research on Hot-Rolling Processing of Nonsmooth Pit Surface.

    PubMed

    Gu, Yun-Qing; Fan, Tian-Xing; Mou, Jie-Gang; Yu, Wei-Bo; Zhao, Gang; Wang, Evan

    2016-01-01

    In order to achieve the nonsmooth surface drag reduction structure on the inner polymer coating of oil and gas pipelines and improve the efficiency of pipeline transport, a structural model of the machining robot on the pipe inner coating is established. Based on machining robot, an experimental technique is applied to research embossing and coating problems of rolling-head, and then the molding process rules under different conditions of rolling temperatures speeds and depth are analyzed. Also, an orthogonal experiment analysis method is employed to analyze the different effects of hot-rolling process apparatus on the embossed pits morphology and quality of rolling. The results also reveal that elevating the rolling temperature or decreasing the rolling speed can also improve the pit structure replication rates of the polymer coating surface, and the rolling feed has little effect on replication rates. After the rolling-head separates from the polymer coating, phenomenon of rebounding and refluxing of the polymer coating occurs, which is the reason of inability of the process. A continuous hot-rolling method for processing is used in the robot and the hot-rolling process of the processing apparatus is put in a dynamics analysis. PMID:27022235

  8. Estimation of Thermal Contact Conductance between Blank and Tool Surface in Hot Stamping Process

    NASA Astrophysics Data System (ADS)

    Taha, Zahari; Hanafiah Shaharudin, M. A.

    2016-02-01

    In hot stamping, the determination of the thermal contact conductance values between the blank and tool surface during the process is crucial for the purpose of simulating the blank rapid cooling inside the tool using finite element analysis (FEA). The thermal contact conductance value represents the coefficient of the heat transfer at the surface of two solid bodies in contact and is known to be influenced greatly by the applied pressure. In order to estimate the value and its dependency on applied pressure, the process of hot stamping was replicated and simplified into a process of compression of heated flat blank in between the tool at different applied pressure. The temperature of the blank and tool surface were measured by means of thermocouples installed inside the tool. Based on the measured temperature, the thermal contact conductance between the surfaces was calculated using Newton's cooling law equation. The calculated value was then used to simulate the blank cooling inside the tool using FEA commercial software. This paper describes an experimental approach to estimate the thermal contact conductance between a blank made of Boron Steel (USIBOR 1500) and tool made of Tool Steel (STAVAX). Its dependency on applied pressure is also studied and the experimental results were then compared with FEA simulations.

  9. Surface-plasmon enhanced photodetection at communication band based on hot electrons

    SciTech Connect

    Wu, Kai; Zhan, Yaohui E-mail: xfli@suda.edu.cn; Wu, Shaolong; Deng, Jiajia; Li, Xiaofeng E-mail: xfli@suda.edu.cn

    2015-08-14

    Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-step electrical simulation, the optimized device exhibits an unbiased responsivity of ∼0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.

  10. Effects of Residual Elements Arsenic, Antimony, and Tin on Surface Hot Shortness

    NASA Astrophysics Data System (ADS)

    Yin, Lan; Sridhar, Seetharaman

    2011-10-01

    Scrap-based electric arc furnace (EAF) steelmaking is limited by a surface cracking problem in the recycled steel products, which is known as surface hot shortness. This problem originates from the excessive amount of copper (Cu) in the steel scrap, which enriches during the oxidation of iron (Fe) and consequently melts and penetrates into the austenite grain boundaries. In this article, the effects of arsenic (As), antimony (Sb), and tin (Sn) on surface hot shortness were investigated. A series of Fe-0.3 wt pct Cu- x wt pct (As, Sb, or Sn) alloys with x content ranging from 0.06 to 0.10 wt pct was oxidized in air at 1423 K (1150 °C) for 60, 300, and 600 seconds inside the chamber of a thermogravimety analyzer (TGA) where heat is supplied through infrared radiation. Scanning electron microscopy (SEM) investigations show that (1) the presence of Sb and Sn results in severe grain boundary cracking, whereas the presence of As does not, (2) open cracks with Fe oxides were found beneath the oxide/metal interface in the Sb and Sn alloys, and (3) the oxide/metal interfaces for all As, Sb, and Sn alloys are planar. Penetration experiments of pure Cu and Cu-30 wt pct Sn liquid were also conducted in the chamber of a hot-stage confocal laser scanning microscopy (CLSM) in nonoxidizing atmosphere: (1) on the Fe-35 wt pct manganese (Mn) alloys to study the correlation between cracking and grain boundary characters, and (2) on the pure Fe substrates to exclude the bulk segregation effects of Sn on grain boundary cracking. It was found that grain boundary cracking rarely took place on low-energy grain boundaries. The results also suggest that the bulk segregation of Sn in the substrate is not necessary to promote significant grain boundary cracking, and as long as the liquid phase contains Sn, it will be highly embrittling.

  11. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650 nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO2 exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500 nA/W and 11 × 10-6 for 445 nm illumination.

  12. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    PubMed

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection. PMID:23404132

  13. Plasma surface interaction in hot filament cathode arc discharge used to nitride steel substrates

    NASA Astrophysics Data System (ADS)

    Dahiya, R. P.; Singh, O.; Aggarwal, V.; Malik, H. K.; Kumari, Nisha

    2012-10-01

    Plasma-assisted nitriding process is a well developed technique for increasing the surface hardness. The process is energy efficient, environment friendly and versatile to treat samples of various shapes and sizes. Though the use of this process in industry is established, there are several scientific questions in the basic understanding of the migration of ions, electrons and radicals and plasma surface interaction. We have studied these processes in an experimental system developed with hot cathode arc discharge plasma. A mixture of nitrogen and hydrogen is utilized for plasma generation. Negatively biased steel substrate is nitrided in this plasma. The hot cathode arc discharge plasma source is utilized to independently monitor and optimise the plasma and the work piece parameters. Substrate bias and temperature, which are the important parameters for achieving the desirable surface hardness, are regulated. Hardness depth profile and nitrogen content in the hardened sample are also measured. Transport and diffusion of ions, electrons, radicals and neutrals are considered to explain the results.

  14. Surface hot-film method for the measurement of transition, separation and reattachment points

    NASA Astrophysics Data System (ADS)

    Nakayama, Akihiko; Stack, John P.; Lin, John C.; Valarezo, Walter O.

    1993-07-01

    A real-time method of determining positions of laminar-to-turbulent transition region, separation and reattachment points and stagnation points using an array of simultaneously operated surface-mounted hot-film sensors has been developed and applied to a wind-tunnel test of a multielement airfoil model. Determination of various types of transitions and flow directions in various regimes of flows seen on multielement airfoils are possible without precise sensor calibration or laborious post-test data analysis. The results agree with established method and theoretical methods, but determination of turbulent reattachment points are not yet satisfactory.

  15. Analysis of Binding Site Hot Spots on the Surface of Ras GTPase

    PubMed Central

    Buhrman, Greg; O’Connor, Casey; Zerbe, Brandon; Kearney, Bradley M.; Napoleon, Raeanne; Kovrigina, Elizaveta A.; Vajda, Sandor; Kozakov, Dima; Kovrigin, Evgenii L.; Mattos, Carla

    2011-01-01

    We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the “off” and “on” allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target. PMID:21945529

  16. A material based approach to creating wear resistant surfaces for hot forging

    NASA Astrophysics Data System (ADS)

    Babu, Sailesh

    Tools and dies used in metal forming are characterized by extremely high temperatures at the interface, high local pressures and large metal to metal sliding. These harsh conditions result in accelerated wear of tooling. Lubrication of tools, done to improve metal flow drastically quenches the surface layers of the tools and compounds the tool failure problem. This phenomenon becomes a serious issue when parts forged at complex and are expected to meet tight tolerances. Unpredictable and hence uncontrolled wear and degradation of tooling result in poor part quality and premature tool failure that result in high scrap, shop downtime, poor efficiency and high cost. The objective of this dissertation is to develop a computer-based methodology for analyzing the requirements hot forging tooling to resist wear and plastic deformation and wear and predicting life cycle of forge tooling. Development of such is a system is complicated by the fact that wear and degradation of tooling is influenced by not only the die material used but also numerous process controls like lubricant, dilution ratio, forging temperature, equipment used, tool geometries among others. Phenomenological models available u1 the literature give us a good thumb rule to selecting materials but do not provide a way to evaluate pits performance in field. Once a material is chosen, there are no proven approaches to create surfaces out of these materials. Coating approaches like PVD and CVD cannot generate thick coatings necessary to withstand the conditions under hot forging. Welding cannot generate complex surfaces without several secondary operations like heat treating and machining. If careful procedures are not followed, welds crack and seldom survive forging loads. There is a strong need for an approach to selectively, reliably and precisely deposit material of choice reliably on an existing surface which exhibit not only good tribological properties but also good adhesion to the substrate

  17. Monolithic nanoporous gold disks with large surface area and high-density plasmonic hot-spots

    NASA Astrophysics Data System (ADS)

    Zhao, Fusheng; Zeng, Jianbo; Arnob, Md Masud Parvez; Santos, Greggy M.; Shih, Wei-Chuan

    2015-03-01

    Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to enhancement of the local electric field by light-excited surface plasmons, the collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3- dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the wavelength of light. Here we show that by making nanoporous gold in the form of disks of sub-wavelength diameter and sub-100 nm thickness, these limitations can be overcome. Nanoporous gold disks (NPGDs) not only possess large specific surface area but also high-density, internal plasmonic "hot-spots" with impressive electric field enhancement, which greatly promotes plasmon-matter interaction as evidenced by spectral shifts in the surface plasmon resonance. In addition, the plasmonic resonance of NPGD can be easily tuned from 900 to 1850 nm by changing the disk diameter from 300 to 700 nm. The coupling between external and internal nanoarchitecture provides a potential design dimension for plasmonic engineering. The synergy of large specific surface area, high-density hot spots, and tunable plasmonics would profoundly impact applications where plasmonic nanoparticles and non-plasmonic mesoporous nanoparticles are currently employed, e.g., in in-vitro and in-vivo biosensing, molecular imaging, photothermal contrast agents, and molecular cargos.

  18. Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots

    PubMed Central

    Borys, Nicholas J.; Shafran, Eyal; Lupton, John M.

    2013-01-01

    The plasmonic resonances of nanostructured silver films produce exceptional surface enhancement, enabling reproducible single-molecule Raman scattering measurements. Supporting a broad range of plasmonic resonances, these disordered systems are difficult to investigate with conventional far-field spectroscopy. Here, we use nonlinear excitation spectroscopy and polarization anisotropy of single optical hot spots of supercontinuum generation to track the transformation of these plasmon modes as the mesoscopic structure is tuned from a film of discrete nanoparticles to a semicontinuous layer of aggregated particles. We demonstrate how hot spot formation from diffractively-coupled nanoparticles with broad spectral resonances transitions to that from spatially delocalized surface plasmon excitations, exhibiting multiple excitation resonances as narrow as 13 meV. Photon-localization microscopy reveals that the delocalized plasmons are capable of focusing multiple narrow radiation bands over a broadband range to the same spatial region within 6 nm, underscoring the existence of novel plasmonic nanoresonators embedded in highly disordered systems. PMID:23807624

  19. [Granuloma Gravidarum in a 37-year-old 1st Gravida, 1st Para--A Case Report].

    PubMed

    Findeklee, S

    2015-10-01

    The granuloma gravidarum is a rare benign tumour with gingival origin. It occurs in circa 0.2% of pregnancies. Mostly we see an asymptomatic course of disease terminated by hormonal changes after delivery. If the granuloma is associated with complaints of the pregnant woman, for example masticational pain or recurrent bleedings, therapeutic options are conservative therapy, surgery or delivery. We report the case of a 37-year-old 1st gravida, 1st para who had an induced delivery in the 39+2 gestational week because of a symptomatic granuloma gravidarum. We saw a spontaneous remission of the granuloma within 3 months post partum. The case report underlines the importance of suitable information for pregnant women about oral hygiene and the necessity of regular dental controls during pregnancy for prophylaxis of granuloma gravidarum. PMID:26402852

  20. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.

    PubMed

    Brandt, Nathaniel C; Keller, Emily L; Frontiera, Renee R

    2016-08-18

    Hot electrons generated through plasmonic excitations in metal nanostructures show great promise for efficiently driving chemical reactions with light. However, the lifetime, yield, and mechanism of action of plasmon-generated hot electrons involved in a given photocatalytic process are not well understood. Here, we develop ultrafast surface-enhanced Raman scattering (SERS) as a direct probe of plasmon-molecule interactions in the plasmon-catalyzed dimerization of 4-nitrobenzenethiol to p,p'-dimercaptoazobenzene. Ultrafast SERS probing of these molecular reporters in plasmonic hot spots reveals transient Fano resonances, which we attribute to near-field coupling of Stokes-shifted photons to hot electron-driven metal photoluminescence. Surprisingly, we find that hot spots that yield more photoluminescence are much more likely to drive the reaction, which indirectly proves that plasmon-generated hot electrons induce the photochemistry. These ultrafast SERS results provide insight into the relative reactivity of different plasmonic hot spot environments and quantify the ultrafast lifetime of hot electrons involved in plasmon-driven chemistry. PMID:27488515

  1. Non-LTE modeling of the structure and spectra of hot accretion spots on the surface of young stars

    NASA Astrophysics Data System (ADS)

    Dodin, A. V.

    2015-05-01

    The results of modeling the structure and spectra of hot accretion spots on the surface of young stars with allowance made for the departures from LTE for hydrogen and helium are presented. The existence of ram pressure of the infalling gas at the outer boundary of the hot spot has been found to lead to Stark broadening of the hydrogen line profiles to ˜1000 km s-1 at the accretion parameters considered. It is shown that allowance for the departures from LTE for carbon and oxygen atoms and ions does not lead to noticeable changes in the structure of the hot spot.

  2. Nanoscale analysis of surface oxides on ZnMgAl hot-dip-coated steel sheets.

    PubMed

    Arndt, M; Duchoslav, J; Itani, H; Hesser, G; Riener, C K; Angeli, G; Preis, K; Stifter, D; Hingerl, K

    2012-05-01

    In this work, the first few nanometres of the surface of ZnMgAl hot-dip-galvanised steel sheets were analysed by scanning Auger electron spectroscopy, angle-resolved X-ray photoelectron spectroscopy and atomic force microscopy. Although the ZnMgAl coating itself is exhibiting a complex micro-structure composed of several different phases, it is shown that the topmost surface is covered by a smooth, homogeneous oxide layer consisting of a mixture of magnesium oxide and aluminium oxide, exhibiting a higher amount of magnesium than aluminium and a total film thickness of 4.5 to 5 nm. Especially by the combined analytical approach of surface-sensitive methods, it is directly demonstrated for the first time that within surface imprints--created by industrial skin rolling of the steel sheet which ensures a smooth surface appearance as well as reduced yield-point phenomenon--the original, smooth oxide layer is partly removed and that a layer of native oxides, exactly corresponding to the chemical structure of the underlying metal phases, is formed. PMID:22086398

  3. Investigation of surface topography effects on metal flow under lubricated hot compression of aluminum

    NASA Astrophysics Data System (ADS)

    Kurk, Justin Irvin

    An investigation was conducted to study the effects of die surface topography, specifically surface roughness and lay, on metal flow and the friction factor under lubricated hot compression. 6061-T6 aluminum rings and square bar stock specimens were compressed on H-13 tool steel platens machined with a unidirectional lay pattern to six different roughnesses between a R 0 10 and 240 muin. A lab based hydraulic press mounted with an experimental die set was used for all testing. Repeated trials were conducted using high temperature vegetable oil and boron nitride lubricants. Metal flow was quantified as a function of surface roughness, lay orientation, and die temperature. Approximate plane strain cigar test specimens were compressed at platen temperatures of 300 °F and 400 °F and at orientations of 0°, 45°, and 90° between the longitudinal axis and unidirectional platen surface lay. The friction factor was assessed using the ring compression test under varying platen roughness conditions and die temperatures between 250 °F and 400 °F. Results indicate metal flow is optimized at low platen roughnesses and orientations parallel to the surface lay of the platen. Die temperature was not found to influence metal flow within the temperature range investigated. The friction factor was observed to be minimized at lower die temperatures and platen roughnesses.

  4. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry.

    PubMed

    Brown, Ana M; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A; Atwater, Harry A

    2016-01-26

    The behavior of metals across a broad frequency range from microwave to ultraviolet frequencies is of interest in plasmonics, nanophotonics, and metamaterials. Depending on the frequency, losses of collective excitations in metals can be predominantly classical resistive effects or Landau damping. In this context, we present first-principles calculations that capture all of the significant microscopic mechanisms underlying surface plasmon decay and predict the initial excited carrier distributions so generated. Specifically, we include ab initio predictions of phonon-assisted optical excitations in metals, which are critical to bridging the frequency range between resistive losses at low frequencies and direct interband transitions at high frequencies. In the commonly used plasmonic materials, gold, silver, copper, and aluminum, we find that resistive losses compete with phonon-assisted carrier generation below the interband threshold, but hot carrier generation via direct transitions dominates above threshold. Finally, we predict energy-dependent lifetimes and mean free paths of hot carriers, accounting for electron-electron and electron-phonon scattering, to provide insight toward transport of plasmonically generated carriers at the nanoscale. PMID:26654729

  5. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.

    2011-01-01

    Ground vibration tests are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicles, thermoelastic vibration testing techniques are neither well established nor routinely performed. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. When high-temperature materials, which increase in stiffness when heated, are incorporated into a hot-structure that contains metallic components that decrease in stiffness when heated, the interaction between those materials can affect the hypersonic flutter analysis. A high-temperature modal survey will expand the research database for hypersonics and improve the understanding of this dual-material interaction. This report discusses the vibration testing of the carbon-silicon carbide Ruddervator Subcomponent Test Article, which is a truncated version of a full-scale hot-structure control surface. Two series of room-temperature modal test configurations were performed in order to define the modal characteristics of the test article during the elevated-temperature modal survey: one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary). Testing was performed in the NASA Dryden Flight Research Center Flight Loads Laboratory Large Nitrogen Test Chamber.

  6. [A method of temperature measurement for hot forging with surface oxide based on infrared spectroscopy].

    PubMed

    Zhang, Yu-cun; Qi, Yan-de; Fu, Xian-bin

    2012-05-01

    High temperature large forging is covered with a thick oxide during forging. It leads to a big measurement data error. In this paper, a method of measuring temperature based on infrared spectroscopy is presented. It can effectively eliminate the influence of surface oxide on the measurement of temperature. The method can measure the surface temperature and emissivity of the oxide directly using the infrared spectrum. The infrared spectrum is radiated from surface oxide of forging. Then it can derive the real temperature of hot forging covered with the oxide using the heat exchange equation. In order to greatly restrain interference spectroscopy through included in the received infrared radiation spectrum, three interference filter system was proposed, and a group of optimal gap parameter values using spectral simulation were obtained. The precision of temperature measurement was improved. The experimental results show that the method can accurately measure the surface temperature of high temperature forging covered with oxide. It meets the requirements of measurement accuracy, and the temperature measurement method is feasible according to the experiment result. PMID:22827063

  7. ["1st Therapeutic Red Cross Hospital" during the civil war].

    PubMed

    Simonenko, V B; Abashin, V G

    2014-04-01

    The article presents the documentary information about the founding, the establishment and early years of the 1st Therapeutic Red Cross Hospital - in the future - Mandryka Central Military Clinical Hospital of the Ministry of Defence of the Russian Federation. Presented the work of the Hospital during the dificult period of the Civil War, typhus epidemic, famine and devastation. Specified its staffing structure, command, medical and administrative staff, travel and accommodation till the moment of the deployment in the Silver Lane in Moscow. PMID:25051792

  8. The 1st All-Russian Workshop on Archaeoastronomy

    NASA Astrophysics Data System (ADS)

    Bochkarev, Nikolai G.

    2007-08-01

    The 1st All-Russia Workshop on Archaeoastronomy “Astronomical and World-Outlook Meaning of the Archaeological Monuments of South Ural” was held on June 19-25, 2006, at the ground of the archaeological center “Arkaim” (Chelyabinsk Region). Besides about 30 talks, astronomical measurements were performed at two archaeological objects under intensive study: Arkaim Site (Bronze Epoch, XVIII-XVI c. B.C.) and tumuli “with whiskers” complex Kondurovsky (V-VIII c. A.D.). The promising character of the megalithic complex on the Vera Island (Lake Turgoyak) was stated.

  9. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    NASA Astrophysics Data System (ADS)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-06-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals.

  10. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals.

    PubMed

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B; Louie, Steven G

    2015-01-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron-phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron-phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals. PMID:26033445

  11. Embrittlement of surface mount solder joints by hot solder-dipped, gold-plated leads

    SciTech Connect

    Vianco, P.T.

    1993-07-01

    The detachment of beam-leaded transistors from several surface mount circuit boards following modest thermal cycling was examined. Microstructural analysis of the package leads and bonding pads from the failed units indicated that gold embrittlement was responsible for a loss of solder joint mechanical integrity that caused detachment of transistors from the circuit boards. An analysis of the hot dipping process used to remove gold from the leads prior to assembly demonstrated that the gold, although dissolved from the lead, remained in the nearby solder and was subsequently retained in the coating formed on the lead upon withdrawal from the bath. This scenario allowed gold to enter the circuit board solder joints. It was hypothesized, and later confirmed by experimental trials, that increasing the number of dips prevented gold from entering the solder coatings.

  12. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals

    PubMed Central

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-01-01

    Hot carriers (HC) generated by surface plasmon polaritons (SPPs) in noble metals are promising for application in optoelectronics, plasmonics and renewable energy. However, existing models fail to explain key quantitative details of SPP-to-HC conversion experiments. Here we develop a quantum mechanical framework and apply first-principles calculations to study the energy distribution and scattering processes of HCs generated by SPPs in Au and Ag. We find that the relative positions of the s and d bands of noble metals regulate the energy distribution and mean free path of the HCs, and that the electron–phonon interaction controls HC energy loss and transport. Our results prescribe optimal conditions for HC generation and extraction, and invalidate previously employed free-electron-like models. Our work combines density functional theory, GW and electron–phonon calculations to provide microscopic insight into HC generation and ultrafast dynamics in noble metals. PMID:26033445

  13. Potential of a New Lunar Surface Radiator Concept for Hot Lunar Thermal Environments

    NASA Technical Reports Server (NTRS)

    Ochoa, Dustin A.; Vogel, Matthew R.; Trevino, Luis A.; Stephan, Ryan A.

    2008-01-01

    The optimum radiator configuration in hot lunar thermal environments is one in which the radiator is parallel to the ground and has no view to the hot lunar surface. However, typical spacecraft configurations have limited real estate available for top-mounted radiators, resulting in a desire to use the spacecraft s vertically oriented sides. Vertically oriented, flat panel radiators will have a large view factor to the lunar surface, and thus will be subjected to significant incident lunar infrared heat. Consequently, radiator fluid temperatures will need to exceed approx.325 K (assuming standard spacecraft radiator optical properties) in order to provide positive heat rejection at lunar noon. Such temperatures are too high for crewed spacecraft applications in which a heat pump is to be avoided. A recent study of vertically oriented radiator configurations subjected to lunar noon thermal environments led to the discovery of a novel radiator concept that yielded positive heat rejection at lower fluid temperatures. This radiator configuration, called the Upright Lunar Terrain Radiator Assembly (ULTRA), has exhibited superior performance to all previously analyzed concepts in terms of heat rejection in the lunar noon thermal environment. A key benefit of the ULTRA is the absence of louvers or other moving parts and its simple geometry. Analysis of the ULTRA for a lunar extravehicular activity (EVA) portable life support system (PLSS) is shown to provide moderate heat rejection, on average, at all solar incident angles assuming an average radiator temperature of 294 K, whereas prior concepts exhibited insignificant heat rejection or heat absorption at higher incident angles. The performance of the ULTRA for a lunar lander is also discussed and compared to the performance of a vertically oriented, flat panel radiator at various lunar latitudes.

  14. Time-domain interferometry of surface plasmons at nonlinear continuum hot spots in films of silver nanoparticles.

    PubMed

    Klemm, Philippe; Haug, Tobias; Bange, Sebastian; Lupton, John M

    2014-12-31

    Nonlinear continuum generation from diffraction-limited hot spots in rough silver films exhibits striking narrow-band intensity resonances in excitation wavelength. Time-domain Fourier spectroscopy uncovers how these resonances arise due to the formation of a "plasmon staircase", a discreteness in the fundamental oscillation of the plasmon excitations responsible for generating the white-light continuum. Whereas multiple scattering from discrete antennas can be invoked to explain hot spot formation in random assemblies of isolated particles, hot spots in films of fused nanoparticles are excited by interfering propagating surface plasmons, launched by scattering from individual nanoparticle antennas. For closed films, discrete propagating plasmons interact coherently over distances of tens of microns to pump the hot spot. PMID:25615373

  15. Hot hole-induced dissociation of NO dimers on a copper surface

    SciTech Connect

    Garcia Rey, Natalia; Arnolds, Heike

    2011-12-14

    We use reflection-absorption infrared spectroscopy (RAIRS) to study the photochemistry of NO on Cu(110) in the UV-visible range. We observe that the only photoactive species of NO on Cu(110) is the NO dimer, which is asymmetrically bound to the surface. RAIRS shows that photoinduced dissociation proceeds via breaking of the weak N-N bond of the dimer, photodesorbing one NO{sub g} to the gas phase and leaving one NO{sub ads} adsorbed on the surface in a metastable atop position. We model the measured wavelength-dependent cross sections assuming both electron- and hole-induced processes and find that the photochemistry can be described by either electron attachment to a level 0.3 eV above the Fermi energy E{sub F} or hole attachment to a level 2.2 eV below E{sub F}. While there is no experimental or theoretical evidence for an electron attachment level so close to E{sub F}, an occupied NO-related molecular orbital is known to exist at E{sub F}- 2.52 eV on the Cu(111) surface [I. Kinoshita, A. Misu, and T. Munakata, J. Chem. Phys. 102, 2970 (1995)]. We, therefore, propose that photoinduced dissociation of NO dimers on Cu(110) in the visible wavelength region proceeds by the creation of hot holes at the top of the copper d-band.

  16. CO-oxidation on surface hematite in hot atmospheres of rocky planets

    NASA Astrophysics Data System (ADS)

    Grenfell, John Lee; Stock, Joachim W.; Patzer, A. Beate C.

    2013-08-01

    Hematite surface minerals can play a key role for the stability in hot, CO2 exoplanetary atmospheres. In a previous work we applied a heterogeneous mechanism for the oxidation of atmospheric CO(g) into CO2(g) occurring on the surface of hematite to planetary atmospheres. In that work we calculated CO2(g) production rates via this "hematite mechanism" for specific planetary atmospheric scenarios both in and out of the Solar System. We perform a general parameter study of the hematite mechanism in which we change key initial variables (CO and O2 gas-phase abundances) and temperature, pressure covering the diverse range of conditions for terrestrial planetary atmospheres; we investigate the response of the CO(g) oxidation rate and hence discuss the implications for the atmospheric CO2(g) budget. We apply a numerical integration scheme based on the Gear method to a system of seven chemical equations to investigate the rate of CO(g) oxidation via the hematite mechanism. Results suggest the mechanism has a potentially important influence on the evolution of hot atmospheres of terrestrial-type planets, especially for temperatures above about 550 K. The abundance of CO(g) was found to be not important for the rate of CO oxidation, whereas the abundance of O2(g) begins to play a role above about 10-5 volume mixing ratio. Above about 550 K, the efficiency of CO(g) oxidation increases because the rate determining step involving CO2 desorption is faster. Subsequently switching off the rather uncertain rate of diffusion of O atoms from the crystal bulk to the surface led to a strong lowering in reaction rates and a stronger dependency of the CO(g) oxidation rate upon O2(g). For example, on increasing the volume mixing ratio of O2(g) from 10-5 to 10-4 for a scenario without diffusion (with Venus-like surface conditions) the percentage conversion of initial CO(g) into CO2(g) increased from ~30% up to ~60%.

  17. Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: A virtual modeling experiment

    NASA Astrophysics Data System (ADS)

    Frei, S.; Knorr, K. H.; Peiffer, S.; Fleckenstein, J. H.

    2012-12-01

    Wetlands provide important ecohydrological services by regulating fluxes of nutrients and pollutants to receiving waters, which can in turn mitigate adverse effects on water quality. Turnover of redox-sensitive solutes in wetlands has been shown to take place in distinct spatial and temporal patterns, commonly referred to as hot spots and hot moments. Despite the importance of such patterns for solute fluxes the mechanistic understanding of their formation is still weak and their existence is often explained by variations in soil properties and diffusive transport only. Here we show that surface micro-topography in wetlands can cause the formation of biogeochemical hot spots solely by the advective redistribution of infiltrating water as a result of complex subsurface flow patterns. Surface and subsurface flows are simulated for an idealized section of a riparian wetland using a fully integrated numerical code for coupled surface-subsurface systems. Biogeochemical processes and transport along advective subsurface flow paths are simulated kinetically using the biogeochemical code PHREEQC. Distinct patterns of biogeochemical activity (expressed as reaction rates) develop in response to micro-topography induced subsurface flow patterns. Simulated vertical pore water profiles for various redox-sensitive species resemble profiles observed in the field. This mechanistic explanation of hot spot formation complements the more static explanations that relate hot spots solely to spatial variability in soil characteristics and can account for spatial as well as temporal variability of biogeochemical activity, which is needed to assess future changes in the biogeochemical turnover of wetland systems.

  18. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie Dawn

    2010-01-01

    Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.

  19. Surface Activation of Pt Nanoparticles Synthesised by “Hot Injection” in the Presence of Oleylamine

    PubMed Central

    Humphrey, Jo J L; Sadasivan, Sajanikumari; Plana, Daniela; Celorrio, Verónica; Tooze, Robert A; Fermín, David J

    2015-01-01

    Oleylamine (OA) based “hot injection” colloidal synthesis offers a versatile approach to the synthesis of highly monodisperse metallic and multi-metallic alloyed nanostructures in the absence of potentially toxic and unstable phosphine compounds. For application in heterogeneous catalysis and electrocatalysis, the adsorbed OA species at the metal surfaces should be effectively removed without compromising the structure and composition of the nanostructures. Herein, we investigate the removal of OA from colloidal Pt nanoparticles through 1) “chemical methods” such as washing in acetic acid or ethanol, and ligand exchange with pyridine; and 2) thermal pre-treatment between 185 and 400 °C in air, H2 or Ar atmospheres. The electrochemical reactivity of Pt nanoparticles is acutely affected by the presence of surface organic impurities, making this material ideal for monitoring the effectiveness of OA removal. The results showed that thermal treatment in Ar at temperatures above 400 °C provides highly active particles, with reactivity comparable to the benchmark commercial catalyst, Pt/ETEK. The mechanism involved in thermal desorption of OA was also investigated by thermogravimetric analysis coupled to mass spectrometry (TGA-MS). Oxidation of HCOOH and adsorbed CO in acidic solution were used as test reactions to assess the Pt electrocatalytic activity. PMID:26201954

  20. Flux threshold measurements of He-ion beam induced nanofuzz formation on hot tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Meyer, F. W.; Hijazi, H.; Bannister, M. E.; Unocic, K. A.; Garrison, L. M.; Parish, C. M.

    2016-02-01

    We report measurements of the energy dependence of flux thresholds and incubation fluences for He-ion induced nano-fuzz formation on hot tungsten surfaces at UHV conditions over a wide energy range using real-time sample imaging of tungsten target emissivity change to monitor the spatial extent of nano-fuzz growth, corroborated by ex situ SEM and FIB/SEM analysis, in conjunction with accurate ion-flux profile measurements. The measurements were carried out at the multicharged ion research facility (MIRF) at energies from 218 eV to 8.5 keV, using a high-flux deceleration module and beam flux monitor for optimizing the decel optics on the low energy MIRF beamline. The measurements suggest that nano-fuzz formation proceeds only if a critical rate of change of trapped He density in the W target is exceeded. To understand the energy dependence of the observed flux thresholds, the energy dependence of three contributing factors: ion reflection, ion range and target damage creation, were determined using the SRIM simulation code. The observed energy dependence can be well reproduced by the combined energy dependences of these three factors. The incubation fluences deduced from first visual appearance of surface emissivity change were (2-4) × 1023 m-2 at 218 eV, and roughly a factor of 10 less at the higher energies, which were all at or above the displacement energy threshold. The role of trapping at C impurity sites is discussed.

  1. Hot water surface pasteurization vs. chlorine wash for reducing populations of Salmonella Poona on artificially inoculated tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous outbreaks of salmonellosis have been associated with the consumption of fresh tomatoes contaminated with Salmonella. Commercial washing processes for tomatoes are limited in their ability to inactivate and/or remove this human pathogen. Our objective was to develop a hot water surface past...

  2. Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project

    SciTech Connect

    Jager, A.R.

    1996-03-01

    It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

  3. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology.

    PubMed

    Kumar, Deepak; Prasad, Suresh; Murthy, Ganti S

    2014-02-01

    Okra (Abelmoschus esculentus) was dried to a moisture level of 0.1 g water/g dry matter using a microwave-assisted hot air dryer. Response surface methodology was used to optimize the drying conditions based on specific energy consumption and quality of dried okra. The drying experiments were performed using a central composite rotatable design for three variables: air temperature (40-70 °C), air velocity (1-2 m/s) and microwave power level (0.5-2.5 W/g). The quality of dried okra was determined in terms of color change, rehydration ratio and hardness of texture. A second-order polynomial model was well fitted to all responses and high R(2) values (>0.8) were observed in all cases. The color change of dried okra was found higher at high microwave power and air temperatures. Rehydration properties were better for okra samples dried at higher microwave power levels. Specific energy consumption decreased with increase in microwave power due to decrease in drying time. The drying conditions of 1.51 m/s air velocity, 52.09 °C air temperature and 2.41 W/g microwave power were found optimum for product quality and minimum energy consumption for microwave-convective drying of okra. PMID:24493879

  4. High-Temperature Modal Survey of a Hot-Structure Control Surface

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.

    2009-01-01

    NASA Dryden is directing a program to test a Carbon-Silicon Carbide (C/SiC) Ruddervator Subcomponent Test Article (RSTA). The RSTA is a truncated version of the full-scale X-37 hot-structure control surface incorporating all major features including the metallic spindle and five major C/SiC quasi isotropic lay-up components secured with C/SiC fasteners. As part of NASA's Aeronautics Research Mission Directorate Hypersonics program, the RSTA will undergo thermal-structural testing to develop an extensive database for future structural design and analysis methodology validation. Ground Vibration Tests (GVTs) are routinely conducted for model validation in supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, GVT techniques are not well-established. New fabrication technologies, high-temperature materials systems, and sensors offer new opportunities to develop techniques for performing GVTs at elevated temperatures. The RSTA is comprised of materials whose stiffness both increases and decreases with increasing temperature. The impact of this type of material system interaction must be understood as it will ultimately affect hypersonic flutter analysis. The test objectives are to perform room-temperature GVTs, develop the capability to conduct high-temperature GVTs and to compare and generate an understanding of the modal characteristics which capture RSTA's material interaction when subjected to temperature varying conditions.

  5. Temperature Measurements on Hot Spots of Power Substations Utilizing Surface Acoustic Wave Sensors

    NASA Astrophysics Data System (ADS)

    Cavaco, M. A. M.; Benedet, M. E.; Neto, L. R.

    2011-12-01

    In several applications in the field of metrology, the direct connection of the sensor element with the respective signal-processing unit of the measurement system is not trivial. It can be mentioned, as an example, the measurement of hot points in electric power substations because of the high electrical potential. To solve that problem, two alternatives were studied, one using active surface acoustic wave (SAW) sensors and other using passive SAW tags. For the passive sensor, a SAW radio-frequency identification (RFID) temperature detector was used. That technology is widely applied for typical transport identification (grain transportation, road traffic control), but its application in the field of metrology is innovative. The variation in temperature makes an alteration in the characteristics of the piezoelectric material of the SAW matrix, changing mostly the resonance frequency. Using SAW-RFID, the problem of measuring temperature basically is directed to the identification of the frequency of resonance of the SAW. The use of active SAW sensors has been demonstrated to be much more satisfactory for the solution of such a problem because of the limitation in the range of the passive sensors.

  6. Imaging Near-Surface Controls on Hot Spring Expression Using Shallow Seismic Refraction in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.; Larson, P. B.

    2015-12-01

    We used shallow seismic refraction to image near-surface materials in the vicinity of a small group of hot springs, located in the Morning Mist Springs area of Lower Geyser Basin, Yellowstone National Park, Wyoming. Seismic velocities in the area surveyed range from a low of 0.3 km/s to a high of approximately 2.5 km/s. The survey results indicate an irregular surface topography overlain by silty sediments. The observed seismic velocities are consistent with a subsurface model in which sorted sands and gravels, probably outwash materials from the Pinedale glaciation, are overlain by silts and fine sands deposited in the flat-lying areas of the Morning Springs area. These findings are supported by published geologic maps of the area and well logs from a nearby borehole. The near-surface materials appear to be saturated with discharging hydrothermal fluids of varying temperature, and interbedded with semi-lithified geothermal deposits (sinter). We hypothesize that the relatively low-conductivity deposits of fines at the surface may serve to confine a shallow, relatively low-temperature (sub-boiling) hydrothermal aquifer, and that the distribution of sinter in the shallow subsurface plays an important role in determining the geometry of hydrothermal discharge (hot springs) at the land surface. Few studies of the shallow controls on hot spring expression exist for the Yellowstone caldera, and the present study therefore offers a unique glimpse into near-subsurface fluid flow controls.

  7. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop

    SciTech Connect

    none,

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: 1. Share the latest relevant knowledge among technical experts; 2. Review relevant state-of-the-art field measurement technologies and methods; 3. Review lessons learned from recent field deployments; 4. Identify synergies across different industries; 5. Identify gaps between existing and needed instrumentation capabilities; 6. Understand who are the leading experts; 7. Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  8. THEOS: The1st Thailand EO System and

    NASA Astrophysics Data System (ADS)

    Peanvijarnpong, Chanchai

    Thailand has engaged in remote sensing satellite technological and scientific development many years since early 1980s. Thailand Landsat Station was established as a regional center of data processing and dissemination for Thai scientists for data applications. Over the years, GISTDA and Thai user community have been gaining technical experience and expertise in satellite data applications around the country such natural resources and environmental management, forest inventory, forest change detections, soil mapping, land-use and land cover mapping, crop type mapping, coastal shrimp farming, flood zone mapping, base mapping, water and drought management. The Government of Thailand realizes that remote sensing satellite technology is an important mechanism for social and economic development of the country. So the 1st Thailand Earth Observation System (THEOS) development program was approved by the Government since 2003. THEOS system is sub-synchronous satellite orbiting around the earth at 822 km. altitude same as SPOT satellites. It carries two imaging instruments; 2-m Panchromatic telescope with 22 km. swath width and 15-m resolution camera with four-multi-spectral band and 90-km swath wide. THEOS is scheduled to launch around March 2008. A number of technological and scientific activities has been implementing for Thailand and international scientific user community. Therefore THEOS is strong endorsement from the Government of Thailand on the value of remote sensing technology. This paper presents Thailand EO activities including THEOS System and its plans.

  9. Development Of Hot Surface Polysilicon-Based Chemical Sensor And Actuator With Integrated Catalytic Micropatterns For Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Vereshchagina, E.; Gardeniers, J. G. E.

    2009-05-01

    Over the last twenty years, we have followed a rapid expansion in the development of chemical sensors and microreactors for detection and analysis of volatile organic compounds. However, for many of the developed gas sensors poor sensitivity and selectivity, and high-power consumption remain among one of the main drawbacks. One promising approach to increase selectivity at lower power consumption is calorimetric sensing, performed in a pulsed regime and using specific catalytic materials. In this work, we study kinetics of various catalytic oxidation reactions using micromachined hot surface polysilicon-based sensor containing sensitive and selective catalysts. The sensor acts as both thermal actuator of chemical and biochemical reactions on hot-surfaces and detector of heats (enthalpies) associated with these reactions. Using novel deposition techniques we integrated selective catalysts in an array of hot plates such that they can be thermally actuated and sensed individually. This allows selective detection and analysis of dangerous gas compounds in a mixture, specifically hydrocarbons at concentrations down to low ppm level. In this contribution we compare various techniques for the local immobilization of catalytic material on hot spots of the sensor in terms of process compatibility, mechanical stress, stability and cost.

  10. Advanced Key Technologies for Hot Control Surfaces in Space Re- Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Dogigli, Michael; Pradier, Alain; Tumino, Giorgio

    2002-01-01

    (1)MAN Technologie AG, D- 86153 Augsburg, Germany (2,3) ESA, 2200 Noordwijk ZH, The Netherlands Current space re-entry vehicles (e.g. X-38 vehicle 201, the prototype of the International Space Station's Crew Return Vehicle (CRV)) require advanced control surfaces (so called body flaps). Such control surfaces allow the design of smaller and lighter vehicles as well as faster re-entries (compared to the US Shuttle). They are designed as light-weight structures that need no metallic parts, need no mass or volume consuming heat sinks to protect critical components (e.g. bearings) and that can be operated at temperatures of more than 1600 "C in air transferring high mechanical loads (dynamic 40 kN, static 70 kN) at the same time. Because there is a need for CRV and also for Reusable Launch Vehicles (RLV) in future, the European Space Agency (ESA) felt compelled to establish a "Future European Space Transportation and Investigation Program,, (FESTIP) and a "General Support for Technology Program,, (GSTP). One of the main goals of these programs was to develop and qualify key-technologies that are able to master the above mentioned challenging requirements for advanced hot control surfaces and that can be applied for different vehicles. In 1996 MAN Technologie has started the development of hot control surfaces for small lifting bodies in the national program "Heiü Strukturen,,. One of the main results of this program was that especially the following CMC (Ceramic Matrix Composite) key technologies need to be brought up to space flight standard: Complex CMC Structures, CMC Bearings, Metal-to-CMC Joining Technologies, CMC Fasteners, Oxidation Protection Systems and Static and Dynamic Seals. MAN Technologie was contracted by ESA to continue the development and qualification of these key technologies in the frame of the FESTIP and the GSTP program. Development and qualification have successfully been carried out. The key technologies have been applied for the X-38 vehicle

  11. Thermal characteristics of air-water spray impingement cooling of hot metallic surface under controlled parametric conditions

    NASA Astrophysics Data System (ADS)

    Nayak, Santosh Kumar; Mishra, Purna Chandra

    2016-06-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper. The controlling input parameters investigated were the combined air and water pressures, plate thickness, water flow rate, nozzle height from the target surface and initial temperature of the hot surface. The effects of these input parameters on the important thermal characteristics such as heat transfer rate, heat transfer coefficient and wetting front movement were measured and examined. Hot flat plate samples of mild steel with dimension 120 mm in length, 120 mm breadth and thickness of 4 mm, 6 mm, and 8 mm respectively were tested. The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface. Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e, 4 mm thick plates. Increase in the nozzle height reduced the heat transfer efficiency of spray cooling. At an inlet water pressure of 4 bar and air pressure of 3 bar, maximum cooling rates 670°C/s and average cooling rate of 305.23°C/s were achieved for a temperature of 850°C of the steel plate.

  12. Decontamination of beef carcass surface tissue by steam vacuuming alone and combined with hot water and lactic acid sprays.

    PubMed

    Castillo, A; Lucia, L M; Goodson, K J; Savell, J W; Acuff, G R

    1999-02-01

    Hot beef carcass surface regions (outside round, brisket, and clod) contaminated with feces spread over a 5-cm2 (1-in2) area were cleaned using a steam-vacuum spot-cleaning system alone or combined with subsequent sanitizing treatments of hot water (95 degrees C at the nozzle), or warm (55 degrees C) 2% lactic acid spray, or combinations of these two sanitizing methods. These treatments were compared for effectiveness in reducing aerobic plate counts (APC) and counts of Enterobacteriaceae, total coliforms, thermotolerant coliforms, and Escherichia coli. All treatments significantly reduced the numbers of each group of bacteria on beef carcass surfaces. However, reductions obtained by steam vacuuming were significantly smaller than those obtained by a combination of steam vacuuming with any sanitizing treatment. No differences in bacterial reductions were observed between different carcass surface regions. Steam vacuuming reduced the number of different indicator organisms tested by ca. 3.0 log cycles but also spread the bacterial contamination to areas of the carcass surface adjacent to the contaminated sites. This relocated contamination after steam vacuuming was most effectively reduced by spraying with hot water and then lactic acid. This combined treatment consistently reduced the numbers of Enterobacteriaceae, total and thermotolerant coliforms, and E. coli to undetectable levels (<1.0 log10 CFU/cm2) on areas outside the initial 5-cm2 inoculated areas. PMID:10030633

  13. VIEW WEST, 1ST FLOOR, EAST ROOM, HYDRAULIC COTTON PRESS, DETAIL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW WEST, 1ST FLOOR, EAST ROOM, HYDRAULIC COTTON PRESS, DETAIL, CONTINENTAL GIN COMPANY HYDRAULIC TANK - Magnolia Plantation, Cotton Gins & Presses, LA Route 119, Natchitoches, Natchitoches Parish, LA

  14. 94. DETAIL, SAME BEAN AS ABOVE, MARKED 'PATENTED DEC. 1ST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. DETAIL, SAME BEAN AS ABOVE, MARKED 'PATENTED DEC. 1ST 1857' - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  15. Evaluation of the surface strength of glass plates shaped by hot slumping process

    NASA Astrophysics Data System (ADS)

    Proserpio, L.; Crimi, G.; Ghigo, M.; Pareschi, G.; Salmaso, B.; D'Este, A.; Dall'Igna, R.; Silvestri, M.; Parodi, G.; Martelli, F.

    2013-09-01

    The Hot Slumping Technology is under development by several research groups in the world for the realization of X-ray segmented mirrors, based on thin glass plates: during the process of slumping, a glass foil is shaped over a mould at temperatures above its transformation point. The performed thermal cycle and related operations might have effects on the strength characteristics of the glass, with consequences on the structural design of the elemental optical module and consecutively on the whole X-ray telescope. No reference technical literature exists for this particular aspect since the strength of glass depends on several parameters connected to any of the manufacturing and glass history stages, such as the distribution of surface flaws or the residual internal stresses. It is therefore extremely important to test the mechanical strength of the glass plates after they underwent the slumping process. The Astronomical Observatory of Brera (INAFOAB, Merate - Italy) started a deep analysis of this aspect, with the collaboration of Stazione Sperimentale del Vetro (SSV, Murano - Italy) and BCV Progetti (Milano - Italy). The entire study has been realized on borosilicate glass D263 by Schott, largely considered for the realization of next-generation IXO-like X-ray telescope. More than 200 slumped plates of dimension 100 mm x 100 mm and thickness 0.4 mm, both flat and curved, have been produced and tested; the collected experimental data have been compared to non-linear FEM analyses and treated with Weibull statistics, giving the strength data necessary to assess the current IXO glass X-ray telescope design, in terms of survival probability, when subject to static and acoustic load characteristic of the launch phase. The paper describes the activities performed and presents the obtained results.

  16. Unifying the controlling mechanisms for the critical heat flux and quenching: The ability of liquid to contact the hot surface

    SciTech Connect

    Unal, C.; Daw, V.; Nelson, R.A.

    1990-01-01

    We investigate the hypothesis that the critical heat flux (CHF) occurs when some point on a heated surface reaches a temperature high enough so that liquid can no longer maintain contact at that point, resulting in a gradual but continuous increase in the overall surface temperature. This hypothesis unifies the occurrence of the CHF with the quenching of hot surfaces by relating them to the same concept: the ability of a liquid to contact a hot surface, generally defined as some fraction of liquid's homogenous nucleation temperature, depending upon the contact angle. The proposed hypothesis about the occurrence of the CHF is investigated through study of the boiling mechanism of the second transition region of nucleate pool boiling. A two-dimensional transient conduction heat-transfer model was developed to investigate the heat-transfer mechanism. The initial macrolayer thickness on the dry portion of the heater, in the second transition region, was found to be bounded between 0 and 11 microns for a copper heater. The results indicated that the critical liquid-solid contact temperature at the onset of CHF must be lower than the homogeneous nucleation temperature of the liquid for the pool boiling of water on a clean horizontal surface. The liquid-solid contact temperature was dependent upon the initial liquid macrolayer thickness, varying from 180{degree}C to 157{degree}C for initial macrolayer thicknesses of 0 and 11 microns, respectively. These values are in good agreement with extrapolated contact temperature data at the onset of film boiling. This indicates that the mechanism for the occurrence of the CHF could be similar to the mechanism generally accepted for the quenching of the hot surfaces.

  17. Hot Structure Control Surface Progress for X-37 Technology Development Program

    NASA Technical Reports Server (NTRS)

    Valentine, P. G.; Meyer, David L. (Editor); Snow, Holly (Editor)

    2004-01-01

    The NASA Marshall Space Flight Center (MSFC) has been leading the development of technologies that will enable the development, fabrication, and flight of the automated X-37 Orbital Vehicle (OV). With the Administration s recent announcement of the Vision for Space Exploration, NASA placed the X-37 OV design on hold while developing detailed requirements for a Crew Exploration Vehicle, but has continued funding the development of high-risk, critical technologies for potential future space exploration vehicle applications. Hot Structure Control Surfaces (HSCS) technology development is one of the high-priority areas being funded at this time. The goal of HSCS research is to mitigate risk by qualifying the lightest possible components that meet the stringent X-37 OV weight and performance requirements, including Shuttle-type reen- try environments with peak temperatures of 2800 OF. The small size of the X-37 OV (25.7-feet long and 14.9-foot wingspan) drives the need for advanced HSCS because the vehicle's two primary aerodynamic surfaces, the flaperons and ruddervators, have thicknesses ranging from approximately 5 in. down to 1 in. Traditional metallic or polymer-matrix composites covered with tile or blanket thermal protection system (TPS) materials cannot be used as there is insufficient volume to fabricate such multi-component structures. Therefore, carbon-carbon (C-C) and carbodsilicon-carbide (C-SiC) composite HSCS structures are being developed in parallel by two teams supporting the X-37 prime contractor (The Boeing Company). The Science Applications International Coy. (SAIC) and Carbon-Carbon Advanced Technologies, Inc. (C-CAT) team is developing the C-C HSCS, while the General Electric Energy Power Systems Composites (GE-PSC) and Materials Research and Design (MRD) team is developing the C-SiC HSCS. These two teams were selected to reduce the high level of risk associated with developing advanced control surface components. They have continued HSCS

  18. Kindergarten to 1st Grade: Classroom Characteristics and the Stability and Change of Children's Classroom Experiences

    ERIC Educational Resources Information Center

    La Paro, Karen M.; Rimm-Kaufman, Sara E.; Pianta, Robert C.

    2006-01-01

    This study examines the classroom experiences of 192 children followed longitudinally from kindergarten to 1st grade. Time-sampled observations of children were conducted to compare learning formats, teaching activities, and children's engagement in activities between kindergarten and 1st grade. Classroom observations also were conducted to…

  19. Chemistry and Mineralogy of Rock Surface Coatings from Terrestrial Hot and Dry Deserts

    NASA Astrophysics Data System (ADS)

    Garvie, L. A.

    2001-12-01

    Coatings form on rocks in terrestrial hot and dry deserts that are chemically, mineralogically, and texturally distinct from the underlying rock. They are composed of mixtures of aeolian-derived particles, primarily clays, cemented by authigenic Mn-Fe-bearing materials. The coatings are characteristically laminated at the nanometer to micron scale, with Mn-Fe oxide-rich layers alternating with silicate-rich layers. The junction between the coating and the rock is generally sharp. The laminated coatings form on all rock types, even quartz, although its thickness is usually greatest on Fe-rich rocks. Manganese-rich coatings of 5 microns thickness or less impart a black color to the rock. High resolution TEM (HRTEM) images of the coatings show a predominance of thin clay-like flakes and aggregates of tissue-like particles, with lesser amounts of rounded crystalline grains. Most clay particles exhibit 001 spacings of 10, 12 Å, and intermediate spacings, typical of mica, smectite, and mixed-layer mica-smectite minerals. Many of the Mn-bearing particles have lattice spacings between 5.5 and 7 Å, visible at the edges of folded flakes. These spacings are consistent with a phyllomanganate-like structure, similar to birnessite. The lower values measured in the TEM are consistent with collapse of the layers in the vacuum of the TEM. Also present are occasional elongated Mn-rich particles with a ca. 10 Å spacing consistent with todorokite. Four distinct Mn-rich materials were recognized: (a) Discrete, elongated Ca-Ba-rich Mn-oxides. (b) Tissue-like aggregates with minor Fe and Ba. (c) Fluffy Mn-Fe-rich coatings on clays. (d) An anhedral Mn-Fe spinel-like mineral. Nanometer-sized C aggregates were occasionally encountered in the coatings. These particles contain variable, minor amounts of K, N, and O, as revealed by electron energy-loss spectroscopy (EELS). Their small sizes and the occurrence of K in some of the particles is consistent with C derived from biomass burning

  20. Proceedings of the 1st Puerto Rico Biobanking Workshop

    PubMed Central

    Mora, Edna; Robb, James A.; Stefanoff, Gustavo; Mellado, Robert Hunter; Coppola, Domenico; Muñoz-Antonia, Teresita; Flores, Idhaliz

    2015-01-01

    The 1st Puerto Rico Biobanking Workshop took place on August 20th, 2014 in the Auditorium of the Comprehensive Cancer Center of the University of Puerto Rico, Medical Sciences Campus in San Juan Puerto Rico. The program for this 1-day, live workshop included lectures by three biobanking experts, followed by presentations from existing biobanks in Puerto Rico and audience discussion. The need for increasing biobanking expertise in Puerto Rico stems from the fact that Hispanics in general are underrepresented in the biobanks in existence in the US, which limits the research conducted specifically to understand the molecular differences in cancer cells compared to other better studied populations. In turn, this lack of information impairs the development of better diagnostic and therapeutic approaches for our population. Dr. James Robb, M.D., F.C.A.P., consulting pathologist to the National Cancer Institute (NCI) and the Office of Biorepositories and Biospecimen Research (OBBR), opened the workshop with a discussion on the basic aspects of the science of biobanking (e.g., what is a biobank; its goals and objectives; protocols and procedures) in his talk addressing the importance of banking tissues for advancing biomedical research. Next, Dr. Gustavo Stefanoff, from the Cancer Institutes Network of Latin America (RINC by its name in Spanish), explained the mission, objectives, and structure of the Network of Latin-American and Caribbean Biobanks (REBLAC by its name in Spanish), which despite limited resources and many challenges, currently accrue high quality human tissue specimens and data to support cancer research in the region. Dr. Robert Hunter-Mellado, Professor of Internal Medicine, Universidad Central del Caribe, followed with an examination of the ethical and regulatory aspects of biobanking tissues for future research, including informed consent of subjects; protection of human subjects rights; and balancing risks and benefit ratios. In the afternoon, the

  1. Proceedings of the 1st Puerto Rico Biobanking Workshop.

    PubMed

    Mora, Edna; Robb, James A; Stefanoff, Gustavo; Mellado, Robert Hunter; Coppola, Domenico; Muñoz-Antonia, Teresita; Flores, Idhaliz

    2014-01-01

    The 1st Puerto Rico Biobanking Workshop took place on August 20st, 2014 in the Auditorium of the Comprehensive Cancer Center of the University of Puerto Rico, Medical Sciences Campus in San Juan Puerto Rico. The program for this 1-day, live workshop included lectures by three biobanking experts, followed by presentations from existing biobanks in Puerto Rico and audience discussion. The need for increasing biobanking expertise in Puerto Rico stems from the fact that Hispanics in general are underrepresented in the biobanks in existence in the US, which limits the research conducted specifically to understand the molecular differences in cancer cells compared to other better studied populations. In turn, this lack of information impairs the development of better diagnostic and therapeutic approaches for our population. Dr. James Robb, M.D., F.C.A.P., consulting pathologist to the National Cancer Institute (NCI) and the Office of Biorepositories and Biospecimen Research (OBBR), opened the workshop with a discussion on the basic aspects of the science of biobanking (e.g., what is a biobank; its goals and objectives; protocols and procedures) in his talk addressing the importance of banking tissues for advancing biomedical research. Next, Dr. Gustavo Stefanoff, from the Cancer Institutes Network of Latin America (RINC by its name in Spanish), explained the mission, objectives, and structure of the Network of Latin-American and Caribbean Biobanks (REBLAC by its name in Spanish), which despite limited resources and many challenges, currently accrue high quality human tissue specimens and data to support cancer research in the region. Dr. Robert Hunter-Mellado, Professor of Internal Medicine, Universidad Central del Caribe, followed with an examination of the ethical and regulatory aspects of biobanking tissues for future research, including informed consent of subjects; protection of human subjects rights; and balancing risks and benefit ratios. In the afternoon, the

  2. Analgesic Effects of 1st Generation Anti-histamines in Mice.

    PubMed

    Takahashi, Mebae; Shima, Kazuhiro; Tsuchiya, Masahiro; Hagiwara, Yoshihiro; Mizoguchi, Hirokazu; Sakurada, Shinobu; Sugawara, Shunji; Fujita, Takuo; Tadano, Takeshi; Watanabe, Makoto; Fukumoto, Satoshi; Endo, Yasuo

    2016-01-01

    Pain is sensed, transmitted, and modified by a variety of mediators and receptors. Histamine is a well-known mediator of pain. In addition to their anti-histaminic effects, the classical, or 1st generation, anti-histamines (1st AHs) possess, to various degrees, anti-muscarinic, anti-serotonergic, anti-adrenergic, and other pharmacologic effects. Although there have been attempts to use 1st AHs as analgesics and/or analgesic adjuvants, the advent of non-steroidal anti-inflammatory drugs (NSAIDs) discouraged such trials. We previously reported that in patients with temporomandibular disorders, osteoporosis, and/or osteoarthritis, the analgesic effects of certain 1st AHs (chlorpheniramine and diphenhydramine) are superior to those of the NSAIDs flurbiprofen and indomethacin. Here, we compared analgesic effects among 1st AHs and NSAIDs against responses shown by mice to intraperitoneally injected 0.7% acetic acid. Since 1st AHs are water soluble, we selected water-soluble NSAIDs. For direct comparison, drugs were intravenously injected 30 min before the above tests. Histamine-H1-receptor-deficient (H1R-KO) mice were used for evaluating H1-receptor-independent effects. The tested 1st AHs (especially cyproheptadine) displayed or tended to display analgesic effects comparable to those of NSAIDs in normal and H1R-KO mice. Our data suggest that the anti-serotonergic and/or anti-adrenergic effects of 1st AHs make important contributions to their analgesic effects. Moreover, combination of a 1st AH with an NSAID (cyclooxygenase-1 inhibitor) produced remarkably potent analgesic effects. We propose that a 1st AH, by itself or in combination with a cyclooxygenase-1 inhibitor, should undergo testing to evaluate its usefulness in analgesia. PMID:27040636

  3. The Effect of Foot Structure on 1st Metatarsophalangeal Joint Flexibility and Hallucal Loading

    PubMed Central

    Rao, Smita; Song, Jinsup; Kraszewski, Andrew; Backus, Sherry; Ellis, Scott J.; Deland, Jonathan T.; Hillstrom, Howard J.

    2011-01-01

    The purpose of our study was to examine 1st metatarsophalangeal (MTP) joint motion and flexibility and plantar loads in individuals with high, normal and low arch foot structure. Asymptomatic individuals (n=61), with high, normal and low arches participated in this study. Foot structure was quantified using malleolar valgus index (MVI) and arch height index (AHI). First MTP joint flexibility was measured using a specially constructed jig. Peak pressure under the hallux, 1st and 2nd metatarsals during walking was assessed using a pedobarograph. A one-way ANOVA with Bonferroni-adjusted post-hoc comparisons was used to assess between-group differences in MVI, AHI, Early and Late 1st MTP joint flexibility in sitting and standing, peak dorsiflexion (DF), and peak pressure under the hallux, 1st and 2nd metatarsals. Stepwise linear regression was used to identify predictors of hallucal loading. Significant between-group differences were found in MVI (F2,56=15.4, p<0.01), 1st MTP late flexibility in sitting (F2,57=3.7, p=0.03), and standing (F2,57=3.7, p=0.03). Post-hoc comparisons demonstrated that 1st MTP late flexibility in sitting was significantly higher in individuals with low arch compared to high arch structure, and that 1st MTP late flexibility in standing was significantly higher in individuals with low arch compared to normal arch structure. Stepwise regression analysis indicated that MVI and 1st MTP joint early flexibility in sitting explain about 20% of the variance in hallucal peak pressure. Our results provide objective evidence indicating that individuals with low arches show increased 1st MTP joint late flexibility compared to individuals with normal arch structure, and that hindfoot alignment and 1st MTP joint flexibility affect hallucal loading. PMID:21536440

  4. Role of Surface Termination on Hot Electron Relaxation in Silicon Quantum Dots: A First-Principles Dynamics Simulation Study.

    PubMed

    Reeves, Kyle G; Schleife, André; Correa, Alfredo A; Kanai, Yosuke

    2015-10-14

    The role of surface termination on phonon-mediated relaxation of an excited electron in quantum dots was investigated using first-principles simulations. The surface terminations of a silicon quantum dot with hydrogen and fluorine atoms lead to distinctively different relaxation behaviors, and the fluorine termination shows a nontrivial relaxation process. The quantum confined electronic states are significantly affected by the surface of the quantum dot, and we find that a particular electronic state dictates the relaxation behavior through its infrequent coupling to neighboring electronic states. Dynamical fluctuation of this electronic state results in a slow shuttling behavior within the manifold of unoccupied electronic states, controlling the overall dynamics of the excited electron with its characteristic frequency of this shuttling behavior. The present work revealed a unique role of surface termination, dictating the hot electron relaxation process in quantum-confined systems in the way that has not been considered previously. PMID:26331672

  5. Influence of surface treatment of yttria-stabilized tetragonal zirconia polycrystal with hot isostatic pressing on cyclic fatigue strength.

    PubMed

    Iijima, Toshihiko; Homma, Shinya; Sekine, Hideshi; Sasaki, Hodaka; Yajima, Yasutomo; Yoshinari, Masao

    2013-01-01

    Hot isostatic pressing processed yttria-stabilized tetragonal zirconia polycrystal (HIP Y-TZP) has the potential for application to implants due to its high mechanical performance. The aim of this study was to investigate the influence of surface treatment of HIP Y-TZP on cyclic fatigue strength. HIP Y-TZP specimens were subjected to different surface treatments. Biaxial flexural strength was determined by both static and cyclic fatigue testing. In the cyclic fatigue test, the load was applied at a frequency of 10 Hz for 10(6) cycles in distilled water at 37°C. The surface morphology, roughness, and crystal phase of the surfaces were also evaluated. The cyclic fatigue strength (888 MPa) of HIP Y-TZP with sandblasting and acid-etching was more than twice that of Y-TZP as specified in ISO 13356 for surgical implants (320 MPa), indicating the clinical potential of this material. PMID:23538763

  6. Macroscopic lithotype characterisation of the 1st Middle-Polish (1st Lusatian) Lignite Seam in the Miocene of central Poland

    NASA Astrophysics Data System (ADS)

    Widera, Marek

    2012-03-01

    The 1st Middle-Polish (1st Lusatian) Lignite Seam is exploited in open-cast mines in central Poland. A large number of lignite lithotypes, grouped in four lithotype associations, are distinguished: xylitic, detritic, xylo-detritic and detro-xylitic lithotype associations, which show various structures. Each lithotype association was produced under specific peat-forming environmental conditions. In the case of the lignite seams under study they represent all the main environments that are known from Neogene mires, i.e.: fen or open water, bush moor, wet forest swamp and dry forest swamp. For a simple and practical description in the field of both the lignite sections and borehole cores, a new codification for lignite lithotypes is proposed. It is based on the codification of clastic deposits (lithofacies). The practical value of the new lignite lithotype codification is examined in three vertical sections of the 1st Middle-Polish Lignite Seam.

  7. He-Ion and Self-Atom Induced Damage and Surface-Morphology Changes of a Hot W Target

    SciTech Connect

    Meyer, Fred W; Hijazi, Hussein Dib; Krstic, Predrag S; Dadras, Mostafa Jonny; Meyer III, Harry M; Parish, Chad M; Bannister, Mark E

    2014-01-01

    We report results of measurements on the evolution of the surface morphology of a hot tungsten surface due to impacting low-energy (80 12,000 eV) He ions and of simulations of damage caused by cumulative bombardment of 1 and 10 keV W self-atoms. The measurements were performed at the ORNL Multicharged Ion Research Facility (MIRF), while the simulations were done at the Kraken supercomputing facility of the University of Tennessee. At 1 keV, the simulations show strong defect-recombination effects that lead to a saturation of the total defect number after a few hundreds impacts, while sputtering leads to an imbalance of the vacancy and interstitial number. On the experimental side, surface morphology changes were investigated over a broad range of fluences for both virgin and pre-damaged W-targets. At the lowest accumulated fluences, small surface-grain features and near-surface He bubbles are observed. At the largest fluences, individual grain characteristics disappear in FIB/SEM scans, and the entire surface is covered by a multitude of near-surface bubbles with a broad range of sizes, and disordered whisker growth, while in top-down SEM imaging the surface is virtually indistinguishable from the nano-fuzz produced on linear plasma devices. These features are evident at progressively lower fluences as the He-ion energy is increased.

  8. Effects of the microstructure of twin roll cast and hot rolled plates on the surface quality of presensitized plates

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan-Zhi; Zhang, Ya-Feng; Zhao, Chao-Qi; Zhou, Feng

    2014-09-01

    The effect of the microstructure of plates fabricated both in the traditional process, involving casting, hot rolling and cold rolling (HR), and in the novel twin roll casting + cold rolling (TRC) process on the surface quality of presensitized (PS) plates was analyzed by optical microscopy (OM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDXS). The formation of pores on the surface of the electrolyzed HR plate could be attributed to the presence of approximately 1-μm-sized large Al-Fe precipitates in the HR plate compared to the smaller precipitates in the TRC plate. Moreover, residual graphite lubricants used during the TRC process were entrapped on the surface of the TRC plate during the subsequent rolling process. The entrapped pollutants tended to further deteriorate the formation of pores on the surface of the TRC plate, and no residual carbon was detected on the surface of the HR plate. Furthermore, the surface quality of the TRC plate can be improved by surface cleaning before the cold rolling process, which could dramatically lower the residual graphite on the surface.

  9. Laser controlled melting of H12 hot-work tool steel with B4C particles at the surface

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Patel, F.; Karatas, C.

    2015-11-01

    Laser controlled melting of pre-prepared H12 hot-work tool steel surface is carried out. B4C particles in the carbon film are located at the workpiece surface prior to the laser treatment process. Nitrogen at high pressure is used as an assisting gas during the laser melting. Morphological and metallurgical changes in the treated layer are examined using scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction. Microhardness of the treated surface is measured and the residual stress formed at the treated surface vicinity is obtained using the X-ray diffraction technique. It is found that a dense layer consisting of fine grains is formed at the treated surface. Microhardness of the treated surface improves significantly because of fine grains, nitride compounds formed at the surface and micro-stresses developed due to mismatched of thermal expansion coefficients of B4C and the base material. The residual stress formed at the surface is suppressed by the self annealing effect of the initially formed laser scans.

  10. He-ion and self-atom induced damage and surface-morphology changes of a hot W target

    NASA Astrophysics Data System (ADS)

    Meyer, F. W.; Hijazi, H.; Bannister, M. E.; Krstic, P. S.; Dadras, J.; Meyer, H. M., III; Parish, C. M.

    2014-04-01

    We report results of measurements on the evolution of the surface morphology of a hot tungsten surface due to impacting low-energy (80-12 000 eV) He ions and of simulations of damage caused by cumulative bombardment of 1 and 10 keV W self-atoms. The measurements were performed at the ORNL Multicharged Ion Research Facility, while the simulations were done at the Kraken supercomputing facility of the University of Tennessee. At 1 keV, the simulations show strong defect-recombination effects that lead to a saturation of the total defect number after a few hundred impacts, while sputtering leads to an imbalance of the vacancy and interstitial number. On the experimental side, surface morphology changes were investigated over a broad range of fluences, energies and temperatures for both virgin and pre-damaged W-targets. At the lowest accumulated fluences, small surface-grain features and near-surface He bubbles are observed. At the largest fluences, individual grain characteristics disappear in focused ion beam/scanning electron microscopy (FIB/SEM) scans, and the entire surface is covered by a multitude of near-surface bubbles with a broad range of sizes, and disordered whisker growth, while in top-down SEM imaging the surface is virtually indistinguishable from the nano-fuzz produced on linear plasma devices. These features are evident at progressively lower fluences as the He-ion energy is increased.

  11. Identification of parameters through which surface chemistry determines the lifetimes of hot electrons in small Au nanoparticles.

    PubMed

    Aruda, Kenneth O; Tagliazucchi, Mario; Sweeney, Christina M; Hannah, Daniel C; Schatz, George C; Weiss, Emily A

    2013-03-12

    This paper describes measurements of the dynamics of hot electron cooling in photoexcited gold nanoparticles (Au NPs) with diameters of ∼3.5 nm, and passivated with either a hexadecylamine or hexadecanethiolate adlayer, using ultrafast transient absorption spectroscopy. Fits of these dynamics with temperature-dependent Mie theory reveal that both the electronic heat capacity and the electron-phonon coupling constant are larger for the thiolated NPs than for the aminated NPs, by 40% and 30%, respectively. Density functional theory calculations on ligand-functionalized Au slabs show that the increase in these quantities is due to an increased electronic density of states near the Fermi level upon ligand exchange from amines to thiolates. The lifetime of hot electrons, which have thermalized from the initial plasmon excitation, increases with increasing electronic heat capacity, but decreases with increasing electron-phonon coupling, so the effects of changing surface chemistry on these two quantities partially cancel to yield a hot electron lifetime of thiolated NPs that is only 20% longer than that of aminated NPs. This analysis also reveals that incorporation of a temperature-dependent electron-phonon coupling constant is necessary to adequately fit the dynamics of electron cooling. PMID:23440215

  12. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    NASA Astrophysics Data System (ADS)

    Zhao, Yanyun; Li, Chunjing; Huang, Bo; Liu, Shaojun; Huang, Qunying

    2014-12-01

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  13. Inhibition of Listeria monocytogenes in Hot Dogs by Surface Application of Freeze-Dried Bacteriocin-Containing Powders from Lactic Acid Bacteria.

    PubMed

    Ünlü, Gülhan; Nielsen, Barbara; Ionita, Claudia

    2016-06-01

    Six lactic acid bacteria (LAB) strains, Lactococcus lactis BFE 920, L. lactis subsp. lactis ATCC 11454, L. lactis subsp. cremoris ATCC 14365, Lactobacillus curvatus L442, Lact. curvatus LTH 1174, and Lact. bavaricus MN, were grown in cheddar cheese whey supplemented with complex nutrient sources. Cell-free culture supernatants were freeze-dried, and the resulting bacteriocin-containing powders were applied on the surface of hot dogs that were inoculated (~4 log cfu/hot dog) with a five-strain Listeria monocytogenes cocktail. Hot dogs were vacuum-sealed and stored at 4 °C for 4 weeks. L. monocytogenes was enumerated, using both tryptic soy agar (TSA) and oxford listeria agar (OXA), on day 0 and at 1, 2, 3, and 4 weeks of the refrigerated storage. In hot dogs containing only the L. monocytogenes inoculum, L. monocytogenes counts increased from 4 up to 7 log cfu/hot dog. All samples containing freeze-dried bacteriocin-containing powders exhibited significantly lowered (P < 0.05) L. monocytogenes populations on the surface of hot dogs throughout the 4-week study except for bavaricin MN powder. Bacterial counts on hot dogs packed without any powder were statistically equal on day 0 when enumerated on OXA. Freeze-dried bacteriocin-containing powders from Lact. curvatus L442 and L. lactis subsp. cremoris ATCC 14365 decreased L. monocytogenes populations on the surface of hot dogs by greater than 2 log cfu/hot dog throughout the 4-week study. For the powdered bacteriocin preparations from L. lactis BFE 920, L. lactis subsp. lactis ATCC 11454, and Lact. curvatus LTH 1174, L. monocytogenes populations were determined to be approximately 3-log cfu/hot dog after 4 weeks of storage. PMID:27094263

  14. Performance indicators for 1st quarter CY 1993

    SciTech Connect

    Not Available

    1993-08-01

    The Department of Energy (DOE) has established a Department-wide Performance Indicator (PI) Program for trending and analysis of operational data as directed by DOE Order 5480.26. The PI Program was established to provide a means for monitoring the environment, safety, and health (ES&H) performance of the DOE at the Secretary and other management levels. This is the ninth in a series of quarterly reports generated for the Department of Energy Field Office, Idaho (DOE-ID) by EG&G Idaho, Inc. to meet the requirements of the PI Program as directed by the DOE Standard. DOE-STD-1048-92 identifies four general areas of PIs. They are: Personnel Safety, Operational Incidents, Environment and Management. These four areas have been subdivided into 26 performance indicators. Approximately 115 performance indicator control and distribution charts comprise the body of this report A brief summary of PIs contained in each of these general areas is provided in the following pages. The four EG&G facilities whose performance is charted herein are as follows: (1) The Advanced Test Reactor (ATR); (2) The Radioactive Waste Management Complex (RWMC); (3) The Waste Experimental Reduction Facility (WERF) and (4) The Test Reactor Area (TRA) Hot Cells.

  15. VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT CASCADES TOWARDS FILTRATION PLANT AND LOS ANGELES RESERVOIR - Los Angeles Aqueduct, Cascades Structures, Los Angeles, Los Angeles County, CA

  16. MAGAZINE E30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MAGAZINE E-30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL LOOKING TO THE REAR OF THE MAGAZINE. - Naval Magazine Lualualei, Waikele Branch, Tunnel Magazine Type, Waikakalaua & Kipapa Gulches, Pearl City, Honolulu County, HI

  17. 14. Building 105, Facilities Engineering Building, 1830, interior, 1st floor, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Building 105, Facilities Engineering Building, 1830, interior, 1st floor, crib area of building, showing electrical and plumbing cribs, wall and ceiling detail, looking S. - Watervliet Arsenal, Building 105, South Broadway, on Hudson River, Watervliet, Albany County, NY

  18. 4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND VERTICAL BRACED DOUBLE ANGLES, DIAGONAL BRACING AND CROSS BRACED RAILING - Thirty-Sixth Street Bridge, Spanning Rabbit River, Hamilton, Allegan County, MI

  19. 62. Neg. No. F75A, Jun 18, 1930, INTERIORWAREHOUSE, 1ST FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Neg. No. F-75A, Jun 18, 1930, INTERIOR-WAREHOUSE, 1ST FLOOR, STORAGE OF AUTOMOBILE COMPONENTS - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  20. 1st International consensus guidelines for advanced breast cancer (ABC 1).

    PubMed

    Cardoso, F; Costa, A; Norton, L; Cameron, D; Cufer, T; Fallowfield, L; Francis, P; Gligorov, J; Kyriakides, S; Lin, N; Pagani, O; Senkus, E; Thomssen, C; Aapro, M; Bergh, J; Di Leo, A; El Saghir, N; Ganz, P A; Gelmon, K; Goldhirsch, A; Harbeck, N; Houssami, N; Hudis, C; Kaufman, B; Leadbeater, M; Mayer, M; Rodger, A; Rugo, H; Sacchini, V; Sledge, G; van't Veer, L; Viale, G; Krop, I; Winer, E

    2012-06-01

    The 1st international Consensus Conference for Advanced Breast Cancer (ABC 1) took place on November 2011, in Lisbon. Consensus guidelines for the management of this disease were developed. This manuscript summarizes these international consensus guidelines. PMID:22425534

  1. 19. Detail of brick courses 116, back side, between 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Detail of brick courses 1-16, back side, between 1st and 2nd windows from the right - Oklahoma State University, Boys Dormitory, Northwest corner of Hester Street & Athletic Avenue, Stillwater, Payne County, OK

  2. 20. Detail of brick courses 4675, back side, between 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Detail of brick courses 46-75, back side, between 1st and 2nd windows from the right - Oklahoma State University, Boys Dormitory, Northwest corner of Hester Street & Athletic Avenue, Stillwater, Payne County, OK

  3. 45. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Turn span from SE. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  4. 46. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Overall view, from S. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  5. 28. ENGINE CLUSTER OF 1ST STAGE OF A SATURN I ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. ENGINE CLUSTER OF 1ST STAGE OF A SATURN I ROCKET ENGINE LOCATED ON NORTH SIDE OF STATIC TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  6. BLOEDNER MONUMENT (32ND INDIANA, 1ST GERMAN MONUMENT), SECTION C, FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLOEDNER MONUMENT (32ND INDIANA, 1ST GERMAN MONUMENT), SECTION C, FRONT ELEVATION DETAIL OF GERMAN TEXT. VIEW TO NORTHEAST. - Cave Hill National Cemetery, 701 Baxter Avenue, Louisville, Jefferson County, KY

  7. First principles theory for surface plasmon generation and decay to hot carriers

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam; Atwater, Harry A.; Goddard, William A., III

    2014-03-01

    Plasmonic resonances provide a promising pathway for efficiently capturing infrared photons from solar radiation and boosting photo-catalytic activity via local temperature enhancements and hot carrier generation. Previous calculations of plasmon decay to excited carriers employing a fully quantized model Hamiltonian [2] indicate strong plasmon polarization dependence and momentum anisotropy of the generated carriers, in contrast with classical theories. An accurate first principles calculation for this process must account for microscopic details at the atomic scale for the electronic states as well as the effect of the 10-100 nm length scale particle and antennae geometries on the plasmon resonances. Here, we present a first-principles multi-scale model of plasmonics combining electronic density-functional theory with electromagnetic models on longer length-scales, and investigate the role of electronic structure and geometry on plasmonic light absorption, decay and hot carrier generation. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

  8. Evaluation of the surface strength of glass plates shaped by hot slumping process

    NASA Astrophysics Data System (ADS)

    Proserpio, Laura; Basso, Stefano; Borsa, Francesco; Citterio, Oberto; Civitani, Marta; Ghigo, Mauro; Pareschi, Giovanni; Salmaso, Bianca; Sironi, Giorgia; Spiga, Daniele; Tagliaferri, Gianpiero; D'Este, Alberto; Dall'Igna, Roberto; Silvestri, Mirko; Parodi, Giancarlo; Martelli, Francesco; Bavdaz, Marcos; Wille, Eric

    2014-08-01

    Hot slumping technology is under development by several research groups in the world for the realization of grazing-incidence segmented mirrors for x-ray astronomy, based on thin glass plates shaped over a mold at temperatures above the transformation point. The performed thermal cycle and related operations might have effects on the strength of the glass, with consequences for the structural design of the elemental optical modules and, consequently, on the entire x-ray optic for large astronomical missions such as IXO and ATHENA. The mechanical strength of glass plates after they underwent the slumping process was tested through destructive double-ring tests in the context of a study performed by the Astronomical Observatory of Brera with the collaboration of Stazione Sperimentale del Vetro and BCV Progetti. The entire study was done on more than 200 D263 Schott borosilicate glass specimens of dimensions 100 mm×100 mm and a thickness 0.4 mm, either flat or bent at a radius of curvature of 1000 mm through the pressure-assisted hot slumping process developed by INAF-OAB. The collected experimental data have been compared with nonlinear finite element model analyses and treated with the Weibull statistic to assess the current IXO glass x-ray telescope design, in terms of survival probability, when subjected to static and acoustic loads characteristic of the launch phase. The paper describes the activities performed and presents the obtained results.

  9. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects

    NASA Astrophysics Data System (ADS)

    Song, Kechen; Yan, Yunhui

    2013-11-01

    Automatic recognition method for hot-rolled steel strip surface defects is important to the steel surface inspection system. In order to improve the recognition rate, a new, simple, yet robust feature descriptor against noise named the adjacent evaluation completed local binary patterns (AECLBPs) is proposed for defect recognition. In the proposed approach, an adjacent evaluation window which is around the neighbor is constructed to modify the threshold scheme of the completed local binary pattern (CLBP). Experimental results demonstrate that the proposed approach presents the performance of defect recognition under the influence of the feature variations of the intra-class changes, the illumination and grayscale changes. Even in the toughest situation with additive Gaussian noise, the AECLBP can still achieve the moderate recognition accuracy. In addition, the strategy of using adjacent evaluation window can also be used in other methods of local binary pattern (LBP) variants.

  10. 1st- and 2nd-order motion and texture resolution in central and peripheral vision

    NASA Technical Reports Server (NTRS)

    Solomon, J. A.; Sperling, G.

    1995-01-01

    STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.

  11. EDITORIAL: The 1st International Conference on Nanomanufacturing (NanoMan2008) The 1st International Conference on Nanomanufacturing (NanoMan2008)

    NASA Astrophysics Data System (ADS)

    Luo, Jack Jiqui; Fang, Fengzhou

    2009-05-01

    Nanomanufacturing is an emerging technology in the field of synthesis of nanomaterials, manufacture of nanodevices, nanosystems and the relevant characterization technologies, and will greatly impact our society and environment: speeding up scientific discovery, technological development, improving healthcare and living standards and slowing down the exhaustion of energy resources, to name but few. The 1st International Conference on Nanomanufacturing (NanoMan2008) was held on the 13-16 July 2008 in Singapore in conjunction with ThinFilm2008 (The 4th International Conference on Technological Advances of Thin Films & Surface Coatings). Approximately 140 delegates from all over the world have participated in the conference and presented their latest discoveries and technological developments. The main focuses of the conference were modern nanomanufacturing by laser machining, focused ion beam fabrication, nano/micro-molding/imprinting, nanomaterial synthesis and characterization, nanometrology and nano/microsystems fabrication and characterization. There was also great interest in applications of nanomanufacturing technologies in traditional areas such as free form machining, polishing and grinding with nano-scale precision and the smoothness of surfaces of objects, and applications in space exploration, military and medicine. This special issue is devoted to NanoMan2008 with a collection of 9 invited talks presented at the conference, covering all the topics of nanomanufacturing technology and development. These papers have been upgraded by the authors with new results and discoveries since the preparation of the conference manuscripts, hence presenting the latest developments. We would like to take this opportunity to thank all the delegates who attended the conference and made the conference successful, and to the authors who contributed papers to this special issue. Thanks also go to the conference committee for their efforts and devotion to the conference. We

  12. PREFACE: 1st European Conference on Gas Micro Flows (GasMems 2012)

    NASA Astrophysics Data System (ADS)

    Frijns, Arjan; Valougeorgis, Dimitris; Colin, Stéphane; Baldas, Lucien

    2012-05-01

    The aim of the 1st European Conference on Gas Micro Flows is to advance research in Europe and worldwide in the field of gas micro flows as well as to improve global fundamental knowledge and to enable technological applications. Gas flows in microsystems are of great importance and touch almost every industrial field (e.g. fluidic microactuators for active control of aerodynamic flows, vacuum generators for extracting biological samples, mass flow and temperature micro-sensors, pressure gauges, micro heat-exchangers for the cooling of electronic components or for chemical applications, and micro gas analyzers or separators). The main characteristic of gas microflows is their rarefaction, which for device design often requires modelling and simulation both by continuous and molecular approaches. In such flows various non-equilibrium transport phenomena appear, while the role played by the interaction between the gas and the solid device surfaces becomes essential. The proposed models of boundary conditions often need an empirical adjustment strongly dependent on the micro manufacturing technique. The 1st European Conference on Gas Micro Flows is organized under the umbrella of the recently established GASMEMS network (www.gasmems.eu/) consisting of 13 participants and six associate members. The main objectives of the network are to structure research and train researchers in the fields of micro gas dynamics, measurement techniques for gaseous flows in micro experimental setups, microstructure design and micro manufacturing with applications in lab and industry. The conference takes place on June 6-8 2012, at the Skiathos Palace Hotel, on the beautiful island of Skiathos, Greece. The conference has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement ITN GASMEMS no. 215504. It owes its success to many people. We would like to acknowledge the support of all members of the Scientific Committee and of all

  13. “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering

    SciTech Connect

    Dai, Zhigao; Liao, Lei; Wu, Wei; Guo, Shishang; Zhao, Xinyue; Li, Wei; Ren, Feng; Jiang, Changzhong E-mail: czjiang@whu.edu.cn; Mei, Fei; Xiao, Xiangheng E-mail: czjiang@whu.edu.cn; Fu, Lei; Wang, Jiao

    2014-07-21

    The Ag nanoparticles (NPs) surrounding triangular nanoarrays (TNAs) with high number density of surface-enhanced Raman scattering (SERS) hot spots (SERS hot spots ring) are prepared by a combination of NPs deposition and subsequent colloid lithography processing. Owing to the SERS hot spots ring, the Ag NPs surrounding TNAs have been proved an excellent candidate for ultrasensitive molecular sensing for their high SERS signal enhancing capacity in experiments and theories. The Ag NPs surrounding TNAs can be readily used for the quick detection of low concentrations of molecules related to food safety; herein, detection of melamine is discussed.

  14. Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots.

    PubMed

    Zhao, Fusheng; Zeng, Jianbo; Parvez Arnob, Md Masud; Sun, Po; Qi, Ji; Motwani, Pratik; Gheewala, Mufaddal; Li, Chien-Hung; Paterson, Andrew; Strych, Uli; Raja, Balakrishnan; Willson, Richard C; Wolfe, John C; Lee, T Randall; Shih, Wei-Chuan

    2014-07-21

    Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to the enhancement of local electric field by light-excited surface plasmons, i.e., collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3-dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the wavelength of light. Here we show that by making nanoporous gold in the form of disks of sub-wavelength diameter and sub-100 nm thickness, these limitations can be overcome. Nanoporous gold disks not only possess large specific surface area but also high-density, internal plasmonic "hot-spots" with impressive electric field enhancement, which greatly promotes plasmon-matter interactions as evidenced by spectral shifts in the surface plasmon resonance. In addition, the plasmonic resonance of nanoporous gold disks can be easily tuned from 900 to 1850 nm by changing the disk diameter from 300 to 700 nm. Furthermore, nanoporous gold disks can be fabricated as either bound on a surface or as non-aggregating colloidal suspension with high stability. PMID:24926835

  15. Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces.

    PubMed

    Chen, Jianwei; Gu, Chenglin; Lin, Hui; Chen, Shih-Chi

    2015-08-10

    Patterning micro- and nano-scale optical elements on nonplanar substrates has been technically challenging and prohibitively expensive via conventional processes. A low-cost, high-precision fabrication process is thus highly desired and can have significant impact on manufacturing that leads to wider applications. In this paper, we present a new hot embossing process that enables high-resolution patterning of micro- and nano-structures on non-planar substrates. In this process, a flexible elastomer stamp, i.e., PDMS, was used as a mold to perform hot-embossing on substrates of arbitrary curvatures. The new process was optimized through the development of an automated vacuum thermal imprinting system that allows non-clean room operation as well as precise control of all process parameters, e.g., pressure, temperature and time. Surface profiles and optical properties of the fabricated components, including micro-lens array and optical gratings, were characterized quantitatively, e.g., RMS ~λ/30 for a micro-lens, and proved to be comparable with high cost conventional precision processes such as laser lithographic fabrication. PMID:26367950

  16. A Method for Measuring the Hardness of the Surface Layer on Hot Forging Dies Using a Nanoindenter

    NASA Astrophysics Data System (ADS)

    Mencin, P.; van Tyne, C. J.; Levy, B. S.

    2009-11-01

    The properties and characteristics of the surface layer of forging dies are critical for understanding and controlling wear. However, the surface layer is very thin, and appropriate property measurements are difficult to obtain. The objective of the present study is to determine if nanoindenter testing provides a reliable method, which could be used to measure the surface hardness in forging die steels. To test the reliability of nanoindenter testing, nanoindenter values for two quenched and tempered steels (FX and H13) are compared to microhardness and macrohardness values. These steels were heat treated for various times to produce specimens with different values of hardness. The heat-treated specimens were tested using three different instruments—a Rockwell hardness tester for macrohardness, a Vickers hardness tester for microhardness, and a nanoindenter tester for fine scale evaluation of hardness. The results of this study indicate that nanoindenter values obtained using a Nanoindenter XP Machine with a Berkovich indenter reliably correlate with Rockwell C macrohardness values, and with Vickers HV microhardness values. Consequently, nanoindenter testing can provide reliable results for analyzing the surface layer of hot forging dies.

  17. Radial Wettable Gradient of Hot Surface to Control Droplets Movement in Directions

    PubMed Central

    Feng, Shile; Wang, Sijie; Tao, Yuanhao; Shang, Weifeng; Deng, Siyan; Zheng, Yongmei; Hou, Yongping

    2015-01-01

    A radial wettable gradient was fabricated on the surface of graphite plate by a simple one-step anodic oxidation process. It was found that the direction and value of the wettable gradient could be easily controlled by adjusting current and oxidation time gradient. With the increase of surface temperature, droplets on surface not only exhibited the transition of boiling mode, but also showed the controlled radial spreading, evaporation and movement behaviors. These phenomena could be attributed to the cooperation of wettability force, hysteresis force and vapor pressure (Leidenfrost effect). Especially, the controlled radial convergence or divergence of droplets with high velocity were realized on the surfaces with either inside or outside radial gradient, which would have crucial applications in the design of microfluidic devices and the exploration of the biotechnology. PMID:25975722

  18. Radial Wettable Gradient of Hot Surface to Control Droplets Movement in Directions

    NASA Astrophysics Data System (ADS)

    Feng, Shile; Wang, Sijie; Tao, Yuanhao; Shang, Weifeng; Deng, Siyan; Zheng, Yongmei; Hou, Yongping

    2015-05-01

    A radial wettable gradient was fabricated on the surface of graphite plate by a simple one-step anodic oxidation process. It was found that the direction and value of the wettable gradient could be easily controlled by adjusting current and oxidation time gradient. With the increase of surface temperature, droplets on surface not only exhibited the transition of boiling mode, but also showed the controlled radial spreading, evaporation and movement behaviors. These phenomena could be attributed to the cooperation of wettability force, hysteresis force and vapor pressure (Leidenfrost effect). Especially, the controlled radial convergence or divergence of droplets with high velocity were realized on the surfaces with either inside or outside radial gradient, which would have crucial applications in the design of microfluidic devices and the exploration of the biotechnology.

  19. Investigation of surface roughness and lay on metal flow in hot forging

    NASA Astrophysics Data System (ADS)

    Nowak, David J.

    A study was conducted to explore the possibility of using machining marks (i.e. surface roughness and lay) as a parameter for die design. The study was performed using 6061-T6 aluminum 1.25" diameter rounds and 0.25" square bar stock to investigate the effects of temperature, surface roughness, and lay on metal flow and friction factor. Metal flow was assessed using component true strains and spread ratio. Compression testing was performed using an instrumented die set that was mounted on a 10 ton hydraulic pres. Cigar tests were performed where the axis of the specimen were oriented at angles of 0 o, 45o and 90o with respect to the surface lay on the compression platens. Ring tests were completed to quantify friction factor at different die temperatures and surface roughness values. Results indicate that die temperature has a strong effect on bulge radius and friction factor. Lay and surface roughness were found to exhibit an effect on metal flow but surface lay of the dies was not discernible on friction factor. The study was repeated under limited conditions using graphite lubricant in order to discover if the trend was repeatable using conditions observed in industry. This was found to be the case.

  20. Effect of phosphorous surface segregation on iron-zinc reaction kinetics during hot-dip galvanizing

    SciTech Connect

    Jordan, C.E.; Zuhr, R.; Marder, A.R.

    1997-12-01

    Phosphorous was ion implanted on one surface of a large grain (10 to 20 mm) low-carbon steel sheet in order to study the effect of surface segregation on the formation of Fe-Zn phases during galvanizing. Both an Al-free and a 0.20 wt pct Al-Zn bath at 450 C were used in this investigation. It was found that P surface segregation did not affect the kinetics of Fe-Zn phase growth for the total alloy layer or the individual Fe-Zn gamma, delta, and zeta phase alloy layers in the 0.00 wt pct Al-Zn baths. In the 0.20 wt pct Al-Zn bath, the Fe{sub 2}Al{sub 5} inhibition layer formed with kinetics, showing linear growth on both the P-ion implanted and non-P-ion implanted surfaces. Fe-Zn phase growth only occurred after extended reaction times on both surfaces and was found to directly correspond to the location of substrate grain boundary sites. These results indicate that P surface segregation does not affect the growth of Fe-Zn phases or the Fe{sub 2}Al{sub 5} inhibition layer. It was shown that in the 0.20 wt pct Al-Zn bath, substrate grain boundaries are the dominant steel substrate structural feature that controls the kinetics of Fe-Zn alloy phase growth.

  1. Thermal interaction between an impinging hot jet and a conducting solid surface

    NASA Technical Reports Server (NTRS)

    Abeloff, P. A.; Dougherty, F. C.; Van Dalsem, W. R.

    1990-01-01

    Powered-lift aircraft may produce severe high-temperature environments which are potentially damaging to a landing surface or the aircraft. The interaction betweean the high temperature flow field and a nonadiabatic landing surface is analyzed with a coupled computational fluid dynamics/solid thermal conduction computer code, HOTJET. The HOTJET code couples time-accurate, implicit, factored solution schemes for the governing fluid dynamics equations (Reynolds-averaged Navier-Stokes equations) to the unsteady thermal conduction equation, which governs heat flux within a solid. HOTJET is validated against exact solutions to the thermal conduction and Navier-Stokes equations. First-of-a-kind results are included which show the impact of surface material properties on the fluid physics and the coupled fluid/material thermal fields.

  2. The road to hot electron photochemistry at surfaces: A personal recollection

    NASA Astrophysics Data System (ADS)

    Gadzuk, J. W.

    2012-09-01

    A very important part of contemporary fs-laser surface photochemistry (SPC) is based on a proposed mechanism in which a laser pulse incident upon an adsorbate-covered surface photoexcites substrate electrons which in turn inelastically scatter from atoms and molecules (chemists may call them "reactants") in or on the surface. The present narrative outlines my own very personal SPC saga that began with early exposure to the wonders of and fascination with inelastic resonant electron scattering from gas phase atoms and molecules that dominated the Atomic and Electron Physics activities at NBS (now NIST) in 1968 when I arrived. How this lead to a fundamental understanding of important aspects of SPC is the focus of this essay.

  3. The road to hot electron photochemistry at surfaces: A personal recollection

    SciTech Connect

    Gadzuk, J. W.

    2012-09-07

    A very important part of contemporary fs-laser surface photochemistry (SPC) is based on a proposed mechanism in which a laser pulse incident upon an adsorbate-covered surface photoexcites substrate electrons which in turn inelastically scatter from atoms and molecules (chemists may call them 'reactants') in or on the surface. The present narrative outlines my own very personal SPC saga that began with early exposure to the wonders of and fascination with inelastic resonant electron scattering from gas phase atoms and molecules that dominated the Atomic and Electron Physics activities at NBS (now NIST) in 1968 when I arrived. How this lead to a fundamental understanding of important aspects of SPC is the focus of this essay.

  4. Experimental investigation on the phenomena around the onset nucleate boiling during the impacting of a droplet on the hot surface

    NASA Astrophysics Data System (ADS)

    Mitrakusuma, Windy H.; Deendarlianto, Kamal, Samsul; Indarto, Nuriyadi, M.

    2016-06-01

    Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO2 coating (UVN), and stainless steel with TiO2 coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.

  5. Cooling of hot bubbles by surface texture during the boiling crisis

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep; Buongiorno, Jacopo; Varanasi, Kripa

    2015-11-01

    We report the existence of maxima in critical heat flux (CHF) enhancement for pool boiling on textured hydrophilic surfaces and reveal the interaction mechanism between bubbles and surface texture that governs the boiling crisis phenomenon. Boiling is a process of fundamental importance in many engineering and industrial applications but the maximum heat flux that can be absorbed by the boiling liquid (or CHF) is limited by the boiling crisis. Enhancing the CHF of industrial boilers by surface texturing can lead to substantial energy savings and reduction in greenhouse gas emissions on a global scale. However, the fundamental mechanisms behind this enhancement are not well understood, with some previous studies indicating that CHF should increase monotonically with increasing texture density. However, using pool boiling experiments on a parametrically designed set of plain and nano-textured micropillar surfaces, we show that there is an optimum intermediate texture density that maximizes CHF and further that the length scale of this texture is of fundamental significance. Using imbibition experiments and high-speed optical and infrared imaging, we reveal the fundamental mechanisms governing the CHF enhancement maxima in boiling crisis. We acknowledge funding from the Chevron corporation.

  6. Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots

    NASA Astrophysics Data System (ADS)

    Zhao, Fusheng; Zeng, Jianbo; Parvez Arnob, Md Masud; Sun, Po; Qi, Ji; Motwani, Pratik; Gheewala, Mufaddal; Li, Chien-Hung; Paterson, Andrew; Strych, Uli; Raja, Balakrishnan; Willson, Richard C.; Wolfe, John C.; Lee, T. Randall; Shih, Wei-Chuan

    2014-06-01

    Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to the enhancement of local electric field by light-excited surface plasmons, i.e., collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3-dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the wavelength of light. Here we show that by making nanoporous gold in the form of disks of sub-wavelength diameter and sub-100 nm thickness, these limitations can be overcome. Nanoporous gold disks not only possess large specific surface area but also high-density, internal plasmonic ``hot-spots'' with impressive electric field enhancement, which greatly promotes plasmon-matter interactions as evidenced by spectral shifts in the surface plasmon resonance. In addition, the plasmonic resonance of nanoporous gold disks can be easily tuned from 900 to 1850 nm by changing the disk diameter from 300 to 700 nm. Furthermore, nanoporous gold disks can be fabricated as either bound on a surface or as non-aggregating colloidal suspension with high stability.Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to the enhancement of local electric field by light-excited surface plasmons, i.e., collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3-dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the

  7. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    NASA Astrophysics Data System (ADS)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  8. The Evolution of the Surface Morphologies and Microstructures of an Unleveled Hot-Rolled Steel Strip During Cold Rolling After Hydrogen Reduction

    NASA Astrophysics Data System (ADS)

    Jing, Yu-An; Shang, Qiuyue; Zang, Xiaoming; Zhang, Lei; Peng, Xingdong; Jia, Pinfeng

    2016-01-01

    The removal of oxide scale from a hot-rolled strip surface can completely eliminate environmental pollution if performed by hydrogen-reduction descaling instead of traditional pickling descaling. However, a large number of cracks appear on the surface of a leveled hot-rolled steel strip after hydrogen reduction. This effect is likely to impede the application of reduction descaling to cold-rolled products. Nevertheless, there are almost no cracks on the surface of an unleveled hot-rolled steel strip if the hot-rolled steel strip is not subjected to repeated bending by the leveler machine. The surface quality of a reduced steel strip will be better than that of a pickled steel strip. To investigate the evolution of the surface morphologies, microstructures, and properties of an unleveled strip steel during cold rolling, unleveled strip steel samples were rolled using a four-high mill after hydrogen reduction and after pickling. The surface morphologies and cross-sectional microstructures of the samples were observed by SEM, and the surface-roughness values were measured using a TR200 profilometer before and after cold-rolling deformation. The evolution of the surface morphologies and cross-sectional microstructures of the sample after cold rolling were analyzed. The results show that the oxide scale formed on the surface turns into a metallic iron layer, and a decarburization layer appears between the metallic iron layer and the steel matrix after hydrogen reduction. Few cracks, besides pores, and bubbles, appeared on the surface of the sample after hydrogen reduction. The pores and bubbles were roll-flattened after five passes of cold rolling. The work hardening degree and mechanical properties of the reduced sample are similar to those of the pickled sample after cold rolling. Compared with the rolled sample after pickling, the surface qualities of the reduced samples are better than those of the pickled samples and better than those of the reduced samples that

  9. Heat tracing as a tool for locating and quantifying hydrological hot spots and hot moments that impact surface water and groundwater quality

    NASA Astrophysics Data System (ADS)

    Lautz, L.; Briggs, M. A.; Gordon, R.; Irvine, D. J.; McKenzie, J. M.; Ribaudo, R.; Hare, D. K.

    2014-12-01

    Hot spots and hot moments of biogeochemical transformations in stream ecosystems are often driven by rapid water exchange across the streambed interface. Few field methods are available for quantifying variability of hydrologic exchange rates across the streambed interface through space and time at high resolution. Advances in heat tracing provide opportunities for improved assessment of the paired spatial and temporal structure of heterogeneity in water flux and chemistry in the hyporheic zone. Here, we present a synthesis of heat transport monitoring and modeling studies aimed at improving spatial and temporal characterization of water exchange across the bed interface. Hot spots of water and solute exchange at the bed interface are quantified in the field at the reach scale by integrating high-resolution streambed temperature maps with point measurements of water flux inferred from 1D temperature profiles. The effectiveness and potential errors of this methodology are explored through numerical groundwater flow and heat transport modeling. Hot moments of water and solute exchange are quantified in the field using high-resolution distributed temperature sensing, paired with 1D heat transport modeling and detailed water quality profiles. The effectiveness and potential errors of quantifying temporal variability in water flux using heat tracing are explored through controlled laboratory experiments. Our results demonstrate the enormous potential for using heat tracing to quantify spatial and temporal changes in water flux across the bed interface at high resolution. The methods presented take advantage of inexpensive temperature sensors and user-friendly modeling methods, such as VFLUX, making heat tracing a good option for field practitioners interested in observing spatial and temporal heterogeneity of water flux at the bed interface.

  10. Minimally Invasive Arthrodesis of 1st Metatarsophalangeal Joint for Hallux Rigidus.

    PubMed

    Sott, A H

    2016-09-01

    First metatarsophalangeal joint arthrodesis plays a significant role in the management of symptomatic hallux rigidus/osteoarthritis of the 1st metatarsophalangeal joint. Several open and few percutaneous techniques have been described in the literature. This article describes and discusses a percutaneous technique that has been successfully used to achieve a pain-free stable and functional 1st metatarsophalangeal joint. All aspects of surgical indication and operative technique and details of patient-reported outcomes are presented with a referenced discussion. PMID:27524706

  11. Monitoring North Korea Explosions: Status and Result of 1st and 2nd Tests (Invited)

    NASA Astrophysics Data System (ADS)

    Chi, H.; Lee, H.; Shin, J.; Park, J.; Sheen, D.; Kim, G.; Che, I.; Lim, I.; Kim, T.

    2009-12-01

    Through data exchanging with China, Russia and Japan, KIGAM could monitor North Korea explosion tests in near real time with azimuthal full coverage from the test site. Except for the East Sea (Japan Sea) side, the seismic stations are distributed uniformly along the boundaries of North Korea and adjacent countries, and only stations with the distance of 200 to 550 Km from the test site were considered. Irrespective of azimuthal directions of stations from the test site, the conventional discrimination, Pn/Lg spectral ratio clearly showed that both tests were explosion. But mb-Ms discrimination did not show apparently the known pattern of explosion for both tests. Body wave magnitude, mb(Pn) of 2nd test, which was evaluated as 4.5 by KIGAM, varies with directional location of stations widely from 4.1 to 5.2. The magnitude obtained from Lg, mb(Lg), showed narrow variation between 4.3 to 4.7 with the average of 4.5. In the case of 1st test, both mb(Pn) and mb(Lg) showed equivalently large variation with directional station location. The error ellipses of epicentral determination of test site for 1st and 2nd tests showed almost identical pattern if they were separately calculated with the same configuration of stations. But the combined use of 1st and 2nd test data showed that 2nd test site was moved approximately 2 Km westward from 1st site. The cut-off frequencies of P wave of 1st and 2nd tests showed no or negligible difference even though the estimated yield of 2nd test were much larger than that of 1st one. The ratio of 1st and 2nd P-wave amplitudes showed from 2 to 3.1 times. Correspondingly the estimated energy or yield were ranged from 4 to roughly 10 times. KIGAM evaluated the yield of 2nd test were 8 times in the average larger than that of 1st one.

  12. PREFACE: 1st Conference on Light and Particle Beams in Materials Science 2013 (LPBMS2013)

    NASA Astrophysics Data System (ADS)

    Kumai, Reiji; Murakami, Youichi

    2014-04-01

    From 29-31 August 2013, the 1st International Conference on Light and Particle Beams in Materials Science, LPBMS 2013, took place in the Tsukuba International Congress Center in the city of Tsukuba, Japan. The conference was a continuation of the international series Synchrotron Radiation in Materials Science (SRMS), which started in 1994. The last one, SRMS-7, was held in Oxford UK 11-14 July 2010, where the International Advisory Committee (IAC) recommended the conference be enlarged to incorporate Materials Research from Neutron, Muon, and Slow Positron Sources, as well as the science emerging from Synchrotron Light Sources. The conference brought together contributions from academics and industrial researchers with a diverse background and experience from the physics, chemistry and engineering communities. The topics covered in the LPBMS2013 include strongly correlated electron systems, magnetism and magnetic materials, soft matter, interface and surface defects, catalysts, biomaterials, and ceramics. In the 3-day scientific program, the conference consisted of 9 plenary talks, 33 invited talks, 20 oral presentations, and 126 poster presentations. We are pleased to publish the proceedings of the LPBMS2013 in this volume of Journal of Physics: Conference Series. This volume contains 58 papers representing the work that was presented and discussed at the conference. We hope that this volume will promote further development of this interdisciplinary materials research emerging from synchrotron light, neutron, muon, and slow positron sciences. Finally, we would like to thank the International Advisory Committee (Chair: Professor G N Greaves), sponsors, all the participants and contributors for making possible this international meeting of researchers. Reiji Kumai & Youichi Murakami Conference photograph Details of the program and organizing committees are available in the pdf

  13. Realization And Study Of Rough, Hot Selective Surfaces By Electroless And Electrolytic Ways: Application To Some Nickel Compounds

    NASA Astrophysics Data System (ADS)

    Papini, Marie; Papini, Francois

    1982-04-01

    Authors are relating some works carried out in the "Departement d'Heliophysique" and concerned with hot absorbing selective surfaces, rough surfaced, realized either by electrolytic way or chemical way, the common principal element of both being constituted by nickel. Then, electrochemical deposits are obtained directly by only one mode, that is the way for nickel-copper layers. Under chemical process, the operation includes two stages, deposition followed by chemical etching. Every samples are characterized by measuring optothermal properties (monochromatic absorptivity in the wavelength band 0.25 μm - 2.5 μm, total directional emissivity as a function of temperature) and using physico-chemical analysis via various methods : X-Rays,electron microscopy, Auger spectroscopy, Energy Disper-sive X-Rays analysis. The aim of such a study is double : - to make out interesting properties for some of these deposits (for example : a = 0.95, = 0.20) in the view of thermal conversion of solar energy in the mean temperature range (100°C < T < 200°C), - to study roughness influence upon the evolution of optical properties. In what concerns the first point, as foreseen application requiring sufficiently stable materials, the samples have been tested under temperature levels up to 200°C during a few thousands of hours, so that one can have some ideas upon ageing phenomena.

  14. Flux threshold measurements of nano-fuzz formation by He-ion beam impact on hot tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Meyer, F. W.; Hijazi, H.; Bannnister, M. E.; Garrison, L. M.; Parish, C. M.; Unocic, K. A.

    2015-11-01

    We report measurements of the energy dependence of flux thresholds and incubation fluences for He-ion induced nano-fuzz formation on hot tungsten surfaces using real-time sample imaging of tungsten target emissivity change together with accurate ion-beam flux-profile measurements. The measurements were carried out at the Multicharged Ion Research Facility (MIRF) at ion energies from 218 eV to 8.5 keV, using a high-flux deceleration module and beam flux monitor for optimizing the decel optics on the low energy MIRF beamline. The measurements suggest that nano-fuzz formation proceeds only if a critical rate of change of trapped He density in the W target is exceeded. The energy dependence of three factors contributing to the overall energy dependence, ion reflection, ion range and target damage creation, were determined using the SRIM simulation code. The observed energy dependence can be well reproduced by the combined energy dependences of these three factors. The incubation fluences deduced from first visual appearance of surface emissivity change were 2-4x1023/m2 at 218 eV, and roughly a factor of 10 less at the higher energies, which were all at or above the displacement energy threshold. Additional measurements at 100 and 200 keV, using beams from the MIRF HV-platform-based ECR source will be presented. Research sponsored by the LDRD program at ORNL, managed by UT-Battelle for the USDOE, and by the DOE OFES.

  15. SMALL MAGNETIC LOOPS CONNECTING THE QUIET SURFACE AND THE HOT OUTER ATMOSPHERE OF THE SUN

    SciTech Connect

    Martinez Gonzalez, M. J.; Manso Sainz, R.; Asensio Ramos, A.

    2010-05-01

    Sunspots are the most spectacular manifestation of solar magnetism, yet 99% of the solar surface remains 'quiet' at any time of the solar cycle. The quiet sun is not void of magnetic fields, though; they are organized at smaller spatial scales and evolve relatively fast, which makes them difficult to detect. Thus, although extensive quiet Sun magnetism would be a natural driver to a uniform, steady heating of the outer solar atmosphere, it is not clear what the physical processes involved would be, due to lack of observational evidence. We report on the topology and dynamics of the magnetic field in very quiet regions of the Sun from spectropolarimetric observations of the Hinode satellite, showing a continuous injection of magnetic flux with a well-organized topology of {omega}-loop from below the solar surface into the upper layers. At first stages, when the loop travels across the photosphere, it has a flattened (staple-like) geometry and a mean velocity ascent of {approx}3 km s{sup -1}. When the loop crosses the minimum temperature region, the magnetic fields at the footpoints become almost vertical and the loop topology resembles a potential field. The mean ascent velocity at chromospheric height is {approx}12 km s{sup -1}. The energy input rate of these small-scale loops in the lower boundary of the chromosphere is (at least) of 1.4 x 10{sup 6}-2.2 x 10{sup 7} erg cm{sup -2} s{sup -1}. Our findings provide empirical evidence for solar magnetism as a multi-scale system, in which small-scale low-flux magnetism plays a crucial role, at least as important as active regions, coupling different layers of the solar atmosphere and being an important ingredient for chromospheric and coronal heating models.

  16. Comparison of Hot Water Surface Pasteurization and Chlorine Wash Treatments for Reducing Populations of Salmonella Poona on Inoculated Whole Cantaloupe Melons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous outbreaks of salmonellosis have been associated with the consumption of cantaloupes. Commercial chlorine wash treatments for cantaloupes are limited in their ability to inactivate and/or remove the human pathogen, Salmonella Poona. Our objective was to compare efficacy of hot water surface ...

  17. How Many Attempts Until Success in Some Core 1st. Year Disciplines?

    ERIC Educational Resources Information Center

    Fernandes, Graça Leão; Andrade e Silva, João; Lopes, Margarida Chagas

    2012-01-01

    Due to a general development in education brought about by democracy, Portugal has witnessed tremendous development in Higher Education (HE) since the beginning of the 1980s. Nevertheless, the percentage of graduates among the Portuguese population still ranks far below most European countries. This is why academic performance in HE 1st cycle…

  18. 130. Post1911. Photograph labeled, 'SEASON 1913. CAPTAIN, 1st MATE, SUPT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. Post-1911. Photograph labeled, 'SEASON 1913. CAPTAIN, 1st MATE, SUPT AND STOREKEEPER, A.P. ASS'N CANNERY, SHIP STAR OF ALASKA.' View forward from mizzenmast, post side. - Ship BALCLUTHA, 2905 Hyde Street Pier, San Francisco, San Francisco County, CA

  19. First-Generation College Students' 1st-Year College Experiences: Challenges Attending a Private University

    ERIC Educational Resources Information Center

    Reid, Josephine

    2013-01-01

    First-generation college students (FGCS) face challenges when switching from high school to college and during their 1st-year in college. Additionally, FGCS may have difficulty understanding the steps required to prepare for and enroll in postsecondary education. The social capital theory examines support of social, academic, and cultural networks…

  20. 25. PRIMARY POWER TRANSMISSION BELT HOLES IN 1st FLOOR MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. PRIMARY POWER TRANSMISSION BELT HOLES IN 1st FLOOR MILL NO. 1 CEILING. WATER-POWERED MACHINERY LOCATED IN BASEMENT RAN LEATHER BELTS THROUGH THESE HOLES. POWER WAS THEN TRANSMITTED TO SHAFTS AND PULLEYS TO RUN MACHINERY ON MILL FLOORS. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  1. 77 FR 22574 - Filing Dates for the Washington Special Election In the 1st Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ELECTION COMMISSION Filing Dates for the Washington Special Election In the 1st Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special election. SUMMARY: Washington has...

  2. 76 FR 51366 - Filing Dates for the Oregon Special Election in the 1st Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... information on these requirements, see Federal Register Notice 2009-03, 74 FR 7285 (February 17, 2009... November 8, 2011, and January 31, 2012, to fill the U.S. House seat in the 1st Congressional District... forms: One form to cover 2011 activity, labeled as the Year-End Report; and the other form to cover...

  3. Perceptual Narrowing of Linguistic Sign Occurs in the 1st Year of Life

    ERIC Educational Resources Information Center

    Palmer, Stephanie Baker; Fais, Laurel; Golinkoff, Roberta Michnick; Werker, Janet F.

    2012-01-01

    Over their 1st year of life, infants' "universal" perception of the sounds of language narrows to encompass only those contrasts made in their native language (J. F. Werker & R. C. Tees, 1984). This research tested 40 infants in an eyetracking paradigm and showed that this pattern also holds for infants exposed to seen language--American Sign…

  4. 26. Photograph of original Fresnel lens a 1st order fixed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photograph of original Fresnel lens a 1st order fixed white light. (Installed 1874 and first illuminated Feb. 1, 1875. This is the only known photograph of this lens - - removed in 1929.)ca. 1918. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  5. Highlights of the 1st Student Symposium of the ISCB RSG UK

    PubMed Central

    Rahman, Farzana; Farmer, Rohit; Das, Sayoni; Vayani, Fatima; Hassan, Mehedi

    2015-01-01

    This short report summarises the scientific content and activities of a student-led event, the 1st student symposium by the UK Regional Student Group of the International Society for Computational Biology. The event took place on the 8th of October 2014. PMID:26998223

  6. 48. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms Latching mechanism, E end of turn span, view from N. Sarcone Photography, Columbus, MS. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  7. 42. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Copy of postcard ca. 1900. Copy owned and made by Jack Donnell, Columbus, Ms. Shows two-span steel truss, built by Phoenix Bridge Co. in 1878. Negative copied by: Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  8. 49. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Top of pier and underside of w end of turn span. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  9. 47. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Latching mechanism, E end of turn span, viewed from W. Sarcone Photography, Columbus, Ms. Sep 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  10. The Course of Psychological Disorders in the 1st Year After Cancer Diagnosis

    ERIC Educational Resources Information Center

    Kangas, Maria; Henry, Jane L.; Bryant, Richard A.

    2005-01-01

    This study investigated the relationship between acute stress disorder (ASD) and posttraumatic stress disorder (PTSD) and comorbid anxiety, depressive, and substance use disorders over the first 12-month period following a cancer diagnosis. Individuals recently diagnosed with 1st onset head and neck or lung malignancy were assessed for ASD within…

  11. Hot surface ionic line emission and cold K-inner shell emission from petawatt-laser irradiated Cu foil targets

    SciTech Connect

    Theobald, W; Akli, K; Clarke, R; Delettrez, J A; Freeman, R R; Glenzer, S; Green, J; Gregori, G; Heathcote, R; Izumi, N; King, J A; Koch, J A; Kuba, J; Lancaster, K; MacKinnon, A J; Key, M; Mileham, C; Myatt, J; Neely, D; Norreys, P A; Park, H; Pasely, J; Patel, P; Regan, S P; Sawada, H; Shepherd, R; Snavely, R; Stephens, R B; Stoeckl, C; Storm, M; Zhang, B; Sangster, T C

    2005-12-13

    A hot, T{sub e} {approx} 2- to 3-keV surface plasma was observed in the interaction of a 0.7-ps petawatt laser beam with solid copper-foil targets at intensities >10{sup 20} W/cm{sup 2}. Copper K-shell spectra were measured in the range of 8 to 9 keV using a single-photon-counting x-ray CCD camera. In addition to K{sub {alpha}} and K{sub {beta}} inner-shell lines, the emission contained the Cu He{sub {alpha}} and Ly{sub {alpha}} lines, allowing the temperature to be inferred. These lines have not been observed previously with ultrafast laser pulses. For intensities less than 3 x 10{sup 18} W/cm{sup 2}, only the K{sub {alpha}} and K{sub {beta}} inner-shell emissions are detected. Measurements of the absolute K{sub {alpha}} yield as a function of the laser intensity are in agreement with a model that includes refluxing and confinement of the suprathermal electrons in the target volume.

  12. Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-refined TWIP Steels

    NASA Astrophysics Data System (ADS)

    Barthelmie, J.; Schram, A.; Wesling, V.

    2016-03-01

    Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.

  13. Regional Observations of North Korea Explosions: 1st and 2nd Tests

    NASA Astrophysics Data System (ADS)

    Chi, Heon Cheol; Shin, Jin Soo; Lee, Hee-Il; Park, Jung Ho; Sheen, Dong-Hoon; Kim, Geunyoung; Kim, Tea Sung; Che, Il-Young; Lim, In-Seub

    2010-05-01

    Through data exchanging with China, Russia and Japan, KIGAM could monitor North Korea explosion tests in near real time with azimuthally full coverage from the test site. Except for the East Sea (Japan Sea) side, the seismic stations are distributed uniformly along the boundaries of North Korea and adjacent countries. The error ellipses of epicentral determination of test site for 1st and 2nd tests showed almost identical pattern if they were separately calculated with the same configuration of stations. But the combined use of the 1st and the 2nd test data showed that the 2nd test site was moved approximately 2 Km westward from 1st site. The Pn/Lg spectral ratio clearly discriminate these events from two nearby natural earthquakes above 4 Hz. Full moment tensor inversion also indicate the 2nd test had a very large isotropic component. But mb-Ms discrimination, which has been considered one of the most reliable discriminants for separating explosions and earthquakes, did not show apparently the known pattern of explosion for both tests. Body wave magnitude, mb(Pn) of the 2nd test, which was evaluated as 4.5 by KIGAM, varies with directional location of stations widely from 4.1 to 5.2. The magnitude obtained from Lg, mb(Lg), showed narrow variation between 4.3 to 4.7 with the average of 4.5. In the case of both 1st and 2nd tests, both mb(Pn) and mb(Lg) showed equivalently large variation with directional station location. These variations are mainly due to lateral variation of crustal structures surrounding the test site. Remarkably mb(Lg) showed very linear relationship with mb(Pn). By considering attenuation characteristics according to the propagation path, the variations could be effectively reduced. The cut-off frequencies of P wave of both tests showed no or negligible difference even though the estimated yield of the 2nd test were much larger than that of the 1st one. The ratio of P-wave amplitudes of two tests showed from 2 to 3.1 times. Correspondingly the

  14. Idaho National Laboratory Quarterly Performance Analysis - 1st Quarter FY2015

    SciTech Connect

    Mitchell, Lisbeth A.

    2015-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (27 from the 1St Qtr FY-15 and 46 from the prior three reporting quarters), as well as 38 other issue reports (including nine not reportable events and Significant Category A and B conditions reported during the1st Qtr FY-15) identified at INL during the past 12 months.

  15. 46. NORTH END OF MILL NO. 2, 1st FLOOR, BELOW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. NORTH END OF MILL NO. 2, 1st FLOOR, BELOW PICKER AND CLOTH ROOM AREA. FUNCTION OF THIS SPACE UNKNOWN AT PRESENT. NOTE THAT EYE BEAM REPLACES ORIGINAL WALL OF 1892 PICKER HOUSE. CENTER (OR LEFT) DOOR IS ENTRY TO MILL NO. 2. RIGHT DOOR IS ENTRY TO 1892 NAPPER ROOM. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  16. 1st Central and Eastern European Proteomic Conference and 3rd Czech Proteomic Conference.

    PubMed

    Kovarova, Hana; Gadher, Suresh Jivan; Archakov, Alexander

    2008-02-01

    The 1st Central and Eastern European Proteomic Conference was organized together with the 3rd Czech Proteomic Conference in the TOP Hotel, Prague in the Czech Republic from the 29th to the 31st October, 2007. The aim was to strengthen links with scientists from Central and Eastern Europe including Russia, which until now have been weak or nonexistent, and to highlight the emergence of excellent proteomic studies from various countries, which until now were not visible. PMID:18282121

  17. 7. Photographic copy of original construction drawing, ELECTRICAL 1ST AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photographic copy of original construction drawing, ELECTRICAL 1ST AND 2ND FLOOR PLANS, SHEET 10 of 11, DRAWING NO. 35-03-05 SF 5/1677, U.S. Army Engineer District, Detroit, Corps of Engineers, 9 June, 1959, on file Selfridge Base Museum. - Selfridge Field, Building No. 1041, West of E Street, north of D Street, Mount Clemens, Macomb County, MI

  18. Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite

    PubMed Central

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z

    2015-01-01

    Summary The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands. PMID:26425210

  19. 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection

    PubMed Central

    Banfield, Bruce W.; Mouland, Andrew J.; McCormick, Craig

    2014-01-01

    In recent years, important linkages have been made between RNA granules and human disease processes. On June 8-10 of this year, we hosted a new symposium, dubbed the 1st International Symposium on Stress-Associated RNA Granules in Human Disease and Viral Infection. This symposium brought together experts from diverse research disciplines ranging from cancer and neuroscience to infectious disease. This report summarizes speaker presentations and highlights current challenges in the field. PMID:25256393

  20. 43. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Copy of photo 1900. Shows 1878 M&O RR bridge. The steamboat, 'Gopher,' in foreground, was an archeological survey vessel from the Franklin Institute in Philadelphia. Published in Art in Mississippi (1901). Credit: Copied from print in Lowndes Co. Public Library by Sarcone Photography, Columbus, Ms. 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  1. 44. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. MISSISSIPPI, LOWNDES CO. COLUMBUS RAILROAD BRIDGE End of 1st St. S., Columbus, Ms. Detail from Camille Drie's map: A Bird's Eye View of Columbus, Mississippi ca. 1875-76. Shows M&O RR bridge before the Phoenix Bridge Co. erected iron truss spans in 1878. Credit: Photostat of map in Lowndes Co. Public Library Sarcone Photography, Columbus, Ms. 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  2. Too Hot to Sleep? Sleep Behaviour and Surface Body Temperature of Wahlberg’s Epauletted Fruit Bat

    PubMed Central

    Downs, Colleen T.; Awuah, Adwoa; Jordaan, Maryna; Magagula, Londiwe; Mkhize, Truth; Paine, Christine; Raymond-Bourret, Esmaella; Hart, Lorinda A.

    2015-01-01

    The significance of sleep and factors that affect it have been well documented, however, in light of global climate change the effect of temperature on sleep patterns has only recently gained attention. Unlike many mammals, bats (order: Chiroptera) are nocturnal and little is known about their sleep and the effects of ambient temperature (Ta) on their sleep. Consequently we investigated seasonal temperature effects on sleep behaviour and surface body temperature of free-ranging Wahlberg’s epauletted fruit bat, Epomophorus wahlbergi, at a tree roost. Sleep behaviours of E. wahlbergi were recorded, including: sleep duration and sleep incidences (i.e. one eye open and both eyes closed). Sleep differed significantly across all the individuals in terms of sleep duration and sleep incidences. Individuals generally spent more time awake than sleeping. The percentage of each day bats spent asleep was significantly higher during winter (27.6%), compared with summer (15.6%). In summer, 20.7% of the sleeping bats used one eye open sleep, and this is possibly the first evidence of one-eye-sleep in non-marine mammals. Sleep duration decreased with extreme heat as bats spent significantly more time trying to cool by licking their fur, spreading their wings and panting. Skin temperatures of E. wahlbergi were significantly higher when Ta was ≥35°C and no bats slept at these high temperatures. Consequently extremely hot days negatively impact roosting fruit bats, as they were forced to be awake to cool themselves. This has implications for these bats given predicted climate change scenarios. PMID:25775371

  3. Magnetic field induced 1st order transitions: Recent studies, and some new concepts

    NASA Astrophysics Data System (ADS)

    Chaddah, P.

    2015-05-01

    Phase transitions are caused by varying temperature, or pressure, or magnetic field. The observation of 1st order magneto-structural transitions has created application possibilities based on magnetoresistance, magnetocaloric effect, magnetic shape memory effect, and magneto-dielectric effect. Magnetic field induced transitions, and phase coexistence of competing magnetic phases down to the lowest temperature, gained prominence over a decade ago with theoretical models suggesting that the ground state is not homogeneous. Researchers at Indore pushed an alternative view that this phase coexistence could be due to glasslike "kinetic arrest" of a disorder-broadened first-order magnetic transition between two states with long-range magnetic order, resulting in phase coexistence down to the lowest temperatures. The CHUF (cooling and heating in unequal field) protocol created at Indore allows the observation of `devitrification', followed by `melting'. I show examples of measurements establishing kinetic arrest in various materials, emphasizing that glasslike arrest of 1st order magnetic transitions may be as ubiquitous as glass formation following the arrest of 1st order structural transitions.

  4. Plasmon Mapping in Metallic Nanostructures and its Application to Single Molecule Surface Enhanced Raman Scattering: Imaging Electromagnetic Hot-Spots and Analyte Location

    SciTech Connect

    Camden, Jon P

    2013-07-16

    A major component of this proposal is to elucidate the connection between optical and electron excitation of plasmon modes in metallic nanostructures. These accomplishments are reported: developed a routine protocol for obtaining spatially resolved, low energy EELS spectra, and resonance Rayleigh scattering spectra from the same nanostructures.; correlated optical scattering spectra and plasmon maps obtained using STEM/EELS.; and imaged electromagnetic hot spots responsible for single-molecule surface-enhanced Raman scattering (SMSERS).

  5. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.

    PubMed

    Shi, Yujun

    2015-02-17

    shown that ring-opening reactions play a vital role in characterizing the reaction chemistry. On the other hand, exocyclic Si-H(CH3) bond cleavages are more important in the less-puckered disilacyclobutane molecules. Metal filaments are essential in HWCVD since they serve as catalysts to decompose precursor gases to reactive species, which initiate gas-phase reaction chemistry and thin film growth. We discuss the structural changes in metal filaments when exposed to various precursor gases. Depending on the nature of the radical intermediates formed from the hot-wire decomposition and subsequent gas-phase reactions, metal silicides and carbides can be formed. Overall, study of the gas-phase reaction chemistry in HWCVD provides important knowledge of the chemical species produced prior to their deposition on a substrate surface. This helps in identifying the major contributor to alloy formation on the filament itself and the film growth, and consequently, in determining the properties of the deposited films. An integrated knowledge of the gas-phase reaction chemistry, filament alloy formation, and thin film deposition is required for an efficient deposition of high-quality thin films and nanomaterials. PMID:25586211

  6. Too hot to trot (barefoot)… A study of burns in children caused by sun heated surfaces in Queensland, Australia.

    PubMed

    Asquith, Catherine; Kimble, Roy; Stockton, Kellie

    2015-02-01

    The aim of this study was to quantify and describe the characteristics of burns in children caused by sun heated surfaces. Children presenting between January 2013 and February 2014 with a burn due to sun heated surfaces were included in the study. Fifteen children were identified representing 1.7% of new burns. The mean age was 18.3 months. All burns occurred during the warmer months between 11a.m. and 4p.m. and the feet were commonly involved. Most cases occurred in the child's home garden but six cases occurred in public play areas. Metal was the most common surface involved. Most burns were superficial partial thickness with two burns deep dermal partial thickness and one child needed a skin graft. Burns due to sun heated surfaces are relatively frequent. Parents need to be aware that in summer surfaces can become hot enough to cause burns to bare feet in young children. Play areas need to be shaded or covered in surfaces that do not become hot enough to cause burns and metal objects should not be left in the sun in children's play areas. PMID:25034242

  7. Surface fatigue and failure characteristics of hot-forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1987-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground AISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  8. Ab initio molecular dynamics with simultaneous electron and phonon excitations: Application to the relaxation of hot atoms and molecules on metal surfaces

    NASA Astrophysics Data System (ADS)

    Novko, D.; Blanco-Rey, M.; Juaristi, J. I.; Alducin, M.

    2015-11-01

    The relaxation dynamics of hot H, N, and N2 on Pd(100), Ag(111), and Fe(110), respectively, is studied by means of ab initio molecular dynamics with electronic friction. This method is adapted here to account for the electron density changes caused by lattice vibrations, thus treating on an equal footing both electron-hole (e -h ) pair and phonon excitations. We find that even if the latter increasingly dominate the heavier is the hot species, the contribution of e -h pairs is by no means negligible in these cases because it gains relevance at the last stage of the relaxation process. The quantitative details of energy dissipation depend on the interplay of the potential energy surface, electronic structure, and kinetic factors.

  9. Surface fatigue and failure characteristics of hot forged powder metal AISI 4620, AISI 4640, and machined AISI 4340 steel spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1986-01-01

    Spur gear surface fatigue endurance tests were conducted to investigate hot forged powder metal AISI 4620 and 4640 steel for use as a gear material, to determine endurance characteristics and to compare the results with machined AISI 4340 and 9310 steel gear materials. The as-forged and unground SISI 4620 gear exhibited a 10 percent fatigue life that was approximately one-fourth of that for AISI 9310 and less than one-half that for the AISI 4340 gears. The forged and finish ground AISI 4620 gears exhibited a 10 percent life, approximately 70 percent that of AISI 9310 and slightly better than that of AISI 4340. The AISI 4640 hot forged gears had less fracture toughness and slightly less fatigue life than the AISI 4620 test gears.

  10. Optimisation of the hot conditioning of carbon steel surfaces of primary heat transport system of Pressurized Heavy Water Reactors using electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiran Kumar, M.; Gaonkar, Krishna; Ghosh, Swati; Kain, Vivekanand; Bojinov, Martin; Saario, Timo

    2010-06-01

    Hot conditioning operation of the primary heat transport system is an important step prior to the commissioning of Pressurized Heavy Water Reactors. One of the major objectives of the operation is to develop a stable and protective magnetite layer on the inner surfaces of carbon steel piping. The correlation between stable magnetite film growth on carbon steel surfaces and the period of exposure to hot conditioning environment is generally established by a combination of weight change measurements and microscopic/morphological observations of the specimens periodically removed during the operation. In the present study, electrochemical impedance spectroscopy (EIS) at room temperature is demonstrated as an alternate, quantitative technique to arrive at an optimal duration of the exposure period. Specimens of carbon steel were exposed for 24, 35 and 48 h during hot conditioning of primary heat transport system of two Indian PHWRs. The composition and morphology of oxide films grown during exposure was characterized by X-ray diffraction and optical microscopy. Further, ex situ electrochemical impedance spectra of magnetite films formed after each exposure were measured, in 1 ppm Li + electrolyte at room temperature as a function of potential in a range of -0.8 to +0.3 VSCE. The defect density of the magnetite films formed after each exposure was estimated by Mott-Schottky analysis of capacitances extracted from the impedance spectra. Further the ionic resistance of the oxide was also extracted from the impedance spectra. Defect density was observed to decrease with increase in exposure time and to saturate after 35 h, indicating stabilisation of the barrier layer part of the magnetite film. The values of the ionic transport resistance start to increase after 35-40 h of exposure. The quantitative ability of EIS technique to assess the film quality demonstrates that it can be used as a supplementary tool to the thickness and morphological characterizations of samples

  11. Dipolar interactions and hydrogen bonding in supramolecular aggregates: understanding cooperative phenomena for 1st hyperpolarizability.

    PubMed

    Datta, Ayan; Pati, Swapan K

    2006-12-01

    Weak intermolecular forces like dipolar interactions and hydrogen-bonding lead to a variety of different packing arrangements of molecules in crystals and self-assemblies. Such differences in the arrangements change the extent of excitonic splitting and excitation spectra in the multichromophore aggregates. In this tutorial review, the role of such interactions in fine tuning the linear and 1st non-linear optical (NLO) responses in molecular aggregates are discussed. The non-additivity of these optical properties arise specifically due to such cooperative interactions. Calculations performed on dimers, trimers and higher aggregates for model systems provide insights into the interaction mechanisms and strategies to enhance the 1st hyperpolarizabilities of pi-conjugated molecular assemblies. Flexible dipole orientations in the alkane bridged chromophores show odd-even variations in their second-harmonic responses that are explained through their dipolar interactions in different conformations. Parameters for the optical applications of molecules arranged in constrained geometry, like in Calix[n]arene, have been elucidated. We also highlight the recent developments in this field of research together with their future prospects. PMID:17225890

  12. Autopsy as a tool for learning gross anatomy during 1st year MBBS

    PubMed Central

    Goyal, Parmod Kumar; Gupta, Monika; Kaur, Jaswinder

    2016-01-01

    Introduction: Embalmed cadavers are the primary tool for teaching anatomy. However, difficulties are encountered due to changed color/texture of organs, hardening of tissues, and smell of formaldehyde. To overcome these difficulties, dissections on a fresh human body were shown to the 1st year MBBS students, and their perception was noted. Materials and Methods: After taking universal precautionary measures, postmortem dissections were shown to students on voluntary donated bodies in the dissection hall, in addition to the traditional teaching on embalmed cadavers. Feedback was taken from students and faculty regarding the utility of these sessions. Results: Better appreciation of texture, orientation, location, and relations of organs in fresh body, integration of teaching, awareness of the process and laws related to body donations were the outcomes of the study. However, the smell and sight of blood was felt to be nauseating by some students, and some students were worried about the spread of infectious diseases. Conclusions: Visualizing single fresh body dissection during 1st year professional MBBS is recommended either on medicolegal autopsy or on voluntarily-donated bodies. PMID:27563594

  13. Two-photon photoemission study of competing Auger and surface-mediated relaxation of hot electrons in CdSe quantum dot solids.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; Mitoraj, Dariusz; Eichberger, Rainer; Hannappel, Thomas; Vanmaekelbergh, Daniel

    2013-04-10

    Solids composed of colloidal quantum dots hold promise for third generation highly efficient thin-film photovoltaic cells. The presence of well-separated conduction electron states opens the possibility for an energy-selective collection of hot and equilibrated carriers, pushing the efficiency above the one-band gap limit. However, in order to reach this goal the decay of hot carriers within a band must be better understood and prevented, eventually. Here, we present a two-photon photoemission study of the 1Pe→1Se intraband relaxation dynamics in a CdSe quantum dot solid that mimics the active layer in a photovoltaic cell. We observe fast hot electron relaxation from the 1Pe to the 1Se state on a femtosecond-scale by Auger-type energy donation to the hole. However, if the oleic acid capping is exchanged for hexanedithiol capping, fast deep hole trapping competes efficiently with this relaxation pathway, blocking the Auger-type electron-hole energy exchange. A slower decay becomes then visible; we provide evidence that this is a multistep process involving the surface. PMID:23506122

  14. Effect of temperature-dependency of Newtonian and non-Newtonian fluid properties on the dynamics of droplet impinging on hot surfaces

    NASA Astrophysics Data System (ADS)

    Binesh, A. R.; Mousavi, S. M.; Kamali, R.

    2015-02-01

    In the present work, three-dimensional computational fluid dynamics analysis is employed to study the droplet dynamics of Newtonian and non-Newtonian droplets impinging on a hot surface under various impact conditions. The Navier-Stokes equations for unsteady, incompressible, and viscous fluid flow are solved using a control volume method. The volume-of-fluid (VOF) technique is also used to track the free-surface of the liquid. The effect of viscosity, density and surface tension on droplet dynamics is evaluated considering their dependence of temperature. The results indicate that the temperature dependence of the both Newtonian and non-Newtonian physicochemical liquid properties must be considered to obtain better agreement of the numerical results with experimental data. After ensuring the accuracy of the numerical methodology, the internal behavior of the droplets is examined, which is shown that the receding velocity of the non-Newtonian droplet is slower than the Newtonian one.

  15. Solvent accessible surface area-based hot-spot detection methods for protein-protein and protein-nucleic acid interfaces.

    PubMed

    Munteanu, Cristian R; Pimenta, António C; Fernandez-Lozano, Carlos; Melo, André; Cordeiro, Maria N D S; Moreira, Irina S

    2015-05-26

    Due to the importance of hot-spots (HS) detection and the efficiency of computational methodologies, several HS detecting approaches have been developed. The current paper presents new models to predict HS for protein-protein and protein-nucleic acid interactions with better statistics compared with the ones currently reported in literature. These models are based on solvent accessible surface area (SASA) and genetic conservation features subjected to simple Bayes networks (protein-protein systems) and a more complex multi-objective genetic algorithm-support vector machine algorithms (protein-nucleic acid systems). The best models for these interactions have been implemented in two free Web tools. PMID:25845030

  16. Correlates and Phenomenology of 1st and 3rd Person Memories

    PubMed Central

    Sutin, Angelina R.; Robins, Richard W.

    2010-01-01

    The present research addressed fundamental questions about the visual perspective of autobiographical memories: Are stable personality characteristics associated with visual perspective? Does visual perspective influence the memory's phenomenological qualities? Participants in Study 1 (N = 1,684) completed individual-difference measures and indicated the perspective from which they generally retrieve memories. Participants in Study 2 (N = 706) retrieved a memory from their natural or manipulated perspective, rated its phenomenology, and completed the same individual-difference measures. Dissociation and anxiety were associated with 3rd person retrieval style; the Big Five personality traits were primarily unrelated to perspective. Compared to 3rd person memories, naturally-occurring 1st person memories were higher on Vividness, Coherence, Accessibility, Sensory Detail, Emotional Intensity, and Time Perspective and lower on Distancing; manipulating perspective eliminated these differences. Visual perspective is associated with clinically-relevant constructs and, although associated with the memory's phenomenology, perspective does not shape it. PMID:20665336

  17. Meeting report for the 1st skin microbiota workshop, boulder, CO October 15-16 2012

    PubMed Central

    2014-01-01

    This report details the outcome of the 1st Skin Microbiota Workshop, Boulder, CO, held on October 15th-16th 2012. The workshop was arranged to bring Department of Defense personnel together with experts in microbial ecology, human skin physiology and anatomy, and computational techniques for interrogating the microbiome to define research frontiers at the intersection of these important areas. The workshop outlined a series of questions and created several working groups to address those questions, specifically to promote interdisciplinary activity and potential future collaboration. The US Army provided generous grant support and the meeting was organized and hosted by the University of Colorado at Boulder. A primary forward vision of the meeting was the importance of understanding skin microbial communities to improve the health and stealth of US Army warfighters.

  18. Statistical Ring Opening Metathesis Copolymerization of Norbornene and Cyclopentene by Grubbs' 1st-Generation Catalyst.

    PubMed

    Nikovia, Christiana; Maroudas, Andreas-Philippos; Goulis, Panagiotis; Tzimis, Dionysios; Paraskevopoulou, Patrina; Pitsikalis, Marinos

    2015-01-01

    Statistical copolymers of norbornene (NBE) with cyclopentene (CP) were prepared by ring-opening metathesis polymerization, employing the 1st-generation Grubbs' catalyst, in the presence or absence of triphenylphosphine, PPh₃. The reactivity ratios were estimated using the Finemann-Ross, inverted Finemann-Ross, and Kelen-Tüdos graphical methods, along with the computer program COPOINT, which evaluates the parameters of binary copolymerizations from comonomer/copolymer composition data by integrating a given copolymerization equation in its differential form. Structural parameters of the copolymers were obtained by calculating the dyad sequence fractions and the mean sequence length, which were derived using the monomer reactivity ratios. The kinetics of thermal decomposition of the copolymers along with the respective homopolymers was studied by thermogravimetric analysis within the framework of the Ozawa-Flynn-Wall and Kissinger methodologies. Finally, the effect of triphenylphosphine on the kinetics of copolymerization, the reactivity ratios, and the kinetics of thermal decomposition were examined. PMID:26343620

  19. Effects of Small Additions of Tin on High-Temperature Oxidation of Fe-Cu-Sn Alloys for Surface Hot Shortness

    NASA Astrophysics Data System (ADS)

    Yin, Lan; Sridhar, Seetharaman

    2010-10-01

    Steel produced in an electric arc furnace contains a high amount of copper (Cu) that causes a surface-cracking phenomenon called surface hot shortness. It is known that tin (Sn) can exacerbate the hot shortness problem. A series of iron (Fe)-0.3 wt pct Cu- x wt pct Sn alloys with an Sn content ranging from 0.03 to 0.15 wt pct was oxidized in air at 1423 K (1150 °C) for 60 seconds, 300 seconds, and 600 seconds using thermogravimetry. A numerical model developed in a previous article was applied to predict the liquid- γFe interface concentrations and interface morphology in the Fe-Cu-Sn ternary system. Scanning electron microscopy investigations show that (1) The interface between the oxide and the metal is planar as predicted by the numerical model, (2) Sn leads to severe Cu-rich liquid penetration and cracking along the grain boundaries, and (3) open cracks with Fe oxides were found beneath the oxide-metal interface. The focused ion beam serial-sectioning technique was used to reveal a three-dimensional structure of cracks in the grain boundary containing Cu-rich liquid and Fe oxides.

  20. Surface hardening of St41 low carbon steel by using the hot-pressing powder-pack boriding method

    NASA Astrophysics Data System (ADS)

    Sutrisno, Soegijono, Bambang

    2014-03-01

    This research describes a powder-pack boriding process by using hot-pressing technic for St41 low carbon steel which will improve the hardness on the substrate by forming boride layer solid solution. Those method can reduce the operational cost of the research if it is compared by the conventional method with the asmospheric condition both vacuum system and gas inert condition. The concept of boriding by hot-pressing technic was verified in a laboratory scale. Welldefined and reusedable technic was achieved by using the stainless steel 304 as the container and sealed with a 5 ton pressure. This container was filled boronizing powder consisting of 5%B4C, 90%SiC, and 5%KBF4 to close the St41 low carbon steel specimen inside the container. The St41 boriding specimen was treated at the temperature of 900°C for 8 hours. The boride layer on the substrate was found as FeB and Fe2B phase with the hardness about 1800 HV. This value was more than ten times if compared with the untreated specimen that only had the hardness of 123 HV. Depend on heat treatment temperature, heat treatment time, and powder-pack boriding pressure, the depth of boride layer range from 127 to 165 μm, leading to a diffusion controlled process.

  1. Surface characterization and growth mechanism of laminated Ti 3SiC 2 crystals fabricated by hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Li, Changsheng; Tang, Hua

    2010-09-01

    Laminated Ti 3SiC 2 crystals were prepared by hot isostatic pressing from Ti, Si, C and Al powders with NaCl additive in argon at 1350 °C. The morphology and microstructure of Ti 3SiC 2 crystals were investigated by means of XRD, SEM, and TEM. The high symmetry and crystalline was revealed by high resolution transmission electronic microscope (HRTEM) and selected area electron diffraction (SAED). The growth mechanism of Ti 3SiC 2 crystals controlled by two-dimensional nucleation was put forward. The growth pattern of layered steps implies that the growth of the (0 0 2) face should undergo two steps, the intermittent two-dimensional nucleation and the continuous lateral spreading of layers on growth faces.

  2. Fabrication of tunable plasmonic substrates using a table-top gold coater and a hot plate, their optical characterization, and surface enhanced Raman activity

    NASA Astrophysics Data System (ADS)

    Arora, A.; Krishnan, A.

    2015-10-01

    We present a simple scalable technique for repeatable fabrication of large area (cm2) electromagnetic hot spots using tunable Localized Surface Plasmon Resonance (LSPR) substrates and their k-space microscopic imaging characterization. The substrates were fabricated simply using a low vacuum air plasma scanning electron microscope gold coater and annealing using a hot plate. The measured permittivity profile and optical transmission characteristics of such substrates showed large changes before and after annealing, with clear changes in the occurrence and position of the LSPR in the visible spectrum. Furthermore, the LSPR wavelength of these substrates was tuned from 537 nm to 630 nm using cyclic deposition and annealing. It was observed that every anneal step could be used to blue shift the resonance, while a deposition step could be used to red shift the resonance, thus giving rise to a wide tunability. We also present the k-space images of the substrates using narrowband fluorescence leakage radiation microscopy and broadband polarization microscopy. The enhanced scattering in these substrates was clearly imaged in the k-space, and the color content in the broadband k-space images correlates well with the spectral characteristics of these substrates that can be used in commercial quality testing without a spectrometer. The optical characteristics of the substrates were attributed to the morphology evolution verified using scanning probe microscopy. A single particle model based simulation was used to evaluate the optical response. The substrates were then tested for surface enhanced Raman spectroscopy (SERS) activity using control experiments involving Rhodamine 6G dye in PMMA matrix of different concentrations with analyte volumes of approximately 200 pl and analytical enhancements of >3 ×104 (net enhancement >1.8 ×107 ) were obtained. The limit of detection was ≈ 10-8 M in low volume (≈200 pl) analyte, reaching the regime of few molecule detection. To

  3. PREFACE: 1st International Conference on Rheology and Modeling of Materials

    NASA Astrophysics Data System (ADS)

    Gömze, László A.

    2015-04-01

    Understanding the rheological properties of materials and their rheological behaviors during their manufacturing processes and in their applications in many cases can help to increase the efficiency and competitiveness not only of the finished goods and products but the organizations and societies also. The more scientific supported and prepared organizations develop more competitive products with better thermal, mechanical, physical, chemical and biological properties and the leading companies apply more competitive knowledge, materials, equipment and technology processes. The idea to organize in Hungary the 1st International Conference on Rheology and Modeling of Materials we have received from prospective scientists, physicists, chemists, mathematicians and engineers from Asia, Europe, North and South America including India, Korea, Russia, Turkey, Estonia, France, Italy, United Kingdom, Chile, Mexico and USA. The goals of ic-rmm1 the 1st International Conference on Rheology and Modeling of Materials are the following: • Promote new methods and results of scientific research in the fields of modeling and measurements of rheological properties and behavior of materials under processing and applications. • Change information between the theoretical and applied sciences as well as technical and technological implantations. • Promote the communication between the scientists of different disciplines, nations, countries and continents. The international conference ic-rmm1 provides a platform among the leading international scientists, researchers, PhD students and engineers for discussing recent achievements in measurement, modeling and application of rheology in materials technology and materials science of liquids, melts, solids, crystals and amorphous structures. Among the major fields of interest are the influences of material structures, mechanical stresses temperature and deformation speeds on rheological and physical properties, phase transformation of

  4. In2Se3 films produced by Bi substitution in the hot-wall-epitaxy growth of Bi2Se3 films on In-containing surfaces

    NASA Astrophysics Data System (ADS)

    Takagaki, Y.; Jenichen, B.; Jahn, U.; Ramsteiner, M.; Biermann, K.

    2013-11-01

    We demonstrate the production of In2Se3 films as the growth outcome when Bi2Se3 films are deposited using the hot-wall-epitaxy method on the substrates that contain In. The Bi atoms in Bi2Se3 are substituted with the In atoms supplied from the InAs substrates. Despite a large lattice mismatch, α-In2Se3 layers grow semicoherently on InAs(1 1 1). The substitution is induced on the InP substrates only when the substrate surface is roughened. The phase of the resultant In2Se3 depends on the degree of the surface roughness. When the roughness is not strong, layered structures of α-In2Se3 are produced by semicoherent heteroepitaxy not only on (1 1 1) but also on high-index surfaces. On heavily damaged InP substrates, the layers primarily consist of γ-In2Se3. We show, in addition, that the In-induced substitution causes the incorporation of Ga atoms in the In-Se compounds on (In,Ga)As surfaces.

  5. The evolution of catalyst layer morphology and sub-surface growth of CNTs over the hot filament grown Fe-Cr thin films

    NASA Astrophysics Data System (ADS)

    Pasha, M. Akbarzadeh; Ranjbar, M.; Vesaghi, M. A.; Shafiekhani, A.

    2010-12-01

    In this study a hot filament chemical vapour deposition (HFCVD) technique was used to prepare Fe-Cr films on Si substrate as catalysts for thermal CVD (TCVD) growing of carbon nanotubes (CNTs) from liquid petroleum gas (LPG) at 800 °C. To characterize the catalysts or CNTs, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy were used. The XPS spectra obtained at different stages of Ar + sputtering revealed that in the depth of catalyst layers, the relative Fe-Cr concentrations are higher than the top-surface. SEM images of samples after TCVD indicate a significant CNT growing at the backside of catalyst layer compared with its top which is accompanied with morphological changes on catalyst layer such as formation of cone-shape structures, rippling, cracking and rolling of the layer. These observations were attributed to the more catalytic activity of the sub-surface beside the poor activity of the top-surface as well as the presence of individual active islands over the surface of the catalyst thin film.

  6. Thermal fatigue resistance of hot work die steel repaired by partial laser surface remelting and alloying process

    NASA Astrophysics Data System (ADS)

    Cong, Dalong; Zhou, Hong; Ren, Zhenan; Zhang, Haifeng; Ren, Luquan; Meng, Chao; Wang, Chuanwei

    2014-03-01

    In this study, AISI H13 steel was processed using laser surface remelting and alloying with Co-based and iron-based powders for thermal fatigue resistance enhancement. The precracks were produced on the samples before laser treatment. The microstructures of laser treated zones were examined by scanning electron microscope. X-ray diffraction was used to describe the microstructure and identify the phases in molten/alloying zones. Microhardness was measured and the thermal fatigue resistance was investigated with self-controlled thermal fatigue test method. The results indicate that laser surface remelting and alloying can repair a large proportion of thermal cracks. Meanwhile, the strengthening network obtains ultrafine microstructure and super thermal fatigue resistance, which restrains the propagation of thermal cracks. Compared with samples treated with laser surface remelting and laser surface alloying with iron-base powder, samples treated with Co-based powder produce lower cracking susceptibility and higher thermal fatigue resistance.

  7. 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop: April 5-7, 2011

    SciTech Connect

    Not Available

    2011-10-01

    The U.S. marine energy industry is actively pursuing development of offshore wind and marine hydrokinetic (MHK) energy systems. Experience in the wind energy sector demonstrates that new technology development requires thorough measurement and characterization of the environmental conditions prevalent at installation sites and of technology operating in the field. Presently, there are no turn-key instrumentation system solutions that meet the measurement needs of the marine energy industry. The 1st Advanced Marine Renewable Energy Instrumentation Experts Workshop brought together technical experts from government laboratories, academia, and industry representatives from marine energy, wind, offshore oil and gas, and instrumentation developers to present and discuss the instrumentation needs of the marine energy industry. The goals of the meeting were to: (1) Share the latest relevant knowledge among technical experts; (2) Review relevant state-of-the-art field measurement technologies and methods; (3) Review lessons learned from recent field deployments; (4) Identify synergies across different industries; (5) Identify gaps between existing and needed instrumentation capabilities; (6) Understand who are the leading experts; (7) Provide a forum where stakeholders from the marine energy industry could provide substantive input in the development of new marine energy field deployable instrumentation packages.

  8. PROPAGATION AND EVOLUTION OF THE JUNE 1st 2008 CME IN THE INTERPLANETARY MEDIUM

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Lamb, D. A.; Davila, J. M.; Vinas, A. F.; Moestl, C.; Hidalgo, M. A.; Farrugia, C. J.; Malandraki, O.; Dresing, N.; Gómez-Herrero, R.

    2009-12-01

    In this work we present a study of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been extensively studied by others because of its favorable geometry and the possible consequences of its peculiar initiation for space weather forecasting. We show an analysis of the evolution of the CME in the interplanetary medium in order to shed some light on the propagation mechanism of the ICME. We have determined the typical shock associated characteristics of the ICME in order to understand the propagation properties. Using two different non force-free models of the magnetic cloud allows us to incorporate expansion of the cloud. We use in-situ measurements from STEREO B/IMPACT to characterize the ICME. In addition, we use images from STEREO A/SECCHI-HI to analyze the propagation and visual evolution of the associated flux rope in the interplanetary medium. We compare and contrast these observations with the results of the analytical models.

  9. Wind-US Results for the AIAA 1st Propulsion Aerodynamics Workshop

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis; Dippold, Vance, III; Georgiadis, Nicholas

    2012-01-01

    This presentation contains Wind-US results presented at the 1st Propulsion Aerodynamics Workshop. The The workshop was organized by the American Institute of Aeronautics and Astronautics, Air Breathing Propulsion Propulsion Systems Integration Technical Committee with the purpose of assessing the accuracy of computational computational fluid dynamics for air breathing propulsion applications. Attendees included representatives from representatives from government, industry, academia, and commercial software companies. Participants were were encouraged to explore and discuss all aspects of the simulation process including the effects of mesh type and mesh type and refinement, solver numerical schemes, and turbulence modeling. The first set of challenge cases involved computing the thrust and discharge coefficients for a series of convergent convergent nozzles for a range of nozzle pressure ratios between 1.4 and 7.0. These configurations included a included a reference axisymmetric nozzle as well as 15deg , 25deg , and 40deg conical nozzles. Participants were also asked also asked to examine the plume shock structure for two cases where the 25deg conical nozzle was bifurcated by a bifurcated by a solid plate. The final test case was a serpentine inlet diffuser with an outlet to inlet area ratio of 1.52 ratio of 1.52 and an offset of 1.34 times the inlet diameter. Boundary layer profiles, wall static pressure, and total and total pressure at downstream rake locations were examined.

  10. 1st paleomagnetic investigation of Nubia Sandstone at Kalabsha, south Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Mostafa, R.; Khashaba, A.; El-Hemaly, I. A.; Takla, E. M.; Abdel Aal, E.; Odah, H.

    2016-06-01

    Two profiles have been sampled from the Nubia Sandstone at Aswan, south Western Desert: the 1st profile has been taken from Abu Aggag Formation and the 2nd one was from Sabaya Formation (23.25 °N, 32.75 °E). 136 oriented cores (from 9 sites) have been sampled. Abu Aggag Formation is of Late Cretaceous (Turonian) and Sabaya Formation is of early Cretaceous (Albian-Cenomanian). The studied rocks are subjected to rock magnetic measurements as well as demagnetization treatment. It has been found that hematite is the main magnetic mineral in both formations. Four profile sections from Abu Aggag Formation, yielded a magnetic component with D = 352.7°, I = 36.6° with α95 = 5.2° and the corresponding pole lies at Lat. = 82.8 °N and Long. = 283.1 °E. Five profile sections from Sabaya Formation, yielded a magnetic component with D = 348.6°, I = 33.3° with α95 = 5.8° and the corresponding pole lies at Lat. = 78.3 °N and Long. = 280.4 °E. The obtained paleopole for the two formations lies at Lat. = 80.5 °N and Long. = 281.7 °E. The obtaind magnetic components are considered primary and the corresponding paleopole reflects the age of Nubia Sandstone when compared with the previously obtained Cretaceous poles for Egypt.

  11. [Struggle against typhus in the Caucasian front during the 1st World War].

    PubMed

    Karatepe, Mustafa

    2002-01-01

    As an infectious disease, typhus has triggered many epidemics during the course of wars and caused thousands of death all through the ages. The French physician Charles Nicolle (1886-1936) defined its agent as a louse transferring the disease from man to man in 1909 and was awarded the Nobel Prize in 1928. Many cases were reported during the 1st World War both in the European and the Ottoman armies; and one of the most severe epidemics broke in the Caucasian front; a great number of civilians and soldiers died at winter in 1914 and 1915. Lice had to be destroyed in order to prevent the epidemic, but etuves in the Caucasian front was too few to achieve it. Clothes were cleansed in ovens by means of a method proposed by Dr. Abdülkadir Noyan (1886-1977). On March 28, 1915 the first typhus vaccination, obtained from the infected blood of the patients, was applied by Dr. Tevfik Salim (Saklam) (1882-1963). In 1916 Dr. Ahmet Fikri Tüzer discovered a disinfection apparatus called "buğu sandiği" (vapour box) which was widely used in the Caucasian front after 1917. This apparatus was highly useful in controlling the typhus epidemics. 164 health officers lost their lifes in the Caucasian front between 1914-1918, in addition, 7310 military casualties were recorded from 1915 to the end of the war. PMID:17152154

  12. Identifying 1st instar larvae for three forensically important blowfly species using "fingerprint" cuticular hydrocarbon analysis.

    PubMed

    Moore, Hannah E; Adam, Craig D; Drijfhout, Falko P

    2014-07-01

    Calliphoridae are known to be the most forensically important insects when it comes to establishing the minimum post mortem interval (PMImin) in criminal investigations. The first step in calculating the PMImin is to identify the larvae present to species level. Accurate identification which is conventionally carried out by morphological analysis is crucial because different insects have different life stage timings. Rapid identification in the immature larvae stages would drastically cut time in criminal investigations as it would eliminate the need to rear larvae to adult flies to determine the species. Cuticular hydrocarbon analysis on 1st instar larvae has been applied to three forensically important blowflies; Lucilia sericata, Calliphora vicina and Calliphora vomitoria, using gas chromatography-mass spectrometry (GC-MS) and principal component analysis (PCA). The results show that each species holds a distinct "fingerprint" hydrocarbon profile, allowing for accurate identification to be established in 1-day old larvae, when it can be challenging to apply morphological criteria. Consequently, this GC-MS based technique could accelerate and strengthen the identification process, not only for forensically important species, but also for other entomological samples which are hard to identify using morphological features. PMID:24815992

  13. [POPIN Advisory Committee, 1st session. Geneva, March 22-25, 1982: report].

    PubMed

    1982-09-01

    A report of the POPIN, (International Population Information Network), Advisory Committee on its 1st session. The chairman presented a progress report on the activities of the Network in general and the POPIN coordinating unit in particular. More active participation by the developing countries was stressed to share information. The working group reported the efforts made by various groups for the translation of the population multilingual thesaurus into other languages. It also reviewed the draft manuscript on inventory and evaluation of training materials to identify gaps and make suggestions for improvement. The advisory committee suggested the development of a series of shorter guides which would deal with specific subjects. The development of a common classification scheme was considered of utmost importance since it would facilitate the processing, retrieval and exchange of information. A proposed work plan for 1983 and 1984 was discussed. This included publication of the POPIN Bulletin and newsletter, preparation of documentations for the sessions of the Advisory Committee, publication of the specific guides and a directory of POPIN members. Recommendations of the committee included measures for expansion of membership, publication of Popline multilingual thesaurus and guides for specific subjects. The committee considered and adopted the recommendations. Annexes include, 1) list of participants, documents and agenda, 2) recommendations of the POPIN working group on the management of the population multilingual thesaurus, and 3) recommendations on the inventory and evaluation of teaching materials for population information services. PMID:12279381

  14. The relation between 1st grade grey matter volume and 2nd grade math competence.

    PubMed

    Price, Gavin R; Wilkey, Eric D; Yeo, Darren J; Cutting, Laurie E

    2016-01-01

    Mathematical and numerical competence is a critical foundation for individual success in modern society yet the neurobiological sources of individual differences in math competence are poorly understood. Neuroimaging research over the last decade suggests that neural mechanisms in the parietal lobe, particularly the intraparietal sulcus (IPS) are structurally aberrant in individuals with mathematical learning disabilities. However, whether those same brain regions underlie individual differences in math performance across the full range of math abilities is unknown. Furthermore, previous studies have been exclusively cross-sectional, making it unclear whether variations in the structure of the IPS are caused by or consequences of the development of math skills. The present study investigates the relation between grey matter volume across the whole brain and math competence longitudinally in a representative sample of 50 elementary school children. Results show that grey matter volume in the left IPS at the end of 1st grade relates to math competence a year later at the end of 2nd grade. Grey matter volume in this region did not change over that year, and was still correlated with math competence at the end of 2nd grade. These findings support the hypothesis that the IPS and its associated functions represent a critical foundation for the acquisition of mathematical competence. PMID:26334946

  15. Jordanian Kindergarten and 1st-Grade Teachers' Beliefs about Child-Based Dimensions of School Readiness

    ERIC Educational Resources Information Center

    Fayez, Merfat; Ahmad, Jamal Fathi; Oliemat, Enass

    2016-01-01

    The purpose of this study was to explore the beliefs of Jordanian kindergarten and 1st-grade teachers regarding six child-based dimensions of school readiness: academic knowledge, basic thinking skills, socioemotional maturity, physical well-being and motor development, self-discipline, and communication skills. Questionnaires were used to collect…

  16. Laying a Foundation for Lifelong Learning: Case Studies of E-Assessment in Large 1st-Year Classes

    ERIC Educational Resources Information Center

    Nicol, David

    2007-01-01

    Concerns about noncompletion and the quality of the 1st-year student experience have been linked to recent changes in higher education such as modularisation, increased class sizes, greater diversity in the student intake and reduced resources. Improving formative assessment and feedback processes is seen as one way of addressing academic failure,…

  17. 78 FR 7781 - Filing Dates for the South Carolina Special Elections in the 1st Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ELECTION COMMISSION Filing Dates for the South Carolina Special Elections in the 1st Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for special elections. SUMMARY: South Carolina...

  18. Addressing the Effects of Reciprocal Teaching on the Receptive and Expressive Vocabulary of 1st-Grade Students

    ERIC Educational Resources Information Center

    Mandel, Eliana; Osana, Helena P.; Venkatesh, Vivek

    2013-01-01

    This study evaluated the effects of Adapted Reciprocal Teaching (ART) on the receptive and expressive flight-word vocabulary of 1st-grade students. During ART, classroom interactions produced narrative contexts within which students assumed responsibility for applying new flight words in personally meaningful ways. Students in the control group…

  19. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  20. DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction.

    PubMed

    Fu, Cuicui; Xu, Weiqing; Wang, Hailong; Ding, Han; Liang, Lijia; Cong, Ming; Xu, Shuping

    2014-12-01

    We propose a highly sensitive and selective surface-enhanced Raman scattering (SERS) method for determining lead ions based on a DNAzyme-linked plasmonic nanomachine. A metallic nanoparticle-on-a-film structure was built through a rigid double-stranded bridge linker composed of a DNAzyme and its substrate. This DNAzyme could be activated by lead ions and catalyze a fracture action of the substrate. Thus, the double chain structure of DNA would turn into a flexible single strand, making the metal nanoparticles that connected to the terminal of DNAzyme fall to the surface of the metal film. Hereby, a narrow gap close to 2 nm generated between metal nanoparticles and the metal film, exhibiting a similar effect of a "hot spot" and remarkably enhancing the signal of randomly dispersed Raman-active molecules on the surface of metal film. By measuring the improvement of SERS intensity of the Raman-active molecules, we realized the lowest detection concentration of Pb(2+) ions to 1.0 nM. This SERS analytical method is highly selective and can be extended universally to other targets via the accurate programming of corresponding DNA sequences. PMID:25327564

  1. Towards high quality triangular silver nanoprisms: improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity.

    PubMed

    Xue, Bin; Wang, Dan; Zuo, Jing; Kong, Xianggui; Zhang, Youlin; Liu, Xiaomin; Tu, Langping; Chang, Yulei; Li, Cuixia; Wu, Fei; Zeng, Qinghui; Zhao, Haifeng; Zhao, Huiying; Zhang, Hong

    2015-05-01

    The great application potential of triangular silver nanoprisms (TSNPRs, also referred to as triangular silver nanoplates) is hampered by the lack of methods to produce well-defined tips with high monodispersity, with easily removable ligands. In this work, a simple one-step plasmon-mediated method was developed to prepare monodisperse high-quality TSNPRs. In this approach, the sole surface capping agent was the easily removable trisodium citrate. Differing from common strategies using complex polymers, OH(-) ions were used to improve the monodispersity of silver seeds, as well as to control the growth process through inhibiting the oxidation of silver nanoparticles. Using these monodisperse high-quality TSNPRs as building blocks, self-assembled TSNPRs consisting of six-tip based "hot spots" were realized for the first time as demonstrated in a high enhancement (∼10(7)) of surface-enhanced Raman scattering (SERS). From the plasmon band shift versus the refractive index, ultra-high local surface plasmon resonance sensitivity (413 nm RIU(-1) or 1.24 eV RIU(-1), figure of merit (FOM) = 4.59) was reached at ∼630 nm, making these materials promising for chemical/biological sensing applications. PMID:25869897

  2. The characteristics of treated zone processed by pulsed Nd-YAG laser surface remelting on hot work steel

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihui; Lin, Pengyu; Cong, Dalong; Kong, Shuhua; Zhou, Hong; Ren, Luquan

    2014-12-01

    In this study, the surface of H13 steel was treated using laser surface remelting. Some important characteristics of the treated zone (biomimetic strengthening units) were investigated, e.g. size, cross-sectional morphology, microstructure and hardness as functions of average peak power density and effective peak power density. The results indicate that different combinations of average peak power density and effective peak power density could vary the appearance of cross-sectional morphology, microstructure and hardness. An appropriate range of EPPD for preparing the treated zone was acquired: 595-1448 W/mm2. In this range, the depth/width ratio of 0.31-0.47 and microhardness of 559-667 HV were obtained.

  3. Simulating thermal stress features on hot planetary surfaces in vacuum at high temperature facility in the PEL laboratory

    NASA Astrophysics Data System (ADS)

    Maturilli, A.; Ferrari, S.; Helbert, J.; D'Incecco, P.; D'Amore, M.

    2011-12-01

    In the Planetary Emissivity Laboratory (PEL) at the Institute for Planetary Research of the German Aerospace Center (DLR) in Berlin, we set-up a simulation chamber for the spectroscopic investigation of minerals separates under Mercurial conditions. The chamber can be evacuated to 10-4 bar and the target samples heated to 700 K within few minutes, thanks to the innovative inductive heating system. While developing the protocol for the high temperature spectroscopy measurements we discovered interesting "morphologies" on the sample surfaces. The powders are poured into stainless steel cups of 50 mm internal diameter, 8 mm height and 3 mm depth, having a 5 mm thick base (thus leaving 3 mm free space for the minerals), and rim 1 mm thick. We selected several minerals of interest for Mercurial surface composition and for each of them we analyzed various grain size separates, to study the influence of grain dimensions to the process of thermal stressing. We observed that for the smaller grain size separate (0-25 μm) the thermal stress mainly induces large depressions and fractures, while on larger grain sizes (125-250 μm) small depressions and a cratered surface. Our current working hypothesis is that these features are mainly caused by thermal stress induced by a radiatively quickly cooling surface layer covering the much hotter bulk material. Further investigation is ongoing to understand the processes better. The observed morphologies exhibit surprising similarities to features observed at planetary scale size for example on Mercury and even on Venus. Especially the high resolution images provided currently from MESSENGER'S Mercury Dual Imaging System (MDIS) instrument has revealed plains dominated by polygonal fractures whose origin still have to be determined. Our laboratory analogue studies might in the future provide some insight into the processes creating those features

  4. Foreword to Selected presentations from the 1st European Hip Sport Meeting.

    PubMed

    Dallari, Dante; Ribas, Manuel

    2016-05-14

    Recent years have witnessed a growing number of people practising sports both at professional and amateur level. This trend led to a progressive rise in the incidence and prevalence of acute and chronic hip damage. The treatment of hip disease in subjects practising sports is a major challenge for the orthopaedic surgeon. The evaluation of patients, in particular those of young age with high functional demands, is inevitably complex and should be performed with a multidisciplinary approach; from a surgical point of view, it is essential to carefully assess whether the indication is towards conservative surgery or hip replacement surgery. The advent of arthroscopic surgery in recent years has allowed us to improve our knowledge of hip joint diseases, such as femoroacetabular impingement that is typical of sports and overuse activity. A correct and early diagnosis of the disease can direct the patient promptly to a conservative surgical treatment that could reduce the progression of degenerative pathology. However, when the joint is permanently damaged, the only reliable solution remains prosthetic surgery, leading to a series of issues that the orthopaedic surgeon should be able to master, leading to a thoughtful decision on, for example, which implant to use, which biomaterials, which surgical approach or which sport to practise after surgery. This supplement contains selected contributions stemming from the work performed by internationally recognised experts in the field and presented during the 1st European Hip Sport Meeting held in Bologna on May 19th, 20th, 2016 that we had the honour to co-chair. We hope that these contributions will help the orthopaedic surgeon, the sports physician and physiotherapist in their day-to-day practice, and will help in fulfilling our ultimate aim to improve the knowledge of the hip pathology related to sports and overuse activities. PMID:27174057

  5. Computational Simulations of Convergent Nozzles for the AIAA 1st Propulsion Aerodynamics Workshop

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III

    2014-01-01

    Computational Fluid Dynamics (CFD) simulations were completed for a series of convergent nozzles in participation of the American Institute of Aeronautics and Astronautics (AIAA) 1st Propulsion Aerodynamics Workshop. The simulations were performed using the Wind-US flow solver. Discharge and thrust coefficients were computed for four axisymmetric nozzles with nozzle pressure ratios (NPR) ranging from 1.4 to 7.0. The computed discharge coefficients showed excellent agreement with available experimental data; the computed thrust coefficients captured trends observed in the experimental data, but over-predicted the thrust coefficient by 0.25 to 1.0 percent. Sonic lines were computed for cases with NPR >= 2.0 and agreed well with experimental data for NPR >= 2.5. Simulations were also performed for a 25 deg. conic nozzle bifurcated by a flat plate at NPR = 4.0. The jet plume shock structure was compared with and without the splitter plate to the experimental data. The Wind-US simulations predicted the shock structure well, though lack of grid resolution in the plume reduced the sharpness of the shock waves. Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations and Detached Eddy Simulations (DES) were performed at NPR = 1.6 for the 25 deg conic nozzle with splitter plate. The simulations predicted vortex shedding from the trailing edge of the splitter plate. However, the vortices of URANS and DES solutions appeared to dissipate earlier than observed experimentally. It is believed that a lack of grid resolution in the region of the vortex shedding may have caused the vortices to break down too soon

  6. Patterns of Irregular Burials in Western Europe (1st-5th Century A.D.)

    PubMed Central

    Milella, Marco; Mariotti, Valentina; Belcastro, Maria Giovanna; Knüsel, Christopher J.

    2015-01-01

    Background Irregular burials (IB—burials showing features that contrast with the majority of others in their geographic and chronological context) have been the focus of archaeological study because of their relative rarity and enigmatic appearance. Interpretations of IB often refer to supposed fear of the dead or to social processes taking place in time-specific contexts. However, a comprehensive and quantitative analysis of IB for various geographical contexts is still lacking, a fact that hampers any discussion of these burials on a larger scale. Methods Here, we collected a bibliographic dataset of 375 IB from both Britain and Continental Europe, altogether spanning a time period from the 1st to the 5th century AD. Each burial has been coded according to ten dichotomous variables, further analyzed by means of chi-squared tests on absolute frequencies, non-metric multidimensional scaling, and cluster analysis. Results Even acknowledging the limits of this study, and in particular the bias represented by the available literature, our results point to interesting patterns. Geographically, IB show a contrast between Britain and Continental Europe, possibly related to historical processes specific to these regions. Different types of IB (especially prone depositions and depositions with the cephalic extremity displaced) present a series of characteristics and associations between features that permit a more detailed conceptualization of these occurrences from a socio-cultural perspective that aids to elucidate their funerary meaning. Conclusions and Significance Altogether, the present work stresses the variability of IB, and the need to contextualize them in a proper archaeological and historical context. It contributes to the discussion of IB by providing a specific geographic and chronological frame of reference that supports a series of hypotheses about the cultural processes possibly underlying their occurrence. PMID:26115408

  7. Mantle to Surface Fluid Transfer Above a Flat Slab Subduction Zone: Isotopic Evidence from Hot Springs in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Newell, D. L.; Jessup, M. J.; Hilton, D. R.; Shaw, C. A.; Hughes, C. A.

    2015-12-01

    Thermal springs in the Cordillera Blanca, Peru, provide geochemical evidence for deeply circulated hydrothermal fluids that carry significant mantle-derived helium. The Cordillera Blanca is a ~200 km-long NNW-SSE trending mountain range in the Peruvian Andes located above an amagmatic flat-slab subduction segment. The west side of the range is bounded by the Cordillera Blanca detachment that preserves a progression of top to the west ductile shear to brittle normal faulting since ~5 Ma. We report aqueous and stable isotope geochemical results from fluid and gas samples collected in 2013 and 2015 from 13 hot springs emanating from the Cordillera Blanca detachment and associated hanging wall faults. Most springs are vigorously bubbling (degassing), and range in temperature, pH, and conductivity from 17-89 °C, 5.95-8.87, and 0.17-21.5 mS, respectively. The hottest springs issue directly from the northern segment of the detachment. Geochemically, springs are CO2-rich, alkaline-chloride to alkaline-carbonate waters, with elevated trace metal contents including Fe, Cu, As, Zn, Sb, and Tl. Notably, As contents are ≤11 ppm, indicating that thermal waters may be adversely impacting local water quality. Water δ18O and δD, trends in elemental chemistry, and cation geothermometry collectively demonstrate mixing of hot (200-260 °C) saline fluid with cold meteoric recharge along the fault. Helium isotope ratios (3He/4He) for dissolved gases in the hot springs range from 0.62 to 1.98 RC/RA, indicating the presence of ~25% mantle-derived helium, assuming mixing of an asthenospheric end-member with the crustal helium reservoir. CO2/3He and carbon stable isotope ratios indicate a carbon source derived from mixing of crustal sources with minor mantle carbon. Overall, the volatile signature overlaps with orogen-wide datasets where crustal overprinting has modified mantle contributions at active arc volcanoes. Given the long duration since active magmatism in the Cordillera

  8. Response surface modeling for hot, humid air decontamination of materials contaminated with Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores

    PubMed Central

    2014-01-01

    Response surface methodology using a face-centered cube design was used to describe and predict spore inactivation of Bacillus anthracis ∆Sterne and Bacillus thuringiensis Al Hakam spores after exposure of six spore-contaminated materials to hot, humid air. For each strain/material pair, an attempt was made to fit a first or second order model. All three independent predictor variables (temperature, relative humidity, and time) were significant in the models except that time was not significant for B. thuringiensis Al Hakam on nylon. Modeling was unsuccessful for wiring insulation and wet spores because there was complete spore inactivation in the majority of the experimental space. In cases where a predictive equation could be fit, response surface plots with time set to four days were generated. The survival of highly purified Bacillus spores can be predicted for most materials tested when given the settings for temperature, relative humidity, and time. These predictions were cross-checked with spore inactivation measurements. PMID:24949256

  9. Hot Canyon

    SciTech Connect

    2012-01-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  10. Hot Tickets

    ERIC Educational Resources Information Center

    Fox, Bette-Lee; Hoffert, Barbara; Kuzyk, Raya; McCormack, Heather; Williams, Wilda

    2008-01-01

    This article describes the highlights of this year's BookExpo America (BEA) held at the Los Angeles Convention Center. The attendees at BEA had not minded that the air was recycled, the lighting was fluorescent, and the food was bad. The first hot book sighting came courtesy of Anne Rice. Michelle Moran, author of newly published novel, "The…

  11. Hot Canyon

    ScienceCinema

    None

    2013-03-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  12. A Comparison of "Ice-House" (Modern) and "Hot-House" (Maastrichtian) Drainage Systems: the Implications of Large-Scale Changes in the Surface Hydrological Scheme

    NASA Astrophysics Data System (ADS)

    Markwick, P. J.; Crossley, R.; Valdes, P. J.

    2002-12-01

    A GIS analysis of modern and Maastrichtian (Late Cretaceous) drainage systems has been made in order to investigate the potential differences between the surface hydrology of "ice-house" and "hot-house" worlds and how this might be reflected in the geological record. Because of the importance of CO2 concentrations for generating "hot-house" climates this study also has implications for potential future changes in the climate system. For the modern system we have utilized global maps of observed river systems, the Hydro1K digital dataset, observations of freshwater and sediment fluxes from recording stations, and modern day climate models and observations. For the Maastrichtian we have compiled a detailed global paleogeographic map and geological database (based on earlier work by the Paleogeographic Atlas Project, University of Chicago) that has been used to generate a paleo-DEM using the suite of hydrological tools in ArcGIS, complete with reconstructed river systems and drainage basins. This forms the primary boundary condition for a coupled ocean-atmosphere experiment using the HadCM3 model, with atmospheric CO2 set at 4 x pre-industrial levels. The results indicate a Maastrichtian world dominated by high sea surface temperatures (as high as 30-35 C in the tropics), and a consequently greatly enhanced hydrological cycle when compared with the Present. Globally, modeled Maastrichtian precipitation and evaporation are 1.5x that for the Present, with a 2.5x increase in total runoff. These changes are not evenly distributed, either spatially or seasonally, and therefore a detailed consideration of the paleogeography and paleo-drainage is essential, as these changes have a major influence on the distribution of vegetation and freshwater and sediment fluxes. For example, the Maastrichtian Tethyan monsoon, though less intense than noted for other modeled Mesozoic intervals, nonetheless dominates the seasonal distribution of precipitation and runoff over Saharan and

  13. Adaptive and Effortful Control and Academic Self-Efficacy Beliefs on Achievement: A Longitudinal Study of 1st through 3rd Graders

    ERIC Educational Resources Information Center

    Liew, Jeffrey; McTigue, Erin M.; Barrois, Lisa; Hughes, Jan N.

    2008-01-01

    The linkages between self-regulatory processes and achievement were examined across 3 years in 733 children beginning at 1st grade (M = 6.57 years, S.D. = 0.39 at 1st grade) who were identified as lower achieving in literacy. Accounting for consistencies in measures (from 1 year prior) and for influences of child's age, gender, IQ, ethnicity and…

  14. Effects of the April 1st, 2014 GLONASS Outage on GNSS Receivers

    NASA Astrophysics Data System (ADS)

    Blume, F.; Berglund, H. T.; Romero, I.; D'Anastasio, E.

    2014-12-01

    The use of multi-constellation GNSS receivers has been assumed as a way to increase system integrity both by increased coverage during normal operations and failover redundancy in the event of a constellation failure. At approximately 21:00 UTC on April 1st the entire GLONASS constellation was disrupted as illegal ephemeris uploaded to each satellite took effect simultaneously. The outage continued for more than 10 hours. While ephemeris were incorrect, pseudoranges were correctly broadcast on both L1 and L2 and carrier phases were not affected; in the best case, GNSS receivers could be expected to continue to track all signals including GLONASS and at the worst to continue to track GPS and other constellations. It became clear to operators of the GeoNet network in New Zealand that the majority of their 79 GLONASS-enabled receivers experienced total tracking failures. Further detailed analysis of data from these and 315 additional GLONASS-enabled stations worldwide showed that receiver tracking behavior was affected for most receiver brands and models, both for GLONASS and GPS. Findings regarding the impacts of the GLONASS outage on receiver behavior will be highlighted. We use data recorded by GLONASS enabled global sites for the days during, preceding and following the outage to evaluate the impact of the outage on tracking and positioning performance. We observe that for some receiver types the onboard receiver autonomous integrity monitoring (RAIM) failed to ignore the incorrect messages, resulting in degraded GLONASS and GPS tracking and in some cases complete tracking failures and significant data loss. In addition, many of the receivers with clock steering enabled showed outliers in their receiver clock bias estimates that also coincided with the outage. Our results show in detail how different brands, configurations, and distributions of receivers were affected to varying extents, but no common factors are apparent. This event shows that many manufacturers

  15. PREFACE: 1st International Conference on Mechanical Engineering Research 2011 (ICMER2011)

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Rosli

    2012-09-01

    The year 2010 represented a significant milestone in the history of the Mechanical Engineering community with the organization of the first and second national level conferences (National Conference in Mechanical Engineering for Research, 1st and 2nd NCMER) at Universiti Malaysia Pahang on 26-27 May and 3-4 December 2010. The conferences attracted a large number of delegates from different premier academic and research institutions in the country to participate and share their research experiences at the conference. The International Conference on Mechanical Engineering Research (ICMER 2011) followed on from the first and second conferences due to good support from researchers. The ICMER 2011 is a good platform for researchers and postgraduate students to present their latest finding in research. The conference covers a wide range of topics including the internal combustion engine, machining processes, heat and mass transfer, fuel, biomechanical analysis, aerodynamic analysis, thermal comfort, computational techniques, design and simulation, automotive transmission, optimization techniques, hybrid electric vehicles, engine vibration, heat exchangers, finite element analysis, computational fluid dynamics, green energy, vehicle dynamics renewable energy, combustion, design, product development, advanced experimentation techniques, to name but a few. The international conference has helped to bridge the gap between researchers working at different institutions and in different countries to share their knowledge and has helped to motivate young scientists with their research. This has also given some clear direction for further research from the deliberations of the conference. Several people have contributed in different ways to the success of the conference. We thank the keynote speakers and all authors of the contributed papers, for the cooperation rendered to us in the publication of the CD conference proceedings. In particular, we would like to place on record our

  16. PREFACE: 1st International Conference on Sensing for Industry, Control, Communication & Security Technologies

    NASA Astrophysics Data System (ADS)

    Shuja Syed, Ahmed

    2013-12-01

    The 1st International Conference on Sensing for Industry, Control, Communication & Security Technologies (ICSICCST-2013), took place in Karachi, Pakistan, from 24-26 June 2013. It was organized by Indus University, Karachi, in collaboration with HEJ Research Institute of Chemistry, University of Karachi, Karachi. More than 80 abstracts were submitted to the conference and were double blind-reviewed by an international scientific committee. The topics of the Conference were: Video, Image & Voice Sensing Sensing for Industry, Environment, and Health Automation and Controls Laser Sensors and Systems Displays for Innovative Applications Emerging Technologies Unmanned, Robotic, and Layered Systems Sensing for Defense, Homeland Security, and Law Enforcement The title of the conference, 'Sensing for Industry, Control, Communication & Security Technologies' is very apt in capturing the main issues facing the industry of Pakistan and the world. We believe the sensing industry, particularly in Pakistan, is currently at a critical juncture of its development. The future of the industry will depend on how the industry players choose to respond to the challenge of global competition and opportunities arising from strong growth in the Asian region for which we are pleased to note that the conference covered a comprehensive spectrum of issues with an international perspective. This will certainly assist industry players to make informed decisions in shaping the future of the industry. The conference gathered qualified researchers from developed countries like USA, UK, Sweden, Saudi Arabia, China, South Korea and Malaysia etc whose expertise resulting from the research can be drawn upon to build an exploitable area of new technology that has potential Defense, Homeland Security, and Military applicability. More than 250 researchers/students attended the event and made the event great success as the turnout was 100%. An exceptional line-up of speakers spoke at the occasion. We want

  17. PREFACE: 1st-2nd Young Researchers Meetings in Rome - Proceedings

    NASA Astrophysics Data System (ADS)

    YRMR Organizing Committee; Cannuccia, E.; Mazzaferro, L.; Migliaccio, M.; Pietrobon, D.; Stellato, F.; Veneziani, M.

    2011-03-01

    Students in science, particularly in physics, face a fascinating and challenging future. Scientists have proposed very interesting theories, which describe the microscopic and macroscopic world fairly well, trying to match the quantum regime with cosmological scales. Between the extremes of this scenario, biological phenomena in all their complexity take place, challenging the laws we observe in the atomic and sub-atomic world. More and more accurate and complex experiments have been devised and these are now going to test the paradigms of physics. Notable experiments include: the Large Hadronic Collider (LHC), which is going to shed light on the physics of the Standard Model of Particles and its extensions; the Planck-Herschel satellites, which target a very precise measurement of the properties of our Universe; and the Free Electron Lasers facilities, which produce high-brilliance, ultrafast X-ray pulses, allowing the investigation of the fundamental processes of solid state physics, chemistry, and biology. These projects are the result of huge collaborations spread across the world, involving scientists belonging to different and complementary research fields: physicists, chemists, biologists and others, keen to make the best of these extraordinary laboratories. Even though each branch of science is experiencing a process of growing specialization, it is very important to keep an eye on the global picture, remaining aware of the deep interconnections between inherent fields. This is even more crucial for students who are beginning their research careers. These considerations motivated PhD students and young post-docs connected to the Roman scientific research area to organize a conference, to establish the background and the network for interactions and collaborations. This resulted in the 1st and 2nd Young Researchers Meetings in Rome (http://ryrm.roma2.infn.it), one day conferences aimed primarily at graduate students and post-docs, working in physics in Italy

  18. An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents: Implications for thermal monitoring of lava flows and domes

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2012-02-01

    Management of eruptions requires a knowledge of lava effusion rates, for which a safe thermal proxy is often used. However, this thermal proxy does not take into account the flow dynamics and is basically time-independent. In order to establish a more robust framework that can link eruption rates and surface thermal signals of lavas measured remotely, we investigate the spreading of a hot, isoviscous, axisymmetric subaerial gravity current injected at constant rate from a point source onto a horizontal substrate. We performed laboratory experiments and found that the surface thermal structure became steady after an initial transient. We develop a theoretical model for a spreading fluid cooled by radiation and convection at its surface that also predicts a steady thermal regime. We show that, despite the model's simplicity relative to lava flows, it yields the correct order of magnitude for the effusion rate required to produce the radiant flux measured on natural lava flows. For typical thermal lava properties and an effusion rate between 0.1 and 10 m3 s-1, the model predicts a steady radiated heat flux ranging from 108 to 1010 W. The assessed effusion rate varies quasi-linearly with the steady heat flux, with much weaker dependence on the flow viscosity. This relationship is valid only after a transient time which scales as the diffusive time, ranging from a few days for small basaltic flows to several years for lava domes. The thermal proxy appears thus less reliable to follow sharp variations of the effusion rate during an eruption.

  19. Teachers' Spatial Anxiety Relates to 1st-and 2nd-Graders' Spatial Learning

    ERIC Educational Resources Information Center

    Gunderson, Elizabeth A.; Ramirez, Gerardo; Beilock, Sian L.; Levine, Susan C.

    2013-01-01

    Teachers' anxiety about an academic domain, such as math, can impact students' learning in that domain. We asked whether this relation held in the domain of spatial skill, given the importance of spatial skill for success in math and science and its malleability at a young age. We measured 1st-and 2nd-grade teachers' spatial anxiety…

  20. Gene-Environment Interaction Effects on the Development of Immune Responses in the 1st Year of Life

    PubMed Central

    Hoffjan, Sabine; Nicolae, Dan; Ostrovnaya, Irina; Roberg, Kathy; Evans, Michael; Mirel, Daniel B.; Steiner, Lori; Walker, Karen; Shult, Peter; Gangnon, Ronald E.; Gern, James E.; Martinez, Fernando D.; Lemanske, Robert F.; Ober, Carole

    2005-01-01

    Asthma is a common disease that results from both genetic and environmental risk factors. Children attending day care in the 1st year of life have lower risks for developing asthma, although the mechanism for this “day care” effect is largely unknown. We investigated the interactions between day care exposure in the 1st 6 mo of life and genotypes for 72 polymorphisms at 45 candidate loci and their effects on cytokine response profiles and on the development of atopic phenotypes in the 1st year of life in the Childhood Onset of Asthma (COAST) cohort of children. Six interactions (at four polymorphisms in three loci) with “day care” that had an effect on early-life immune phenotypes were significant at P<.001. The estimated false-discovery rate was 33%, indicating that an estimated four P values correspond to true associations. Moreover, the “day care” effect at some loci was accounted for by the increased number of viral infections among COAST children attending day care, whereas interactions at other loci were independent of the number of viral infections, indicating the presence of additional risk factors associated with day care environment. This study identified significant gene-environment interactions influencing the early patterning of the immune system and the subsequent development of asthma and highlights the importance of considering environmental risk factors in genetic analyses. PMID:15726497

  1. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA, FOR CALENDAR YEAR 2004

    SciTech Connect

    BECHTEL NEVADA; NNSA NEVADA SITE OFFICE

    2005-04-01

    This post-closure inspection and monitoring report has been prepared according to the stipulations laid out in the Closure Report (CR) for Corrective Action Unit (CAU) 417, Central Nevada Test Area (CNTA)--Surface (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV], 2001), and the Federal Facility Agreement and Consent Order (FFACO, 1996). This report provides an analysis and summary of site inspections, subsidence surveys, meteorological information, and soil moisture monitoring data for CAU 417, which is located in Hot Creek Valley, Nye County, Nevada. This report covers Calendar Year 2004. Inspections at CAU 417 are conducted quarterly to document the physical condition of the UC-1, UC-3, and UC-4 soil covers, monuments, signs, fencing, and use restricted areas. The physical condition of fencing, monuments, and signs is noted, and any unusual conditions that could impact the integrity of the covers are reported. The objective of the soil moisture monitoring program is to monitor the stability of soil moisture conditions within the upper 1.2 meters (m) (4 feet [ft]) of the UC-1 Central Mud Pit (CMP) cover and detect changes that may be indicative of moisture movement exceeding the cover design performance expectations.

  2. The theoretical simulation on electrostatic distribution of 1st proximity region in proximity focusing low-light-level image intensifier

    NASA Astrophysics Data System (ADS)

    Zhang, Liandong; Bai, Xiaofeng; Song, De; Fu, Shencheng; Li, Ye; Duanmu, Qingduo

    2015-03-01

    Low-light-level night vision technology is magnifying low light level signal large enough to be seen by naked eye, which uses the photons - photoelectron as information carrier. Until the micro-channel plate was invented, it has been possibility for the realization of high performance and miniaturization of low-light-level night vision device. The device is double-proximity focusing low-light-level image intensifier which places a micro-channel plate close to photocathode and phosphor screen. The advantages of proximity focusing low-light-level night vision are small size, light weight, small power consumption, no distortion, fast response speed, wide dynamic range and so on. It is placed parallel to each other for Micro-channel plate (both sides of it with metal electrode), the photocathode and the phosphor screen are placed parallel to each other. The voltage is applied between photocathode and the input of micro-channel plate when image intensifier works. The emission electron excited by photo on the photocathode move towards to micro-channel plate under the electric field in 1st proximity focusing region, and then it is multiplied through the micro-channel. The movement locus of emission electrons can be calculated and simulated when the distributions of electrostatic field equipotential lines are determined in the 1st proximity focusing region. Furthermore the resolution of image tube can be determined. However the distributions of electrostatic fields and equipotential lines are complex due to a lot of micro-channel existing in the micro channel plate. This paper simulates electrostatic distribution of 1st proximity region in double-proximity focusing low-light-level image intensifier with the finite element simulation analysis software Ansoft maxwell 3D. The electrostatic field distributions of 1st proximity region are compared when the micro-channel plates' pore size, spacing and inclination angle ranged. We believe that the electron beam movement

  3. PREFACE: PAGES 1st Young Scientists Meeting (YSM) - 'Retrospective views on our planet's future'

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen

    2010-03-01

    more recent pollution. The concept and format of the 1st PAGES YSM worked very well, and

  4. The 1st October 2009 Messina debris flows: first analysis for a susceptibility model

    NASA Astrophysics Data System (ADS)

    Agnesi, Valerio; Cappadonia, Chiara; Conoscenti, Christian; Costanzo, Dario; Pino, Paolo; Puglisi, Claudio; Rotigliano, Edoardo

    2010-05-01

    In the evening of the 1st of October 2009, a sector of the Messina district (Sicily, Italy) was struck by a number of debris flows, triggered by extraordinary intense rainfall that, from 2 pm to 10 pm, discharged an amount of more than 160 mm and that followed the ones of September 23-24 (more than 200 mm in 10 hours). A number of villages (Altolia, Briga, Giampilieri, Guidomandri, Itala, Molino, Pezzolo, Scaletta), suffered for severe damages, including the destruction of houses and small buildings and more of 30 deaths. The area is located South from the city of Messina and mainly includes five short fluvial basins, that from the Peloritanian chain drain south-eastward for some kilometres to the Ionian sea. The area is characterized by the outcropping of metamorphic rocks and, due to the closeness of the chain (ranging up to 1200 meters a.s.l.) to the sea, the steepness of the slopes is typically very high. The debris flows involved the shallow layer made up of colluvial/eluvial and landslide deposits, having a thickness of some decimetres; both pure debris flow and debris slide movements have been inferred at the initiation zones, in light of the morphologic features of the source area (scarps). Also, according to the specific patterns recognized for the flow track zone, four typologies have been distinguished: ribbon-shaped, triangular, arch-shaped and multi-lobed debris flow. The landslides moved fast, as single or multiple/successive confluent style, so that already at the medium sector of the slopes, where the villages are, huge volumes of the debris flowed. Due to the shallowness of the failure zone, the high water content and velocity, the tracks of the debris flows have been highly controlled by hydrography, reaching, where no obstacles were present, the valley floor, with kilometric run-out distances. To each of the 379 recognized debris flows, which produced a total landslide area of about 7 km2, a landslide identification point (LIP) has been assigned

  5. A study of the processes during high temperature oxidation that control surface hot shortness in copper-containing low carbon steels

    NASA Astrophysics Data System (ADS)

    Webler, Bryan A.

    Copper is a problematic residual element in electric arc furnace steel production because it leads to "surface hot shortness," a cracking defect that occurs during hot rolling of steel. The cracking arises from a liquid, copper-rich phase that penetrates into and embrittles the austenite grain boundaries. The liquid forms because copper is nobler than iron and enriches at the oxide/metal interface during oxidation of iron after casting and reheating prior to hot rolling. This cracking can be reduced or eliminated by controlling the distribution of the copper-rich layer, i.e. preventing it from penetrating down the austenite grain boundaries. This study investigated the effect of alloy chemistry on the oxidation behavior and copper-rich liquid phase evolution. Alloy compositions were selected such that effects of copper, nickel, and reactive impurities (manganese, aluminum, and silicon) can be isolated. Industrially produced low carbon steels with varying copper, nickel and silicon contents were also studied. Alloys were oxidized in air or water vapor for times up to one hour at 1150°C. Oxidizing heat treatments were conducted in a thermogravimetric setup where the weight change could be measured during oxidation. Scanning electron microscopy was used to investigate in detail the oxide/metal interfaces. The modeling work focused on describing the enrichment and subsequent growth of the copper-rich layer. A fixed grid finite difference model was developed that predicts the evolution of the enriched region from given oxidation kinetics. The model predictions were validated under a variety of conditions using an iron - 0.3 wt% copper alloy. Deviations from the model predictions in these alloys suggest a critical amount of separated copper is necessary for substantial grain boundary penetration to occur and the required amount decreases when the gas contains water vapor. The parabolic oxidation rate for the iron-copper alloy did not differ from that of pure iron, but

  6. PREFACE: PAGES 1st Young Scientists Meeting (YSM) - 'Retrospective views on our planet's future'

    NASA Astrophysics Data System (ADS)

    Cléroux, Caroline; Fehrenbacher, Jennifer; Phipps, Steven; Rupper, Summer; Williams, Branwen; Kiefer, Thorsten

    2010-03-01

    more recent pollution. The concept and format of the 1st PAGES YSM worked very well, and created a high degree of enthusiasm and stimulation among the participants (as is demonstrated by this special issue). The 2nd YSM is therefore firmly planned to take place in 2013, back-to-back with the 4th PAGES OSM. Crucial and gratefully acknowledged contributions to the success of the YSM were made by the numerous co-sponsors (see logos below), who provided the financial basis for the YSM and supported the attendance of many early-career researchers from various parts of the world. Furthermore, we cordially thank all reviewers for shaping this proceeding issue with their insightful and helpful reviews. Conference photograph

  7. Hot Meetings

    NASA Technical Reports Server (NTRS)

    Chiu, Mary

    2002-01-01

    A colleague walked by my office one time as I was conducting a meeting. There were about five or six members of my team present. The colleague, a man who had been with our institution (The Johns Hopkins Applied Physics Lab, a.k.a. APL) for many years, could not help eavesdropping. He said later it sounded like we we re having a raucous argument, and he wondered whether he should stand by the door in case things got out of hand and someone threw a punch. Our Advanced Composition Explorer (ACE) team was a hot group, to invoke the language that is fashionable today, although we never thought of ourselves in those terms. It was just our modus operandi. The tenor of the discussion got loud and volatile at times, but I prefer to think of it as animated, robust, or just plain collaborative. Mary Chiu and her "hot" team from the Johns Hopkins Applied Physics Laboratory built the Advanced Composition Explorer spacecraft for NASA. Instruments on the spacecraft continue to collect data that inform us about what's happening on our most important star, the Sun.

  8. When should orthostatic blood pressure changes be evaluated in elderly: 1st, 3rd or 5th minute?

    PubMed

    Soysal, Pinar; Aydin, Ali Ekrem; Koc Okudur, Saadet; Isik, Ahmet Turan

    2016-01-01

    Detection of orthostatic hypotension (OH) is very important in geriatric practice, since OH is associated with mortality, ischemic stroke, falls, cognitive failure and depression. It was aimed to determine the most appropriate time for measuring blood pressure in transition from supine to upright position in order to diagnose OH in elderly. Comprehensive geriatric assessment (CGA) including Head up Tilt Table (HUT) test was performed in 407 geriatric patients. Orthostatic changes were assessed separately for the 1st, 3rd and 5th minutes (HUT1, HUT3 and HUT5, respectively) taking the data in supine position as the basis. The mean age, recurrent falls, presence of dementia and Parkinson's disease, number of drugs, alpha-blocker and anti-dementia drug use, and fasting blood glucose levels were significantly higher in the patients with versus without OH; whereas, albumin and 25-hydroxy vitamin D levels were significantly lower (p<0.05). However, different from HUT3 and HUT5, Charlson Comorbidity Index and the prevalence of diabetes mellitus were higher, the use of antidiabetics, antipsychotics, benzodiazepine, opioid and levodopa were more common (p<0.05). Statistical significance of the number of drugs and fasting blood glucose level was prominent in HUT1 as compared to HUT3 (p<0.01, p<0.05). Comparison of the patients that had OH only in HUT1, HUT3or HUT5 revealed no difference in terms of CGA parameters. These results suggests that orthostatic blood pressure changes determined at the 1st minute might be more important for geriatric practice. Moreover, 1st minute measurement might be more convenient in the elderly as it requires shorter time in practice. PMID:27077324

  9. Educational impact of a clinical anatomy workshop on 1st-year orthopedic and rheumatology fellows in Mexico City.

    PubMed

    Saavedra, M A; Villaseñor-Ovies, P; Harfush, L A; Navarro-Zarza, J E; Canoso, J J; Cruz-Domínguez, P; Vargas, A; Hernández-Díaz, C; Chiapas-Gasca, K; Camacho-Galindo, J; Alvarez-Nemegyei, J; Kalish, R A

    2016-05-01

    We aim to study the educational impact of a clinical anatomy workshop in 1st-year orthopedic and rheumatology fellows. First-year rheumatology fellows (N = 17) and a convenience sample of 1st-year orthopedic fellows (N = 14) from Mexico City in the 9th month of training participated in the study. The pre- and the post- workshop tests included the same 20 questions that had to be answered by identification or demonstration of relevant anatomical items. The questions, arranged by anatomical regions, were asked in five dynamic stations. Overall, the 31 participants showed an increase of correct answers, from a median of 6 (range 1 to 12) in the pre-workshop test, to a median of 14 (range 7 to 19) in the post-workshop test. In the pre-workshop test, the correct median answers were 7 (range 2 to 12) in the orthopedic fellows and 5 (range 1 to 10) in the rheumatology fellows (p = 0.297). Corresponding scores in the post-workshop were 15 (range 10 to 19) and 12 (range 7 to 18) (p = 0.026) showing a significant difference favoring the orthopedic group. Our clinical anatomy workshop was efficacious, in the short term, as a teaching instrument for 1st-year orthopedic and rheumatology fellows. The post-workshop scores, although significantly improved in both groups, particularly in the orthopedic fellows, were still suboptimal. Further refinements of our workshop might yield better results. PMID:26400643

  10. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada For Calendar Year 2006

    SciTech Connect

    2007-06-01

    Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites, CAS 58-09-02, Mud Pit, and CAS 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill, and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits (5), an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action.

  11. An X-ray photoelectron spectroscopy study of nickel and nickel-base alloy surface alterations in simulated hot corrosion conditions with emphasis on eventual application to turbine blade corrosion

    NASA Technical Reports Server (NTRS)

    Mateescu, G. D.

    1975-01-01

    The spectra of the pure metals tested and their oxides were used to analyze the patterns obtained for various superalloys. The quantitative results for two superalloys revealed differences between the surface compositions and their behavior under different conditions of oxidation. The following results occurred during the hot corrosion of samples in the presence of Na2So4: a lack of Ti migration; strong effects on Cr; and, a higher speed of alteration of superalloys.

  12. Identification and Characterization of Zebrafish SULT1 ST9, SULT3 ST4, and SULT3 ST5

    PubMed Central

    Mohammed, Yasir I.; Kurogi, Katsuhisa; Shaban, Amani Al; Xu, Zheng; Liu, Ming-Yih; Williams, Frederick E.; Sakakibara, Yoichi; Suiko, Masahito; Bhuiyan, Shakhawat; Liu, Ming-Cheh

    2012-01-01

    By searching the GenBank database, we identified sequences encoding three new zebrafish cytosolic sulfotransferases (SULTs). These three new zebrafish SULTs, designated SULT1 ST9, SULT3 ST4, and SULT3 ST5, were cloned, expressed, purified, and characterized. SULT1 ST9 appeared to be mostly involved in the metabolism and detoxification of xenobiotics such as β-naphthol, β-naphthylamine, caffeic acid and gallic acid. SULT3 ST4 showed strong activity toward endogenous compound such as dehydroepiandrosterone (DHEA), pregnenolone, and 17β-estradiol. SULT3 ST5 showed weaker, but significant, activities toward endogenous compounds such as DHEA and corticosterone, as well as xenobiotics including mestranol, β-naphthylamine, β-naphthol, and butylated hydroxyl anisole (BHA). pH-dependency and kinetic constants of these three enzymes were determined with DHEA, β-naphthol, and 17β-estradiol as substrates. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to examine the expression of these three new zebrafish SULTs at different developmental stages during embryogenesis, through larval development, and on to maturity. PMID:22360938

  13. Attitudes towards General Practice: a comparative cross-sectional survey of 1st and 5th year medical students

    PubMed Central

    Kruschinski, Carsten; Wiese, Birgitt; Hummers-Pradier, Eva

    2012-01-01

    Objective: Positive attitudes towards General Practice can be understood as a prerequisite for becoming a General Practitioner (GP) and for collaboration with GPs later on. This study aimed to assess attitudes of medical students at the beginning and the end of medical school. Methods: A total of 160 1st year students at Hannover Medical School were surveyed. Their attitudes were compared to those of 287 5th year students. Descriptive, bi- and multivariate analyses were performed to investigate influences of year of study and gender. Results: Year of study and gender both were associated with the attitudes towards General Practice. The interest in General Practice and patient-orientation (communication, care of older patients with chronic diseases) was higher in 1st year students compared to more advanced students. Female students valued such requirements more than male students, the differences in attitudes between the years of study being more pronounced in male students. Conclusion: Despite some limitations caused by the cross-sectional design, the attitudes towards General Practice competencies changed to their disadvantage during medical school. This suggests a formative influence of the strategies used in medical education. Educational strategies, however, could be used to bring about a change of attitudes in the other direction. PMID:23255966

  14. BMI differences in 1st and 2nd generation immigrants of Asian and European origin to Australia.

    PubMed

    Hauck, Katharina; Hollingsworth, Bruce; Morgan, Lawrie

    2011-01-01

    We estimate assimilation of immigrants' body mass index (BMI) to the host population of Australia over one generation, conducting separate analyses for immigrants from 7 regions of Europe and Asia. We use quantile regressions to allow for differing impact of generational status across 19 quantiles of BMI from under-weight to morbidly obese individuals. We find that 1st generation South European immigrants have higher, and South and East Asian immigrants have lower BMI than Australians, but have assimilated to the BMI of their hosts in the 2nd generation. There are no or only small BMI differences between Australians and 1st and 2nd generation immigrants from East Europe, North-West Europe, Middle East and Pacific regions. We conclude that both upward and downward assimilation in some immigrant groups is most likely caused by factors which can change over one generation (such as acculturation), and not factors which would take longer to change (such as genetics). Our results suggest that public health policies targeting the lifestyles of well educated Asian immigrants may be effective in preventing BMI increase in this subgroup. PMID:20869292

  15. 1st-Principles Step- and Kink-Formation Energies on Cu(111)

    SciTech Connect

    Feibelman, Peter J.

    1999-05-26

    In rough agreement with experimental values derived from Cu island shapes vs. temperature, ab-initio calculations yield formation energies of 0.27 and 0.26 eV/ step-edge-atom for (100)- and (111)-micro facet steps on Cu(lll), and 0.09 and 0.12 eV per kink in those steps. Comparison to ab-initio results for Al and Pt shows that as a rule, the average formation energy of straight steps on a close-packed metal surface equals -7% of the metal's cohesive energy.

  16. Present status of the global change observation mission 1st - water 'SHIZUKU' (GCOM-W1) and the advanced microwave scanning radiometer 2 (AMSR2)

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hiroyuki; Imaoka, Keiji; Kachi, Misako; Maeda, Takeshi; Kasahara, Marehito; Ito, Norimasa; Oki, Taikan; Shimoda, Haruhisa

    2014-11-01

    The Global Change Observation Mission 1st - Water (CGOM-W1) or "SHIZUKU" was launched on May 18, 2012 (JST) from the JAXA's Tanegashima Space Center. Subsequently, the GCOM-W1 satellite was joined to the NASA's A-train orbit since June 29, 2012 to succeed observation by the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and to provide combined utilization with other A-train satellites. The Advanced Microwave Scanning Radiometer 2 (AMSR2), which is a successor of AMSR-E, onboard GCOM-W1 has started its scientific observation since July 3, 2012. AMSR-E was halted its scientific observation on October 4, 2011, but has restarted observation in slow antenna rotation rate since December 4, 2012 for cross-calibration with AMSR2. AMSR2 has multi-frequency, total-power microwave radiometer systems with dual polarization channels for all frequency bands, and continues AMSR-E observations: 1) Water vapor, 2) Cloud liquid water, 3) Precipitation, 4) SST, 5) Sea surface wind speed, 6) Sea ice concentration, 7) Snow depth, 8) Soil moisture. JAXA opened the AMSR2's brightness temperature products to the public since January 2013 after initial calibration/validation period by the GCOM-W1 Data Providing Service (https://gcomwl.jaxa.jp/). Thereafter, the retrieval algorithms of standard geophysical products for water vapor, cloud liquid water, precipitation, sea surface temperature, sea surface wind speed, sea ice concentration, snow depth and soil moisture were modified, and JAXA opened these standard geophysical products to the public since May 2013. In this paper, we present the present operation status of AMSR2.

  17. Impact of volcanic eruptions on the climate of the 1st millennium AD in a comprehensive climate simulation

    NASA Astrophysics Data System (ADS)

    Wagner, Sebastian; Zorita, Eduardo

    2015-04-01

    The climate of the 1st millennium AD shows some remarkable differences compared to the last millennium concerning variation in external forcings. Together with an orbitally induced increased solar insolation during the northern hemisphere summer season and a general lack of strong solar minima, the frequency and intensity of large tropical and extratropical eruptions is decreased. Here we present results of a new climate simulation carried out with the comprehensive Earth System Model MPI-ESM-P forced with variations in orbital, solar, volcanic and greenhouse gas variations and land use changes for the last 2,100 years. The atmospheric model has a horizontal resolution of T63 (approx. 125x125 km) and therefore also allows investigations of regional-to-continental scale climatic phenomena. The volcanic forcing was reconstructed based on a publication by Sigl et al. (2013) using the sulfate records of the NEEM and WAIS ice cores. To obtain information on the aerosol optical depth (AOD) these sulfate records were scaled to an established reconstruction from Crowley and Unterman (2010), which is also a standard forcing in the framework of CMIP5/PMIP3. A comparison between the newly created data set with the Crowley and Unterman dataset reveals that the new reconstruction shows in general weaker intensities, especially of the large tropical outbreaks and fewer northern hemispheric small-to-medium scale eruptions. However, the general pattern in the overlapping period is similar. A hypothesis that can be tested with the simulation is whether the reduced volcanic intensity of the 1st millennium AD contributed to the elevated temperature levels over Europe, evident within a new proxy-based reconstruction. On the other hand, the few but large volcanic eruptions, e.g. the 528 AD event, also induced negative decadal-scale temperature anomalies. Another interesting result of the simulation relates to the 79 AD eruption of the Vesuvius, which caused the collapse of the city of

  18. 1st Order Modeling of a SAW Delay Line using MathCAD(Registered)

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    To aid in the development of SAW sensors for Integrated Vehicle Health Monitoring applications, a first order model of a SAW Delay line has been created using MathCadA. The model implements the Impulse Response method to calculate the frequency response, impedance, and insertion loss. This paper presents the model and the results from the model for a SAW delay line design. Integrated Vehicle Health Monitoring (IVHM) of aerospace vehicles requires rugged sensors having reduced volume, mass, and power that can be used to measure a variety of phenomena. Wireless systems are preferred when retro-fitting sensors onto existing vehicles [1]. Surface Acoustic Wave (SAW) devices are capable of sensing: temperature, pressure, strain, chemical species, mass loading, acceleration, and shear stress. SAW technology is low cost, rugged, lightweight, and extremely low power. Passive wireless sensors have been developed using SAW technology. For these reasons new SAW sensors are being investigated for aerospace applications.

  19. A decadal gridded hyperspectral infrared record for climate Sep 1st 2002--Aug 31st 2012

    NASA Astrophysics Data System (ADS)

    Chapman, David Raymond

    We present a gridded Fundamental Decadal Data Record (FDDR) of Brightness Temperatures (BT) from the NASA Atmospheric Infrared Sounder (AIRS) from ten years of hyperspectral Infrared Radiances onboard the NASA EOS Aqua satellite. Although global surface temperature data records are available for over 130 years, it was not until 1978 when the Microwave Sounding Unit (MSU) was the first instrument series to reliably monitor long-term trends of the upper atmosphere. AIRS, operational on September 1, 2002 is the first successful hyperspectral satellite weather instrument of more than 1 year, and provides a 10 year global hyperspectral IR radiance data record. Our contribution was to prepare a gridded decadal data record of climate resolution from the AIRS Outgoing Longwave Spectrum (OLS). In order to do this, we developed a robust software infrastructure "Gridderama" using large multivariate array storage to facilitate this multi-terabyte parallel data processing task while ensuring integrity, tracking provenance, logging errors, and providing extensive visualization. All of our data, code, logs and visualizations are freely available online and browsable via a real-time "Data Catalog" interface. We show that these global all-sky trends are consistent with the expected radiative forcings from an increase in greenhouse gasses. We have also measured high global correlations with the GISS global surface air temperatures as well as high regional anticorrelations with the NOAA ONI index of El Niño phase. In addition, we have performed inter-annual inter-comparisons with the Moderate Resolution Spectro-radiometer (MODIS) on the same Aqua satellite to examine the relative consistency of their calibrations. The comparisons of the two instruments for the 4µ spectral channels (between 3.9µ and 4.1µ) indicate an inter-annual warming of 0.13K per decade of AIRS more than MODIS. This decadal relative drift is small compared to inter-annual variability but on the order of

  20. Polymer desorption under pulling a 1st - order phase transition without phase coexistence

    NASA Astrophysics Data System (ADS)

    Milchev, A.; Rostiashvili, V. G.; Bhattacharya, S.; Vilgis, T. A.

    2010-02-01

    We show that when a self-avoiding polymer chain is pulled off a sticky surface by force applied to the end segment, it undergoes a first-order thermodynamic phase transition albeit without phase coexistence. This unusual feature is demonstrated analytically by means of a Grand Canonical Ensemble (GCE) description of adsorbed macromolecules as well as by Monte Carlo simulations of an off-lattice bead-spring model of a polymer chain. Theoretical treatment and computer experiment can be carried out both in the constant force statistical ensembl whereby at fixed pulling force f one measures the mean height < h > of the chain end above the adsorbing plane, and in the constant-height ensemble where for a given height h one monitors the resulting force < f > applied at the last segment. We find that the force-assisted desorption undergoes a first-order dichotomic phase transition whereby phase coexistence between adsorbed and desorbed states does not exist. In the f-ensemble the order parameter (the fraction of chain contacts with the surface) is characterized by huge fluctuations when the pulling force attains a critical value fD. In the h-ensemble, in contrast, fluctuations are always finite at the critical height hD. The derived analytical expressions for the probability distributions of the basic structural units of an adsorbed polymer, such as loops, trains and tails, in terms of the adhesive potential and f, or h, provide a full description of the polymer structure and behavior upon force-assisted detachment. In addition, one finds that the hitherto controversial value of the universal critical adsorption exponent ϕ depends essentially on the extent of interaction between the loops adsorbed chain so that ϕ may vary within the limits 0.34 ≤ ϕ ≤ 0.59.

  1. Plasma properties from the multi-wavelength analysis of the November 1st 2003 CME/shock event

    PubMed Central

    Benna, Carlo; Mancuso, Salvatore; Giordano, Silvio; Gioannini, Lorenzo

    2012-01-01

    The analysis of the spectral properties and dynamic evolution of a CME/shock event observed on November 1st 2003 in white-light by the LASCO coronagraph and in the ultraviolet by the UVCS instrument operating aboard SOHO, has been performed to compute the properties of some important plasma parameters in the middle corona below about 2R⊙. Simultaneous observations obtained with the MLSO/Mk4 white-light coronagraph, providing both the early evolution of the CME expansion in the corona and the pre-shock electron density profile along the CME front, were also used to study this event. By combining the above information with the analysis of the metric type II radio emission detected by ground-based radio spectrographs, we finally derive estimates of the values of the local Alfvén speed and magnetic field strength in the solar corona. PMID:25685432

  2. Levels of innate immune factors in preterm and term mothers' breast milk during the 1st month postpartum.

    PubMed

    Trend, Stephanie; Strunk, Tobias; Lloyd, Megan L; Kok, Chooi Heen; Metcalfe, Jessica; Geddes, Donna T; Lai, Ching Tat; Richmond, Peter; Doherty, Dorota A; Simmer, Karen; Currie, Andrew

    2016-04-14

    There is a paucity of data on the effect of preterm birth on the immunological composition of breast milk throughout the different stages of lactation. We aimed to characterise the effects of preterm birth on the levels of immune factors in milk during the 1st month postpartum, to determine whether preterm milk is deficient in antimicrobial factors. Colostrum (days 2-5 postpartum), transitional milk (days 8-12) and mature milk (days 26-30) were collected from mothers of extremely preterm (<28 weeks of gestation, n 15), very preterm (28-<32 weeks of gestation, n 15), moderately preterm (32-<37 weeks of gestation, n 15) and term infants (37-41 weeks of gestation, n 15). Total protein, lactoferrin, secretory IgA, soluble CD14 receptor (sCD14), transforming growth factor-β2 (TGF-β2), α defensin 5 (HD5), β defensins 1 (HBD1) and 2, IL-6, IL-10, IL-13, interferon-γ, TNF-α and lysozyme (LZ) were quantified in milk. We examined the effects of lactation stage, gestational age, volume of milk expressed, mode of delivery, parity and maternal infection on milk immune factor concentrations using repeated-measures regression analysis. The concentrations of all factors except LZ and HD5 decreased over the 1st month postpartum. Extremely preterm mothers had significantly higher concentrations of HBD1 and TGF-β2 in colostrum than term mothers did. After controlling for other variables in regression analyses, preterm birth was associated with higher concentrations of HBD1, LZ and sCD14 in milk samples. In conclusion, preterm breast milk contains significantly higher concentrations of some immune proteins than term breast milk. PMID:26891901

  3. X-ray photoelectron spectroscopy study of nickel and nickel-base alloy surface alterations in simulated hot corrosion conditions with emphasis on eventual application to turbine blade corrosion

    NASA Technical Reports Server (NTRS)

    Mateescu, G. D.; Smith, S. R.

    1979-01-01

    Research on the high temperature oxidation and Na2SO4 induced hot corrosion of some nickel base superalloys was accomplished by using ESCA to determine the surface composition of the oxidized or corroded samples. Oxidation was carried out at 900 or 1000 C in slowly flowing O2 for samples of B-1900, NASA-TRW VIA, 713C, and IN-738. Oxidation times ranged from 0.5 to 100 hr. Hot corrosion of B-1900 was induced applying a coating of Na2SO4 to peroxidized samples, the heating to 900 C in slowly flowing O2. For oxidized samples, the predominant type of scale formed by each superalloy was determined, and a marked surface enrichment of Ti was found in each case. For corroded samples, the transfer of significant amounts of material from the oxide layer to the surface of the salt layer was observed to occur long before the onset of accelerating weight-gain. Changes in surface composition were observed to coincide with the beginning of accelerating corrosion, the most striking of which was a tenfold decrease in the sulfur to sodium ration and an increase in the Cr(VI) ratio.

  4. Social and moral norm differences among Portuguese 1st and 6th year medical students towards their intention to comply with hand hygiene.

    PubMed

    Roberto, Magda S; Mearns, Kathryn; Silva, Silvia A

    2012-01-01

    This study examines social and moral norms towards the intention to comply with hand hygiene among Portuguese medical students from 1st and 6th years (N = 175; 121 from the 1st year, 54 from the 6th year). The study extended the theory of planned behaviour theoretical principles and hypothesised that both subjective and moral norms will be the best predictors of 1st and 6th year medical students' intention to comply with hand hygiene; however, these predictors ability to explain intention variance will change according to medical students' school year. Results indicated that the subjective norm, whose referent focuses on professors, is a relevant predictor of 1st year medical students' intention, while the subjective norm that emphasises the relevance of colleagues predicts the intentions of medical students from the 6th year. In terms of the moral norm, 6th year students' intention is better predicted by a norm that interferes with compliance; whereas intentions from 1st year students are better predicted by a norm that favours compliance. Implications of the findings highlight the importance of role models and mentors as key factors in teaching hand hygiene in medical undergraduate curricula. PMID:22111788

  5. On the molecular complexity of the hot cores in Orion A - Grain surface chemistry as 'The last refuge of the scoundrel'

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Tielens, A. G. G. M.; Millar, T. J.

    1992-01-01

    We have modeled the gas phase chemistry of warm molecular material around protostars that is seeded with evaporating grain mantles. We show that the release of simple molecules into the gas drives ion-molecule and neutral chemistries which can account for many of the complex O-bearing and N-bearing molecules observed in hot cores. Initial grain mantle components and secondary product molecules are identified, and the observational consequences are discussed.

  6. Adaptive and Effortful Control and Academic Self-efficacy Beliefs on Achievement: A Longitudinal Study of 1st through 3rd Graders

    PubMed Central

    Liew, Jeffrey; McTigue, Erin; Barrois, Lisa; Hughes, Jan

    2009-01-01

    The linkages between self-regulatory processes and achievement were examined across three years in 733 children beginning at 1st grade (M = 6.57 years, SD = .39 at 1st grade) who were identified as lower achieving in literacy. Accounting for consistencies in measures (from one year prior) and for influences of child’s age, gender, IQ, ethnicity and economic adversity on achievement, results indicate that adaptive/effortful control at 1st grade contributed to both academic self-efficacy beliefs at 2nd grade, and reading (but not math) achievement at 3rd grade. Although academic self-efficacy did not partially mediate the linkage between adaptive/effortful control and achievement, academic self-efficacy beliefs were positively correlated with reading and math. Results support the notion that early efforts to promote children’s self-regulatory skills would enhance future academic self-beliefs and achievement, particularly in literacy. PMID:19169387

  7. Case Study of Severe Lightning Activity Prior to and During the Outbreak of the June 1st Greenbelt Tornado

    NASA Astrophysics Data System (ADS)

    Barnum, B. H.; Badesha, S.; Shishineh, A.; Adams, N. H.

    2012-12-01

    Surges in lightning activity have been known to be associated with the outbreak of tornado activity. We present a case study of a tornado that touched down near Greenbelt Maryland during the evening of June 1st 2012. Preceding the tornado touchdown, two single point lightning detection systems, a Boltek LD-250 and Vaisala SA20, recorded very high lightning activity rates. An electric field mill (EFM) was also making measurements and recorded large, rapid amplitude oscillations in the vertical electric fields. These electric field oscillations quickly subsided after the initial tornado touchdown. The lightning activity also generated significant RF interference in the S-band dish antenna operated at the Applied Physics Laboratory. It was somewhat surprising that the lightning activity produced enough radiation at these frequencies to cause measured levels of interference which could potentially impair satellite communications. Our interpretation of the EFM data is that intensive vertical forcing and rotation in the thunderstorm during the tornado formation caused the observed rapid electric field oscillations. At the same time, the vertical mixing in the storm caused a surge in lightning activity rates recorded by the Boltek and Vaisala sensors. Following the tornado touchdown, there was a rapid decrease in the lightning rates from the sensors. The EFM oscillations also abruptly ceased and went to a more normal slow-varying pattern typically observed during other thunderstorms without associated tornado activity. It is suggested that a network of field mills could provide realtime warning of imminent tornado activity.

  8. A learning skills course for the 1st year medical students: an experience at a Saudi medical school

    PubMed Central

    Siddiqui, Imran A; Bin Abdulrahman, Khalid A; Alsultan, Mohammed A

    2015-01-01

    Background Every year nearly 1,500 students enter into medical program after passing high school and national aptitude exams. However, many students experience frustration, failure, and psychological morbidities like stress, depression, and anxiety because they are not aware of their learning styles or do not have effective learning skills and strategies. The College of Medicine of Al-Imam Muhammad ibn Saud Islamic University has adopted the outcome based, community oriented, Spiral Curriculum. Although the curriculum is innovative, on the other hand, it is very demanding. Objective The purpose of this paper is to share educational structure and evaluation results of the course on effective learning and study skills for the 1st year medical students. Methods To prepare our students in order to cope with this demanding but promising curriculum, we conducted an effective and comprehensive learning skills course for 16 weeks in the first semester of year 1 in the medical program. Performance of each student was assessed and the course evaluation was done by students at the end of the course. Results The attendance of the students throughout the course was over 90%. The average performance of students in the summative assessment was 78% and the course was generally liked by the students. Discussion Students overall had a positive attitude toward the learning skills course. Majority of the students showed interest in attending the sessions regularly and realized the significance of this course to improve their learning skills. PMID:25848332

  9. Synthesis of nanomagnetic fluids and their UV spectrophotometric response with aliphatic organic acids and 1st tier dendrimers

    NASA Astrophysics Data System (ADS)

    Pandya, Shivani R.; Singh, Man

    2016-04-01

    Synthesis of Magnetic nanoparticles were made using coprecipitation method on mixing Fe+3 and Fe+2 in 2:1 ratio with aqueous 8M NaOH which on heating at 90°C for 2 h has yielded 85% magnetic (Fe3O4) nanoparticles (MNPs), characterized by XRD, VSM, SEM, and HR-TEM. The formic acid (FA), oxalic acid (OA) and citric acid (CA), the series of aliphatic organic acids along with Trimesoyl 1, 3, 5 tridimethyl malonate (TTDMM), trimesoyl 1, 3, 5 tridiethyl malonate (TTDEM), trimesoyl 1, 3, 5 tridipropyl malonate (TTDPM), trimesoyl 1, 3, 5 tridibutyl malonate (TTDBM) and trimesoyl 1, 3, 5 tridihexyl malonate (TTDHM) 1st tier dendrimers were used separately for preparing nanomagnetic fluid. From 25 to 150 µM MNPs at an interval of 25 µM were dispersed in 150 µM of acids and dendrimers separately with DMSO. UV-VIS spectrophotometry showed a maximum MNPs dispersion with TTDMM against others and found to be most stable nanomagnetic fluid on account of capping type mechanism of acids.

  10. Stem Cell Gene Therapy for Fanconi Anemia: Report from the 1st International Fanconi Anemia Gene Therapy Working Group Meeting

    PubMed Central

    Tolar, Jakub; Adair, Jennifer E; Antoniou, Michael; Bartholomae, Cynthia C; Becker, Pamela S; Blazar, Bruce R; Bueren, Juan; Carroll, Thomas; Cavazzana-Calvo, Marina; Clapp, D Wade; Dalgleish, Robert; Galy, Anne; Gaspar, H Bobby; Hanenberg, Helmut; Von Kalle, Christof; Kiem, Hans-Peter; Lindeman, Dirk; Naldini, Luigi; Navarro, Susana; Renella, Raffaele; Rio, Paula; Sevilla, Julián; Schmidt, Manfred; Verhoeyen, Els; Wagner, John E; Williams, David A; Thrasher, Adrian J

    2011-01-01

    Survival rates after allogeneic hematopoietic cell transplantation (HCT) for Fanconi anemia (FA) have increased dramatically since 2000. However, the use of autologous stem cell gene therapy, whereby the patient's own blood stem cells are modified to express the wild-type gene product, could potentially avoid the early and late complications of allogeneic HCT. Over the last decades, gene therapy has experienced a high degree of optimism interrupted by periods of diminished expectation. Optimism stems from recent examples of successful gene correction in several congenital immunodeficiencies, whereas diminished expectations come from the realization that gene therapy will not be free of side effects. The goal of the 1st International Fanconi Anemia Gene Therapy Working Group Meeting was to determine the optimal strategy for moving stem cell gene therapy into clinical trials for individuals with FA. To this end, key investigators examined vector design, transduction method, criteria for large-scale clinical-grade vector manufacture, hematopoietic cell preparation, and eligibility criteria for FA patients most likely to benefit. The report summarizes the roadmap for the development of gene therapy for FA. PMID:21540837

  11. Child gender and weight status moderate the relation of maternal feeding practices to body esteem in 1st grade children.

    PubMed

    Shriver, Lenka H; Hubbs-Tait, Laura; Harrist, Amanda W; Topham, Glade; Page, Melanie

    2015-06-01

    Prevention of body dissatisfaction development is critical for minimizing adverse effects of poor body esteem on eating behaviors, self-esteem, and overall health. Research has examined body esteem and its correlates largely in pre-adolescents and adolescents; however, important questions remain about factors influencing body esteem of younger children. The main purpose of this study was to test moderation by children's gender and weight status of the relation of maternal controlling feeding practices to 1st graders' body esteem. The Body Esteem Scale (BES) and anthropometric measurements were completed during one-on-one child interviews at school. Mothers completed the Child Feeding Questionnaire (restriction, monitoring, concern, self-assessed maternal weight). A total of 410 mother/child dyads (202 girls) participated. Percent of children classified as overweight (BMI-for-age ≥85th) was: girls - 29%; boys - 27%. Gender moderated the relation between restriction and body esteem (β = -.140, p = .05), with maternal restriction predicting body esteem in girls but not boys. The hypothesized three-way interaction among gender, child weight status, and monitoring was confirmed. Monitoring was significantly inversely related to body esteem only for overweight/obese girls (b = -1.630). The moderating influence of gender or gender and weight status on the link between maternal feeding practices and body esteem suggests the importance of body esteem interventions for girls as early as first grade. PMID:25624022

  12. Frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the European ENEST1st study.

    PubMed

    Hochhaus, A; Rosti, G; Cross, N C P; Steegmann, J L; le Coutre, P; Ossenkoppele, G; Petrov, L; Masszi, T; Hellmann, A; Griskevicius, L; Wiktor-Jedrzejczak, W; Rea, D; Coriu, D; Brümmendorf, T H; Porkka, K; Saglio, G; Gastl, G; Müller, M C; Schuld, P; Di Matteo, P; Pellegrino, A; Dezzani, L; Mahon, F-X; Baccarani, M; Giles, F J

    2016-01-01

    The Evaluating Nilotinib Efficacy and Safety in Clinical Trials as First-Line Treatment (ENEST1st) study included 1089 patients with newly diagnosed chronic myeloid leukemia in chronic phase. The rate of deep molecular response (MR(4) (BCR-ABL1⩽0.01% on the International Scale or undetectable BCR-ABL1 with ⩾10,000 ABL1 transcripts)) at 18 months was evaluated as the primary end point, with molecular responses monitored by the European Treatment and Outcome Study network of standardized laboratories. This analysis was conducted after all patients had completed 24 months of study treatment (80.9% of patients) or discontinued early. In patients with typical BCR-ABL1 transcripts and ⩽3 months of prior imatinib therapy, 38.4% (404/1052) achieved MR(4) at 18 months. Six patients (0.6%) developed accelerated or blastic phase, and 13 (1.2%) died. The safety profile of nilotinib was consistent with that of previous studies, although the frequencies of some nilotinib-associated adverse events were lower (for example, rash, 21.4%). Ischemic cardiovascular events occurred in 6.0% of patients. Routine monitoring of lipid and glucose levels was not mandated in the protocol. These results support the use of frontline nilotinib, particularly when achievement of a deep molecular response (a prerequisite for attempting treatment-free remission in clinical trials) is a treatment goal. PMID:26437782

  13. Frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the European ENEST1st study

    PubMed Central

    Hochhaus, A; Rosti, G; Cross, N C P; Steegmann, J L; le Coutre, P; Ossenkoppele, G; Petrov, L; Masszi, T; Hellmann, A; Griskevicius, L; Wiktor-Jedrzejczak, W; Rea, D; Coriu, D; Brümmendorf, T H; Porkka, K; Saglio, G; Gastl, G; Müller, M C; Schuld, P; Di Matteo, P; Pellegrino, A; Dezzani, L; Mahon, F-X; Baccarani, M; Giles, F J

    2016-01-01

    The Evaluating Nilotinib Efficacy and Safety in Clinical Trials as First-Line Treatment (ENEST1st) study included 1089 patients with newly diagnosed chronic myeloid leukemia in chronic phase. The rate of deep molecular response (MR4 (BCR-ABL1⩽0.01% on the International Scale or undetectable BCR-ABL1 with ⩾10 000 ABL1 transcripts)) at 18 months was evaluated as the primary end point, with molecular responses monitored by the European Treatment and Outcome Study network of standardized laboratories. This analysis was conducted after all patients had completed 24 months of study treatment (80.9% of patients) or discontinued early. In patients with typical BCR-ABL1 transcripts and ⩽3 months of prior imatinib therapy, 38.4% (404/1052) achieved MR4 at 18 months. Six patients (0.6%) developed accelerated or blastic phase, and 13 (1.2%) died. The safety profile of nilotinib was consistent with that of previous studies, although the frequencies of some nilotinib-associated adverse events were lower (for example, rash, 21.4%). Ischemic cardiovascular events occurred in 6.0% of patients. Routine monitoring of lipid and glucose levels was not mandated in the protocol. These results support the use of frontline nilotinib, particularly when achievement of a deep molecular response (a prerequisite for attempting treatment-free remission in clinical trials) is a treatment goal. PMID:26437782

  14. 1st Quarter Transportation Report FY 2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    SciTech Connect

    Gregory, Louis

    2015-02-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.

  15. Embryonic development of chicken (Gallus Gallus Domesticus) from 1st to 19th day-ectodermal structures.

    PubMed

    Toledo Fonseca, Erika; De Oliveira Silva, Fernanda Menezes; Alcântara, Dayane; Carvalho Cardoso, Rafael; Luís Franciolli, André; Sarmento, Carlos Alberto Palmeira; Fratini, Paula; José Piantino Ferreira, Antônio; Miglino, Maria Angélica

    2013-12-01

    Birds occupy a prominent place in the Brazilian economy not only in the poultry industry but also as an animal model in many areas of scientific research. Thus the aim of this study was to provide a description of macro and microscopic aspects of the ectoderm-derived structures in chicken embryos / fetuses poultry (Gallus gallus domesticus) from 1st to 19th day of incubation. 40 fertilized eggs, from a strain of domestic chickens, with an incubation period of 2-19 days were subjected to macroscopic description, biometrics, light, and scanning microscopy. All changes observed during the development were described. The nervous system, skin and appendages and organs related to vision and hearing began to be identified, both macro and microscopically, from the second day of incubation. The vesicles from the primitive central nervous system-forebrain, midbrain, and hindbrain-were identified on the third day of incubation. On the sixth day of incubation, there was a clear vascularization of the skin. The optic vesicle was first observed fourth day of development and on the fifth day there was the beginning of the lens formation. Although embryonic development is influenced by animal line as well as external factors such as incubation temperature, this paper provides a chronological description for chicken (Gallus gallus domesticus) during its embryonic development. PMID:24019213

  16. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA; FOR CALENDAR YEAR 2005

    SciTech Connect

    2006-04-01

    Corrective Action Unit (CAU) 417, Central Nevada Test Area - Surface, is located in Hot Creek Valley in northern Nye County, Nevada, and consists of three areas commonly referred to as UC-1, UC-3, and UC-4. CAU 417 consists of 34 Corrective Action Sites (CASs) which were closed in 2000 (U. S. Department of Energy, National Nuclear Security Administration Nevada Operations Office, 2001). Three CASs at UC-1 were closed in place with administrative controls. At CAS 58-09-01, Central Mud Pit (CMP), a vegetated soil cover was constructed over the mud pit. At the remaining two sites CAS 58-09-02, Mud Pit and 58-09-05, Mud Pits (3), aboveground monuments and warning signs were installed to mark the CAS boundaries. Three CASs at UC-3 were closed in place with administrative controls. Aboveground monuments and warning signs were installed to mark the site boundaries at CAS 58-09-06, Mud Pits (5), CAS 58-25-01, Spill and CAS 58-10-01, Shaker Pad Area. Two CASs that consist of five sites at UC-4 were closed in place with administrative controls. At CAS 58-09-03, Mud Pits 9, an engineered soil cover was constructed over Mud Pit C. At the remaining three sites in CAS 58-09-03 and at CAS 58-10-05, Shaker Pad Area, aboveground monuments and warning signs were installed to mark the site boundaries. The remaining 26 CASs at CAU 417 were either clean-closed or closed by taking no further action. Quarterly post-closure inspections are performed at the CASs that were closed in place at UC-I, UC-3, and UC-4. During calendar year 2005, site inspections were performed on March 15, June 16, September 22, and December 7. The inspections conducted at the UC-1 CMP documented that the site was in good condition and continued to show integrity of the cover unit. No new cracks or fractures were observed until the December inspection. A crack on the west portion of the cover showed evidence of lateral expansion; however, it is not at an actionable level. The crack will be sealed by filling with

  17. 7 CFR 305.22 - Hot water immersion treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water immersion treatment schedules. 305.22... Hot water immersion treatment schedules. (a) T102-d. (1) Fruit must be grown and treated in Hawaii. (2) Fruit must be submerged at least 4 inches below the water's surface in a hot water immersion...

  18. PROCEEDINGS: JOINT SYMPOSIUM ON DRY SO2 AND SIMULTANEOUS SO2/NOX CONTROL TECHNOLOGIES (1ST). VOLUME 1. FUNDAMENTAL RESEARCH AND PROCESS DEVELOPMENT

    EPA Science Inventory

    Forty six papers describing recent advances in dry sorbent injection technologies for SO2 control were presented at the 1st Joint Symposium on Dry SO2 and Simultaneous SO2/NOx Control Technologies. These papers covered the following topics: fundamental research; pilot-scale devel...

  19. The Impact of Gender-Fair versus Gender-Stereotyped Basal Readers on 1st-Grade Children's Gender Stereotypes: A Natural Experiment

    ERIC Educational Resources Information Center

    Karniol, Rachel; Gal-Disegni, Michal

    2009-01-01

    Israeli 1st-grade children in two different schools in the same neighborhood who were using either a gender-stereotyped or a gender-fair basal reader were asked to judge for a series of female-stereotyped, male-stereotyped, and gender-neutral activities whether they were characteristic of females, of males, or of both. Children using the…

  20. Moving beyond the Lone Scientist: Helping 1st-Grade Students Appreciate the Social Context of Scientific Work Using Stories about Scientists

    ERIC Educational Resources Information Center

    Sharkawy, Azza

    2009-01-01

    While several studies have documented young children's (K-2) stereotypic views of scientists and scientific work, few have examined students' views of the social nature of scientific work and the strategies effective in broadening these views. The purpose of this study is to examine how stories about scientists influence 1st-grade students' views…

  1. Diagnostic Online Assessment of Basic IT Skills in 1st-Year Undergraduates in the Medical Sciences Division, University of Oxford

    ERIC Educational Resources Information Center

    Sieber, Vivien

    2009-01-01

    Attitude, experience and competence (broadly covered by the European Computer Driving Licence syllabus) in information technology (IT) were assessed in 846 1st-year Medical Sciences Division undergraduates (2003-06) at the start of their first term. Online assessments delivered during induction workshops were presented as an opportunity for…

  2. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  3. Thermal structures and materials for high-speed flight; Collection of Papers of the 1st Thermal Structures Conference, University of Virginia, Charlottesville, Nov. 13-15, 1990

    NASA Astrophysics Data System (ADS)

    Thornton, Earl A.

    The present conference discusses aerobrake-maneuver vehicle aerothermodynamics, aerothermal issues in the structural design of high speed vehicles, laser surface-alloying of superlight metals with ceramic surfaces, high-temperature Al alloys for supersonic and hypersonic vehicles, advanced metallics for high temperature airframes, novel materials for engine applications, and the development status of computational methods for high temperature structural design. Also discussed are a transient thermal-structural analysis using adaptive unstructured remeshing and mesh movement, the FEM thermoviscoplastic analysis of aerospace structures, hot-structures testing techniques, a thermal-structural analysis of a carbon-carbon/refractory metal heat pipe-cooled leading edge, dynamic effects in thermoviscoplastic structures, microlevel thermal effects in metal-matrix composites (MMCs), thermomechanical effects in the plasma spray manufacture of MMC monotapes, and intelligent HIP processing. Most of the presentations at this conference were abstracted previously (see A91-16027 to A91-16047).

  4. Cognitive-based approach in teaching 1st year Physics for Life Sciences, including Atmospheric Physics and Climate Change components

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.

    2009-12-01

    Most 1st year students who take the service course in Physics - Physics for Life Sciences - in Australia encounter numerous problems caused by such factors as no previous experience with this subject; general perception that Physics is hard and only very gifted people are able to understand it; lack of knowledge of elementary mathematics; difficulties encountered by lecturers in teaching university level Physics to a class of nearly 200 students with no prior experience, diverse and sometime disadvantageous backgrounds, different majoring areas, and different learning abilities. As a result, many students either drop, or fail the subject. In addition, many of those who pass develop a huge dislike towards Physics, consider the whole experience as time wasted, and spread this opinion among their peers and friends. The above issues were addressed by introducing numerous changes to the curriculum and modifying strategies and approaches in teaching Physics for Life Sciences. Instead of a conventional approach - teaching Physics from simple to complicated, topic after topic, the students were placed in the world of Physics in the same way as a newborn child is introduced to this world - everything is seen all the time and everywhere. That created a unique environment where a bigger picture and all details were always present and interrelated. Numerous concepts of classical and modern physics were discussed, compared, and interconnected all the time with “Light” being a key component. Our primary field of research is Atmospheric Physics, in particular studying the atmospheric composition and structure using various satellite and ground-based data. With this expertise and also inspired by an increasing importance of training a scientifically educated generation who understands the challenges of the modern society and responsibilities that come with wealth, a new section on environmental physics has been developed. It included atmospheric processes and the greenhouse

  5. Small airway dysfunction by impulse oscillometry in asthmatic patients with normal forced expiratory volume in the 1st second values.

    PubMed

    Pisi, Roberta; Tzani, Panagiota; Aiello, Marina; Martinelli, Enrico; Marangio, Emilio; Nicolini, Gabriele; Olivieri, Dario; Chetta, Alfredo

    2013-01-01

    Small airways are relevant to the pathophysiology of asthma. We investigated whether in asthmatic patients with normal forced expiratory volume in the 1st second (FEV(1)) values, impulse oscillometry system (IOS), as a measure of small airway function, contributed additional information to spirometry either at baseline or after bronchodilator, and whether it was related to the disease control. The fall in resistance from 5 to 20 Hz (R5-R20) and reactance at 5 Hz (X5) by IOS and spirometry measures of small airway function (forced expiratory flow at 25-75% [FEF(25-75)] and forced vital capacity/slow inspiratory vital capacity [FVC/SVC]) at baseline and after 400 micrograms of salbutamol were prospectively measured in 33 asthmatic patients (18 women; age range, 18-66 years). Disease control was assessed by the Asthma Control Test (ACT). R5-R20 but not X5 values were significantly related to FEF(25-75) and FVC/SVC values (p < 0.05 for both correlations). When the bronchodilator response was assessed, no correlation was found among IOS and spirometry changes. ACT scores were related to R5-R20, FEF(25-75), and FVC/SVC values (p < 0.01 for all correlations). In asthmatic patients with normal FEV(1) values, R5-R20 values were related to spirometry measures of small airway function. However, when the bronchodilator response was assessed, IOS and spirometry provided quite different results. Moreover, small airway dysfunction, as assessed by IOS and spirometry, was associated with poor disease control and history of asthma exacerbations. The results of this study confirm the value of IOS, as an investigative tool, and suggest that in asthmatic patients with normal FEV(1) values and poor disease control, small airway function should be investigated. PMID:23406931

  6. New approaches for improving the production of the 1st and 2nd generation ethanol by yeast.

    PubMed

    Kurylenko, Olena; Semkiv, Marta; Ruchala, Justyna; Hryniv, Orest; Kshanovska, Barbara; Abbas, Charles; Dmytruk, Kostyantyn; Sibirny, Andriy

    2016-01-01

    Increase in the production of 1st generation ethanol from glucose is possible by the reduction in the production of ethanol co-products, especially biomass. We have developed a method to reduce biomass accumulation of Saccharomyces cerevisiae by the manipulation of the intracellular ATP level due to overexpression of genes of alkaline phosphatase, apyrase or enzymes involved in futile cycles. The strains constructed accumulated up to 10% more ethanol on a cornmeal hydrolysate medium. Similar increase in ethanol accumulation was observed in the mutants resistant to the toxic inhibitors of glycolysis like 3-bromopyruvate and others. Substantial increase in fuel ethanol production will be obtained by the development of new strains of yeasts that ferment sugars of the abundant lignocellulosic feedstocks, especially xylose, a pentose sugar. We have found that xylose can be fermented under elevated temperatures by the thermotolerant yeast, Hansenula polymorpha. We combined protein engineering of the gene coding for xylose reductase (XYL1) along with overexpression of the other two genes responsible for xylose metabolism in yeast (XYL2, XYL3) and the deletion of the global transcriptional activator CAT8, with the selection of mutants defective in utilizing ethanol as a carbon source using the anticancer drug, 3-bromopyruvate. Resulted strains accumulated 20-25 times more ethanol from xylose at the elevated temperature of 45°C with up to 12.5 g L(-1) produced. Increase in ethanol yield and productivity from xylose was also achieved by overexpression of genes coding for the peroxisomal enzymes: transketolase (DAS1) and transaldolase (TAL2), and deletion of the ATG13 gene. PMID:26619255

  7. Understanding of Bath Surface Wave in Bottom Blown Copper Smelting Furnace

    NASA Astrophysics Data System (ADS)

    Shui, Lang; Cui, Zhixiang; Ma, Xiaodong; Rhamdhani, M. Akbar; Nguyen, Anh V.; Zhao, Baojun

    2016-02-01

    The waves formed on bath surface play an important role in the bottom blown copper smelting furnace operations. Simulation experiments have been carried out on model of the bottom blown furnace to investigate features of the waves formed on bath surface. It was found that the ripples, the 1st asymmetric standing wave and the 1st symmetric standing wave were able to occur in this model, and empirical occurrence boundaries have been determined. The amplitude and frequency of the standing waves have been systematically investigated. It was found that the amplitude of the 1st asymmetric standing wave is much greater than the 1st symmetric standing wave and the ripples; and the amplitude is found to increase with increasing bath height and flowrate but decrease with blowing angle. The frequency of the 1st asymmetric standing wave is found increasing with bath height but independent of flowrate and blowing angle.

  8. Development of energy-absorbing reaction-sintered Si3N4 surface layers on hot-pressed Si3N4

    NASA Technical Reports Server (NTRS)

    Brennan, J. J.

    1981-01-01

    Energy-absorbing Si3N4 surface layers on dense Si3N4 substrates were formed by in-place nitridation of fine-grained silicon powder. Ballistic impact tests performed on samples with 1-mm thick layers at room temperature and 1370 C showed up to an eightfold increase in the energy necessary to fracture the substrate. For maximum impact resistance, a small amount (about 20 vol %) of residual Si must be present in the reaction-sintered Si3N4 surface layer. Thermal cycling to 1370 C did not affect impact resistance, even though a considerable amount of SiO2 formed within the reaction-sintered Si3N4 layer during cycling. Erosion testing of samples in a Mach 0.8 burner rig at 1370 C resulted in minimal surface recession of the surface layer. Chemically vapor-deposited SiC-coated material similarly tested exhibited no surface recession.

  9. Numerical simulations of hot spots

    NASA Astrophysics Data System (ADS)

    Norman, Michael L.

    Numerical simulations of hot spots and their associated jets are examined with emphasis on their dynamical variability. Attention is given to two-dimensional simulations, which incorporate dynamically passive and important magnetic fields in the ideal MHD limit. Distributions of total and polarized radio brightness have been derived for comparison with observations. The move toward three-dimensional simulations is documented, and hydrodynamical models for multiple hot spots are discussed. It is suggested that useful insights can be obtained from two-dimensional slab jet simulation, which relax the axisymmetric constraints while allowing high numerical resolution. In particular the dentist-drill model of Scheuer (1982) for working-surface variability is substantiated, and it is shown to result from self-excited jet instabilities near the working surface.

  10. Ultrasonic hammer produces hot spots in solids

    NASA Astrophysics Data System (ADS)

    You, Sizhu; Chen, Ming-Wei; Dlott, Dana D.; Suslick, Kenneth S.

    2015-04-01

    Mechanical action can produce dramatic physical and mechanochemical effects when the energy is spatially or temporally concentrated. An important example of such phenomena in solids is the mechanical initiation of explosions, which has long been speculated to result from ‘hot spot’ generation at localized microstructures in the energetic material. Direct experimental evidence of such hot spots, however, is exceptionally limited; mechanisms for their generation are poorly understood and methods to control their locations remain elusive. Here we report the generation of intense, localized microscale hot spots in solid composites during mild ultrasonic irradiation, directly visualized by a thermal imaging microscope. These ultrasonic hot spots, with heating rates reaching ~22,000 K s-1, nucleate exclusively at interfacial delamination sites in composite solids. Introducing specific delamination sites by surface modification of embedded components provides precise and reliable control of hot spot locations and permits microcontrol of the initiation of reactions in energetic materials including fuel/oxidizer explosives.

  11. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD.

    PubMed

    Huang, Ganlin; Zhou, Weiqi; Cadenasso, M L

    2011-07-01

    Urban heat island effect refers to the phenomenon that ambient air and surface temperatures in urban areas are several degrees higher than surrounding rural areas. Higher temperatures not only impact the comfort of urban dwellers, but also increase energy use, ozone production, and the risk of death for humans in a heat wave. Our research focuses on the variation in land surface temperature in the Gywnns Fall Watershed, Maryland. We found that land surface temperature is highly variable spatially, resulting in "hotspots" within the heat island. We further explore how this temperature variation relates to social factors on the scale of the census-based block group. We show that land surface temperature is statistically higher in block groups that are characterized by low income, high poverty, less education, more ethnic minorities, more elderly people and greater risk of crime. These variables were mapped to evaluate the spatial relationship of land surface temperatures to social factors. This spatially explicit approach facilitates identification of specific areas to prioritize for heat prevention and intervention efforts. We demonstrate, through an exercise, how incorporating data on land surface temperature and social factors into heat intervention strategies could contribute to efficient allocation of limited resources and services. The exercise also indicates where heat prevention efforts, such as tree-planting programs, are most needed to help reduce heat exposure and moderate the urban heat island effect. PMID:21371807

  12. Optimization of oxidative stability, color and sensory properties of uncured (nitrite-free) Asian hot dogs (Jigo) using response surface methodology (RSM).

    PubMed

    Tahmouzi, Saeed

    2016-01-01

    This work investigated the effect of natural antioxidants (ascorbic acid (AA), α-tocopherol (TOC) and orange dietary fibre (ODF)) on oxidative stability, color and sensory properties in uncured hot dogs during chilled storage (3 ± 1 °C 4 weeks). A box-behnken design was employed for analysis of the responses (TBARS, peroxide value, pH, colour, taste and aroma) to obtain optimal conditions. Sausages containing TOC (20 mg/kg) and AA (0.1 %) had lower (0.11 mg malonaldehyde (MAD)/kg) TBARS values than those other combinations. This treatment also showed a peroxide value of 1.53 meq/kg when the experiment was finished. Lightness, redness and yellowness values varied among variables. Treatment with AA (0.1 %) resulted in lower lightness, yellowness and pH values than other treatments. Based on analysis, AA (0.1 %), TOC (20 mg/kg) and ODF (5 %), gave the optimum results. Under these conditions, the actual values were in close agreement with the values predicted by the model. PMID:26787957

  13. The ion acoustic decay instability in a large scale, hot plasma relevant to direct drive laser fusion -- Application to a critical surface diagnostic. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.; Craxton, R.S.; Estabrook, K.G.

    1996-08-01

    The authors have studied the ion acoustic decay instability in a large ({approximately} 1 mm) scale, hot ({approximately} 1 keV) plasma, which is relevant to a laser fusion reactor target. They have shown that the instability threshold is low. They have developed a novel collective Thomson scattering diagnostic at a 90{degree} scattering angle. The scattering is nonetheless coherent, because of the modest ratio of the frequency of the probe laser to that of the pump laser, such that even for such a large angle, (k{lambda}{sub De}){sup 2} is much less than one. With this system they have measured the electron plasma wave excited by the ion acoustic decay instability near the critical density (n{sub e} {approximately} 0.86 n{sub c}). This allows them to use the frequency of the detected wave to measure the electron temperature in the interaction region, obtaining a result reasonably close to that predicted by the SAGE computer code.

  14. PREFACE: 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures

    NASA Astrophysics Data System (ADS)

    2014-09-01

    Dear Colleagues, 1st International School and Conference "Saint Petersburg OPEN 2014" on Optoelectronics, Photonics, Engineering and Nanostructures was held on March 25 - 27, 2014 at St. Petersburg Academic University - Nanotechnology Research and Education Centre of the Russian Academy of Sciences. The School and Conference included a series of invited talks given by leading professors with the aim to introduce young scientists with actual problems and major advances in physics and technology. The keynote speakers were: Mikhail Glazov (Ioffe Physico-Technical Institute RAS, Russia) Vladimir Dubrovskii (Saint Petersburg Academic University RAS, Russia) Alexey Kavokin (University of Southampton, United Kingdom and St. Petersburg State University, Russia) Vladimir Korenev (Ioffe Physico-Technical Institute RAS, Russia) Sergey Kukushkin (Institute of Problems of Mechanical Engineering RAS, Russia) Nikita Pikhtin (Ioffe Physico-Technical Institute RAS, Russia and "Elfolum" Ltd., Russia) Dmitry Firsov (Saint Petersburg State Polytechnical University, Russia) During the poster session all undergraduate and graduate students attending the conference presented their works. Sufficiently large number of participants with more than 160 student attendees from all over the world allowed the Conference to provide a fertile ground for the fruitful discussions between the young scientists as well as to become a perfect platform for the valuable discussions between student authors and highly experienced scientists. The best student papers, which were selected by the Program Committee and by the invited speakers basing on the theses and their poster presentation, were awarded with diplomas of the conference - see the photos. This year's School and Conference is supported by SPIE (The International Society for Optics and Photonics), OSA (The Optical Society), St. Petersburg State Polytechnical University and by Skolkovo Foundation. It is a continuation of the annual schools and

  15. Creating Research-Rich Learning Experiences and Quantitative Skills in a 1st Year Earth Systems Course

    NASA Astrophysics Data System (ADS)

    King, P. L.; Eggins, S.; Jones, S.

    2014-12-01

    We are creating a 1st year Earth Systems course at the Australian National University that is built around research-rich learning experiences and quantitative skills. The course has top students including ≤20% indigenous/foreign students; nonetheless, students' backgrounds in math and science vary considerably posing challenges for learning. We are addressing this issue and aiming to improve knowledge retention and deep learning by changing our teaching approach. In 2013-2014, we modified the weekly course structure to a 1hr lecture; a 2hr workshop with hands-on activities; a 2hr lab; an assessment piece covering all face-to-face activities; and a 1hr tutorial. Our new approach was aimed at: 1) building student confidence with data analysis and quantitative skills through increasingly difficult tasks in science, math, physics, chemistry, climate science and biology; 2) creating effective learning groups using name tags and a classroom with 8-person tiered tables; 3) requiring students to apply new knowledge to new situations in group activities, two 1-day field trips and assessment items; 4) using pre-lab and pre-workshop exercises to promote prior engagement with key concepts; 5) adding open-ended experiments to foster structured 'scientific play' or enquiry and creativity; and 6) aligning the assessment with the learning outcomes and ensuring that it contains authentic and challenging southern hemisphere problems. Students were asked to design their own ocean current experiment in the lab and we were astounded by their ingenuity: they simulated the ocean currents off Antarctica; varied water density to verify an equation; and examined the effect of wind and seafloor topography on currents. To evaluate changes in student learning, we conducted surveys in 2013 and 2014. In 2014, we found higher levels of student engagement with the course: >~80% attendance rates and >~70% satisfaction (20% neutral). The 2014 cohort felt that they were more competent in writing

  16. Analysis and study of the in situ observation of the June 1st 2008 CME by STEREO

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Gómez-Herrero, R.; Viñas, A. F.; Malandraki, O.; Dresing, N.; Hidalgo, M. A.; Opitz, A.; Sauvaud, J.-A.; Lavraud, B.; Davila, J. M.

    2011-07-01

    In this work we present a combined study of the counterpart of the coronal mass ejection (CME) of June 1st of 2008 in the interplanetary medium. This event has been largely studied because of its peculiar initiation and its possible forecasting consequences for space weather. We show an in situ analysis (on days June 6th-7th of 2008) of the CME in the interplanetary medium in order to shed some light on the propagation and evolution mechanisms of the interplanetary CME (ICME). The goals of this work are twofold: gathering the whole in situ data from PLASTIC and IMPACT onboard STEREO B in order to provide a complete characterization of the ICME, and to present a model where the thermal plasma pressure is included. The isolated ICME features show a clear forward shock which we identify as an oblique forward fast shock accelerating ions to a few-hundred keV during its passage. Following the shock, a flux rope is easily defined as a magnetic cloud (MC) by the magnetic field components and magnitude, and the low proton plasma-β. During the spacecraft passage through the MC, the energetic ion intensity shows a pronounced decrease, suggesting a closed magnetic topology, and the suprathermal electron population shows a density and temperature increase, demonstrating the importance of the electrons in the MC description. The in situ evidence suggests that there is no direct magnetic connection between the forward shock and the MC, and the characteristics of the reverse shock determined suggest that the shock pair is a consequence of the propagation of the ICME in the interplanetary medium. The energetic ions measured by the SEPT instrument suggest that their enhancement is not related to any solar event, but is solely due to the interplanetary shock consistent with the fact that no flares are observed on the Sun. The changes in the polarity of the interplanetary magnetic field in the vicinity of the ICME observed by electron PADs from SWEA are in accordance with the idea

  17. What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing, China

    SciTech Connect

    Kuang, Wenhui; Liu, Yue; Dou, Yinyin; Chi, Wenfeng; Chen, Guangsheng; Gao, Chengfeng; Yang, Tianrong; Liu, Jiyuan; Zhang, Renhua

    2014-12-06

    Understanding how landscape components affect the urban heat islands is crucial for urban ecological planning and sustainable development. The purpose of this research was to quantify the spatial pattern of land surface temperatures (LSTs) and associated heat fluxes in relation to land-cover types in Beijing, China, using portable infrared thermometers, thermal infrared imagers, and the moderate resolution imaging spectroradiometer. The spatial differences and the relationships between LSTs and the hierarchical landscape structure were analyzed with in situ observations of surface radiation and heat fluxes. Large LST differences were found among various land-use/land-cover types, urban structures, and building materials. Within the urban area, the mean LST of urban impervious surfaces was about 6–12°C higher than that of the urban green space. LSTs of built-up areas were on average 3–6°C higher than LSTs of rural areas. The observations for surface radiation and heat fluxes indicated that the differences were caused by different fractions of sensible heat or latent heat flux in net radiation. LSTs decreased with increasing elevation and normalized difference vegetation index. Variations in building materials and urban structure significantly influenced the spatial pattern of LSTs in urban areas. By contrast, elevation and vegetation cover are the major determinants of the LST pattern in rural areas. In summary, to alleviate urban heat island intensity, urban planners and policy makers should pay special attention to the selection of appropriate building materials, the reasonable arrangement of urban structures, and the rational design of landscape components.

  18. What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing, China

    DOE PAGESBeta

    Kuang, Wenhui; Liu, Yue; Dou, Yinyin; Chi, Wenfeng; Chen, Guangsheng; Gao, Chengfeng; Yang, Tianrong; Liu, Jiyuan; Zhang, Renhua

    2014-12-06

    Understanding how landscape components affect the urban heat islands is crucial for urban ecological planning and sustainable development. The purpose of this research was to quantify the spatial pattern of land surface temperatures (LSTs) and associated heat fluxes in relation to land-cover types in Beijing, China, using portable infrared thermometers, thermal infrared imagers, and the moderate resolution imaging spectroradiometer. The spatial differences and the relationships between LSTs and the hierarchical landscape structure were analyzed with in situ observations of surface radiation and heat fluxes. Large LST differences were found among various land-use/land-cover types, urban structures, and building materials. Within themore » urban area, the mean LST of urban impervious surfaces was about 6–12°C higher than that of the urban green space. LSTs of built-up areas were on average 3–6°C higher than LSTs of rural areas. The observations for surface radiation and heat fluxes indicated that the differences were caused by different fractions of sensible heat or latent heat flux in net radiation. LSTs decreased with increasing elevation and normalized difference vegetation index. Variations in building materials and urban structure significantly influenced the spatial pattern of LSTs in urban areas. By contrast, elevation and vegetation cover are the major determinants of the LST pattern in rural areas. In summary, to alleviate urban heat island intensity, urban planners and policy makers should pay special attention to the selection of appropriate building materials, the reasonable arrangement of urban structures, and the rational design of landscape components.« less

  19. Ceramic hot-gas filter

    DOEpatents

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  20. Ceramic hot-gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  1. PREFACE: 1st Nano-IBCT Conference 2011 - Radiation Damage of Biomolecular Systems: Nanoscale Insights into Ion Beam Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Huber, Bernd A.; Malot, Christiane; Domaracka, Alicja; Solov'yov, Andrey V.

    2012-07-01

    The 1st Nano-IBCT Conference entitled 'Radiation Damage in Biomolecular Systems: Nanoscale Insights into Ion Beam Cancer Therapy' was held in Caen, France, in October 2011. The Meeting was organised in the framework of the COST Action MP1002 (Nano-IBCT) which was launched in December 2010 (http://fias.uni-frankfurt.de/nano-ibct). This action aims to promote the understanding of mechanisms and processes underlying the radiation damage of biomolecular systems at the molecular and nanoscopic level and to use the findings to improve the strategy of Ion Beam Cancer Therapy. In the hope of achieving this, participants from different disciplines were invited to represent the fields of physics, biology, medicine and chemistry, and also included those from industry and the operators of hadron therapy centres. Ion beam therapy offers the possibility of excellent dose localization for treatment of malignant tumours, minimizing radiation damage in normal healthy tissue, while maximizing cell killing within the tumour. Several ion beam cancer therapy clinical centres are now operating in Europe and elsewhere. However, the full potential of such therapy can only be exploited by better understanding the physical, chemical and biological mechanisms that lead to cell death under ion irradiation. Considering a range of spatio-temporal scales, the proposed action therefore aims to combine the unique experimental and theoretical expertise available within Europe to acquire greater insight at the nanoscopic and molecular level into radiation damage induced by ion impact. Success in this endeavour will be both an important scientific breakthrough and give great impetus to the practical improvement of this innovative therapeutic technique. Ion therapy potentially provides an important advance in cancer therapy and the COST action MP1002 will be very significant in ensuring Europe's leadership in this field, providing the scientific background, required data and mechanistic insight which

  2. Hot Spot at Yellowstone

    ERIC Educational Resources Information Center

    Dress, Abby

    2005-01-01

    Within this huge national park (over two million acres spread across Wyoming, Montana, and Idaho) are steaming geysers, hot springs, bubbling mudpots, and fumaroles, or steam vents. Drives on the main roads of Yellowstone take tourists through the major hot attractions, which also include Norris Geyser Basin, Upper and Lower Geyser Basin, West…

  3. The Earth's Hot Spots.

    ERIC Educational Resources Information Center

    Vink, Gregory E.; And Others

    1985-01-01

    Hot spots are isolated areas of geologic activity where volcanic eruptions, earthquakes, and upwelling currents occur far from plate boundaries. These mantle plumes are relatively stable and crustal plates drift over them. The nature and location of hot spots (with particular attention to the Hawaiian Islands and Iceland) are discussed. (DH)

  4. Locally enhanced surface plasmons and modulated "hot-spots" in nanoporous gold patterns on atomically thin MoS2 with a comparison to SiO2 substrate

    NASA Astrophysics Data System (ADS)

    Yan, Aiming; Hua, Yi; Dravid, Vinayak P.

    2016-02-01

    Plasmonic phenomena in metals have garnered significant scientific and technological interest in the past decade. Despite many promising applications based on plasmonics, one remaining challenge is to control the surface geometry or morphology of the metallic structures, which can significantly affect the plasmonic properties of nanostructures. Here, we report the morphological modulation of gold (Au) nanopatterns on atomically thin layered molybdenum disulfide (MoS2), compared to Au nanopatterns grown on SiO2/Si substrate. We have used electron energy loss spectroscopy in a scanning transmission electron microscope to probe the locally enhanced surface plasmons in nanoporous Au patterns grown on SiO2/Si substrate as well as on single- and few-layer MoS2 flakes. Thin flakes of MoS2 as substrates significantly influence the morphology of Au patterns, which locally alters the plasmonic behavior. Features such as nanoscale pores exhibit plasmon localization with strong near fields, akin to "hot spots." Boundary element method simulations demonstrate that the dipolar and breathing modes can be excited at different positions of the nanopatterns.

  5. 6. HOT AIR PORTION OF DAMPERS. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HOT AIR PORTION OF DAMPERS. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  6. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada

    SciTech Connect

    2009-10-01

    This report presents results of data collected during the annual post-closure site inspection conducted at the Central Nevada Test Area, surface Corrective Action Unit (CAU) 417 in June 2009. The annual post-closure site inspection included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspection conducted at the UC-1 Central Mud Pit (CMP) indicated that the site and soil cover were in good condition. Three new fractures were identified in the soil cover and were filled with bentonite chips during the inspection. The vegetation on the soil cover was adequate but showed signs of the area's ongoing drought. No issues were identified with the CMP fence, gate, or subsidence monuments. No issues were identified with the warning signs and monuments at the other two UC-1 locations

  7. Performance Analysis of a Hot Water Supply System with a CO2 Heat Pump by Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Yokoyama, Ryohei; Shimizu, Takeshi; Takemura, Kazuhisa; Ito, Koichi

    Heat pumps using CO2 as a natural refrigerant have been developed and are expected to contribute to energy saving in hot water supply. In residential applications, CO2 heat pumps are used in combination with hot water storage tanks. The objective of this series of papers is to analyze the overall performance of a hot water supply system composed of a CO2 heat pump and a hot water storage tank by numerical simulation. In the 1st report, a simulation model of a CO2 heat pump is created based on thermodynamic equations and measured data for an existing CO2 heat pump. In addition, the performance of a CO2 heat pump is clarified in relation to the air temperature as well as the inlet and outlet water temperatures.

  8. Conversion from solvent rinsable fluxes to aqueous rinsable fluxes for hot oil solder leveling

    NASA Astrophysics Data System (ADS)

    1992-03-01

    A water rinsable flux was evaluated for hot oil solder leveling of printed wiring boards. The previously used rosin-activated flux required a solvent containing a chlorinated hydrocarbon for removing the flux residues after soldering. The water rinsable flux requires hot water or a solution of hot detergent for removing flux residues after smoldering. The water rinsable flux produced an acceptable soldered surface. Flux residues were removed by either hot water (120 F) or a solution of hot detergent (120 F).

  9. Insights into the effect of dilute acid, hot water and alkaline pretreatment on cellulose accessible surface area and overall porosity of Populus

    SciTech Connect

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; Huang, Fang; Ragauskas, Arthur J.

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls the access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 °C; moreover, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.

  10. Insights into the effect of dilute acid, hot water and alkaline pretreatment on cellulose accessible surface area and overall porosity of Populus

    DOE PAGESBeta

    Meng, Xianzhi; Wells, Tyrone; Sun, Qining; Huang, Fang; Ragauskas, Arthur J.

    2015-06-19

    Pretreatment is known to render biomass more reactive to cellulase by altering the chemical compositions as well as physical structures of biomass. Simons stain technique along with mercury porosimetry were applied on the acid, neutral, and alkaline pretreated materials to measure the accessible surface area of cellulose and pore size distribution of Populus. Results indicated that acid pretreatment is much more effective than water and alkaline pretreatment in terms of cellulose accessibility increase. Further investigation suggests that lignin does not dictate cellulose accessibility to the extent that hemicellulose does, but it does restrict xylan accessibility which in turn controls themore » access of cellulase to cellulose. The most interesting finding is that severe acid pretreatment significantly decreases the average pore size, i.e., 90% average size decrease could be observed after 60 min dilute acid pretreatment at 160 °C; moreover, the nano-pore space formed between coated microfibrils is increased after pretreatment, especially for the acid pretreatment, suggesting this particular type of biomass porosity is probably the most fundamental barrier to effective enzymatic hydrolysis.« less

  11. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada

    SciTech Connect

    2013-03-01

    This report presents results of data collected during the annual post-closure site inspections conducted at the Central Nevada Test Area surface Corrective Action Unit (CAU) 417 in May 2011 and July 2012. The annual post-closure site inspections included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspections conducted at the UC-1 Central Mud Pit (CMP) indicated that the site and soil cover were in good condition. No new fractures or extension of existing fractures were observed and no issues with the fence or gate were identified. The vegetation on the cover continues to look healthy, but the biennial vegetation survey conducted during the 2012 inspection indicated that the total foliar cover was slightly higher in 2009 than in 2012. This may be indicative of a decrease in precipitation observed during the 2-year monitoring period. The precipitation totaled 9.9 inches from July 1, 2010, through June 30, 2011, and 5 inches from July 1, 2011, through June 30, 2012. This decrease in precipitation is also evident in the soil moisture data obtained from the time domain reflectometry sensors. Soil moisture content data show that the UC-1 cover is performing as designed, and evapotranspiration is effectively removing water from the cover.

  12. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada

    SciTech Connect

    2009-01-01

    This report presents data collected during the annual post-closure site inspection conducted at the Central Nevada Test Area Surface Corrective Action Unit (CAU) 417 in May of 2008. The annual post-closure site inspection included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspection conducted at the UC-1 Central Mud Pit (CMP) indicated that the site and soil cover were in good condition. Three new cracks or fractures were observed in the soil cover during the annual inspection and were immediately filled with bentonite chips. The vegetation on the soil cover was adequate, but showed signs of the area's ongoing drought. No issues were identified with the CMP fence, gate, or subsidence monuments. No issues were identified with the warning signs and monuments at the other two UC-1 locations. The annual subsidence survey was conducted at UC-1 CMP and UC-4 Mud Pit C in August 2008. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed.

  13. Geophysical Investigation of Neal Hot Springs

    NASA Astrophysics Data System (ADS)

    Colwell, C.; Van Wijk, K.; Liberty, L. M.

    2011-12-01

    We present newly acquired geophysical data that characterizes a geothermal system at Neal Hot Springs in eastern Oregon. The hot springs are in a region of complex and intersecting fault trends associated with two major extensional events, the Oregon-Idaho Graben and the western Snake River Plain. From surface observations and several boreholes in the area, it appears that a steeply dipping normal fault forms a half-graben basin and serves as a conduit for heated water at depth to migrate to the surface at Neal Hot Springs. We identify and characterize this fault with seismic reflection, gravity, magnetic, and electrical resistivity surveys. A self-potential survey indicates that water is upwelling over the fault plane, and suggests that the fault does provide the means for heated water to migrate to the surface. Smaller scale structure is also evident in both the gravity and seismic surveys, and could interact with the migration of water, and how the hot springs recharge. These preliminary results will be built upon in the upcoming years and a solid structural understanding of Neal Hot Springs and the surrounding area will be gained through the use of geophysics.

  14. Three-dimensional analysis of the distal movement of maxillary 1st molars in patients fitted with mini-implant-aided trans-palatal arches

    PubMed Central

    Miresmaeili, Amirfarhang; Sajedi, Ahmad; Moghimbeigi, Abbas

    2015-01-01

    Objective The aim of this study was to investigate three-dimensional molar displacement after distalization via miniscrews and a horizontal modification of the trans-palatal-arch (TPA). Methods The subjects in this clinical trial were 26 Class II patients. After the preparation of a complete set of diagnostic records, miniscrews were inserted between the maxillary 2nd premolar and 1st molar on the palatal side. Elastic modules connected to the TPA exerting an average force of 150-200 g/side parallel to the occlusal plane were applied. Cone-beam computed tomography was utilized to evaluate the position of the miniscrews relative to the adjacent teeth and maxillary sinus, and the direction of force relative to molar furcation. The distances from the central point of the incisive papilla to the mesiopalatal cusps of the 1st maxillary molars and the distances between the mesiopalatal cusps of the left and right molars were measured to evaluate displacement of the maxillary molars on the horizontal plane. Interocclusal space was used to evaluate vertical changes. Results Mean maxillary 1st molar distalization was 2.3 ± 1.1 mm, at a rate of 0.4 ± 0.2 mm/month, and rotation was not significant. Intermolar width increased by 2.9 ± 1.8 mm. Molars were intruded relative to the neighboring teeth, from 0.1 to 0.8 mm. Conclusions Distalization of molars was possible without extrusion, using the appliance investigated. The intrusive component of force reduced the rate of distal movement. PMID:26445718

  15. Hot streak characterization in serpentine exhaust nozzles

    NASA Astrophysics Data System (ADS)

    Crowe, Darrell S.

    Modern aircraft of the United States Air Force face increasingly demanding cost, weight, and survivability requirements. Serpentine exhaust nozzles within an embedded engine allow a weapon system to fulfill mission survivability requirements by providing denial of direct line-of-sight into the high-temperature components of the engine. Recently, aircraft have experienced material degradation and failure along the aft deck due to extreme thermal loading. Failure has occurred in specific regions along the aft deck where concentrations of hot gas have come in contact with the surface causing hot streaks. The prevention of these failures will be aided by the accurate prediction of hot streaks. Additionally, hot streak prediction will improve future designs by identifying areas of the nozzle and aft deck surfaces that require thermal management. To this end, the goal of this research is to observe and characterize the underlying flow physics of hot streak phenomena. The goal is accomplished by applying computational fluid dynamics to determine how hot streak phenomena is affected by changes in nozzle geometry. The present research first validates the computational methods using serpentine inlet experimental and computational studies. A design methodology is then established for creating six serpentine exhaust nozzles investigated in this research. A grid independent solution is obtained on a nozzle using several figures of merit and the grid-convergence index method. An investigation into the application of a second-order closure turbulence model is accomplished. Simulations are performed for all serpentine nozzles at two flow conditions. The research introduces a set of characterization and performance parameters based on the temperature distribution and flow conditions at the nozzle throat and exit. Examination of the temperature distribution on the upper and lower nozzle surfaces reveals critical information concerning changes in hot streak phenomena due to changes

  16. [Influence of hypocaloric diet with addition of a vitamin-mineral complex on status of patients with obesity 1st and 2nd degrees].

    PubMed

    Sharafetdinov, Kh Kh; Plotnikova, O A; Zykina, V V; Mal'tsev, G Iu; Sokol'nikov, A A; Kaganov, B S

    2011-01-01

    Addition of a vitamin-mineral complex (VMC) to a standard hypocaloric diet leads to a positive dynamics of antropometric characteristics in patients with obesity 1st and 2nd degrees which is comparable to effectiveness of standard dietotherapy (dietary treatment) traditionally used in complex treatment of obesity. Addition of 1,8 mg of vitamin B2 as part of VMC to a hypocaloric diet is shown to be inadequate in eradication of marginal provision of riboflavin when using diets reduced in calories. PMID:22232885

  17. The Earth Microbiome Project: The Meeting Report for the 1st International Earth Microbiome Project Conference, Shenzhen, China, June 13th-15th 2011

    PubMed Central

    Gilbert, Jack A.; Bailey, Mark; Field, Dawn; Fierer, Noah; Fuhrman, Jed A.; Hu, Bin; Jansson, Janet; Knight, Rob; Kowalchuk, George A.; Kyrpides, Nikos C.; Meyer, Folker; Stevens, Rick

    2011-01-01

    This report details the outcome of the 1st International Earth Microbiome Project Conference. The 2-day conference was held at the Kingkey Palace Hotel, Shenzhen, China, on the 14th-15th June 2011, and was hosted by BGI (formally the Beijing Genomics Institute). The conference was arranged as a formal launch for the Earth Microbiome Project, to highlight some of the exciting research projects, results of the preliminary pilot studies, and to provide a discussion forum for the types of technology and experimental approaches that will come to define the standard operating procedures of this project.

  18. A Comparison of In-Channel Dead Zone and Hyporheic Zone Transient Storage Parameter Estimates Between a 1st and 5th Order Stream

    NASA Astrophysics Data System (ADS)

    Briggs, M.; Gooseff, M.; Morkeski, K.; Wollheim, W.; Hopkinson, C.; Peterson, B.; Vorosmarty, C.

    2007-12-01

    A major enhancement to our understanding of how watersheds function would be the ability to discriminate between in-channel dead zone ( DZ) and hyporheic zone ( HZ) transient storage, and an evaluation of how these properties scale across stream orders. The nature of DZ storage is to display faster exchange rates with the main channel and less overall sediment contact time than HZ storage. These differences have great significance to many in-stream processes such as nutrient cycling. The combination of high slope, coarse bed material and fluvial structure endemic to many 1st order streams can provide greater forcing of hyporheic flow paths than occurs within the lower gradient 5th order streams. Conversely many 5th order reaches exhibit large side pool and back eddy DZ areas not common along 1st order streams. This study builds on existing methods to delineate the DZ and HZ from the integrated signal of a conservative solute's breakthrough curve ( BTC). Data for this comparison were collected over the summer of 2007 within the Ipswich River watershed, a basin which drains into Plum Island Sound on the north shore of Massachusetts, USA. The conservative solute NaCl was injected into both a 1st order medium gradient stream and a 5th order low gradient stream. The BTCs collected in thalwegs from the NaCl injections were simulated using a version of the solute transport model OTIS containing two zones of transient storage. Hydrometric measurements of stream velocity were used to estimate average main channel cross sectional area ( A) and DZ cross sectional area ( ASDZ) for each reach to constrain parameter estimates and avoid model equifinality between the storage zones. Initial values for the exchange rate between main channel flow and DZ storage ( αDZ) were estimated from DZ BTCs. Our results indicate that although the overall storage zone is much larger in proportion to the main channel for the 1st order reach than for the 5th order reach, the percentage of median

  19. Really Hot Stars

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Spectacular VLT Photos Unveil Mysterious Nebulae Summary Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme. PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99

  20. Hot corrosion of the B2 nickel aluminides

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1993-01-01

    The hot corrosion behavior of the B2 nickel aluminides was studied to determine the inherent hot corrosion resistance of the beta nickel aluminides and to develop a mechanism for the hot corrosion of the beta nickel aluminides. The effects of the prior processing of the material, small additions of zirconium, stoichiometry of the materials, and preoxidation of the samples were also examined. Additions of 2, 5, and 15 w/o chromium were used to determine the effect of chromium on the hot corrosion of the beta nickel aluminides and the minimum amount of chromium necessary for good hot corrosion resistance. The results indicate that the beta nickel aluminides have inferior inherent hot corrosion resistance despite their excellent oxidation resistance. Prior processing and zirconium additions had no discernible effect on the hot corrosion resistance of the alloys. Preoxidation extended the incubation period of the alloys only a few hours and was not considered to be an effective means of stopping hot corrosion. Stoichiometry was a major factor in determining the hot corrosion resistance of the alloys with the higher aluminum alloys having a definitely superior hot corrosion resistance. The addition of chromium to the alloys stopped the hot corrosion attack in the alloys tested. From a variety of experimental results, a complex hot corrosion mechanism was proposed. During the early stages of the hot corrosion of these alloys the corrosion is dominated by a local sulphidation/oxidation form of attack. During the intermediate stages of the hot corrosion, the aluminum depletion at the surface leads to a change in the oxidation mechanism from a protective external alumina layer to a mixed nickel-aluminum spinel and nickel oxide that can occur both externally and internally. The material undergoes extensive cracking during the later portions of the hot corrosion.

  1. Post-Closure Inspection and Monitoring Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Hot Creek Valley, Nevada, for Calendar Year 2007

    SciTech Connect

    2008-09-01

    This report presents data collected during the annual post-closure site inspection conducted at the Central Nevada Test Area Surface Corrective Action Unit (CAU) 417 in May 2007. The annual post-closure site inspection included inspections of the UC-1, UC-3, and UC-4 sites in accordance with the Post-Closure Monitoring Plan provided in the CAU 417 Closure Report (NNSA/NV 2001). The annual inspection conducted at the UC-1 Central Mud Pit (CMP) indicated the site and soil cover were in good condition. No new cracks or fractures were observed in the soil cover during the annual inspection. A crack on the west portion of the cover was observed during the last quarterly inspection in December 2006. This crack was filled with bentonite as part of the maintenance activities conducted in February 2007 and will be monitored during subsequent annual inspections. The vegetation on the soil cover was adequate but showing signs of the area's ongoing drought. No issues were identified with the CMP fence, gate, or subsidence monuments. New DOE Office of Legacy Management signs with updated emergency phone numbers were installed as part of this annual inspection, no issues were identified with the warning signs and monuments at the other two UC-1 locations. The annual subsidence survey was conducted at UC-1 CMP and UC-4 Mud Pit C as part of the maintenance activities conducted in February 2007. The results of the subsidence surveys indicate that the covers are performing as expected, and no unusual subsidence was observed. A vegetation survey of the UC-1 CMP cover and adjacent areas was conducted as part of the annual inspection in May 2007. The vegetation survey indicated that revegetation continues to be successful, although stressed due to the area's prevailing drought conditions. The vegetation should continue to be monitored to document any changes in the plant community and to identify conditions that could potentially require remedial action to maintain a viable vegetation

  2. In hot water, again

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Watkins, Sheila

    2009-10-01

    Regarding Norman Willcox's letter about the problems of using solar panels for domestic heating (August p21), I also have thermal solar panels installed. However, contrary to his disappointing experience, I have found that they provide my family with a useful amount of hot water. In our system, the solar energy is used to heat a store of water, which has no other source of heat. Mains-pressure cold water passes through this store via a heat exchanger, removing heat from it and warming up. If the water becomes warm enough, an unpowered thermostatic valve allows it to go straight to the hot taps (mixing it with cold if it is too hot). However, if it is not hot enough, then the water is directed first through our previously installed gaspowered combination boiler and then to the taps.

  3. Reactor hot spot analysis

    SciTech Connect

    Vilim, R.B.

    1985-08-01

    The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

  4. Saturn's Hot Plasma Explosions

    NASA Video Gallery

    This animation based on data obtained by NASA's Cassini Spacecraft shows how the "explosions" of hot plasma on the night side (orange and white) periodically inflate Saturn's magnetic field (white ...

  5. Hot gas filter and system assembly

    DOEpatents

    Lippert, Thomas Edwin; Palmer, Kathryn Miles; Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.; Bachovchin, Dennis Michael

    1999-01-01

    A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

  6. Hot gas filter and system assembly

    DOEpatents

    Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

    1999-08-31

    A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

  7. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center (ESTSC)

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  8. Rocket engine hot-spot detector

    NASA Astrophysics Data System (ADS)

    Collamore, F. N.

    1985-04-01

    On high performance devices such as rocket engines it is desirable to know if local hot spots or areas of reduced cooling margin exist. The objective of this program is to design, fabricate and test an electronic hot spot detector capable of sensing local hot spot on the exterior circumference of a regeneratively cooled combustion chamber in order to avoid hardware damage. The electronic hot spot sensor consists of an array of 120 thermocouple elements which are bonded in a flexible belt of polyimide film. The design temperature range is from +30 F to +400 F continuously with an intermittent temperature of 500 F maximum. The thermocouple belt consists of 120 equally spaced copper-Constantan thermocouple junctions which is wrapped around the OMS liquid rocket engine combustion chamber, to monitor temperatures of individual cooling channels. Each thermocouple is located over a cooling channel near the injector end of the combustion chamber. The thermocouple array sensor is held in place by a spring loaded clamp band. Analyses show that in the event of a blocked cooling channel the surface temperature of the chamber over the blocked channel will rise from a normal operating temperature of approx. 300 F to approx. 600 F. The hot spot detector will respond quickly to this change with a response time constant less than 0.05 seconds. The hot spot sensor assembly is fabricated with a laminated construction of layers of Kapton film and an outer protective layer of fiberglass reinforced silicone rubber.

  9. Really Hot Stars

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Spectacular VLT Photos Unveil Mysterious Nebulae Summary Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme. PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99

  10. ESA uncovers Geminga's `hot spot'

    NASA Astrophysics Data System (ADS)

    2004-07-01

    16 July 2004 Astronomers using ESA’s X-ray observatory XMM-Newton have detected a small, bright ‘hot spot’ on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga’s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga. hi-res Size hi-res: 1284 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot This figure shows the effects of charged particles accelerated in the magnetosphere of Geminga. Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of particles kicked out by Geminga’s strong magnetic field, trail the neutron star as it moves about in space. Panel (b) shows how electrically charged particles interact with Geminga’s magnetic field. For example, if electrons (blue) are kicked out by the star, positrons (in red) hit the star’s magnetic poles like in an ‘own goal’. Panel (c) illustrates the size of Geminga’s magnetic field (blue) compared to that of the star itself at the centre (purple). The magnetic field is tilted with respect to Geminga’s rotation axis (red). Panel (d) shows the magnetic poles of Geminga, where charged particles hit the surface of the star, creating a two-million degrees hot spot, a region much hotter than the surroundings. As the star spins on its rotation axis, the hot spot comes into view and then disappears, causing the periodic colour change seen by XMM-Newton. An animated version of the entire sequence can be found at: Click here for animated GIF [low resolution, animated GIF, 5536 KB] Click here for AVI [high resolution, AVI with DIVX compression, 19128 KB] hi-res Size hi-res: 371 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot, panel (a) Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of

  11. Clinical Performance of the 1st American Academy of Orthopaedic Surgeons Clinical Guideline on Prevention of Symptomatic Pulmonary Embolism after Total Knee Arthroplasty in Korean Patients

    PubMed Central

    2015-01-01

    We sought to document the clinical performance of the 1st American Academy of Orthopaedic Surgeons (AAOS) guideline on the prevention of symptomatic pulmonary embolism (PE) after total knee arthroplasty (TKA) in Korean patients, in terms of the proportions of the each risk-stratified group, efficacy and safety. Consecutive 328 patients underwent TKA were preoperatively assessed for the risks of PE and bleeding and categorized into 4 groups: 1) standard risk, 2) high risk for PE, 3) high risk for bleeding, and 4) high risks both for PE and bleeding. One of three options was administered according to the groups (aspirin in group 1 or 4; enoxaparin and following aspirin in group 2; antithrombotic stocking in group 3). Incidences of symptomatic deep vein thrombosis (DVT) and PE, and major or minor bleeding complications were evaluated. Majority of the patients (86%) were assessed to be with standard risks both for PE and bleeding. No patient experienced symptomatic DVT or PE and major bleeding. Eleven percent of the patients discontinued chemoprophylaxis because of bleeding-related wound complication. In conclusion, the 1st AAOS guideline functions successfully in Korean patients undergoing TKA in terms of prevention of symptomatic DVT and PE while avoiding major bleeding complications. PMID:26713064

  12. Plasma deposited rider rings for hot displacer

    DOEpatents

    Kroebig, Helmut L.

    1976-01-01

    A hot cylinder for a cryogenic refrigerator having two plasma spray deposited rider rings of a corrosion and abrasion resistant material provided in the rider ring grooves, wherein the rider rings are machined to the desired diameter and width after deposition. The rider rings have gas flow flats machined on their outer surface.

  13. Turbine Engine Hot Section Technology (HOST)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research and plans concerning aircraft gas turbine engine hot section durability problems were discussed. Under the topics of structural analysis, fatigue and fracture, surface protective coatings, combustion, turbine heat transfer, and instrumentation specific points addressed were the thermal and fluid environment around liners, blades, and vanes, material coatings, constitutive behavior, stress-strain response, and life prediction methods for the three components.

  14. Nanostructures: Drip painting on a hot canvas

    NASA Astrophysics Data System (ADS)

    Bain, Colin

    2007-06-01

    When droplets of water containing metal particles are deposited on a hot surface, they are supported by a thin layer of vapour that lets them slide, essentially friction free. The metal trails the droplets leave in their wake could be useful for making nanowires.

  15. Turbine Engine Hot Section Technology, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Presentations were made concerning the hot section environment and behavior of combustion liners, turbine blades, and waves. The presentations were divided into six sessions: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, and surface properties. The principal objective of each session was to disseminate research results to date, along with future plans. Topics discussed included modeling of thermal and fluid flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior, stress-strain response, and life prediction methods.

  16. IR Hot Wave

    SciTech Connect

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  17. Effect of milk feed source, frequency of feeding and age at turnout on calf performance, live-weight at mating and 1st lactation milk production

    PubMed Central

    2012-01-01

    Female calves (n = 108) were assigned to 6 cold milk feeding treatments in two experiments for a 70-day period. Live-weight (LW) was measured weekly, with an additional LW taken at day 410 and post-calving for animals in experiment 1. In Experiment 1, the effect of feeding frequency and age of turnout to pasture on calf performance and 1st lactation milk yields were evaluated. The whole milk (WM) feeding treatments applied were (i) once daily feeding (OD), (ii) twice daily feeding (TD), (iii) OD feeding, outdoors at 38 days (ODO). In Experiment 2, the effects of feeding milk replacer (MR) as opposed to WM and age of turnout to pasture on calf performance were evaluated. The treatments applied were (i) OD feeding with WM (OD), (ii) OD feeding with milk replacer (MR) (ODMR), (iii) OD feeding with MR, outdoors at 38 days (ODMRO). Experiment 1: There were no differences (P > 0.05) in LW or average daily gain between TD and OD calves at day 80 or 410. ODO calves had lower LW at day 80 as compared to OD or TD (P < 0.001). Calf LW at day 80 was 86, 89 and 85 kg and at day 410 was 304, 309 and 316 kg for OD, TD and ODO, respectively. Milk feeding frequency or time of calf turnout had no effect on LW post calving, milk composition or 1st lactation milk yields. Experiment 2: Total LW at day 80 was higher (P < 0.05) for ODMR compared to OD or ODMRO calves. Calf LW was 87, 95, and 88 kg for OD, ODMR and ODMRO, respectively. However, LW at day 410 did not differ between treatments. This study showed that while some differences were observed in calf LW at day 80, these differences had no effect on LW at day 410 or 1st lactation milk yield. It can be concluded that calves can be successfully reared when fed OD with WM or MR, indoors and when turned out to pasture at 38 days of age. PMID:23078871

  18. Hot Oil Removes Wax

    NASA Technical Reports Server (NTRS)

    Herzstock, James J.

    1991-01-01

    Mineral oil heated to temperature of 250 degrees F (121 degrees C) found effective in removing wax from workpieces after fabrication. Depending upon size and shape of part to be cleaned of wax, part immersed in tank of hot oil, and/or interior of part flushed with hot oil. Pump, fittings, and ancillary tooling built easily for this purpose. After cleaning, innocuous oil residue washed off part by alkaline aqueous degreasing process. Serves as relatively safe alternative to carcinogenic and environmentally hazardous solvent perchloroethylene.

  19. Physics and astrophysics from a lunar base; Proceedings of the 1st NASA Workshop, Stanford, CA, May 19, 20, 1989

    NASA Technical Reports Server (NTRS)

    Potter, A. E. (Editor); Wilson, T. L. (Editor)

    1990-01-01

    The present conference on physics and astrophysics from a lunar base encompasses space physics, cosmic ray physics, neutrino physics, experiments in gravitation and general relativity, gravitational radiation physics, cosmic background radiation, particle astrophysics, surface physics, and the physics of gamma rays and X-rays. Specific issues addressed include space-plasma physics research at a lunar base, prospects for neutral particle imaging, the atmosphere as particle detector, medium- and high-energy neutrino physics from a lunar base, muons on the moon, a search for relic supernovae antineutrinos, and the use of clocks in satellites orbiting the moon to test general relativity. Also addressed are large X-ray-detector arrays for physics experiments on the moon, and the measurement of proton decay, arcsec-source locations, halo dark matter and elemental abundances above 10 exp 15 eV at a lunar base.

  20. The nature of hot electrons generated by exothermic catalytic reactions

    NASA Astrophysics Data System (ADS)

    Nedrygailov, Ievgen I.; Park, Jeong Young

    2016-02-01

    We review recent progress in studies of the nature of hot electrons generated in metal nanoparticles and thin films on oxide supports and their role in heterogeneous catalysis. We show that the creation of hot electrons and their transport across the metal-oxide interface is an inherent component of energy dissipation accompanying catalytic and photocatalytic surface reactions. The intensity of hot electron flow is well correlated with turnover rates of corresponding reactions. We also show that controlling the flow of hot electrons crossing the interface can lead to the control of chemical reaction rates. Finally, we discuss perspectives of hot-electron-mediated surface chemistry that promise the capability to drive catalytic reactions with enhanced efficiency and selectivity through electron-mediated, non-thermal processes.

  1. Spatial epidemiology in zoonotic parasitic diseases: insights gained at the 1st International Symposium on Geospatial Health in Lijiang, China, 2007

    PubMed Central

    Zhou, Xiao-Nong; Lv, Shan; Yang, Guo-Jing; Kristensen, Thomas K; Bergquist, N Robert; Utzinger, Jürg; Malone, John B

    2009-01-01

    The 1st International Symposium on Geospatial Health was convened in Lijiang, Yunnan province, People's Republic of China from 8 to 9 September, 2007. The objective was to review progress made with the application of spatial techniques on zoonotic parasitic diseases, particularly in Southeast Asia. The symposium featured 71 presentations covering soil-transmitted and water-borne helminth infections, as well as arthropod-borne diseases such as leishmaniasis, malaria and lymphatic filariasis. The work made public at this occasion is briefly summarized here to highlight the advances made and to put forth research priorities in this area. Approaches such as geographical information systems (GIS), global positioning systems (GPS) and remote sensing (RS), including spatial statistics, web-based GIS and map visualization of field investigations, figured prominently in the presentation. PMID:19193214

  2. JANNAF 25th Airbreathing Propulsion Subcommittee, 37th Combustion Subcommittee and 1st Modeling and Simulation Subcommittee Joint Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S.; Becker, Dorothy L.

    2000-01-01

    Volume I, the first of three volumes, is a compilation of 24 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 25th Airbreathing Propulsion Subcommittee, 37th Combustion Subcommittee and 1st Modeling and Simulation Subcommittee (MSS) meeting held jointly with the 19th Propulsion Systems Hazards Subcommittee. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered include: a Keynote Address on Future Combat Systems, a review of the new JANNAF Modeling and Simulation Subcommittee, and technical papers on Hyper-X propulsion development and verification; GTX airbreathing launch vehicles; Hypersonic technology development, including program overviews, fuels for advanced propulsion, ramjet and scramjet research, hypersonic test medium effects; and RBCC engine design and performance, and PDE and UCAV advanced and combined cycle engine technologies.

  3. Traumatic Floating 1st Metacarpal in a 14-Year-Old Boy Managed by Close Reduction and Thumb Spica Immobilization: A Rare Case Report

    PubMed Central

    Tyagi, Himanshu Ravindra; Kamat, Nandan; Wajekar, Sagar; Mandalia, Saumil H

    2014-01-01

    Introduction: Double dislocation of thumb metacarpal (MC) is a rare injury which may be secondarily complicated by growth plate injury in children. The management of floating 1st MC is also controversial since the treatment ranges from simple reduction to complex reconstruction surgeries. It is also important to understand the long-term results of different management strategies (close reduction, K-wire fixation, ligament reconstruction) as any residual stiffness or instability of thumb may result in severe disability of the hand. Case Report: A 14-year-old boy with an alleged history of injury to the thumb due to a fall. The postulated mechanism of injury was forced hyperextension of thumb and axial loading of hand in the prone position. On examination, there was prominent bony swelling over the dorsal aspect of carpometacarpal (CMC) and metacarpophalangeal (MCP) joints which was very tender with diffuse swelling over entire thumb. X-ray showed dorsal dislocation of both MCP and CMC joints, without any fracture (bony avulsion) or volar plate avulsion. Treatment was by way of closed reduction performed by axial traction followed by forced flexion at MCP joint with continuous pressure over the dorsal aspect of the joint. The reduction of CMC joint was done by direct pressure over the dorsal aspect and full abduction of thumb. Following reduction, the thumb was immobilized in a thumb spica. Conclusion: Thus, we conclude it is possible to manage a case of floating 1st MC by closed reduction and immobilization, using proper reduction technique. However, a careful clinical and radiological assessment should be done beforehand for signs of bony injury or ligamentous instability. PMID:27299001

  4. Zen Hot Dog Molecules

    ERIC Educational Resources Information Center

    Ryan, Dennis

    2009-01-01

    Substituted cycloalkanes with one branch illustrating each topic in an instructional unit can serve as summaries or reviews in courses of organic chemistry. The hungry Zen master told the hot dog vendor to make him one with everything. You can do the same for your students.

  5. Zen Hot Dog Molecules

    NASA Astrophysics Data System (ADS)

    Ryan, Dennis

    2009-04-01

    Substituted cycloalkanes with one branch illustrating each topic in an instructional unit can serve as summaries or reviews in courses of organic chemistry. The hungry Zen master told the hot dog vendor to make him one with everything. You can do the same for your students.

  6. Hot off the Press

    ERIC Educational Resources Information Center

    Brisco, Nicole D.

    2007-01-01

    In the past, the newspaper was one of the world's most used sources of information. Recently, however, its use has declined due to the popularity of cable television and the Internet. Yet the idea of reading the morning paper with a hot cup of coffee holds many warm memories for children who watched their parents in this daily ritual. In this…

  7. Horseshoe pitchers' hot hands.

    PubMed

    Smith, Gary

    2003-09-01

    Gilovich, Vallone, and Tversky's (1985) analysis of basketball data indicates that a player's chances of making a shot are not affected by the results of earlier shots. However, their basketball data do not control for several confounding influences. An analysis of horseshoe pitching, which does not have these defects, indicates that players do have modest hot and cold spells. PMID:14620374

  8. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  9. HOT GAS CLEANUP PROCESS

    EPA Science Inventory

    The report gives results of a study to identify and classify 22 hot gas cleanup (HGC) processes for desulfurizing reducing gases at above 430 C according to absorbent type into groups employing solid, molten salt, and molten metal absorbents. It describes each process in terms of...

  10. What's Hot? What's Not?

    ERIC Educational Resources Information Center

    Buczynski, Sandy

    2006-01-01

    When Goldilocks finds three bowls of porridge at different temperatures in the three bears' house, she accurately assesses the situation and comes up with one of the most recognizable lines in children's literature," This porridge is too hot; this porridge is too cold; aahh, this porridge is just right!" Goldilocks' famous line is a perfect…

  11. Metamaterial perfect absorber based hot electron photodetection.

    PubMed

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  12. Hot Ammonia Emission - Kinetic Temperature Gradients in Orion-Kl

    NASA Astrophysics Data System (ADS)

    Wilson, T. L.; Henkel, C.; Huttemeister, S.; Dahmen, G.; Linhart, A.; Lemme, C.; Schmid-Burgk, J.

    1993-09-01

    The first astronomical detections of the (J, K) = (10,10), (11,11), (12,12), (13,13) and (14,14) doublet inversion emission lines of NH3 at 1 cm wavelength are presented. These transitions are emitted from energy levels up to 1900K above the ground state; these are the most energetic states probed by quasithermal radio emission lines. The linewidths and radial velocities are consistent with emission from the Hot Core of the Orion KL nebula. There is no systematic change in ΔVl/2 and V1st with (J, K). The spectra also show no wide linewings; these findings agree with results for inversion transitions between lower lying doublet levels. From a least squares fit to the column densities of the new NH3 inversion line data, Trot ˜ 400±40K; this exceeds the previous value based on lower lying NH3 inversion lines. A good fit to the 37 NH3 inversion lines is obtained using a model with spherical symmetry and all NH3 inversion lines thermalized. This gives n(H2)˜R-25±02, if Tk ˜ R-0.4. Comparisons are made with other Hot Core results.

  13. Volume 1, 1st Edition, Multiscale Tailoring of Highly Active and Stable Nanocomposite Catalysts, Final Technical Report

    SciTech Connect

    Veser, Goetz

    2009-08-31

    wealth of literature on the formation of mesoporous silica materials motivated investigations of nanocomposite silica catalysts. High surface area silicas are synthesized via sol-gel methods, and the addition of metal-salts lead to the formation of stable nanocomposite Ni- and Fe- silicates. The results of these investigations have increased the fundamental understanding and improved the applicability of nanocatalysts for clean energy applications.

  14. Hot Tub Rash (Pseudomonas Folliculitis)

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Hot Tub Rash ( Pseudomonas Folliculitis) Information for adults A ... the skin and small pus-filled lesions. Overview Hot tub rash ( Pseudomonas folliculitis) is an infection of ...

  15. Exercising Safely in Hot Weather

    MedlinePlus

    ... www.nia.nih.gov/Go4Life Exercising Safely in Hot Weather Many people enjoy outdoor activities—walking, gardening, ... older adults and people with health problems. Being hot for too long can cause hyperthermia—a heat- ...

  16. Hot zones evolution and dynamics in heterogeneous catalytic systems

    NASA Astrophysics Data System (ADS)

    Luss, D.; Marwaha, B.

    2002-03-01

    Stationary and complex moving hot regions formed for temperatures close to the extinction temperature of uniformly ignited states of several catalytic systems, such as thin rings and hollow cylinders, a thin radial flow reactor (RFR) and a shallow packed bed. IR imaging revealed that the hot and cold regions (temperature difference of the order of 100 °C) were separated by a sharp (about 3 mm wide) temperature front. The transition from the branch of uniformly ignited to the states with a hot region was usually supercritical. In some experiments a disjoint branch of states with hot regions existed and two qualitatively different states with hot zones existed under the same operating conditions. A very intricate periodic motion of a hot zone was observed in a shallow packed bed reactor. For example, Fig. 16 shows a hot zone which splits and later coalesces several times during the long (14 h) period. Hot pulse motions were observed on a single catalytic pellet. These were caused by global coupling between the surface reaction rate and the ambient reactant concentration and the inherent nonuniformity of the catalytic activity. It is not yet clear what rate processes generate the transversal hot zones in uniform packed bed reactors.

  17. Hot-spot tectonics on Io

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1985-01-01

    The thesis is that extensional tectonics and low-angle detachment faults probably occur on Io in association with the hot spots. These processes may occur on a much shorter timescale on Ion than on Earth, so that Io could be a natural laboratory for the study of thermotectonics. Furthermore, studies of heat and detachment in crustal extension on Earth and the other terresrial planets (especially Venus and Mars) may provide analogs to processes on Io. The geology of Io is dominated by volcanism and hot spots, most likely the result of tidal heating. Hot spots cover 1 to 2% of Io's surface, radiating at temperatures typically from 200 to 400 K, and occasionally up to 700K. Heat loss from the largest hot spots on Io, such as Loki Patera, is about 300 times the heat loss from Yellowstone, so a tremendous quantity of energy is available for volcanic and tectonic work. Active volcanism on Io results in a resurfacing rate as high as 10 cm per year, yet many structural features are apparent on the surface. Therefore, the tectonics must be highly active.

  18. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    NASA Technical Reports Server (NTRS)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  19. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    NASA Astrophysics Data System (ADS)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are

  20. Hot Spring Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, María Esperanza; González-Siso, María Isabel

    2013-01-01

    Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S rRNA genes arose. Thereafter, the possibility of cloning and sequencing the total environmental DNA, defined as metagenome, and the study of the genes rescued in the metagenomic libraries and assemblies made it possible to gain a more comprehensive understanding of microbial communities—their diversity, structure, the interactions existing between their components, and the factors shaping the nature of these communities. In the last decade, hot springs have been a source of thermophilic enzymes of industrial interest, encouraging further study of the poorly understood diversity of microbial life in these habitats. PMID:25369743

  1. THE HOT CHOCOLATE EFFECT

    SciTech Connect

    Crawford, Frank S.

    1980-12-01

    The "hot chocolate effect" was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the ten percent accuracy of the experiments.

  2. Hot chocolate effect

    SciTech Connect

    Crawford, F.S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  3. Session: Hot Dry Rock

    SciTech Connect

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  4. The ''hot'' patella

    SciTech Connect

    Kipper, M.S.; Alazraki, N.P.; Feiglin, D.H.

    1982-01-01

    Increased patellar uptake on bone scans is seen quite commonly but the possible or probable etiologies of this finding have not been previously well described. A review of 100 consecutive bone scans showed that the incidence of bilateral ''hot'' patellae is 15%. Identified etiologies include osteoarthritic degenerative disease (35%), fracture, possible metastatic disease, bursitis, Paget's disease, and osteomyelitis. The value of careful history, physical examination, and radiographs is stressed.

  5. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  6. Hot gas path component cooling system

    DOEpatents

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  7. Turbine Engine Hot Section Technology 1986

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Turbine Engine Hot Section Technology (HOST) Project of the NASA Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine durability problems. Presentations were made concerning the hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes. The presentations were divided into six sessions: Instrumentation, Combustion, Turbine Heat Transfer, Structural Analysis, Fatigue and Fracture, and Surface Protection. Topics discussed included modeling of thermal and fluid-flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response, and life-prediction methods. Researchers from industry, academia, and government presented results of their work sponsored by the HOST project.

  8. Results of Primary Total Hip Arthroplasty Using 36 mm Femoral Heads on 1st Generation Highly Cross Linked Polyethylene in Patients 50 Years and Less with Minimum Five Year Follow-up

    PubMed Central

    Choi, Won-Kee; Kim, Hee-soo; Nam, Jun-Ho; Chae, Seung-Bum

    2016-01-01

    Purpose We evaluated the clinical and radiographic midterm results of primary total hip arthroplasty (THA) using a 36 mm diameter femoral head on 1st generation highly cross-linked polyethylene (HXLPE) in patients 50 years and less with minimum five year follow-up. Materials and Methods We retrospectively reviewed 31 patients (41 hips) aged 50 years and less underwent primary THA with a 36 mm diameter femoral head on HXLPE between 2004 and 2010. Clinical follow-ups included specific measurements like modified Harris hip scores (HHS) and Merle d'Aubigne and Postel score. For radiologic evaluations, together with position of acetabular cup at six weeks later of postoperation, we separately calculated the penentrations of femoral head into polyethylene liners during postoperation and one year later check-ups, and during one year later check-ups and final check-ups. Results There were no major complications except for one case of dislocation. Average modified HHS at final follow-up was 88 (81-98), and Merle d'Aubigne and Postel scores were more than 15. Mean acetabular cup inclination and anteversion were 45.81°(36.33°-54.91°) and 13.26°(6.72°-27.71°), respectively. Average femoral head penetration of steady-state wear rate determined using radiographs taken at one-year postoperatively and at latest follow-up was 0.042±0.001 mm/year. Conclusion Based on minimum 5 years clinical results, we think 36 mm metal head coupling with HXLPE as the good alternate articulation surface when planning THA for patients aged 50 years and less. PMID:27536648

  9. PREFACE: Hot Quarks 2004

    NASA Astrophysics Data System (ADS)

    Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs

    2005-04-01

    Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or

  10. Putting the Students 1st

    ERIC Educational Resources Information Center

    Ziegler, Elizabeth

    2005-01-01

    This article profiles Randy Jensen, the 2005 MetLife/NASSP National Middle Level Principal of the Year. As the principal of William Thomas Middle School in American Falls, Idaho, Jensen is a committed advocate for his students as they grapple with the challenges that come with being an adolescent and has adopted an open-door policy with his school…

  11. GALEX 1st Light Compilation

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This compilation shows the constellation Hercules, as imaged on May 21 and 22 by NASA's Galaxy Evolution Explorer. The images were captured by the two channels of the spacecraft camera during the mission's 'first light' milestone.

    The Galaxy Evolution Explorer first light images are dedicated to the crew of the Space Shuttle Columbia. The Hercules region was directly above Columbia when it made its last contact with NASA Mission Control on February 1, over the skies of Texas.

    The Galaxy Evolution Explorer launched on April 28 on a mission to map the celestial sky in the ultraviolet and determine the history of star formation in the universe over the last 10 billion years.

  12. Hot Dry Rock; Geothermal Energy

    SciTech Connect

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  13. Stable isotopic evidence for diet at the Imperial Roman coastal site of Velia (1st and 2nd centuries AD) in Southern Italy.

    PubMed

    Craig, Oliver E; Biazzo, Marco; O'Connell, Tamsin C; Garnsey, Peter; Martinez-Labarga, Cristina; Lelli, Roberta; Salvadei, Loretana; Tartaglia, Gianna; Nava, Alessia; Renò, Lorena; Fiammenghi, Antonella; Rickards, Olga; Bondioli, Luca

    2009-08-01

    Here we report on a stable isotope palaeodietary study of a Imperial Roman population interred near the port of Velia in Southern Italy during the 1st and 2nd centuries AD. Carbon and nitrogen stable isotope analyses were performed on collagen extracted from 117 adult humans as well as a range of fauna to reconstruct individual dietary histories. For the majority of individuals, we found that stable isotope data were consistent with a diet high in cereals, with relatively modest contributions of meat and only minor contributions of marine fish. However, substantial isotopic variation was found within the population, indicating that diets were not uniform. We suggest that a number of individuals, mainly but not exclusively males, had greater access to marine resources, especially high trophic level fish. However, the observed dietary variation did not correlate with burial type, number of grave goods, nor age at death. Also, individuals buried at the necropolis at Velia ate much less fish overall compared with the contemporaneous population from the necropolis of Portus at Isola Sacra, located on the coast close to Rome. Marine and riverine transport and commerce dominated the economy of Portus, and its people were in a position to supplement their own stocks of fish with imported goods in transit to Rome, whereas at Velia marine exploitation existed side-by-side with land-based economic activities. PMID:19280672

  14. Report on: "The 1st Workshop on National Immunization Programs and Vaccine Coverage in ASEAN Countries, April 30, 2015, Pattaya, Thailand".

    PubMed

    Hattasingh, Weerawan; Pengsaa, Krisana; Thisyakorn, Usa

    2016-03-01

    The 1st Workshop on National Immunization Programs and Vaccine Coverage in Association of Southeast Asian Nations (ASEAN) Countries Group (WNIPVC-ASEAN) held a meeting on April 30, 2015, Pattaya, Thailand under the auspices of the Pediatric Infectious Diseases Society and the World Health Organization (WHO). Reports on the current status and initiatives of the national immunization program (NIP) in each ASEAN countries that attended were presented. These reports along with survey data collected from ministries of health in ASEAN countries NIPs demonstrate that good progress has been made toward the goal of the Global Vaccine Action Plan (GVAP). However, some ASEAN countries have fragile health care systems that still have insufficient vaccine coverage of some basic EPI antigens. Most ASEAN countries still do not have national coverage of some new and underused vaccines, and raising funds for the expansion of NIPs is challenging. Also, there is insufficient research into disease burden of vaccine preventable diseases and surveillance. Health care workers must advocate NIPs to government policy makers and other stakeholders as well as improve research and surveillance to achieve the goals of the GVAP. PMID:26805596

  15. Report from the 1st Cardiovascular Outcome Trial (CVOT) Summit of the Diabetes & Cardiovascular Disease (D&CVD) EASD Study Group.

    PubMed

    Schnell, Oliver; Standl, Eberhard; Catrinoiu, Doina; Genovese, Stefano; Lalic, Nebojsa; Skra, Jan; Valensi, Paul; Ceriello, Antonio

    2016-01-01

    The 1st Cardiovascular Outcome Trial (CVOT) Summit of the Diabetes & Cardiovascular Disease (D&CVD) EASD Study Group was held during the annual meeting on 30 October 2015 in Munich. This summit was organized in light of recently published and numerous ongoing CVOTs on diabetes, which have emerged in response to the FDA and the EMA Guidelines. The CVOT Summit stands as a novel conference setup, with the aim of serving as a reference meeting for all topics related to CVOTs in diabetes. Members of the steering committee of the D&CVD EASD Study Group constitute the backbone of the summit. It included presentations of key results on DPP-4 inhibitors, GLP-1-Analogues, SGLT-2 inhibitors, acarbose and insulins. Diabetologists' and cardiologists' perspective on the potential need of new study designs were also highlighted. Furthermore, panel discussions on the design of CVOTs on diabetes were included in the program. The D&CVD EASD Study Group will continue its activity. In-depth discussions and presentations of new CVOTs like LEADER, will be resumed at the 2nd CVOT on diabetes of the D&CVD EASD Study Group, which will be held from 20-22 October 2016 in Munich ( http://www.dcvd.org). PMID:26892706

  16. Hot oiling spreadsheet

    SciTech Connect

    Mansure, A.J.

    1996-09-01

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that was distributed as a compiled, public-domain-software spreadsheet. That spreadsheet has evolved into an interactive from on the World Wide Web and has been adapted into a Windows{trademark} program by Petrolite, St. Louis MO. The development of such a tools was facilitated by expressing downhole temperatures in terms of analytic formulas. Considerable algebraic work is required to develop such formulas. Also, the data describing hot oiling is customarily a mixture of practical units that must be converted to a consistent set of units. To facilitate the algebraic manipulations and to assure unit conversions are correct, during development parallel calculations were made using the spreadsheet and a symbolic mathematics program. Derivation of the formulas considered falling film flow in the annulus and started from the transient differential equations so that the effects of the heat capacity of the tubing and casing could be included. While this approach to developing a software product does not have the power and sophistication of a finite element or difference code, it produces a user friendly product that implements the equations solved with a minimum potential for bugs. This allows emphasis in development of the product to be placed on the physics.

  17. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  18. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  19. Travertine Hot Springs, Mono County, California

    SciTech Connect

    Chesterman, C.W.; Kleinhampl, F.J.

    1991-08-01

    This article is an abridgement of Special Report 172, Travertine Hot Springs at Bridgeport, Mono County, California, in preparation at the California Division of Mines and Geology. The Travertine Hot Springs area is on the northern edge of what many consider to be one of the most tectonically active areas in the United States. There is abundant geothermal and seismic activity. The landscape is dotted with volcanic features- cones, craters, domes, flows, fumaroles and hot springs-indicators of unrest in the present as well as reminders of activity in the past. Travertine, also known as calcareous sinter, is limestone formed by chemical precipitation of calcium carbonate (CaCO{sub 3}) from ground or surface waters. It forms stalactites and stalagmites in caves, fills some veins and spring conduits and can also be found at the mouths of springs, especially hot springs. The less compact variety is called tufa and the dense, banded variety is known as Mexican onyx, or onyx marble. True onyx, however, is a banded silicate.

  20. Fragmentation of hot classical drops

    SciTech Connect

    Vicentini, A.; Jacucci, G.; Pandharipande, V.R.

    1985-05-01

    Time evolution of hot drops of matter containing approx.230 or approx.130 particles is studied by classical molecular dynamics. Initially, the drops have uniform density and a sharp surface. The chosen initial conditions include three values of density and a range of temperatures wide enough to study the phenomena of evaporation, fragmentation, and total vaporization in a unified fashion. The average density and temperature of central matter is measured periodically to obtain trajectories of the evolution in the rho,T plane. These trajectories indicate that the matter expands almost adiabatically until it reaches the region of adiabatic instabilities. Density inhomogeneities develop in this region, but the matter fragments only if the expansion continues to average densities of less than one-fourth the liquid density, otherwise it recondenses into a single blob. The recondensed matter and fragments have very crooked surfaces. If the temperature is high enough, the expanding matter does not enter the region of adiabatic instabilities and totally vaporizes. For initial densities of the order of equilibrium density, matter does not fragment or develop large inhomogeneities in the region enclosed by the isothermal and adiabatic spinodals. Thus it appears unlikely that fragmentation of small drops (nuclei) can be used to study the isothermal critical region of gas-liquid phase transition. A detailed tabulation of the energies and number of monomers, dimers, light, and heavy fragments emitted in each event is presented.

  1. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung–Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  2. Hot cell examination table

    DOEpatents

    Gaal, Peter S.; Ebejer, Lino P.; Kareis, James H.; Schlegel, Gary L.

    1991-01-01

    A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.

  3. Hot air drum evaporator

    DOEpatents

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  4. MSFC hot air collectors

    NASA Technical Reports Server (NTRS)

    Anthony, K.

    1978-01-01

    A description of the hot air collector is given that includes a history of development, a history of the materials development, and a program summary. The major portion of the solar energy system cost is the collector. Since the collector is the heart of the system and the most costly subsystem, reducing the cost of producing collectors in large quantities is a major goal. This solar collector is designed to heat air and/or water cheaply and efficiently through the use of solar energy.

  5. Telescopic nanotube device for hot nanolithography

    DOEpatents

    Popescu, Adrian; Woods, Lilia M

    2014-12-30

    A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

  6. Ablation driven by hot electrons in shock ignition

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; Rodriguez Prieto, G.; Tahir, N. A.; Zhao, Y. T.

    2016-03-01

    An analytical model for the ablation driven by hot electrons is developed. The hot electrons are assumed to carry on the totality of the absorbed laser energy. Efficient energy coupling requires to keep the critical surface sufficiently close to the ablation front. To achieve this goal for high laser intensities a short enough laser wavelength is required. Scaling laws for the ablation pressure and the other relevant magnitudes of the ablation cloud are found in terms of the laser and target parameters.

  7. Emission of Visible Light by Hot Dense Metals

    SciTech Connect

    More, R.M.; Goto, M.; Graziani, F.; Ni, P.A.; Yoneda, H.

    2009-12-01

    We consider the emission of visible light by hot metal surfaces having uniform and non-uniform temperature distributions and by small droplets of liquid metal. The calculations employ a nonlocal transport theory for light emission, using the Kubo formula to relate microscopic current fluctuations to the dielectric function of the material. We describe a related algorithm for calculating radiation emission in particle simulation of hot fusion plasmas.

  8. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung–Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  9. Radiations from hot nuclei

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1993-01-01

    The investigation indicates that nuclei with excitation energy of a few hundred MeV to BeV are more likely to radiate hot nuclear clusters than neutrons. These daughter clusters could, furthermore, de-excite emitting other hot nuclei, and the chain continues until these nuclei cool off sufficiently to evaporate primarily neutrons. A few GeV excited nuclei could radiate elementary particles preferentially over neutrons. Impact of space radiation with materials (for example, spacecraft) produces highly excited nuclei which cool down emitting electromagnetic and particle radiations. At a few MeV excitation energy, neutron emission becomes more dominant than gamma-ray emission and one often attributes the cooling to take place by successive neutron decay. However, a recent experiment studying the cooling process of 396 MeV excited Hg-190 casts some doubt on this thinking, and the purpose of this investigation is to explore the possibility of other types of nuclear emission which might out-compete with neutron evaporation.

  10. Hot, Dry and Cloudy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Hot, Dry and Cloudy

    This artist's concept shows a cloudy Jupiter-like planet that orbits very close to its fiery hot star. NASA's Spitzer Space Telescope was recently used to capture spectra, or molecular fingerprints, of two 'hot Jupiter' worlds like the one depicted here. This is the first time a spectrum has ever been obtained for an exoplanet, or a planet beyond our solar system.

    The ground-breaking observations were made with Spitzer's spectrograph, which pries apart infrared light into its basic wavelengths, revealing the 'fingerprints' of molecules imprinted inside. Spitzer studied two planets, HD 209458b and HD 189733b, both of which were found, surprisingly, to have no water in the tops of their atmospheres. The results suggest that the hot planets are socked in with dry, high clouds, which are obscuring water that lies underneath. In addition, HD209458b showed hints of silicates, suggesting that the high clouds on that planet contain very fine sand-like particles.

    Capturing the spectra from the two hot-Jupiter planets was no easy feat. The planets cannot be distinguished from their stars and instead appear to telescopes as single blurs of light. One way to get around this is through what is known as the secondary eclipse technique. In this method, changes in the total light from a so-called transiting planet system are measured as a planet is eclipsed by its star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone.

    This technique, first used by Spitzer in 2005 to directly detect the light from an exoplanet, currently only works at infrared wavelengths, where the differences in brightness between the planet and star are less, and the planet's light is easier to pick out. For example, if the experiment had been done in visible light, the total light from the system would appear to be unchanged

  11. Hot filament CVD of boron nitride films

    DOEpatents

    Rye, Robert R.

    1992-01-01

    Using a hot filament (.apprxeq.1400.degree. C.) to activate borazine (B.sub.3 N.sub.3 H.sub.6) molecules for subsequent reaction with a direct line-of-sight substrate, transparent boron ntiride films as thick as 25,000 angstroms are grown for a substrate temperature as low as 100.degree. C. The minimum temperature is determined by radiative heating from the adjacent hot filament. The low temperature BN films show no indication of crystallinity with X-ray diffraction (XRD). X-ray photoelectron spectra (XPS) show the films to have a B:N ratio of 0.97:1 with no other XPS detectable impurities above the 0.5% level. Both Raman and infrared (IR) spectroscopy are characteristic of h-BN with small amounts of hydrogen detected as N-H and B-H bands in the IR spectrum. An important feature of this method is the separation and localization of the thermal activation step at the hot filament from the surface reaction and film growth steps at the substrate surface. This allows both higher temperature thermal activation and lower temperature film growth.

  12. Microbial hotspots and hot moments in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong

  13. The Rhizosphere Zone: A Hot Spot of Microbial Activity and Methylmercury Production in Saltmarsh Sediments of San Francisco Bay, California

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Marvin-Dipasquale, M.; Voytek, M.; Kirshtein, J.; Krabbenhoft, D. P.; Agee, J. L.; Cox, M.; Kakouros, E.; Collins, J. N.; Yee, D.

    2008-12-01

    Tidal marshes of varying hydrology and salinity have been shown to have high rates of microbial methylmercury (MeHg) production, especially the periodically flooded, higher elevations which are densely vegetated with shallowly rooted plants. The specific influence of emergent wetland plants and their active rhizosphere (root zone) on mercury (Hg) biogeochemistry, however, is poorly understood. Seasonal and spatial patterns of Hg biogeochemistry were examined in 2005 and 2006 at three marshes along a salinity gradient of the Petaluma River, in Northern San Francisco Bay, California. In addition, to directly examine the influence of rhizosphere activity on MeHg production, a suite of devegetation experiments was conducted in 2006 within each marsh using paired vegetated and devegetated plots in two marsh subhabitats: poorly- drained interior sites and well-drained "edge" sites near slough channels. Surface sediment (0-2cm) was sampled in both April and August from these plots, as well as from 1st and 3rd order slough channels that were naturally free of vegetation. Vegetated marsh sites produced 3- to19-fold more MeHg than did slough sites, and MeHg production rates were greater in marsh interior sites compared to more oxic marsh "edge" sites. Microbial biomass (ng DNA gdrysed) was greater in vegetated marsh settings, compared to slough channels, and increased significantly between April and August at all marsh sites. Despite this seasonal increase in microbial biomass, MeHg concentrations and production rates decreased from April to August in vegetated surface sediments. Microbial indicators of methylation also decreased from April to August, including rates of microbial sulfate reduction and the abundance of iron- and sulfate- reducing bacterial DNA. Results from the devegetated plots suggest that root exudation of fermentative labile carbon to surface soils is responsible for the higher microbial biomass, and the higher relative abundance of iron- and sulfate

  14. PREFACE: 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics

    NASA Astrophysics Data System (ADS)

    2014-09-01

    This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1

  15. The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes.

    PubMed

    Kasnatscheew, J; Evertz, M; Streipert, B; Wagner, R; Klöpsch, R; Vortmann, B; Hahn, H; Nowak, S; Amereller, M; Gentschev, A-C; Lamp, P; Winter, M

    2016-02-01

    The 1st cycle Coulombic efficiency (CE) of LiNi1/3Co1/3Mn1/3O2 (NCM) at 4.6 V vs. Li/Li(+) has been extensively investigated in NCM/Li half cells. It could be proven that the major part of the observed overall specific capacity loss (in total 36.3 mA h g(-1)) is reversible and induced by kinetic limitations, namely an impeded lithiation reaction during discharge. A measure facilitating the lithiation reaction, i.e. a constant potential (CP) step at the discharge cut-off potential, results in an increase in specific discharge capacity of 22.1 mA h g(-1). This capacity increase during the CP step could be proven as a relithiation process by Li(+) content determination in NCM via an ICP-OES measurement. In addition, a specific capacity loss of approx. 4.2 mA h g(-1) could be determined as an intrinsic reaction to the NCM cathode material at room temperature (RT). In total, less than 10.0 mA h g(-1) (=28% of the overall capacity loss) can be attributed to irreversible reactions, mainly to irreversible structural changes of NCM. Thus, the impact of parasitic reactions, such as oxidative electrolyte decomposition, on the irreversible capacity is negligible and could also be proven by on-line MS. As a consequence, the determination of the amount of extracted Li(+) ("Li(+) extraction ratio") so far has been incorrect and must be calculated by the charge capacity (=delithiation amount) divided by the theoretical capacity. In a NCM/graphite full cell the relithiation amount during the constant voltage (CV) step is smaller than in the half cell, due to irreversible Li(+) loss at graphite. PMID:26771035

  16. Source Process of the Solomon Islands Earthquake of April 1st, 2007 (Mw8.1) Based on SAR Data and its Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Mori, M.; Kato, T.; Furuya, M.; Ochi, T.; Miyazaki, S.; Aoki, Y.

    2008-12-01

    We analyzed SAR (Synthetic Aperture Radar) data to derive the crustal deformation due to the Solomon Islands earthquake (Mw8.1) that occurred on April 1st, 2007. Three tracks that cover the source areas were used and the image data taken before and after the earthquake were processed to make interferograms. Then, we examined the obtained interferograms if the previous two source models that were obtained by seismic wave form inversion analyses could reproduce them. However, none of the models were able to reproduce the crustal deformations derived from the SAR data analysis. Then, we tried to construct a source model that explains the observed crustal deformations well. We considered some geophysical data to constrain the source geometry; the multichannel reflection data and observed vertical deformations using coral reef survey. Considering these lines of evidence, we introduced two possible source geometries; one is single-segment model that assumes only shallow-dipping (10 deg.) main thrust ruptured, and the other is two-segment model that assumes both a high angle spray fault of 30 degree dip and the main thrust fault slipped. The comparison of models based on inversion analyses suggested that the two-segment model would be preferable. This result suggests that the Solomon Islands earthquake would be the first observed earthquake on a steeply dipping splay fault that ruptured off the main converging plate boundary. If this is the case, this earthquake might provide us with an important clue for understanding the mechanisms of land formation such as landward titling of the coastal terraces.

  17. [The clinical significance of reverse redistribution of Tl-201 SPECT at rest in the 1st month after the onset of acute myocardial infarction].

    PubMed

    Umamoto, I; Sugihara, H; Harada, Y; Sawada, T; Matsumuro, A; Matsubara, K; Shiga, K; Nakagawa, T; Oonishi, K; Nakamura, T

    1991-07-01

    The pattern of Thallium-201 reverse redistribution (r-RD) at rest has been reported in some patients with acute myocardial infarction (AMI) in the acute phase. But there is no report of this pattern in the later phase. To investigate the significance of Thallium-201 reverse redistribution in the subacute phase, 37 patients with AMI underwent Thallium-201 SPECT at rest a month after the onset. The patients were classified into three groups visually and 19 of 37 patients (51%) showed the persistent defect pattern (Group PD), and the remaining 18 patients (49%) had the reverse redistribution pattern (Group r-RD). None of them had the redistribution pattern. Coronary reflow was earlier and the incidence of the scintigraphic overlap on Dual SPECT image of 99mTc-PYP/201TlCl in the acute phase was more frequent in Group r-RD than in Group PD. A decrease in thallium defect size of patients with r-RD from the acute phase to one month after the onset represented improvement more significantly than that with PD. Initial %Tl uptake of the infarcted region of Group r-RD was greater than that of Group PD. The degree of stenosis of the infarct-related coronary artery in Group r-RD was less severe than that in Group PD. And corresponding regional wall motion of Group r-RD was less impaired. The Thallium-201 washout in the infarcted region with r-RD was significantly faster than that in the normal region. It is concluded that the r-RD pattern at rest in the 1st month after the onset of AMI may be a sign of viable myocardium. PMID:1833574

  18. Mathematical modeling of deformation during hot rolling

    SciTech Connect

    Jin, D.; Stachowiak, R.G.; Samarasekera, I.V.; Brimacombe, J.K.

    1994-12-31

    The deformation that occurs in the roll bite during the hot rolling of steel, particularly the strain-rate and strain distribution, has been mathematically modeled using finite-element analysis. In this paper three different finite-element models are compared with one another and with industrial measurements. The first model is an Eulerian analysis based on the flow formulation method, while the second utilizes an Updated Lagrangian approach. The third model is based on a commercially available program DEFORM which also utilizes a Lagrangian reference frame. Model predictions of strain and strain-rate distribution, particularly near the surface of the slab, are strongly influenced by the treatment of friction at the boundary and the magnitude of the friction coefficient or shear factor. Roll forces predicted by the model have been compared with industrial rolling loads from a seven-stand hot-strip mill.

  19. Process for making ceramic hot gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    2001-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  20. TRUEX hot demonstration

    SciTech Connect

    Chamberlain, D.B.; Leonard, R.A.; Hoh, J.C.; Gay, E.C.; Kalina, D.G.; Vandegrift, G.F.

    1990-04-01

    In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility.

  1. Response of hot nuclei

    SciTech Connect

    Broglia, R.A.

    1986-01-01

    The dipole giant resonance is reviewed, as it is the only vibration which has been experimentally identified in the decay of hot nuclei. The mechanism of exciting the resonance and the mode of the resonance are described. The methods used to calculate the vibrations from the shell model are discussed, including the Hartree-Fock approximation and random phase approximation. Nuclei formed by compound nuclear reactions, which possess high excitation energy and angular momentum, are considered. It is argued that the stability of the dipole may be used to advantage in the study of other properties of nuclei at high excitation. It is also considered possible that the discussion of the dipole giant resonance may be extended to the gamma decay of the isovector quadrupole vibration. 26 refs., 18 figs. (LEW)

  2. Advances in Hot-Structure Development

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin; Glass, David E.

    2006-01-01

    The National Aeronautics and Space Administration has actively participated in the development of hot structures technology for application to hypersonic flight systems. Hot structures have been developed for vehicles including the X-43A, X-37, and the Space Shuttle. These trans-atmospheric and atmospheric entry flight systems that incorporate hot-structures technology are lighter weight and require less maintenance than those that incorporate parasitic, thermal-protection materials that attach to warm or cool substructure. The development of hot structures requires a thorough understanding of material performance in an extreme environment, boundary conditions and load interactions, structural joint performance, and thermal and mechanical performance of integrated structural systems that operate at temperatures ranging from 1500 C to 3000 C, depending on the application. This paper will present recent advances in the development of hot structures, including development of environmentally durable, high temperature leading edges and control surfaces, integrated thermal protection systems, and repair technologies. The X-43A Mach-10 vehicle utilized carbon/carbon (C/C) leading edges on the nose, horizontal control surface, and vertical tail. The nose and vertical and horizontal tail leading edges were fabricated out of a 3:1 biased, high thermal conductivity C/C. The leading edges were coated with a three-layer coating comprised of a SiC conversion of the C/C, followed by a CVD layer of SiC, followed by a thin CVD layer of HfC. Work has also been performed on the development of an integrated structure and was focused on both hot and warm (insulated) structures and integrated fuselage/tank/TPS systems. The objective was to develop integrated multifunctional airframe structures that eliminate fragile external thermal-protection systems and incorporate the insulating function within the structure. The approach taken to achieve this goal was to develop candidate hypersonic

  3. ON THE EMERGENT SPECTRA OF HOT PROTOPLANET COLLISION AFTERGLOWS

    SciTech Connect

    Miller-Ricci, Eliza; Meyer, Michael R.; Seager, Sara; Elkins-Tanton, Linda

    2009-10-10

    We explore the appearance of terrestrial planets in formation by studying the emergent spectra of hot molten protoplanets during their collisional formation. While such collisions are rare, the surfaces of these bodies may remain hot at temperatures of 1000-3000 K for up to millions of years during the epoch of their formation (of duration 10-100 Myr). These objects are luminous enough in the thermal infrared to be observable with current and next-generation optical/IR telescopes, provided that the atmosphere of the forming planet permits astronomers to observe brightness temperatures approaching that of the molten surface. Detectability of a collisional afterglow depends on properties of the planet's atmosphere-primarily on the mass of the atmosphere. A planet with a thin atmosphere is more readily detected, because there is little atmosphere to obscure the hot surface. Paradoxically, a more massive atmosphere prevents one from easily seeing the hot surface, but also keeps the planet hot for a longer time. In terms of planetary mass, more massive planets are also easier to detect than smaller ones because of their larger emitting surface areas-up to a factor of 10 in brightness between 1 and 10 M {sub +} planets. We present preliminary calculations assuming a range of protoplanet masses (1-10 M {sub +}), surface pressures (1-1000 bar), and atmospheric compositions, for molten planets with surface temperatures ranging from 1000 to 1800 K, in order to explore the diversity of emergent spectra that are detectable. While current 8 to 10 m class ground-based telescopes may detect hot protoplanets at wide orbital separations beyond 30 AU (if they exist), we will likely have to wait for next-generation extremely large telescopes or improved diffraction suppression techniques to find terrestrial planets in formation within several AU of their host stars.

  4. Ethylene oxide and acetaldehyde in hot cores

    NASA Astrophysics Data System (ADS)

    Occhiogrosso, A.; Vasyunin, A.; Herbst, E.; Viti, S.; Ward, M. D.; Price, S. D.; Brown, W. A.

    2014-04-01

    Context. Ethylene oxide (c-C2H4O), and its isomer acetaldehyde (CH3CHO), are important complex organic molecules because of their potential role in the formation of amino acids. The discovery of ethylene oxide in hot cores suggests the presence of ring-shaped molecules with more than 3 carbon atoms such as furan (c-C4H4O), to which ribose, the sugar found in DNA, is closely related. Aims: Despite the fact that acetaldehyde is ubiquitous in the interstellar medium, ethylene oxide has not yet been detected in cold sources. We aim to understand the chemistry of the formation and loss of ethylene oxide in hot and cold interstellar objects (i) by including in a revised gas-grain network some recent experimental results on grain surfaces and (ii) by comparison with the chemical behaviour of its isomer, acetaldehyde. Methods: We introduce a complete chemical network for ethylene oxide using a revised gas-grain chemical model. We test the code for the case of a hot core. The model allows us to predict the gaseous and solid ethylene oxide abundances during a cooling-down phase prior to star formation and during the subsequent warm-up phase. We can therefore predict at what temperatures ethylene oxide forms on grain surfaces and at what temperature it starts to desorb into the gas phase. Results: The model reproduces the observed gaseous abundances of ethylene oxide and acetaldehyde towards high-mass star-forming regions. In addition, our results show that ethylene oxide may be present in outer and cooler regions of hot cores where its isomer has already been detected. Our new results are compared with previous results, which focused on the formation of ethylene oxide only. Conclusions: Despite their different chemical structures, the chemistry of ethylene oxide is coupled to that of acetaldehyde, suggesting that acetaldehyde may be used as a tracer for ethylene oxide towards cold cores.

  5. SOURCE ASSESSMENT: ASPHALT HOT MIX

    EPA Science Inventory

    This report summarizes data on air emissions from the asphalt hot mix industry. A representative asphalt hot mix plant was defined, based on the results of an industrial survey, to assess the severity of emissions from this industry. Source severity was defined as the ratio of th...

  6. Hot Leg Piping Materials Issues

    SciTech Connect

    V. Munne

    2006-07-19

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

  7. Method for hot press forming articles

    DOEpatents

    Baker, Robert R.; Hartsock, Dale L.

    1982-01-01

    This disclosure relates to an improved method for achieving the best bond strength and for minimizing distortion and cracking of hot pressed articles. In particular, in a method for hot press forming both an outer facing circumferential surface of and an inner portion of a hub, and of bonding that so-formed outer facing circumferential surface to an inner facing circumferential surface of a pre-formed ring thereby to form an article, the following improvement is made. Normally, in this method, the outside ring is restrained by a restraining sleeve of ring-shaped cross-section having an inside diameter. A die member, used to hot press form the hub, is so-formed as to have an outside diameter sized to engage the inside diameter of the restraining sleeve in a manner permitting relative movement therebetween. The improved method is one in which several pairs of matched restraining sleeve and die member are formed with each matched pair having a predetermined diameter. The predetermined diameter of each matched pair is different from another matched pair by stepped increments. The largest inside diameter of a restraining sleeve is equal to the diameter of the outer facing circumferential surface of the hub. Each pair of the matched restraining sleeve and die member is used to form an article in which an inside hub is bonded to an outside ring. The several samples so-formed are evaluated to determine which sample has the best bond formed between the hub and the ring with the least or no cracking or distortion in the ring portion of the article. Thereafter, the matched restraining sleeve and die member which form the article having the best bonding characteristics and least distortion cracking is then used for repeated formations of articles.

  8. The Effect of Landing Surface on the Plantar Kinetics of Chinese Paratroopers Using Half-Squat Landing

    PubMed Central

    Li, Yi; Wu, Ji; Zheng, Chao; Huang, Rong Rong; Na, Yuhong; Yang, Fan; Wang, Zengshun; Wu, Di

    2013-01-01

    The objective of the study was to determine the effect of landing surface on plantar kinetics during a half-squat landing. Twenty male elite paratroopers with formal parachute landing training and over 2 years of parachute jumping experience were recruited. The subjects wore parachuting boots in which pressure sensing insoles were placed. Each subject was instructed to jump off a platform with a height of 60 cm, and land on either a hard or soft surface in a half-squat posture. Outcome measures were maximal plantar pressure, time to maximal plantar pressure (T-MPP), and pressure-time integral (PTI) upon landing on 10 plantar regions. Compared to a soft surface, hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. Shorter T- MPP was found during hard surface landing in the 1st and 2nd metatarsal and medial rear foot. Landing on a hard surface landing resulted in a lower PTI than a soft surface in the 1stphalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the1st to 4thmetatarsal region for hard surface landing, and the 1stphalangeal and 5thmetatarsal region for soft surface landing. Key Points Understanding plantar kinetics during the half-squat landing used by Chinese paratroopers can assist in the design of protective footwear. Compared to landing on a soft surface, a hard surface produced higher maximal plantar pressure in the 1st to 4th metatarsal and mid-foot regions, but lower maximal plantar pressure in the 5th metatarsal region. A shorter time to maximal plantar pressure was found during a hard surface landing in the 1st and 2nd metatarsals and medial rear foot. Landing on a hard surface resulted in a lower pressure-time integral than landing on a soft surface in the 1st phalangeal region. For Chinese paratroopers, specific foot prosthesis should be designed to protect the 1st to 4th metatarsal

  9. Evolution of Molecular Clouds in a Hot Plasma

    NASA Astrophysics Data System (ADS)

    Vieser, Wolfgang; Hensler, Gerhard

    We are performing 2D hydrodynamic simulations to examine the evaporation and condensation of molecular clouds in the hot phase of the interstellar medium due to heat conduction. Heat conduction is a process that may not be neglected for clouds which are embedded in a hot gas, High-Velocity-Clouds falling through the hot galactic halo or clouds in a galactic chimney. The evolution of cold and dense clouds with different masses and radii is calculated in the subsonic streaming of a hot rarefied plasma. Our code includes self-gravity, heating and cooling effects and heat conduction by electrons. Simulations with and without heat conduction show significant differences. Heat conduction provides a possibility to stabilize clouds agains hydrodynamic instabilities. Molecular clouds become able to survive significantly longer in a violent stream of hot gas. Additionally, this hot gas condensates onto the cloud's surface and is mixed very efficiently with the cloud material. Therefore, heat conduction is an important process, which has to be considered in order to explain the existence and metallicity of clouds in a stream of hot gas.

  10. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic. The region where the jets collide with the intergalactic medium are known as " hot spots ". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 µm) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 µm) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image. This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far . The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites . The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations. The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active

  11. Hot Spot Detection System Using Landsat 8/OLI Data

    NASA Astrophysics Data System (ADS)

    Kato, S.; Nakamura, R.; Oda, A.; Iijima, A.; Kouyama, T.; Iwata, T.

    2015-12-01

    We developed a simple algorithm and a Web-based visualizing system to detect hot spots using Landsat 8 OLI multispectral data as one of the applications of the real-time processing of Landsat 8 data. An empirical equation and radiometric and reflective thresholds were derived to detect hot spots using the OLI data at band 5 (0.865 μm) and band 7 (2.200 μm) based on the increase in spectral radiance at shortwave infrared (SWIR) region due to the emission from objects with high surface temperature. We surveyed typical patterns of surface spectra using the ASTER spectral library to delineate a threshold to distinguish hot spots from background surfaces. To adjust the empirical coefficients of our detection algorithm, we visually inspected the detected hot spots using 6593 Landsat 8 scenes, which cover eastern part of East Asia, taken from January 1, 2014 to December 31, 2014, displayed on a dedicated Web GIS system. Eventually we determined threshold equations which can theoretically detect hot spots at temperatures above 230 °C over isothermal pixels and hot spots as small as 1 m2 at temperatures of 1000 °C as the lowest temperature and the smallest subpixel coverage, respectively, for daytime scenes. The algorithm detected hot spots including wildfires, volcanos, open burnings and factories. 30-m spatial resolution of Landsat 8 enabled to detect wild fires and open burnings accompanied by clearer shapes of fire front lines than MODIS and VIIRS fire products. Although the 16-day revisit cycle of Landsat 8 is too long to effectively find unexpected wildfire or outbreak of eruption, the revisit cycle is enough to monitor temporally stable heat sources, such as continually erupting volcanos and factories. False detection was found over building rooftops, which have relatively smooth surfaces at longer wavelengths, when specular reflection occurred at the satellite overpass.

  12. OT2_rvisser_2: Hot water in hot cores

    NASA Astrophysics Data System (ADS)

    Visser, R.

    2011-09-01

    As matter flows from the ice-cold envelope onto a forming protostar, it heats up from temperatures of 10 K to more than 100 K. The region where the temperature exceeds 100 K (the hot core or hot corino) is where the molecular envelope connects with both the seedling circumstellar disk and the bipolar outflow. As the envelope contracts from larger scales, a lot of material passes through the hot core before accreting onto the disk. The hot core is therefore a crucial step in establishing the physical and chemical properties of planetary building blocks. However, little is yet known about hot cores. How large and how massive are they? How hot are they? Are they exposed to strong UV or X-ray fluxes? We propose the rotationally excited 3(12)-3(03) line of H2-18O at 1095.6 GHz (E_up = 249 K) as a novel probe into the properties of hot cores. This line was detected as a narrow emission feature (FWHM ~4 km/s) in a deep integration (5 hr) in the Class 0 protostar NGC1333 IRAS2A. Comparing the line intensity to radiative transfer models, we find a tentative H2-16O hot core abundance of 4x10^-6. This is a factor of 50 lower than one would expect from simple evaporation of water ice above 100 K. Why is the hot core of IRAS2A so much "drier" than expected? Is most of the water destroyed by UV photons and/or X-rays? We propose to measure the water abundance in the hot cores of a sample of five additional Class 0 and I protostars by obtaining deep integrations of the 3(12)-3(03) lines of H2-16O and H2-18O. This mini-survey will reveal whether NGC1333 IRAS2A is unique in having a "dry" hot core, or whether "dry" hot cores are a common feature of low-mass embedded protostars. If they are a common feature, it means they are a more hostile environment than previously thought, with high fluxes of destructive UV photons and X-rays.

  13. Ichnological analysis of the Upper Miocene in the ANH-Tumaco-1-ST-P well: assessing paleoenvironmental conditions at the Tumaco Basin, in the Colombian Pacific

    NASA Astrophysics Data System (ADS)

    Giraldo-Villegas, Carlos A.; Celis, Sergio A.; Rodríguez-Tovar, Francisco J.; Pardo-Trujillo, Andrés; Vallejo-Hincapié, Diego F.; Trejos-Tamayo, Raúl A.

    2016-11-01

    Tumaco is a frontier basin located on the SW Colombian Pacific coast. It is composed of a thick siliciclastic sequence up to reach 10,000 m-thick. In recent years, the National Hydrocarbon Agency-ANH has promoted new exploration wells in order to understand the sedimentary dynamic and its relationship with petroleum systems. One of them, the ANH-Tumaco-1-ST-P well has ∼3000 m (12,000 feet). We carried out sedimentological, geochemical, and micropaleontological detailed analyses with special attention to the ichnology on a 55 m-cored interval (from 1695.3 to 1640.4 m = 5563-5382 ft) in order to assess paleoenvironmental conditions. Beds are composed of green and gray mudrocks interbedded with lithic sandstones and fine-grained tuffs. Calcareous microfossil assemblages defined by the recovery of Uvigerina carapitana, Uvigerina laviculata, Uvigerina pigmaea, Globigerina woodi,Globigerionoides obliquus, Discoaster bellus gr., Catinaster coalitus, Reticulofenestra pseudoumbilicus and Sphenolithus abies indicated a Tortonian age, between CN6/CN7 biozones. Six sedimentary facies were identified: (1, 2) massive and laminated mudrocks, (3, 4) massive and normal-graded sandstones, (5) heterolithic beds, and in some cases (6) sandstones with soft-deformation structures. These rocks were accumulated in a shallowing platform-prodelta environment with continuous volcanic influence. Ichnotaxonomic analysis, conducted for the first time in the Colombian Pacific, allowed the identification of eighteen ichnogenera: Alcyonidiopsis, Asterosoma, Chondrites, Conichnus, Cylindrichnus, Diplocraterion, Ophiomorpha, Palaeophycus, Phycosiphon, Planolites, Rhyzocorallium, Schaubcylindrichnus, Scolicia, Siphonichnus, Taeinidum, Teichichnus, Thalassinoides, and Zoophycos. The ichnological association belongs to the archetypal Cruziana ichnofacies and its "distal" expression. By integrating lithofacies and ichnological results, two segments have been distinguished: 1) the lower one (1695

  14. Development of China Hydrogeology Exploring Techniques in 30 Years --Comparison of Handbook of Hydrogeology of 1st and 2nd Edition

    NASA Astrophysics Data System (ADS)

    Tong, Y.

    2013-12-01

    Handbook of Hydrogeology (2nd edition) is supported by one program from China Geological Survey (CGS): Research of Technical Methods of Hydrogeological Survey and Revision of Handbook of Hydrogeology. It is a reference book for those who are engaged in hydrogeological survey and research in China and covers fundamental principles, theories, survey and exploring techniques, and traditional experiences and achievements in hydrogeology. By comparing the 1st (1978) and 2nd (2012) edition of Handbook of Hydrogeology (in Chinese), this paper analyses the development of China hydrogeological survey and exploring techniques in last 30 years, especially the great change and progress in survey techniques of hydro-remote sensing and hydro-geophysical prospecting. In the first edition of Handbook of Hydrogeology, hydro-remote sensing was only mentioned as an interpretation of aerial pictures in a hydrogeological way, but had not yet formed an independent system and discipline. In the second edition, hydro-remote sensing is an important and independent chapter as one of the hydrogeological techniques. In it, various survey techniques of hydro-remote sensing and types and features of remote sensing data are classified. General systems of interpretation marks of remote sensing images are established, including marks of landform and Quaternary sediment, bedrock, structure types, water yield property, environmental elements of hydrogeology, aquifer group and so on. Systematic workflow is constructed, esp. in remote sensing images mapping and interpreting techniques. GPS and GIS are integrated into remote sensing. Remote sensing exploring instruments and interpreting softwares are also introduced and classified. Although hydro-geophysical prospecting, in the first edition of Handbook of Hydrogeology, was one independent chapter, there were only 10 exploring techniques. Equipments and instruments were simple and lagged in comparison to those in the second edition. The precision and

  15. Hot Hydrogen Test Facility

    SciTech Connect

    W. David Swank

    2007-02-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant’s absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  16. Composite hot drape forming

    NASA Astrophysics Data System (ADS)

    Ott, Thomas

    1994-02-01

    This program was initiated to replace labor-intensive ply-by-ply layup of composite I-beam posts and angle stiffeners used in the Space Station Freedom (SSF) rack structure. Hot drape forming (HDF) has been successfully implemented by BCAG for 777 composite I-stringers and by Bell Helicopter/Textron for the V-22 I-stingers. The two companies utilize two vastly different approaches to the I-beam fabrication process. A drape down process is used by Bell Helicopter where the compacted ply charge is placed on top of a forming mandrel and heated. When the heated ply charge reached a set temperature, vacuum pressure is applied and the plies are formed over the mandrel. The BCAG 777 process utilizes an inverted forming process where the ply stack is placed on a forming table and the mandrel is inverted and placed upon the ply stack. A heating and vacuum bladder underneath the ply stack form the play stack up onto the mandrels after reaching the temperature setpoint. Both methods have their advantages, but the drape down process was selected for SSF because it was more versatile and could be fabricated from readily available components.

  17. Saturn's Hot Spot

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is the sharpest image of Saturn's temperature emissions taken from the ground; it is a mosaic of 35 individual exposures made at the W.M. Keck I Observatory, Mauna Kea, Hawaii on Feb. 4, 2004.

    The images to create this mosaic were taken with infrared radiation. The mosaic was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The prominent hot spot at the bottom of the image is right at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected. The tropospheric temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole.

    Ring particles are not at a uniform temperature everywhere in their orbit around Saturn. The ring particles are orbiting clockwise in this image. Particles are coldest just after having cooled down in Saturn's shadow (lower left). As they orbit Saturn, the particles increase in temperature up to a maximum (lower right) just before passing behind Saturn again in shadow.

    A small section of the ring image is missing because of incomplete mosaic coverage during the observing sequence.

  18. Composite hot drape forming

    NASA Technical Reports Server (NTRS)

    Ott, Thomas

    1994-01-01

    This program was initiated to replace labor-intensive ply-by-ply layup of composite I-beam posts and angle stiffeners used in the Space Station Freedom (SSF) rack structure. Hot drape forming (HDF) has been successfully implemented by BCAG for 777 composite I-stringers and by Bell Helicopter/Textron for the V-22 I-stingers. The two companies utilize two vastly different approaches to the I-beam fabrication process. A drape down process is used by Bell Helicopter where the compacted ply charge is placed on top of a forming mandrel and heated. When the heated ply charge reached a set temperature, vacuum pressure is applied and the plies are formed over the mandrel. The BCAG 777 process utilizes an inverted forming process where the ply stack is placed on a forming table and the mandrel is inverted and placed upon the ply stack. A heating and vacuum bladder underneath the ply stack form the play stack up onto the mandrels after reaching the temperature setpoint. Both methods have their advantages, but the drape down process was selected for SSF because it was more versatile and could be fabricated from readily available components.

  19. Hot Hydrogen Test Facility

    SciTech Connect

    Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan

    2007-01-30

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 deg. C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  20. Neptune's 'Hot' South Pole

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These thermal images show a 'hot' south pole on the planet Neptune. These warmer temperatures provide an avenue for methane to escape out of the deep atmosphere.

    The images were obtained with the Very Large Telescope in Chile, using an imager/spectrometer for mid-infrared wavelengths on Sept. 1 and 2, 2006. The telescope is operated by the European Organization for Astronomical Research in the Southern Hemisphere (known as ESO).

    Scientists say Neptune's south pole is 'hotter' than anywhere else on the planet by about 10 degrees Celsius (50 degrees Fahrenheit). The average temperature on Neptune is about minus 200 degrees Celsius (minus 392 degrees Fahrenheit).

    The upper left image samples temperatures near the top of Neptune's troposphere (near 100 millibar pressure, which is one-tenth the Earth atmospheric pressure at sea level). The hottest temperatures are indicated at the lower part of the image, at Neptune's south pole (see the graphic at the upper right). The lower two images, taken 6.3 hours apart, sample temperatures at higher altitudes in Neptune's stratosphere. They do show generally warmer temperatures near, but not at, the south pole. They also show a distinct warm area which can be seen in the lower left image and rotated completely around the back of the planet and returned to the earth-facing hemisphere in the lower right image.

  1. Solutions for Hot Situations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    From the company that brought the world an integral heating and cooling food service system after originally developing it for NASA's Apollo Program, comes yet another orbital offshoot: a product that can be as thin as paper and as strong as steel. Nextel Ceramic Textiles and Composites from 3M Company offer space-age protection and innovative solutions for hot situations, ranging from NASA to NASCAR. With superior thermal protection, Nextel fabrics, tape, and sleevings outperform other high temperature textiles such as aramids, carbon, glass, and quartz, permitting engineers and manufacturers to handle applications up to 2,500 F (1,371 C). The stiffness and strength of Nextel Continuous Ceramic Fibers make them a great match for improving the rigidity of aluminum in metal matrix composites. Moreover, the fibers demonstrate low shrinkage at operating temperatures, which allow for the manufacturing of a dimensionally stable product. These novel fibers also offer excellent chemical resistance, low thermal conductivity, thermal shock resistance, low porosity, and unique electrical properties.

  2. Techniques for hot structures testing

    NASA Technical Reports Server (NTRS)

    Deangelis, V. Michael; Fields, Roger A.

    1990-01-01

    Hot structures testing have been going on since the early 1960's beginning with the Mach 6, X-15 airplane. Early hot structures test programs at NASA-Ames-Dryden focused on operational testing required to support the X-15 flight test program, and early hot structures research projects focused on developing lab test techniques to simulate flight thermal profiles. More recent efforts involved numerous large and small hot structures test programs that served to develop test methods and measurement techniques to provide data that promoted the correlation of test data with results from analytical codes. In Nov. 1988 a workshop was sponsored that focused on the correlation of hot structures test data with analysis. Limited material is drawn from the workshop and a more formal documentation is provided of topics that focus on hot structures test techniques used at NASA-Ames-Dryden. Topics covered include the data acquisition and control of testing, the quartz lamp heater systems, current strain and temperature sensors, and hot structures test techniques used to simulate the flight thermal environment in the lab.

  3. Hot "spoments" in river networks.

    NASA Astrophysics Data System (ADS)

    Aubeneau, A. F.; Aquino, T.; Bolster, D.; Tank, J. L.; Packman, A. I.

    2014-12-01

    Hot spots and hot moments are usually studied at small scales. These small patches or periods of abnormally high biogeochemical activity have been linked to the interface between the terrestrial and aquatic environments and to the benthic ecotone in streams. Here, we revisit the concepts of hot spots and moments in river networks. We specifically consider cases of carbon and nitrogen cycling and explore the interaction between spatial and temporal signals to identify "hot spoments" in the network. We present field data showing that biogeochemical and hydrological processes alternatively control dissolved carbon and nitrogen fluxes. Field experiments and numerical simulations show that both headwater streams and rivers can be efficient at removing nutrients and carbon from the flowing water, but typically under contrasting climatic forcing. We also present new analytical models leveraging graph theory that describe how different parts of the network are biogeochemically active at different times. Taken together, our results suggest that hot-moments depend on space and hot-spots on time, and vice versa. In other words, unusually high biogeochemical activity may be found in different places at different times along river networks. Our simulations suggest that hot "spoments" impact large scale (spatial and temporal) budgets of carbon and nitrogen export from watersheds.

  4. Antimicrobial Effect of An Essential Oil Blend on Surface-attached Salmonella on Polyvinyl Chloride

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyvinyl chloride (PVC) is basic material for drinking water lines for chickens. Inner surface of PVC pipe can be susceptible to surface-attachment of Salmonella, the 1st stage of biofilm development. Biofilm which can cause Salmonella infection to chickens are known to have great resistance agains...

  5. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  6. Hot-Gas Filter Ash Characterization Project

    SciTech Connect

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  7. Hot air vulcanization of rubber profiles

    SciTech Connect

    Gerlach, J.

    1995-07-01

    Elastomer profiles are deployed in quantity by the automobile industry as seals and wateproofing in coachwork. The high standards demanded by the industry; improvement in weather prediction, noise reduction, restriction of tolerances, together with powerful demand for EPDM force the rubber processing industry into development, particularly of elastomers. Complex proofing systems must also be achieved with extremely complicated profile forms. All too often such profiles have an extremely large surface together with a low cross-section density. They frequently consist of two or three rubber compounds and are steel reinforced. Sometimes they are flocked and coated with a low friction finish. Such high-tech seals require an adjustment of the vulcanization method. The consistent trend in the nineties towards lower quantities of elastomer per sealing unit and the dielectric factor, especially with EPDM, has brought an old fashioned vulcanization method once more to the fore, a method developed over the past years to an extremely high standard, namely the hot-air method. This paper describes various vulcanization and curing methods and their relative merits and disadvantages, the Gerlach hot-air concept, the hot air installation concept, and energy saving and efficiency afforded by this technique. 4 figs.

  8. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    SciTech Connect

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-08-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T{sub eff} > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  9. Surface morphology changes and damage in hot tungsten by impact of 80 eV - 12 keV He-ions and keV-energy self-atoms

    NASA Astrophysics Data System (ADS)

    Hijazi, Hussein; Bannister, Mark E.; Krstic, Predrag S.; Parish, Chad M.; Meyer, Harry M., III; Meyer, Fred M.

    2013-10-01

    We report on measurements of interactions of 50 - 12,000 eV He ions with heated tungsten surfaces performed at the ORNL MIRF. Surface morphology changes, as well as nano-fuzz formation were investigated as function of flux and total fluence, for both virgin and pre-damaged W-targets. At low fluences, ordered surface structures are observed, with great grain-to-grain variability, together with blisters and pinholes, whose density and size increase with increasing fluence. At larger fluences, individual grain characteristics disappear, and the entire surface assumes a frothy appearance in FIB/SEM, with a multitude of near-surface bubbles with a broad range of sizes, and disordered whisker growth, while in SEM imaging the surface is indistinguishable from nano-fuzz produced on linear plasma devices. These features are evident at progressively lower fluences as the He-ion energy is increased, particularly above 1 keV, where the He beam serves not only to load the near-surface region with He to saturation, but to produce significant near-surface damage sites that can trap He. We also report on observations of the effects on surface morphology changes and nano-fuzz formation of pre-damage created by self-ion impact, and on MD simulations of near-surface damage using self-atoms. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the US DOE.

  10. Theoretical Modelling of Hot Stars

    NASA Astrophysics Data System (ADS)

    Najarro, F.; Hillier, D. J.; Figer, D. F.; Geballe, T. R.

    1999-06-01

    Recent progress towards model atmospheres for hot stars is discussed. A new generation of NLTE wind blanketed models, together with high S/N spectra of the hot star population in the central parsec, which are currently being obtained, will allow metal abundance determinations (Fe, Si, Mg, Na, etc). Metallicity studies of hot stars in the IR will provide major constraints not only on the theory of evolution of massive stars but also on our efforts to solve the puzzle of the central parsecs of the Galaxy. Preliminary results suggest that the metallicity of the Pistol Star is 3 times solar, thus indicating strong chemical enrichment of the gas in the Galactic Center.

  11. Automated inspection of hot steel slabs

    DOEpatents

    Martin, Ronald J.

    1985-01-01

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

  12. METHOD OF HOT ROLLING URANIUM METAL

    DOEpatents

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  13. Automated inspection of hot steel slabs

    DOEpatents

    Martin, R.J.

    1985-12-24

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes. 5 figs.

  14. Not so hot "hot spots" in the oceanic mantle.

    PubMed

    Bonath, E

    1990-10-01

    Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle elsewhere in the North Atlantic. However, application of various geothermometers suggests that the temperature of equilibration of peridotites in the mantle was lower, or at least not higher, in the hot spot than elsewhere. The presence of H(2)O-rich metasomatized mantle domains, inferred from peridotite and basalt data, would lower the melting temperature of the hot spot mantle and thereby reconcile its high degree ofmelting with the lack of a mantle temperature anomaly. Thus, some so-called hot spots might be melting anomalies unrelated to abnormally high mantle temperature or thermal plumes. PMID:17808242

  15. The ion acoustic decay instability, and anomalous laser light absorption for the OMEGA upgrade, large scale hot plasma application to a critical surface diagnostic, and instability at the quarter critical density. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Seka, W.

    1996-11-01

    It is shown that laser light can be anomalously absorbed with a moderate intensity laster (I{lambda}{sup 2}{approx}10{sup 14} W/cm{sup 2}-{mu}m{sup 2}) in a large scale, laser produced plasma. The heating regime, which is characterized by a relatively weak instability in a large region, is different from the regime studied previously, which is characterized by a strong instability in a narrow region. The two dimensional geometrical effect (lateral heating) has an important consequence on the anomalous electron heating. The characteristics of the IADI, and the anomalous absorption of the laser light were studied in a large scale, hot plasma applicable to OMEGA upgrade plasma. These results are important for the diagnostic application of the IADI.

  16. Red-Hot Saturn

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These side-by-side false-color images show Saturn's heat emission. The data were taken on Feb. 4, 2004, from the W. M. Keck I Observatory, Mauna Kea, Hawaii. Both images were taken with infrared radiation. The image on the left was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The image on the right was taken at a wavelength of 8 microns and is sensitive to temperatures in Saturn's stratosphere. The prominent hot spot at the bottom of each image is at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected.

    The troposphere temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole. Near 70 degrees latitude, the stratospheric temperature increases even more abruptly from 146 to 150 Kelvin (-197 to -189 degrees Fahrenheit) and then again to 151 Kelvin (-188 degrees Fahrenheit) right at the pole.

    While the rings are too faint to be detected at 8 microns (right), they show up at 17.65 microns. The ring particles are orbiting Saturn to the left on the bottom and to the right on the top. The lower left ring is colder than the lower right ring, because the particles are just moving out of Saturn's shadow where they have cooled off. As they orbit Saturn, they warm up to a maximum just before passing behind Saturn again in shadow.

  17. Triton: A hot potato

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Brown, R. H.

    1991-01-01

    The effect of sunlight on the surface of Triton was studied. Widely disparate models of the active geysers observed during Voyager 2 flyby were proposed, with a solar energy source almost their only feature. Yet Triton derives more of its heat from internal sources (energy released by the radioactive decay) than any other icy satellite. The effect of this relatively large internal heat on the observable behavior of volatiles on Triton's surface is investigated. The following subject areas are covered: the Global Energy Budget; insulation polar caps; effect on frost stability; mantle convection; and cryovolcanism.

  18. The decay of hot nuclei

    SciTech Connect

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  19. Do scientists trace hot topics?

    PubMed Central

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects. PMID:23856680

  20. Morpheus Lander Hot Fire Test

    NASA Video Gallery

    This video shows a successful "hot fire" test of the Morpheus lander on February 27, 2012, at the VTB Flight Complex at NASA's Johnson Space Center. The engine burns for an extended period of time ...

  1. The deep, hot biosphere.

    PubMed Central

    Gold, T

    1992-01-01

    There are strong indications that microbial life is widespread at depth in the crust of the Earth, just as such life has been identified in numerous ocean vents. This life is not dependent on solar energy and photosynthesis for its primary energy supply, and it is essentially independent of the surface circumstances. Its energy supply comes from chemical sources, due to fluids that migrate upward from deeper levels in the Earth. In mass and volume it may be comparable with all surface life. Such microbial life may account for the presence of biological molecules in all carbonaceous materials in the outer crust, and the inference that these materials must have derived from biological deposits accumulated at the surface is therefore not necessarily valid. Subsurface life may be widespread among the planetary bodies of our solar system, since many of them have equally suitable conditions below, while having totally inhospitable surfaces. One may even speculate that such life may be widely disseminated in the universe, since planetary type bodies with similar subsurface conditions may be common as solitary objects in space, as well as in other solar-type systems. PMID:1631089

  2. Hot Electron Effects in Semiconductors.

    NASA Astrophysics Data System (ADS)

    Moore, James Scott

    The high-field transport of electrons has been calculated for two semiconductor configurations: quasi -two-dimensional and bulk. All calculations are performed by solving the Boltzmann equation, assuming a displaced Maxwellian distribution function. In the case of quasi-two-dimensional semiconductors, this treatment is applied to a <100> inversion layer in silicon. Under a high electric field, energy levels become grouped into subbands, so that motion of carriers perpendicular to the surface becomes quantized; thus, the energy, momentum and population transfer relaxation rates appropriate to the individual levels must be considered in the calculations, along with their relation to velocity overshoot. Previous work was performed under the assumption that intervalley scattering is a local phenomenon, i.e., a function only of electron temperature of the initial valley. In the present work, this assumption has been relaxed, and the intervalley coupling of electron temperature is taken into account. dc and transient response characteristics for both uncoupled and coupled models are performed, and the results are compared. Due to the recent interest in GaAs/Al(,x)Ga(,1 -x)As superlattices, there exists a need for a theory of hot electron transport in these structures. Since GaAs is a polar semiconductor, a theory must first be derived for polar III-V compounds under inversion, the result then being easily extended to superlattices. In this work, such theory is derived but, due to the alignment of the subbands, the simultaneous balance equations cannot be solved numerically with the approach undertaken here (solution of the Boltzmann equation). A theory of transport in bulk III-V compounds is modified by some simplifying approximations to make the theory numerically tractable, this theory then being applied to model bulk III-V compounds (in particular dc and transient response characteristics), along with their ternary and quaternary alloys. These results are found to

  3. Mixing of hydrothermal water and groundwater near hot springs, Yellowstone National Park (USA): hydrology and geochemistry

    NASA Astrophysics Data System (ADS)

    Gibson, Matthew L.; Hinman, Nancy W.

    2013-06-01

    Studies of hot springs have focused mainly on the properties of fluids and solids. Fewer studies focus on the relationship between the hot springs and groundwater/surface-water environments. The differences in temperature and dissolved solids between hot-spring water and typical surface water and groundwater allow interactions to be traced. Electromagnetic terrain (EMT) conductivity is a nonintrusive technique capable of mapping mixing zones between distinct subsurface waters. These interactions include zones of groundwater/surface-water exchange and groundwater mixing. Herein, hydrogeological techniques are compared with EMT conductivity to trace hot-spring discharge interactions with shallow groundwater and surface water. Potentiometric-surface and water-quality data determined the hydrogeochemistry of two thermally influenced areas in Yellowstone National Park, Wyoming (USA). Data from the sites revealed EMT conductivity contrasts that reflected the infiltration of conductive hot-spring discharge to local groundwater systems. The anomalies reflect higher temperatures and conductivity for Na+-Cl--rich hydrothermal fluids compared to the receiving groundwater. EMT conductivity results suggested hot springs are fed by conduits largely isolated from shallow groundwater; mixing of waters occurs after hot-spring discharge infiltrates groundwater from the surface and, generally, not by leakage in the subsurface. A model was proposed to explain the growth of sinter mounds.

  4. Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films.

    PubMed

    Haug, Tobias; Klemm, Philippe; Bange, Sebastian; Lupton, John M

    2015-08-01

    Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales. PMID:26296132

  5. Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films

    NASA Astrophysics Data System (ADS)

    Haug, Tobias; Klemm, Philippe; Bange, Sebastian; Lupton, John M.

    2015-08-01

    Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales.

  6. Mining earth's heat: Development of hot dry rock geothermal reservoirs

    SciTech Connect

    Pettitt, R.A.; Becker, N.A.

    1983-07-01

    Geothermal energy is commonly considered to be available only in areas characterized by hot springs and geysers. However, the rock of the earth is hot at accessible depths everywhere, and this energy source is present beneath the surface in almost any location. The energy-extraction concept of the Hot Dry Rock (HDR) Geothermal Program as initially developed by the Los Alamos National Laboratory, is to ''mine'' this heat by creating a man-made reservoir in low-permeability, hot basement rock. This concept has been successfully proven at Fenton Hill in northern New Mexico by drilling two holes to a depth of approximately 3 km (10,000 ft) and a bottom temperature of 200/sup 0/C (392/sup 0/F), then connecting the boreholes with a large diameter, vertical hydraulic fracture. Water is circulated down one borehole, heated by the hot rock, and rises up the second borehole to the surface where the heat is extracted and the cooled water is reinjected into the underground circulation loop. This system has operated for a cumulative 416 days during engineering and reservoir testing. An energy equivalent of 3 to 5 MW(t) was produced without adverse environmental problems. During one test, a generator was installed in the circulation loop and produced 60 kw of electricity.

  7. The Impact of Ceramic Shell Strength on Hot Tearing during Investment Casting

    SciTech Connect

    Norouzi, Saeid; Farhangi, Hassan

    2011-01-17

    The effect of ceramic shell strength on hot tearing susceptibility during solidification was inspected practicing investment casting of the cobalt-base superalloy samples with the same casting conditions, but different ceramic shell systems. Results showed that the lower the ceramic shell strength upon using polymer additives, the lower the hindered contraction rate, and the lower the hindered contraction rate, the smaller the hot tearing tendency. Optical microscopy and electron microscopy scanning revealed that the hot tear propagated along the last solidified interdendritic phase, and that the hot tear surface had two major modes: (1) the ductile region in the outer layer; and (2) the inner region of liquid embrittlement.

  8. FOREWORD: 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science 13th International Workshop on Plasma-Facing Materials and Components for Fusion Applications/1st International Conference on Fusion Energy Materials Science

    NASA Astrophysics Data System (ADS)

    Jacob, Wolfgang; Linsmeier, Christian; Rubel, Marek

    2011-12-01

    The 13th International Workshop on Plasma-Facing Materials and Components (PFMC-13) jointly organized with the 1st International Conference on Fusion Energy Materials Science (FEMaS-1) was held in Rosenheim (Germany) on 9-13 May 2011. PFMC-13 is a successor of the International Workshop on Carbon Materials for Fusion Applications series. Between 1985 and 2003 ten 'Carbon Workshops' were organized in Jülich, Stockholm and Hohenkammer. Then it was time for a change and redefinition of the scope of the symposium to reflect the new requirements of ITER and the ongoing evolution in the field. Under the new name (PFMC-11), the workshop was first organized in 2006 in Greifswald, Germany and PFMC-12 took place in Jülich in 2009. Initially starting in 1985 with about 40 participants as a 1.5 day workshop, the event has continuously grown to about 220 participants at PFMC-12. Due to the joint organization with FEMaS-1, PFMC-13 set a new record with more than 280 participants. The European project Fusion Energy Materials Science, FEMaS, coordinated by the Max-Planck-Institut für Plasmaphysik (IPP), organizes and stimulates cooperative research activities which involve large-scale research facilities as well as other top-level materials characterization laboratories. Five different fields are addressed: benchmarking experiments for radiation damage modelling, the application of micro-mechanical characterization methods, synchrotron and neutron radiation-based techniques and advanced nanoscopic analysis based on transmission electron microscopy. All these fields need to be exploited further by the fusion materials community for timely materials solutions for a DEMO reactor. In order to integrate these materials research fields, FEMaS acted as a co-organizer for the 2011 workshop and successfully introduced a number of participants from research labs and universities into the PFMC community. Plasma-facing materials experience particularly hostile conditions as they are

  9. Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Wang, Hui-Ping; Wang, Xiaojie; Cui, Haichao; Lu, Fenggui

    2015-03-01

    This paper investigates hot cracking rate in Al fiber laser welding under various process conditions and performs corresponding process optimization. First, effects of welding process parameters such as distance between welding center line and its closest trim edge, laser power and welding speed on hot cracking rate were investigated experimentally with response surface methodology (RSM). The hot cracking rate in the paper is defined as ratio of hot cracking length over the total weld seam length. Based on the experimental results following Box-Behnken design, a prediction model for the hot cracking rate was developed using a second order polynomial function considering only two factor interaction. The initial prediction result indicated that the established model could predict the hot cracking rate adequately within the range of welding parameters being used. The model was then used to optimize welding parameters to achieve cracking-free welds.

  10. Numerical Simulations of Hot Vertical Displacement Events

    NASA Astrophysics Data System (ADS)

    Bunkers, K. J.; Sovinec, C. R.

    2015-11-01

    Loss of vertical positioning control in tokamaks leads to instability where hot confined plasma rests against the chamber wall. Resistive-MHD modeling with the NIMROD code is applied to model these events. After divertor-coil current is perturbed, resistive diffusion through the non-ideal wall sets the timescale as the simulated tokamak evolves from a diverted equilibrium to a limited configuration. Results show that plasma outflow along opening magnetic surfaces, just outside the confinement zone, approaches the local ion-acoustic speed. The projection of the plasma flow velocity into the surface-normal direction (n . V) near the surface exceeds the local E × B drift speed; near surfaces n × E is approximately the same as n ×Ewall in the nearly steady conditions. The safety factor of flux surfaces that remain intact is approximately constant over the evolution time, which is much shorter than the plasma resistive diffusion time. Assessment of external-kink stability and initial findings from 3D nonlinear computations are presented. This effort is supported by the U.S. Dept. of Energy, award numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.

  11. Hot section viewing system

    NASA Technical Reports Server (NTRS)

    Morey, W. W.

    1984-01-01

    This report covers the development and testing of a prototype combustor viewing system. The system allows one to see and record images from the inside of an operating gas turbine combustor. The program proceeded through planned phases of conceptual design, preliminary testing to resolve problem areas, prototype design and fabrication, and rig testing. Successful tests were completed with the viewing system in the laboratory, in a high pressure combustor rig, and on a Pratt and Whitney PW20307 jet engine. Both film and video recordings were made during the tests. Digital image analysis techniques were used to enhance images and bring out special effects. The use of pulsed laser illumination was also demonstrated as a means for observing liner surfaces in the presence of luminous flame.

  12. Prometheus Hot Leg Piping Concept

    SciTech Connect

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-30

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  13. Prometheus Hot Leg Piping Concept

    NASA Astrophysics Data System (ADS)

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  14. Promethus Hot Leg Piping Concept

    SciTech Connect

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  15. Hot Gas Halos in Galaxies

    SciTech Connect

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-06-08

    We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

  16. MRS International Meeting on Advanced Materials, 1st, Tokyo, Japan, June 2, 3, 1988, Proceedings. Volume 4 - Composites corrosion/Coating of advanced materials

    SciTech Connect

    Kimura, Shiushichi; Kobayashi, Akira; Nii, Kazuyoshi; Saito, Yasutoshi; Umekawa, Sokichi.

    1989-01-01

    The present conference on metal-matrix composites (MMCs) and ceramic-matrix composites (CMCs) discusses electrodeposited C/Cu MMCs, the quasi-liquid hot press method for SiC/Al composites, die-cast MMCs for tribological applications, the solidification-processing of monotectic alloy matrix composites, the fracture of SiC whisker-reinforced Al-alloy MMCs, the elastic constants of a graphite/magnesium composite, and an elastoplastic analysis of metal/plastic/metal sandwich plates in three-point bending. Also discussed are the fabrication of diamond particle-dispersed glass composites in space, heat-resistant graphite fiber-reinforced phosphate ceramic CMCs, the high-temperature creep of SiC-reinforced alumina CMCs, flexible carbon fiber-reinforced exfoliated graphite composites, and the application of advanced CMCs to advanced railway systems, the corrosion and oxidation of SiC, Si{sub 3}N{sub 4}, and other structural ceramics, corrosion properties of advanced alloys, and novel coating systems for advanced materials.

  17. Radiative Levitation in Hot White Dwarfs

    NASA Astrophysics Data System (ADS)

    Chayer, P.; Fontaine, G.; Wesemael, F.

    1994-12-01

    We present the results of detailed calculations of radiative levitation in hot white dwarfs using the extensive and homogeneous atomic data given in TOPBASE. Radiative accelerations and equilibrium abundances have been computed for C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, and Fe on grids of pure hydrogen and pure helium stellar envelope models. The DA model grid has log g = 7.0, 7.5, 8.0, and 8.5, and spans the range of effective temperature 100,000 >= Teff >= 20,000 K in steps of 2,500 K. The DO/DB grid is similar but extends to Teff = 130,000 K. We discuss at some length the input physics used in order to provide a good physical understanding of radiative levitation under white dwarf conditions. We also discuss the depth dependence and the morphology of the reservoirs of levitating elements created by an equilibrium between the radiative acceleration and the local effective gravity in various stellar envelopes. The important role played in the morphology of the reservoirs by dominant ionization states in closed-shell electronic configurations is emphasized. Our central results are presented in the form of figures showing the behavior of the expected photospheric abundance of each element as a function of effective temperature and surface gravity. While only a handful of abundances are available from the few analyses of observations that have been carried out, we are nevertheless able to infer through a detailed comparison that equilibrium radiative levitation theory fails to explain the observed abundance patterns of heavy elements in hot white dwarfs. At least one other mechanism must be competing with radiative levitation and gravitational settling in the atmospheres/envelopes of hot white dwarfs. Finally, we indicate promising avenues for further progress in spectral evolution theory for white dwarfs. This work has been supported by NASA contract NAS5-30180.

  18. Hot conditioning equipment conceptual design report

    SciTech Connect

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  19. Menopausal hot flashes: Randomness or rhythmicity

    NASA Astrophysics Data System (ADS)

    Kronenberg, Fredi

    1991-10-01

    Menopausal hot flashes are episodes of flushing, increased heart rate, skin blood flow and skin temperature, and a sensation of heat. The thermoregulatory and cardiovascular concomitants of hot flashes are associated with peaks in the levels of various hormones and neurotransmitters in the peripheral circulation. Although hot flashes affect about 75% of women, and are the primary reason that women at menopause seek medical attention, the mechanism of hot flashes is still not understood. Hot flashes vary in frequency and intensity both within and between individuals, and have been thought of as occurring randomly. Yet, some women report that their hot flashes are worse at a particular time of day or year. Initial examination of subjects' recordings of their hot flashes showed diurnal patterns of hot flash occurrence. There also seems to be a diurnal rhythm of hot flash intensity. Continuous physiological monitoring of hot flashes is facilitating the analysis of these patterns, which is revealing circadian and ultradian periodicities. The occurrence of hot flashes can be modulated by external and internal factors, including ambient temperature and fever. Rhythms of thermoregulatory and endocrine functions also may influence hot flash patterns. Examination of the interrelationships between the various systems of the body involved in hot flashes, and a multidisciplinary approach to the analysis of hot flash patterns, will aid our understanding of this complex phenomenon.

  20. [The flagship of the national naval medical science (on the 80th anniversary of establishment of the 1st Central Research Institute of the Defense Ministry of Russian Federation)].

    PubMed

    Chumakov, Vl V; Arkhipov, A V; Borodavko, V K; Vasil'kov, A M; Groshilin, S M; Ivanov, A O; Smurov, A V

    2013-02-01

    The article is devoted to the 80th anniversary of the formation of the naval medical science subunit, which is the part of the 1st Central Research Institute of the Defense Ministry of Russian Federation. In the 30th years of XX century, a group of naval doctors formulated the main directions of preventive naval medicine. For eight decades, several generations of medical scientists have developed and ensured implementation of regulatory requirements for habitability and ergonomics of Navy ships. At the present stage, this work focuses on promising directions of the development of the domestic military shipbuilding and the use of advanced and innovative biomedical technologies. PMID:23808207

  1. The Hospital Microbiome Project: Meeting Report for the 1st Hospital Microbiome Project Workshop on sampling design and building science measurements, Chicago, USA, June 7th-8th 2012

    PubMed Central

    Smith, Daniel; Alverdy, John; An, Gary; Coleman, Maureen; Garcia-Houchins, Sylvia; Green, Jessica; Keegan, Kevin; Kelley, Scott T.; Kirkup, Benjamin C.; Kociolek, Larry; Levin, Hal; Landon, Emily; Olsiewski, Paula; Knight, Rob; Siegel, Jeffrey; Weber, Stephen; Gilbert, Jack

    2013-01-01

    This report details the outcome of the 1st Hospital Microbiome Project workshop held on June 7th-8th, 2012 at the University of Chicago, USA. The workshop was arranged to determine the most appropriate sampling strategy and approach to building science measurement to characterize the development of a microbial community within a new hospital pavilion being built at the University of Chicago Medical Center. The workshop made several recommendations and led to the development of a full proposal to the Alfred P. Sloan Foundation as well as to the creation of the Hospital Microbiome Consortium. PMID:23961316

  2. Development of a microbial population within a hot-drinks vending machine and the microbial load of vended hot chocolate drink.

    PubMed

    Hall, A; Short, K; Saltmarsh, M; Fielding, L; Peters, A

    2007-09-01

    In order to understand the development of the microbial population within a hot-drinks vending machine a new machine was placed in a staff area of a university campus vending only hot chocolate. The machine was cleaned weekly using a detergent based protocol. Samples from the mixing bowl, dispense area, and drink were taken over a 19-wk period and enumerated using plate count agar. Bacillus cereus was identified using biochemical methods. Vended drinks were sampled at 0, 3, 6, and 9 min after vending; the hot chocolate powder was also sampled. Over the 1st 8 wk, a significant increase in the microbial load of the machine components was observed. By the end of the study, levels within the vended drink had also increased significantly. Inactivation of the automatic flush over a subsequent 5-wk period led to a statistically but not operationally significant increase in the microbial load of the dispense area and vended drink. The simple weekly clean had a significant impact on the microbial load of the machine components and the vended drink. This study demonstrated that a weekly, detergent-based cleaning protocol was sufficient to maintain the microbial population of the mixing bowl and dispense point in a quasi-steady state below 3.5 log CFU/cm2 ensuring that the microbial load of the vended drinks was maintained below 3.4 log CFU/mL. The microbial load of the drinks showed no significant changes over 9 min after vending, suggesting only spores are present in the final product. PMID:17995650

  3. Transient hot-film sensor response in a shock tube

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ortgies, K. R.; Gartenberg, E.

    1989-01-01

    Shock tube experiments were performed to determine the response of a hot-film sensor, mounted flush on the side wall of a shock tube, to unsteady flow behind a normal shock wave. The present experiments attempt to isolate the response of the anemometer due only to the change in convective heat transfer at the hot-film surface. The experiments, performed at low supersonic shock speeds in air, are described along with the data acquisition procedure. The change in convective heat transfer is deduced from the data and the results are compared with those from transient boundary layer theory and another set of experimental results. Finally, a transient local heat transfer coefficient is formulated for use as the forcing function in a hot-film sensor instrument model simulation.

  4. Plasmonic Hot Carrier Transport and Collection in Nanostructures

    NASA Astrophysics Data System (ADS)

    Jermyn, Adam; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William; Atwater, Harry; Joint CenterArtificial Photosynthesis Collaboration

    2015-03-01

    Plasmonic resonances provide a promising pathway for efficiently capturing photons from solar radiation and improving photo-catalytic activity via hot carrier generation. Previous calculations have provided the prompt energy-momentum distributions of hot carriers, but have left open the question of their transport to collection surfaces [Accepted in Nature Communications]. As the overall efficiency of plasmonic devices is dependent not just on how many carriers are collected but also on their energy distribution, a transport model which tracks this distribution is of key importance. Here, we provide a first-principles model of this transport based upon at the linearized Boltzmann equation with the diffusive and ballistic regimes handled separately, and investigate the role of geometry on plasmonic hot carrier collection.

  5. Crack toughness evaluation of hot pressed and forged beryllium

    NASA Technical Reports Server (NTRS)

    Jones, M. H.; Bubsey, R. T.; Brown, W. F., Jr.

    1971-01-01

    Beryllium fracture toughness test specimens were fatigue cracked using reversed cycling with a compression load two to three times the tension load. In worked beryllium, textures may be produced which result in fatigue cracks that are out of plane with the starter notch. Specimens of hot pressed stock exhibited load displacement records which were nonlinear throughout their course. Fracture specimens of both hot pressed and forged stock showed essentially no reduction of thickness and the fracture surfaces were flat and normal to the load axis. However, the stress intensity factor at maximum load increased with decreasing thickness. Load-displacement and electric potential records for the hot pressed beryllium specimens exhibited several anomalies such as negative residual crack mouth displacements and a decrease in electrical potential with increasing load.

  6. Is hot water immersion an effective treatment for marine envenomation?

    PubMed Central

    Atkinson, P R T; Boyle, A; Hartin, D; McAuley, D

    2006-01-01

    Envenomation by marine creatures is common. As more people dive and snorkel for leisure, the incidence of envenomation injuries presenting to emergency departments has increased. Although most serious envenomations occur in the temperate or tropical waters of the Indo‐Pacific region, North American and European waters also provide a habitat for many stinging creatures. Marine envenomations can be classified as either surface stings or puncture wounds. Antivenom is available for a limited number of specific marine creatures. Various other treatments such as vinegar, fig juice, boiled cactus, heated stones, hot urine, hot water, and ice have been proposed, although many have little scientific basis. The use of heat therapies, previously reserved for penetrating fish spine injuries, has been suggested as treatment for an increasing variety of marine envenomation. This paper reviews the evidence for the effectiveness of hot water immersion (HWI) and other heat therapies in the management of patients presenting with pain due to marine envenomation. PMID:16794088

  7. Recent advances in high temperature instrumentation for hot section applications

    NASA Technical Reports Server (NTRS)

    Englund, David R.; Seasholtz, Richard G.

    1988-01-01

    Programs to develop research instrumentation for use in turbine engine hot sections are described. These programs were initiated to provide improved measurements capability as support for a multidisciplinary effort to establish technolgy leading to improved hot section durability. Specific measurement systems described here include heat flux sensors, a dynamic gas temperature measuring system, laser anemometry for hot section applications, an optical system for viewing the interior of a combustor during operation, thin film sensors for surface temperature and strain measurements, and high temperature strain measuring systems. The paper describes the state of the development of these sensors and measuring systems and, in some cases, will show examples of measurements made with this instrumentation.The paper covers work done at the NASA Lewis Research Center and at various contract and grant facilities.

  8. Unifying the controlling mechanisms for the critical heat flux and quenching: The ability of liquid to contact the hot surface. Part 3, The influence of dry-patch shape and multiple-patch interaction

    SciTech Connect

    Unal, C.; Sadasivan, P.; Nelson, R.A.

    1993-07-01

    In earlier work, we proposed a hypothesis for the occurrence of critical heat flux (CHF) during pool boiling of saturated liquids. According to this gypothesis, CHF occurs when some portion of the heater surface drives and a local point with this dry patch reaches a critical rewetting temperature, beyond which liquid an no longer contact that point. In this paper, the effects of dry-patch shape and multiple-patch interactions on the critical rewetting temperature have been investigated.

  9. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center (ESTSC)

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  10. Solar hot-water system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design data brochure describes domestic solar water system that uses direct-feed system designed to produce 80 gallons of 140 F hot water per day to meet needs of single family dwelling. Brochure also reviews annual movements of sun relative to earth and explains geographic considerations in collector orientation and sizing.

  11. Enviropower hot gas desulfurization pilot

    SciTech Connect

    Ghazanfari, R.; Feher, G.; Konttinen, J.; Ghazanfari, R.; Lehtovaara, A.; Mojtahedi, W.

    1994-11-01

    The objectives of the project are to develop and demonstrate (1) hydrogen sulfide removal using regenerable zinc titanate sorbent in pressurized fluidized bed reactors, (2) recovery of the elemental sulfur from the tail-gas of the sorbent regenerator and (3) hot gas particulate removal system using ceramic candle filters. Results are presented on pilot plant design and testing and modeling efforts.

  12. Production of hot-wires

    NASA Astrophysics Data System (ADS)

    Dickinson, S. C.

    1983-04-01

    Several methods for producing hot-wire probes are described. Discussion includes the manufacture of probe bodies, soldering plated wires to the prongs etching Walaston type wires, and finishing the probe. This report is written as an instruction manual for researchers who desire to produce or repair their own sensors.

  13. Solar Technician Program Blows Hot

    ERIC Educational Resources Information Center

    Ziegler, Peg Moran

    1977-01-01

    A training program for solar heating technicians was initiated at Sonoma State College's School of Environmental Studies for CETA applicants. Among the projects designed and built were a solar alternative energy center, a solar hot water system, and a solar greenhouse. (MF)

  14. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  15. Origins of Hot Jupiters, Revisited

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Greg

    2015-12-01

    Hot Jupiters, giant extrasolar planets with orbital periods less than ~10 days, have long been thought to form at large radial distances (a > 2AU) in protostellar disks, only to subsequently experience large-scale inward migration to the small orbital radii at which they are observed. Here, we propose that a substantial fraction of the hot Jupiter population forms in situ, with the Galactically prevalent short-period super-Earths acting as the source population. Our calculations suggest that under conditions appropriate to the inner regions of protostellar disks, rapid gas accretion can be initiated for solid cores of 10-20 Earth masses, in line with the conventional picture of core-nucleated accretion. This formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional planets, reminiscent of those observed in large numbers by NASA’s Kepler Mission and Doppler velocity surveys. However, dynamical interactions during the early stages of planetary systems' evolutionary lifetimes tend to increase the mutual inclinations of exterior, low-mass companions to hot Jupiters, making transits rare. High-precision radial velocity monitoring provides the best prospect for their detection.

  16. Origins of Hot Jupiters, Revisited

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Greg

    2016-05-01

    Hot Jupiters, giant extrasolar planets with orbital periods less than ~10 days, have long been thought to form at large radial distances (a > 2AU) in protoplanetary disks, only to subsequently experience large-scale inward migration to the small orbital radii at which they are observed. Here, we propose that a substantial fraction of the hot Jupiter population forms in situ, with the Galactically prevalent short-period super-Earths acting as the source population. Our calculations suggest that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated for solid cores of 10-20 Earth masses, in line with the conventional picture of core-nucleated accretion. The planetary conglomeration process, coupled with subsequent gravitational contraction and spin down of the host star, drives sweeping secular resonances through the system, increasing the mutual inclinations of exterior, low-mass companions to hot Jupiters. Accordingly, this formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional non-transiting planets, reminiscent of those observed in large numbers by NASA’s Kepler Mission and Doppler velocity surveys. High-precision radial velocity monitoring provides the best prospect for their detection.

  17. Method and tank for producing hot briquettes

    SciTech Connect

    Birscheidt, H.; Brasseur, Y.; Dungs, H.; Ferdinand, F.; Weber, H.

    1981-02-03

    A method for producing hot briquettes, for example, for use in blast furnaces, and using a briquetting material of non-caking components, such as low temperature coke from bituminous coal and/or lignite, coke dust and/or oil coke and caking fat coal at temperatures between 430* C. And 540* C. is described. The briquetting material is delivered to a briquetting press to form briquette blanks, tempering and degassing the blanks, by delivering the blanks into individual chambers in a closed system of several chambers having gas communication with each other so that there is partly changing amounts of gas generated in the individual chambers. The briquette blanks are formed into tempered briquettes. An overpressure is applied to the chambers to conduct the gases away from the chamber with one and the same overpressure. The equipment for the execution of the method comprises a hardening system in the form of a single cube-shaped tank having one corner which is inclined downwardly and which is divided into several substantially parallel narrow chambers by walls which are disposed parallel to the inclined outer surface and which has a channel above an upper lateral edge for charging hot briquettes into the individual chambers and also for conducting away gases formed during tempering in a path diagonally opposite to the charging channel. An emptying channel is located under the lower lateral edge of the tank.

  18. ATMOSPHERES OF HOT SUPER-EARTHS

    SciTech Connect

    Castan, Thibaut; Menou, Kristen

    2011-12-20

    Hot super-Earths likely possess minimal atmospheres established through vapor saturation equilibrium with the ground. We solve the hydrodynamics of these tenuous atmospheres at the surface of CoRot-7b, Kepler-10b, and 55 Cnc-e, including idealized treatments of magnetic drag and ohmic dissipation. We find that atmospheric pressures remain close to their local saturation values in all cases. Despite the emergence of strongly supersonic winds which carry sublimating mass away from the substellar point, the atmospheres do not extend much beyond the day-night terminators. Ground temperatures, which determine the planetary thermal (infrared) signature, are largely unaffected by exchanges with the atmosphere and thus follow the effective irradiation pattern. Atmospheric temperatures, however, which control cloud condensation and thus albedo properties, can deviate substantially from the irradiation pattern. Magnetic drag and ohmic dissipation can also strongly impact the atmospheric behavior, depending on atmospheric composition and the planetary magnetic field strength. We conclude that hot super-Earths could exhibit interesting signatures in reflection (and possibly in emission) which would trace a combination of their ground, atmospheric, and magnetic properties.

  19. Burning HOT: revisiting guidelines associated with home oxygen therapy

    PubMed Central

    Litt, Elizabeth J; Ziesche, Rolf; Happak, Wolfgang; Lumenta, David Benjamin

    2012-01-01

    Burn injuries secondary to home oxygen therapy (HOT) have become increasingly common in recent years, yet several guidelines for HOT and chronic obstructive pulmonary disease (COPD) neglect to stress the dangers of open flames. This retrospective review of burn injury admissions secondary to HOT to our burn centre from 2007 to 2012 aimed to establish the extent of this problem and to discuss the current literature and a selection of national guidelines. Out of six patients (five female, one male) with a median age of 72 (range 58-79), four were related to smoking, and two due to lighting candles. The mean total body surface area (TBSA) affected was 17% (range 2-60%). Five patients sustained facial burns, two suffered from inhalation injury (33.3%), and five required surgery (83.3%). Mean total length of stay was 20 days (range 8 to 33), and one patient died. Although mentioned in the majority, some guidelines fail to address the issue of smoking in light of the associated risk for injury, which in turn might have future implications in litigation related to iatrogenic injuries. Improved HOT guidelines will empower physicians to discourage smoking, and fully consider the risks versus benefits of home oxygen before prescription. With a view on impeding a rising trend of burns secondary to HOT, we suggest revision to national guidelines, where appropriate. PMID:23272298

  20. Burns from hot oil and grease: a public health hazard.

    PubMed

    Schubert, W; Ahrenholz, D H; Solem, L D

    1990-01-01

    We examined the incidence, etiology, and morbidity of burns due to hot oil and grease. Over a 10-year period from 1976 to 1985, of 1818 patients hospitalized for burns, 85 (4.7%) injuries were due to hot grease or oil. The mean age was 20 years; 34% of patients were less than 8 years old. The mean total body surface areas of second- and third-degree burns was 11.5% (range 0.5% to 40%), and the average length of hospital stay was 19.6 days. Fifty-eight percent of patients required split-thickness skin grafting (n = 49), three required intubation, and one required tracheostomy. Seventy-eight percent of oil burns occurred in the home. The most common circumstances consisted of children who grabbed the handle or electric cord of a frying pan and pulled the hot oil down onto themselves. (Nineteen of the 29 children were less than 8 years old (66%).) Burns due to cooking oil and grease are associated with considerable morbidity. The high boiling point, high viscosity, and potential combustibility of oil increase the potential soft-tissue damage when compared with typical scald injuries from hot water. The dangers of children pulling on the appliance, the dangers of transporting hot oil, the importance of supervision while children are cooking, and the importance of knowledge of the management of grease fires is stressed. Public education is needed to underline the potential seriousness of these burns. PMID:2286612