Science.gov

Sample records for hot tnh qut

  1. Geography at QUT: Evolution of a Discipline

    ERIC Educational Resources Information Center

    Childs, Iraphne R. W.; Hastings, Peter A.

    2007-01-01

    The paper focuses on the constraints encountered in developing and introducing a geography discipline programme, with a distinctive regional focus, within a university of technology. Through a case study approach, the analysis relates the development of geography at Queensland University of Technology (QUT) to changes in geographical education in…

  2. Hot Canyon

    SciTech Connect

    2012-01-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  3. Hot Tickets

    ERIC Educational Resources Information Center

    Fox, Bette-Lee; Hoffert, Barbara; Kuzyk, Raya; McCormack, Heather; Williams, Wilda

    2008-01-01

    This article describes the highlights of this year's BookExpo America (BEA) held at the Los Angeles Convention Center. The attendees at BEA had not minded that the air was recycled, the lighting was fluorescent, and the food was bad. The first hot book sighting came courtesy of Anne Rice. Michelle Moran, author of newly published novel, "The…

  4. Hot Canyon

    ScienceCinema

    None

    2013-03-01

    This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  5. Hot Meetings

    NASA Technical Reports Server (NTRS)

    Chiu, Mary

    2002-01-01

    A colleague walked by my office one time as I was conducting a meeting. There were about five or six members of my team present. The colleague, a man who had been with our institution (The Johns Hopkins Applied Physics Lab, a.k.a. APL) for many years, could not help eavesdropping. He said later it sounded like we we re having a raucous argument, and he wondered whether he should stand by the door in case things got out of hand and someone threw a punch. Our Advanced Composition Explorer (ACE) team was a hot group, to invoke the language that is fashionable today, although we never thought of ourselves in those terms. It was just our modus operandi. The tenor of the discussion got loud and volatile at times, but I prefer to think of it as animated, robust, or just plain collaborative. Mary Chiu and her "hot" team from the Johns Hopkins Applied Physics Laboratory built the Advanced Composition Explorer spacecraft for NASA. Instruments on the spacecraft continue to collect data that inform us about what's happening on our most important star, the Sun.

  6. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  7. Hot Spot at Yellowstone

    ERIC Educational Resources Information Center

    Dress, Abby

    2005-01-01

    Within this huge national park (over two million acres spread across Wyoming, Montana, and Idaho) are steaming geysers, hot springs, bubbling mudpots, and fumaroles, or steam vents. Drives on the main roads of Yellowstone take tourists through the major hot attractions, which also include Norris Geyser Basin, Upper and Lower Geyser Basin, West…

  8. The Earth's Hot Spots.

    ERIC Educational Resources Information Center

    Vink, Gregory E.; And Others

    1985-01-01

    Hot spots are isolated areas of geologic activity where volcanic eruptions, earthquakes, and upwelling currents occur far from plate boundaries. These mantle plumes are relatively stable and crustal plates drift over them. The nature and location of hot spots (with particular attention to the Hawaiian Islands and Iceland) are discussed. (DH)

  9. 6. HOT AIR PORTION OF DAMPERS. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. HOT AIR PORTION OF DAMPERS. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  10. In hot water, again

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Watkins, Sheila

    2009-10-01

    Regarding Norman Willcox's letter about the problems of using solar panels for domestic heating (August p21), I also have thermal solar panels installed. However, contrary to his disappointing experience, I have found that they provide my family with a useful amount of hot water. In our system, the solar energy is used to heat a store of water, which has no other source of heat. Mains-pressure cold water passes through this store via a heat exchanger, removing heat from it and warming up. If the water becomes warm enough, an unpowered thermostatic valve allows it to go straight to the hot taps (mixing it with cold if it is too hot). However, if it is not hot enough, then the water is directed first through our previously installed gaspowered combination boiler and then to the taps.

  11. Reactor hot spot analysis

    SciTech Connect

    Vilim, R.B.

    1985-08-01

    The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

  12. Saturn's Hot Plasma Explosions

    NASA Video Gallery

    This animation based on data obtained by NASA's Cassini Spacecraft shows how the "explosions" of hot plasma on the night side (orange and white) periodically inflate Saturn's magnetic field (white ...

  13. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center (ESTSC)

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  14. IR Hot Wave

    SciTech Connect

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  15. Hot Oil Removes Wax

    NASA Technical Reports Server (NTRS)

    Herzstock, James J.

    1991-01-01

    Mineral oil heated to temperature of 250 degrees F (121 degrees C) found effective in removing wax from workpieces after fabrication. Depending upon size and shape of part to be cleaned of wax, part immersed in tank of hot oil, and/or interior of part flushed with hot oil. Pump, fittings, and ancillary tooling built easily for this purpose. After cleaning, innocuous oil residue washed off part by alkaline aqueous degreasing process. Serves as relatively safe alternative to carcinogenic and environmentally hazardous solvent perchloroethylene.

  16. Zen Hot Dog Molecules

    ERIC Educational Resources Information Center

    Ryan, Dennis

    2009-01-01

    Substituted cycloalkanes with one branch illustrating each topic in an instructional unit can serve as summaries or reviews in courses of organic chemistry. The hungry Zen master told the hot dog vendor to make him one with everything. You can do the same for your students.

  17. Zen Hot Dog Molecules

    NASA Astrophysics Data System (ADS)

    Ryan, Dennis

    2009-04-01

    Substituted cycloalkanes with one branch illustrating each topic in an instructional unit can serve as summaries or reviews in courses of organic chemistry. The hungry Zen master told the hot dog vendor to make him one with everything. You can do the same for your students.

  18. Hot off the Press

    ERIC Educational Resources Information Center

    Brisco, Nicole D.

    2007-01-01

    In the past, the newspaper was one of the world's most used sources of information. Recently, however, its use has declined due to the popularity of cable television and the Internet. Yet the idea of reading the morning paper with a hot cup of coffee holds many warm memories for children who watched their parents in this daily ritual. In this…

  19. Horseshoe pitchers' hot hands.

    PubMed

    Smith, Gary

    2003-09-01

    Gilovich, Vallone, and Tversky's (1985) analysis of basketball data indicates that a player's chances of making a shot are not affected by the results of earlier shots. However, their basketball data do not control for several confounding influences. An analysis of horseshoe pitching, which does not have these defects, indicates that players do have modest hot and cold spells. PMID:14620374

  20. Hot piston ring tests

    NASA Technical Reports Server (NTRS)

    Allen, David J.; Tomazic, William A.

    1987-01-01

    As part of the DOE/NASA Automotive Stirling Engine Project, tests were made at NASA Lewis Research Center to determine whether appendix gap losses could be reduced and Stirling engine performance increased by installing an additional piston ring near the top of each piston dome. An MTI-designed upgraded Mod I Automotive Stirling Engine was used. Unlike the conventional rings at the bottom of the piston, these hot rings operated in a high temperature environment (700 C). They were made of a high temperature alloy (Stellite 6B) and a high temperature solid lubricant coating (NASA Lewis-developed PS-200) was applied to the cylinder walls. Engine tests were run at 5, 10, and 15 MPa operating pressure over a range of operating speeds. Tests were run both with hot rings and without to provide a baseline for comparison. Minimum data to assess the potential of both the hot rings and high temperature low friction coating was obtained. Results indicated a slight increase in power and efficiency, an increase over and above the friction loss introduced by the hot rings. Seal leakage measurements showed a significant reduction. Wear on both rings and coating was low.

  1. HOT GAS CLEANUP PROCESS

    EPA Science Inventory

    The report gives results of a study to identify and classify 22 hot gas cleanup (HGC) processes for desulfurizing reducing gases at above 430 C according to absorbent type into groups employing solid, molten salt, and molten metal absorbents. It describes each process in terms of...

  2. What's Hot? What's Not?

    ERIC Educational Resources Information Center

    Buczynski, Sandy

    2006-01-01

    When Goldilocks finds three bowls of porridge at different temperatures in the three bears' house, she accurately assesses the situation and comes up with one of the most recognizable lines in children's literature," This porridge is too hot; this porridge is too cold; aahh, this porridge is just right!" Goldilocks' famous line is a perfect…

  3. Hot Tub Rash (Pseudomonas Folliculitis)

    MedlinePlus

    ... rash and rashes clinical tools newsletter | contact Share | Hot Tub Rash ( Pseudomonas Folliculitis) Information for adults A ... the skin and small pus-filled lesions. Overview Hot tub rash ( Pseudomonas folliculitis) is an infection of ...

  4. Exercising Safely in Hot Weather

    MedlinePlus

    ... www.nia.nih.gov/Go4Life Exercising Safely in Hot Weather Many people enjoy outdoor activities—walking, gardening, ... older adults and people with health problems. Being hot for too long can cause hyperthermia—a heat- ...

  5. Hot Spring Metagenomics

    PubMed Central

    López-López, Olalla; Cerdán, María Esperanza; González-Siso, María Isabel

    2013-01-01

    Hot springs have been investigated since the XIX century, but isolation and examination of their thermophilic microbial inhabitants did not start until the 1950s. Many thermophilic microorganisms and their viruses have since been discovered, although the real complexity of thermal communities was envisaged when research based on PCR amplification of the 16S rRNA genes arose. Thereafter, the possibility of cloning and sequencing the total environmental DNA, defined as metagenome, and the study of the genes rescued in the metagenomic libraries and assemblies made it possible to gain a more comprehensive understanding of microbial communities—their diversity, structure, the interactions existing between their components, and the factors shaping the nature of these communities. In the last decade, hot springs have been a source of thermophilic enzymes of industrial interest, encouraging further study of the poorly understood diversity of microbial life in these habitats. PMID:25369743

  6. THE HOT CHOCOLATE EFFECT

    SciTech Connect

    Crawford, Frank S.

    1980-12-01

    The "hot chocolate effect" was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the ten percent accuracy of the experiments.

  7. Hot chocolate effect

    SciTech Connect

    Crawford, F.S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  8. Hot Billet Surface Qualifier

    SciTech Connect

    Tzyy-Shuh Chang

    2007-04-30

    OG Technologies, Inc. (OGT), developed a prototype of a Hot Billet Surface Qualifier (“Qualifier”) based on OGT’s patented HotEye™ technology and other proprietary imaging and computing technologies. The Qualifier demonstrated its ability of imaging the cast billets in line with high definition pictures, pictures capable of supporting the detection of surface anomalies on the billets. The detection will add the ability to simplify the subsequent process and to correct the surface quality issues in a much more timely and efficient manner. This is challenging due to the continuous casting environment, in which corrosive water, temperature, vibration, humidity, EMI and other unbearable factors exist. Each installation has the potential of 249,000 MMBTU in energy savings per year. This represents a cost reduction, reduced emissions, reduced water usage and reduced mill scale.

  9. Session: Hot Dry Rock

    SciTech Connect

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  10. The ''hot'' patella

    SciTech Connect

    Kipper, M.S.; Alazraki, N.P.; Feiglin, D.H.

    1982-01-01

    Increased patellar uptake on bone scans is seen quite commonly but the possible or probable etiologies of this finding have not been previously well described. A review of 100 consecutive bone scans showed that the incidence of bilateral ''hot'' patellae is 15%. Identified etiologies include osteoarthritic degenerative disease (35%), fracture, possible metastatic disease, bursitis, Paget's disease, and osteomyelitis. The value of careful history, physical examination, and radiographs is stressed.

  11. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  12. PREFACE: Hot Quarks 2004

    NASA Astrophysics Data System (ADS)

    Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs

    2005-04-01

    Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or

  13. Hot oiling spreadsheet

    SciTech Connect

    Mansure, A.J.

    1996-09-01

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that was distributed as a compiled, public-domain-software spreadsheet. That spreadsheet has evolved into an interactive from on the World Wide Web and has been adapted into a Windows{trademark} program by Petrolite, St. Louis MO. The development of such a tools was facilitated by expressing downhole temperatures in terms of analytic formulas. Considerable algebraic work is required to develop such formulas. Also, the data describing hot oiling is customarily a mixture of practical units that must be converted to a consistent set of units. To facilitate the algebraic manipulations and to assure unit conversions are correct, during development parallel calculations were made using the spreadsheet and a symbolic mathematics program. Derivation of the formulas considered falling film flow in the annulus and started from the transient differential equations so that the effects of the heat capacity of the tubing and casing could be included. While this approach to developing a software product does not have the power and sophistication of a finite element or difference code, it produces a user friendly product that implements the equations solved with a minimum potential for bugs. This allows emphasis in development of the product to be placed on the physics.

  14. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung–Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  15. Hot cell examination table

    DOEpatents

    Gaal, Peter S.; Ebejer, Lino P.; Kareis, James H.; Schlegel, Gary L.

    1991-01-01

    A table for use in a hot cell or similar controlled environment for use in examining specimens. The table has a movable table top that can be moved relative to a table frame. A shaft is fixedly mounted to the frame for axial rotation. A shaft traveler having a plurality of tilted rollers biased against the shaft is connected to the table top such that rotation of the shaft causes the shaft traveler to roll along the shaft. An electromagnetic drive is connected to the shaft and the frame for controllably rotating the shaft.

  16. Hot air drum evaporator

    DOEpatents

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  17. MSFC hot air collectors

    NASA Technical Reports Server (NTRS)

    Anthony, K.

    1978-01-01

    A description of the hot air collector is given that includes a history of development, a history of the materials development, and a program summary. The major portion of the solar energy system cost is the collector. Since the collector is the heart of the system and the most costly subsystem, reducing the cost of producing collectors in large quantities is a major goal. This solar collector is designed to heat air and/or water cheaply and efficiently through the use of solar energy.

  18. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung–Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW

  19. Radiations from hot nuclei

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1993-01-01

    The investigation indicates that nuclei with excitation energy of a few hundred MeV to BeV are more likely to radiate hot nuclear clusters than neutrons. These daughter clusters could, furthermore, de-excite emitting other hot nuclei, and the chain continues until these nuclei cool off sufficiently to evaporate primarily neutrons. A few GeV excited nuclei could radiate elementary particles preferentially over neutrons. Impact of space radiation with materials (for example, spacecraft) produces highly excited nuclei which cool down emitting electromagnetic and particle radiations. At a few MeV excitation energy, neutron emission becomes more dominant than gamma-ray emission and one often attributes the cooling to take place by successive neutron decay. However, a recent experiment studying the cooling process of 396 MeV excited Hg-190 casts some doubt on this thinking, and the purpose of this investigation is to explore the possibility of other types of nuclear emission which might out-compete with neutron evaporation.

  20. Hot, Dry and Cloudy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Hot, Dry and Cloudy

    This artist's concept shows a cloudy Jupiter-like planet that orbits very close to its fiery hot star. NASA's Spitzer Space Telescope was recently used to capture spectra, or molecular fingerprints, of two 'hot Jupiter' worlds like the one depicted here. This is the first time a spectrum has ever been obtained for an exoplanet, or a planet beyond our solar system.

    The ground-breaking observations were made with Spitzer's spectrograph, which pries apart infrared light into its basic wavelengths, revealing the 'fingerprints' of molecules imprinted inside. Spitzer studied two planets, HD 209458b and HD 189733b, both of which were found, surprisingly, to have no water in the tops of their atmospheres. The results suggest that the hot planets are socked in with dry, high clouds, which are obscuring water that lies underneath. In addition, HD209458b showed hints of silicates, suggesting that the high clouds on that planet contain very fine sand-like particles.

    Capturing the spectra from the two hot-Jupiter planets was no easy feat. The planets cannot be distinguished from their stars and instead appear to telescopes as single blurs of light. One way to get around this is through what is known as the secondary eclipse technique. In this method, changes in the total light from a so-called transiting planet system are measured as a planet is eclipsed by its star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone.

    This technique, first used by Spitzer in 2005 to directly detect the light from an exoplanet, currently only works at infrared wavelengths, where the differences in brightness between the planet and star are less, and the planet's light is easier to pick out. For example, if the experiment had been done in visible light, the total light from the system would appear to be unchanged

  1. ZBLAN glass synthesis in reduced gravity at the QUT Drop Tower Facility

    NASA Astrophysics Data System (ADS)

    Castillo, Martin; Steinberg, Theodore; Ong, Teng-Cheong

    Silica fibers are currently limited by having a relatively small bandwidth. The theoretical loss within silica glass is {raise.17exscriptstyle˜}0.14 dB/km at a wavelength of 1.55 µm, however the practical lowest loss of fused silica glass fiber is {raise.17exscriptstyle˜}0.2 dB/km [1]. Therefore, a silica glass fiber can transmit irradiation by a 1.5 µm wavelength InGaAsP semiconductor laser at a distance of 15 to 25 km. The strength of the laser beam damps down at a distance of more than 15 to 25 km due to scattering losses and an associated increase in noise to signal ratio. To transmit significant amounts of data without noise, an extremely low-loss optical waveguide is needed to replace silica glass fibers. Fluoride glass fibers are considered to be the most promising candidate for an extremely low-loss optical waveguide. The theoretical loss of typical fluoride glass, ZBLAN (53ZrF_{text{4}}-20BaF_{text{2}}-4LaF_{text{3}}-3AlF_{text{3}}-20NaF) glass, is less than 0.01 and greater than 0.001 dB/km. This value is in excess of 100 times lower than that of fused silica fibers because of low Rayleigh scattering within the fiber. However, the losses of fabricated fluoride glass fibers are rather high and {raise.17exscriptstyle˜}0.65 dB/km are reported as the best data transfer rates at present [1]. One of the causes of these high losses in silica fibers is thought to be the excess scattering loss induced by crystallites which were nucleated inside the glasses by the reheating around fiber-drawing temperatures. In general, the temperature of glass transition of fluoride glasses is {raise.17exscriptstyle˜}259ºC and is lower than the onset of the melting temperature of {raise.17exscriptstyle˜}360ºC. This means fluoride glasses can crystallize easily. It is proposed that crystallization is caused by the viscoelastic forces between the dense elements settling in the glass at different rates due to gravity. In reduced gravity, convection in the glass melt is suppressed and liquid-state components with different specific gravities in ZBLAN glass are dispersed uniformly in the melt. The viscoelastic forces that lead to crystallization are thus eliminated in reduced gravity conditions and lead to the production of improved glass fibers for data transmission with reduced losses. Reduced gravity experiments have been conducted within the 21.3 m {raise.17exscriptstyle˜}2.1 s Queensland University of Technology Drop Tower. An experimental platform has been constructed to heat glasses at 3,000ºC/s and cool at 1,000ºC/s. The experimental platform has been characterized and preliminary testing of ZBLAN glass has begun. The rapid reheating and cooling in microgravity are proposed to suppress the nucleation of fine crystallites in ZBLAN glass. [1] J.A. Harrington, Infrared Fibers and Their Applications, SPIE—The International Society for Optical Engineering, SPIE Press, Bellingham, Washington, USA, 1942.

  2. TRUEX hot demonstration

    SciTech Connect

    Chamberlain, D.B.; Leonard, R.A.; Hoh, J.C.; Gay, E.C.; Kalina, D.G.; Vandegrift, G.F.

    1990-04-01

    In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility.

  3. Response of hot nuclei

    SciTech Connect

    Broglia, R.A.

    1986-01-01

    The dipole giant resonance is reviewed, as it is the only vibration which has been experimentally identified in the decay of hot nuclei. The mechanism of exciting the resonance and the mode of the resonance are described. The methods used to calculate the vibrations from the shell model are discussed, including the Hartree-Fock approximation and random phase approximation. Nuclei formed by compound nuclear reactions, which possess high excitation energy and angular momentum, are considered. It is argued that the stability of the dipole may be used to advantage in the study of other properties of nuclei at high excitation. It is also considered possible that the discussion of the dipole giant resonance may be extended to the gamma decay of the isovector quadrupole vibration. 26 refs., 18 figs. (LEW)

  4. SOURCE ASSESSMENT: ASPHALT HOT MIX

    EPA Science Inventory

    This report summarizes data on air emissions from the asphalt hot mix industry. A representative asphalt hot mix plant was defined, based on the results of an industrial survey, to assess the severity of emissions from this industry. Source severity was defined as the ratio of th...

  5. Hot hollow cathode gun assembly

    DOEpatents

    Zeren, J.D.

    1983-11-22

    A hot hollow cathode deposition gun assembly includes a hollow body having a cylindrical outer surface and an end plate for holding an adjustable heat sink, the hot hollow cathode gun, two magnets for steering the plasma from the gun into a crucible on the heat sink, and a shutter for selectively covering and uncovering the crucible.

  6. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic. The region where the jets collide with the intergalactic medium are known as " hot spots ". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 µm) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 µm) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image. This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far . The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites . The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations. The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active

  7. Really Hot Stars

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Spectacular VLT Photos Unveil Mysterious Nebulae Summary Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme. PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99

  8. OT2_rvisser_2: Hot water in hot cores

    NASA Astrophysics Data System (ADS)

    Visser, R.

    2011-09-01

    As matter flows from the ice-cold envelope onto a forming protostar, it heats up from temperatures of 10 K to more than 100 K. The region where the temperature exceeds 100 K (the hot core or hot corino) is where the molecular envelope connects with both the seedling circumstellar disk and the bipolar outflow. As the envelope contracts from larger scales, a lot of material passes through the hot core before accreting onto the disk. The hot core is therefore a crucial step in establishing the physical and chemical properties of planetary building blocks. However, little is yet known about hot cores. How large and how massive are they? How hot are they? Are they exposed to strong UV or X-ray fluxes? We propose the rotationally excited 3(12)-3(03) line of H2-18O at 1095.6 GHz (E_up = 249 K) as a novel probe into the properties of hot cores. This line was detected as a narrow emission feature (FWHM ~4 km/s) in a deep integration (5 hr) in the Class 0 protostar NGC1333 IRAS2A. Comparing the line intensity to radiative transfer models, we find a tentative H2-16O hot core abundance of 4x10^-6. This is a factor of 50 lower than one would expect from simple evaporation of water ice above 100 K. Why is the hot core of IRAS2A so much "drier" than expected? Is most of the water destroyed by UV photons and/or X-rays? We propose to measure the water abundance in the hot cores of a sample of five additional Class 0 and I protostars by obtaining deep integrations of the 3(12)-3(03) lines of H2-16O and H2-18O. This mini-survey will reveal whether NGC1333 IRAS2A is unique in having a "dry" hot core, or whether "dry" hot cores are a common feature of low-mass embedded protostars. If they are a common feature, it means they are a more hostile environment than previously thought, with high fluxes of destructive UV photons and X-rays.

  9. Hot Hydrogen Test Facility

    SciTech Connect

    W. David Swank

    2007-02-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant’s absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500°C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  10. Composite hot drape forming

    NASA Astrophysics Data System (ADS)

    Ott, Thomas

    1994-02-01

    This program was initiated to replace labor-intensive ply-by-ply layup of composite I-beam posts and angle stiffeners used in the Space Station Freedom (SSF) rack structure. Hot drape forming (HDF) has been successfully implemented by BCAG for 777 composite I-stringers and by Bell Helicopter/Textron for the V-22 I-stingers. The two companies utilize two vastly different approaches to the I-beam fabrication process. A drape down process is used by Bell Helicopter where the compacted ply charge is placed on top of a forming mandrel and heated. When the heated ply charge reached a set temperature, vacuum pressure is applied and the plies are formed over the mandrel. The BCAG 777 process utilizes an inverted forming process where the ply stack is placed on a forming table and the mandrel is inverted and placed upon the ply stack. A heating and vacuum bladder underneath the ply stack form the play stack up onto the mandrels after reaching the temperature setpoint. Both methods have their advantages, but the drape down process was selected for SSF because it was more versatile and could be fabricated from readily available components.

  11. Saturn's Hot Spot

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is the sharpest image of Saturn's temperature emissions taken from the ground; it is a mosaic of 35 individual exposures made at the W.M. Keck I Observatory, Mauna Kea, Hawaii on Feb. 4, 2004.

    The images to create this mosaic were taken with infrared radiation. The mosaic was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The prominent hot spot at the bottom of the image is right at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected. The tropospheric temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole.

    Ring particles are not at a uniform temperature everywhere in their orbit around Saturn. The ring particles are orbiting clockwise in this image. Particles are coldest just after having cooled down in Saturn's shadow (lower left). As they orbit Saturn, the particles increase in temperature up to a maximum (lower right) just before passing behind Saturn again in shadow.

    A small section of the ring image is missing because of incomplete mosaic coverage during the observing sequence.

  12. Composite hot drape forming

    NASA Technical Reports Server (NTRS)

    Ott, Thomas

    1994-01-01

    This program was initiated to replace labor-intensive ply-by-ply layup of composite I-beam posts and angle stiffeners used in the Space Station Freedom (SSF) rack structure. Hot drape forming (HDF) has been successfully implemented by BCAG for 777 composite I-stringers and by Bell Helicopter/Textron for the V-22 I-stingers. The two companies utilize two vastly different approaches to the I-beam fabrication process. A drape down process is used by Bell Helicopter where the compacted ply charge is placed on top of a forming mandrel and heated. When the heated ply charge reached a set temperature, vacuum pressure is applied and the plies are formed over the mandrel. The BCAG 777 process utilizes an inverted forming process where the ply stack is placed on a forming table and the mandrel is inverted and placed upon the ply stack. A heating and vacuum bladder underneath the ply stack form the play stack up onto the mandrels after reaching the temperature setpoint. Both methods have their advantages, but the drape down process was selected for SSF because it was more versatile and could be fabricated from readily available components.

  13. Really Hot Stars

    NASA Astrophysics Data System (ADS)

    2003-04-01

    Spectacular VLT Photos Unveil Mysterious Nebulae Summary Quite a few of the most beautiful objects in the Universe are still shrouded in mystery. Even though most of the nebulae of gas and dust in our vicinity are now rather well understood, there are some which continue to puzzle astronomers. This is the case of a small number of unusual nebulae that appear to be the subject of strong heating - in astronomical terminology, they present an amazingly "high degree of excitation". This is because they contain significant amounts of ions, i.e., atoms that have lost one or more of their electrons. Depending on the atoms involved and the number of electrons lost, this process bears witness to the strength of the radiation or to the impact of energetic particles. But what are the sources of that excitation? Could it be energetic stars or perhaps some kind of exotic objects inside these nebulae? How do these peculiar objects fit into the current picture of universal evolution? New observations of a number of such unusual nebulae have recently been obtained with the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). In a dedicated search for the origin of their individual characteristics, a team of astronomers - mostly from the Institute of Astrophysics & Geophysics in Liège (Belgium) [1] - have secured the first detailed, highly revealing images of four highly ionized nebulae in the Magellanic Clouds, two small satellite galaxies of our home galaxy, the Milky Way, only a few hundred thousand light-years away. In three nebulae, they succeeded in identifying the sources of energetic radiation and to eludicate their exceptional properties: some of the hottest, most massive stars ever seen, some of which are double. With masses of more than 20 times that of the Sun and surface temperatures above 90 000 degrees, these stars are truly extreme. PR Photo 09a/03: Nebula around the hot star AB7 in the SMC. PR Photo 09b/03: Nebula near the hot Wolf-Rayet star BAT99

  14. Hot Hydrogen Test Facility

    SciTech Connect

    Swank, W. David; Carmack, Jon; Werner, James E.; Pink, Robert J.; Haggard, DeLon C.; Johnson, Ryan

    2007-01-30

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISP. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 deg. C hydrogen flowing at 1500 liters per minute. The facility is intended to test low activity uranium containing materials but is also suited for testing cladding and coating materials. In this first installment the facility is described. Automated data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed.

  15. Neptune's 'Hot' South Pole

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These thermal images show a 'hot' south pole on the planet Neptune. These warmer temperatures provide an avenue for methane to escape out of the deep atmosphere.

    The images were obtained with the Very Large Telescope in Chile, using an imager/spectrometer for mid-infrared wavelengths on Sept. 1 and 2, 2006. The telescope is operated by the European Organization for Astronomical Research in the Southern Hemisphere (known as ESO).

    Scientists say Neptune's south pole is 'hotter' than anywhere else on the planet by about 10 degrees Celsius (50 degrees Fahrenheit). The average temperature on Neptune is about minus 200 degrees Celsius (minus 392 degrees Fahrenheit).

    The upper left image samples temperatures near the top of Neptune's troposphere (near 100 millibar pressure, which is one-tenth the Earth atmospheric pressure at sea level). The hottest temperatures are indicated at the lower part of the image, at Neptune's south pole (see the graphic at the upper right). The lower two images, taken 6.3 hours apart, sample temperatures at higher altitudes in Neptune's stratosphere. They do show generally warmer temperatures near, but not at, the south pole. They also show a distinct warm area which can be seen in the lower left image and rotated completely around the back of the planet and returned to the earth-facing hemisphere in the lower right image.

  16. Solutions for Hot Situations

    NASA Technical Reports Server (NTRS)

    2003-01-01

    From the company that brought the world an integral heating and cooling food service system after originally developing it for NASA's Apollo Program, comes yet another orbital offshoot: a product that can be as thin as paper and as strong as steel. Nextel Ceramic Textiles and Composites from 3M Company offer space-age protection and innovative solutions for hot situations, ranging from NASA to NASCAR. With superior thermal protection, Nextel fabrics, tape, and sleevings outperform other high temperature textiles such as aramids, carbon, glass, and quartz, permitting engineers and manufacturers to handle applications up to 2,500 F (1,371 C). The stiffness and strength of Nextel Continuous Ceramic Fibers make them a great match for improving the rigidity of aluminum in metal matrix composites. Moreover, the fibers demonstrate low shrinkage at operating temperatures, which allow for the manufacturing of a dimensionally stable product. These novel fibers also offer excellent chemical resistance, low thermal conductivity, thermal shock resistance, low porosity, and unique electrical properties.

  17. Techniques for hot structures testing

    NASA Technical Reports Server (NTRS)

    Deangelis, V. Michael; Fields, Roger A.

    1990-01-01

    Hot structures testing have been going on since the early 1960's beginning with the Mach 6, X-15 airplane. Early hot structures test programs at NASA-Ames-Dryden focused on operational testing required to support the X-15 flight test program, and early hot structures research projects focused on developing lab test techniques to simulate flight thermal profiles. More recent efforts involved numerous large and small hot structures test programs that served to develop test methods and measurement techniques to provide data that promoted the correlation of test data with results from analytical codes. In Nov. 1988 a workshop was sponsored that focused on the correlation of hot structures test data with analysis. Limited material is drawn from the workshop and a more formal documentation is provided of topics that focus on hot structures test techniques used at NASA-Ames-Dryden. Topics covered include the data acquisition and control of testing, the quartz lamp heater systems, current strain and temperature sensors, and hot structures test techniques used to simulate the flight thermal environment in the lab.

  18. Hot "spoments" in river networks.

    NASA Astrophysics Data System (ADS)

    Aubeneau, A. F.; Aquino, T.; Bolster, D.; Tank, J. L.; Packman, A. I.

    2014-12-01

    Hot spots and hot moments are usually studied at small scales. These small patches or periods of abnormally high biogeochemical activity have been linked to the interface between the terrestrial and aquatic environments and to the benthic ecotone in streams. Here, we revisit the concepts of hot spots and moments in river networks. We specifically consider cases of carbon and nitrogen cycling and explore the interaction between spatial and temporal signals to identify "hot spoments" in the network. We present field data showing that biogeochemical and hydrological processes alternatively control dissolved carbon and nitrogen fluxes. Field experiments and numerical simulations show that both headwater streams and rivers can be efficient at removing nutrients and carbon from the flowing water, but typically under contrasting climatic forcing. We also present new analytical models leveraging graph theory that describe how different parts of the network are biogeochemically active at different times. Taken together, our results suggest that hot-moments depend on space and hot-spots on time, and vice versa. In other words, unusually high biogeochemical activity may be found in different places at different times along river networks. Our simulations suggest that hot "spoments" impact large scale (spatial and temporal) budgets of carbon and nitrogen export from watersheds.

  19. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES

    SciTech Connect

    Winn, Joshua N.; Albrecht, Simon; Fabrycky, Daniel; Johnson, John Asher

    2010-08-01

    We show that stars with transiting planets for which the stellar obliquity is large are preferentially hot (T{sub eff} > 6250 K). This could explain why small obliquities were observed in the earliest measurements, which focused on relatively cool stars drawn from Doppler surveys, as opposed to hotter stars that emerged more recently from transit surveys. The observed trend could be due to differences in planet formation and migration around stars of varying mass. Alternatively, we speculate that hot-Jupiter systems begin with a wide range of obliquities, but the photospheres of cool stars realign with the orbits due to tidal dissipation in their convective zones, while hot stars cannot realign because of their thinner convective zones. This in turn would suggest that hot Jupiters originate from few-body gravitational dynamics and that disk migration plays at most a supporting role.

  20. Theoretical Modelling of Hot Stars

    NASA Astrophysics Data System (ADS)

    Najarro, F.; Hillier, D. J.; Figer, D. F.; Geballe, T. R.

    1999-06-01

    Recent progress towards model atmospheres for hot stars is discussed. A new generation of NLTE wind blanketed models, together with high S/N spectra of the hot star population in the central parsec, which are currently being obtained, will allow metal abundance determinations (Fe, Si, Mg, Na, etc). Metallicity studies of hot stars in the IR will provide major constraints not only on the theory of evolution of massive stars but also on our efforts to solve the puzzle of the central parsecs of the Galaxy. Preliminary results suggest that the metallicity of the Pistol Star is 3 times solar, thus indicating strong chemical enrichment of the gas in the Galactic Center.

  1. Not so hot "hot spots" in the oceanic mantle.

    PubMed

    Bonath, E

    1990-10-01

    Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle elsewhere in the North Atlantic. However, application of various geothermometers suggests that the temperature of equilibration of peridotites in the mantle was lower, or at least not higher, in the hot spot than elsewhere. The presence of H(2)O-rich metasomatized mantle domains, inferred from peridotite and basalt data, would lower the melting temperature of the hot spot mantle and thereby reconcile its high degree ofmelting with the lack of a mantle temperature anomaly. Thus, some so-called hot spots might be melting anomalies unrelated to abnormally high mantle temperature or thermal plumes. PMID:17808242

  2. Red-Hot Saturn

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These side-by-side false-color images show Saturn's heat emission. The data were taken on Feb. 4, 2004, from the W. M. Keck I Observatory, Mauna Kea, Hawaii. Both images were taken with infrared radiation. The image on the left was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The image on the right was taken at a wavelength of 8 microns and is sensitive to temperatures in Saturn's stratosphere. The prominent hot spot at the bottom of each image is at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected.

    The troposphere temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole. Near 70 degrees latitude, the stratospheric temperature increases even more abruptly from 146 to 150 Kelvin (-197 to -189 degrees Fahrenheit) and then again to 151 Kelvin (-188 degrees Fahrenheit) right at the pole.

    While the rings are too faint to be detected at 8 microns (right), they show up at 17.65 microns. The ring particles are orbiting Saturn to the left on the bottom and to the right on the top. The lower left ring is colder than the lower right ring, because the particles are just moving out of Saturn's shadow where they have cooled off. As they orbit Saturn, they warm up to a maximum just before passing behind Saturn again in shadow.

  3. The decay of hot nuclei

    SciTech Connect

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  4. Do scientists trace hot topics?

    PubMed Central

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects. PMID:23856680

  5. Morpheus Lander Hot Fire Test

    NASA Video Gallery

    This video shows a successful "hot fire" test of the Morpheus lander on February 27, 2012, at the VTB Flight Complex at NASA's Johnson Space Center. The engine burns for an extended period of time ...

  6. Prometheus Hot Leg Piping Concept

    SciTech Connect

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-30

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  7. Prometheus Hot Leg Piping Concept

    NASA Astrophysics Data System (ADS)

    Gribik, Anastasia M.; DiLorenzo, Peter A.

    2007-01-01

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  8. Promethus Hot Leg Piping Concept

    SciTech Connect

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  9. Hot Gas Halos in Galaxies

    SciTech Connect

    Mulchaey, John S.; Jeltema, Tesla E.

    2010-06-08

    We use Chandra and XMM-Newton to study how the hot gas content in early-type galaxies varies with environment. We find that the L{sub X}-L{sub K} relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. This suggests that internal processes such as supernovae driven winds or AGN feedback may expel hot gas from low mass field galaxies. Such mechanisms are less effective in groups and clusters where the presence of an intragroup or intracluster medium may confine outflowing material.

  10. Hot conditioning equipment conceptual design report

    SciTech Connect

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  11. Menopausal hot flashes: Randomness or rhythmicity

    NASA Astrophysics Data System (ADS)

    Kronenberg, Fredi

    1991-10-01

    Menopausal hot flashes are episodes of flushing, increased heart rate, skin blood flow and skin temperature, and a sensation of heat. The thermoregulatory and cardiovascular concomitants of hot flashes are associated with peaks in the levels of various hormones and neurotransmitters in the peripheral circulation. Although hot flashes affect about 75% of women, and are the primary reason that women at menopause seek medical attention, the mechanism of hot flashes is still not understood. Hot flashes vary in frequency and intensity both within and between individuals, and have been thought of as occurring randomly. Yet, some women report that their hot flashes are worse at a particular time of day or year. Initial examination of subjects' recordings of their hot flashes showed diurnal patterns of hot flash occurrence. There also seems to be a diurnal rhythm of hot flash intensity. Continuous physiological monitoring of hot flashes is facilitating the analysis of these patterns, which is revealing circadian and ultradian periodicities. The occurrence of hot flashes can be modulated by external and internal factors, including ambient temperature and fever. Rhythms of thermoregulatory and endocrine functions also may influence hot flash patterns. Examination of the interrelationships between the various systems of the body involved in hot flashes, and a multidisciplinary approach to the analysis of hot flash patterns, will aid our understanding of this complex phenomenon.

  12. Solar Hot Water Hourly Simulation

    Energy Science and Technology Software Center (ESTSC)

    2009-12-31

    The Software consists of a spreadsheet written in Microsoft Excel which provides an hourly simulation of a solar hot water heating system (including solar geometry, solar collector efficiency as a function of temperature, energy balance on storage tank and lifecycle cost analysis).

  13. Solar hot-water system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design data brochure describes domestic solar water system that uses direct-feed system designed to produce 80 gallons of 140 F hot water per day to meet needs of single family dwelling. Brochure also reviews annual movements of sun relative to earth and explains geographic considerations in collector orientation and sizing.

  14. Enviropower hot gas desulfurization pilot

    SciTech Connect

    Ghazanfari, R.; Feher, G.; Konttinen, J.; Ghazanfari, R.; Lehtovaara, A.; Mojtahedi, W.

    1994-11-01

    The objectives of the project are to develop and demonstrate (1) hydrogen sulfide removal using regenerable zinc titanate sorbent in pressurized fluidized bed reactors, (2) recovery of the elemental sulfur from the tail-gas of the sorbent regenerator and (3) hot gas particulate removal system using ceramic candle filters. Results are presented on pilot plant design and testing and modeling efforts.

  15. Production of hot-wires

    NASA Astrophysics Data System (ADS)

    Dickinson, S. C.

    1983-04-01

    Several methods for producing hot-wire probes are described. Discussion includes the manufacture of probe bodies, soldering plated wires to the prongs etching Walaston type wires, and finishing the probe. This report is written as an instruction manual for researchers who desire to produce or repair their own sensors.

  16. Solar Technician Program Blows Hot

    ERIC Educational Resources Information Center

    Ziegler, Peg Moran

    1977-01-01

    A training program for solar heating technicians was initiated at Sonoma State College's School of Environmental Studies for CETA applicants. Among the projects designed and built were a solar alternative energy center, a solar hot water system, and a solar greenhouse. (MF)

  17. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  18. Origins of Hot Jupiters, Revisited

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Greg

    2015-12-01

    Hot Jupiters, giant extrasolar planets with orbital periods less than ~10 days, have long been thought to form at large radial distances (a > 2AU) in protostellar disks, only to subsequently experience large-scale inward migration to the small orbital radii at which they are observed. Here, we propose that a substantial fraction of the hot Jupiter population forms in situ, with the Galactically prevalent short-period super-Earths acting as the source population. Our calculations suggest that under conditions appropriate to the inner regions of protostellar disks, rapid gas accretion can be initiated for solid cores of 10-20 Earth masses, in line with the conventional picture of core-nucleated accretion. This formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional planets, reminiscent of those observed in large numbers by NASA’s Kepler Mission and Doppler velocity surveys. However, dynamical interactions during the early stages of planetary systems' evolutionary lifetimes tend to increase the mutual inclinations of exterior, low-mass companions to hot Jupiters, making transits rare. High-precision radial velocity monitoring provides the best prospect for their detection.

  19. Origins of Hot Jupiters, Revisited

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Bodenheimer, Peter; Laughlin, Greg

    2016-05-01

    Hot Jupiters, giant extrasolar planets with orbital periods less than ~10 days, have long been thought to form at large radial distances (a > 2AU) in protoplanetary disks, only to subsequently experience large-scale inward migration to the small orbital radii at which they are observed. Here, we propose that a substantial fraction of the hot Jupiter population forms in situ, with the Galactically prevalent short-period super-Earths acting as the source population. Our calculations suggest that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated for solid cores of 10-20 Earth masses, in line with the conventional picture of core-nucleated accretion. The planetary conglomeration process, coupled with subsequent gravitational contraction and spin down of the host star, drives sweeping secular resonances through the system, increasing the mutual inclinations of exterior, low-mass companions to hot Jupiters. Accordingly, this formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional non-transiting planets, reminiscent of those observed in large numbers by NASA’s Kepler Mission and Doppler velocity surveys. High-precision radial velocity monitoring provides the best prospect for their detection.

  20. Hot outflows in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, C. C.; McNamara, B. R.

    2015-10-01

    The gas-phase metallicity distribution has been analysed for the hot atmospheres of 29 galaxy clusters using Chandra X-ray Observatory observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the `iron radius') and jet power is found with the form R_Fe ∝ P_jet^{0.45}. The estimated outflow rates are typically tens of solar masses per year but exceed 100 M⊙ yr- 1 in the most powerful AGN. The outflow rates are 10-20 per cent of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at regulating star formation and AGN activity in BCGs and presumably in giant elliptical galaxies. The metallicity distribution overall can be complex, perhaps due to metal-rich gas returning in circulation flows or being blown around in the hot atmospheres. Roughly 15 per cent of the work done by the cavities is expended lifting the metal-enriched gas, implying their nuclear black holes have increased in mass by at least ˜107-109 M⊙. Finally, we show that hot outflows can account for the broad, gas-phase metallicity distribution compared to the stellar light profiles of BCGs, and we consider a possible connection between hot outflows and cold molecular gas flows discovered in recent Atacama Large Millimeter Array observations.

  1. Acord 1-26 hot, dry well, Roosevelt Hot Springs hot dry rock prospect, Utah

    SciTech Connect

    Shannon, S.S. Jr.; Pettitt, R.; Rowley, J.; Goff, F.; Mathews, M.; Jacobson, J.J.

    1983-08-01

    The Acord 1-26 well is a hot, dry well peripheral to the Roosevelt Hot Springs known geothermal resource area (KGRA) in southwestern Utah. The bottom-hole temperature in this 3854-m-deep well is 230/sup 0/C, and the thermal gradient is 54/sup 0/C/km. The basal 685 m, comprised of biotite monzonite and quartz schist and gneiss, is a likely hot, dry rock (HDR) prospect. The hole was drilled in a structural low within the Milford Valley graben and is separated from the Roosevelt KGRA to the east by the Opal Mound Fault and other basin faults. An interpretation of seismic data approximates the subsurface structure around the well using the lithology in the Acord 1-26 well. The hole was drilled with a minimum of difficulty, and casing was set to 2411 m. From drilling and geophysical logs, it is deduced that the subsurface blocks of crystalline rock in the vicinity of the Acord 1-26 well are tight, dry, shallow, impermeable, and very hot. A hydraulic fracture test of the crystalline rocks below 3170 m is recommended. Various downhole tools and techniques could be tested in promising HDR regimes within the Acord 1-26 well.

  2. Hyperthermia: Too Hot for Your Health

    MedlinePlus

    ... Stay Connected You are here Home Hyperthermia: too hot for your health NIH provides heat-related illness ... Calvin | (301) 496-1752 | nianews3@mail.nih.gov Hot summer weather can pose special health risks to ...

  3. OUT Success Stories: Solar Hot Water Technology

    DOE R&D Accomplishments Database

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  4. Further Studies Of Hot-Wire Anemometry

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert; Logan, Pamela; Bershader, Daniel

    1990-01-01

    Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Represents extension of work described in "Hot-Wire Anemometry Versus Laser-Induced Fluorescence" (ARC-11802). Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF).

  5. Diamond film by hot filament CVD method

    NASA Technical Reports Server (NTRS)

    Hirose, Y.

    1988-01-01

    Diamond synthesis by the hot filament CVD method is discussed. A hot filament decomposes gas mixtures and oxygen containing organic compounds such as alcohols. which are carbon sources. The resulting thin films, growth mechanisms, and characteristics and problems associated with the hot filament CVD method are analyzed and evaluated.

  6. Spectropolarimetry of hot, luminous stars

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, Regina E.

    1994-01-01

    I review polarimetric observations of presumably single, hot luminous stars. The stellar types discussed are OB stars. B(e) supergiants, Luminous Blue Variables (LBV), Wolf-Rayet (W-R) stars, and type II supernovae (SN). It is shown that variable, intrinsic polarization is a common phenomenon in that part of the Hertzsprung-Russell (HR) diagram which these stars occupy. However, much observational work remains to be done before we can answer the most basic, statistical questions about the polarimetric properties of different groups of hot, luminous stars. Insight into the diagnostic power of polarization observations has been gained, but cannot be exploited without detailed models. Thus, while polarimetric observations do tell us that the mass-loss processes of all types of massive stars are time-dependent and anisotropic, the significance that this might have for the accuracy of their stellar parameters and evolutionary paths remains elusive.

  7. Noise Generation in Hot Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Kenzakowski, Donald C.

    2007-01-01

    A prediction method based on the generalized acoustic analogy is presented, and used to evaluate aerodynamic noise radiated from high speed hot jets. The set of Euler equations are split into their respective non-radiating and residual components. Under certain conditions, the residual equations are rearranged to form a wave equation. This equation consists of a third-order wave operator, plus a number of nonlinear terms that are identified with the equivalent sources of sound and their statistical characteristics are modeled. A specialized RANS solver provides the base flow as well as turbulence quantities and temperature fluctuations that determine the source strength. The main objective here is to evaluate the relative contribution from various source elements to the far-field spectra and to show the significance of temperature fluctuations as a source of aerodynamic noise in hot jets.

  8. Numerical simulations of hot spots

    NASA Astrophysics Data System (ADS)

    Norman, Michael L.

    Numerical simulations of hot spots and their associated jets are examined with emphasis on their dynamical variability. Attention is given to two-dimensional simulations, which incorporate dynamically passive and important magnetic fields in the ideal MHD limit. Distributions of total and polarized radio brightness have been derived for comparison with observations. The move toward three-dimensional simulations is documented, and hydrodynamical models for multiple hot spots are discussed. It is suggested that useful insights can be obtained from two-dimensional slab jet simulation, which relax the axisymmetric constraints while allowing high numerical resolution. In particular the dentist-drill model of Scheuer (1982) for working-surface variability is substantiated, and it is shown to result from self-excited jet instabilities near the working surface.

  9. Hot isostatic pressing of ceramics

    NASA Technical Reports Server (NTRS)

    Honma, K.

    1985-01-01

    A mixture containing glass 70 to 95 and BN or B4C powder (0.1-10 microns) 5 to 30 vol. % is used as a secondary pressure medium in hot isostatic pressing of ceramics. Thus, Pyrex beads were mixed with 15% vol. BN powder (average diameter 2 microns), fused at 1400 deg for 2 h, cooled, crushed, and put into a graphite crucible. A Si3N4 sintered body was embedded in the powder, heated in vacuum at 1200 deg for 2 h, treated in a hot isostatic press furnace at 1700 deg and 1000 atm. for 1 h, and cooled to give a Si3N4 ceramic. It was easily separated from the crucible.

  10. Hot subdwarfs with degenerate companions

    NASA Astrophysics Data System (ADS)

    Mereghetti, Sandro

    2010-10-01

    Stellar evolutionary models predict that most of the hot sub-dwarfs in close binary systems have white dwarf companions. In a few cases even more massive compact objects (neutron stars or black holes) are suggested by the optical mass functions. The X-ray emission expected from accretion of the sub-dwarf's wind can reveal the nature of the compact companions and be used to derive other important information on these post-common envelope systems, as recently demonstrated by the discovery of a massive WD in HD 49798. We selected 3 promising targets from a sample of hot subdwarfs suspected to have degenerate companions. This proposal was accepted in AO9 with C priority.

  11. Hot atom chemistry and radiopharmaceuticals

    SciTech Connect

    Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J.

    2012-12-19

    The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

  12. Hot gas engine heater head

    DOEpatents

    Berntell, John O.

    1983-01-01

    A heater head for a multi-cylinder double acting hot gas engine in which each cylinder is surrounded by an annular regenerator unit, and in which the tops of each cylinder and its surrounding regenerator are interconnected by a multiplicity of heater tubes. A manifold for the heater tubes has a centrally disposed duct connected to the top of the cylinder and surrounded by a wider duct connecting the other ends of the heater tubes with the regenerator unit.

  13. Silicon Hot-Electron Bolometers

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Hsieh, Wen-Ting; Mitchell, Robert R.; Isenberg, Hal D.; Stahle, Carl M.; Cao, Nga T.; Schneider, Gideon; Travers, Douglas E.; Moseley, S. Harvey; Wollack, Edward J.

    2004-01-01

    We discuss a new type of direct detector, a silicon hot-electron bolometer, for measurements in the far-infrared and submillimeter spectral ranges. High performance bolometers can be made using the electron-phonon conductance in heavily doped silicon to provide thermal isolation from the cryogenic bath. Noise performance is expected to be near thermodynamic limits, allowing background limited performance for many far infrared and submillimeter photometric and spectroscopic applications.

  14. Hot atoms in cosmic chemistry.

    PubMed

    Rossler, K; Jung, H J; Nebeling, B

    1984-01-01

    High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. "Hot" atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 10(8)-10(10) atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime. Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: N(p,alpha) 11C, 16O(p,alpha pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed. PMID:11537799

  15. Corrosion in volcanic hot springs

    SciTech Connect

    Lichti, K.A.; Swann, S.J.; Sanada, N.

    1997-12-31

    Volcanic hot pool environments on White Island, New Zealand have been used to study the corrosion properties of materials which might be used for engineering plant for energy production from deep-seated and magma-ambient geothermal systems. The corrosion chemistry of hot pools encountered in natural volcanic features varies, from being of near neutral pH- or alkalie pH-chloride type waters to acidic-chloride/sulfate waters which are more aggressive to metals and alloys. Potential-pH (Pourbaix) diagram models of corrosion product phase stability for common alloy elements contained in engineering alloys have been developed for hot pool environments using thermodynamic principles and conventional corrosion theory. These diagramatic models give reasons for the observed corrosion kinetics and can be used to help to predict the performance of other alloys in similar environments. Deficiencies in the knowledge base for selection of materials for aggressive geothermal environments are identified, and directions for future research on materials having suitable corrosion resistance for deep-seated and magma-ambient production fluids which have acidic properties are proposed.

  16. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    E.S. Connolly; G.D. Forsythe

    1998-12-22

    Advanced, coal-based power plants will require durable and reliable hot gas filtration systems to remove particulate contaminants from the gas streams to protect downstream components such as turbine blades from erosion damage. It is expected that the filter elements in these systems will have to be made of ceramic materials to withstand goal service temperatures of 1600 F or higher. Recent demonstration projects and pilot plant tests have indicated that the current generation of ceramic hot gas filters (cross-flow and candle configurations) are failing prematurely. Two of the most promising materials that have been extensively evaluated are clay-bonded silicon carbide and alumina-mullite porous monoliths. These candidates, however, have been found to suffer progressive thermal shock fatigue damage, as a result of rapid cooling/heating cycles. Such temperature changes occur when the hot filters are back-pulsed with cooler gas to clean them, or in process upset conditions, where even larger gas temperature changes may occur quickly and unpredictably. In addition, the clay-bonded silicon carbide materials are susceptible to chemical attack of the glassy binder phase that holds the SiC particles together, resulting in softening, strength loss, creep, and eventual failure.

  17. A case of familial hot tub lung

    PubMed Central

    Kitahara, Yoshihiro; Araki, Yusuke; Nakano, Kikuo

    2016-01-01

    Hot tub lung is a lung disease caused by Mycobacterium avium complex. We report the first case of familial hot tub lung appearing simultaneously in a husband and wife. Our case supports the consideration that hot tub lung is a hypersensitivity pneumonitis rather than an infectious lung disease. It also suggests that the state of hot tub lung changes seasonally depending on temperature variations, in a manner similar to summer-type hypersensitivity pneumonitis. This case demonstrates similarities between hot tub lung and summer-type hypersensitivity pneumonitis in regards to familial occurrence and seasonal changes in the disease state. PMID:27222790

  18. A case of familial hot tub lung.

    PubMed

    Kitahara, Yoshihiro; Araki, Yusuke; Nakano, Kikuo

    2016-01-01

    Hot tub lung is a lung disease caused by Mycobacterium avium complex. We report the first case of familial hot tub lung appearing simultaneously in a husband and wife. Our case supports the consideration that hot tub lung is a hypersensitivity pneumonitis rather than an infectious lung disease. It also suggests that the state of hot tub lung changes seasonally depending on temperature variations, in a manner similar to summer-type hypersensitivity pneumonitis. This case demonstrates similarities between hot tub lung and summer-type hypersensitivity pneumonitis in regards to familial occurrence and seasonal changes in the disease state. PMID:27222790

  19. Cancer treatment: dealing with hot flashes and night sweats

    MedlinePlus

    ... cancer treatments can cause hot flashes and night sweats. Hot flashes are when your body suddenly feels ... In some cases, hot flashes can make you sweat. Night sweats are hot flashes with sweating at ...

  20. ESA uncovers Geminga's `hot spot'

    NASA Astrophysics Data System (ADS)

    2004-07-01

    16 July 2004 Astronomers using ESA’s X-ray observatory XMM-Newton have detected a small, bright ‘hot spot’ on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga’s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga. hi-res Size hi-res: 1284 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot This figure shows the effects of charged particles accelerated in the magnetosphere of Geminga. Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of particles kicked out by Geminga’s strong magnetic field, trail the neutron star as it moves about in space. Panel (b) shows how electrically charged particles interact with Geminga’s magnetic field. For example, if electrons (blue) are kicked out by the star, positrons (in red) hit the star’s magnetic poles like in an ‘own goal’. Panel (c) illustrates the size of Geminga’s magnetic field (blue) compared to that of the star itself at the centre (purple). The magnetic field is tilted with respect to Geminga’s rotation axis (red). Panel (d) shows the magnetic poles of Geminga, where charged particles hit the surface of the star, creating a two-million degrees hot spot, a region much hotter than the surroundings. As the star spins on its rotation axis, the hot spot comes into view and then disappears, causing the periodic colour change seen by XMM-Newton. An animated version of the entire sequence can be found at: Click here for animated GIF [low resolution, animated GIF, 5536 KB] Click here for AVI [high resolution, AVI with DIVX compression, 19128 KB] hi-res Size hi-res: 371 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot, panel (a) Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of

  1. Assessment of hot gas contaminant control

    SciTech Connect

    Rutkowski, M.D.; Klett, M.G.; Zaharchuk, R.

    1996-12-31

    The objective of this work is to gather data and information to assist DOE in responding to the NRC recommendation on hot gas cleanup by performing a comprehensive assessment of hot gas cleanup systems for advanced coal-based Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) including the status of development of the components of the hot gas cleanup systems, and the probable cost and performance impacts. The scope and time frame of information gathering is generally responsive to the boundaries set by the National Research council (NRC), but includes a broad range of interests and programs which cover hot gas cleanup through the year 2010. As the status of hot gas cleanup is continually changing, additional current data and information are being obtained for this effort from this 1996 METC Contractors` Review Meeting as well as from the 1996 Pittsburgh Coal Conference, and the University of Karlsruhe Symposium. The technical approach to completing this work consists of: (1) Determination of the status of hot gas cleanup technologies-- particulate collection systems, hot gas desulfurization systems, and trace contaminant removal systems; (2) Determination of hot gas cleanup systems cost and performance sensitivities. Analysis of conceptual IGCC and PFBC plant designs with hot gas cleanup have been performed. The impact of variations in hot gas cleanup technologies on cost and performance was evaluated using parametric analysis of the baseline plant designs and performance sensitivity.

  2. Hot Flow Anomalies at Venus

    NASA Technical Reports Server (NTRS)

    Collinson, G. A.; Sibeck, David Gary; Boardsen, Scott A.; Moore, Tom; Barabash, S.; Masters, A.; Shane, N.; Slavin, J.A.; Coates, A.J.; Zhang, T. L.; Sarantos, M.

    2012-01-01

    We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system.

  3. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    Matthew R. June; John L. Hurley; Mark W. Johnson

    1999-04-01

    Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

  4. Hot flow anomalies at Venus

    NASA Astrophysics Data System (ADS)

    Collinson, G. A.; Sibeck, D. G.; Masters, A.; Shane, N.; Slavin, J. A.; Coates, A. J.; Zhang, T. L.; Sarantos, M.; Boardsen, S.; Moore, T. E.; Barabash, S.

    2012-04-01

    We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system.

  5. DOE hot dry rock program

    SciTech Connect

    Nunz, G.J.

    1980-01-01

    Hydraulic fracturing has been used to create and subsequently to enlarge the first hot dry rock heat-extraction loop at Fenton Hill, New Mexico. Encouraging results prompted the DOE to expand this project into a program of national scope. The elements of that Program and their present status are discussed. Emphasis is given the ongoing Fenton Hill Project where techniques and information developed in the existing research system will soon be used to produce a multiply-fractured engineering system in hotter rock at the same site. Recent results from research loop operation and progress in constructing the engineering system are reported. Although acoustic mapping and system geometry indicate that the primary hydraulic fractures are essentially vertical, relatively low fracturing pressure and absence of a sharp breakdown suggest that at Fenton Hill fracture initiation occurs by reopening of old natural fractures rather than by initiation of new ones. Flow patterns and temperature behavior suggest opening of additional old fractures as the loop is operated. Except where the hot fluid leaves the crack system to enter the production well, flow impedances are very low without either artificial propping or inflation by pressurization.

  6. Formation damage related to hot oiling

    SciTech Connect

    Barker, K.M. )

    1989-11-01

    Hot oil has been used to remove paraffin deposits almost as long as oil has been produced. It is still the most widely used procedure for paraffin removal in use today because of its relative simplicity of application, immediate results, and low cost per application. These apparent benefits have obscured the damage that hot oil can cause when used to clean downhole production equipment. Formation damage caused by hot oiling is related to the physical characteristics of the oil used, the source of the oil, the formation temperature, and the hot-oil process. Potential problems are discussed and suggestions made to minimize or to eliminate them. Laboratory tests are presented for determining whether a crude will cause formation damage during hot oiling. Case histories of successful cleaning of hot-oil formation damage are also given.

  7. Hot tearing evaluation for aluminium alloys

    NASA Astrophysics Data System (ADS)

    Brůna, Marek

    2016-06-01

    Hot tearing during solidification of aluminium alloys castings can be a serious problem. This phenomenon is well known but still insufficiently investigated. Hot tearing occurs in form of irregular cracks in metal castings that develop during solidification and cooling. The cause of hot tearing is generally attributed to the development of thermally induced tensile stresses and strains in a casting as the molten metal contracts during solidification and solid state shrinkage. Submited paper consists of two parts. The first part introduces the reader to the phenomenon of hot tearing. The second part describes newly developed method for assessing hot tearing susceptibility of aluminium alloys, and also gives the results on hot tearing for various aluminium alloys.

  8. Hot spot and trench volcano separations

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Schubert, G.

    1974-01-01

    It is suggested that the distribution of separations between trench volcanos located along subduction zones reflects the depth of partial melting, and that the separation distribution for hot spot volcanoes near spreading centers provides a measure of the depth of mantle convection cells. It is further proposed that the lateral dimensions of mantle convection cells are also represented by the hot-spot separations (rather than by ridge-trench distances) and that a break in the distribution of hot spot separations at 3000 km is evidence for both whole mantle convection and a deep thermal plume origin of hot spots.

  9. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    E.S. Connolly; G.D. Forsythe

    2000-09-30

    DuPont Lanxide Composites, Inc. undertook a sixty-month program, under DOE Contract DEAC21-94MC31214, in order to develop hot gas candle filters from a patented material technology know as PRD-66. The goal of this program was to extend the development of this material as a filter element and fully assess the capability of this technology to meet the needs of Pressurized Fluidized Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) power generation systems at commercial scale. The principal objective of Task 3 was to build on the initial PRD-66 filter development, optimize its structure, and evaluate basic material properties relevant to the hot gas filter application. Initially, this consisted of an evaluation of an advanced filament-wound core structure that had been designed to produce an effective bulk filter underneath the barrier filter formed by the outer membrane. The basic material properties to be evaluated (as established by the DOE/METC materials working group) would include mechanical, thermal, and fracture toughness parameters for both new and used material, for the purpose of building a material database consistent with what is being done for the alternative candle filter systems. Task 3 was later expanded to include analysis of PRD-66 candle filters, which had been exposed to actual PFBC conditions, development of an improved membrane, and installation of equipment necessary for the processing of a modified composition. Task 4 would address essential technical issues involving the scale-up of PRD-66 candle filter manufacturing from prototype production to commercial scale manufacturing. The focus would be on capacity (as it affects the ability to deliver commercial order quantities), process specification (as it affects yields, quality, and costs), and manufacturing systems (e.g. QA/QC, materials handling, parts flow, and cost data acquisition). Any filters fabricated during this task would be used for product qualification tests

  10. TRUEX hot demonstration. Final report

    SciTech Connect

    Chamberlain, D.B.; Leonard, R.A.; Hoh, J.C.; Gay, E.C.; Kalina, D.G.; Vandegrift, G.F.

    1990-04-01

    In FY 1987, a program was initiated to demonstrate technology for recovering transuranic (TRU) elements from defense wastes. This hot demonstration was to be carried out with solution from the dissolution of irradiated fuels. This recovery would be accomplished with both PUREX and TRUEX solvent extraction processes. Work planned for this program included preparation of a shielded-cell facility for the receipt and storage of spent fuel from commercial power reactors, dissolution of this fuel, operation of a PUREX process to produce specific feeds for the TRUEX process, operation of a TRUEX process to remove residual actinide elements from PUREX process raffinates, and processing and disposal of waste and product streams. This report documents the work completed in planning and starting up this program. It is meant to serve as a guide for anyone planning similar demonstrations of TRUEX or other solvent extraction processing in a shielded-cell facility.

  11. Hot-solvent miscible displacement

    SciTech Connect

    Awang, M.; Farouq Ali, S.M.

    1980-01-01

    This work describes an experimental and theoretical investigation of miscible displacement under nonisothermal conditions. The hot miscible floods were performed in an adiabatic glass bead pack, displacing one hydrocarbon by a more viscous hydrocarbon, the latter being at an elevated temperature. As a result, dispersion of both mass and heat took place, and was determined by temperature and concentration measurements. The system was simulated by coupled convective-diffusion and thermal conduction-convection equations. The results of the numerical as well as an approximate analytical solution were compared with the experimentally observed behavior. The numerical and experimental results point to the factors which should be considered in the choice of a solvent for a thermal-miscible type oil recovery process.

  12. Cool systems for hot cities

    SciTech Connect

    Akbari, Hashem; Bretz, Sarah

    1998-09-02

    On a hot summer day, Los Angeles, CA, like Baltimore, MD, Phoenix, AZ, Washington, D.C., and Tokyo, Japan, is c. 6-8 degrees F hotter than its surrounding areas. Dark buildings and pavement have replaced urban vegetation in these cities, absorbing more solar heat. The urban heat islands that are created result in increased air-conditioning costs, energy use, and pollution. Scientists at the Lawrence Berkeley National Laboratory have been studying the effects of roof system color and type on the energy used to cool a building. The results of this research indicate that roofing professionals should consider the reflectance (albedo) and emittance (release of absorbed heat) of the roof systems they install.

  13. Ceramic hot-gas filter

    DOEpatents

    Connolly, E.S.; Forsythe, G.D.; Domanski, D.M.; Chambers, J.A.; Rajendran, G.P.

    1999-05-11

    A ceramic hot-gas candle filter is described having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during back pulse cleaning and is resistant to chemical degradation at high temperatures.

  14. Ceramic hot-gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    1999-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  15. Hot electron production and heating by hot electrons in fast ignitor research

    SciTech Connect

    Key, M.H.; Estabrook, K.; Hammel, B.

    1997-12-01

    In an experimental study of the physics of fast ignition the characteristics of the hot electron source at laser intensities up to 10(to the 20th power) Wcm{sup -2} and the heating produced at depth by hot electrons have been measured. Efficient generation of hot electrons but less than the anticipated heating have been observed.

  16. Hot Dry Rock; Geothermal Energy

    SciTech Connect

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  17. Basics of Solar Heating & Hot Water Systems.

    ERIC Educational Resources Information Center

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  18. "Hot Tub Rash" and "Swimmer's Ear" (Pseudomonas)

    MedlinePlus

    Facts About “Hot Tub Rash” and “Swimmer’s Ear” (Pseudomonas) What is Pseudomonas and how can it affect me? Pseudomonas (sue-doh- ... a major cause of infections commonly known as “hot tub rash” and “swimmer’s ear.” This germ is ...

  19. DEMONSTRATING INTEGRATED PEST MANAGEMENT OF HOT PEPPERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  20. Hot Spot Removal System: System description

    SciTech Connect

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  1. HotSpot Software Configuration Management Plan

    SciTech Connect

    Walker, H; Homann, S G

    2009-03-12

    This Software Configuration Management Plan (SCMP) describes the software configuration management procedures used to ensure that the HotSpot dispersion model meets the requirements of its user base, which includes: (1) Users of the PC version of HotSpot for consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. This plan is intended to meet Critical Recommendations 1 and 3 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  2. The Hot Hand Belief and Framing Effects

    ERIC Educational Resources Information Center

    MacMahon, Clare; Köppen, Jörn; Raab, Markus

    2014-01-01

    Purpose: Recent evidence of the hot hand in sport--where success breeds success in a positive recency of successful shots, for instance--indicates that this pattern does not actually exist. Yet the belief persists. We used 2 studies to explore the effects of framing on the hot hand belief in sport. We looked at the effect of sport experience and…

  3. The Time-Limited Hot Line.

    ERIC Educational Resources Information Center

    Loring, Marti Tamm; Wimberley, Edward T.

    1993-01-01

    Notes that media have become involved in creating programs and addressing issues that have been historically exclusive purview of mental health and human services agencies. Explains how time-limited hot line has been used to address specific issues raised by these programs. Provides overview of this type of hot line, offering triangular model of…

  4. Hot-Air Ballooning in Physics Teaching.

    ERIC Educational Resources Information Center

    Haugland, Ole Anton

    1991-01-01

    Describes the modern hot-air balloon and the physics of ballooning. Proposes that students construct their own hot-air balloon and presents an experiment calculating the time needed for a balloon to rise to the ceiling of a gymnasium. (MDH)

  5. Solar Energy for Space Heating & Hot Water.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  6. Turbine Engine Hot Section Technology, 1985

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Turbine Engine Section Technology (HOST) Project Office of the Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine hot section durability problems. Presentations were made concerning hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes.

  7. Hot-dry-rock feasibility study

    SciTech Connect

    Not Available

    1981-08-01

    The hot-dry-rock project tasks are covered as follows: hot-dry-rock reservoir; generation facilities; water resources; transmission requirements; environmental issues; government and community institutional factors; leasing, ownership and management of facilities; regulations, permits, and laws; and financial considerations. (MHR)

  8. Fracture toughness of hot-pressed beryllium

    NASA Technical Reports Server (NTRS)

    Lemon, D. D.; Brown, W. F., Jr.

    1985-01-01

    This paper presents the results of an investigation into the fracture toughness, sustained-load flaw growth, and fatigue-crack propagation resistance of S200E hot-pressed beryllium at room temperature. It also reviews the literature pertaining to the influence of various factors on the fracture toughness of hot-pressed beryllium determined using fatigue-cracked specimens.

  9. 16 CFR 1505.51 - Hot surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Hot surfaces. 1505.51 Section 1505.51 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... CHILDREN Policies and Interpretations § 1505.51 Hot surfaces. (a) Test probe. Section 1505.6(g)(2)...

  10. 16 CFR 1505.51 - Hot surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Hot surfaces. 1505.51 Section 1505.51 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... CHILDREN Policies and Interpretations § 1505.51 Hot surfaces. (a) Test probe. Section 1505.6(g)(2)...

  11. 16 CFR 1505.51 - Hot surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Hot surfaces. 1505.51 Section 1505.51 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... CHILDREN Policies and Interpretations § 1505.51 Hot surfaces. (a) Test probe. Section 1505.6(g)(2)...

  12. 16 CFR 1505.51 - Hot surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Hot surfaces. 1505.51 Section 1505.51 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS... CHILDREN Policies and Interpretations § 1505.51 Hot surfaces. (a) Test probe. Section 1505.6(g)(2)...

  13. 29 CFR 1915.14 - Hot work.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Dangerous Atmospheres in Shipyard Employment § 1915.14 Hot work. (a) Hot work requiring testing by a Marine... or on any of the following confined and enclosed spaces and other dangerous atmospheres, boundaries... in or on the following spaces or adjacent spaces or other dangerous atmospheres until they have...

  14. 29 CFR 1915.14 - Hot work.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Dangerous Atmospheres in Shipyard Employment § 1915.14 Hot work. (a) Hot work requiring testing by a Marine... or on any of the following confined and enclosed spaces and other dangerous atmospheres, boundaries... in or on the following spaces or adjacent spaces or other dangerous atmospheres until they have...

  15. 29 CFR 1915.14 - Hot work.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Dangerous Atmospheres in Shipyard Employment § 1915.14 Hot work. (a) Hot work requiring testing by a Marine... or on any of the following confined and enclosed spaces and other dangerous atmospheres, boundaries... in or on the following spaces or adjacent spaces or other dangerous atmospheres until they have...

  16. 29 CFR 1915.14 - Hot work.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Dangerous Atmospheres in Shipyard Employment § 1915.14 Hot work. (a) Hot work requiring testing by a Marine... or on any of the following confined and enclosed spaces and other dangerous atmospheres, boundaries... in or on the following spaces or adjacent spaces or other dangerous atmospheres until they have...

  17. 29 CFR 1915.14 - Hot work.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Dangerous Atmospheres in Shipyard Employment § 1915.14 Hot work. (a) Hot work requiring testing by a Marine... or on any of the following confined and enclosed spaces and other dangerous atmospheres, boundaries... in or on the following spaces or adjacent spaces or other dangerous atmospheres until they have...

  18. Variational Theory of Hot Dense Matter

    ERIC Educational Resources Information Center

    Mukherjee, Abhishek

    2009-01-01

    We develop a variational theory of hot nuclear matter in neutron stars and supernovae. It can also be used to study charged, hot nuclear matter which may be produced in heavy-ion collisions. This theory is a generalization of the variational theory of cold nuclear and neutron star matter based on realistic models of nuclear forces and pair…

  19. Demonstrating Integrated Pest Management of Hot Peppers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  20. HotSpot Software Test Plan

    SciTech Connect

    Walker, H; Homann, S G

    2009-03-12

    This Software Test Plan (STP) describes the procedures used to verify and validate that the HotSpot Health Physics Codes meet the requirements of its user base, which includes: (1) Users of the PC version of HotSpot conducting consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling. This plan is intended to meet Critical Recommendation 2 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  1. Ultrasonic hammer produces hot spots in solids

    NASA Astrophysics Data System (ADS)

    You, Sizhu; Chen, Ming-Wei; Dlott, Dana D.; Suslick, Kenneth S.

    2015-04-01

    Mechanical action can produce dramatic physical and mechanochemical effects when the energy is spatially or temporally concentrated. An important example of such phenomena in solids is the mechanical initiation of explosions, which has long been speculated to result from ‘hot spot’ generation at localized microstructures in the energetic material. Direct experimental evidence of such hot spots, however, is exceptionally limited; mechanisms for their generation are poorly understood and methods to control their locations remain elusive. Here we report the generation of intense, localized microscale hot spots in solid composites during mild ultrasonic irradiation, directly visualized by a thermal imaging microscope. These ultrasonic hot spots, with heating rates reaching ~22,000 K s-1, nucleate exclusively at interfacial delamination sites in composite solids. Introducing specific delamination sites by surface modification of embedded components provides precise and reliable control of hot spot locations and permits microcontrol of the initiation of reactions in energetic materials including fuel/oxidizer explosives.

  2. Structure of Hot Flow Anomaly

    NASA Astrophysics Data System (ADS)

    Shestakov, A.; Vaisberg, O. L.

    2012-12-01

    Hot Flow Anomalies (HFAs) were first discovered in 1980s. These are active processes of hot plasma bulks formation that usually occur at planetary bow shocks. Though HFA were studied for long time it is still not clear if they are reforming structures and what defines particular internal structure of HFA. Our study is based on the Interball Tail Probe data. We used 10-sec measurements of complex plasma analyzer SCA-1 and 1-second magnetic field measurements, and ELECTRON spectrometer 2-dimensional measurements with 3,75-sec temporal resolution. Five anomalies that were observed on the basis of well resolved structure for which we obtained displacement velocity along bow shock, flow velocities within HFA, and estimated the size. We checked if main criteria of HFA formation were fulfilled for each case. The following criteria were satisfied: motional electric field direction was directed toward current sheet at least at one side of it, bow shock was quasi-perpendicular at least at one side of HFA, and angle between current sheet normal and solar wind velocity was large. Convection velocities of plasma within HFA were calculated by subtracting average velocity from measured ion convection velocities along spacecraft trajectory through anomaly. These convection velocities viewed in coordinate system of shock normal and calculated IMF current sheet normal clearly show separation of HFA region in 3 parts: leading part, narrow central part, and trailing part. Ion velocity distributions confirm this triple structure of HFA. Thomsen et al. [1986] identified the region within HFA that they called "internal recovery". It looks like central region that we call narrow central part. Vaisberg et al. [1999] discussed separation of HFA into 2 distinct parts that correspond to leading and trailing parts. Judging from plasma convection pattern within HFAs we assumed that "internal recovery" region is the source of energy and momentum around interplanetary current sheet crossing. HFA

  3. Cancer treatment: dealing with hot flashes and night sweats

    MedlinePlus

    ... ency/patientinstructions/000826.htm Cancer treatment: dealing with hot flashes and night sweats To use the sharing ... JavaScript. Certain types of cancer treatments can cause hot flashes and night sweats. Hot flashes are when ...

  4. 1. EXTERIOR VIEW OF BUILDING THAT HOUSES THE HOT ROLL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF BUILDING THAT HOUSES THE HOT ROLL MILL, ALSO KNOWN AS THE NO. 31 HOT ROLL MILL; LOOKING SOUTHWEST - American Brass Company, Kenosha Works, Hot Roll Mill, Kenosha, Kenosha County, WI

  5. Iron Aluminide Hot Gas Filters

    SciTech Connect

    Hurley, J.; Brosious, S.; Johnson, M.

    1996-12-31

    Currently, high temperature filter systems are in the demonstration phase with the first commercial scale hot filter systems being installed on integrated gasification combined cycle (IGCC) and pressurized fluid bed combustion cycle (PBFC) systems (70 MW). They are dependent on the development of durable and economic high temperature filter systems. These filters are mostly ceramic tubes or candles. Ceramic filter durability has not been high. Failure is usually attributed to mechanical or thermal shock: they can also undergo significant changes due to service conditions. The overall objective of this project is to commercialize weldable, crack resistant filters which will provide several years service in advanced power processes. The specific objectives of this project are to develop corrosion resistant alloys and manufacturing processes to make Iron Aluminide filter media, and to use a ``short term`` exposure apparatus supported by other tests to identify the most promising candidate (alloy plus sintering cycle). The objectives of the next phases are to demonstrate long term corrosion stability for the best candidate followed by the production of fifty filters (optional).

  6. Hot Leg Piping Materials Issues

    SciTech Connect

    V. Munne

    2006-07-19

    With Naval Reactors (NR) approval of the Naval Reactors Prime Contractor Team (NRPCT) recommendation to develop a gas cooled reactor directly coupled to a Brayton power conversion system as the space nuclear power plant (SNPP) for Project Prometheus (References a and b) the reactor outlet piping was recognized to require a design that utilizes internal insulation (Reference c). The initial pipe design suggested ceramic fiber blanket as the insulation material based on requirements associated with service temperature capability within the expected range, very low thermal conductivity, and low density. Nevertheless, it was not considered to be well suited for internal insulation use because its very high surface area and proclivity for holding adsorbed gases, especially water, would make outgassing a source of contaminant gases in the He-Xe working fluid. Additionally, ceramic fiber blanket insulating materials become very friable after relatively short service periods at working temperatures and small pieces of fiber could be dislodged and contaminate the system. Consequently, alternative insulation materials were sought that would have comparable thermal properties and density but superior structural integrity and greatly reduced outgassing. This letter provides technical information regarding insulation and materials issues for the Hot Leg Piping preconceptual design developed for the Project Prometheus space nuclear power plant (SNPP).

  7. Filter for cleaning hot gases

    SciTech Connect

    Gresch, H.; Holter, H.; Hubner, K.; Igelbuscher, H.; Weber, E.

    1981-10-20

    In an apparatus for cleaning hot gases a filter housing has an inlet for unfiltered gas and an outlet for filtered gas. A plurality of filtered inserts are placed within the housing in a manner capable of filtering undesirable components from the gas feed stream. Each filter insert is made of a fibrous filter material. Silicic-acid glass fibers have a silicic acid content of at least 90%. Coated upon the fibers and absorbed into their pores is a metal oxide of aluminum, titanium, zirconium, cromium, nickle or cobalt. A honeycombed cage filled with high temperature resistant perlite is located within the housing between the gas inlet and the fiber inserts. The cage has an inlet and outlet external to the housing for replacing the perlite. A combustion chamber mounted in the housing has a discharge nozzle located so that the nozzle is directed at the filter inserts. Combusting materials in the chamber causes an explosive backflow of gases through the filter inserts.

  8. Fragmentation of hot classical drops

    SciTech Connect

    Vicentini, A.; Jacucci, G.; Pandharipande, V.R.

    1985-05-01

    Time evolution of hot drops of matter containing approx.230 or approx.130 particles is studied by classical molecular dynamics. Initially, the drops have uniform density and a sharp surface. The chosen initial conditions include three values of density and a range of temperatures wide enough to study the phenomena of evaporation, fragmentation, and total vaporization in a unified fashion. The average density and temperature of central matter is measured periodically to obtain trajectories of the evolution in the rho,T plane. These trajectories indicate that the matter expands almost adiabatically until it reaches the region of adiabatic instabilities. Density inhomogeneities develop in this region, but the matter fragments only if the expansion continues to average densities of less than one-fourth the liquid density, otherwise it recondenses into a single blob. The recondensed matter and fragments have very crooked surfaces. If the temperature is high enough, the expanding matter does not enter the region of adiabatic instabilities and totally vaporizes. For initial densities of the order of equilibrium density, matter does not fragment or develop large inhomogeneities in the region enclosed by the isothermal and adiabatic spinodals. Thus it appears unlikely that fragmentation of small drops (nuclei) can be used to study the isothermal critical region of gas-liquid phase transition. A detailed tabulation of the energies and number of monomers, dimers, light, and heavy fragments emitted in each event is presented.

  9. Hot Flow Anomaly Structure Analysis

    NASA Astrophysics Data System (ADS)

    Shestakov, A.; Vaisberg, O. L.

    2010-12-01

    Hot Flow Anomaly observed on Interball-Tail on 03.14.1996 is investigated. The normal to the interplanetary current sheet interacting with bow shock was determined in assumption of tangential discontinuity. Calculated motional electric field was directed towards current sheet. The bow shock before HFA arrival to the spacecraft was quasi-perpendicular, and was quasi-parallel after HFA passage. Respectively, of the shocks, bracketing HFA, were quasi-perpendicular before HFA passage and quasi-parallel after it. With averaged velocity of plasma within the body of HFA and duration of HFA observation we determined its size in normal to the current sheet direction as ~ 2.5 RE. HFA consists of two regions separated by thin layer with different plasma characteristics. Convection of plasma within HFA, as observed along spacecraft trajectory by subtracting averaged velocity from observed velocities, show that plasma in each of two regions is moving from separating layer. It indicates that separating layer is the site of energy deposition from interaction of the solar wind with ions reflected from the shock. This is confirmed by analysis of ion velocity distributions in this layer.

  10. Ion acceleration by hot electrons in microclusters

    SciTech Connect

    Breizman, Boris N.; Arefiev, Alexey V.

    2007-07-15

    A self-consistent analytical description is presented for collisionless expansion of a fully ionized cluster with a two-component electron distribution. The problem is solved for an initial 'water-bag' distribution of hot electrons with no angular momentum, which reflects the mechanism of electron heating. This distribution evolves in time due to adiabatic cooling of hot electrons. The solution involves a cold core of the cluster, a thin double layer at the cluster edge, and a quasineutral flow with a rarefaction wave. The presented analysis predicts a substantial number of accelerated ions with energies greater than the cutoff energy of the initial distribution of the hot electrons.

  11. Hot filament cvd of boron nitride films

    SciTech Connect

    Rye, R.R.

    1992-01-07

    This patent describes a method for coating a substrate with a boron nitride film. It comprises: providing a substrate and a hot filament in a gas chamber; and introducing a borazine gas into the gas chamber so as to heat the borazine gas with the hot filament and deposit the boron nitride film on the substrate, wherein the hot filament is heated to a temperature of from about 1000[degrees] to 1800[degrees] C and the substrate is maintained at a temperature of from 100[degrees]C to 400[degrees]C.

  12. Hot Fuel Examination Facility's neutron radiography reactor

    SciTech Connect

    Pruett, D.P.; Richards, W.J.; Heidel, C.C.

    1983-01-01

    Argonne National Laboratory-West is located near Idaho Falls, Idaho, and is operated by the University of Chicago for the United States Department of Energy in support of the Liquid Metal Fast Breeder Reactor Program, LMFBR. The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both nondestructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the nondestructive examination techniques utilized at HFEF is neutron radiography, which is provided by the NRAD reactor facility (a TRIGA type reactor) below the HFEF hot cell.

  13. Hot/Warm Gas Cleanup

    SciTech Connect

    Bissett, Larry A.

    2001-11-06

    Using regenerable sorbents and transport or fluid-bed contacting, the Gas Process Development Unit (GPDU) at NETL-Morgantown will be used to demonstrate the process feasibility of removing sulfur from coal gasification or other fuel gas streams at temperatures above dew point of the gas. This technology, also known as hot or warm gas desulfurization, is expected to remove sulfur to concentrations lower than conventional systems at comparable cost. The project was constructed under the U.S. Department of Energy (DOE) Integrated Gasification Combined Cycle (IGCC) power system program and is an ''enabling technology'' in the Vision 21 program. The GPDU was designed to be the smallest scale research and development facility capable of providing viable scale-up design data for new integrated transport or fluid-bed desulfurization processes. With the capability to test at process conditions representative of anticipated commercial applications in terms of temperatures, pressures, major compositions, velocities, and sorbent cycling, the unit is expected to generate important information on process control, configuration, and sorbent suitability. In this way, the GPDU fills a strategic role between past/current small-scale testing and large-scale demonstrations. A primary objective of the project is to gain insight into which reactor combination (i.e., both transport, both fluid bed, or mixed) is more suitable for desulfurization technology and why. Assuming process feasibility is demonstrated, this guides future development or commercial ventures by answering the question of what to build, and provides performance and scale-up data (e.g., required transport reactor densities). Another important objective, which naturally derives from the process development activities, is demonstration of sorbent suitability and readiness for commercial deployment (e.g., sorbent attrition and cycle life). In this sense, the GPDU can serve as a final testing ground to reduce the risks of

  14. Hot Electron Effects in Semiconductors.

    NASA Astrophysics Data System (ADS)

    Moore, James Scott

    The high-field transport of electrons has been calculated for two semiconductor configurations: quasi -two-dimensional and bulk. All calculations are performed by solving the Boltzmann equation, assuming a displaced Maxwellian distribution function. In the case of quasi-two-dimensional semiconductors, this treatment is applied to a <100> inversion layer in silicon. Under a high electric field, energy levels become grouped into subbands, so that motion of carriers perpendicular to the surface becomes quantized; thus, the energy, momentum and population transfer relaxation rates appropriate to the individual levels must be considered in the calculations, along with their relation to velocity overshoot. Previous work was performed under the assumption that intervalley scattering is a local phenomenon, i.e., a function only of electron temperature of the initial valley. In the present work, this assumption has been relaxed, and the intervalley coupling of electron temperature is taken into account. dc and transient response characteristics for both uncoupled and coupled models are performed, and the results are compared. Due to the recent interest in GaAs/Al(,x)Ga(,1 -x)As superlattices, there exists a need for a theory of hot electron transport in these structures. Since GaAs is a polar semiconductor, a theory must first be derived for polar III-V compounds under inversion, the result then being easily extended to superlattices. In this work, such theory is derived but, due to the alignment of the subbands, the simultaneous balance equations cannot be solved numerically with the approach undertaken here (solution of the Boltzmann equation). A theory of transport in bulk III-V compounds is modified by some simplifying approximations to make the theory numerically tractable, this theory then being applied to model bulk III-V compounds (in particular dc and transient response characteristics), along with their ternary and quaternary alloys. These results are found to

  15. Prototype solar heating and hot water systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made in the development of a solar hot water and space heating system is described in four quarterly reports. The program schedules, technical status and other program activities from 6 October 1976 through 30 September 1977 are provided.

  16. Diagenetic Changes in Common Hot Spring Microfacies

    NASA Astrophysics Data System (ADS)

    Hinman, N. W.; Kendall, T. A.; MacKenzie, L. A.; Cady, S. D.

    2016-05-01

    The friable nature of silica hot spring deposits makes them susceptible to mechanical weathering. Rapid diagenesis must take place for these rocks to persist in the geologic record. The properties of two microfacies at two deposits were compared.

  17. Design data brochure: Solar hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  18. Design data brochure: Solar hot air heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The design, installation, performance, and application of a solar hot air heater for residential, commercial and industrial use is reported. The system has been installed at the Concho Indian School in El Reno, Oklahoma.

  19. The hot spot of vegetation canopies

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.; Kanemasu, Edward T.

    1988-01-01

    A conventional radiometer is used to identify the hot spot (the peak in reflected radiation in the retrosolar direction) of vegetation. A multiwavelength-band radiometer collected radiances on fully grown dense wheat and maize canopies on several clear sunny days. It is noted that the hot spot is difficult to detect in the near IR wavelengths because the shadows are much darker. In general, the retrosolar brightness is found to be higher for smaller sun polar angles than for larger angles.

  20. HotSpot Health Physics Codes

    Energy Science and Technology Software Center (ESTSC)

    2013-04-18

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating insidents involving redioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  1. HotSpot Health Physics Codes

    Energy Science and Technology Software Center (ESTSC)

    2010-03-02

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  2. Turbine Engine Hot Section Technology (HOST) Project

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E.; Ensign, C. Robert

    1986-01-01

    The Hot Section Technology (HOST) Project is a NASA-sponsored endeavor to improve the durability of advanced gas turbine engines for commercial and military aircraft. Through improvements in the analytical models and life prediction systems, designs for future hot section components, the combustor and turbine, will be more accurately analyzed and will incorporate features required for longer life in the more hostile operating environment of high performance engines.

  3. Rocket engine hot-spot detector

    NASA Astrophysics Data System (ADS)

    Collamore, F. N.

    1985-04-01

    On high performance devices such as rocket engines it is desirable to know if local hot spots or areas of reduced cooling margin exist. The objective of this program is to design, fabricate and test an electronic hot spot detector capable of sensing local hot spot on the exterior circumference of a regeneratively cooled combustion chamber in order to avoid hardware damage. The electronic hot spot sensor consists of an array of 120 thermocouple elements which are bonded in a flexible belt of polyimide film. The design temperature range is from +30 F to +400 F continuously with an intermittent temperature of 500 F maximum. The thermocouple belt consists of 120 equally spaced copper-Constantan thermocouple junctions which is wrapped around the OMS liquid rocket engine combustion chamber, to monitor temperatures of individual cooling channels. Each thermocouple is located over a cooling channel near the injector end of the combustion chamber. The thermocouple array sensor is held in place by a spring loaded clamp band. Analyses show that in the event of a blocked cooling channel the surface temperature of the chamber over the blocked channel will rise from a normal operating temperature of approx. 300 F to approx. 600 F. The hot spot detector will respond quickly to this change with a response time constant less than 0.05 seconds. The hot spot sensor assembly is fabricated with a laminated construction of layers of Kapton film and an outer protective layer of fiberglass reinforced silicone rubber.

  4. Concentrator hot-spot testing, phase 1

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator module hot-spot qualification test is the test developed for flat-plate modules, issues, such as providing cell illumination, introduce additional complexities into the testing procedure. The same general guidelines apply for protecting concentrator modules from hot-spot stressing as apply to flat-plate modules. Therefore, recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. In addition, a new method for determining the cell temperature in the laboratory or in the field is discussed.

  5. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect

    Henderson, H.; Wade, J.

    2014-04-01

    While it is important to make the equipment (or 'plant') in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10 to 30 percent of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Five houses near Syracuse NY were monitored. Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  6. Disaggregating Hot Water Use and Predicting Hot Water Waste in Five Test Homes

    SciTech Connect

    Henderson, Hugh; Wade, Jeremy

    2014-04-01

    While it is important to make the equipment (or "plant") in a residential hot water system more efficient, the hot water distribution system also affects overall system performance and energy use. Energy wasted in heating water that is not used is estimated to be on the order of 10%-30% of total domestic hot water (DHW) energy use. This field monitoring project installed temperature sensors on the distribution piping (on trunks and near fixtures) in five houses near Syracuse, NY, and programmed a data logger to collect data at 5 second intervals whenever there was a hot water draw. This data was used to assign hot water draws to specific end uses in the home as well as to determine the portion of each hot water that was deemed useful (i.e., above a temperature threshold at the fixture). Overall, the procedures to assign water draws to each end use were able to successfully assign about 50% of the water draws, but these assigned draws accounted for about 95% of the total hot water use in each home. The amount of hot water deemed as useful ranged from low of 75% at one house to a high of 91% in another. At three of the houses, new water heaters and distribution improvements were implemented during the monitoring period and the impact of these improvements on hot water use and delivery efficiency were evaluated.

  7. ADVANCED HOT GAS FILTER DEVELOPMENT

    SciTech Connect

    RICHARD A. WAGNER

    1998-09-04

    This report describes the fabrication and testing of continuous fiber ceramic composite (CFCC) based hot gas filters. The fabrication approach utilized a modified filament winding method that combined both continuous and chopped fibers into a novel microstructure. The work was divided into five primary tasks. In the first task, a preliminary set of compositions was fabricated in the form of open end tubes and characterized. The results of this task were used to identify the most promising compositions for sub-scale filter element fabrication and testing. In addition to laboratory measurements of permeability and strength, exposure testing in a coal combustion environment was performed to asses the thermo-chemical stability of the CFCC materials. Four candidate compositions were fabricated into sub-scale filter elements with integral flange and a closed end. Following the 250 hour exposure test in a circulating fluid bed combustor, the retained strength ranged from 70 t 145 percent of the as-fabricated strength. The post-test samples exhibited non-catastrophic failure behavior in contrast to the brittle failure exhibited by monolithic materials. Filter fabrication development continued in a filter improvement and cost reduction task that resulted in an improved fiber architecture, the production of a net shape flange, and an improved low cost bond. These modifications were incorporated into the process and used to fabricate 50 full-sized filter elements for testing in demonstration facilities in Karhula, Finland and at the Power Systems Development Facility (PSDF) in Wilsonville, AL. After 581 hours of testing in the Karhula facility, the elements retained approximately 87 percent of their as-fabricated strength. In addition, mechanical response testing at Virginia Tech provided a further demonstration of the high level of strain tolerance of the vacuum wound filter elements. Additional testing in the M. W. Kellogg unit at the PSDF has accumulated over 1800 hours of

  8. Hot streak characterization in serpentine exhaust nozzles

    NASA Astrophysics Data System (ADS)

    Crowe, Darrell S.

    Modern aircraft of the United States Air Force face increasingly demanding cost, weight, and survivability requirements. Serpentine exhaust nozzles within an embedded engine allow a weapon system to fulfill mission survivability requirements by providing denial of direct line-of-sight into the high-temperature components of the engine. Recently, aircraft have experienced material degradation and failure along the aft deck due to extreme thermal loading. Failure has occurred in specific regions along the aft deck where concentrations of hot gas have come in contact with the surface causing hot streaks. The prevention of these failures will be aided by the accurate prediction of hot streaks. Additionally, hot streak prediction will improve future designs by identifying areas of the nozzle and aft deck surfaces that require thermal management. To this end, the goal of this research is to observe and characterize the underlying flow physics of hot streak phenomena. The goal is accomplished by applying computational fluid dynamics to determine how hot streak phenomena is affected by changes in nozzle geometry. The present research first validates the computational methods using serpentine inlet experimental and computational studies. A design methodology is then established for creating six serpentine exhaust nozzles investigated in this research. A grid independent solution is obtained on a nozzle using several figures of merit and the grid-convergence index method. An investigation into the application of a second-order closure turbulence model is accomplished. Simulations are performed for all serpentine nozzles at two flow conditions. The research introduces a set of characterization and performance parameters based on the temperature distribution and flow conditions at the nozzle throat and exit. Examination of the temperature distribution on the upper and lower nozzle surfaces reveals critical information concerning changes in hot streak phenomena due to changes

  9. Experiments with the hot list strategy

    SciTech Connect

    Wos, L.

    1997-10-01

    Experimentation strongly suggests that, for attacking deep questions and hard problems with the assistance of an automated reasoning program, the more effective paradigms rely on the retention of deduced information. A significant obstacle ordinarily presented by such a paradigm is the deduction and retention of one or more needed conclusions whose complexity sharply delays their consideration. To mitigate the severity of the cited obstacle, the author formulates and features in this report the hot list strategy. The hot list strategy asks the researcher to choose, usually from among the input statements, one or more clauses that are conjectured to play a key role for assignment completion. The chosen clauses - conjectured to merit revisiting, again and again - are placed in an input list of clauses, called the hot list. When an automated reasoning program has decided to retain a new conclusion C - before any other clause is chosen to initiate conclusion drawing - the presence of a nonempty hot list (with an appropriate assignment of the input parameter known as heat) causes each inference rule in use to be applied to C together with the appropriate number of members of the hot list. Members of the hot list are used to complete applications of inference rules and not to initiate applications. The use of the hot list strategy thus enables an automated reasoning program to briefly consider a newly retained conclusion whose complexity would otherwise prevent its use for perhaps many CPU-hours. To give evidence of the value of the strategy, the author focuses on four contexts: (1) dramatically reducing the CPU time required to reach a desired goal; (2) finding a proof of a theorem that had previously resisted all but the more inventive automated attempts; (3) discovering a proof that is more elegant than previously known; and (4) answering a question that had steadfastly eluded researchers relying on an automated reasoning program.

  10. HOT CELL BUILDING, TRA632. SHIELDING DOOR TO HOT CELL IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. SHIELDING DOOR TO HOT CELL IS IN OPEN POSITION. DOOR SLIDES SHUT WITH HELP OF MANUALLY OPERATED CHAIN. STAIRWAY TO MEZZANINE IN VIEW AT LEFT. CAMERA FACES NORTHWEST. INL NEGATIVE NO. 9000. Unknown Photographer, 10/28/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  11. A&M. Hot cell annex (TAN633) interior under construction. Hot cells ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. Hot cell annex (TAN-633) interior under construction. Hot cells and their doors are along concrete wall. Note side wall of pumice block. Photographer: Jack L. Anderson. Date: October 28, 1957. INEEL negative no. 57-5335 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  12. Decontamination of Hot Cells and Hot Pipe Tunnel at NASA's Plum Brook Reactor Facility

    SciTech Connect

    Anderson, M.G.; Halishak, W.F.

    2008-07-01

    The large scale decontamination of the concrete Hot Cells and Hot Pipe Tunnel at NASA's Plum Brook Reactor Facility demonstrates that novel management and innovative methods are crucial to ensuring that the successful remediation of the most contaminated facilities can be achieved with minimal risk to the project stakeholders. (authors)

  13. Geophysical Investigation of Neal Hot Springs

    NASA Astrophysics Data System (ADS)

    Colwell, C.; Van Wijk, K.; Liberty, L. M.

    2011-12-01

    We present newly acquired geophysical data that characterizes a geothermal system at Neal Hot Springs in eastern Oregon. The hot springs are in a region of complex and intersecting fault trends associated with two major extensional events, the Oregon-Idaho Graben and the western Snake River Plain. From surface observations and several boreholes in the area, it appears that a steeply dipping normal fault forms a half-graben basin and serves as a conduit for heated water at depth to migrate to the surface at Neal Hot Springs. We identify and characterize this fault with seismic reflection, gravity, magnetic, and electrical resistivity surveys. A self-potential survey indicates that water is upwelling over the fault plane, and suggests that the fault does provide the means for heated water to migrate to the surface. Smaller scale structure is also evident in both the gravity and seismic surveys, and could interact with the migration of water, and how the hot springs recharge. These preliminary results will be built upon in the upcoming years and a solid structural understanding of Neal Hot Springs and the surrounding area will be gained through the use of geophysics.

  14. Metamaterial perfect absorber based hot electron photodetection.

    PubMed

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  15. Molecular interfaces for plasmonic hot electron photovoltaics.

    PubMed

    Pelayo García de Arquer, F; Mihi, Agustín; Konstantatos, Gerasimos

    2015-02-14

    The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. PMID:25578026

  16. Cool and hot flux ropes, their helicity

    NASA Astrophysics Data System (ADS)

    Nindos, Alexander

    2016-07-01

    We will review recent indirect and direct evidence for the existence of magnetic flux ropes in the solar atmosphere. Magnetic flux ropes may appear as S-shaped or reverse S-shaped (sigmoidal) structures in regions that are likely to erupt, and may also show in nonlinear force-free field extrapolations that use data from photospheric vector magnetograms as boundary condition. The availability of high sensitivity data recorded with unprecedented spatial and temporal resolution in hot EUV wavelengths by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) has revealed the existence of coherent structures identified as hot flux ropes. In this presentation, we will review the properties of both cool and hot flux ropes with an emphasis on the frequency of their occurrence in large flares and on their magnetic helicity content.

  17. Kepler constraints on planets near hot Jupiters

    SciTech Connect

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

    2012-05-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  18. Hot electron plasmon-protected solar cell.

    PubMed

    Kong, J; Rose, A H; Yang, C; Wu, X; Merlo, J M; Burns, M J; Naughton, M J; Kempa, K

    2015-09-21

    A solar cell based on a hot electron plasmon protection effect is proposed and made plausible by simulations, non-local modeling of the response, and quantum mechanical calculations. In this cell, a thin-film, plasmonic metamaterial structure acts as both an efficient photon absorber in the visible frequency range and a plasmonic resonator in the IR range, the latter of which absorbs and protects against phonon emission the free energy of the hot electrons in an adjacent semiconductor junction. We show that in this structure, electron-plasmon scattering is much more efficient than electron-phonon scattering in cooling-off hot electrons, and the plasmon-stored energy is recoverable as an additional cell voltage. The proposed structure could become a prototype of a new generation of high efficiency solar cells. PMID:26406739

  19. Multi-cylinder hot gas engine

    DOEpatents

    Corey, John A.

    1985-01-01

    A multi-cylinder hot gas engine having an equal angle, V-shaped engine block in which two banks of parallel, equal length, equally sized cylinders are formed together with annular regenerator/cooler units surrounding each cylinder, and wherein the pistons are connected to a single crankshaft. The hot gas engine further includes an annular heater head disposed around a central circular combustor volume having a new balanced-flow hot-working-fluid manifold assembly that provides optimum balanced flow of the working fluid through the heater head working fluid passageways which are connected between each of the cylinders and their respective associated annular regenerator units. This balanced flow provides even heater head temperatures and, therefore, maximum average working fluid temperature for best operating efficiency with the use of a single crankshaft V-shaped engine block.

  20. Radioactive hot cell access hole decontamination machine

    DOEpatents

    Simpson, William E.

    1982-01-01

    Radioactive hot cell access hole decontamination machine. A mobile housing has an opening large enough to encircle the access hole and has a shielding door, with a door opening and closing mechanism, for uncovering and covering the opening. The housing contains a shaft which has an apparatus for rotating the shaft and a device for independently translating the shaft from the housing through the opening and access hole into the hot cell chamber. A properly sized cylindrical pig containing wire brushes and cloth or other disks, with an arrangement for releasably attaching it to the end of the shaft, circumferentially cleans the access hole wall of radioactive contamination and thereafter detaches from the shaft to fall into the hot cell chamber.

  1. Hot gas filter and system assembly

    DOEpatents

    Lippert, Thomas Edwin; Palmer, Kathryn Miles; Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.; Bachovchin, Dennis Michael

    1999-01-01

    A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

  2. Hot gas filter and system assembly

    DOEpatents

    Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

    1999-08-31

    A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

  3. Seeded hot dark matter models with inflation

    NASA Technical Reports Server (NTRS)

    Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.

    1993-01-01

    We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.

  4. Chandra Galaxy Atals - Global Hot Gas Properties

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Anderson, Craig; Burke, Douglas J.; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer L.; McCollough, Michael L.; Morgan, Douglas; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Trinchieri, Ginevra

    2016-04-01

    The hot gas in early type galaxies (ETGs) plays a crucial role in understanding their formation and evolution. As the hot gas is often extended to the outskirts beyond the optical size, the large scale structural features identified by Chandra (including jets, cavities, cold fronts, filaments and tails) point to key evolutionary mechanisms, e.g., AGN feedback, merging history, accretion/stripping and star formation and its quenching. In our new project, the Chandra Galaxy Atlas, we systematically analyze the archival Chandra data of ~100 ETGs to study the hot ISM. Using uniformly derived data products with spatially resolved spectral information, we will present gas morphology, scaling relations and X-ray based mass profiles and address their implications.

  5. MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS

    SciTech Connect

    Perna, Rosalba; Menou, Kristen; Rauscher, Emily

    2010-08-20

    Hot Jupiters, with atmospheric temperatures T {approx}> 1000 K, have residual thermal ionization levels sufficient for the interaction of ions with the planetary magnetic field to result in a sizable magnetic drag on the (neutral) atmospheric winds. We evaluate the magnitude of magnetic drag in a representative three-dimensional atmospheric model of the hot Jupiter HD 209458b and find that it is a plausible mechanism to limit wind speeds in this class of atmospheres. Magnetic drag has a strong geometrical dependence, both meridionally and from the dayside to the nightside (in the upper atmosphere), which could have interesting consequences for the atmospheric flow pattern. By extension, close-in eccentric planets with transiently heated atmospheres will experience time-variable levels of magnetic drag. A robust treatment of magnetic drag in circulation models for hot atmospheres may require iterated solutions to the magnetic induction and Saha equations as the hydrodynamic flow is evolved.

  6. Kepler constraints on planets near hot Jupiters

    PubMed Central

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; Quinn, Samuel N.

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2∶1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. PMID:22566651

  7. Glowing Hot Transiting Exoplanet Discovered

    NASA Astrophysics Data System (ADS)

    2003-04-01

    VLT Spectra Indicate Shortest-Known-Period Planet Orbiting OGLE-TR-3 Summary More than 100 exoplanets in orbit around stars other than the Sun have been found so far. But while their orbital periods and distances from their central stars are well known, their true masses cannot be determined with certainty, only lower limits. This fundamental limitation is inherent in the common observational method to discover exoplanets - the measurements of small and regular changes in the central star's velocity, caused by the planet's gravitational pull as it orbits the star. However, in two cases so far, it has been found that the exoplanet's orbit happens to be positioned in such a way that the planet moves in front of the stellar disk, as seen from the Earth. This "transit" event causes a small and temporary dip in the star's brightness, as the planet covers a small part of its surface, which can be observed. The additional knowledge of the spatial orientation of the planetary orbit then permits a direct determination of the planet's true mass. Now, a group of German astronomers [1] have found a third star in which a planet, somewhat larger than Jupiter, but only half as massive, moves in front of the central star every 28.5 hours . The crucial observation of this solar-type star, designated OGLE-TR-3 [2] was made with the high-dispersion UVES spectrograph on the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). It is the exoplanet with the shortest period found so far and it is very close to the star, only 3.5 million km away. The hemisphere that faces the star must be extremely hot, about 2000 °C and the planet is obviously losing its atmosphere at high rate . PR Photo 10a/03 : The star OGLE-TR-3 . PR Photo 10b/03 : VLT UVES spectrum of OGLE-TR-3. PR Photo 10c/03 : Relation between stellar brightness and velocity (diagram). PR Photo 10d/03 : Observed velocity variation of OGLE-TR-3. PR Photo 10e/03 : Observed brightness variation of OGLE-TR-3. The search

  8. Four hot DOGs in the microwave

    NASA Astrophysics Data System (ADS)

    Frey, Sándor; Paragi, Zsolt; Gabányi, Krisztina Éva; An, Tao

    2016-01-01

    Hot dust-obscured galaxies (hot DOGs) are a rare class of hyperluminous infrared galaxies identified with the Wide-field Infrared Survey Explorer (WISE) satellite. The majority of them are at high redshifts (z ˜ 2-3), at the peak epoch of star formation in the Universe. Infrared, optical, radio, and X-ray data suggest that hot DOGs contain heavily obscured, extremely luminous active galactic nuclei (AGN). This class may represent a short phase in the life of the galaxies, signifying the transition from starburst- to AGN-dominated phases. Hot DOGs are typically radio-quiet, but some of them show mJy-level emission in the radio (microwave) band. We observed four hot DOGs using the technique of very long baseline interferometry (VLBI). The 1.7 GHz observations with the European VLBI Network (EVN) revealed weak radio features in all sources. The radio is free from dust obscuration and, at such high redshifts, VLBI is sensitive only to compact structures that are characteristic of AGN activity. In two cases (WISE J0757+5113, WISE J1603+2745), the flux density of the VLBI-detected components is much smaller than the total flux density, suggesting that ˜70-90 per cent of the radio emission, while still dominated by AGN, originates from angular scales larger than that probed by the EVN. The source WISE J1146+4129 appears a candidate compact symmetric object, and WISE J1814+3412 shows a 5.1 kpc double structure, reminiscent of hotspots in a medium-sized symmetric object. Our observations support that AGN residing in hot DOGs may be genuine young radio sources where starburst and AGN activities coexist.

  9. Molecular interfaces for plasmonic hot electron photovoltaics

    NASA Astrophysics Data System (ADS)

    Pelayo García de Arquer, F.; Mihi, Agustín; Konstantatos, Gerasimos

    2015-01-01

    The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices.The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. Electronic supplementary information (ESI) available: Contact-potential differentiometry measurements, FTIR characterization, performance statistics and gold devices. See DOI: 10.1039/c4nr06356b

  10. TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION

    SciTech Connect

    Madhusudhan, Nikku; Amin, Mustafa A.; Kennedy, Grant M.

    2014-10-10

    The origin of hot Jupiters—gas giant exoplanets orbiting very close to their host stars—is a long-standing puzzle. Planet formation theories suggest that such planets are unlikely to have formed in situ but instead may have formed at large orbital separations beyond the snow line and migrated inward to their present orbits. Two competing hypotheses suggest that the planets migrated either through interaction with the protoplanetary disk during their formation, or by disk-free mechanisms such as gravitational interactions with a third body. Observations of eccentricities and spin-orbit misalignments of hot Jupiter systems have been unable to differentiate between the two hypotheses. In the present work, we suggest that chemical depletions in hot Jupiter atmospheres might be able to constrain their migration mechanisms. We find that sub-solar carbon and oxygen abundances in Jovian-mass hot Jupiters around Sun-like stars are hard to explain by disk migration. Instead, such abundances are more readily explained by giant planets forming at large orbital separations, either by core accretion or gravitational instability, and migrating to close-in orbits via disk-free mechanisms involving dynamical encounters. Such planets also contain solar or super-solar C/O ratios. On the contrary, hot Jupiters with super-solar O and C abundances can be explained by a variety of formation-migration pathways which, however, lead to solar or sub-solar C/O ratios. Current estimates of low oxygen abundances in hot Jupiter atmospheres may be indicative of disk-free migration mechanisms. We discuss open questions in this area which future studies will need to investigate.

  11. Cooling of hot electrons in amorphous silicon

    SciTech Connect

    Vanderhaghen, R.; Hulin, D.; Cuzeau, S.; White, J.O.

    1997-07-01

    Measurements of the cooling rate of hot carriers in amorphous silicon are made with a two-pump, one-probe technique. The experiment is simulated with a rate-equation model describing the energy transfer between a population of hot carriers and the lattice. An energy transfer rate proportional to the temperature difference is found to be consistent with the experimental data while an energy transfer independent of the temperature difference is not. This contrasts with the situation in crystalline silicon. The measured cooling rates are sufficient to explain the difficulty in observing avalanche effects in amorphous silicon.

  12. Evolution of Hot Gas in Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Mathews, William G.

    2004-01-01

    This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.

  13. Hot dry rock venture risks investigation:

    SciTech Connect

    Not Available

    1988-01-01

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  14. Statistical Hot Spot Model for Explosive Detonation

    SciTech Connect

    Nichols, III, A L

    2005-07-14

    The Non-local Thermodynamic Equilibrium Statistical Hot Spot Model (NLTE SHS), a new model for explosive detonation, is described. In this model, the formation, ignition, propagation, and extinction of hot spots is explicitly modeled. The equation of state of the explosive mixture is treated with a non-local equilibrium thermodynamic assumption. A methodology for developing the parameters for the model is discussed, and applied to the detonation velocity diameter effect. Examination of these results indicates where future improvements to the model can be made.

  15. Controlled-Temperature Hot-Air Gun

    NASA Technical Reports Server (NTRS)

    Munoz, M. C.

    1986-01-01

    Materials that find applications in wind tunnels first tested in laboratory. Hot-Air Gun differs from commercial units in that flow rate and temperature monitored and controlled. With typical compressed-airsupply pressure of 25 to 38 psi (170 to 260 kPa), flow rate and maximum temperature are 34 stdft3/min (0.96 stdm3/min) and 1,090 degrees F (590 degrees C), respectively. Resembling elaborate but carefully regulated hot-air gun, setup used to apply blasts of air temperatures above 1,500 degrees F (815 degrees C) to test specimens.

  16. Statistical Hot Spot Model for Explosive Detonation

    SciTech Connect

    Nichols III, A L

    2004-05-10

    The Non-local Thermodynamic Equilibrium Statistical Hot Spot Model (NLTE SHS), a new model for explosive detonation, is described. In this model, the formation, ignition, propagation, and extinction of hot spots is explicitly modeled. The equation of state of the explosive mixture is treated with a nonlocal equilibrium thermodynamic assumption. A methodology for developing the parameters for the model is discussed, and applied to the detonation velocity diameter effect. Examination of these results indicates where future improvements to the model can be made.

  17. Thermal tides on a hot Jupiter

    NASA Astrophysics Data System (ADS)

    Gu, P.-G.; Hsieh, H.-F.

    2011-07-01

    Following the linear analysis laid out by Gu & Ogilvie 2009 (hereafter GO09), we investigate the dynamical response of a non-synchronized hot Jupiter to stellar irradiation. Besides the internal and Rossby waves considered by GO09, we study the Kelvin waves excited by the diurnal Fourier harmonic of the prograde stellar irradiation. We also present a 2-dimensional plot of internal waves excited by the semi-diurnal component of the stellar irradiation and postulate that thermal bulges may arise in a hot Jupiter. Whether our postulation is valid and is consistent with the recent results from Arras & Socrates (2009b) requires further investigation.

  18. Hot water, fresh beer, and salt

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  19. Validation of the Hot Strip Mill Model

    SciTech Connect

    Richard Shulkosky; David Rosberg; Jerrud Chapman

    2005-03-30

    The Hot Strip Mill Model (HSMM) is an off-line, PC based software originally developed by the University of British Columbia (UBC) and the National Institute of Standards and Technology (NIST) under the AISI/DOE Advanced Process Control Program. The HSMM was developed to predict the temperatures, deformations, microstructure evolution and mechanical properties of steel strip or plate rolled in a hot mill. INTEG process group inc. undertook the current task of enhancing and validating the technology. With the support of 5 North American steel producers, INTEG process group tested and validated the model using actual operating data from the steel plants and enhanced the model to improve prediction results.

  20. Glowing Hot Transiting Exoplanet Discovered

    NASA Astrophysics Data System (ADS)

    2003-04-01

    VLT Spectra Indicate Shortest-Known-Period Planet Orbiting OGLE-TR-3 Summary More than 100 exoplanets in orbit around stars other than the Sun have been found so far. But while their orbital periods and distances from their central stars are well known, their true masses cannot be determined with certainty, only lower limits. This fundamental limitation is inherent in the common observational method to discover exoplanets - the measurements of small and regular changes in the central star's velocity, caused by the planet's gravitational pull as it orbits the star. However, in two cases so far, it has been found that the exoplanet's orbit happens to be positioned in such a way that the planet moves in front of the stellar disk, as seen from the Earth. This "transit" event causes a small and temporary dip in the star's brightness, as the planet covers a small part of its surface, which can be observed. The additional knowledge of the spatial orientation of the planetary orbit then permits a direct determination of the planet's true mass. Now, a group of German astronomers [1] have found a third star in which a planet, somewhat larger than Jupiter, but only half as massive, moves in front of the central star every 28.5 hours . The crucial observation of this solar-type star, designated OGLE-TR-3 [2] was made with the high-dispersion UVES spectrograph on the Very Large Telescope (VLT) at the ESO Paranal Observatory (Chile). It is the exoplanet with the shortest period found so far and it is very close to the star, only 3.5 million km away. The hemisphere that faces the star must be extremely hot, about 2000 °C and the planet is obviously losing its atmosphere at high rate . PR Photo 10a/03 : The star OGLE-TR-3 . PR Photo 10b/03 : VLT UVES spectrum of OGLE-TR-3. PR Photo 10c/03 : Relation between stellar brightness and velocity (diagram). PR Photo 10d/03 : Observed velocity variation of OGLE-TR-3. PR Photo 10e/03 : Observed brightness variation of OGLE-TR-3. The search

  1. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    2011-03-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  2. Hot Stars in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Adelman, Saul J.; Upgren, Arthur R.; Adelman, Carol J.

    1994-08-01

    Participants; Preface; Foreword; Acknowledgements; Part I. Introductory Papers: 1. What is the galaxy's halo population?; 2. Theoretical properties of horizontal-branch stars; 3. A review of A-type horizontal-branch stars; Part II. Surveys: 4. A progress report on the Edinburgh-Cape object survey; 5. A 300 square degree survey of young stars at high galactic latitudes; 6. The isolation of a new sample of B stars in the halo; 7. A northern catalog of FHB/A stars; 8. Recent progress on a continuing survey of galactic globular clusters for blue stragglers; 9. UV observations with FAUST and the galactic model; 10. Hot stars at the South Galactic Pole; Part III. Clusters: 11. Population II horizontal branches: a photometric study of globular clusters; 12. The period-shift effect in Oosterhoff type II globular clusters; 13. UV photometry of hot stars in omega centauri; 14. Spectroscopic and UBV observations of blue stars at the NGP; 15. Population I horizontal branches: probing the halo-to-disk transition; Part IV. Stars: 16. Very hot subdwarf O stars; 17. Quantitative spectroscopy of the very hot subluminous O-stars: K646, PG1159-035, and KPD0005+5106; 18. Analyzing the helium-rich hot sdO stars in the Palomar Green Survey; 19. Late type companions of hot sd O stars; 20. Hot stars in globular clusters; 21. Faint blue stars from the Hamburg Schmidt Survey; 22. Stellar winds and the evolution of sdB's to sdO's; 23. Halo stars in the Vilnius photometric system; 24. Horizontal branch stars in the geneva photometric system; 25. Zeeman observations of FHB stars and hot subdwarf stars; 26. What does a FHB star's spectrum look like?; 27. A technique for distinguishing FHB stars from A-type stars; 28. eEemental abundances of halo A and interloper stars; 29. The mass of blue horizontal branch stars in the globular cluster NGC6397; 30. IUE observations of blue HB stars in the globular clusters M3 and NGC6752; 31. Metallicities and kinematics of the local RR lyraes: lukewarm stars

  3. Kiln for hot-pressing compacts in a continuous manner

    DOEpatents

    Reynolds, C.D Jr.

    1983-08-08

    The invention is directed to a hot pressing furnace or kiln which is capable of preheating, hot pressing, and cooling a plurality of articles in a sequential and continuous manner. The hot pressing furnace of the present invention comprises an elongated, horizontally disposed furnace capable of holding a plurality of displaceable pusher plates each supporting a die body loaded with refractory or ceramic material to be hot pressed. Each of these plates and the die body supported thereby is sequentially pushed through the preheating zone, a temperature stabilizing and a hot pressing zone, and a cooling zone so as to provide a continuous hot-pressing operation of a plurality of articles.

  4. Kiln for hot-pressing compacts in a continuous manner

    DOEpatents

    Reynolds, Jr., Carl D.

    1985-01-01

    The present invention is directed to a hot pressing furnace or kiln which is capable of preheating, hot pressing, and cooling a plurality of articles in a sequential and continuous manner. The hot pressing furnace of the present invention comprises an elongated, horizontally disposed furnace capable of holding a plurality of displaceable pusher plates each supporting a die body loaded with refractory or ceramic material to be hot pressed. Each of these plates and the die body supported thereby is sequentially pushed through the preheating zone, a temperature stabilizing and a hot pressing zone, and a cooling zone so as to provide a continuous hot-pressing operation of a plurality of articles.

  5. High Temperature Chemistry at NASA: Hot Topics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  6. The hot corona of YY Mensae

    NASA Technical Reports Server (NTRS)

    Guedel, M.; Guinan, E. F.; Skinner, S. L.; Linsky, J. L.

    1996-01-01

    The results of a long time series of Rosat position sensitive proportional counter (PSPC) pointings are reported on together with the first Advanced Satellite for Cosmology and Astrophysics (ASCA) observation of the FK Comae-type star YY Mensae. This star reveals a hot dominant plasma of up to 3 keV, with less material at 0.7 keV.

  7. Facilities Bonds Prove Hot Item under Stimulus

    ERIC Educational Resources Information Center

    Klein, Alyson

    2009-01-01

    Construction bonding authority--a technical, and often obscure, source of capital funding for school districts--has emerged as a hot ticket for those looking to finance school facilities work under the federal government's economic-stimulus program. School districts left out of the loop for direct funding are lining up for some of at least $24…

  8. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  9. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  10. Hot-spot tectonics on Io

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1985-01-01

    The thesis is that extensional tectonics and low-angle detachment faults probably occur on Io in association with the hot spots. These processes may occur on a much shorter timescale on Ion than on Earth, so that Io could be a natural laboratory for the study of thermotectonics. Furthermore, studies of heat and detachment in crustal extension on Earth and the other terresrial planets (especially Venus and Mars) may provide analogs to processes on Io. The geology of Io is dominated by volcanism and hot spots, most likely the result of tidal heating. Hot spots cover 1 to 2% of Io's surface, radiating at temperatures typically from 200 to 400 K, and occasionally up to 700K. Heat loss from the largest hot spots on Io, such as Loki Patera, is about 300 times the heat loss from Yellowstone, so a tremendous quantity of energy is available for volcanic and tectonic work. Active volcanism on Io results in a resurfacing rate as high as 10 cm per year, yet many structural features are apparent on the surface. Therefore, the tectonics must be highly active.

  11. Travertine Hot Springs, Mono County, California

    SciTech Connect

    Chesterman, C.W.; Kleinhampl, F.J.

    1991-08-01

    This article is an abridgement of Special Report 172, Travertine Hot Springs at Bridgeport, Mono County, California, in preparation at the California Division of Mines and Geology. The Travertine Hot Springs area is on the northern edge of what many consider to be one of the most tectonically active areas in the United States. There is abundant geothermal and seismic activity. The landscape is dotted with volcanic features- cones, craters, domes, flows, fumaroles and hot springs-indicators of unrest in the present as well as reminders of activity in the past. Travertine, also known as calcareous sinter, is limestone formed by chemical precipitation of calcium carbonate (CaCO{sub 3}) from ground or surface waters. It forms stalactites and stalagmites in caves, fills some veins and spring conduits and can also be found at the mouths of springs, especially hot springs. The less compact variety is called tufa and the dense, banded variety is known as Mexican onyx, or onyx marble. True onyx, however, is a banded silicate.

  12. Microscale Effects from Global Hot Plasma Imagery

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Fok, M.-C.; Perez, J. D.; Keady, J. P.

    1995-01-01

    We have used a three-dimensional model of recovery phase storm hot plasmas to explore the signatures of pitch angle distributions (PADS) in global fast atom imagery of the magnetosphere. The model computes mass, energy, and position-dependent PADs based on drift effects, charge exchange losses, and Coulomb drag. The hot plasma PAD strongly influences both the storm current system carried by the hot plasma and its time evolution. In turn, the PAD is strongly influenced by plasma waves through pitch angle diffusion, a microscale effect. We report the first simulated neutral atom images that account for anisotropic PADs within the hot plasma. They exhibit spatial distribution features that correspond directly to the PADs along the lines of sight. We investigate the use of image brightness distributions along tangent-shell field lines to infer equatorial PADS. In tangent-shell regions with minimal spatial gradients, reasonably accurate PADs are inferred from simulated images. They demonstrate the importance of modeling PADs for image inversion and show that comparisons of models with real storm plasma images will reveal the global effects of these microscale processes.

  13. Integrated Approach for Prediction of Hot Tearing

    NASA Astrophysics Data System (ADS)

    Suyitno; Kool, W. H.; Katgerman, L.

    2009-10-01

    Shrinkage, imposed strain rate, and (lack of) feeding are considered the main factors that determine cavity formation or the formation of hot tears. A hot-tearing model is proposed that will combine a macroscopic description of the casting process and a microscopic model. The micromodel predicts whether porosity will form or a hot tear will develop. Results for an Al-4.5 pct Cu alloy are presented as a function of the constant strain rate and cooling rate. Also, incorporation of the model in a finite element method (FEM) simulation of the direct-chill (DC) casting process is reported. The model shows features well known from literature such as increasing hot-tearing sensitivity with increasing deformation rate, cooling rate, and grain size. Similar trends are found for the porosity formation as well. The model also predicts a beneficial effect of applying a ramping procedure during the start-up phase, which is an improvement in comparison with earlier findings obtained with alternative models. In principle, the model does not contain adjustable parameters, but several parameters are not well known. A full quantitative validation not only requires detailed casting trials but also independent determination of some thermophysical parameters of the semisolid mush.

  14. Solar-powered hot-air system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  15. Hot-dry-rock geothermal resource 1980

    SciTech Connect

    Heiken, G.; Goff, F.; Cremer, G.

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  16. Plasma deposited rider rings for hot displacer

    DOEpatents

    Kroebig, Helmut L.

    1976-01-01

    A hot cylinder for a cryogenic refrigerator having two plasma spray deposited rider rings of a corrosion and abrasion resistant material provided in the rider ring grooves, wherein the rider rings are machined to the desired diameter and width after deposition. The rider rings have gas flow flats machined on their outer surface.

  17. Teaching Earth Science Using Hot Air Balloons

    ERIC Educational Resources Information Center

    Kuhl, James; Shaffer, Karen

    2008-01-01

    Constructing model hot air balloons is an activity that captures the imaginations of students, enabling teachers to present required content to minds that are open to receive it. Additionally, there are few activities that lend themselves to integrating so much content across subject areas. In this article, the authors describe how they have…

  18. Plasmas are Hot and Fusion is Cool

    SciTech Connect

    2011-01-01

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  19. CONOCO DOLOMITE HOT GAS CLEANUP SYSTEM

    EPA Science Inventory

    This report analyzes a proposal that EPA sponsor a large-scale pilot plant to develop the Conoco (formerly Consol) Dolomite Hot Gas Clean-up system. The report includes a history of the prior development program, the technology involved comparisons with competitive technologies i...

  20. Dutch experience with hot windbox repowering

    SciTech Connect

    Ploumen, P.J.; Veenema, J.J.

    1995-10-01

    This paper gives an overview of the options available for repowering existing fossil fuel power plants. It includes an examination of the hot windbox repowering program in the Netherlands. The topics of the paper include efficiency improvement, NO{sub x} emission decrease, power increase, flexibility, and an economic evaluation of repowering.

  1. Hot topics in flavor physics at CDF

    SciTech Connect

    Jun, Soon Yung; /Carnegie Mellon U.

    2005-01-01

    Hot topics in flavor physics at CDF are reviewed. Selected results of top, beauty, charm physics and exotic states in about 200 pb{sup -1} data collected by the CDF II detector in p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron are presented.

  2. Cardiovascular responses to a hot tub bath.

    PubMed

    Boone, T; Westendorf, T; Ayres, P

    1999-06-01

    This study was conducted to determine the cardiovascular effects of 15 minutes of hot tub immersion at 39 degrees C. Five college-age subjects (4 males and 1 female) volunteered to participate in this study. Assessments were made while sitting first in a chair for 5 minutes and then in the hot tub for 15 minutes. Oxygen consumption (VO2) and cardiac output (Q) measurements were made using a Medical Graphics CPX/D metabolic analyzer. Cardiac output was determined at minute 15 using the indirect CO2 rebreathing procedure. The data were analyzed using the analysis of variance with repeated measures, which indicated that at minute 15, heart rate (HR) and Q were increased, which increased VO2. The increase in Q was due to the heart rate (HR) response and the decrease in systemic vascular resistance (SVR). Mean arterial pressure (MAP) and systolic blood pressure (SBP) were decreased while double product (DP) was increased. There were no changes in stroke volume (SV) or arteriovenous oxygen difference (a-vO2 diff). These findings indicate that the HR and Q responses are necessary to the increase in metabolism (VO2). Hot tube use within these time and temperature constraints should reduce concern over hot tub safety in college-age subjects. PMID:10381255

  3. Prototype solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  4. Turbine Engine Hot Section Technology (HOST)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Research and plans concerning aircraft gas turbine engine hot section durability problems were discussed. Under the topics of structural analysis, fatigue and fracture, surface protective coatings, combustion, turbine heat transfer, and instrumentation specific points addressed were the thermal and fluid environment around liners, blades, and vanes, material coatings, constitutive behavior, stress-strain response, and life prediction methods for the three components.

  5. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  6. Solar-powered hot-water system

    NASA Technical Reports Server (NTRS)

    Collins, E. R.

    1979-01-01

    Hot-water system requires no external power except solar energy. System is completely self-controlling. It includes solar-powered pump, solar-thermally and hydrothermally operated valves, and storage tank filled with open-celled foam, to maintain thermal stratification in stored water.

  7. Holding fixture for a hot stamping press

    NASA Technical Reports Server (NTRS)

    Harris, R. P. (Inventor)

    1983-01-01

    A hand held guide for manually positioning a work piece between the anvil rib and tool of a hot die stamping press is described. A groove completed by interchangeable cover plates attached at one end of the guide conforms to a cross sectional dimension common to similar workpieces and, with a force fit, retentively holds each of the workpieces.

  8. Hot Gas in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua

    2000-01-01

    The Large Magellanic Cloud (LMC) offers an excellent laboratory to study the physical structure of the interstellar medium (ISM) because of its proximity, nearly face-on orientation, and small foreground and internal extinction. Optical and radio surveys of the LMC ISM have revealed interstellar structures of sizes ranging from a few parsecs to over 1000 parsecs. ROSAT X-ray mosaics of the LMC have detected abundant 10 (exp 6) K hot gas, some of which is bounded by large shell structures while the rest, does not appear to be associated with any visible interstellar structure. The X-ray observations have been analyzed to determine the physical conditions of the hot gas. The distribution of the hot gas can be compared to those of the cooler gas and massive stars, in order to determine the production mechanism of the hot gas. UV observations of interstellar absorption lines of high ions, such as C IV, N V, and O VI, can be used to study the interfaces between the 10 (exp 6) K gas and cooler ionized gas, and to provide constraints on the location of 10 (exp 6) K gas with respect to the cooler gas along the line of sight.

  9. Two New Hot Spots on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Near-Infrared Mapping Spectrometer (NIMS) on Galileo obtained this image of half of Io's disk in darkness on September 19, 1997. This image, at 5 microns, shows several hot spots on Io, which are volcanic regions of enhanced thermal emission. The area shown is part of the leading hemisphere of Io.

    Two new hot spots are shown and indicated in the image (New, and Shamshu). Neither of these hot spots were seen by NIMS or the Solid State Imaging Experiment, (SSI) prior to this observation, becoming only recently active. Several other previously known hot spots are labelled in the image. Galileo was at a distance of 342,000 km from Io when this observation was made.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  10. Nanostructures: Drip painting on a hot canvas

    NASA Astrophysics Data System (ADS)

    Bain, Colin

    2007-06-01

    When droplets of water containing metal particles are deposited on a hot surface, they are supported by a thin layer of vapour that lets them slide, essentially friction free. The metal trails the droplets leave in their wake could be useful for making nanowires.

  11. Hot vibration durability of ceramic preconverters

    SciTech Connect

    Locker, R.J.; Schad, M.J.; Sawyer, C.B.

    1995-12-31

    The advent of thermally durable catalyst technologies has created the opportunity to move catalytic converters closer to the engine, providing a potential solution for cold start emissions. Close-coupled positioning exposes the converter to higher exhaust gas temperatures than experienced in underbody applications, permitting earlier catalyst light-off. The proximity of the converter to the engine will result in increased exposure to the vibrational energy created by combustion processes as well as intake and exhaust valve dynamics. This study investigated the thermo-mechanical challenges of mounting a ceramic substrate under severe conditions. In some instances ceramic substrates have been overlooked for application in the more demanding close-coupled environment. It will be shown that ceramic substrates mounted with standard intumescent mats survive under the most severe hot vibration testing conditions in the industry. Hot vibration testing is a very expensive activity. Therefore, testing a statistically significant sample population is not cost effective. Additional testing techniques were employed in this study to quantify hot vibration performance. These tests show promise in predicting hot vibration durability.

  12. Hot cracking during welding and casting

    NASA Astrophysics Data System (ADS)

    Cao, Guoping

    Aluminum welds are susceptible to liquation cracking in the partially melted zone (PMZ). Using the multicomponent Scheil model, curves of temperature vs. fraction solid (T-fS) during solidification were calculated for the PMZ and weld metals (WMs). These curves were used to predict the crack susceptibility by checking if the harmful condition of WM fS > PMZ fS exists during PMZ solidification and reduce the susceptibility by minimizing this condition. This approach was tested against full-penetration welds of alloys 7075 and 2024 and it can be used to guide the selection or development of filler metals. Liquation cracking in the PMZ in welds of Al-Si cast alloys was also investigated. The crack susceptibility was evaluated by circular-patch test, and full-penetration welds made with filler metals 1100, 4043, 4047 and 5356. Liquation cracking was significant with filler metals 1100 and 5356 but slight with filler metals 4043 and 4047. In all welds, liquation cracks were completely backfilled, instead of open as in full-penetration welds of wrought alloys 2219 and 6061. The T-fS curves showed that alloy A357 has a much higher fraction liquid for backfilling before PMZ solidification was essentially over. Hot tearing in Mg-xAl-yCa alloys was studied by constrained rod casting (CRC) in a steel mold. The hot tearing susceptibility decreased significantly with increasing Ca content (y) but did not change much with the Al content (x). An instrumented CRC with a steel mold was developed to detect the onset of hot tearing. The secondary phases, eutectic content, solidification path, and freezing range were examined. Hot tearing in Mg-Al-Sr alloys was also studied by CRC in a steel mold. With Mg-(4,6,8)Al-1.5Sr alloys, the hot tearing susceptibility decreased significantly with increasing Al content. With Mg-(4,6,8)Al-3Sr alloys, the trend was similar but not as significant. At the same Al content, the hot tearing susceptibility decreased significantly with increasing Sr

  13. Microbial hotspots and hot moments in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Blagodatskaya, Evgenia

    2015-04-01

    Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong

  14. A search for binary hot subdwarfs

    NASA Astrophysics Data System (ADS)

    Williams, William Thomas

    2001-12-01

    The hot subdwarfs are evolved stars intermediate between the hydrogen burning main sequence and the white dwarfs. As the immediate precursors of white dwarfs they are essential to a complete understanding of the end points of stellar evolution, and as exemplars of extreme mass- loss stars they may be windows on one of astronomy's least understood problems. But the origins of the hot subdwarfs are obscure. Duplicity may play a role in the enhanced mass-loss hot subdwarfs must suffer, and it is known that the hydrogen-rich sdB hot subdwarfs show a high binary fraction. The helium-rich hot subdwarfs, the putative descendants of the sdB stars, are only weakly characterized with respect to binarity. The helium-rich hot subdwarfs are the subject of this research, and the question of their duplicity is its focus. Sixty-four helium-rich hot subdwarfs drawn from the Palomar-Green Survey of UV-Excess Stellar Objects were observed on the Cousins BV RI photometric system. A subset of twenty-five of the 64 program stars were observed in the IR J and K pass-bands. Spectroscopic data were obtained for thirty-two members of the sample, including seven that have not been observed in either the BV RI or the JK filter sets. A total of sixteen binary candidates were identified, twelve for the first time. Binary candidates were identified by their intrinsic color excesses in two-color plots of the extinction-corrected BV RI and JK data, and by comparison to synthetic binary system colors. Spectrophotometric color indices were derived from the spectroscopic data and used to identify binary candidates by their excess color in two color plots. The binary fraction of the sdOC stars in the sample is predicted to be at least 64% and potentially 100%. A binary fraction for the whole sample of sdOs may have limited meaning, given the probable inhomogeneity of the sample. However, performing the calculation for the whole sample again produces the estimate that at least 64% and at most 100% of

  15. Hot-Jupiter Breakfasts Realign Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    Two researchers at the University of Chicago have recently developed a new theory to explain an apparent dichotomy in the orbits of planets around cool vs. hot stars. Their model proposes that the spins of cool stars are affected when they ingest hot Jupiters (HJs) early in their stellar lifetimes. A Puzzling Dichotomy: In exoplanet studies, there is a puzzling difference observed between planet orbits around cool and hot (those with Teff ≥ 6250 K) stars: the orbital planes of planets around cool stars are primarily aligned with the host star's spin, whereas the orbital planes of planets around hot stars seem to be randomly distributed. Previous attempts to explain this dichotomy have focused on tidal interactions between the host star and the planets observed in the system. Now Titos Matsakos and Arieh Königl have taken these models a step further — by including in their calculations not only the effects of observed planets, but also those of HJs that may have been swallowed by the star long before we observed the systems. Modeling Meals: Plots of the distribution of the obliquity λ for hot Jupiters around cool hosts (upper plot) and hot hosts (lower plot). The dashed line shows the initial distribution, the bins show the model prediction for the final distribution after the systems evolve, and the black dots show the current observational data. [Matsakos & Königl, 2015]" class="size-thumbnail wp-image-223" height="386" src="http://aasnova.org/wp-content/uploads/2015/08/fig22-260x386.png" width="260" /> Plots of the distribution of the obliquity λ for hot Jupiters around cool hosts (upper plot) and hot hosts (lower plot). The dashed line shows the initial distribution, the bins show the model prediction for the final distribution after the systems evolve, and the black dots show the current observational data. [Matsakos & Königl, 2015] The authors' model assumes that as HJs are formed and migrate inward through the protoplanetary disk, they stall out near

  16. Geothermal Exploration in Hot Springs, Montana

    SciTech Connect

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  17. WESF hot cells waste minimization criteria hot cells window seals evaluation

    SciTech Connect

    Walterskirchen, K.M.

    1997-03-31

    WESF will decouple from B Plant in the near future. WESF is attempting to minimize the contaminated solid waste in their hot cells and utilize B Plant to receive the waste before decoupling. WESF wishes to determine the minimum amount of contaminated waste that must be removed in order to allow minimum maintenance of the hot cells when they are placed in ''laid-up'' configuration. The remaining waste should not cause unacceptable window seal deterioration for the remaining life of the hot cells. This report investigates and analyzes the seal conditions and hot cell history and concludes that WESF should remove existing point sources, replace cerium window seals in F-Cell and refurbish all leaded windows (except for A-Cell). Work should be accomplished as soon as possible and at least within the next three years.

  18. Hot-Carrier Seebeck Effect: Diffusion and Remote Detection of Hot Carriers in Graphene.

    PubMed

    Sierra, Juan F; Neumann, Ingmar; Costache, Marius V; Valenzuela, Sergio O

    2015-06-10

    We investigate hot carrier propagation across graphene using an electrical nonlocal injection/detection method. The device consists of a monolayer graphene flake contacted by multiple metal leads. Using two remote leads for electrical heating, we generate a carrier temperature gradient that results in a measurable thermoelectric voltage V(NL) across the remaining (detector) leads. Due to the nonlocal character of the measurement, V(NL) is exclusively due to the Seebeck effect. Remarkably, a departure from the ordinary relationship between Joule power P and V(NL), V(NL) ∼ P, becomes readily apparent at low temperatures, representing a fingerprint of hot-carrier dominated thermoelectricity. By studying V(NL) as a function of bias, we directly determine the carrier temperature and the characteristic cooling length for hot-carrier propagation, which are key parameters for a variety of new applications that rely on hot-carrier transport. PMID:25950746

  19. HOT CELL BUILDING, TRA632, INTERIOR. CONTEXTUAL VIEW OF HOT CELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. CONTEXTUAL VIEW OF HOT CELL NO. 2 FROM STAIRWAY ALONG NORTH WALL. OBSERVATION WINDOW ALONG WEST SIDE BENEATH "CELL 2" SIGN. DOORWAY IN LEFT OF VIEW LEADS TO CELL 1 WORK AREA OR TO EXIT OUTDOORS TO NORTH. RADIATION DETECTION MONITOR TO RIGHT OF DOOR. CAMERA FACING SOUTHWEST. INL NEGATIVE NO. HD46-28-3. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  20. Hot-Film and Hot-Wire Anemometry for a Boundary Layer Active Flow Control Test

    NASA Technical Reports Server (NTRS)

    Lenahan, Keven C.; Schatzman, David M.; Wilson, Jacob Samuel

    2013-01-01

    Unsteady active flow control (AFC) has been used experimentally for many years to minimize bluff-body drag. This technology could significantly improve performance of rotorcraft by cleaning up flow separation. It is important, then, that new actuator technologies be studied for application to future vehicles. A boundary layer wind tunnel was constructed with a 1ft-x-3ft test section and unsteady measurement instrumentation to study how AFC manipulates the boundary layer to overcome adverse pressure gradients and flow separation. This unsteady flow control research requires unsteady measurement methods. In order to measure the boundary layer characteristics, both hot-wire and hot-film Constant Temperature Anemometry is used. A hot-wire probe is mounted in the flow to measure velocity while a hot-film array lays on the test surface to measure skin friction. Hot-film sensors are connected to an anemometer, a Wheatstone bridge circuit with an output that corresponds to the dynamic flow response. From this output, the time varying flow field, turbulence, and flow reversal can be characterized. Tuning the anemometers requires a fan test on the hot-film sensors to adjust each output. This is a delicate process as several variables drastically affect the data, including control resistance, signal input, trim, and gain settings.

  1. 1. View of rmad from jr. hot cell, facing north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of r-mad from jr. hot cell, facing north - Nevada Test Site, Reactor Maintenance & Disassembly Complex, Junior Hot Cell, Jackass Flats, Area 25, South of intersection of Roads F & G, Mercury, Nye County, NV

  2. 13. Underside Span 1, Hot Metal Bridge on right toward ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Underside Span 1, Hot Metal Bridge on right toward Pier 1. - Monongahela Connecting Railroad Company, Hot Metal Bridge, Spanning Monongahela River at mile post 3.1, Pittsburgh, Allegheny County, PA

  3. Child Dies in Hot Car Almost Once a Week

    MedlinePlus

    ... gov/news/fullstory_160479.html Child Dies in Hot Car Almost Once a Week Safe Kids Worldwide ... being left in a car that got too hot, according to Safe Kids Worldwide. Sometimes parents forget ...

  4. Acupuncture May Ease Hot Flashes for Breast Cancer Patients

    MedlinePlus

    ... medlineplus/news/fullstory_157996.html Acupuncture May Ease Hot Flashes for Breast Cancer Patients Italian trial finds ... News) -- Acupuncture can help alleviate the often-debilitating hot flashes that afflict many breast cancer patients, new ...

  5. BLOWER MOTOR & DRIVE WHEEL. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BLOWER MOTOR & DRIVE WHEEL. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  6. 11. INTERIOR OF THERMOSTAT. Hot Springs National Park Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR OF THERMOSTAT. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  7. 2. PADDLE FAN IN PLENUM INTERIOR. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PADDLE FAN IN PLENUM INTERIOR. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  8. 9. HIGH POWER SPRAY IN MEN'S STEAM ROOM. Hot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. HIGH POWER SPRAY IN MEN'S STEAM ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  9. THERMALWATER FLOW METER. Hot Springs National Park, Bathhouse Row, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    THERMAL-WATER FLOW METER. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  10. DETAIL OF THERMALWATER FLOW METER. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THERMAL-WATER FLOW METER. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  11. 8. HIGH POWER SPRAY IN MEN'S PACK ROOM. Hot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. HIGH POWER SPRAY IN MEN'S PACK ROOM. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  12. 5. HORIZONTAL COOLEDWATER STORAGE TANKS. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. HORIZONTAL COOLED-WATER STORAGE TANKS. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  13. 2. INDUSTRIAL IRON (LAUNDRY AREA IN BACKGROUND). Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. INDUSTRIAL IRON (LAUNDRY AREA IN BACKGROUND). - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  14. 2. ELEVATOR DRIVE, CABLE MOTOR, CIRCUIT BOX, Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ELEVATOR DRIVE, CABLE MOTOR, CIRCUIT BOX, - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  15. 12. ELEVATOR DOORS AND CAB. Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. ELEVATOR DOORS AND CAB. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  16. 10. NEEDLE SHOWER IN COOLING ROOM. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. NEEDLE SHOWER IN COOLING ROOM. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  17. 1. INDUSTRIAL IRON (WORKING SIDE). Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. INDUSTRIAL IRON (WORKING SIDE). - Hot Springs National Park, Bathhouse Row, Quapaw Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  18. 1. PLENUM INTERIOR, SHOWING HEATING COILS AND BYPASS Hot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. PLENUM INTERIOR, SHOWING HEATING COILS AND BY-PASS - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  19. 15. FAN HOUSE ON TOP OF ELEVATOR SHAFT. Hot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. FAN HOUSE ON TOP OF ELEVATOR SHAFT. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  20. 9. NEEDLE SHOWER IN MEN'S PACK ROOM. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. NEEDLE SHOWER IN MEN'S PACK ROOM. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  1. VACUUM PUMP (CONDENSATE RETURN). Hot Springs National Park, Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VACUUM PUMP (CONDENSATE RETURN). - Hot Springs National Park, Bathhouse Row, Hale Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  2. 1. BLOWER (EXTERIOR CONFIGURATION). Hot Springs National Park Bathhouse ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. BLOWER (EXTERIOR CONFIGURATION). - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  3. 13. DETAIL OF INTERIOR OF ELEVATOR SHAFT. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. DETAIL OF INTERIOR OF ELEVATOR SHAFT. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  4. 5. FLOW METER AND PIPING SHOWING CONNECTIONS. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FLOW METER AND PIPING SHOWING CONNECTIONS. - Hot Springs National Park Bathhouse Row, Maurice Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  5. 4. DETAIL OF ELEVATOR DRUM AND DRIVE. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF ELEVATOR DRUM AND DRIVE. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  6. 11. GENERAL VIEW OF MEN'S BATH HALL. Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. GENERAL VIEW OF MEN'S BATH HALL. - Hot Springs National Park, Bathhouse Row, Fordyce Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  7. 4. VACUUM PUMP (CONDENSATE RETURN). Hot Springs National Park, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VACUUM PUMP (CONDENSATE RETURN). - Hot Springs National Park, Bathhouse Row, Buckstaff Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 Mile North of U.S. Highway 70, Hot Springs, Garland County, AR

  8. 9. THERMOSTAT IN LADIES MASSAGE ROOM. Hot Springs National ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. THERMOSTAT IN LADIES MASSAGE ROOM. - Hot Springs National Park, Bathhouse Row, Lamar Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  9. Children in Hot Cars Result in Fatal Consequences

    MedlinePlus

    ... Home » Health Tips » Holiday and Seasonal Children in Hot Cars Result in Fatal Consequences Emergency physicians are ... dangers associated with leaving anyone, especially children in hot, unventilated vehicles during the summer. Children throughout the ...

  10. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  11. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  12. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device intended for medical purposes that is in the form of a container intended to be filled with hot or cold...

  13. Advances in Hot-Structure Development

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin; Glass, David E.

    2006-01-01

    The National Aeronautics and Space Administration has actively participated in the development of hot structures technology for application to hypersonic flight systems. Hot structures have been developed for vehicles including the X-43A, X-37, and the Space Shuttle. These trans-atmospheric and atmospheric entry flight systems that incorporate hot-structures technology are lighter weight and require less maintenance than those that incorporate parasitic, thermal-protection materials that attach to warm or cool substructure. The development of hot structures requires a thorough understanding of material performance in an extreme environment, boundary conditions and load interactions, structural joint performance, and thermal and mechanical performance of integrated structural systems that operate at temperatures ranging from 1500 C to 3000 C, depending on the application. This paper will present recent advances in the development of hot structures, including development of environmentally durable, high temperature leading edges and control surfaces, integrated thermal protection systems, and repair technologies. The X-43A Mach-10 vehicle utilized carbon/carbon (C/C) leading edges on the nose, horizontal control surface, and vertical tail. The nose and vertical and horizontal tail leading edges were fabricated out of a 3:1 biased, high thermal conductivity C/C. The leading edges were coated with a three-layer coating comprised of a SiC conversion of the C/C, followed by a CVD layer of SiC, followed by a thin CVD layer of HfC. Work has also been performed on the development of an integrated structure and was focused on both hot and warm (insulated) structures and integrated fuselage/tank/TPS systems. The objective was to develop integrated multifunctional airframe structures that eliminate fragile external thermal-protection systems and incorporate the insulating function within the structure. The approach taken to achieve this goal was to develop candidate hypersonic

  14. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device...

  15. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest Service, USDA. ACTION: Notice of intent... continued livestock grazing ] within the Monitor-Hot Creek Rangeland Project area. The analysis will... conditions within the Monitor-Hot Creek Rangeland Project area towards desired conditions. The project...

  16. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hot Springs National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a) Commercial... or carrying away of water, hot or cold, from any of the springs, fountains, or other sources...

  17. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Hot Springs National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a) Commercial... or carrying away of water, hot or cold, from any of the springs, fountains, or other sources...

  18. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Hot Springs National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a) Commercial... or carrying away of water, hot or cold, from any of the springs, fountains, or other sources...

  19. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Hot Springs National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a) Commercial... or carrying away of water, hot or cold, from any of the springs, fountains, or other sources...

  20. 25. Hot well, as seen from port side aft. Waste ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Hot well, as seen from port side aft. Waste water overflow pipe appears at left, behind which is bilge pump. At base of hot well on either side are reciprocating boiler feedwater pumps driven from hot well crosshead. (Labels were applied by HAER recording team and are not original to equipment.) - Ferry TICONDEROGA, Route 7, Shelburne, Chittenden County, VT

  1. Installation package for a solar heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  2. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 25.961... hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... simulated flight conditions. If a flight test is performed in weather cold enough to interfere with...

  3. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 25.961... hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... simulated flight conditions. If a flight test is performed in weather cold enough to interfere with...

  4. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 25.961... hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... simulated flight conditions. If a flight test is performed in weather cold enough to interfere with...

  5. 40 CFR 86.138-96 - Hot soak test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Hot soak test. 86.138-96 Section 86...-Duty Vehicles; Test Procedures § 86.138-96 Hot soak test. (a)(1) Gasoline- and methanol-fueled vehicles. For gasoline- and methanol-fueled vehicles, the hot soak test shall be conducted immediately...

  6. 40 CFR 1066.965 - Hot soak test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Procedures for Motor Vehicles § 1066.965 Hot soak test. Test vehicles for hot soak emissions as described in 40 CFR 86.138-96. ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Hot soak test. 1066.965 Section...

  7. 40 CFR 86.1238-96 - Hot soak test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Hot soak test. 86.1238-96 Section 86... Methanol-Fueled Heavy-Duty Vehicles § 86.1238-96 Hot soak test. (a)(1) Gasoline- and methanol-fueled vehicles. For gasoline- and methanol-fueled vehicles, the hot soak test shall be conducted...

  8. 40 CFR 86.1238-96 - Hot soak test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Hot soak test. 86.1238-96 Section 86... Methanol-Fueled Heavy-Duty Vehicles § 86.1238-96 Hot soak test. (a)(1) Gasoline- and methanol-fueled vehicles. For gasoline- and methanol-fueled vehicles, the hot soak test shall be conducted...

  9. 40 CFR 86.138-96 - Hot soak test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Hot soak test. 86.138-96 Section 86...-Duty Vehicles; Test Procedures § 86.138-96 Hot soak test. (a)(1) Gasoline- and methanol-fueled vehicles. For gasoline- and methanol-fueled vehicles, the hot soak test shall be conducted immediately...

  10. 40 CFR 86.138-96 - Hot soak test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Hot soak test. 86.138-96 Section 86...-Duty Vehicles; Test Procedures § 86.138-96 Hot soak test. (a)(1) Gasoline- and methanol-fueled vehicles. For gasoline- and methanol-fueled vehicles, the hot soak test shall be conducted immediately...

  11. 40 CFR 86.138-96 - Hot soak test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Hot soak test. 86.138-96 Section 86...-Duty Vehicles; Test Procedures § 86.138-96 Hot soak test. (a)(1) Gasoline- and methanol-fueled vehicles. For gasoline- and methanol-fueled vehicles, the hot soak test shall be conducted immediately...

  12. 36 CFR 7.18 - Hot Springs National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Hot Springs National Park. 7... SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a) Commercial... or carrying away of water, hot or cold, from any of the springs, fountains, or other sources...

  13. 40 CFR 86.138-96 - Hot soak test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Hot soak test. 86.138-96 Section 86...-Duty Vehicles; Test Procedures § 86.138-96 Hot soak test. (a)(1) Gasoline- and methanol-fueled vehicles. For gasoline- and methanol-fueled vehicles, the hot soak test shall be conducted immediately...

  14. HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HATCH CONNECTING TEMPERED AIR CHAMBER AND HOT AIR CHAMBER OF PLENUM WITH ATTACHED DRAFT REGULATOR. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  15. 7 CFR 305.22 - Hot water immersion treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Hot water immersion treatment schedules. 305.22... Hot water immersion treatment schedules. (a) T102-d. (1) Fruit must be grown and treated in Hawaii. (2) Fruit must be submerged at least 4 inches below the water's surface in a hot water immersion...

  16. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Fuel system hot weather operation. 25.961... hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... simulated flight conditions. If a flight test is performed in weather cold enough to interfere with...

  17. 14 CFR 25.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel system hot weather operation. 25.961... hot weather operation. (a) The fuel system must perform satisfactorily in hot weather operation. This... simulated flight conditions. If a flight test is performed in weather cold enough to interfere with...

  18. Hot cheese: a processed Swiss cheese model.

    PubMed

    Li, Y; Thimbleby, H

    2014-01-01

    James Reason's classic Swiss cheese model is a vivid and memorable way to visualise how patient harm happens only when all system defences fail. Although Reason's model has been criticised for its simplicity and static portrait of complex systems, its use has been growing, largely because of the direct clarity of its simple and memorable metaphor. A more general, more flexible and equally memorable model of accident causation in complex systems is needed. We present the hot cheese model, which is more realistic, particularly in portraying defence layers as dynamic and active - more defences may cause more hazards. The hot cheese model, being more flexible, encourages deeper discussion of incidents than the simpler Swiss cheese model permits. PMID:24999771

  19. Hot water, fresh beer, and salt

    SciTech Connect

    Crawford, F.S. Physics Department, University of California, Berkeley, CA )

    1990-11-01

    In the hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO{sub 2}) provided you first (a) get rid of much of the excess CO{sub 2} so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, Do ionizing particles produce bubbles in fresh beer '' is answered experimentally.

  20. Turbine Engine Hot Section Technology 1986

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Turbine Engine Hot Section Technology (HOST) Project of the NASA Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine durability problems. Presentations were made concerning the hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes. The presentations were divided into six sessions: Instrumentation, Combustion, Turbine Heat Transfer, Structural Analysis, Fatigue and Fracture, and Surface Protection. Topics discussed included modeling of thermal and fluid-flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response, and life-prediction methods. Researchers from industry, academia, and government presented results of their work sponsored by the HOST project.

  1. Hierarchical Simulation of Hot Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.

    1993-01-01

    Computational procedures are described to simulate the thermal and mechanical behavior of high temperature metal matrix composites (HT-MMC) in the following three broad areas: (1) Behavior of HT-MMC's from micromechanics to laminate via Metal Matrix Composite Analyzer (METCAN), (2) tailoring of HT-MMC behavior for optimum specific performance via Metal Matrix Laminate Tailoring (MMLT), and (3) HT-MMC structural response for hot structural components via High Temperature Composite Analyzer (HITCAN). Representative results from each area are presented to illustrate the effectiveness of computational simulation procedures. The sample case results show that METCAN can be used to simulate material behavior such as strength, stress-strain response, and cyclic life in HTMMC's; MMLT can be used to tailor the fabrication process for optimum performance such as that for in-service load carrying capacity of HT-MMC's; and HITCAN can be used to evaluate static fracture and fatigue life of hot pressurized metal matrix composite rings.

  2. X-rays from hot subdwarfs

    NASA Astrophysics Data System (ADS)

    Mereghetti, Sandro; La Palombara, Nicola

    2016-09-01

    Thanks to the high sensitivity of the instruments on board the XMM-Newton and Chandra satellites, it has become possible to explore the properties of the X-ray emission from hot subdwarfs. The small but growing sample of hot subdwarfs detected in X-rays includes binary systems, in which the X-rays result from wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low mass stars provide information which can be useful also for our understanding of the winds of more luminous and massive early-type stars and can lead to the discovery of particularly interesting binary systems.

  3. Mathematical modeling of deformation during hot rolling

    SciTech Connect

    Jin, D.; Stachowiak, R.G.; Samarasekera, I.V.; Brimacombe, J.K.

    1994-12-31

    The deformation that occurs in the roll bite during the hot rolling of steel, particularly the strain-rate and strain distribution, has been mathematically modeled using finite-element analysis. In this paper three different finite-element models are compared with one another and with industrial measurements. The first model is an Eulerian analysis based on the flow formulation method, while the second utilizes an Updated Lagrangian approach. The third model is based on a commercially available program DEFORM which also utilizes a Lagrangian reference frame. Model predictions of strain and strain-rate distribution, particularly near the surface of the slab, are strongly influenced by the treatment of friction at the boundary and the magnitude of the friction coefficient or shear factor. Roll forces predicted by the model have been compared with industrial rolling loads from a seven-stand hot-strip mill.

  4. An Optimization Study of Hot Stamping Operation

    NASA Astrophysics Data System (ADS)

    Ghoo, Bonyoung; Umezu, Yasuyoshi; Watanabe, Yuko; Ma, Ninshu; Averill, Ron

    2010-06-01

    In the present study, 3-dimensional finite element analyses for hot-stamping processes of Audi B-pillar product are conducted using JSTAMP/NV and HEEDS. Special attention is paid to the optimization of simulation technology coupling with thermal-mechanical formulations. Numerical simulation based on FEM technology and optimization design using the hybrid adaptive SHERPA algorithm are applied to hot stamping operation to improve productivity. The robustness of the SHERPA algorithm is found through the results of the benchmark example. The SHERPA algorithm is shown to be far superior to the GA (Genetic Algorithm) in terms of efficiency, whose calculation time is about 7 times faster than that of the GA. The SHERPA algorithm could show high performance in a large scale problem having complicated design space and long calculation time.

  5. Thermodynamics of pairing transition in hot nuclei

    NASA Astrophysics Data System (ADS)

    Liu, Lang; Zhang, Zhen-Hua; Zhao, Peng-Wei

    2015-10-01

    The pairing correlations in hot nuclei 162Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The thermodynamical quantities are evaluated by the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. An S-shaped heat capacity curve as a function of temperature has been obtained. The properties of hot nuclei, such as entropy and level density are studied in terms of defined seniority component. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.

  6. Axions as hot and cold dark matter

    SciTech Connect

    Jeong, Kwang Sik; Kawasaki, Masahiro; Takahashi, Fuminobu E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-02-01

    The presence of a hot dark matter component has been hinted at 3σ by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu-Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f{sub a}∼

  7. Effects of a hot intergalactic medium

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory B.; Wright, Edward L.

    1989-01-01

    One effect a hot intergalactic medium (IGM) would have would be to produce an isotropic X-ray background through thermal bremsstrahlung. Such a background was modeled including both relativistic electron-ion and electron-electron emission; the observed X-ray measurements could be fit with a current temperature of 10.2 keV and Omega (IGM) of 0.27, assuming that the IGM was instantaneously heated at a redshift of 5 and cools by relativistic adiabatic expansion and Compton cooling. Such a hot IGM would also distort the cosmic microwave background spectrum by inverse Compton scattering off relativistic electrons. This distortion was modeled using the relativistic treatment. When including the recent data of Matsumoto et al., an undistorted radiation temperature of 2.86 K and an Omega (IGM) of 0.41 was found.

  8. Method for hot pressing beryllium oxide articles

    DOEpatents

    Ballard, Ambrose H.; Godfrey, Jr., Thomas G.; Mowery, Erb H.

    1988-01-01

    The hot pressing of beryllium oxide powder into high density compacts with little or no density gradients is achieved by employing a homogeneous blend of beryllium oxide powder with a lithium oxide sintering agent. The lithium oxide sintering agent is uniformly dispersed throughout the beryllium oxide powder by mixing lithium hydroxide in an aqueous solution with beryllium oxide powder. The lithium hydroxide is converted in situ to lithium carbonate by contacting or flooding the beryllium oxide-lithium hydroxide blend with a stream of carbon dioxide. The lithium carbonate is converted to lithium oxide while remaining fixed to the beryllium oxide particles during the hot pressing step to assure uniform density throughout the compact.

  9. Coiling Temperature Control in Hot Strip Mill

    NASA Astrophysics Data System (ADS)

    Imanari, Hiroyuki; Fujiyama, Hiroaki

    Coiling temperature is one of the most significant factors in products of hot strip mill to determine material properties such as strength, toughness of steel, so it is very important to achieve accurate coiling temperature control (CTC). Usually there are a few pyrometers on the run out table in hot strip mill, therefore temperature model and its adapting system have large influences on the accuracy of CTC. Also unscheduled change of rolling speed has a bad effect to keep coiling temperature as its target. Newly developed CTC system is able to get very accurate coiling temperature against uncertain factors and disturbances by adopting easily identified temperature model, learning method and dynamic set up function. The features of the CTC system are discussed with actual data, and the effectiveness of the system is shown by actual control results.

  10. Computational simulation of hot composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Murthy, P. L. N.; Singhal, S. N.

    1991-01-01

    Three different computer codes developed in-house are described for application to hot composite structures. These codes include capabilities for: (1) laminate behavior (METCAN); (2) thermal/structural analysis of hot structures made from high temperature metal matrix composites (HITCAN); and (3) laminate tailoring (MMLT). Results for select sample cases are described to demonstrate the versatility as well as the application of these codes to specific situations. The sample case results show that METCAN can be used to simulate cyclic life in high temperature metal matrix composites; HITCAN can be used to evaluate the structural performance of curved panels as well as respective sensitivities of various nonlinearities, and MMLT can be used to tailor the fabrication process in order to reduce residual stresses in the matrix upon cool-down.

  11. Computational simulation of hot composites structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Murthy, P. L. N.; Singhal, S. N.

    1991-01-01

    Three different computer codes developed in-house are described for application to hot composite structures. These codes include capabilities for: (1) laminate behavior (METCAN); (2) thermal/structural analysis of hot structures made from high temperature metal matrix composites (HITCAN); and (3) laminate tailoring (MMLT). Results for select sample cases are described to demonstrate the versatility as well as the application of these codes to specific situations. The sample case results show that METCAN can be used to simulate cyclic life in high temperature metal matrix composites; HITCAN can be used to evaluate the structural performance of curved panels as well as respective sensitivities of various nonlinearities, and MMLT can be used to tailor the fabrication process in order to reduce residual stresses in the matrix upon cool-down.

  12. UBV photometry of hot white dwarf stars

    NASA Astrophysics Data System (ADS)

    Cheselka, Mathew; Holberg, J. B.; Watkins, Ron; Collins, James; Tweedy, R. W.

    1993-12-01

    Johnson UBV photometry has been obtained for a set of hot degenerate stars, primarily DA and DO white dwarfs from among those detected in the Palomar-Green survey of UV excess objects. Most of our program stars have estimated effective temperatures (Teff) in the range 22,000 to 80,000 K and have no previous photometry. Some objects selected are also x-ray and extreme ultraviolet sources from the ROSAT all sky survey. The importance of precise photometric measurements in the analysis of x-ray data is discussed. A discrepancy between the observed colors and predicted colors is noted, and possibly accounted for by difficulties in defining the atmospheric cutoff of the U band and a general lack of hot stars used to define the photometric transformation between theoretical and observed colors.

  13. Magnetic effects in hot Jupiter atmospheres

    SciTech Connect

    Rogers, T. M.; Komacek, T. D.

    2014-10-20

    We present magnetohydrodynamic simulations of the atmospheres of hot Jupiters ranging in temperature from 1100 to 1800 K. Magnetic effects are negligible in atmospheres with temperatures ≲1400 K. At higher temperatures winds are variable and, in many cases, mean equatorial flows can become westward, opposite to their hydrodynamic counterparts. Ohmic dissipation peaks at temperatures ∼1500-1600 K, depending on field strength, with maximum values ∼10{sup 18} W at 10 bars, substantially lower than previous estimates. Based on the limited parameter study done, this value cannot be increased substantially with increasing winds, higher temperatures, higher field strengths, different boundary conditions, or lower diffusivities. Although not resolved in these simulations, there is modest evidence that a magnetic buoyancy instability may proceed in hot atmospheres.

  14. The hot γ Doradus and Maia stars

    NASA Astrophysics Data System (ADS)

    Balona, L. A.; Engelbrecht, C. A.; Joshi, Y. C.; Joshi, S.; Sharma, K.; Semenko, E.; Pandey, G.; Chakradhari, N. K.; Mkrtichian, David; Hema, B. P.; Nemec, J. M.

    2016-08-01

    The hot γ Doradus stars have multiple low frequencies characteristic of γ Dor or SPB variables, but are located between the red edge of the SPB and the blue edge of the γ Dor instability strips where all low-frequency modes are stable in current models of these stars. Though δ Sct stars also have low frequencies, there is no sign of high frequencies in hot γ Dor stars. We obtained spectra to refine the locations of some of these stars in the H-R diagram and conclude that these are, indeed, anomalous pulsating stars. The Maia variables have multiple high frequencies characteristic of β Cep and δ Sct stars, but lie between the red edge of the β Cep and the blue edge of the δ Sct instability strips. We compile a list of all Maia candidates and obtain spectra of two of these stars. Again, it seems likely that these are anomalous pulsating stars which are currently not understood.

  15. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect

    Venkat Vedula; Tania Bhatia

    2009-04-30

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section

  16. The hot γ Doradus and Maia stars

    NASA Astrophysics Data System (ADS)

    Balona, L. A.; Engelbrecht, C. A.; Joshi, Y. C.; Joshi, S.; Sharma, K.; Semenko, E.; Pandey, G.; Chakradhari, N. K.; Mkrtichian, David; Hema, B. P.; Nemec, J. M.

    2016-05-01

    The hot γ Doradus stars have multiple low frequencies characteristic of γ Dor or SPB variables, but are located between the red edge of the SPB and the blue edge of the γ Dor instability strips where all low-frequency modes are stable in current models of these stars. Though δ Sct stars also have low frequencies, there is no sign of high frequencies in hot γ Dor stars. We obtained spectra to refine the locations of some of these stars in the H-R diagram and conclude that these are, indeed, anomalous pulsating stars. The Maia variables have multiple high frequencies characteristic of β Cep and δ Sct stars, but lie between the red edge of the β Cep and the blue edge of the δ Sct instability strips. We compile a list of all Maia candidates and obtain spectra of two of these stars. Again, it seems likely that these are anomalous pulsating stars which are currently not understood.

  17. Hot wire in low Reynolds number flow

    NASA Technical Reports Server (NTRS)

    Kolb, M. A.; Covert, E. E.

    1984-01-01

    Progress reports were issued on the following experiments: (1) low Reynolds number flow phenomenon of periodic vortex shedding in the wake behind a cylinder as studied by applying the hot wire anemometer technique of flow measurement. The downstream diffusion of these shed vortices was of prime concern. An evaluation of the performance of the hot wire at low Reynolds number is also considered. (2) A brief examination of the back sections of the Wright Brothers wind tunnel circuits were conducted to establish whether or not gross flow deviations were present at corners, or turning vane regions. A calibration of the test sections was done. (3) The attractiveness of using rembedded grids for airfoil calculations modeled by the Euler equations was explored. These calculations were extended to C-type grids and then to Navier-Stokes calculations,

  18. Ethylene oxide and acetaldehyde in hot cores

    NASA Astrophysics Data System (ADS)

    Occhiogrosso, A.; Vasyunin, A.; Herbst, E.; Viti, S.; Ward, M. D.; Price, S. D.; Brown, W. A.

    2014-04-01

    Context. Ethylene oxide (c-C2H4O), and its isomer acetaldehyde (CH3CHO), are important complex organic molecules because of their potential role in the formation of amino acids. The discovery of ethylene oxide in hot cores suggests the presence of ring-shaped molecules with more than 3 carbon atoms such as furan (c-C4H4O), to which ribose, the sugar found in DNA, is closely related. Aims: Despite the fact that acetaldehyde is ubiquitous in the interstellar medium, ethylene oxide has not yet been detected in cold sources. We aim to understand the chemistry of the formation and loss of ethylene oxide in hot and cold interstellar objects (i) by including in a revised gas-grain network some recent experimental results on grain surfaces and (ii) by comparison with the chemical behaviour of its isomer, acetaldehyde. Methods: We introduce a complete chemical network for ethylene oxide using a revised gas-grain chemical model. We test the code for the case of a hot core. The model allows us to predict the gaseous and solid ethylene oxide abundances during a cooling-down phase prior to star formation and during the subsequent warm-up phase. We can therefore predict at what temperatures ethylene oxide forms on grain surfaces and at what temperature it starts to desorb into the gas phase. Results: The model reproduces the observed gaseous abundances of ethylene oxide and acetaldehyde towards high-mass star-forming regions. In addition, our results show that ethylene oxide may be present in outer and cooler regions of hot cores where its isomer has already been detected. Our new results are compared with previous results, which focused on the formation of ethylene oxide only. Conclusions: Despite their different chemical structures, the chemistry of ethylene oxide is coupled to that of acetaldehyde, suggesting that acetaldehyde may be used as a tracer for ethylene oxide towards cold cores.

  19. Bacterial community analysis of Indonesian hot springs.

    PubMed

    Baker, G C; Gaffar, S; Cowan, D A; Suharto, A R

    2001-06-12

    We report the first attempts to describe thermophilic bacterial communities in Indonesia's thermal springs using molecular phylogenetic analyses. 16S rRNA genes from laboratory cultures and DNA directly amplified from three hot springs in West Java were sequenced. The 22 sequences obtained were assignable to the taxa Proteobacteria, Bacillus and Flavobacterium, including a number of clades not normally associated with thermophily. PMID:11410357

  20. Weldability and hot ductility of iron aluminides

    SciTech Connect

    Ash, D.I.; Edwards, G.R. . Center for Welding and Joining Research); David, S.A. )

    1991-05-01

    The weldability of iron aluminide alloys is discussed. Although readily welded with electron beam (EB) and gas-tungsten arc (GTA) techniques, iron aluminides are sometimes susceptible to cracking during cooling when welded with the GTA welding process. Taken into account are the effects of microstructural instability (grain growth), weld heat input (cooling rate) and environment on the hot ductility of an iron aluminide alloy designated FA-129. 64 refs., 59 figs., 3 tabs.

  1. A graphene-based hot electron transistor.

    PubMed

    Vaziri, Sam; Lupina, Grzegorz; Henkel, Christoph; Smith, Anderson D; Ostling, Mikael; Dabrowski, Jarek; Lippert, Gunther; Mehr, Wolfgang; Lemme, Max C

    2013-04-10

    We experimentally demonstrate DC functionality of graphene-based hot electron transistors, which we call graphene base transistors (GBT). The fabrication scheme is potentially compatible with silicon technology and can be carried out at the wafer scale with standard silicon technology. The state of the GBTs can be switched by a potential applied to the transistor base, which is made of graphene. Transfer characteristics of the GBTs show ON/OFF current ratios exceeding 10(4). PMID:23488893

  2. Plasmonically enhanced hot electron based photovoltaic device.

    PubMed

    Atar, Fatih B; Battal, Enes; Aygun, Levent E; Daglar, Bihter; Bayindir, Mehmet; Okyay, Ali K

    2013-03-25

    Hot electron photovoltaics is emerging as a candidate for low cost and ultra thin solar cells. Plasmonic means can be utilized to significantly boost device efficiency. We separately form the tunneling metal-insulator-metal (MIM) junction for electron collection and the plasmon exciting MIM structure on top of each other, which provides high flexibility in plasmonic design and tunneling MIM design separately. We demonstrate close to one order of magnitude enhancement in the short circuit current at the resonance wavelengths. PMID:23546103

  3. Astronaut Jack Lousma taking hot bath

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A closeup view of Astronaut Jack R. Lousma, Skylab 3 pilot, taking a hot bath in the crew quarters of the Orbital Workshop (OWS) of the Skylab space station cluster in Earth orbit. In deploying the shower facility, the shower curtain is pulled up from the floor and attached to the ceiling. The water comes through a push-button shower head attached to a flexible hose. Water is drawn off by a vacuum system.

  4. THERMAL PROCESSES GOVERNING HOT-JUPITER RADII

    SciTech Connect

    Spiegel, David S.; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2013-07-20

    There have been many proposed explanations for the larger-than-expected radii of some transiting hot Jupiters, including either stellar or orbital energy deposition deep in the atmosphere or deep in the interior. In this paper, we explore the important influences on hot-Jupiter radius evolution of (1) additional heat sources in the high atmosphere, the deep atmosphere, and deep in the convective interior; (2) consistent cooling of the deep interior through the planetary dayside, nightside, and poles; (3) the degree of heat redistribution to the nightside; and (4) the presence of an upper atmosphere absorber inferred to produce anomalously hot upper atmospheres and inversions in some close-in giant planets. In particular, we compare the radius expansion effects of atmospheric and deep-interior heating at the same power levels and derive the power required to achieve a given radius increase when night-side cooling is incorporated. We find that models that include consistent day/night cooling are more similar to isotropically irradiated models when there is more heat redistributed from the dayside to the nightside. In addition, we consider the efficacy of ohmic heating in the atmosphere and/or convective interior in inflating hot Jupiters. Among our conclusions are that (1) the most highly irradiated planets cannot stably have uB {approx}> 10 km s{sup -1} G over a large fraction of their daysides, where u is the zonal wind speed and B is the dipolar magnetic field strength in the atmosphere, and (2) that ohmic heating cannot in and of itself lead to a runaway in planet radius.

  5. Turbine Engine Hot Section Technology, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Presentations were made concerning the hot section environment and behavior of combustion liners, turbine blades, and waves. The presentations were divided into six sessions: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, and surface properties. The principal objective of each session was to disseminate research results to date, along with future plans. Topics discussed included modeling of thermal and fluid flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior, stress-strain response, and life prediction methods.

  6. Hot corrosion of the B2 nickel aluminides

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    1993-01-01

    The hot corrosion behavior of the B2 nickel aluminides was studied to determine the inherent hot corrosion resistance of the beta nickel aluminides and to develop a mechanism for the hot corrosion of the beta nickel aluminides. The effects of the prior processing of the material, small additions of zirconium, stoichiometry of the materials, and preoxidation of the samples were also examined. Additions of 2, 5, and 15 w/o chromium were used to determine the effect of chromium on the hot corrosion of the beta nickel aluminides and the minimum amount of chromium necessary for good hot corrosion resistance. The results indicate that the beta nickel aluminides have inferior inherent hot corrosion resistance despite their excellent oxidation resistance. Prior processing and zirconium additions had no discernible effect on the hot corrosion resistance of the alloys. Preoxidation extended the incubation period of the alloys only a few hours and was not considered to be an effective means of stopping hot corrosion. Stoichiometry was a major factor in determining the hot corrosion resistance of the alloys with the higher aluminum alloys having a definitely superior hot corrosion resistance. The addition of chromium to the alloys stopped the hot corrosion attack in the alloys tested. From a variety of experimental results, a complex hot corrosion mechanism was proposed. During the early stages of the hot corrosion of these alloys the corrosion is dominated by a local sulphidation/oxidation form of attack. During the intermediate stages of the hot corrosion, the aluminum depletion at the surface leads to a change in the oxidation mechanism from a protective external alumina layer to a mixed nickel-aluminum spinel and nickel oxide that can occur both externally and internally. The material undergoes extensive cracking during the later portions of the hot corrosion.

  7. ACCRETION OF ROCKY PLANETS BY HOT JUPITERS

    SciTech Connect

    Ketchum, Jacob A.; Adams, Fred C.; Bloch, Anthony M.

    2011-11-01

    The observed population of Hot Jupiters displays a stunning variety of physical properties, including a wide range of densities and core sizes for a given planetary mass. Motivated by the observational sample, this Letter studies the accretion of rocky planets by Hot Jupiters, after the Jovian planets have finished their principal migration epoch and become parked in {approx}4 day orbits. In this scenario, rocky planets form later and then migrate inward due to torques from the remaining circumstellar disk, which also damps the orbital eccentricity. This mechanism thus represents one possible channel for increasing the core masses and metallicities of Hot Jupiters. This Letter determines probabilities for the possible end states for the rocky planet: collisions with the Jovian planets, accretion onto the star, ejection from the system, and long-term survival of both planets. These probabilities depend on the mass of the Jovian planet and its starting orbital eccentricity, as well as the eccentricity damping rate for the rocky planet. Since these systems are highly chaotic, a large ensemble (N {approx} 10{sup 3}) of simulations with effectively equivalent starting conditions is required. Planetary collisions are common when the eccentricity damping rate is sufficiently low, but are rare otherwise. For systems that experience planetary collisions, this work determines the distributions of impact velocities-both speeds and impact parameters-for the collisions. These velocity distributions help determine the consequences of the impacts, e.g., where energy and heavy elements are deposited within the giant planets.

  8. Hot Dry Rock Geothermal Energy Development Program

    SciTech Connect

    Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

    1989-12-01

    During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

  9. Hot-Gas Filter Ash Characterization Project

    SciTech Connect

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  10. Identification of kinetically hot residues in proteins.

    PubMed Central

    Demirel, M. C.; Atilgan, A. R.; Jernigan, R. L.; Erman, B.; Bahar, I.

    1998-01-01

    A number of recent studies called attention to the presence of kinetically important residues underlying the formation and stabilization of folding nuclei in proteins, and to the possible existence of a correlation between conserved residues and those participating in the folding nuclei. Here, we use the Gaussian network model (GNM), which recently proved useful in describing the dynamic characteristics of proteins for identifying the kinetically hot residues in folded structures. These are the residues involved in the highest frequency fluctuations near the native state coordinates. Their high frequency is a manifestation of the steepness of the energy landscape near their native state positions. The theory is applied to a series of proteins whose kinetically important residues have been extensively explored: chymotrypsin inhibitor 2, cytochrome c, and related C2 proteins. Most of the residues previously pointed out to underlie the folding process of these proteins, and to be critically important for the stabilization of the tertiary fold, are correctly identified, indicating a correlation between the kinetic hot spots and the early forming structural elements in proteins. Additionally, a strong correlation between kinetically hot residues and loci of conserved residues is observed. Finally, residues that may be important for the stability of the tertiary structure of CheY are proposed. PMID:9865946

  11. A hot-cell titration system

    SciTech Connect

    Klatt, L.N.

    1988-07-01

    Operation of nuclear fuel reprocessing plant requires an analytical support laboratory capable of meeting the process control, product quality, and nuclear safeguard requirements. Because of the radioactivity accompanying many of the samples, the analytical instruments must be selected, modified, or specifically developed for use in hot cells. Titrimetric procedures have been successfully used in hot cells and are generally immune to radiation induced bias. This report describes a titration system designed for operation in a hot-cell environment. The potentiometric titration system has operated successfully for four years in support of nuclear fuel reprocessing research and development activities. Details of the hardware, electronic, and software control and data analysis systems are presented. Interchangeable burets with a capacity of 5, 10, and 25 mL are available; the means of the absolute error in delivered volume for these burets are 0.9, 1.1, and 1.8 ..mu..L, respectively. Results of evaluation studies how that the accuracy and precision of analysis results obtained with the potentiometric system are limited by statistical uncertainties associated with the standard titrant, sample preparation procedure, and the equilibrium constant of the titration reaction and not by titrator performance factors. The system is also capable of performing amperometric titrations. Changing between the potentiometric and amperometric modes of operation involves changing the in-cell transducers, the in-cell electronics, and the titrator control program. 22 refs., 13 figs., 9 tabs.

  12. Hot filament CVD of boron nitride films

    DOEpatents

    Rye, Robert R.

    1992-01-01

    Using a hot filament (.apprxeq.1400.degree. C.) to activate borazine (B.sub.3 N.sub.3 H.sub.6) molecules for subsequent reaction with a direct line-of-sight substrate, transparent boron ntiride films as thick as 25,000 angstroms are grown for a substrate temperature as low as 100.degree. C. The minimum temperature is determined by radiative heating from the adjacent hot filament. The low temperature BN films show no indication of crystallinity with X-ray diffraction (XRD). X-ray photoelectron spectra (XPS) show the films to have a B:N ratio of 0.97:1 with no other XPS detectable impurities above the 0.5% level. Both Raman and infrared (IR) spectroscopy are characteristic of h-BN with small amounts of hydrogen detected as N-H and B-H bands in the IR spectrum. An important feature of this method is the separation and localization of the thermal activation step at the hot filament from the surface reaction and film growth steps at the substrate surface. This allows both higher temperature thermal activation and lower temperature film growth.

  13. Theory of hot electron photoemission from graphene

    NASA Astrophysics Data System (ADS)

    Ang, Lay Kee; Liang, Shijun

    Motivated by the development of Schottky-type photodetectors, some theories have been proposed to describe how the hot carriers generated by the incident photon are transported over the Schottky barrier through the internal photoelectric effect. One of them is Fowler's law proposed as early as 1931, which studied the temperature dependence of photoelectric curves of clean metals. This law is very successful in accounting for mechanism of detecting photons of energy lower than the band gap of semiconductor based on conventional metal/semiconductor Schottky diode. With the goal of achieving better performance, graphene/silicon contact-based- graphene/WSe2 heterostructure-based photodetectors have been fabricated to demonstrate superior photodetection efficiency. However, the theory of how hot electrons is photo-excited from graphene into semiconductor remains unknown. In the current work, we first examine the photoemission process from suspended graphene and it is found that traditional Einstein photoelectric effect may break down for suspended graphene due to the unique linear band structure. Furthermore, we find that the same conclusion applies for 3D graphene analog (e.g. 3D topological Dirac semi-metal). These findings are very useful to further improve the performance of graphene-based photodetector, hot-carrier solar cell and other kinds of sensor.

  14. High temperature hot water distribution system study

    SciTech Connect

    1996-12-01

    The existing High Temperature Hot Water (HTHW) Distribution System has been plagued with design and construction deficiencies since startup of the HTHW system, in October 1988. In October 1989, after one year of service, these deficiencies were outlined in a technical evaluation. The deficiencies included flooded manholes, sump pumps not hooked up, leaking valves, contaminated HTHW water, and no cathodic protection system. This feasibility study of the High Temperature Hot Water (HTHW) Distribution System was performed under Contract No. DACA0l-94-D-0033, Delivery Order 0013, Modification 1, issued to EMC Engineers, Inc. (EMC), by the Norfolk District Corps of Engineers, on 25 April 1996. The purpose of this study was to determine the existing conditions of the High Temperature Hot Water Distribution System, manholes, and areas of containment system degradation. The study focused on two areas of concern, as follows: * Determine existing conditions and areas of containment system degradation (leaks) in the underground carrier pipes and protective conduit. * Document the condition of underground steel and concrete manholes. To document the leaks, a site survey was performed, using state-of-the-art infrared leak detection equipment and tracer gas leak detection equipment. To document the condition of the manholes, color photographs were taken of the insides of 125 manholes, and notes were made on the condition of these manholes.

  15. The "hot hand" revisited: A nonstationarity argument.

    PubMed

    Sun, Yanlong; Wang, Hongbin

    2012-06-01

    The "hot hand belief," that a basketball player would experience elevated performance for a certain period of time, during which consecutive shots are made in streaks, has been suggested to be a "cognitive illusion," because, from the basketball-shooting data, no significant evidence has been found to reject the simple binomial model. The present study raises concerns about the statistical methods used to support this claim. It is argued that nonstationarity may manifest as a residual effect when the changes in shooting accuracy are interrupted by activities such as shot selection and defense effort. Reanalyses of the field goal data from the earlier study showed that the serial correlation varied substantially between positive ("hot hand shooting") and negative ("over-alternation shooting"). In addition, a nested model comparison revealed that when a player's shooting accuracy fluctuated substantially in a short period of time, it was unlikely to be detected by the binomial model. Our results suggest that paying special attention to streak patterns in the hot hand belief may be an adaptive strategy in detecting changes in the environment. PMID:26272665

  16. Hot-hand bias in rhesus monkeys.

    PubMed

    Blanchard, Tommy C; Wilke, Andreas; Hayden, Benjamin Y

    2014-07-01

    Human decision-makers often exhibit the hot-hand phenomenon, a tendency to perceive positive serial autocorrelations in independent sequential events. The term is named after the observation that basketball fans and players tend to perceive streaks of high accuracy shooting when they are demonstrably absent. That is, both observing fans and participating players tend to hold the belief that a player's chance of hitting a shot are greater following a hit than following a miss. We hypothesize that this bias reflects a strong and stable tendency among primates (including humans) to perceive positive autocorrelations in temporal sequences, that this bias is an adaptation to clumpy foraging environments, and that it may even be ecologically rational. Several studies support this idea in humans, but a stronger test would be to determine whether nonhuman primates also exhibit a hot-hand bias. Here we report behavior of 3 monkeys performing a novel gambling task in which correlation between sequential gambles (i.e., temporal clumpiness) is systematically manipulated. We find that monkeys have better performance (meaning, more optimal behavior) for clumped (positively correlated) than for dispersed (negatively correlated) distributions. These results identify and quantify a new bias in monkeys' risky decisions, support accounts that specifically incorporate cognitive biases into risky choice, and support the suggestion that the hot-hand phenomenon is an evolutionary ancient bias. PMID:25545977

  17. Sidetracking experiences in hot granitic wellbores

    SciTech Connect

    Pettitt, R.A.; Carden, R.

    1981-01-01

    In the development of the first Hot Dry Rock (HDR) geothermal energy extraction system at Fenton Hill, west of Los Alamos, New Mexico, man-made reservoirs were created by connecting two holes in hot, impermeable crystalline rock with hydraulically-produced fractures. This system consists of two near-vertical, 24.5-cm (9-5/8-in.) diameter holes approximately 3 km (10,000 ft) deep in Precambrian basement rock, at a bottom-hole temperature of 200/sup 0/C (400/sup 0/F). In order to improve the connection between the wellbores, the production hole was sidetracked to intercept the fracture zone at a more favorable depth. Two successful sidetrack operations were accomplished in 1977, utilizing cement plugs, underreaming, Dyna-Drills, and both button and diamond bits. Drilling of the second larger, commercial-sized reservoir system began in 1979 and consists of two boreholes drilled to a depth of 4 km (15,000 ft) at an angle of 35/sup 0/ from the vertical, which will be connected by a series of hydraulic fractures extending across the 400-m-(1200-ft) vertical separation of the two holes. Sidetracking to bypass a stuck bottom-hole assembly was accomplished through the use of a whipstock device, Dyna-Drills, and button bits. This paper is presented as a case history of the efforts involved to achieve successful sidetracking in hot granitic wellbores.

  18. The Hot Gaseous Halos of Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Bregman, J.

    2016-06-01

    In the Milky Way, absorption and emission line measurements of O VII and O VIII show that the halo environment is dominated by a nearly spherical halo of temperature 2 × 10^6 K, metallicity of 0.3-0.5 solar, and with a density decreasing as r^{-3/2}. The mass of the hot gas, estimated through extrapolation to the virial radius, is comparable to the stellar mass, but does not account for the missing mass. The Milky Way hot halo appears to be rotating at about 180 km/s, which is consistent with model expectations, depending on the time of infall. Around massive spiral galaxies, hot halos are seen in emission out to about 70 kpc in the best cases. These show similar gas density laws and metallicities in the range 0.1-0.5 solar. The gas mass is comparable to the stellar mass, but does not account for the missing baryons within the virial radius. If the density law can be extrapolated to about three virial radii, the missing baryons would be accounted for.

  19. Sol Duc Hot Springs feasibility study

    SciTech Connect

    Not Available

    1981-12-01

    Sol Duc Springs is located in the Olympic National Park in western Washington state. Since the turn of the century, the area has served as a resort, offering hot mineral baths, lodge and overnight cabin accommodations. The Park Service, in conjunction with the concessionaire, is in the process of renovating the existing facilities, most of which are approximately 50 years old. The present renovation work consists of removing all of the existing cabins and replacing them with 36 new units. In addition, a new hot pool is planned to replace the existing one. This report explores the possibility of a more efficient use of the geothermal resource to accompany other planned improvements. It is important to note that the system outlined is based upon the resource development as it exists currently. That is, the geothermal source is considered to be: the two existing wells and the hot springs currently in use. In addition, every effort has been made to accommodate the priorities for utilization as set forth by the Park Service.

  20. Hot Carrier Extraction with Plasmonic Broadband Absorbers.

    PubMed

    Ng, Charlene; Cadusch, Jasper J; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J; Mulvaney, Paul; Gómez, Daniel E

    2016-04-26

    Hot charge carrier extraction from metallic nanostructures is a very promising approach for applications in photocatalysis, photovoltaics, and photodetection. One limitation is that many metallic nanostructures support a single plasmon resonance thus restricting the light-to-charge-carrier activity to a spectral band. Here we demonstrate that a monolayer of plasmonic nanoparticles can be assembled on a multistack layered configuration to achieve broadband, near-unit light absorption, which is spatially localized on the nanoparticle layer. We show that this enhanced light absorbance leads to ∼40-fold increases in the photon-to-electron conversion efficiency by the plasmonic nanostructures. We developed a model that successfully captures the essential physics of the plasmonic hot electron charge generation and separation in these structures. This model also allowed us to establish that efficient hot carrier extraction is limited to spectral regions where (i) the photons have energies higher than the Schottky junctions and (ii) the absorption of light is localized on the metal nanoparticles. PMID:26982625

  1. Hot air vulcanization of rubber profiles

    SciTech Connect

    Gerlach, J.

    1995-07-01

    Elastomer profiles are deployed in quantity by the automobile industry as seals and wateproofing in coachwork. The high standards demanded by the industry; improvement in weather prediction, noise reduction, restriction of tolerances, together with powerful demand for EPDM force the rubber processing industry into development, particularly of elastomers. Complex proofing systems must also be achieved with extremely complicated profile forms. All too often such profiles have an extremely large surface together with a low cross-section density. They frequently consist of two or three rubber compounds and are steel reinforced. Sometimes they are flocked and coated with a low friction finish. Such high-tech seals require an adjustment of the vulcanization method. The consistent trend in the nineties towards lower quantities of elastomer per sealing unit and the dielectric factor, especially with EPDM, has brought an old fashioned vulcanization method once more to the fore, a method developed over the past years to an extremely high standard, namely the hot-air method. This paper describes various vulcanization and curing methods and their relative merits and disadvantages, the Gerlach hot-air concept, the hot air installation concept, and energy saving and efficiency afforded by this technique. 4 figs.

  2. Residential hot water distribution systems: Roundtablesession

    SciTech Connect

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  3. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply...

  4. 10 CFR 431.102 - Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Definitions concerning commercial water heaters, hot water supply boilers, and unfired hot water storage tanks. 431.102 Section 431.102 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply...

  5. TWRS tank waste pretreatment process development hot test siting report

    SciTech Connect

    Howden, G.F.; Banning, D.L.; Dodd, D.A.; Smith, D.A.; Stevens, P.F.; Hansen, R.I.; Reynolds, B.A.

    1995-02-01

    This report is the sixth in a series that have assessed the hot testing requirements for TWRS pretreatment process development and identified the hot testing support requirements. This report, based on the previous work, identifies specific hot test work packages, matches those packages to specific hot cell facilities, and provides recommendations of specific facilities to be employed for the pretreatment hot test work. Also identified are serious limitations in the tank waste sample retrieval and handling infrastructure. Recommendations are provided for staged development of 500 mL, 3 L, 25 L and 4000 L sample recovery systems and specific actions to provide those capabilities.

  6. Accuracy Of Hot-Wire Anemometry In Supersonic Turbulence

    NASA Technical Reports Server (NTRS)

    Logan, Pamela; Mckenzie, Robert L.; Bershader, Daniel

    1989-01-01

    Sensitivity of hot-wire probe compared to laser-induced-florescence measurements. Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF). Because LIF provides spatially and temporally resolved data on temperature, density, and pressure, provides independent means to determine responses of hot-wire anemometers to these quantities.

  7. Whistler Solitons in Plasma with Anisotropic Hot Electron Admixture

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Gallagher, D. L.

    1999-01-01

    The longitudinal and transverse modulation instability of whistler waves in plasma, with a small admixture of hot anisotropic electrons, is discussed. If the hot particles temperature anisotropy is positive, it is found that, in such plasma, longitudinal perturbations can lead to soliton formation for frequencies forbidden in cold plasma. The soliton is enriched by hot particles. The frequency region unstable to transverse modulation in cold plasma in the presence of hot electrons is divided by stable domains. For both cases the role of hot electrons is more significant for whistlers with smaller frequencies.

  8. Toward improved durability in advanced aircraft engine hot sections

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E. (Editor)

    1989-01-01

    The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  9. Solar upconversion with plasmonic hot carriers

    NASA Astrophysics Data System (ADS)

    Dionne, Jennifer A.

    Upconversion of sub-bandgap photons is a promising approach to exceed the Shockley-Queisser limit in solar technologies. Placed behind a solar cell, upconverting materials convert lower-energy photons transmitted through the cell to higher-energy above-bandgap photons that can then be absorbed by the cell and contribute to photocurrent. Because the upconverter is electrically isolated from the active cell, it need not be current-matched to the cell, nor will it add mid-gap recombination pathways. Calculations have indicated that single-junction cell efficiencies can exceed 44% upon addition of an upconverter - a significant improvement over the maximum cell efficiency of 30% without an upconverter. However, due to the low quantum efficiencies and narrow absorption bandwidths of existing upconverters, such significant cell improvements have yet to be observed experimentally. In this presentation, we will describe an entirely new solar upconverting scheme based on hot-carrier injection from a plasmonic absorber to an adjacent semiconductor. The plasmonic system both induces upconversion based on injection of hot-electrons and hot-holes and also enhances light-matter interactions. Low-energy photons incident on a plasmonic particle generate hot electrons and hot holes, which are injected into a semiconducting quantum well and subsequently radiatively recombine. Importantly, the bandgap of the quantum well can be higher than the energy of the incident photon, enabling emission of a higher-energy photon than that absorbed. First, we present analytic calculations showing that efficiencies as high as 25% are possible, significantly higher than existing solid-state upconverters, which are only 2-5% efficient. We also describe how further improvements in the efficiency are possible by employing materials and geometries that allow for more efficient carrier injection. Then, we describe experiments on InGaN/GaN quantum wells decorated with Au disks. On their own, the In

  10. Formation and X-ray emission from hot bubbles in planetary nebulae - I. Hot bubble formation

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Arthur, S. J.

    2014-10-01

    We carry out high-resolution two-dimensional radiation-hydrodynamic numerical simulations to study the formation and evolution of hot bubbles inside planetary nebulae. We take into account the evolution of the stellar parameters, wind velocity and mass-loss rate from the final thermal pulses during the asymptotic giant branch (AGB) through to the post-AGB stage for a range of initial stellar masses. The instabilities that form at the interface between the hot bubble and the swept-up AGB wind shell lead to hydrodynamical interactions, photoevaporation flows and opacity variations. We explore the effects of hydrodynamical mixing combined with thermal conduction at this interface on the dynamics, photoionization, and emissivity of our models. We find that even models without thermal conduction mix significant amounts of mass into the hot bubble. When thermal conduction is not included, hot gas can leak through the gaps between clumps and filaments in the broken swept-up AGB shell and this depressurises the bubble. The inclusion of thermal conduction evaporates and heats material from the clumpy shell, which expands to seal the gaps, preventing a loss in bubble pressure. The dynamics of bubbles without conduction is dominated by the thermal pressure of the thick photoionized shell, while for bubbles with thermal conduction it is dominated by the hot, shocked wind.

  11. Amorphous-silicon module hot-spot testing

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  12. Effect of hot pressing additives on the leachability of hot pressed sodium hydrous titanium oxide

    SciTech Connect

    Valentine, T.M.; Sambell, R.A.J.

    1980-01-01

    Sodium hydrous titanium oxide is an ion exchange resin which can be used for immobilizing medium level waste (MLW) liquors. When hot pressed, it undergoes conversion to a ceramic. Three low melting point materials (borax, bismuth trioxide, and a mixture of PbO/CuO) were added to the (Na)HTiO and the effect that each of these had on aiding densification was assessed. Hot pressing temperature, applied pressure, and percentage addition of hot pressing aid were varied. Percentage open porosity, flexural strength, and leachability were measured. There was a linear relationship between the percentage open porosity and the logarithm of the leach rate for a constant percentage addition of each additive.

  13. Hot particulate removal and desulfurization results from the METC integrated gasification and hot gas cleanup facility

    SciTech Connect

    Rockey, J.M.

    1995-06-01

    The Morgantown Energy Technology Center (METC) is conducting experimental testing using a 10-inch diameter fluid-bed gasifier (FBG) and modular hot gas cleanup rig (MGCR) to develop advanced methods for removing contaminants in hot coal gasifier gas streams for commercial development of integrated gasification combined-cycle (IGCC) power systems. The program focus is on hot gas particulate removal and desulfurization technologies that match the temperatures and pressures of the gasifier, cleanup system, and power generator. The purpose of this poster is to present the program objectives and results of the work conducted in cooperation with industrial users and vendors to meet the vision for IGCC of reducing the capital cost per kilowatt to $1050 and increasing the plant efficiency to 52% by the year 2010.

  14. HOT CELL BUILDING, TRA632, INTERIOR. HOT CELL NO. 1 (THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. HOT CELL NO. 1 (THE FIRST BUILT) IN LABORATORY 101. CAMERA FACES SOUTHEAST. SHIELDED OPERATING WINDOWS ARE ON LEFT (NORTH) SIDE. OBSERVATION WINDOW IS AT LEFT OF VIEW (ON WEST SIDE). PLASTIC COVERS SHROUD MASTER/SLAVE MANIPULATORS AT WINDOWS IN LEFT OF VIEW. NOTE MINERAL OIL RESERVOIR ABOVE "CELL 1" SIGN, INDICATING LEVEL OF THE FLUID INSIDE THE THICK WINDOWS. HOT CELL HAS BEVELED CORNER BECAUSE A SQUARED CORNER WOULD HAVE SUPPLIED UNNECESSARY SHIELDING. NOTE PUMICE BLOCK WALL AT LEFT OF VIEW. INL NEGATIVE NO. HD46-28-1. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. HOT CELL BUILDING, TRA632, INTERIOR. DETAIL OF HOT CELL NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632, INTERIOR. DETAIL OF HOT CELL NO. 2 SHOWS MANIPULATION INSTRUMENTS AND SHIELDED OPERATING WINDOWS. PENETRATIONS FOR OPERATING INSTRUMENTS GO THROUGH SHIELDING ABOVE WINDOWS. CONDUIT FOR UTILITIES AND CONTROLS IS BEHIND METAL CABINET BELOW WINDOWS NEAR FLOOR. CAMERA FACES WEST. WARNING SIGN LIMITS FISSILE MATERIAL TO SPECIFIED NUMBER OF GRAMS OF URANIUM AND PLUTONIUM. INL NEGATIVE NO. HD46-28-2. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. HOT CELL BUILDING, TRA632. CONTEXTUAL AERIAL VIEW OF HOT CELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HOT CELL BUILDING, TRA-632. CONTEXTUAL AERIAL VIEW OF HOT CELL BUILDING, IN VIEW AT LEFT, AS YET WITHOUT ROOF. PLUG STORAGE BUILDING LIES BETWEEN IT AND THE SOUTH SIDE OF THE MTR BUILDING AND ITS WING. NOTE CONCRETE DRIVE BETWEEN ROLL-UP DOOR IN MTR BUILDING AND CHARGING FACE OF PLUG STORAGE. REACTOR SERVICES BUILDING (TRA-635) WILL COVER THIS DRIVE AND BUTT UP TO CHARGING FACE. DOTTED LINE IS ON ORIGINAL NEGATIVE. TRA PARKING LOT IN LEFT CORNER OF THE VIEW. CAMERA FACING NORTHWESTERLY. INL NEGATIVE NO. 8274. Unknown Photographer, 7/2/1953 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Pilot gasification and hot gas cleanup operations

    SciTech Connect

    Rockey, J.M.; Galloway, E.; Thomson, T.A.; Rutten, J.; Lui, A.

    1995-12-31

    The Morgantown Energy Technology Center (METC) has an integrated gasification hot gas cleanup facility to develop gasification, hot particulate and desulfurization process performance data for IGCC systems. The objective of our program is to develop fluidized-bed process performance data for hot gas desulfurization and to further test promising sorbents from lab-scale screening studies at highpressure (300 psia), and temperatures (1,200{degrees}F) using coal-derived fuel gases from a fluid-bed gasifier. The 10-inch inside diameter (ID), nominal 80 lb/hr, air blown gasifier is capable of providing about 300 lb/hr of low BTU gas at 1,000{degrees}F and 425 psig to downstream cleanup devices. The system includes several particle removal stages, which provide the capability to tailor the particle loading to the cleanup section. The gas pressure is reduced to approximately 300 psia and filtered by a candle filter vessel containing up to four filter cartridges. For batch-mode desulfurization test operations, the filtered coal gas is fed to a 6-inch ID, fluid-bed reactor that is preloaded with desulfurization sorbent. Over 400 hours of gasifier operation was logged in 1993 including 384 hours of integration with the cleanup rig. System baseline studies without desulfurization sorbent and repeatability checks with zinc ferrite sorbent were conducted before testing with the then most advanced zinc titanate sorbents, ZT-002 and ZR-005. In addition to the desulfurization testing, candle filters were tested for the duration of the 384 hours of integrated operation. One filter was taken out of service after 254 hours of filtering while another was left in service. At the conclusion of testing this year it is expected that 3 candles, one each with 254, 530, and 784 hours of filtering will be available for analysis for effects of the exposure to the coal gas environment.

  18. Method for hot press forming articles

    DOEpatents

    Baker, Robert R.; Hartsock, Dale L.

    1982-01-01

    This disclosure relates to an improved method for achieving the best bond strength and for minimizing distortion and cracking of hot pressed articles. In particular, in a method for hot press forming both an outer facing circumferential surface of and an inner portion of a hub, and of bonding that so-formed outer facing circumferential surface to an inner facing circumferential surface of a pre-formed ring thereby to form an article, the following improvement is made. Normally, in this method, the outside ring is restrained by a restraining sleeve of ring-shaped cross-section having an inside diameter. A die member, used to hot press form the hub, is so-formed as to have an outside diameter sized to engage the inside diameter of the restraining sleeve in a manner permitting relative movement therebetween. The improved method is one in which several pairs of matched restraining sleeve and die member are formed with each matched pair having a predetermined diameter. The predetermined diameter of each matched pair is different from another matched pair by stepped increments. The largest inside diameter of a restraining sleeve is equal to the diameter of the outer facing circumferential surface of the hub. Each pair of the matched restraining sleeve and die member is used to form an article in which an inside hub is bonded to an outside ring. The several samples so-formed are evaluated to determine which sample has the best bond formed between the hub and the ring with the least or no cracking or distortion in the ring portion of the article. Thereafter, the matched restraining sleeve and die member which form the article having the best bonding characteristics and least distortion cracking is then used for repeated formations of articles.

  19. Hot Gas Desulfurization Using Transport Reactors

    SciTech Connect

    Moorehead, E.L.

    1996-12-31

    Sierra Pacific Power Company is building a 100 MW, IGCC power plant based on KRW fluid bed gasifier technology that utilizes transport reactors for hot gas desulfurization and sorbent regeneration. Use of a transport absorber avoids the need for pre-filtration of dust-laden gasifier effluent, while a transport regenerator allows for the use of 100% air without the need for heat exchange equipment. Selection of transport reactors for hot gas desulfurization using a proprietary sorbent, based on testing performed in a transport reactor test unit (TRTU) at the M. W. Kellogg Technology Development Center and in a fixed bed reactor at Morgantown Energy Technology Center (METC), is outlined. The results obtained in these two test facilities and reasons for selecting transport reactors for the IGCC power plant in preference to either fixed bed or fluidized bed reactors are discussed. This paper reviews the evolution of the hot gas desulfurization system designs and includes selected results on H{sub 2}S absorption and regeneration of sulfided sorbent over several absorption/regeneration cycles conducted in the TRTU and the METC fixed bed reactor. The original design for the Sierra Pacific Project was based on fixed bed reactors with zinc ferrite as the sorbent. Owing to the high steam requirements of this sorbent, zinc titanate was selected and tested in a fixed bed reactor and was found unacceptable due to loss of strength on cyclic absorption/regeneration operation. Another sorbent evaluated was Z-Sorb{reg_sign}, a proprietary sorbent developed by Phillips Petroleum Company, was found to have excellent sulfur capacity, structural strength and regenerability. Steam was found unsuitable as fixed bed regenerator diluent, this results in a requirement for a large amount of inert gas, whereas a transport regenerator requires no diluent. The final Sierra design features transport reactors for both desulfurization and regeneration steps using neat air. 3 refs., 3 figs., 2 tabs.

  20. Radiative Levitation in Hot White Dwarfs

    NASA Astrophysics Data System (ADS)

    Chayer, P.; Fontaine, G.; Wesemael, F.

    1994-12-01

    We present the results of detailed calculations of radiative levitation in hot white dwarfs using the extensive and homogeneous atomic data given in TOPBASE. Radiative accelerations and equilibrium abundances have been computed for C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, and Fe on grids of pure hydrogen and pure helium stellar envelope models. The DA model grid has log g = 7.0, 7.5, 8.0, and 8.5, and spans the range of effective temperature 100,000 >= Teff >= 20,000 K in steps of 2,500 K. The DO/DB grid is similar but extends to Teff = 130,000 K. We discuss at some length the input physics used in order to provide a good physical understanding of radiative levitation under white dwarf conditions. We also discuss the depth dependence and the morphology of the reservoirs of levitating elements created by an equilibrium between the radiative acceleration and the local effective gravity in various stellar envelopes. The important role played in the morphology of the reservoirs by dominant ionization states in closed-shell electronic configurations is emphasized. Our central results are presented in the form of figures showing the behavior of the expected photospheric abundance of each element as a function of effective temperature and surface gravity. While only a handful of abundances are available from the few analyses of observations that have been carried out, we are nevertheless able to infer through a detailed comparison that equilibrium radiative levitation theory fails to explain the observed abundance patterns of heavy elements in hot white dwarfs. At least one other mechanism must be competing with radiative levitation and gravitational settling in the atmospheres/envelopes of hot white dwarfs. Finally, we indicate promising avenues for further progress in spectral evolution theory for white dwarfs. This work has been supported by NASA contract NAS5-30180.

  1. SSME hot gas manifold flow comparison test

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Dill, C. C.

    1988-01-01

    An account is given of the High Pressure Fuel Turbopump (HPFT) component of NASA's Alternate Turbopump Development effort, which is aimed at the proper aerodynamic integration of the current Phase II three-duct SSME Hot Gas Manifold (HGM) and the future 'Phase II-plus' two-duct HGM. Half-scale water flow tests of both HGM geometries were conducted to provide initial design data for the HPFT. The results reveal flowfield results and furnish insight into the performance differences between the two HGM flowpaths. Proper design of the HPFT can potentially secure significant flow improvements in either HGM configuration.

  2. When hot water freezes before cold

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2009-01-01

    I suggest that the origin of the Mpemba effect (the freezing of hot water before cold) is due to freezing-point depression by solutes, either gaseous or solid, whose solubility decreases with increasing temperature so that they are removed when water is heated. The solutes are concentrated ahead of the freezing front by zone refining in water that has not been heated, reducing the temperature of the freezing front, and thereby reducing the temperature gradient and heat flux, slowing the progress of the freezing front. I present a simple calculation of this effect, and suggest experiments to test this hypothesis.

  3. Emission lines from hot astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Raymond, John C.

    The spectral lines which dominate the X-ray emission of hot, optically thin astrophysical plasmas reflect the elemental abundances, temperature distribution, and other physical parameters of the emitting gas. The accuracy and level of detail with which these parameters can be inferred are limited by the measurement uncertainties and uncertainties in atomic rates used to compute the model spectrum. This paper discusses the relative importance and the likely uncertainties in the various atomic rates and the likely uncertainties in the overall ionization balance and spectral line emissivities predicted by the computer codes currently used to fit X-ray spectral data.

  4. Prototype solar domestic hot water systems

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Construction of a double wall heat exchanger using soft copper tube coiled around a hot water storage tank was completed and preliminary tests were conducted. Solar transport water to tank potable water heat exchange tests were performed with a specially constructed test stand. Work was done to improve the component hardware and system design for the solar water heater. The installation of both a direct feed system and a double wall heat exchanger system provided experience and site data to enable informative decisions to be made as the solar market expands into areas where freeze protection is required.

  5. A Versatile Rocket Engine Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1993-01-01

    The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.

  6. [PFBC Hot Gas Cleanup Test Program

    SciTech Connect

    Not Available

    1992-10-01

    Four hundred and fifty four clay bonded silicon carbide Schumacher Dia Schumalith candle filters were purchased for installation in the Westinghouse Advanced Particle Filtration (APF) system at the American Electric Power (AEP) plant in Brilliant, Ohio. A surveillance effort has been identified which will monitor candle filter performance and life during hot gas cleaning in AEP's pressurized fluidized-bed combustion system. A description of the candle surveillance program, strategy for candle filter location selection, as well as candle filter post-test characterization is provided in this memo. The period of effort for candle filter surveillance monitoring is planned through March 1994.

  7. Hot tensile tests of Inconel 718

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The physical metallurgy of near-solidus integranular cracking in Inconel 718 welds was investigated. The data, although inconclusive, suggest at least two mechanisms which might explain intergranular cracking (microfissuring) in the heat-affected zone of several high temperature alloys. One theory is based on the separation of intergranular liquid while the other involves mechanical failure of solid ligaments surrounded by intergranular liquid. Both mechanisms concentrate strain in the grain boundaries resulting in low strain (1%) intergranular brittleness. The mechanisms reported might also pertain to the physical metallurgy of casting, powder metallurgy sintering and hot isostatic pressing.

  8. The Affect Misattribution Procedure: hot or not?

    PubMed

    Blaison, Christophe; Imhoff, Roland; Hühnel, Isabell; Hess, Ursula; Banse, Rainer

    2012-04-01

    The Affect Misattribution Procedure (AMP; Payne, Cheng, Govorun, & Stewart, 2005) is an important tool in implicit social cognition research, but little is known about its underlying mechanisms. This paper investigates whether, as the name implies, affect-based processes really underlie the AMP. We used a modified AMP that enabled us to separate the influence of affective and nonaffective processes. In three studies, evidence for the implication of nonaffective processes was consistently found. In contrast, there was no evidence for affect-based processes. Thus, the AMP rather seems cold than hot. The generalizability of the results obtained with the modified AMP is discussed. PMID:22390705

  9. Phase boundary of hot dense fluid hydrogen

    PubMed Central

    Ohta, Kenji; Ichimaru, Kota; Einaga, Mari; Kawaguchi, Sho; Shimizu, Katsuya; Matsuoka, Takahiro; Hirao, Naohisa; Ohishi, Yasuo

    2015-01-01

    We investigated the phase transformation of hot dense fluid hydrogen using static high-pressure laser-heating experiments in a laser-heated diamond anvil cell. The results show anomalies in the heating efficiency that are likely to be attributed to the phase transition from a diatomic to monoatomic fluid hydrogen (plasma phase transition) in the pressure range between 82 and 106 GPa. This study imposes tighter constraints on the location of the hydrogen plasma phase transition boundary and suggests higher critical point than that predicted by the theoretical calculations. PMID:26548442

  10. Hot and cold water issues deftly described.

    PubMed

    Baillie, Jonathan

    2016-02-01

    Speaking at a Legionella Control Association Open Day on 9 October last year in Tamworth, Mike Quest, an LCA director and Committee Member who is an independent water hygiene and safety consultant and an NHS Authorising Engineer, presented his standpoint on effective risk assessment and monitoring of complex hot and cold water systems. He also focused on some of the challenges for engineering and estates teams in maintaining water temperatures within 'safe limits' in modern buildings, with reference to the complications he had seen in a hospital project he has recently been working on. PMID:27017660

  11. Control apparatus for hot gas engine

    DOEpatents

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  12. Hot cell shield plug extraction apparatus

    DOEpatents

    Knapp, Philip A.; Manhart, Larry K.

    1995-01-01

    An apparatus is provided for moving shielding plugs into and out of holes in concrete shielding walls in hot cells for handling radioactive materials without the use of external moving equipment. The apparatus provides a means whereby a shield plug is extracted from its hole and then swung approximately 90 degrees out of the way so that the hole may be accessed. The apparatus uses hinges to slide the plug in and out and to rotate it out of the way, the hinge apparatus also supporting the weight of the plug in all positions, with the load of the plug being transferred to a vertical wall by means of a bolting arrangement.

  13. Automated inspection of hot steel slabs

    DOEpatents

    Martin, Ronald J.

    1985-01-01

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

  14. METHOD OF HOT ROLLING URANIUM METAL

    DOEpatents

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  15. Hot air drum evaporator. [Patent application

    DOEpatents

    Black, R.L.

    1980-11-12

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  16. Multiple volume compressor for hot gas engine

    DOEpatents

    Stotts, Robert E.

    1986-01-01

    A multiple volume compressor for use in a hot gas (Stirling) engine having a plurality of different volume chambers arranged to pump down the engine when decreased power is called for and return the working gas to a storage tank or reservoir. A valve actuated bypass loop is placed over each chamber which can be opened to return gas discharged from the chamber back to the inlet thereto. By selectively actuating the bypass valves, a number of different compressor capacities can be attained without changing compressor speed whereby the capacity of the compressor can be matched to the power available from the engine which is used to drive the compressor.

  17. Hot rolling of thick uranium molybdenum alloys

    DOEpatents

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  18. Automated inspection of hot steel slabs

    DOEpatents

    Martin, R.J.

    1985-12-24

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes. 5 figs.

  19. Particulate hot gas stream cleanup technical issues

    SciTech Connect

    Pontius, D.H.; Snyder, T.R.

    1999-09-30

    The analyses of hot gas stream cleanup particulate samples and descriptions of filter performance studied under this contract were designed to address problems with filter operation that have been linked to characteristics of the collected particulate matter. One objective of this work was to generate an interactive, computerized data bank of the key physical and chemical characteristics of ash and char collected from operating advanced particle filters and to relate these characteristics to the operation and performance of these filters. The interactive data bank summarizes analyses of over 160 ash and char samples from fifteen pressurized fluidized-bed combustion and gasification facilities utilizing high-temperature, high pressure barrier filters.

  20. Hot Fuel Examination Facility/South

    SciTech Connect

    Not Available

    1990-05-01

    This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

  1. Hot Fluids and Nonlinear Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2015-05-01

    A hot relativistic fluid is viewed as a collection of quantum objects that represent interacting elementary particles. We present a conceptual framework for deriving nonlinear equations of motion obeyed by these hypothesized objects. A uniform phenomenological prescription, to affect the quantum transition from a corresponding classical system, is invoked to derive the nonlinear Schrödinger, Klein-Gordon, and Pauli-Schrödinger and Feynman-GellMaan equations. It is expected that the emergent hypothetical nonlinear quantum mechanics would advance, in a fundamental way, both the conceptual understanding and computational abilities, particularly, in the field of extremely high energy-density physics.

  2. An evaluation of lead concentrations in imported hot sauces.

    PubMed

    Berger Ritchie, Jennifer A; Gerstenberger, Shawn L

    2013-01-01

    In the last decade, the U.S. Food and Drug Administration (FDA) has issued several warnings and recalls for food products that exceed FDA standards for lead. Products containing chili peppers and salt were often suspected as sources of lead contamination, and included items such as candy that are routinely investigated. However, products such as hot sauces that contain similar ingredients have not been the focus of evaluations. This study quantified lead concentrations in imported hot sauces, evaluated product compliance to existing United States standards, and calculated potential dietary lead exposure for children using the Integrated Exposure Uptake Biokinetic Model. Finally, recommendations for reducing the risk of lead exposure from hot sauces are provided. Twenty-five (25) bottles of imported hot sauces manufactured in Mexico and South America were purchased in Clark County, Nevada. All hot sauces were analyzed for lead concentrations, pH, and leaded packaging. Hot sauces were analyzed by inductively coupled plasma mass spectrometry and packaging was analyzed using x-ray fluorescence technology. Four brands of hot sauces (16%) exceeded 0.1 ppm lead, the current FDA action level for lead in candy. Hot sauces with lead concentrations >0.1 ppm lead contained salt and were manufactured in Mexico. Subsequent analysis of additional lots of hot sauces exceeding 0.1 ppm lead revealed inconsistent lead concentrations between and within manufacturer lots. The lead concentrations of the plastic hot sauce lids ranged from below the limit of detection to 2,028 ppm lead. There was no association between lead concentrations in hot sauces and pepper type. These results indicate the need for more rigorous screening protocols for products imported from Mexico, the establishment of an applicable standard for hot sauce, and resources to allow for the enforcement of existing food safety policies. The data reported herein represent the first known investigation of lead

  3. [History of hot spring bath treatment in China].

    PubMed

    Hao, Wanpeng; Wang, Xiaojun; Xiang, Yinghong; Gu Li, A Man; Li, Ming; Zhang, Xin

    2011-07-01

    As early as the 7th century B.C. (Western Zhou Dynasty), there is a recording as 'spring which contains sulfur could treat disease' on the Wentang Stele written by WANG Bao. Wenquan Fu written by ZHANG Heng in the Easten Han Dynasty also mentioned hot spring bath treatment. The distribution of hot springs in China has been summarized by LI Daoyuan in the Northern Wei Dynasty in his Shuijingzhu which recorded hot springs in 41 places and interpreted the definition of hot spring. Bencao Shiyi (by CHEN Cangqi, Tang Dynasty) discussed the formation of and indications for hot springs. HU Zai in the Song Dynasty pointed out distinguishing hot springs according to water quality in his book Yuyin Conghua. TANG Shenwei in the Song Dynasty noted in Jingshi Zhenglei Beiji Bencao that hot spring bath treatment should be combined with diet. Shiwu Bencao (Ming Dynasty) classified hot springs into sulfur springs, arsenicum springs, cinnabar springs, aluminite springs, etc. and pointed out their individual indications. Geologists did not start the work on distribution and water quality analysis of hot springs until the first half of the 20th century. There are 972 hot springs in Wenquan Jiyao (written by geologist ZHANG Hongzhao and published in 1956). In July 1982, the First National Geothermal Conference was held and it reported that there were more than 2600 hot springs in China. Since the second half of the 20th century, hot spring sanatoriums and rehabilitation centers have been established, which promoted the development of hot spring bath treatment. PMID:22169492

  4. Hot dry rock geothermal potential of Roosevelt Hot Springs area: review of data and recommendations

    SciTech Connect

    East, J.

    1981-05-01

    The Roosevelt Hot Springs area in west-central Utah possesses several features indicating potential for hot dry rock (HDR) geothermal development. The area is characterized by extensional tectonics and a high regional heat flow of greater than 105 mW/m/sup 2/. The presence of silicic volcanic rocks as young as 0.5 to 0.8 Myr and totaling 14 km/sup 3/ in volume indicates underlying magma reservoirs may be the heat source for the thermal anomaly. Several hot dry wells have been drilled on the periphery of the geothermal field. Information obtained on three of these deep wells shows that they have thermal gradients of 55 to 60/sup 0/C/km and bottom in impermeable Tertiary granitic and Precambrian gneissic units. The Tertiary granite is the preferred HDR reservoir rock because Precambrian gneissic rocks possess a well-developed banded foliation, making fracture control over the reservoir more difficult. Based on a fairly conservative estimate of 160 km/sup 2/ for the thermal anomaly present at Roosevelt Hot Springs, the area designated favorable for HDR geothermal exploration may be on the order of seven times or more than the hydrogeothermal area currently under development.

  5. Hot corrosion of low cobalt alloys

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.

    1982-01-01

    The hot corrosion attack susceptibility of various alloys as a function of strategic materials content are investigated. Preliminary results were obtained for two commercial alloys, UDIMET 700 and Mar-M 247, that were modified by varying the cobalt content. For both alloys the cobalt content was reduced in steps to zero. Nickel content was increased accordingly to make up for the reduced cobalt but all other constituents were held constant. Wedge bar test samples were produced by casting. The hot corrosion test consisted of cyclically exposing samples to the high velocity flow of combustion products from an air-fuel burner fueled with jet A-1 and seeded with a sodium chloride aqueous solution. The flow velocity was Mach 0.5 and the sodium level was maintained at 0.5 ppm in terms of fuel plus air. The test cycle consisted of holding the test samples at 900 C for 1 hour followed by 3 minutes in which the sample could cool to room temperature in an ambient temperature air stream.

  6. The hot plasma spectrometers on Freja

    NASA Astrophysics Data System (ADS)

    Norberg, O.; Eliasson, L.

    1991-11-01

    The hot plasma instrumentation F3H on the Swedish-German Freja satellite due for launch in 1992 will consist of electron and ion spectrometers. The spectrometer Magnetic imaging Two dimensional Electron (MATE) will measure the two dimensional electron distribution in the spin plane in the energy range 0.1 to 120 keV. The ion mass spectrometer Three dimensional Ion Composition Spectrometer (TICS) measures a full three dimensional distribution in the energy range 0.5 to 15000 eV/q with high mass resolution. The instruments use a particle 'imaging' detector technique based on a large diameter microchannel plate with position sensitive anode. The topics to be studied with the Freja hot plasma spectrometers include auroral particle acceleration, heating and acceleration of ionospheric ions, and the dynamics of auroral arc systems. Of special importance to the scientific objectives is the high data rate from the Freja instrumentation, the MATE and TICS spectrometers will be sampled every 10 ms, corresponding to a spatial resolution better than 70 m at ionospheric heights. The design, simulation, and calibration of the spectrometers are discussed.

  7. Combined grate and hot water heater

    SciTech Connect

    Milano, E.

    1984-09-25

    A combined grate and hot water heater for a fireplace which can be easily fabricated using conventional parts, easily installed and easily used is disclosed. The combined grate and hot water heater includes a rectangular shaped cradle for holding combustible materials to be burned which is sized and configured to fit into the fire chamber of the fireplace and a set of supporting legs for supporting the cradle on the floor of the fire chamber in spaced apart relationship. The cradle is made of a plurality of longitudinally extending and laterally extending heavy duty cast iron pipes interconnected by suitable pipe couplings so as to be in fluid communication with one another. A water inlet pipe and a water outlet pipe are connected to and in fluid communication with the pipes in the cradle for supplying water to be heated into the pipes and then allowing exit of the water after it has circulated through the pipes and has been heated by the fire produced on burning of the combustible materials. An inverted U shaped pipe section also made of heavy duty cast iron is coupled in fluid communication with the pipes in the cradle and extends vertically upward into the flue of the fireplace to utilize the heat present in the flue to further heat the water circulated through the pipes.

  8. Nonmarine Crenarchaeol in Nevada Hot Springs

    PubMed Central

    Pearson, A.; Huang, Z.; Ingalls, A. E.; Romanek, C. S.; Wiegel, J.; Freeman, K. H.; Smittenberg, R. H.; Zhang, C. L.

    2004-01-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are core membrane lipids of the Crenarchaeota. The structurally unusual GDGT crenarchaeol has been proposed as a taxonomically specific biomarker for the marine planktonic group I archaea. It is found ubiquitously in the marine water column and in sediments. In this work, samples of microbial community biomass were obtained from several alkaline and neutral-pH hot springs in Nevada, United States. Lipid extracts of these samples were analyzed by high-performance liquid chromatography-mass spectrometry and by gas chromatography-mass spectrometry. Each sample contained GDGTs, and among these compounds was crenarchaeol. The distribution of archaeal lipids in Nevada hot springs did not appear to correlate with temperature, as has been observed in the marine environment. Instead, a significant correlation with the concentration of bicarbonate was observed. Archaeal DNA was analyzed by denaturing gradient gel electrophoresis. All samples contained 16S rRNA gene sequences which were more strongly related to thermophilic crenarchaeota than to Cenarchaeum symbiosum, a marine nonthermophilic crenarchaeon. The occurrence of crenarchaeol in environments containing sequences affiliated with thermophilic crenarchaeota suggests a wide phenotypic distribution of this compound. The results also indicate that crenarchaeol can no longer be considered an exclusive biomarker for marine species. PMID:15345404

  9. Method and tank for producing hot briquettes

    SciTech Connect

    Birscheidt, H.; Brasseur, Y.; Dungs, H.; Ferdinand, F.; Weber, H.

    1981-02-03

    A method for producing hot briquettes, for example, for use in blast furnaces, and using a briquetting material of non-caking components, such as low temperature coke from bituminous coal and/or lignite, coke dust and/or oil coke and caking fat coal at temperatures between 430* C. And 540* C. is described. The briquetting material is delivered to a briquetting press to form briquette blanks, tempering and degassing the blanks, by delivering the blanks into individual chambers in a closed system of several chambers having gas communication with each other so that there is partly changing amounts of gas generated in the individual chambers. The briquette blanks are formed into tempered briquettes. An overpressure is applied to the chambers to conduct the gases away from the chamber with one and the same overpressure. The equipment for the execution of the method comprises a hardening system in the form of a single cube-shaped tank having one corner which is inclined downwardly and which is divided into several substantially parallel narrow chambers by walls which are disposed parallel to the inclined outer surface and which has a channel above an upper lateral edge for charging hot briquettes into the individual chambers and also for conducting away gases formed during tempering in a path diagonally opposite to the charging channel. An emptying channel is located under the lower lateral edge of the tank.

  10. Hot Dog and Butterfly, Nereidum Montes

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Some of the pictures returned from Mars by the Mars Orbiter Camera (MOC) onboard the Mars Global Surveyor (MGS) spacecraft show features that--at a glance--resemble familiar, non-geological objects on Earth. For example, the picture above at the left shows several low, relatively flat-topped hills (mesas) on the floor of a broad valley among the mountains of the Nereidum Montes region, northeast of Argyre Planitia. One of the mesas seen here looks like half of a butterfly (upper subframe on right). Another hill looks something like a snail or a hot dog wrapped and baked in a croissant roll (lower subframe on right). These mesas were formed by natural processes and are most likely the eroded remnants of a formerly more extensive layer of bedrock. In the frame on the left, illumination is from the upper left and the scene covers an area 2.7 km (1.7 miles) wide by 6.8 km (4.2 miles) high. The 'butterfly' is about 800 meters (875 yards) in length and the 'hot dog' is about 1 km (0.62 miles) long.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  11. THz Hot-Electron Photon Counter

    NASA Technical Reports Server (NTRS)

    Karasik, Boris S.; Sergeev, Andrei V.

    2004-01-01

    We present a concept for the hot-electron transition-edge sensor capable of counting THz photons. The main need for such a sensor is a spectroscopy on future space telescopes where a background limited NEP approx. 10(exp -20) W/H(exp 1/2) is expected at around 1 THz. Under these conditions, the rate of photon arrival is very low and any currently imaginable detector with sufficient sensitivity will operate in the photon counting mode. The Hot-Electron Photon Counter based on a submicron-size Ti bridge has a very low heat capacity which provides a high enough energy resolution (approx.140 GHz) at 0.3 K. With the sensor time constant of a few microseconds, the dynamic range would be approx. 30 dB. The sensor couples to radiation via a planar antenna and is read by a SQUID amplifier or by a 1-bit RSFQ ADC. A compact array of the antenna-coupled counters can be fabricated on a silicon wafer without membranes.

  12. ATMOSPHERES OF HOT SUPER-EARTHS

    SciTech Connect

    Castan, Thibaut; Menou, Kristen

    2011-12-20

    Hot super-Earths likely possess minimal atmospheres established through vapor saturation equilibrium with the ground. We solve the hydrodynamics of these tenuous atmospheres at the surface of CoRot-7b, Kepler-10b, and 55 Cnc-e, including idealized treatments of magnetic drag and ohmic dissipation. We find that atmospheric pressures remain close to their local saturation values in all cases. Despite the emergence of strongly supersonic winds which carry sublimating mass away from the substellar point, the atmospheres do not extend much beyond the day-night terminators. Ground temperatures, which determine the planetary thermal (infrared) signature, are largely unaffected by exchanges with the atmosphere and thus follow the effective irradiation pattern. Atmospheric temperatures, however, which control cloud condensation and thus albedo properties, can deviate substantially from the irradiation pattern. Magnetic drag and ohmic dissipation can also strongly impact the atmospheric behavior, depending on atmospheric composition and the planetary magnetic field strength. We conclude that hot super-Earths could exhibit interesting signatures in reflection (and possibly in emission) which would trace a combination of their ground, atmospheric, and magnetic properties.

  13. Hot and turbulent gas in clusters

    NASA Astrophysics Data System (ADS)

    Schmidt, W.; Engels, J. F.; Niemeyer, J. C.; Almgren, A. S.

    2016-06-01

    The gas in galaxy clusters is heated by shock compression through accretion (outer shocks) and mergers (inner shocks). These processes additionally produce turbulence. To analyse the relation between the thermal and turbulent energies of the gas under the influence of non-adiabatic processes, we performed numerical simulations of cosmic structure formation in a box of 152 Mpc comoving size with radiative cooling, UV background, and a subgrid scale model for numerically unresolved turbulence. By smoothing the gas velocities with an adaptive Kalman filter, we are able to estimate bulk flows towards cluster cores. This enables us to infer the velocity dispersion associated with the turbulent fluctuation relative to the bulk flow. For haloes with masses above 1013 M⊙, we find that the turbulent velocity dispersions averaged over the warm-hot intergalactic medium (WHIM) and the intracluster medium (ICM) are approximately given by powers of the mean gas temperatures with exponents around 0.5, corresponding to a roughly linear relation between turbulent and thermal energies and transonic Mach numbers. However, turbulence is only weakly correlated with the halo mass. Since the power-law relation is stiffer for the WHIM, the turbulent Mach number tends to increase with the mean temperature of the WHIM. This can be attributed to enhanced turbulence production relative to dissipation in particularly hot and turbulent clusters.

  14. Small Hot Jet Acoustic Rig Validation

    NASA Technical Reports Server (NTRS)

    Brown, Cliff; Bridges, James

    2006-01-01

    The Small Hot Jet Acoustic Rig (SHJAR), located in the Aeroacoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center in Cleveland, Ohio, was commissioned in 2001 to test jet noise reduction concepts at low technology readiness levels (TRL 1-3) and develop advanced measurement techniques. The first series of tests on the SHJAR were designed to prove its capabilities and establish the quality of the jet noise data produced. Towards this goal, a methodology was employed dividing all noise sources into three categories: background noise, jet noise, and rig noise. Background noise was directly measured. Jet noise and rig noise were separated by using the distance and velocity scaling properties of jet noise. Effectively, any noise source that did not follow these rules of jet noise was labeled as rig noise. This method led to the identification of a high frequency noise source related to the Reynolds number. Experiments using boundary layer treatment and hot wire probes documented this noise source and its removal, allowing clean testing of low Reynolds number jets. Other tests performed characterized the amplitude and frequency of the valve noise, confirmed the location of the acoustic far field, and documented the background noise levels under several conditions. Finally, a full set of baseline data was acquired. This paper contains the methodology and test results used to verify the quality of the SHJAR rig.

  15. Hot Cell Window Shielding Analysis Using MCNP

    SciTech Connect

    Chad L. Pope; Wade W. Scates; J. Todd Taylor

    2009-05-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  16. Modelling the spectroscopic behaviour of hot molecules

    NASA Astrophysics Data System (ADS)

    Tennyson, Jonathan

    2010-05-01

    At elevated temperatures the molecules absorb and emit light in a very complicated fashion which is hard to characterise on the basis of laboraroty measurement. Computed line lists of molecule transitions therefore provide a vital input for models of hot atmospheres. I will describe the calculation and use of such line lists including the BT2 water line list [1], which contains some 500 million distinct rotation-vibration transitions. This linelist proved crucial in the detection of water in extrasolar planet HD189733b and has been used extensively in atmospheric modelling. Illustrations will be given at the meeting. A new linelist for the ammonia molecule has just been completed [2] which shows that standard compilations for this molecule need to be improved. Progress on a more extensive linelist for hot ammonia and linelists for other molecules will be discussed at the meeting. [1] R.J. Barber, J. Tennyson, G.J. Harris and R.N. Tolchenov, Mon. Not. R. Astr. Soc., 368, 1087-1094 (2006) [2] S.N. Yurchenko, R.J. Barber, A. Yachmenev, W. Theil, P. Jensen and J. Tennyson, J. Phys. Chem. A, 113, 11845-11855 (2009).

  17. METC CFD simulations of hot gas filtration

    SciTech Connect

    O`Brien, T.J.

    1995-06-01

    Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of the vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.

  18. Body Temperature Regulation in Hot Environments.

    PubMed

    Nilsson, Jan-Åke; Molokwu, Mary Ngozi; Olsson, Ola

    2016-01-01

    Organisms in hot environments will not be able to passively dissipate metabolically generated heat. Instead, they have to revert to evaporative cooling, a process that is energetically expensive and promotes excessive water loss. To alleviate these costs, birds in captivity let their body temperature increase, thereby entering a state of hyperthermia. Here we explore the use of hyperthermia in wild birds captured during the hot and dry season in central Nigeria. We found pronounced hyperthermia in several species with the highest body temperatures close to predicted lethal levels. Furthermore, birds let their body temperature increase in direct relation to ambient temperatures, increasing body temperature by 0.22°C for each degree of increased ambient temperature. Thus to offset the costs of thermoregulation in ambient temperatures above the upper critical temperature, birds are willing to let their body temperatures increase by up to 5°C above normal temperatures. This flexibility in body temperature may be an important mechanism for birds to adjust to predicted increasing ambient temperatures in the future. PMID:27548758

  19. Body Temperature Regulation in Hot Environments

    PubMed Central

    Nilsson, Jan-Åke; Molokwu, Mary Ngozi; Olsson, Ola

    2016-01-01

    Organisms in hot environments will not be able to passively dissipate metabolically generated heat. Instead, they have to revert to evaporative cooling, a process that is energetically expensive and promotes excessive water loss. To alleviate these costs, birds in captivity let their body temperature increase, thereby entering a state of hyperthermia. Here we explore the use of hyperthermia in wild birds captured during the hot and dry season in central Nigeria. We found pronounced hyperthermia in several species with the highest body temperatures close to predicted lethal levels. Furthermore, birds let their body temperature increase in direct relation to ambient temperatures, increasing body temperature by 0.22°C for each degree of increased ambient temperature. Thus to offset the costs of thermoregulation in ambient temperatures above the upper critical temperature, birds are willing to let their body temperatures increase by up to 5°C above normal temperatures. This flexibility in body temperature may be an important mechanism for birds to adjust to predicted increasing ambient temperatures in the future. PMID:27548758

  20. Two new extremely hot pulsating white dwarfs

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Grauer, A. D.; Green, R. F.; Liebert, J. W.

    1984-01-01

    High speed photometry of the extremely hot, nearly degenerate stars PG 1707 + 427 and PG 2131 + 066 reveals that they are low-amplitude pulsating variables. Power spectral analysis shows both to be multiperiodic, with dominant periods of 7.5 and 6.4-6.9 minutes, respectively. Together with the known pulsators PG 1159 - 035 and the central star of the planetary nebula Kohoutek 1-16, these objects define a new pulsational instability strip at the hot edge of the H-R diagram. The variations of these objects closely resemble those of the much cooler pulsating ZZ Ceti DA white dwarfs; both groups are probably nonradial g-mode pulsators. Evolutionary contraction of the PG 1159 - 035 variables may lead to period changes that would be detectable in as little as 1 year. The optical and IUE spectra of the PG 1159 - 035 variables are characterized by absorption lines of C IV and other CNO ions, indicating radiative levitation of species heavier than helium. He II is also present in the spectra, but the hydrogen Balmer lines are absent. Effective temperatures near 100,000 K are required, and the He II 4686 A profiles indicate log g greater than 6. These helium-rich pulsators form the hottest known subgroup of the DO white dwarfs.

  1. Tolerance to ethanol hypothermia in HOT and COLD mice.

    PubMed

    Crabbe, J C

    1994-02-01

    COLD and HOT mice have been selected to be sensitive or resistant, respectively, to the acute hypothermic effect of ethanol. Previous studies have found HOT mice to be relatively resistant to the development of tolerance to this effect, whereas COLD mice readily develop tolerance. By administering several doses of ethanol and recording multiple postdrug temperatures, in the current study we equated the selected lines for area under the curve describing initial hypothermic response over time, a measure reflecting both maximal hypothermia achieved and the duration of total hypothermic response. The dose-response function for COLD mice was much steeper than that for HOT mice, and HOT mice recovered to baseline body temperatures more slowly. Doses were administered daily for 5 days. Both lines developed tolerance to ethanol hypothermia. The magnitude of tolerance developed was greater in COLD than in HOT mice. At higher doses, HOT mice showed a progressively enhanced hypothermic response over days (i.e., sensitization). PMID:8198225

  2. Design package for solar domestic hot water system

    SciTech Connect

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  3. Effects of surface chemistry on hot corrosion life: Overview

    NASA Technical Reports Server (NTRS)

    Merutka, J.

    1982-01-01

    This program concentrates on analyzing a limited number of hot corroded components from the field and the carrying out of a series of controlled laboratory experiments to establish the effects of oxide scale and coating chemistry on hot corrosion life. This is to be determined principally from the length of the incubation period, the investigation of the mechanisms of hot corrosion attack, and the fitting of the data generated from the test exposure experiments to an empirical life prediction model.

  4. Outbreak of hot-foot syndrome - caused by Pseudomonas aeruginosa.

    PubMed

    Michl, R K; Rusche, T; Grimm, S; Limpert, E; Beck, J F; Dost, A

    2012-07-01

    Infections with Pseudomonas aeruginosa can cause the hot-foot syndrome, presenting with painful plantar erythematous nodules. Particularly, the mechanically stressed areas of the foot are affected after contact with contaminated water from saunas, swimming pools, hot tubs, etc. We report an outbreak of hot-foot syndrome caused by Pseudomonas in 10 patients. The therapeutic regimens applied reached from local antiseptic therapy to systemic antibiotics. PMID:22187332

  5. 21 CFR 880.6085 - Hot/cold water bottle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to apply heat or cold to an area of the body. (b) Classification. Class I (general controls). The... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot/cold water bottle. 880.6085 Section 880.6085... Devices § 880.6085 Hot/cold water bottle. (a) Identification. A hot/cold water bottle is a device...

  6. Plasmon-induced hot carriers in metallic nanoparticles.

    PubMed

    Manjavacas, Alejandro; Liu, Jun G; Kulkarni, Vikram; Nordlander, Peter

    2014-08-26

    Plasmon-induced hot carrier formation is attracting an increasing research interest due to its potential for applications in photocatalysis, photodetection and solar energy harvesting. However, despite very significant experimental effort, a comprehensive theoretical description of the hot carrier generation process is still missing. In this work we develop a theoretical model for the plasmon-induced hot carrier process and apply it to spherical silver nanoparticles and nanoshells. In this model, the conduction electrons of the metal are described as free particles in a finite spherical potential well, and the plasmon-induced hot carrier production is calculated using Fermi’s golden rule. We show that the inclusion of many-body interactions has only a minor influence on the results. Using the model we calculate the rate of hot carrier generation, finding that it closely follows the spectral profile of the plasmon. Our analysis reveals that particle size and hot carrier lifetime play a central role in determining both the production rate and the energy distribution of the hot carriers. Specifically, larger nanoparticle sizes and shorter lifetimes result in higher carrier production rates but smaller energies, and vice versa. We characterize the efficiency of the hot carrier generation process by introducing a figure of merit that measures the number of high energy carriers generated per plasmon. Furthermore, we analyze the spatial distribution and directionality of these excitations. The results presented here contribute to the basic understanding of plasmon-induced hot carrier generation and provide insight for optimization of the process. PMID:24960573

  7. Flute-interchange stability in a hot electron plasma

    SciTech Connect

    Dominguez, R.R.

    1980-01-01

    Several topics in the kinetic stability theory of flute-interchange modes in a hot electron plasma are discussed. The stability analysis of the hot-electron, curvature-driven flute-interchange mode, previously performed in a slab geometry, is extended to a cylindrical plasma. The cold electron concentration necessary for stability differs substantially from previous criteria. The inclusion of a finite temperature background plasma in the stability analysis results in an ion curvature-driven flute-interchange mode which may be stabilized by either hot-electron diamagnetic effects, hot-electron plasma density, or finite (ion) Larmor radius effects.

  8. Hot zones evolution and dynamics in heterogeneous catalytic systems

    NASA Astrophysics Data System (ADS)

    Luss, D.; Marwaha, B.

    2002-03-01

    Stationary and complex moving hot regions formed for temperatures close to the extinction temperature of uniformly ignited states of several catalytic systems, such as thin rings and hollow cylinders, a thin radial flow reactor (RFR) and a shallow packed bed. IR imaging revealed that the hot and cold regions (temperature difference of the order of 100 °C) were separated by a sharp (about 3 mm wide) temperature front. The transition from the branch of uniformly ignited to the states with a hot region was usually supercritical. In some experiments a disjoint branch of states with hot regions existed and two qualitatively different states with hot zones existed under the same operating conditions. A very intricate periodic motion of a hot zone was observed in a shallow packed bed reactor. For example, Fig. 16 shows a hot zone which splits and later coalesces several times during the long (14 h) period. Hot pulse motions were observed on a single catalytic pellet. These were caused by global coupling between the surface reaction rate and the ambient reactant concentration and the inherent nonuniformity of the catalytic activity. It is not yet clear what rate processes generate the transversal hot zones in uniform packed bed reactors.

  9. Photovoltaic module hot spot durability design and test methods

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Gonzalez, C. C.

    1981-01-01

    As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, the susceptibility of fat-plate modules to hot-spot problems is investigated. Hot-spot problems arise in modules when the cells become back-biased and operate in the negative-voltage quadrant, as a result of short-circuit current mismatch, cell cracking or shadowing. The details of a qualification test for determining the capability of modules of surviving field hot-spot problems and typical results of this test are presented. In addition, recommended circuit-design techniques for improving the module and array reliability with respect to hot-spot problems are presented.

  10. Radiative recombination of hot carriers in narrow-gap semiconductors

    SciTech Connect

    Pavlov, N. V.; Zegrya, G. G.

    2012-01-15

    The mechanism of the radiative recombination of hot carriers in narrow-gap semiconductors is analyzed using the example of indium antimonide. It is shown that the CHCC Auger recombination process may lead to pronounced carrier heating at high excitation levels. The distribution functions and concentrations of hot carriers are determined. The radiative recombination rate of hot carriers and the radiation gain coefficient are calculated in terms of the Kane model. It is demonstrated that the radiative recombination of hot carriers will make a substantial contribution to the total radiative recombination rate at high carrier concentrations.

  11. A quadrupolar complete model of the hot disc

    NASA Astrophysics Data System (ADS)

    Jannot, Yves; Acem, Zoubir

    2007-05-01

    The hot disc method is a transient plane source method used for the estimation of the thermal conductivity and diffusivity of solid materials. A complete model based on the thermal quadrupoles formalism has been developed to represent the hot disc temperature variation. This model takes into account both the thermal contact resistance between the solid to be characterized and the hot disc and the thermal inertia of the hot disc. It makes it possible to realize the parameters estimation on all the recorded temperature measurements. This model is used to highlight the estimation uncertainty due to approximations in the heat transfer model.

  12. Getting into hot water Problematizing hot water service demand: The case of Old Cairo

    NASA Astrophysics Data System (ADS)

    Culhane, Thomas Henry

    This dissertation analyzes hot water demand and service infrastructure in two neighboring but culturally distinct communities of the urban poor in the inner-city area of central Cairo. The communities are the Historic Islamic Cairo neighborhood of Darb Al Ahmar at the foot of Al-Azhar park, and the Zurayib neighborhood of Manshiyat Nasser where the Coptic Zabaleen Recyclers live. The study focuses on the demand side of the hot water issue and involves consideration of built-environment infrastructures providing piped water, electricity, bottled gas, sewage, and the support structures (wiring and plumbing) for consumer durables (appliances such as hot water heaters, stoves, refrigerators, air conditioners) as well as water pumps and water storage tanks. The study asks the questions "How do poor communities in Cairo value hot water" and "How do cost, infrastructure and cultural preferences affect which attributes of hot water service are most highly preferred?". To answer these questions household surveys based primarily on the World Bank LSMS modules were administered by professional survey teams from Darb Al Ahmar's Aga Khan Trust for Culture and the Zabaleen's local NGO "Spirit of Youth" in their adjacent conununities in and surrounding historic Cairo. In total 463 valid surveys were collected, (231 from Darb Al Ahmar, 232 from the Zabaleen). The surveys included a contingent valuation question to explore Willingness to Pay for improved hot water service; the surveys queried household assets as proxies for income. The dissertation's findings reveal that one quarter of the residents of Darb Al Ahmar and two-thirds of the residents of Manshiyet Nasser's Zabaleen lack conventional water heating service. Instead they employ various types of stoves and self-built contraptions to heat water, usually incurring considerable risk and opportunity costs. However the thesis explores the notion that this is rational "satisficing" behavior; despite the shortcomings of such self

  13. Hot Gas Flows in T Tauri Stars

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Herczeg, G.; Gregory, S. G.; Ingleby, L.; France, K.; Brown, A.; Edwards, S.; Linsky, J.; Yang, H.; Valenti, J. A.; Johns-Krull, C. M.; Alexander, R.; Bergin, E. A.; Bethell, T.; Brown, J.; Calvet, N.; Espaillat, C.; Hervé, A.; Hillenbrand, L.; Hussain, G.; Roueff, E.; Schindhelm, E.; Walter, F. M.

    2013-01-01

    We describe observations of the hot gas 1e5 K) ultraviolet lines C IV and He II, in Classical and Weak T Tauri Stars (CTTSs, WTTSs). Our goal is to provide observational constraints for realistic models. Most of the data for this work comes from the Hubble proposal “The Disks, Accretion, and Outflows (DAO) of T Tau stars” (PI Herczeg). The DAO program is the largest and most sensitive high resolution spectroscopic survey of young stars in the UV ever undertaken and it provides a rich source of information for these objects. The sample of high resolution COS and STIS spectra presented here comprises 35 stars: one Herbig Ae star, 28 CTTSs, and 6 WTTSs. For CTTSs, the lines consist of two kinematic components. The relative strengths of the narrow and broad components (NC, BC) are similar in C IV but in He II the NC is stronger than the BC, and dominates the line profile. We do not find correlations between disk inclination and the velocity centroid, width, or shape of the CIV line profile. The NC of the C IV line in CTTSs increases in strength with accretion rate, and its contribution to the line increases from ˜20% to ˜80%, for the accretion rates considered here (1e-10 to 1e-7 Msun/yr). The CTTSs C IV lines are redshifted by ˜20 km/s while the CTTSs He II are redshifted by ˜10 km/s. Because the He II line and the C IV NC have the same width in CTTSs and in WTTSs, but are correlated with accretion, we suggest that they are produced in the stellar transition region. The accretion shock model predicts that the velocity of the post-shock emission should be 4x smaller than the velocity of the pre-shock emission. Identifying the post-shock emission with the NC and the pre-shock with the BC, we find that this is approximately the case in 11 out of 23 objects. The model cannot explain 11 systems in which the velocity of the NC is smaller than the velocity of the BC, or systems in which one of the velocities is negative (five CTTSs). The hot gas lines in some systems

  14. AIM cryocooler developments for HOT detectors

    NASA Astrophysics Data System (ADS)

    Rühlich, I.; Mai, M.; Withopf, A.; Rosenhagen, C.

    2014-06-01

    Significantly increased FPA temperatures for both Mid Wave and Long Wave IR detectors, i.e. HOT detectors, which have been developed in recent years are now leaving the development phase and are entering real application. HOT detectors allowing to push size weight and power (SWaP) of Integrated Detectors Cooler Assemblies (IDCA's) to a new level. Key component mainly driving achievable weight, volume and power consumption is the cryocooler. AIM cryocooler developments are focused on compact, lightweight linear cryocoolers driven by compact and high efficient digital cooler drive electronics (DCE) to also achieve highest MTTF targets. This technology is using moving magnet driving mechanisms and dual or single piston compressors. Whereas SX030 which was presented at SPIE in 2012 consuming less 3 WDC to operate a typical IDCA at 140K, next smaller cooler SX020 is designed to provide sufficient cooling power at detector temperature above 160K. The cooler weight of less than 200g and a total compressor length of 60mm makes it an ideal solution for all applications with limited weight and power budget, like in handheld applications. For operating a typical 640x512, 15μm MW IR detector the power consumption will be less than 1.5WDC. MTTF for the cooler will be in excess of 30,000h and thus achieving low maintenance cost also in 24/7 applications. The SX020 compressor is based on a single piston design with integrated passive balancer in a new design achieves very low exported vibration in the order of 100mN in the compressor axis. AIM is using a modular approach, allowing the chose between 5 different compressor types for one common Stirling expander. The 6mm expander with a total length of 74mm is now available in a new design that fits into standard dewar bores originally designed for rotary coolers. Also available is a 9mm coldfinger in both versions. In development is an ultra-short expander with around 35mm total length to achieve highest compactness. Technical

  15. Hot Springs-Garrison Fiber Optic Project

    SciTech Connect

    Not Available

    1994-10-01

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

  16. Electrically tunable hot-silicon terahertz attenuator

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro

    2014-10-01

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 103. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and ˜550 K, with the corresponding free-carrier density adjusted between ˜1011 cm-3 and ˜1017 cm-3. This "hot-silicon"-based terahertz attenuator works most effectively at 450-550 K (corresponding to a DC voltage variation of only ˜7 V) and completely shields terahertz radiation above 550 K in a frequency range of 0.1-2.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers.

  17. Hot Isostatic Pressing of 60-Nitinol

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2015-01-01

    The effects of varying the time, temperature and pressure during consolidation of 60-Nitinol (Nickel Titanium alloy) by hot isostatic pressing (HIP) were examined. Six HIP cycles with a cycle time of either 2 or 20 hours, temperature of 900 or 1000 degrees Centigrade, and a chamber pressure of either 100 or 200 millipascals were used. The cycle representing the shortest cycle time at the highest temperature and pressure (2 hours/1000 degrees Centigrade/200 millipascals) produced material with the highest hardness (720 Vickers Pyramid Number (HV)). A modest increase in average grain size and significant porosity reduction were observed in material subjected to the longest cycle time at the highest temperature, regardless of the pressure applied. The intent of this study is to facilitate the technology transfer involved in the processing of this material.

  18. Legionella Infection Risk from Domestic Hot Water

    PubMed Central

    Montagna, M. Teresa; Romano-Spica, Vincenzo; Stampi, Serena; Stancanelli, Giovanna; Triassi, Maria; Neglia, Rachele; Marchesi, Isabella; Fantuzzi, Guglielmina; Tatò, Daniela; Napoli, Christian; Quaranta, Gianluigi; Laurenti, Patrizia; Leoni, Erica; De Luca, Giovanna; Ossi, Cristina; Moro, Matteo; D’Alcalà, Gabriella Ribera

    2004-01-01

    We investigated Legionella and Pseudomonas contamination of hot water in a cross-sectional multicentric survey in Italy. Chemical parameters (hardness, free chlorine, and trace elements) were determined. Legionella spp. were detected in 33 (22.6%) and Pseudomonas spp. in 56 (38.4%) of 146 samples. Some factors associated with Legionella contamination were heater type, tank distance and capacity, water plant age, and mineral content. Pseudomonas presence was influenced by water source, hardness, free chlorine, and temperature. Legionella contamination was associated with a centralized heater, distance from the heater point >10 m, and a water plant >10 years old. Furthermore, zinc levels of <20 μg/L and copper levels of >50 μg/L appeared to be protective against Legionella colonization. Legionella species and serogroups were differently distributed according to heater type, water temperature, and free chlorine, suggesting that Legionella strains may have a different sensibility and resistance to environmental factors and different ecologic niches. PMID:15109413

  19. Particulate Hot Gas Stream Cleanup Technical Issues

    SciTech Connect

    Dorchak, T.P.; Pontiu, D.H.; Snyder, T.R.

    1996-12-31

    The nature of the collected ash has been identified as an issue creating barriers to the commercialization of advanced particle control technologies. Since most of the emphasis and extended operation of Hot Gas Stream Cleanup (HGCU) facilities have been with ceramic candle filters, problems with ash characteristics can be understood in terms of their effects on these control devices. This project is designed to identify the ways ash characteristics affect advanced particle control technologies, to construct and maintain a data base of HGCU ashes and their measured characteristics, and to relate these characteristics to the operation and performance of these facilities. The key characteristics of the collected ash are the morphology of the overall ash aggregate (porosity, geometry of the pores, specific surface area, etc.), and the cohesivity of the aggregate. Our data base currently comprises 242 ash samples from 12 combustion and gasification (HGCU) sources.

  20. Mechanism of hot corrosion of IN-738

    NASA Technical Reports Server (NTRS)

    Meier, G. H.

    1982-01-01

    The Na2SO4 - induced hot corrosion of IN-738 in the temperature range 900 C to 1000 C is characterized by an initiation stage during which the corrosion rate is slow followed by a propagation stage during which the corrosion rate is markedly accelerated. In the second stage, corrosion is accelerated due essentially to a sulfidation/oxidation mechanism; in the third stage, the rate becomes catastrophic due to acid fluxing induced by an accumulation of refractory metal oxides (particularly MoO3) in the Na2SO4. The sequential stages in the corrosion process are described and a mechanism proposed. The influence of alloy microstructure on the corrosion mechanism is also discussed.

  1. Superconducting cuprate heterostructures for hot electron bolometers

    NASA Astrophysics Data System (ADS)

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-01

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  2. Flowfield visualization for SSME hot gas manifold

    NASA Technical Reports Server (NTRS)

    Roger, Robert P.

    1988-01-01

    The objective of this research, as defined by NASA-Marshall Space Flight Center, was two-fold: (1) to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME), and (2) to provide analytical support for SSME related numerical computational experiments, being performed by the Computational Fluid Dynamics staff in the Aerophysics Division of the Structures and Dynamics Laboratory at NASA-MSFC. Numerical results of HGM were calculations to complement both water flow visualization experiments and air flow visualization experiments and air experiments in two-duct geometries performed at NASA-MSFC and Rocketdyne. In addition, code modification and improvement efforts were to strengthen the CFD capabilities of NASA-MSFC for producing reliable predictions of flow environments within the SSME.

  3. Hot relativistic winds and the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Fujimura, F. S.; Kennel, C. F.

    1981-01-01

    Efforts to formulate a self-consistent model of pulsar magnetospheres which links the particle source near the pulsar to the outflowing relativistic wind and couples the wind to the surrounding nebula are reviewed. The use of a relativistic MHD wind is recommended to account for global photon emission and the invisibility of the method of plasma transport. Consideration of a magnetic monopole relativistic wind due to an axially symmetric aligned rotator is combined with calculations of the initial velocity of the wind to show that the flow velocity in such a model will never exceed Mach 1. Extending the solution to the case of a hot relativistic wind at supersonic speeds is noted to yield results consistent with observations of the Crab Nebula

  4. Turbine Engine Hot Section Technology (HOST)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A two-day workshop on the research and plans for turbine engine hot section durability problems was held on October 25 and 26, 1983, at the NASA Lewis Research Center. Presentations were made during six sessions, including structural analysis, fatigue and fracture, surface protective coatings, combustion, turbine heat transfer, and instrumentation, that dealt with the thermal and fluid environment around liners, blades, and vanes, and with material coatings, constitutive behavior, stress-strain response, and life prediction methods for the three components. The principal objective of each session was to disseminate the research results to date, along with future plans, in each of the six areas. Contract and government researchers presented results of their work.

  5. Hot gas path component cooling system

    DOEpatents

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  6. Process for making ceramic hot gas filter

    DOEpatents

    Connolly, Elizabeth Sokolinski; Forsythe, George Daniel; Domanski, Daniel Matthew; Chambers, Jeffrey Allen; Rajendran, Govindasamy Paramasivam

    2001-01-01

    A ceramic hot-gas candle filter having a porous support of filament-wound oxide ceramic yarn at least partially surrounded by a porous refractory oxide ceramic matrix, and a membrane layer on at least one surface thereof. The membrane layer may be on the outer surface, the inner surface, or both the outer and inner surface of the porous support. The membrane layer may be formed of an ordered arrangement of circularly wound, continuous filament oxide ceramic yarn, a ceramic filler material which is less permeable than the filament-wound support structure, or some combination of continuous filament and filler material. A particularly effective membrane layer features circularly wound filament with gaps intentionally placed between adjacent windings, and a filler material of ceramic particulates uniformly distributed throughout the gap region. The filter can withstand thermal cycling during backpulse cleaning and is resistant to chemical degradation at high temperatures.

  7. Hot gas engine with dual crankshafts

    SciTech Connect

    McDougal, A.R.

    1981-03-01

    A hot gas engine, such as a Stirling engine is described which comprises a displacer portion and an expander portion with a heat exchanger connected between them. The expander portion has a piston which is operatively connected to and rotates an expander crankshaft. In like manner, the displacer portion is provided with a piston which is also operatively connected to and rotates with a separate displacer crankshafts. The two crankshafts are synchronized with respect to each other preferably by means of an idler gear. Banks of displacer pistons can also be provided for operation on a common displacer crankshaft and banks of cooperating expander pistons also can be provided for operation on a common expander crankshaft. Official Gazette of the U.S. Patent and Trademark Office

  8. Power control for hot gas engines

    NASA Technical Reports Server (NTRS)

    Macglashan, W. F. (Inventor)

    1980-01-01

    A hot gas engine in which the expander piston of the engine is connected to an expander crankshaft. A displacer piston of the engine is connected to a separate displacer crankshaft which may or may not be coaxial with the expander crankshaft. A phase angle control mechanism used as a power control for changing the phase angle between the expander and displacer crankshaft is located between the two crankshafts. The phase angle control mechanism comprises a differential type mechanism comprised of a pair of gears, as for example, bevel gears, one of which is connected to one end of the expander crankshaft and the other of which is connected to the opposite end of the displacer crankshaft. A mating bevel gear is disposed in meshing engagement with the first two level gears to provide a phase angle control between the two crankshafts. Other forms of differential mechanisms may be used including conventional spur gears connected in a differential type arrangement.

  9. Hot gas engine with dual crankshafts

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R. (Inventor)

    1981-01-01

    A hot gas engine, such as a Stirling engine is described which comprises a displacer portion and an expander portion with a heat exchanger connected between them. The expander portion has a piston which is operatively connected to and rotates an expander crankshaft. In like manner, the displacer portion is provided with a piston which is also operatively connected to and rotates with a separate displacer crankshafts. The two crankshafts are synchronized with respect to each other preferably by means of an idler gear. Banks of displacer pistons can also be provided for operation on a common displacer crankshaft and banks of cooperating expander pistons also can be provided for operation on a common expander crankshaft.

  10. Diffuse Hot Gas in M51

    NASA Astrophysics Data System (ADS)

    Schlegel, Eric

    2014-08-01

    X-ray observations of face-on spiral galaxies reveal diffuse emission across the face of nearby galaxies. Whether that emission represents hot gas or unresolved point sources remains to be determined. We present two examples of our pursuit of an answer. First, a Chandra observation of M51 reveals a difference in the soft X-ray emission of the arms. The fitted spectra exhibit similar temperatures for the model components, but different abundances, particularly for Mg. Second, we compare the X-ray emission of M51 with data at other wavelengths via 'pixel statistics'. We adaptively bin the X-ray image and apply the resulting mask to data at other wavelengths to search for pixel correlations. We report on our results and inferences to date.

  11. Prototype solar heating and hot water systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Alternative approaches to solar heating and hot water system configurations were studied, parametrizing the number and location of the dampers, the number and location of the fans, the interface locations with the furnace, the size and type of subsystems, and operating modes. A two-pass air-heating collector was selected based on efficiency and ease of installation. Also, an energy transport module was designed to compactly contain all the mechanical and electrical control components. System performance calculations were carried out over a heating season for the tentative site location at Tunkhnana, Pa. Results illustrate the effect of collector size, storage capacity, and use of a reflector. Factors which affected system performance include site location, insulative quality of the house, and of the system components. A preliminary system performance specification is given.

  12. Alternatives for reducing hot-water bills

    SciTech Connect

    Bennington, G.E.; Spewak, P.C.

    1981-06-01

    A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

  13. Liquid Hot Water Pretreatment of Cellulosic Biomass

    NASA Astrophysics Data System (ADS)

    Kim, Youngmi; Hendrickson, Rick; Mosier, Nathan S.; Ladisch, Michael R.

    Lignocellulosic biomass is an abundant and renewable resource for fuel ethanol production. However, the lignocellulose is recalcitrant to enzymatic hydrolysis because of its structural complexity. Controlled-pH liquid hot water (LHW) pretreatment of cellulosic feedstock improves its enzymatic digestibility by removing hemicellulose and making the cellulose more accessible to cellulase enzymes. The removed hemicellulose is solubilized in the liquid phase of the pretreated feedstock as oligosaccharides. Formation of monomeric sugars during the LHW pretreatment is minimal. The LHW pretreatment is carried out by cooking the feedstock in process water at temperatures between 160 and 190°C and at a pH of 4-7. No additional chemicals are needed. This chapter presents the detailed procedure of the LHW pretreatment of lignocellulosic biomass.

  14. Cold chain in a hot climate.

    PubMed

    Guthridge, S L; Miller, N C

    1996-12-01

    We monitored the temperatures of batches of vaccine during transport and storage from a national warehouse to five Northern Territory vaccination clinics. Electronic temperature monitors were placed with vaccines, and were programmed to record the temperature every 30 minutes for up to three months. A diary was attached to each vaccine batch to record each change in location. The temperature recordings covered 8369 hours. There were regular temperature deviations outside the recommended range. In the hot climate of the Northern Territory, freezing is the greatest threat to vaccine potency. Recommendations from the study include: routine use of cold chain indicators, increased vaccine turnover and storage of vaccines within an operational temperature range of 4 to 8 degrees C. Research is needed to investigate the efficacy of heat-stable vaccines when stored at ambient temperatures and in air-conditioned environments. PMID:9117976

  15. Superconducting cuprate heterostructures for hot electron bolometers

    SciTech Connect

    Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.

    2013-11-25

    Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La{sub 2−x}Sr{sub x}CuO{sub 4} layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV∼γI{sup 3}, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ/dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area g{sub e−ph}≈1 W/K cm{sup 2} at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.

  16. The Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Hayes, Jeffrey (Technical Monitor)

    2005-01-01

    This grant is associated to a 5-year LTSA grant, on "Studying the Largest Reservoir of Baryons in the Universe: The Warm-Hot Intergalactic Medium". The first year of work within this program has been very rich, and has already produced several important results, as detailed in this paper. Table 2 of our original proposal justification, listed the planned year-by-year program, divided into two sub-fields: (A) the study of the z=0 (or Local Group WHIM) system, and (B) the study of the z greater than 0 (i.e- intervening WHIM) systems. For each of the two sub-fields we had planned to analyze, in the first year, a number of archival (Chandra, XMM and FUSE) and new (if observed) sightlines. Moreover, the plan for the z=0 system included the search for new interesting sightlines. We have accomplished all these tasks.

  17. Telescopic nanotube device for hot nanolithography

    DOEpatents

    Popescu, Adrian; Woods, Lilia M

    2014-12-30

    A device for maintaining a constant tip-surface distance for producing nanolithography patterns on a surface using a telescopic nanotube for hot nanolithography. An outer nanotube is attached to an AFM cantilever opposite a support end. An inner nanotube is telescopically disposed within the outer nanotube. The tip of the inner nanotube is heated to a sufficiently high temperature and brought in the vicinity of the surface. Heat is transmitted to the surface for thermal imprinting. Because the inner tube moves telescopically along the outer nanotube axis, a tip-surface distance is maintained constant due to the vdW force interaction, which in turn eliminates the need of an active feedback loop.

  18. IUE observations of amorphous hot galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, S. A.; Hjellming, M. S.; Gallagher, J. S., III; Hunter, D. A.

    1985-01-01

    Blue amorphous galaxies are star-forming, irregularlike systems which lack the spatially distinct OB stellar groups that are characteristic of most late-type galaxies. In order to better understand the nature of star-formation processes in these unusual galaxies, short-wavelength IUE spectra of the amorphous galaxies NGC 1705 and NGC 1800 have been obtained. It is found that NGC 1705 contains a normal mix of OB stars, which is consistent with the nearly constant recent star-formation rate inferred from new optical data. NGC 1800 is likely to have similar properties, and blue galaxies with amorphous structures thus do not show evidence for anomalies in stellar populations. The UV spectra of these galaxies and a variety of other hot extragalactic stellar systems in fact have similar characteristics, which suggests OB stellar populations are often homogeneous in their properties.

  19. MENOPAUSAL HOT FLASHES: MECHANISMS, ENDOCRINOLOGY, TREATMENT

    PubMed Central

    Freedman, Robert R.

    2015-01-01

    Hot flashes (HFs) are a rapid and exaggerated heat dissipation response, consisting of profuse sweating, peripheral vasodilation, and feelings of intense, internal heat. They are triggered by small elevations in core body temperature (Tc) acting within a greatly reduced thermoneutral zone, i.e., the Tc region between the upper (sweating) and lower (shivering) thresholds. This is due in part, but not entirely, to estrogen depletion at menopause. Elevated central sympathetic activation, mediated through α2-adrenergic receptors, is one factor responsible for narrowing of the thermoneutral zone. Procedures which reduce this activation, such as paced respiration and clonidine administration, ameliorate HFs as will peripheral cooling. HFs are responsible for some, but not all, of the sleep disturbance reported during menopause. Recent work calls into question the role of serotonin in HFs. PMID:24012626

  20. Hot crenarchaeal viruses reveal deep evolutionary connections.

    PubMed

    Ortmann, Alice C; Wiedenheft, Blake; Douglas, Trevor; Young, Mark

    2006-07-01

    The discovery of archaeal viruses provides insights into the fundamental biochemistry and evolution of the Archaea. Recent studies have identified a wide diversity of archaeal viruses within the hot springs of Yellowstone National Park and other high-temperature environments worldwide. These viruses are often morphologically unique and code for genes with little similarity to other known genes in the biosphere, a characteristic that has complicated efforts to trace their evolutionary history. Comparative genomics combined with structural analysis indicate that spindle-shaped virus lineages might be unique to the Archaea, whereas other icosahedral viruses might share a common lineage with viruses of Bacteria and Eukarya. These studies provide insights into the evolutionary history of viruses in all three domains of life. PMID:16755285

  1. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  2. Comment on breakup densities of hot nuclei

    NASA Astrophysics Data System (ADS)

    Viola, V. E.; Kwiatkowski, K.; Yennello, S. J.; Natowitz, J. B.

    2006-06-01

    In [V.E. Viola et al., Phys. Rev. Lett. 93 (2004) 132701, D.S. Bracken et al., Phys. Rev. C 69 (2004) 034612] the observed decrease in spectral peak energies of IMFs emitted from hot nuclei was interpreted in terms of a breakup density that decreased with increasing excitation energy. Subsequently, Raduta et al. [Ad. Raduta et al., Phys. Lett. B 623 (2005) 43] performed MMM simulations that showed decreasing spectral peaks could be obtained at constant density. In this Letter we point out that this apparent inconsistency is due to a selective comparison of theory and data that overlooks the evolution of the fragment multiplicities as a function of excitation energy.

  3. MAGNETICALLY CONTROLLED CIRCULATION ON HOT EXTRASOLAR PLANETS

    SciTech Connect

    Batygin, Konstantin; Stanley, Sabine; Stevenson, David J.

    2013-10-10

    Through the process of thermal ionization, intense stellar irradiation renders hot Jupiter atmospheres electrically conductive. Simultaneously, lateral variability in the irradiation drives the global circulation with peak wind speeds of the order of ∼km s{sup –1}. In turn, the interactions between the atmospheric flows and the background magnetic field give rise to Lorentz forces that can act to perturb the flow away from its purely hydrodynamical counterpart. Using analytical theory and numerical simulations, we show here that significant deviations away from axisymmetric circulation are unstable in presence of a non-negligible axisymmetric magnetic field. Specifically, our results suggest that dayside-to-nightside flows, often obtained within the context of three-dimensional circulation models, only exist on objects with anomalously low magnetic fields, while the majority of highly irradiated exoplanetary atmospheres are entirely dominated by zonal jets.

  4. Graphene vertical hot-electron terahertz detectors

    SciTech Connect

    Ryzhii, V.; Satou, A.; Otsuji, T.; Ryzhii, M.; Mitin, V.; Shur, M. S.

    2014-09-21

    We propose and analyze the concept of the vertical hot-electron terahertz (THz) graphene-layer detectors (GLDs) based on the double-GL and multiple-GL structures with the barrier layers made of materials with a moderate conduction band off-set (such as tungsten disulfide and related materials). The operation of these detectors is enabled by the thermionic emissions from the GLs enhanced by the electrons heated by incoming THz radiation. Hence, these detectors are the hot-electron bolometric detectors. The electron heating is primarily associated with the intraband absorption (the Drude absorption). In the frame of the developed model, we calculate the responsivity and detectivity as functions of the photon energy, GL doping, and the applied voltage for the GLDs with different number of GLs. The detectors based on the cascade multiple-GL structures can exhibit a substantial photoelectric gain resulting in the elevated responsivity and detectivity. The advantages of the THz detectors under consideration are associated with their high sensitivity to the normal incident radiation and efficient operation at room temperature at the low end of the THz frequency range. Such GLDs with a metal grating, supporting the excitation of plasma oscillations in the GL-structures by the incident THz radiation, can exhibit a strong resonant response at the frequencies of several THz (in the range, where the operation of the conventional detectors based on A{sub 3}B{sub 5} materials, in particular, THz quantum-well detectors, is hindered due to a strong optical phonon radiation absorption in such materials). We also evaluate the characteristics of GLDs in the mid- and far-infrared ranges where the electron heating is due to the interband absorption in GLs.

  5. Hot Exoplanet Atmospheres Resolved with Transit Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wyttenbach, Aurélien; Ehrenreich, David

    2015-12-01

    The field of exoplanet atmospheres is booming thanks to (low-resolution) space-borne spectrographs and high-resolution (narrow-ranged) NIR spectrographs on ground-based 8m-class telescopes. Atmospheres are important because they are our observing window on the physical, chemical, and evolutionary processes occurring on exoplanets. Transiting exoplanets are the best suitable targets for atmospheric studies. Observing a transit in different filters or with a spectrograph reveals the transmission spectrum of the planet atmosphere. More than one decade of such observations allowed the exploration of these remote words by detecting some constituents of their atmospheres, but revealing also the presence of scattering hazes and clouds in several exoplanets preventing the detection of major chemical constituents at low to medium resolution even from space.Transit observations from the ground with stabilised high-resolution spectrograph, such HARPS, have key roles to play in this context. Observation of the hot-jupiter HD 189733b with HARPS allow the detection of sodium in the planet atmosphere. The high-resolution transmission spectra allowed to probe a new region high in the atmosphere and revealed rapid winds and a heating thermosphere. This new use of the famous planet hunter turned HARPS into a powerful exoplanet characterisation machine. It has the precision level of the Hubble Space Telescope, albeit at 20 higher resolution.A survey of a large set of known hot transiting exoplanets with HARPS and later with ESPRESSO will allow the detection of key tracers of atmospheric physics, chemistry, and evolution, above the scattering haze layers known to dominate low-resolution visible spectra of exoplanets.Such observation, in total sinergy with other technics, will rmly establish stabilised, high-resolution spectrographs on 4m telescopes as corner-stones for the characterisation of exoplanets. This is instrumental considering the upcoming surveys (NGTS,K2, CHEOPS, TESS

  6. Hot-Gas Filter Ash Characterization Project

    SciTech Connect

    Dockter, B.A.; Hurley, J.P.; Watne, T.A.; Katrinak, K.A.; O`Keefe, C.A.

    1996-12-31

    Large-scale hot-gas testing over the past several years has revealed numerous cases of cake buildup on filter elements that have been difficult, if not impossible to remove. At times, the cake can bridge between candle filters, leading to high filter failure rates. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature contribute to difficulty in removing the cake. It is speculated that chemical as well as physical effects are playing a role in leading the ash to bond to the filter or to itself. The Energy and Environmental research Center (EERC) at the University of North Dakota is working with Electric Power Research Institute (EPRI) and a consortium of companies in partnership with the US Department of Energy (DOE) to perform the research necessary to determine the factors that cause hot-gas cleanup filters to be blinded by ash or to develop deposits that can bridge the filters and cause them to fail. The objectives of this overall project are threefold: first, to determine the mechanisms by which difficult-to-clean ash is formed; second, to develop a method to determine the rate of blinding/bridging based on fuel and sorbent properties and operating conditions; finally, to provide suggestions fro ways to prevent filter blinding by the troublesome ash. The projects consists of four tasks: field sampling and archive sample analyses, laboratory-scale testing, bench-scale testing, and model and database development testing. This paper present preliminary data from Task 2 on determining the tensile strengths of coal ash particles at elevated temperatures and simulated combustor gas conditions.

  7. Nanoscale precipitation in hot rolled sheet steel

    NASA Astrophysics Data System (ADS)

    Sun, Jun

    Some newer hot rolled high strength low alloy (HSLA) steels with a single phase ferrite matrix have obtained substantial strengthening from nanoscale precipitation. These HSLA are reported to have a good combination of strength, ductility and hole-expansion ability. In the current work, Gleeble ® 3500 torsion testing was employed to simulate the hot rolling process with varying run-out table cooling rates and coiling temperatures on five microalloyed steels with additions of Ti, Nb, Mo, Cr and V, to investigate the effects of microalloy additions and processing conditions on microstructures as well as mechanical properties. Subsized tensile specimens obtained from as-twisted torsion samples were used to evaluate mechanical properties. The precipitation states of the five steels with different processing conditions were characterized using extraction replica TEM. Comparison of microstructures and mechanical properties was discussed. Characterization of the microstructure via light optical microscopy showed the matrix microstructure was mainly influenced by coiling temperature, which indicates that the transformation from austenite to ferrite occurred during the coiling period. A higher Ti content was shown to reduce the second constituent fractions. Investigation of carbon extraction replica specimens via TEM revealed the presence of nanoscale precipitation. Extensive nanoscale precipitation was observed in most of the specimens having a polygonal ferrite matrix, while in the granular bainite/ferrite microstructure at lower temperatures, fewer microalloy carbides were present. The specimens with polygonal ferrite had similar or higher yield strength than the specimens with granular bainite microstructure, which suggests the effectiveness of precipitation strengthening from extensive nanoscale precipitates. In the Nb-Mo steel, more significant strengthening due to grain refinement was evident. Yield strength values were less than reported for JFE's "NANOHITEN

  8. Phototrophy in Mildly Acidic Hot Spring Ecosystems

    NASA Astrophysics Data System (ADS)

    Fecteau, K.; Boyd, E. S.; Shock, E.

    2014-12-01

    Microbial light-driven reduction of carbon in continental hydrothermal ecosystems is restricted to environments at temperatures less than 73 °C. In circumneutral and alkaline systems bacterial phototrophs (cyanobacteria and anoxygenic phototrophs) are suggested to be principally responsible for this activity whereas algal (i.e., eukaryotic) phototrophs are thought to be responsible for this activity in acidic systems. In Yellowstone National Park numerous examples of phototrophic microbial communities exist at high and low pH, while hot springs with intermediate pH (values 3-5) are rare and commonly dilute. It is thought that the transition from algal photosynthesis to bacterial photosynthesis occurs within this pH range. To test this hypothesis, we sequenced bacterial and eukaryal small subunit ribosomal RNA genes, analyzed pigments, and performed comprehensive geochemical measurements from 12 hot springs within this pH realm. At all sites, the largest phototrophic population was either comprised of Cyanobacteria or affiliated with the algal order Cyanidiales, which are ubiquitous in acidic springs, yet abundant sequences of both lineages were present in 8 of the 12 sites. Nevertheless, some of these samples exceeded the known temperature limit of the algae (56 °C), suggesting that these populations are dead or inactive. Indeed, one site yielded evidence for a large Cyanidiales population as the only phototrophs present, yet an experiment at the time of sampling failed to demonstrate light-driven carbon fixation, and analysis of extracted pigments showed a large amount of the chlorophyll degradation product pheophorbide a and very little intact chlorophyll, indicating photosynthesis occurred at this site when conditions were different. Our observations illustrate the dynamic nature of these systems that may be transiently conducive to photosynthesis, which may open niches for phototrophs of both domains and likely played a role in the evolution of photosynthesis.

  9. SMA millimeter observations of hot molecular cores

    SciTech Connect

    Hernández-Hernández, Vicente; Zapata, Luis; Kurtz, Stan; Garay, Guido

    2014-05-01

    We present Submillimeter Array observations in the 1.3 mm continuum and the CH{sub 3}CN (12 {sub K}-11 {sub K}) line of 17 hot molecular cores associated with young high-mass stars. The angular resolution of the observations ranges from 1.''0 to 4.''0. The continuum observations reveal large (>3500 AU) dusty structures with gas masses from 7 to 375 M {sub ☉}, which probably surround multiple young stars. The CH{sub 3}CN line emission is detected toward all the molecular cores at least up to the K = 6 component and is mostly associated with the emission peaks of the dusty objects. We used the multiple K-components of the CH{sub 3}CN and both the rotational diagram method and a simultaneous synthetic local thermodynamic equilibrium model with the XCLASS program to estimate the temperatures and column densities of the cores. For all sources, we obtained reasonable fits from XCLASS by using a model that combines two components: an extended and warm envelope and a compact hot core of molecular gas, suggesting internal heating by recently formed massive stars. The rotational temperatures lie in the range of 40-132 K and 122-485 K for the extended and compact components, respectively. From the continuum and CH{sub 3}CN results, we infer fractional abundances from 10{sup –9} to 10{sup –7} toward the compact inner components, which increase with the rotational temperature. Our results agree with a chemical scenario in which the CH{sub 3}CN molecule is efficiently formed in the gas phase above 100-300 K, and its abundance increases with temperature.

  10. Symmetry in cold-to-hot and hot-to-cold valuation gaps.

    PubMed

    Fisher, Geoffrey; Rangel, Antonio

    2014-01-01

    Individuals commonly mispredict their future preferences when they make decisions in a visceral state different from their anticipated state at consumption. In the research reported here, we asked subjects to bid on different foods while exogenously varying their hunger levels at the time of decision and at the time of consumption. This procedure allowed us to test whether cold-to-hot and hot-to-cold gaps are symmetric in size and driven by similar mechanisms. We found that the effect size was symmetric: Hungry subjects overbid 20¢ for a snack they would eat later when they were satiated, and satiated subjects underbid 19¢ for a snack they would eat later when they were hungry. Furthermore, we found evidence that these gaps were driven by symmetric mechanisms that operate on the evaluation of visceral features of food, such as taste, as opposed to more cognitive features, such as healthiness. PMID:24220624

  11. Ultraviolet Fe VII absorption lines in planetary nebula nuclei, hot subdwarfs, and hot degenerate objects

    NASA Technical Reports Server (NTRS)

    Feibelman, Walter A.; Bruhweiler, Frederick C.

    1990-01-01

    Results are reported from a search for Fe VII absorption lines in data from high-dispersion IUE-SWP observations of PN nuclei (PNN), hot subdwarfs (HSDs), and hot white dwarfs (HWDs). The data-reduction techniques employed are outlined, and the results are presented in extensive tables and sample spectra and characterized in detail. Absorption in at least one of the four Fe VII lines above 120 nm wavelength is found in 22 of 51 PNN, and possibly in 10 HSDs, in the pulsating HWD PG 1159 - 035, and in the PNN K1 - 16. It is concluded that Fe VII is more common in WD progenitors such as PNN than previously predicted and is especially typical of the more luminous low-gravity stars.

  12. Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design

    SciTech Connect

    Longyear, A.B.

    1980-06-01

    The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methane (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.

  13. Hot flow anomaly formation by magnetic deflection. [regions of hot plasma in earth magnetosphere

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Thomsen, M. F.; Winske, D.

    1990-01-01

    Hot flow anomalies (HFAs) are localized plasma structures observed in the solar wind and magnetosheath near the earth's quasi-parallel bow shock. This paper presents one-dimensional hybrid computer simulations illustrating a formation mechanism for HFAs in which the single hot ion population results from a spatial separation of two counterstreaming ion beams. The higher-density cooler regions are dominated by the background (solar wind) ions, and the lower-density hotter internal regions are dominated by the beam ions. The spatial separation of the beam and background is caused by the deflection of the ions in large-amplitude magnetic fields which are generated by ion/ion streaming instabilities.

  14. Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films.

    PubMed

    Haug, Tobias; Klemm, Philippe; Bange, Sebastian; Lupton, John M

    2015-08-01

    Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales. PMID:26296132

  15. Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films

    NASA Astrophysics Data System (ADS)

    Haug, Tobias; Klemm, Philippe; Bange, Sebastian; Lupton, John M.

    2015-08-01

    Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales.

  16. 15. View of interior, north wall of hot cell featuring ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. View of interior, north wall of hot cell featuring radioactive materials containment box, facing east - Nevada Test Site, Reactor Maintenance & Disassembly Complex, Junior Hot Cell, Jackass Flats, Area 25, South of intersection of Roads F & G, Mercury, Nye County, NV

  17. 21 CFR 890.5710 - Hot or cold disposable pack.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hot or cold disposable pack. 890.5710 Section 890.5710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5710 Hot or...

  18. 21 CFR 890.5710 - Hot or cold disposable pack.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hot or cold disposable pack. 890.5710 Section 890.5710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5710 Hot or...

  19. 21 CFR 890.5710 - Hot or cold disposable pack.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hot or cold disposable pack. 890.5710 Section 890.5710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5710 Hot or...

  20. 21 CFR 890.5710 - Hot or cold disposable pack.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hot or cold disposable pack. 890.5710 Section 890.5710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5710 Hot or...

  1. Design package for solar domestic hot water system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The initial design of a solar domestic hot water system is considered. The system performance specification and detailed design drawings are included. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished site data acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  2. 2. HOT METAL BRIDGE (ACROSS THE MONONGAHELA RIVER) AND CARRIE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. HOT METAL BRIDGE (ACROSS THE MONONGAHELA RIVER) AND CARRIE FURNACES No. 3 AND No. 4 FROM THE TOP OF WATER TOWER. THE EDGAR THOMSON WORKS IS VISIBLE BEYOND HOT METAL BRIDGE. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  3. Dynamical Interactions Make Hot Jupiters in Open Star Clusters

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Hurley, Jarrod R.; Mardling, Rosemary A.

    2016-01-01

    Explaining the origin and evolution of exoplanetary hot Jupiters remains a significant challenge. One possible mechanism for the production of hot Jupiters is planet-planet interactions, which produce them from planets born far from their host stars but near their dynamical stability limits. In the much more likely case of planets born far from their dynamical stability limits, can hot Jupiters be formed in star clusters? Our N-body simulations answer this question in the affirmative, and show that hot Jupiter formation is not a rare event, occurring in ˜1% of star cluster planetary systems. We detail three case studies of the dynamics-induced births of hot Jupiters on highly eccentric orbits that can only occur inside star clusters. The hot Jupiters’ orbits bear remarkable similarities to those of some of the most extreme exoplanets known: HAT-P-32b, HAT-P-2b, HD 80606b, and GJ 876d. If stellar perturbations formed these hot Jupiters, then our simulations predict that these very hot inner planets are often accompanied by much more distant gas giants in highly eccentric orbits.

  4. Effects of surface chemistry on hot corrosion life

    NASA Technical Reports Server (NTRS)

    Fryxell, R. E.; Gupta, B. K.

    1984-01-01

    Hot corrosion life prediction methodology based on a combination of laboratory test data and field service turbine components, which show evidence of hot corrosion, were examined. Components were evaluated by optical metallography, scanning electron microscopy (SEM), and electron micropulse (EMP) examination.

  5. Treatment of Menopausal Hot Flashes with 5-Hydroxytryptophan

    PubMed Central

    Freedman, Robert R.

    2010-01-01

    Objective Much recent research has focused on nonhormonal treatments for menopausal hot flashes. The purpose of the present study was to determine the effects of 5-Hydroxytroptophan (5-HTP), the immediate precursor of serotonin, upon menopausal hot flashes. Selective, serotonergic, reuptake inhibitors (SSRI’s), which increase the amount of serotonin in the synaptic gap, have shown some promise in the amelioration of hot flashes. Methods We administered 5-HTP or placebo, in double-blind fashion, to 24 postmenopausal women reporting frequent hot flashes. Treatment outcome was measured using a miniature, electronic, hot flash recorder. Results No significant effects of 150 mg/day 5-HTP upon hot flash frequency were found. The 5-HTP group had 23.8 ± 5.7 (SD) hot flashes/24 hours prior to treatment and 18.5 ± 9.6 at the end of treatment. The placebo group had 18.5 ± 9.6 before treatment and 22.6 ± 12.4 at treatment completion. Conclusions At the dose given, 5-HTP does not significantly ameliorate frequency of menopausal hot flashes, as measured objectively with an electronic recorder. Given the small size, this study must be considered preliminary in nature. PMID:20031347

  6. Ab initio study of hot electrons in GaAs.

    PubMed

    Bernardi, Marco; Vigil-Fowler, Derek; Ong, Chin Shen; Neaton, Jeffrey B; Louie, Steven G

    2015-04-28

    Hot carrier dynamics critically impacts the performance of electronic, optoelectronic, photovoltaic, and plasmonic devices. Hot carriers lose energy over nanometer lengths and picosecond timescales and thus are challenging to study experimentally, whereas calculations of hot carrier dynamics are cumbersome and dominated by empirical approaches. In this work, we present ab initio calculations of hot electrons in gallium arsenide (GaAs) using density functional theory and many-body perturbation theory. Our computed electron-phonon relaxation times at the onset of the Γ, L, and X valleys are in excellent agreement with ultrafast optical experiments and show that the ultrafast (tens of femtoseconds) hot electron decay times observed experimentally arise from electron-phonon scattering. This result is an important advance to resolve a controversy on hot electron cooling in GaAs. We further find that, contrary to common notions, all optical and acoustic modes contribute substantially to electron-phonon scattering, with a dominant contribution from transverse acoustic modes. This work provides definitive microscopic insight into hot electrons in GaAs and enables accurate ab initio computation of hot carriers in advanced materials. PMID:25870287

  7. 21 CFR 890.5710 - Hot or cold disposable pack.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hot or cold disposable pack. 890.5710 Section 890.5710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5710 Hot or...

  8. Prototype solar heating and cooling systems including potable hot water

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  9. Brush Seal Would Impede Flow Of Hot Gas

    NASA Technical Reports Server (NTRS)

    Carroll, Paul F.; Easter, Barry P.

    1993-01-01

    Proposed brush seal helps prevent recirculating flow of hot combustion gases from reaching bellows seal located deep in gap in wall of combustion chamber. More durable, more tolerant of irregularities, and easier to install. Seals also helpful in impeding deleterious flows of hot gases in other combustion chambers such as those of furnaces and turbomachines.

  10. ADVANCED HOT SECTION MATERIALS AND COATINGS TEST RIG

    SciTech Connect

    Scott Reome; Dan Davies

    2004-04-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activity during this reporting period were the evaluation of syngas combustor concepts, the evaluation of test section concepts and the selection of the preferred rig configuration.

  11. Advanced Hot Section Materials and Coatings Test Rig

    SciTech Connect

    Dan Davies

    2004-10-30

    The Hyperbaric Advanced Hot Section Materials & Coating Test Rig program provides design and implementation of a laboratory rig capable of simulating the hot gas path conditions of coal-gas fired industrial gas turbine engines. The principal activities during this reporting period were the continuation of test section detail design and developing specifications for auxiliary systems and facilities.

  12. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, J.D.

    1984-08-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  13. Self-contained hot-hollow cathode gun source assembly

    DOEpatents

    Zeren, Joseph D.

    1986-01-01

    A self-contained hot-hollow cathode gun source assembly for use in a vacuum chamber includes a crucible block having a hot-hollow cathode gun mounted underneath and providing a hole for the magnetic deflection of the ion/electron beam into a crucible on top the block.

  14. Visualizing Cosmological Concepts Using the Analog of a Hot Liquid

    ERIC Educational Resources Information Center

    Yusofi, E.; Mohsenzadeh, M.

    2010-01-01

    We have used the expansion process of hot milk, which has similarities with the cosmic expansion, to facilitate easier and better visualization and teaching of cosmological concepts. Observations of milk are used to illustrate phenomena related to the Planck era, the standard hot big bang model, cosmic inflation, problems with the formation of…

  15. 40 CFR 68.85 - Hot work permit.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) The permit shall document that the fire prevention and protection requirements in 29 CFR 1910.252(a... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Hot work permit. 68.85 Section 68.85... ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner...

  16. 40 CFR 68.85 - Hot work permit.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) The permit shall document that the fire prevention and protection requirements in 29 CFR 1910.252(a... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Hot work permit. 68.85 Section 68.85... ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner...

  17. HOTS: A Thinking Skills Program for At-Risk Students.

    ERIC Educational Resources Information Center

    Pogrow, Stanley

    1988-01-01

    The Higher Order Thinking Skills (HOTS) program uses microcomputers to help high risk students master basic thinking processes, grasp course content, and apply learned information in various problem-solving situations. Specifically, HOTS aids students with metacognition, inference from context, and generalization skills. It also improves…

  18. Propagation of neutrinos in hot and dense media

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    2016-03-01

    We study the propagation of neutrinos in hot and dense media of stellar systems as well as in the very early universe. Our emphasis is on the study of the basic properties of neutrinos with tiny mass and their interactions with the hot and dense media. We also discuss the relevance of our results to astrophysics and cosmology.

  19. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  20. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 29.961 Section 29.961 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... hot weather operation. Each suction lift fuel system and other fuel systems conducive to...

  1. 14 CFR 23.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 23.961 Section 23.961 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor...

  2. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 29.961 Section 29.961 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... hot weather operation. Each suction lift fuel system and other fuel systems conducive to...

  3. 14 CFR 27.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 27.961 Section 27.961 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... hot weather operation. Each suction lift fuel system and other fuel systems with features conducive...

  4. 14 CFR 27.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 27.961 Section 27.961 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... hot weather operation. Each suction lift fuel system and other fuel systems with features conducive...

  5. 14 CFR 29.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 29.961 Section 29.961 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... hot weather operation. Each suction lift fuel system and other fuel systems conducive to...

  6. 14 CFR 27.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Fuel system hot weather operation. 27.961 Section 27.961 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... hot weather operation. Each suction lift fuel system and other fuel systems with features conducive...

  7. 14 CFR 23.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Fuel system hot weather operation. 23.961 Section 23.961 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor...

  8. 14 CFR 23.961 - Fuel system hot weather operation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Fuel system hot weather operation. 23.961 Section 23.961 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Fuel System § 23.961 Fuel system hot weather operation. Each fuel system must be free from vapor...

  9. Behavioral Treatment of Menopausal Hot Flashes: Evaluation by Objective Methods.

    ERIC Educational Resources Information Center

    Germaine, Leonard M.; Freedman, Robert R.

    1984-01-01

    Used latency to hot flash onset under heat stress to evaluate the effects of relaxation treatment or a control procedure in 14 menopausal women. Following treatment, the latency to hot flash onset during heat stress was increased in relaxation subjects. Reported symptom frequency was significantly reduced in relaxation subjects. (BH)

  10. 46 CFR 116.970 - Protection against hot piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Protection against hot piping. 116.970 Section 116.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.970 Protection against hot piping. Piping, including valves, pipe...

  11. 46 CFR 177.970 - Protection against hot piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Protection against hot piping. 177.970 Section 177.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.970 Protection against hot piping....

  12. 40 CFR 68.85 - Hot work permit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The permit shall document that the fire prevention and protection requirements in 29 CFR 1910.252(a... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Hot work permit. 68.85 Section 68.85... ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner...

  13. 46 CFR 177.970 - Protection against hot piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Protection against hot piping. 177.970 Section 177.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.970 Protection against hot piping....

  14. 46 CFR 177.970 - Protection against hot piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Protection against hot piping. 177.970 Section 177.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.970 Protection against hot piping....

  15. 40 CFR 68.85 - Hot work permit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) The permit shall document that the fire prevention and protection requirements in 29 CFR 1910.252(a... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Hot work permit. 68.85 Section 68.85... ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner...

  16. 46 CFR 177.970 - Protection against hot piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Protection against hot piping. 177.970 Section 177.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.970 Protection against hot piping....

  17. 46 CFR 116.970 - Protection against hot piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Protection against hot piping. 116.970 Section 116.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.970 Protection against hot piping. Piping, including valves, pipe...

  18. 46 CFR 116.970 - Protection against hot piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Protection against hot piping. 116.970 Section 116.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.970 Protection against hot piping. Piping, including valves, pipe...

  19. 40 CFR 68.85 - Hot work permit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) The permit shall document that the fire prevention and protection requirements in 29 CFR 1910.252(a... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Hot work permit. 68.85 Section 68.85... ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.85 Hot work permit. (a) The owner...

  20. 46 CFR 116.970 - Protection against hot piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Protection against hot piping. 116.970 Section 116.970 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE... ARRANGEMENT Rails and Guards § 116.970 Protection against hot piping. Piping, including valves, pipe...